Sample records for control systems based

  1. Microprocessor-based control systems application in nuclear power plant critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, M.R.; Nowak, J.B.

    Microprocessor-based control systems have been used in fossil power plants and are receiving greater acceptance for application in nuclear plants. This technology is not new but it does require unique considerations when applied to nuclear power plants. Sargent and Lundy (S and L) has used a microprocessor-based component logic control system (interposing Logic System) for safety- and non-safety-related components in nuclear power plants under construction overseas. Currently, S and L is in the design stage to replace an existing analog control system with a microprocessor-based control system in the U.S. The trend in the industry is to replace systems inmore » existing plants or design new power plants with microprocessor-based control systems.« less

  2. Space construction base control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  3. Remote control of microcontroller-based infant stimulating system.

    PubMed

    Burunkaya, M; Güler, I

    2000-04-01

    In this paper, a remote-controlled and microcontroller-based cradle is designed and constructed. This system is also called Remote Control of Microcontroller-Based Infant Stimulation System or the RECOMBIS System. Cradle is an infant stimulating system that provides relaxation and sleeping for the baby. RECOMBIS system is designed for healthy full-term newborns to provide safe infant care and provide relaxation and sleeping for the baby. A microcontroller-based electronic circuit was designed and implemented for RECOMBIS system. Electromagnets were controlled by 8-bit PIC16F84 microcontroller, which is programmed using MPASM package. The system works by entering preset values from the keyboard, or pulse code modulated radio frequency remote control system. The control of the system and the motion range were tested. The test results showed that the system provided a good performance.

  4. Passivity-based Robust Control of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

    2000-01-01

    This report provides a brief summary of the research work performed over the duration of the cooperative research agreement between NASA Langley Research Center and Kansas State University. The cooperative agreement which was originally for the duration the three years was extended by another year through no-cost extension in order to accomplish the goals of the project. The main objective of the research was to develop passivity-based robust control methodology for passive and non-passive aerospace systems. The focus of the first-year's research was limited to the investigation of passivity-based methods for the robust control of Linear Time-Invariant (LTI) single-input single-output (SISO), open-loop stable, minimum-phase non-passive systems. The second year's focus was mainly on extending the passivity-based methodology to a larger class of non-passive LTI systems which includes unstable and nonminimum phase SISO systems. For LTI non-passive systems, five different passification. methods were developed. The primary effort during the years three and four was on the development of passification methodology for MIMO systems, development of methods for checking robustness of passification, and developing synthesis techniques for passifying compensators. For passive LTI systems optimal synthesis procedure was also developed for the design of constant-gain positive real controllers. For nonlinear passive systems, numerical optimization-based technique was developed for the synthesis of constant as well as time-varying gain positive-real controllers. The passivity-based control design methodology developed during the duration of this project was demonstrated by its application to various benchmark examples. These example systems included longitudinal model of an F-18 High Alpha Research Vehicle (HARV) for pitch axis control, NASA's supersonic transport wind tunnel model, ACC benchmark model, 1-D acoustic duct model, piezo-actuated flexible link model, and NASA

  5. An Assessment of Vulnerabilities for Ship-based Control Systems

    DTIC Science & Technology

    2009-09-01

    VULNERABILITIES FOR SHIP- BASED CONTROL SYSTEMS by Richard Bensing September 2009 Thesis Advisor: Karen Burke Co-Advisor: George Dinolt...COVERED Master’s Thesis 4. TITLE AND SUBTITLE: An Assessment of Vulnerabilities for Ship- based Control Systems 6. AUTHOR(S) Richard Bensing 5...soft underbelly. Computer- based control systems form the heart of the critical infrastructure, and these control systems are riddled with rampant

  6. Fuzzy logic-based flight control system design

    NASA Astrophysics Data System (ADS)

    Nho, Kyungmoon

    The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.

  7. FPGA based control system for space instrumentation

    NASA Astrophysics Data System (ADS)

    Di Giorgio, Anna M.; Cerulli Irelli, Pasquale; Nuzzolo, Francesco; Orfei, Renato; Spinoglio, Luigi; Liu, Giovanni S.; Saraceno, Paolo

    2008-07-01

    The prototype for a general purpose FPGA based control system for space instrumentation is presented, with particular attention to the instrument control application software. The system HW is based on the LEON3FT processor, which gives the flexibility to configure the chip with only the necessary HW functionalities, from simple logic up to small dedicated processors. The instrument control SW is developed in ANSI C and for time critical (<10μs) commanding sequences implements an internal instructions sequencer, triggered via an interrupt service routine based on a HW high priority interrupt.

  8. ISHN Ion Source Control System. First Steps Toward an EPICS Based ESS-Bilbao Accelerator Control System

    NASA Astrophysics Data System (ADS)

    Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.

    2013-04-01

    ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.

  9. Engine control system having fuel-based adjustment

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  10. Comparison of conventional rule based flow control with control processes based on fuzzy logic in a combined sewer system.

    PubMed

    Klepiszewski, K; Schmitt, T G

    2002-01-01

    While conventional rule based, real time flow control of sewer systems is in common use, control systems based on fuzzy logic have been used only rarely, but successfully. The intention of this study is to compare a conventional rule based control of a combined sewer system with a fuzzy logic control by using hydrodynamic simulation. The objective of both control strategies is to reduce the combined sewer overflow volume by an optimization of the utilized storage capacities of four combined sewer overflow tanks. The control systems affect the outflow of four combined sewer overflow tanks depending on the water levels inside the structures. Both systems use an identical rule base. The developed control systems are tested and optimized for a single storm event which affects heterogeneously hydraulic load conditions and local discharge. Finally the efficiencies of the two different control systems are compared for two more storm events. The results indicate that the conventional rule based control and the fuzzy control similarly reach the objective of the control strategy. In spite of the higher expense to design the fuzzy control system its use provides no advantages in this case.

  11. Fixed Point Learning Based Intelligent Traffic Control System

    NASA Astrophysics Data System (ADS)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  12. DEVS representation of dynamical systems - Event-based intelligent control. [Discrete Event System Specification

    NASA Technical Reports Server (NTRS)

    Zeigler, Bernard P.

    1989-01-01

    It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.

  13. Space construction base control system

    NASA Technical Reports Server (NTRS)

    Kaczynski, R. F.

    1979-01-01

    Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.

  14. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model

    NASA Astrophysics Data System (ADS)

    Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng

    2017-10-01

    Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.

  15. Developing stereo image based robot control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suprijadi,; Pambudi, I. R.; Woran, M.

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based onmore » stereovision captures.« less

  16. Engine control system having speed-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  17. Telescope Array Control System Based on Wireless Touch Screen Platform

    NASA Astrophysics Data System (ADS)

    Fu, X. N.; Huang, L.; Wei, J. Y.

    2016-07-01

    GWAC (Ground-based Wide Angle Cameras) are the ground-based observational instruments of the Sino-French cooperation SVOM (Space Variable Objects Monitor) astronomical satellite, and Mini-GWAC is a pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system, which is based on wireless serial interface module to communicate. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test. The system uses the touch-control PC which is based on the Windows CE system as the upper-computer, the wireless transceiver module and PLC (Programmable Logic Controller) as the core. It has the advantages of low cost, reliable data transmission, and simple operation. So far, the control system has been applied to Mini-GWAC successfully.

  18. Access Control for Cooperation Systems Based on Group Situation

    NASA Astrophysics Data System (ADS)

    Kim, Minsoo; Joshi, James B. D.; Kim, Minkoo

    Cooperation systems characterize many emerging environments such as ubiquitous and pervasive systems. Agent based cooperation systems have been proposed in the literature to address challenges of such emerging application environments. A key aspect of such agent based cooperation system is the group situation that changes dynamically and governs the requirements of the cooperation. While individual agent context is important, the overall cooperation behavior is more driven by the group context because of relationships and interactions between agents. Dynamic access control based on group situation is a crucial challenge in such cooperation systems. In this paper we propose a dynamic role based access control model for cooperation systems based on group situation. The model emphasizes capability based agent to role mapping and group situation based permission assignment to allow capturing dynamic access policies that evolve continuously.

  19. Telescope Array Control System Based on Wireless Touch Screen Platform

    NASA Astrophysics Data System (ADS)

    Fu, Xia-nan; Huang, Lei; Wei, Jian-yan

    2017-10-01

    Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.

  20. Research on wheelchair robot control system based on EOG

    NASA Astrophysics Data System (ADS)

    Xu, Wang; Chen, Naijian; Han, Xiangdong; Sun, Jianbo

    2018-04-01

    The paper describes an intelligent wheelchair control system based on EOG. It can help disabled people improve their living ability. The system can acquire EOG signal from the user, detect the number of blink and the direction of glancing, and then send commands to the wheelchair robot via RS-232 to achieve the control of wheelchair robot. Wheelchair robot control system based on EOG is composed of processing EOG signal and human-computer interactive technology, which achieves a purpose of using conscious eye movement to control wheelchair robot.

  1. Stabilization of model-based networked control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Francisco; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Abreu, Carlos

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtainmore » an optimal feedback control is also presented.« less

  2. RFID - based Staff Control System (SCS) in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Saparkhojayev, N.

    2015-06-01

    RFID - based Staff Control System (SCS) will allow complete hands-free access control, monitoring the whereabouts of employee and record the attendance of the employee as well. Moreover, with a help of this system, it is possible to have a nice report at the end of the month and based on the total number of worked hours, the salary will be allocated to each personnel. The access tag can be read up to 10 centimeters from the RFID reader. The proposed system is based on UHF RFID readers, supported with antennas at gate and transaction sections, and employee identification cards containing RFID-transponders which are able to electronically store information that can be read / written even without the physical contact with the help of radio medium. This system is an innovative system, which describes the benefits of applying RFID- technology in the Education System process of Republic of Kazakhstan. This paper presents the experiments conducted to set up RFID based SCS.

  3. Design control system of telescope force actuators based on WLAN

    NASA Astrophysics Data System (ADS)

    Shuai, Xiaoying; Zhang, Zhenchao

    2010-05-01

    With the development of the technology of autocontrol, telescope, computer, network and communication, the control system of the modern large and extra lager telescope become more and more complicated, especially application of active optics. Large telescope based on active optics maybe contain enormous force actuators. This is a challenge to traditional control system based on wired networks, which result in difficult-to-manage, occupy signification space and lack of system flexibility. Wireless network can resolve these disadvantages of wired network. Presented control system of telescope force actuators based on WLAN (WFCS), designed the control system framework of WFCS. To improve the performance of real-time, we developed software of force actuators control system in Linux. Finally, this paper discussed improvement of WFCS real-time, conceived maybe improvement in the future.

  4. Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach.

    PubMed

    Lam, H K

    2012-02-01

    This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.

  5. Observer-based state tracking control of uncertain stochastic systems via repetitive controller

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Susana Ramya, L.; Selvaraj, P.

    2017-08-01

    This paper develops the repetitive control scheme for state tracking control of uncertain stochastic time-varying delay systems via equivalent-input-disturbance approach. The main purpose of this work is to design a repetitive controller to guarantee the tracking performance under the effects of unknown disturbances with bounded frequency and parameter variations. Specifically, a new set of linear matrix inequality (LMI)-based conditions is derived based on the suitable Lyapunov-Krasovskii functional theory for designing a repetitive controller which guarantees stability and desired tracking performance. More precisely, an equivalent-input-disturbance estimator is incorporated into the control design to reduce the effect of the external disturbances. Simulation results are provided to demonstrate the desired control system stability and their tracking performance. A practical stream water quality preserving system is also provided to show the effectiveness and advantage of the proposed approach.

  6. An IBeacon-Based Location System for Smart Home Control.

    PubMed

    Liu, Qinghe; Yang, Xinshuang; Deng, Lizhen

    2018-06-11

    Indoor location and intelligent control system can bring convenience to people’s daily life. In this paper, an indoor control system is designed to achieve equipment remote control by using low-energy Bluetooth (BLE) beacon and Internet of Things (IoT) technology. The proposed system consists of five parts: web server, home gateway, smart terminal, smartphone app and BLE beacons. In the web server, fingerprint matching based on RSSI stochastic characteristic and posture recognition model based on geomagnetic sensing are used to establish a more efficient equipment control system, combined with Pedestrian Dead Reckoning (PDR) technology to improve the accuracy of location. A personalized menu of remote “one-click” control is finally offered to users in a smartphone app. This smart home control system has been implemented by hardware, and precision and stability tests have been conducted, which proved the practicability and good user experience of this solution.

  7. Data-Driven Based Asynchronous Motor Control for Printing Servo Systems

    NASA Astrophysics Data System (ADS)

    Bian, Min; Guo, Qingyun

    Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.

  8. Engine control system having pressure-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  9. Task Delegation Based Access Control Models for Workflow Systems

    NASA Astrophysics Data System (ADS)

    Gaaloul, Khaled; Charoy, François

    e-Government organisations are facilitated and conducted using workflow management systems. Role-based access control (RBAC) is recognised as an efficient access control model for large organisations. The application of RBAC in workflow systems cannot, however, grant permissions to users dynamically while business processes are being executed. We currently observe a move away from predefined strict workflow modelling towards approaches supporting flexibility on the organisational level. One specific approach is that of task delegation. Task delegation is a mechanism that supports organisational flexibility, and ensures delegation of authority in access control systems. In this paper, we propose a Task-oriented Access Control (TAC) model based on RBAC to address these requirements. We aim to reason about task from organisational perspectives and resources perspectives to analyse and specify authorisation constraints. Moreover, we present a fine grained access control protocol to support delegation based on the TAC model.

  10. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  11. Adaptive model-based control systems and methods for controlling a gas turbine

    NASA Technical Reports Server (NTRS)

    Brunell, Brent Jerome (Inventor); Mathews, Jr., Harry Kirk (Inventor); Kumar, Aditya (Inventor)

    2004-01-01

    Adaptive model-based control systems and methods are described so that performance and/or operability of a gas turbine in an aircraft engine, power plant, marine propulsion, or industrial application can be optimized under normal, deteriorated, faulted, failed and/or damaged operation. First, a model of each relevant system or component is created, and the model is adapted to the engine. Then, if/when deterioration, a fault, a failure or some kind of damage to an engine component or system is detected, that information is input to the model-based control as changes to the model, constraints, objective function, or other control parameters. With all the information about the engine condition, and state and directives on the control goals in terms of an objective function and constraints, the control then solves an optimization so the optimal control action can be determined and taken. This model and control may be updated in real-time to account for engine-to-engine variation, deterioration, damage, faults and/or failures using optimal corrective control action command(s).

  12. Development of Arduino based wireless control system

    NASA Astrophysics Data System (ADS)

    Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana

    2015-03-01

    Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.

  13. Probabilistic performance-based design for high performance control systems

    NASA Astrophysics Data System (ADS)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  14. An Attribute Based Access Control Framework for Healthcare System

    NASA Astrophysics Data System (ADS)

    Afshar, Majid; Samet, Saeed; Hu, Ting

    2018-01-01

    Nowadays, access control is an indispensable part of the Personal Health Record and supplies for its confidentiality by enforcing policies and rules to ensure that only authorized users gain access to requested resources in the system. In other words, the access control means protecting patient privacy in healthcare systems. Attribute-Based Access Control (ABAC) is a new access control model that can be used instead of other traditional types of access control such as Discretionary Access Control, Mandatory Access Control, and Role-Based Access Control. During last five years ABAC has shown some applications in both recent academic fields and industry purposes. ABAC by using user’s attributes and resources, makes a decision according to an access request. In this paper, we propose an ABAC framework for healthcare system. We use the engine of ABAC for rendering and enforcing healthcare policies. Moreover, we handle emergency situations in this framework.

  15. LAMOST CCD camera-control system based on RTS2

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  16. FPGA-based multiprocessor system for injection molding control.

    PubMed

    Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P; Osornio-Rios, Roque A

    2012-10-18

    The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected.

  17. Neural network-based model reference adaptive control system.

    PubMed

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  18. Engine control system having fuel-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  19. A Modelica-based Model Library for Building Energy and Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael

    2009-04-07

    This paper describes an open-source library with component models for building energy and control systems that is based on Modelica, an equation-based objectoriented language that is well positioned to become the standard for modeling of dynamic systems in various industrial sectors. The library is currently developed to support computational science and engineering for innovative building energy and control systems. Early applications will include controls design and analysis, rapid prototyping to support innovation of new building systems and the use of models during operation for controls, fault detection and diagnostics. This paper discusses the motivation for selecting an equation-based object-oriented language.more » It presents the architecture of the library and explains how base models can be used to rapidly implement new models. To demonstrate the capability of analyzing novel energy and control systems, the paper closes with an example where we compare the dynamic performance of a conventional hydronic heating system with thermostatic radiator valves to an innovative heating system. In the new system, instead of a centralized circulation pump, each of the 18 radiators has a pump whose speed is controlled using a room temperature feedback loop, and the temperature of the boiler is controlled based on the speed of the radiator pump. All flows are computed by solving for the pressure distribution in the piping network, and the controls include continuous and discrete time controls.« less

  20. Research on the man in the loop control system of the robot arm based on gesture control

    NASA Astrophysics Data System (ADS)

    Xiao, Lifeng; Peng, Jinbao

    2017-03-01

    The Man in the loop control system of the robot arm based on gesture control research complex real-world environment, which requires the operator to continuously control and adjust the remote manipulator, as the background, completes the specific mission human in the loop entire system as the research object. This paper puts forward a kind of robot arm control system of Man in the loop based on gesture control, by robot arm control system based on gesture control and Virtual reality scene feedback to enhance immersion and integration of operator, to make operator really become a part of the whole control loop. This paper expounds how to construct a man in the loop control system of the robot arm based on gesture control. The system is a complex system of human computer cooperative control, but also people in the loop control problem areas. The new system solves the problems that the traditional method has no immersion feeling and the operation lever is unnatural, the adjustment time is long, and the data glove mode wears uncomfortable and the price is expensive.

  1. FPGA-Based Multiprocessor System for Injection Molding Control

    PubMed Central

    Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J.; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P.; Osornio-Rios, Roque A.

    2012-01-01

    The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected. PMID:23202036

  2. Controlled cooling of an electronic system based on projected conditions

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-05-17

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  3. Controlled cooling of an electronic system based on projected conditions

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  4. TEXSYS. [a knowledge based system for the Space Station Freedom thermal control system test-bed

    NASA Technical Reports Server (NTRS)

    Bull, John

    1990-01-01

    The Systems Autonomy Demonstration Project has recently completed a major test and evaluation of TEXSYS, a knowledge-based system (KBS) which demonstrates real-time control and FDIR for the Space Station Freedom thermal control system test-bed. TEXSYS is the largest KBS ever developed by NASA and offers a unique opportunity for the study of technical issues associated with the use of advanced KBS concepts including: model-based reasoning and diagnosis, quantitative and qualitative reasoning, integrated use of model-based and rule-based representations, temporal reasoning, and scale-up performance issues. TEXSYS represents a major achievement in advanced automation that has the potential to significantly influence Space Station Freedom's design for the thermal control system. An overview of the Systems Autonomy Demonstration Project, the thermal control system test-bed, the TEXSYS architecture, preliminary test results, and thermal domain expert feedback are presented.

  5. Control Theory Perspective of Effects-Based Thinking and Operations: Modelling Operations as a Feedback Control System

    DTIC Science & Technology

    2007-11-01

    Control Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E... Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E. Farrell...Abstract This paper explores operations that involve effects-based thinking (EBT) using Control Theory techniques in order to highlight the concept’s

  6. Knowledge-Based Motion Control of AN Intelligent Mobile Autonomous System

    NASA Astrophysics Data System (ADS)

    Isik, Can

    An Intelligent Mobile Autonomous System (IMAS), which is equipped with vision and low level sensors to cope with unknown obstacles, is modeled as a hierarchy of path planning and motion control. This dissertation concentrates on the lower level of this hierarchy (Pilot) with a knowledge-based controller. The basis of a theory of knowledge-based controllers is established, using the example of the Pilot level motion control of IMAS. In this context, the knowledge-based controller with a linguistic world concept is shown to be adequate for the minimum time control of an autonomous mobile robot motion. The Pilot level motion control of IMAS is approached in the framework of production systems. The three major components of the knowledge-based control that are included here are the hierarchies of the database, the rule base and the rule evaluator. The database, which is the representation of the state of the world, is organized as a semantic network, using a concept of minimal admissible vocabulary. The hierarchy of rule base is derived from the analytical formulation of minimum-time control of IMAS motion. The procedure introduced for rule derivation, which is called analytical model verbalization, utilizes the concept of causalities to describe the system behavior. A realistic analytical system model is developed and the minimum-time motion control in an obstacle strewn environment is decomposed to a hierarchy of motion planning and control. The conditions for the validity of the hierarchical problem decomposition are established, and the consistency of operation is maintained by detecting the long term conflicting decisions of the levels of the hierarchy. The imprecision in the world description is modeled using the theory of fuzzy sets. The method developed for the choice of the rule that prescribes the minimum-time motion control among the redundant set of applicable rules is explained and the usage of fuzzy set operators is justified. Also included in the

  7. Decoupling control of vehicle chassis system based on neural network inverse system

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  8. Intelligent control system based on ARM for lithography tool

    NASA Astrophysics Data System (ADS)

    Chen, Changlong; Tang, Xiaoping; Hu, Song; Wang, Nan

    2014-08-01

    The control system of traditional lithography tool is based on PC and MCU. The PC handles the complex algorithm, human-computer interaction, and communicates with MCU via serial port; The MCU controls motors and electromagnetic valves, etc. This mode has shortcomings like big volume, high power consumption, and wasting of PC resource. In this paper, an embedded intelligent control system of lithography tool, based on ARM, is provided. The control system used S5PV210 as processor, completing the functions of PC in traditional lithography tool, and provided a good human-computer interaction by using LCD and capacitive touch screen. Using Android4.0.3 as operating system, the equipment provided a cool and easy UI which made the control more user-friendly, and implemented remote control and debug, pushing video information of product by network programming. As a result, it's convenient for equipment vendor to provide technical support for users. Finally, compared with traditional lithography tool, this design reduced the PC part, making the hardware resources efficiently used and reducing the cost and volume. Introducing embedded OS and the concepts in "The Internet of things" into the design of lithography tool can be a development trend.

  9. Adaptive control for solar energy based DC microgrid system development

    NASA Astrophysics Data System (ADS)

    Zhang, Qinhao

    During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.

  10. UDE-based control of variable-speed wind turbine systems

    NASA Astrophysics Data System (ADS)

    Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang

    2017-01-01

    In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.

  11. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1994-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  12. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1996-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  13. Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming.

    PubMed

    Zhang, Qichao; Zhao, Dongbin; Wang, Ding

    2018-01-01

    In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal control problem can asymptotically stabilize the uncertain system with an adaptive triggering condition. That is, the designed event-based controller is robust to the original uncertain system. Note that the event-based controller is updated only when the triggering condition is satisfied, which can save the communication resources between the plant and the controller. Then, a single network adaptive dynamic programming structure with experience replay technique is constructed to approach the optimal control policies. The stability of the closed-loop system with the event-based control policy and the augmented control policy is analyzed using the Lyapunov approach. Furthermore, we prove that the minimal intersample time is bounded by a nonzero positive constant, which excludes Zeno behavior during the learning process. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.

  14. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianxun Yan; Daniel Sexton; Steven Moore

    2006-10-24

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller wasmore » built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.« less

  15. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    PubMed Central

    Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie

    2017-01-01

    An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes. PMID:28208781

  16. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback.

    PubMed

    Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie

    2017-02-09

    An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  17. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  18. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.

    PubMed

    Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  19. An implantable myoelectric sensor based prosthesis control system.

    PubMed

    DeMichele, Glenn A; Troyk, Philip R; Kerns, Douglas A; Weir, Richard

    2006-01-01

    We present progress on the design and testing of an upper-extremity prosthesis control system based on implantable myoelectric sensors. The implant consists of a single silicon chip packaged with transmit and receive coils. Forward control telemetry to, and reverse EMG data telemetry from multiple implants has been demonstrated.

  20. ARM-based control system for terry rapier loom

    NASA Astrophysics Data System (ADS)

    Shi, Weimin; Gu, Yeqing; Wu, Zhenyu; Wang, Fan

    2007-12-01

    In this paper, a novel ARM-based mechatronics control technique applied in terry rapier loom was presented. Electronic weft selection, electronic fluff, electronic let-off and take-up motions system, which consists of position and speedcontrolled servomechanisms, were studied. The control system configuration, operation principle, and mathematical models of electronic drives system were analyzed. The synchronism among all mechanical motions and an improved intelligent control algorithm for the warp let-off tension control was discussed. The result indict that, by applying electronic and embedded control techniques and the individual servomechanisms, the electronic weft selection, electronic let-off device and electronic take-up device in HGA732T terry rapier loom have greatly simplified the initial complicated mechanism, kept the warp tension constant from full to empty beam, set the variable weft density, eliminated the start mark effectively, promoted its flexibility, reliability and properties, and improved the fabric quality.

  1. Thermostatic system of sensor in NIR spectrometer based on PID control

    NASA Astrophysics Data System (ADS)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  2. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anindya, E-mail: r-ani@vecc.gov.in; Bhole, R. B.; Nandy, Partha P.

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A setmore » of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.« less

  3. Air-condition Control System of Weaving Workshop Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Song, Jian

    The project of air-condition measurement and control system based on LabVIEW is put forward for the sake of controlling effectively the environmental targets in the weaving workshop. In this project, which is based on the virtual instrument technology and in which LabVIEW development platform by NI is adopted, the system is constructed on the basis of the virtual instrument technology. It is composed of the upper PC, central control nodes based on CC2530, sensor nodes, sensor modules and executive device. Fuzzy control algorithm is employed to achieve the accuracy control of the temperature and humidity. A user-friendly man-machine interaction interface is designed with virtual instrument technology at the core of the software. It is shown by experiments that the measurement and control system can run stably and reliably and meet the functional requirements for controlling the weaving workshop.

  4. Cloud-based distributed control of unmanned systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Kim B.; Powell, Darren N.; Yetman, Charles; August, Michael; Alderson, Susan L.; Raney, Christopher J.

    2015-05-01

    Enabling warfighters to efficiently and safely execute dangerous missions, unmanned systems have been an increasingly valuable component in modern warfare. The evolving use of unmanned systems leads to vast amounts of data collected from sensors placed on the remote vehicles. As a result, many command and control (C2) systems have been developed to provide the necessary tools to perform one of the following functions: controlling the unmanned vehicle or analyzing and processing the sensory data from unmanned vehicles. These C2 systems are often disparate from one another, limiting the ability to optimally distribute data among different users. The Space and Naval Warfare Systems Center Pacific (SSC Pacific) seeks to address this technology gap through the UxV to the Cloud via Widgets project. The overarching intent of this three year effort is to provide three major capabilities: 1) unmanned vehicle control using an open service oriented architecture; 2) data distribution utilizing cloud technologies; 3) a collection of web-based tools enabling analysts to better view and process data. This paper focuses on how the UxV to the Cloud via Widgets system is designed and implemented by leveraging the following technologies: Data Distribution Service (DDS), Accumulo, Hadoop, and Ozone Widget Framework (OWF).

  5. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  6. Information fusion based optimal control for large civil aircraft system.

    PubMed

    Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen

    2015-03-01

    Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Stability of model-based event-triggered control systems: a separation property

    NASA Astrophysics Data System (ADS)

    Hao, Fei; Yu, Hao

    2017-04-01

    To save resource of communication, this paper investigates the model-based event-triggered control systems. Two main problems are considered in this paper. One is, for given plant and model, to design event conditions to guarantee the stability of the systems. The other is to consider the effect of the model matrices on the stability. The results show that the closed-loop systems can be asymptotically stabilised with any model matrices in compact sets if the parameters in the event conditions are within the designed ranges. Then, a separation property of model-based event-triggered control is proposed. Namely, the design of the controller gain and the event condition can be separated from the selection of the model matrices. Based on this property, an adaption mechanism is introduced to the model-based event-triggered control systems, which can further improve the sampling performance. Finally, a numerical example is given to show the efficiency and feasibility of the developed results.

  8. Measurement and Control System Based on Wireless Senor Network for Granary

    NASA Astrophysics Data System (ADS)

    Song, Jian

    A wireless measurement and control system for granary is developed for the sake of overcoming the shortcoming of the wired measurement and control system such as complex wiring and low anti-interference capacity. In this system, Zigbee technology is applied with Zigbee protocol stack development platform by TI, and wireless senor network is used to collect and control the temperature and the humidity. It is composed of the upper PC, central control node based on CC2530, sensor nodes, sensor modules and the executive device. The wireless sensor node is programmed by C language in IAR Embedded Workbench for MCS-51 Evaluation environment. The upper PC control system software is developed based on Visual C++ 6.0 platform. It is shown by experiments that data transmission in the system is accurate and reliable and the error of the temperature and humidity is below 2%, meeting the functional requirements for the granary measurement and control system.

  9. Adaptable state based control system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)

    2004-01-01

    An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.

  10. Web-based Traffic Noise Control Support System for Sustainable Transportation

    NASA Astrophysics Data System (ADS)

    Fan, Lisa; Dai, Liming; Li, Anson

    Traffic noise is considered as one of the major pollutions that will affect our communities in the future. This paper presents a framework of web-based traffic noise control support system (WTNCSS) for a sustainable transportation. WTNCSS is to provide the decision makers, engineers and publics a platform to efficiently access the information, and effectively making decisions related to traffic control. The system is based on a Service Oriented Architecture (SOA) which takes the advantages of the convenience of World Wide Web system with the data format of XML. The whole system is divided into different modules such as the prediction module, ontology-based expert module and dynamic online survey module. Each module of the system provides a distinct information service to the decision support center through the HTTP protocol.

  11. Integrated flight/propulsion control system design based on a centralized approach

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.; Bullard, Randy E.

    1989-01-01

    An integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statically unstable, fighter aircraft. A centralized compensator based on the Linear Quadratic Gaussian/Loop Transfer Recovery methodology is first obtained to satisfy the feedback loop performance and robustness specificiations. This high-order centralized compensator is then partitioned into airframe and engine sub-controllers based on modal controllability/observability for the compensator modes. The order of the sub-controllers is then reduced using internally-balanced realization techniques and the sub-controllers are simplified by neglecting the insignificant feedbacks. These sub-controllers have the advantage that they can be implemented as separate controllers on the airframe and the engine while still retaining the important performance and stability characteristics of the full-order centralized compensator. Command prefilters are then designed for the closed-loop system with the simplified sub-controllers to obtain the desired system response to airframe and engine command inputs, and the overall system performance evaluation results are presented.

  12. Photoelectric radar servo control system based on ARM+FPGA

    NASA Astrophysics Data System (ADS)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a

  13. Application of a microcomputer-based system to control and monitor bacterial growth.

    PubMed

    Titus, J A; Luli, G W; Dekleva, M L; Strohl, W R

    1984-02-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO(2), and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations.

  14. Application of a Microcomputer-Based System to Control and Monitor Bacterial Growth

    PubMed Central

    Titus, Jeffrey A.; Luli, Gregory W.; Dekleva, Michael L.; Strohl, William R.

    1984-01-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO2, and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations. PMID:16346462

  15. Observer-Based Adaptive Fault-Tolerant Tracking Control of Nonlinear Nonstrict-Feedback Systems.

    PubMed

    Wu, Chengwei; Liu, Jianxing; Xiong, Yongyang; Wu, Ligang

    2017-06-28

    This paper studies an output-based adaptive fault-tolerant control problem for nonlinear systems with nonstrict-feedback form. Neural networks are utilized to identify the unknown nonlinear characteristics in the system. An observer and a general fault model are constructed to estimate the unavailable states and describe the fault, respectively. Adaptive parameters are constructed to overcome the difficulties in the design process for nonstrict-feedback systems. Meanwhile, dynamic surface control technique is introduced to avoid the problem of ''explosion of complexity''. Furthermore, based on adaptive backstepping control method, an output-based adaptive neural tracking control strategy is developed for the considered system against actuator fault, which can ensure that all the signals in the resulting closed-loop system are bounded, and the system output signal can be regulated to follow the response of the given reference signal with a small error. Finally, the simulation results are provided to validate the effectiveness of the control strategy proposed in this paper.

  16. Expert operator's associate: A knowledge based system for spacecraft control

    NASA Technical Reports Server (NTRS)

    Nielsen, Mogens; Grue, Klaus; Lecouat, Francois

    1991-01-01

    The Expert Operator's Associate (EOA) project is presented which studies the applicability of expert systems for day-to-day space operations. A prototype expert system is developed, which operates on-line with an existing spacecraft control system at the European Space Operations Centre, and functions as an 'operator's assistant' in controlling satellites. The prototype is demonstrated using an existing real-time simulation model of the MARECS-B2 telecommunication satellite. By developing a prototype system, the extent to which reliability and effectivens of operations can be enhanced by AI based support is examined. In addition the study examines the questions of acquisition and representation of the 'knowledge' for such systems, and the feasibility of 'migration' of some (currently) ground-based functions into future spaceborne autonomous systems.

  17. Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control

    NASA Astrophysics Data System (ADS)

    Chen, Syuan-Yi; Gong, Sheng-Sian

    2017-09-01

    This study aims to develop an adaptive high-precision control system for controlling the speed of a vane-type air motor (VAM) pneumatic servo system. In practice, the rotor speed of a VAM depends on the input mass air flow, which can be controlled by the effective orifice area (EOA) of an electronic throttle valve (ETV). As the control variable of a second-order pneumatic system is the integral of the EOA, an observation-based adaptive dynamic sliding-mode control (ADSMC) system is proposed to derive the differential of the control variable, namely, the EOA control signal. In the ADSMC system, a proportional-integral-derivative fuzzy neural network (PIDFNN) observer is used to achieve an ideal dynamic sliding-mode control (DSMC), and a supervisor compensator is designed to eliminate the approximation error. As a result, the ADSMC incorporates the robustness of a DSMC and the online learning ability of a PIDFNN. To ensure the convergence of the tracking error, a Lyapunov-based analytical method is employed to obtain the adaptive algorithms required to tune the control parameters of the online ADSMC system. Finally, our experimental results demonstrate the precision and robustness of the ADSMC system for highly nonlinear and time-varying VAM pneumatic servo systems.

  18. Abstracting event-based control models for high autonomy systems

    NASA Technical Reports Server (NTRS)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1993-01-01

    A high autonomy system needs many models on which to base control, management, design, and other interventions. These models differ in level of abstraction and in formalism. Concepts and tools are needed to organize the models into a coherent whole. The paper deals with the abstraction processes for systematic derivation of related models for use in event-based control. The multifaceted modeling methodology is briefly reviewed. The morphism concepts needed for application to model abstraction are described. A theory for supporting the construction of DEVS models needed for event-based control is then presented. An implemented morphism on the basis of this theory is also described.

  19. QCloud: A cloud-based quality control system for mass spectrometry-based proteomics laboratories

    PubMed Central

    Chiva, Cristina; Olivella, Roger; Borràs, Eva; Espadas, Guadalupe; Pastor, Olga; Solé, Amanda

    2018-01-01

    The increasing number of biomedical and translational applications in mass spectrometry-based proteomics poses new analytical challenges and raises the need for automated quality control systems. Despite previous efforts to set standard file formats, data processing workflows and key evaluation parameters for quality control, automated quality control systems are not yet widespread among proteomics laboratories, which limits the acquisition of high-quality results, inter-laboratory comparisons and the assessment of variability of instrumental platforms. Here we present QCloud, a cloud-based system to support proteomics laboratories in daily quality assessment using a user-friendly interface, easy setup, automated data processing and archiving, and unbiased instrument evaluation. QCloud supports the most common targeted and untargeted proteomics workflows, it accepts data formats from different vendors and it enables the annotation of acquired data and reporting incidences. A complete version of the QCloud system has successfully been developed and it is now open to the proteomics community (http://qcloud.crg.eu). QCloud system is an open source project, publicly available under a Creative Commons License Attribution-ShareAlike 4.0. PMID:29324744

  20. Fuzzy model-based servo and model following control for nonlinear systems.

    PubMed

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  1. Vote Stuffing Control in IPTV-based Recommender Systems

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajen

    Vote stuffing is a general problem in the functioning of the content rating-based recommender systems. Currently IPTV viewers browse various contents based on the program ratings. In this paper, we propose a fuzzy clustering-based approach to remove the effects of vote stuffing and consider only the genuine ratings for the programs over multiple genres. The approach requires only one authentic rating, which is generally available from recommendation system administrators or program broadcasters. The entire process is automated using fuzzy c-means clustering. Computational experiments performed over one real-world program rating database shows that the proposed approach is very efficient for controlling vote stuffing.

  2. Comparison of adaptive critic-based and classical wide-area controllers for power systems.

    PubMed

    Ray, Swakshar; Venayagamoorthy, Ganesh Kumar; Chaudhuri, Balarko; Majumder, Rajat

    2008-08-01

    An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC. The classical methods use a linearized model of the system whereas the ACD method is purely measurement-based, leading to a nonlinear controller with fixed parameters. A comparative analysis of the controllers' performances is carried out under different disturbance scenarios. The ACD-based design has shown promising performance with very little knowledge of the system compared to classical model-based controllers. This paper also discusses the advantages and disadvantages of ACDs, SF, and LMI-H(infinity).

  3. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    ERIC Educational Resources Information Center

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  4. Type-Based Access Control in Data-Centric Systems

    NASA Astrophysics Data System (ADS)

    Caires, Luís; Pérez, Jorge A.; Seco, João Costa; Vieira, Hugo Torres; Ferrão, Lúcio

    Data-centric multi-user systems, such as web applications, require flexible yet fine-grained data security mechanisms. Such mechanisms are usually enforced by a specially crafted security layer, which adds extra complexity and often leads to error prone coding, easily causing severe security breaches. In this paper, we introduce a programming language approach for enforcing access control policies to data in data-centric programs by static typing. Our development is based on the general concept of refinement type, but extended so as to address realistic and challenging scenarios of permission-based data security, in which policies dynamically depend on the database state, and flexible combinations of column- and row-level protection of data are necessary. We state and prove soundness and safety of our type system, stating that well-typed programs never break the declared data access control policies.

  5. Adaptive control with an expert system based supervisory level. Thesis

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerald A.

    1991-01-01

    Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up

  6. ARDOLORES: an Arduino based motors control system for DOLORES

    NASA Astrophysics Data System (ADS)

    Gonzalez, Manuel; Ventura, H.; San Juan, J.; Di Fabrizio, L.

    2014-07-01

    We present ARDOLORES a custom made motor control system for the DOLORES instrument in use at the TNG telescope. ARDOLORES replaced the original PMAC based motor control system at a fraction of the cost. The whole system is composed by one master Arduino ONE with its Ethernet shield, to handle the communications with the external world through an Ethernet socket, and by one Arduino ONE with its custom motor shield for each axis to be controlled. The communication between the master and slaves Arduinos is made possible through the I2C bus. Also a Java web-service has been written to control the motors from an higher level and provides an external API for the scientific GUI. The system has been working since January 2012 handling the DOLORES motors and has demonstrated to be stable, reliable, and with easy maintenance in both the hardware and the software parts.

  7. Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control

    PubMed Central

    Cho, Youngtak; Shin, Narae; Kim, Daesan; Park, Jae Yeol

    2017-01-01

    This paper provides a concise review on the recent development of nanoscale hybrid systems based on carbon nanotubes (CNTs) for biological sensing and control. CNT-based hybrid systems have been intensively studied for versatile applications of biological interfaces such as sensing, cell therapy and tissue regeneration. Recent advances in nanobiotechnology not only enable the fabrication of highly sensitive biosensors at nanoscale but also allow the applications in the controls of cell growth and differentiation. This review describes the fabrication methods of such CNT-based hybrid systems and their applications in biosensing and cell controls. PMID:28188158

  8. Evolutionary game based control for biological systems with applications in drug delivery.

    PubMed

    Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun

    2013-06-07

    Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Model predictive control based on reduced order models applied to belt conveyor system.

    PubMed

    Chen, Wei; Li, Xin

    2016-11-01

    In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    NASA Astrophysics Data System (ADS)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  11. On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward; Jamshidi, Mo

    1997-01-01

    Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.

  12. A real-time control system for the control of suspended interferometers based on hybrid computing techniques

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; Barone, Fabrizio; De Rosa, Rosario; Eleuteri, Antonio; Milano, Leopoldo; Pardi, Silvio; Ricciardi, Iolanda; Russo, Guido

    2004-09-01

    One of the main requirements of a digital system for the control of interferometric detectors of gravitational waves is the computing power, that is a direct consequence of the increasing complexity of the digital algorithms necessary for the control signals generation. For this specific task many specialized non standard real-time architectures have been developed, often very expensive and difficult to upgrade. On the other hand, such computing power is generally fully available for off-line applications on standard Pc based systems. Therefore, a possible and obvious solution may be provided by the integration of both the real-time and off-line architecture resulting in a hybrid control system architecture based on standards available components, trying to get both the advantages of the perfect data synchronization provided by the real-time systems and by the large computing power available on Pc based systems. Such integration may be provided by the implementation of the link between the two different architectures through the standard Ethernet network, whose data transfer speed is largely increasing in these years, using the TCP/IP, UDP and raw Ethernet protocols. In this paper we describe the architecture of an hybrid Ethernet based real-time control system prototype we implemented in Napoli, discussing its characteristics and performances. Finally we discuss a possible application to the real-time control of a suspended mass of the mode cleaner of the 3m prototype optical interferometer for gravitational wave detection (IDGW-3P) operational in Napoli.

  13. Performance-based maintenance of gas turbines for reliable control of degraded power systems

    NASA Astrophysics Data System (ADS)

    Mo, Huadong; Sansavini, Giovanni; Xie, Min

    2018-03-01

    Maintenance actions are necessary for ensuring proper operations of control systems under component degradation. However, current condition-based maintenance (CBM) models based on component health indices are not suitable for degraded control systems. Indeed, failures of control systems are only determined by the controller outputs, and the feedback mechanism compensates the control performance loss caused by the component deterioration. Thus, control systems may still operate normally even if the component health indices exceed failure thresholds. This work investigates the CBM model of control systems and employs the reduced control performance as a direct degradation measure for deciding maintenance activities. The reduced control performance depends on the underlying component degradation modelled as a Wiener process and the feedback mechanism. To this aim, the controller features are quantified by developing a dynamic and stochastic control block diagram-based simulation model, consisting of the degraded components and the control mechanism. At each inspection, the system receives a maintenance action if the control performance deterioration exceeds its preventive-maintenance or failure thresholds. Inspired by realistic cases, the component degradation model considers random start time and unit-to-unit variability. The cost analysis of maintenance model is conducted via Monte Carlo simulation. Optimal maintenance strategies are investigated to minimize the expected maintenance costs, which is a direct consequence of the control performance. The proposed framework is able to design preventive maintenance actions on a gas power plant, to ensuring required load frequency control performance against a sudden load increase. The optimization results identify the trade-off between system downtime and maintenance costs as a function of preventive maintenance thresholds and inspection frequency. Finally, the control performance-based maintenance model can reduce

  14. Predictive control strategies for wind turbine system based on permanent magnet synchronous generator.

    PubMed

    Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba

    2016-05-01

    In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. A formal approach to validation and verification for knowledge-based control systems

    NASA Technical Reports Server (NTRS)

    Castore, Glen

    1987-01-01

    As control systems become more complex in response to desires for greater system flexibility, performance and reliability, the promise is held out that artificial intelligence might provide the means for building such systems. An obstacle to the use of symbolic processing constructs in this domain is the need for verification and validation (V and V) of the systems. Techniques currently in use do not seem appropriate for knowledge-based software. An outline of a formal approach to V and V for knowledge-based control systems is presented.

  16. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    NASA Technical Reports Server (NTRS)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  17. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  18. Reliability-Based Control Design for Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.

  19. Prediction of Trace Element based Energizing Sensor Control System using PWM

    NASA Astrophysics Data System (ADS)

    Zukri, Mohammad Nizar Bin Mohamed; Abu Bakar, Elmi Bin; Uchiyama, Naoki; Abdullah, Mohamad Nazir Bin

    2018-05-01

    A real-time system for field-work monitoring wastewater laden with heavy metal in industrial discharge through wireless communication network was developed. The monitoring system poses an interesting challenge in order to determine existing metal ion in the solution whereas the previous result only consider total dissolve ion. This paper aims to distinguish the metal ion based on reaction determination in solution. The control algorithm was implemented as generating voltage input for energize conductivity sensor since the voltage corresponding to oxidation and reaction based on standard reduction potential. Implementation of ATmega2560 microcontroller for control voltage fed on sensor equivalent to controlling the PWM duty cycle. PID controller was designed uses a microcontroller (Arduino) platform with manual tuning for identify reaction process and sufficient voltage input. From the experimental result, is found that the proposed PI controller has excellent tracking and measurement performance. Low-pass filter was applied in programming to make the system understand that signal has achieved stable. The development of hardware and software of the closed loop system has an enhancement of measurement performance and high feasibility for SME’s company in economic point of view. The desired objective is to achieve a system with the stable measurement and sufficient voltage supply. This system will provide an accurate and precise control efficiently without using costly component and complicated circuit.

  20. Model Predictive Control Based on System Re-Identification (MPC-SRI) to Control Bio-H2 Production from Biomass

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Taqwallah, H. M. H.

    2018-03-01

    Compressors and a steam reformer are the important units in biohydrogen from biomass plant. The compressors are useful for achieving high-pressure operating conditions while the steam reformer is the main process to produce H2 gas. To control them, in this research used a model predictive control (MPC) expected to have better controller performance than conventional controllers. Because of the explicit model empowerment in MPC, obtaining a better model is the main objective before employing MPC. The common way to get the empirical model is through the identification system, so that obtained a first-order plus dead-time (FOPDT) model. This study has already improved that way since used the system re-identification (SRI) based on closed loop mode. Based on this method the results of the compressor pressure control and temperature control of steam reformer were that MPC based on system re-identification (MPC-SRI) has better performance than MPC without system re-identification (MPCWSRI) and the proportional-integral (PI) controller, by % improvement of 73% against MPCWSRI and 75% against the PI controller.

  1. Optimal Redundancy Management in Reconfigurable Control Systems Based on Normalized Nonspecificity

    NASA Technical Reports Server (NTRS)

    Wu, N.Eva; Klir, George J.

    1998-01-01

    In this paper the notion of normalized nonspecificity is introduced. The nonspecifity measures the uncertainty of the estimated parameters that reflect impairment in a controlled system. Based on this notion, a quantity called a reconfiguration coverage is calculated. It represents the likelihood of success of a control reconfiguration action. This coverage links the overall system reliability to the achievable and required control, as well as diagnostic performance. The coverage, when calculated on-line, is used for managing the redundancy in the system.

  2. Cloud-based robot remote control system for smart factory

    NASA Astrophysics Data System (ADS)

    Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei

    2015-12-01

    With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.

  3. Neural Network based Control of SG based Standalone Generating System with Energy Storage for Power Quality Enhancement

    NASA Astrophysics Data System (ADS)

    Nayar, Priya; Singh, Bhim; Mishra, Sukumar

    2017-08-01

    An artificial intelligence based control algorithm is used in solving power quality problems of a diesel engine driven synchronous generator with automatic voltage regulator and governor based standalone system. A voltage source converter integrated with a battery energy storage system is employed to mitigate the power quality problems. An adaptive neural network based signed regressor control algorithm is used for the estimation of the fundamental component of load currents for control of a standalone system with load leveling as an integral feature. The developed model of the system performs accurately under varying load conditions and provides good dynamic response to the step changes in loads. The real time performance is achieved using MATLAB along with simulink/simpower system toolboxes and results adhere to an IEEE-519 standard for power quality enhancement.

  4. Combustion Control System Design of Diesel Engine via ASPR based Output Feedback Control Strategy with a PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya

    2016-09-01

    In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.

  5. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.

    PubMed

    Chen, Xiaogang; Zhao, Bing; Wang, Yijun; Xu, Shengpu; Gao, Xiaorong

    2018-04-12

    Although robot technology has been successfully used to empower people who suffer from motor disabilities to increase their interaction with their physical environment, it remains a challenge for individuals with severe motor impairment, who do not have the motor control ability to move robots or prosthetic devices by manual control. In this study, to mitigate this issue, a noninvasive brain-computer interface (BCI)-based robotic arm control system using gaze based steady-state visual evoked potential (SSVEP) was designed and implemented using a portable wireless electroencephalogram (EEG) system. A 15-target SSVEP-based BCI using a filter bank canonical correlation analysis (FBCCA) method allowed users to directly control the robotic arm without system calibration. The online results from 12 healthy subjects indicated that a command for the proposed brain-controlled robot system could be selected from 15 possible choices in 4[Formula: see text]s (i.e. 2[Formula: see text]s for visual stimulation and 2[Formula: see text]s for gaze shifting) with an average accuracy of 92.78%, resulting in a 15 commands/min transfer rate. Furthermore, all subjects (even naive users) were able to successfully complete the entire move-grasp-lift task without user training. These results demonstrated an SSVEP-based BCI could provide accurate and efficient high-level control of a robotic arm, showing the feasibility of a BCI-based robotic arm control system for hand-assistance.

  6. Lyapunov-based control of limit cycle oscillations in uncertain aircraft systems

    NASA Astrophysics Data System (ADS)

    Bialy, Brendan

    Store-induced limit cycle oscillations (LCO) affect several fighter aircraft and is expected to remain an issue for next generation fighters. LCO arises from the interaction of aerodynamic and structural forces, however the primary contributor to the phenomenon is still unclear. The practical concerns regarding this phenomenon include whether or not ordnance can be safely released and the ability of the aircrew to perform mission-related tasks while in an LCO condition. The focus of this dissertation is the development of control strategies to suppress LCO in aircraft systems. The first contribution of this work (Chapter 2) is the development of a controller consisting of a continuous Robust Integral of the Sign of the Error (RISE) feedback term with a neural network (NN) feedforward term to suppress LCO behavior in an uncertain airfoil system. The second contribution of this work (Chapter 3) is the extension of the development in Chapter 2 to include actuator saturation. Suppression of LCO behavior is achieved through the implementation of an auxiliary error system that features hyperbolic functions and a saturated RISE feedback control structure. Due to the lack of clarity regarding the driving mechanism behind LCO, common practice in literature and in Chapters 2 and 3 is to replicate the symptoms of LCO by including nonlinearities in the wing structure, typically a nonlinear torsional stiffness. To improve the accuracy of the system model a partial differential equation (PDE) model of a flexible wing is derived (see Appendix F) using Hamilton's principle. Chapters 4 and 5 are focused on developing boundary control strategies for regulating the bending and twisting deformations of the derived model. The contribution of Chapter 4 is the construction of a backstepping-based boundary control strategy for a linear PDE model of an aircraft wing. The backstepping-based strategy transforms the original system to a exponentially stable system. A Lyapunov-based stability

  7. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    NASA Astrophysics Data System (ADS)

    Chen, H. J.; Gao, B. T.; Zhang, X. H.; Deng2, Z. Q.

    2006-10-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  8. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  9. Distributed Ship Navigation Control System Based on Dual Network

    NASA Astrophysics Data System (ADS)

    Yao, Ying; Lv, Wu

    2017-10-01

    Navigation system is very important for ship’s normal running. There are a lot of devices and sensors in the navigation system to guarantee ship’s regular work. In the past, these devices and sensors were usually connected via CAN bus for high performance and reliability. However, as the development of related devices and sensors, the navigation system also needs the ability of high information throughput and remote data sharing. To meet these new requirements, we propose the communication method based on dual network which contains CAN bus and industrial Ethernet. Also, we import multiple distributed control terminals with cooperative strategy based on the idea of synchronizing the status by multicasting UDP message contained operation timestamp to make the system more efficient and reliable.

  10. Control Strategies for the DAB Based PV Interface System

    PubMed Central

    El-Helw, Hadi M.; Al-Hasheem, Mohamed; Marei, Mostafa I.

    2016-01-01

    This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138

  11. View northeast of a microchip based computer control system installed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast of a microchip based computer control system installed in the early 1980's to replace Lamokin Tower, at center of photograph; panels 1 and 2 at right of photograph are part of main supervisory board; panel 1 controlled Allen Lane sub-station #7; responsiblity for this portion of the system was transferred to southeast Pennsylvania transit authority (septa) in 1985; panel 2 at extreme right controls catenary switches in a coach storage yard adjacent to the station - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  12. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  13. [A skin cell segregating control system based on PC].

    PubMed

    Liu, Wen-zhong; Zhou, Ming; Zhang, Hong-bing

    2005-11-01

    A skin cell segregating control system based on PC (personal computer) is presented in this paper. Its front controller is a single-chip microcomputer which enables the manipulation for 6 patients simultaneously, and thus provides a great convenience for clinical treatments for vitiligo. With the use of serial port communication technology, it's possible to monitor and control the front controller in a PC terminal. And the application of computer image acquisition technology realizes the synchronous acquisition of pathologic shin cell images pre/after the operation and a case history. Clinical tests prove its conformity with national standards and the pre-set technological requirements.

  14. A ground based phase control system for the solar power satellite, volume 4

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1980-01-01

    A ground phase control system is studied as an alternative approach to the current reference retrodirective phase control system in order to simplify the spaceborne hardware requirement. Based on waveform selections, functional subsystems to implement the ground-based phase control concept are identified and functionally represented. It was concluded that the feasibility of the concept becomes unclear if the conditions of the ionosphere and satellite motion are not met.

  15. Control of equipment isolation system using wavelet-based hybrid sliding mode control

    NASA Astrophysics Data System (ADS)

    Huang, Shieh-Kung; Loh, Chin-Hsiung

    2017-04-01

    Critical non-structural equipment, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., is vulnerable to strong earthquakes, and on top of that, the failure of the vibration-sensitive equipment will cause severe economic loss. In order to protect vibration-sensitive equipment or machinery against strong earthquakes, various innovative control algorithms are developed to compensate the internal forces that to be applied. These new or improved control strategies, such as the control algorithms based on optimal control theory and sliding mode control (SMC), are also developed for structures engineering as a key element in smart structure technology. The optimal control theory, one of the most common methodologies in feedback control, finds control forces through achieving a certain optimal criterion by minimizing a cost function. For example, the linear-quadratic regulator (LQR) was the most popular control algorithm over the past three decades, and a number of modifications have been proposed to increase the efficiency of classical LQR algorithm. However, except to the advantage of simplicity and ease of implementation, LQR are susceptible to parameter uncertainty and modeling error due to complex nature of civil structures. Different from LQR control, a robust and easy to be implemented control algorithm, SMC has also been studied. SMC is a nonlinear control methodology that forces the structural system to slide along surfaces or boundaries; hence this control algorithm is naturally robust with respect to parametric uncertainties of a structure. Early attempts at protecting vibration-sensitive equipment were based on the use of existing control algorithms as described above. However, in recent years, researchers have tried to renew the existing control algorithms or developing a new control algorithm to adapt the complex nature of civil structures which include the control of both structures and non

  16. Stabilization for sampled-data neural-network-based control systems.

    PubMed

    Zhu, Xun-Lin; Wang, Youyi

    2011-02-01

    This paper studies the problem of stabilization for sampled-data neural-network-based control systems with an optimal guaranteed cost. Unlike previous works, the resulting closed-loop system with variable uncertain sampling cannot simply be regarded as an ordinary continuous-time system with a fast-varying delay in the state. By defining a novel piecewise Lyapunov functional and using a convex combination technique, the characteristic of sampled-data systems is captured. A new delay-dependent stabilization criterion is established in terms of linear matrix inequalities such that the maximal sampling interval and the minimal guaranteed cost control performance can be obtained. It is shown that the newly proposed approach can lead to less conservative and less complex results than the existing ones. Application examples are given to illustrate the effectiveness and the benefits of the proposed method.

  17. Non-fragile observer-based output feedback control for polytopic uncertain system under distributed model predictive control approach

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun

    2017-07-01

    In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.

  18. Neural network based optimal control of HVAC&R systems

    NASA Astrophysics Data System (ADS)

    Ning, Min

    Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems have wide applications in providing a desired indoor environment for different types of buildings. It is well acknowledged that 30%-40% of the total energy generated is consumed by buildings and HVAC&R systems alone account for more than 50% of the building energy consumption. Low operational efficiency especially under partial load conditions and poor control are part of reasons for such high energy consumption. To improve energy efficiency, HVAC&R systems should be properly operated to maintain a comfortable and healthy indoor environment under dynamic ambient and indoor conditions with the least energy consumption. This research focuses on the optimal operation of HVAC&R systems. The optimization problem is formulated and solved to find the optimal set points for the chilled water supply temperature, discharge air temperature and AHU (air handling unit) fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. The system model is modular in structure, which includes a water-cooled vapor compression chiller model and a two-zone VAV system model. A fuzzy-set based extended transformation approach is then applied to investigate the uncertainties of this model caused by uncertain parameters and the sensitivities of the control inputs with respect to the interested model outputs. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. In order to implement the optimal set points predicted by the

  19. Configuration maintaining control of three-body ring tethered system based on thrust compensation

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng; Liu, Binbin; Zhang, Fan

    2016-06-01

    Space multi-tethered systems have shown broad prospects in remote observation missions. This paper mainly focuses on the dynamics and configuration maintaining control of space spinning three-body ring tethered system for such mission. Firstly, we establish the spinning dynamic model of the three-body ring tethered system considering the elasticity of the tether using Newton-Euler method, and then validate the suitability of this model by numerical simulation. Subsequently, LP (Likins-Pringle) initial equilibrium conditions for the tethered system are derived based on rigid body's equilibrium theory. Simulation results show that tether slack, snapping and interaction between the tethers exist in the three-body ring system, and its' configuration can not be maintained without control. Finally, a control strategy based on thrust compensation, namely thrust to simulate tether compression under LP initial equilibrium conditions is designed to solve the configuration maintaining control problem. Control effects are verified by numerical simulation compared with uncontrolled situation. Simulation results show that the configuration of the three-body ring tethered system could maintain under this active control strategy.

  20. A robust and stable PLC based control system for 40kJ/25kV EMM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vijay; Saroj, P.C.; Kulkarni, M.R.

    2014-07-01

    This paper describes the PLC based control system developed for a 40kJ/25kV Electro-magnetic machining (EMM) system. In EMM system large capacitor banks is charged with high voltage to store large energy and the banks is made to discharge into a coil within few milli-seconds using a triggered spark gaps. During discharge of the capacitor large surges and transients are generated in the system. The control system monitors/controls and interlocks all the units of the system for proper operation. The control system is the only subsystem which is electrically connected to all the low and high voltage subsystems. Care should bemore » taken at the signal interfacing with the control system to protect the control system. (author)« less

  1. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    NASA Astrophysics Data System (ADS)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  2. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    PubMed

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  3. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems.

    PubMed

    Huh, Jun-Ho; Seo, Kyungryong

    2017-12-19

    The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a "Smart Living". An indoor location-based control system that provides services by estimating user's indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields.

  4. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems

    PubMed Central

    Huh, Jun-Ho; Seo, Kyungryong

    2017-01-01

    The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a “Smart Living”. An indoor location-based control system that provides services by estimating user’s indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields. PMID:29257044

  5. Design of permanent magnet synchronous motor speed control system based on SVPWM

    NASA Astrophysics Data System (ADS)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  6. Multi-axis control based on movement control cards in NC systems

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Wei, Yunquan

    2005-12-01

    Today most movement control cards need special control software of topper computers and are only suitable for fixed-axis controls. Consequently, the number of axes which can be controlled is limited. Advanced manufacture technology develops at a very high speed, and that development brings forth. New requirements for movement control in mechanisms and electronics. This paper introduces products of the 5th generation of movement control cards, PMAC 2A-PC/104, made by the Delta Tau Company in the USA. Based on an analysis of PMAC 2A-PC/104, this paper first describes two aspects relevant to the hardware structure of movement control cards and the interrelated software of the topper computers. Then, two methods are presented for solving these problems. The first method is to set limit switches on the movement control cards; all of them can be used to control each moving axis. The second method is to program applied software with existing programming language (for example, VC ++, Visual Basic, Delphi, and so forth). This program is much easier to operate and expand by its users. By using a limit switch, users can choose different axes in movement control cards. Also, users can change parts of the parameters in the control software of topper computers to realize different control axes. Combining these 2 methods proves to be convenient for realizing multi-axis control in numerical control systems.

  7. Study on virtual instrument developing system based on intelligent virtual control

    NASA Astrophysics Data System (ADS)

    Tang, Baoping; Cheng, Fabin; Qin, Shuren

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.

  8. The remote infrared remote control system based on LPC1114

    NASA Astrophysics Data System (ADS)

    Ren, Yingjie; Guo, Kai; Xu, Xinni; Sun, Dayu; Wang, Li

    2018-05-01

    In view of the shortcomings such as the short control distance of the traditional air conditioner remote controller on the market nowadays and combining with the current smart home new mode "Cloud+ Terminal" mode, a smart home system based on internet is designed and designed to be fully applied to the simple and reliable features of the LPC1114 chip. The controller is added with temperature control module, timing module and other modules. Through the actual test, it achieved remote control air conditioning, with reliability and stability and brought great convenience to people's lives.

  9. YIP Formal Synthesis of Software-Based Control Protocols for Fractionated,Composable Autonomous Systems

    DTIC Science & Technology

    2016-07-08

    Systems Using Automata Theory and Barrier Certifi- cates We developed a sound but incomplete method for the computational verification of specifications...method merges ideas from automata -based model checking with those from control theory including so-called barrier certificates and optimization-based... Automata theory meets barrier certificates: Temporal logic verification of nonlinear systems,” IEEE Transactions on Automatic Control, 2015. [J2] R

  10. Safety Verification of a Fault Tolerant Reconfigurable Autonomous Goal-Based Robotic Control System

    NASA Technical Reports Server (NTRS)

    Braman, Julia M. B.; Murray, Richard M; Wagner, David A.

    2007-01-01

    Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is simulated in MDS and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems.

  11. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  12. Investigation of lunar base thermal control system options

    NASA Technical Reports Server (NTRS)

    Ewart, Michael K.

    1993-01-01

    Long duration human exploration missions to the Moon will require active thermal control systems which have not previously been used in space. The two technologies which are most promising for long term lunar base thermal control are heat pumps and radiator shades. Recent trade-off studies at the Johnson Space Center have focused development efforts on the most promising heat pump and radiator shade technologies. Since these technologies are in the early stages of development and many parameters used in the study are not well defined, a parametric study was done to test the sensitivity to each assumption. The primary comparison factor in these studies was the total mass system, with power requirements included in the form of a mass penalty for power. Heat pump technologies considered were thermally driven heat pumps such as metal hydride, complex compound, absorption and zeolite. Also considered were electrically driven Stirling and vapor compression heat pumps. Radiator shade concepts considered included step shaped, V-shaped and parabolic (or catenary) shades and ground covers. A further trade study compared the masses of heat pump and radiator shade systems.

  13. Command Filtering-Based Fuzzy Control for Nonlinear Systems With Saturation Input.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Lin, Chong

    2017-09-01

    In this paper, command filtering-based fuzzy control is designed for uncertain multi-input multioutput (MIMO) nonlinear systems with saturation nonlinearity input. First, the command filtering method is employed to deal with the explosion of complexity caused by the derivative of virtual controllers. Then, fuzzy logic systems are utilized to approximate the nonlinear functions of MIMO systems. Furthermore, error compensation mechanism is introduced to overcome the drawback of the dynamics surface approach. The developed method will guarantee all signals of the systems are bounded. The effectiveness and advantages of the theoretic result are obtained by a simulation example.

  14. Sliding mode control-based linear functional observers for discrete-time stochastic systems

    NASA Astrophysics Data System (ADS)

    Singh, Satnesh; Janardhanan, Sivaramakrishnan

    2017-11-01

    Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.

  15. Model and Study on Cascade Control System Based on IGBT Chopping Control

    NASA Astrophysics Data System (ADS)

    Niu, Yuxin; Chen, Liangqiao; Wang, Shuwen

    2018-01-01

    Thyristor cascade control system has a wide range of applications in the industrial field, but the traditional cascade control system has some shortcomings, such as a low power factor, serious harmonic pollution. In this paper, not only analyzing its system structure and working principle, but also discussing the two main factors affecting the power factor. Chopping-control cascade control system, adopted a new power switching device IGBT, which could overcome traditional cascade control system’s two main drawbacks efficiently. The basic principle of this cascade control system is discussed in this paper and the model of speed control system is built by using MATLAB/Simulink software. Finally, the simulation results of the system shows that the system works efficiently. This system is worthy to be spread widely in engineering application.

  16. Design of control system based on SCM music fountain

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao; Jiang, Suping

    2018-06-01

    The design of the design of a microprocessor controlled by simple circuit, introduced this design applied to the components, and draw the main flow chart presentation. System is the use of an external music source, the intensity of the input audio signal lights will affect the light off, the fountain spray of water level will be based on changes in the lantern light off. This design uses a single-chip system is simple, powerful, good reliability and low cost.

  17. Design of cylindrical pipe automatic welding control system based on STM32

    NASA Astrophysics Data System (ADS)

    Chen, Shuaishuai; Shen, Weicong

    2018-04-01

    The development of modern economy makes the demand for pipeline construction and construction rapidly increasing, and the pipeline welding has become an important link in pipeline construction. At present, there are still a large number of using of manual welding methods at home and abroad, and field pipe welding especially lacks miniature and portable automatic welding equipment. An automated welding system consists of a control system, which consisting of a lower computer control panel and a host computer operating interface, as well as automatic welding machine mechanisms and welding power systems in coordination with the control system. In this paper, a new control system of automatic pipe welding based on the control panel of the lower computer and the interface of the host computer is proposed, which has many advantages over the traditional automatic welding machine.

  18. A control system based on field programmable gate array for papermaking sewage treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Zi Sheng; Xie, Chang; Qing Xiong, Yan; Liu, Zhi Qiang; Li, Qing

    2013-03-01

    A sewage treatment control system is designed to improve the efficiency of papermaking wastewater treatment system. The automation control system is based on Field Programmable Gate Array (FPGA), coded with Very-High-Speed Integrate Circuit Hardware Description Language (VHDL), compiled and simulated with Quartus. In order to ensure the stability of the data used in FPGA, the data is collected through temperature sensors, water level sensor and online PH measurement system. The automatic control system is more sensitive, and both the treatment efficiency and processing power are increased. This work provides a new method for sewage treatment control.

  19. Brain limbic system-based intelligent controller application to lane change manoeuvre

    NASA Astrophysics Data System (ADS)

    Kim, Changwon; Langari, Reza

    2011-12-01

    This paper presents the application of a novel neuromorphic control strategy for lane change manoeuvres in the highway environment. The lateral dynamics of a vehicle with and without wind disturbance are derived and utilised to implement a control strategy based on the brain limbic system. To show the robustness of the proposed controller, several disturbance conditions including wind, uncertainty in the cornering stiffness, and changes in the vehicle mass are investigated. To demonstrate the performance of the suggested strategy, simulation results of the proposed method are compared with the human driver model-based control scheme, which has been discussed in the literature. The simulation results demonstrate the superiority of the proposed controller in energy efficiency, driving comfort, and robustness.

  20. Flexible system model reduction and control system design based upon actuator and sensor influence functions

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Johnson, Timothy L.; Lang, Jeffrey H.

    1987-01-01

    A model reduction technique based on aggregation with respect to sensor and actuator influence functions rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the reduced-order plant model and the neglected plant model are derived. For the special case of collocated actuators and sensors, these expressions lead to the derivation of constraints on the controller gains that are, given the validity of the perturbation technique, sufficient to guarantee the stability of the closed-loop system. A case study demonstrates the derivation of stabilizing controllers based on the present technique. The use of control and observation synthesis in modifying the dimension of the reduced-order plant model is also discussed. A numerical example is provided for illustration.

  1. Quantum synchronization in an optomechanical system based on Lyapunov control.

    PubMed

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  2. Controllable 3D Display System Based on Frontal Projection Lenticular Screen

    NASA Astrophysics Data System (ADS)

    Feng, Q.; Sang, X.; Yu, X.; Gao, X.; Wang, P.; Li, C.; Zhao, T.

    2014-08-01

    A novel auto-stereoscopic three-dimensional (3D) projection display system based on the frontal projection lenticular screen is demonstrated. It can provide high real 3D experiences and the freedom of interaction. In the demonstrated system, the content can be changed and the dense of viewing points can be freely adjusted according to the viewers' demand. The high dense viewing points can provide smooth motion parallax and larger image depth without blurry. The basic principle of stereoscopic display is described firstly. Then, design architectures including hardware and software are demonstrated. The system consists of a frontal projection lenticular screen, an optimally designed projector-array and a set of multi-channel image processors. The parameters of the frontal projection lenticular screen are based on the demand of viewing such as the viewing distance and the width of view zones. Each projector is arranged on an adjustable platform. The set of multi-channel image processors are made up of six PCs. One of them is used as the main controller, the other five client PCs can process 30 channel signals and transmit them to the projector-array. Then a natural 3D scene will be perceived based on the frontal projection lenticular screen with more than 1.5 m image depth in real time. The control section is presented in detail, including parallax adjustment, system synchronization, distortion correction, etc. Experimental results demonstrate the effectiveness of this novel controllable 3D display system.

  3. Novel disturbance-observer-based control for systems with high-order mismatched disturbances

    NASA Astrophysics Data System (ADS)

    Fang, Xing; Liu, Fei; Wang, Zhiguo; Dong, Na

    2018-01-01

    A novel disturbance-observer-based control method is investigated to attenuate the high-order mismatched disturbances. First, a finite-time disturbance observer (FTDO) is proposed to estimate the disturbances as well as the derivatives. By incorporating the outputs of FTDO, the original system is then reconstructed, where the mismatched disturbances are transformed to the matched ones that are compensated by feed-forward algorithm. Moreover, a feedback control law is developed to achieve the stability and tracking performance requirements for the systems. Finally, the proposed composite control method is applied to an unmanned helicopter system. The simulation results demonstrate that the proposed control method exhibits excellent control performance in the presence of high-order matched and mismatched disturbances.

  4. Study on Temperature Control System Based on SG3525

    NASA Astrophysics Data System (ADS)

    Cheng, Cong; Zhu, Yifeng; Wu, Junfeng

    2017-12-01

    In this paper, it uses the way of dry bath temperature to heat the microfluidic chip directly by the heating plate and the liquid sample in microfluidic chip is heated through thermal conductivity, thus the liquid sample will maintain at target temperature. In order to improve the reliability of the whole machine, a temperature control system based on SG3525 is designed.SG3525 is the core of the system which uses PWM wave produced by itself to drive power tube to heat the heating plate. The bridge circuit consisted of thermistor and PID regulation ensure that the temperature can be controlled at 37 °C with a correctness of ± 0.2 °C and a fluctuation of ± 0.1 °C.

  5. A Microcomputer Based Aircraft Flight Control System.

    DTIC Science & Technology

    1980-04-01

    time control of an aircraft using a microcomputer system . The applicability of two optimal control 5 1 theories--singular perturbation theory and output...increased controller execution time if implemented in software. This may be unavoidable if the plant is not stabilizable without feedback from such...From the real- time testing of the controller designs, it is seen that when dealing with systems possessing a two- time -scale property, output * * 61 K

  6. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias; Nanjundan, Ashok

    1993-01-01

    One of the important issues in the design of a lunar base is the thermal control system (TCS) used to reject low-temperature heat from the base. The TCS ensures that the base and the components inside are maintained within an acceptable temperature range. The temperature of the lunar surface peaks at 400 K during the 336-hour lunar day. Under these circumstances, direct dissipation of waste heat from the lunar base using passive radiators would be impractical. Thermal control systems based on thermal storage, shaded radiators, and heat pumps have been proposed. Based on proven technology, innovation, realistic complexity, reliability, and near-term applicability, a heat pump-based TCS was selected as a candidate for early missions. In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW.

  7. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    NASA Astrophysics Data System (ADS)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  8. Hierarchical control of ride height system for electronically controlled air suspension based on variable structure and fuzzy control theory

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Zhou, Kongkang; Zou, Nannan; Jiang, Hong; Cui, Xiaoli

    2015-09-01

    The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system.

  9. Streetlight Control System Based on Wireless Communication over DALI Protocol

    PubMed Central

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-01-01

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed. PMID:27128923

  10. Conceptual design of a lunar base thermal control system

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Debarro, Marc J.; Farmer, Jeffery T.

    1992-01-01

    Space station and alternate thermal control technologies were evaluated for lunar base applications. The space station technologies consisted of single-phase, pumped water loops for sensible and latent heat removal from the cabin internal environment and two-phase ammonia loops for the transportation and rejection of these heat loads to the external environment. Alternate technologies were identified for those areas where space station technologies proved to be incompatible with the lunar environment. Areas were also identified where lunar resources could enhance the thermal control system. The internal acquisition subsystem essentially remained the same, while modifications were needed for the transport and rejection subsystems because of the extreme temperature variations on the lunar surface. The alternate technologies examined to accommodate the high daytime temperatures incorporated lunar surface insulating blankets, heat pump system, shading, and lunar soil. Other heat management techniques, such as louvers, were examined to prevent the radiators from freezing. The impact of the geographic location of the lunar base and the orientation of the radiators was also examined. A baseline design was generated that included weight, power, and volume estimates.

  11. Evaluating a Control System Architecture Based on a Formally Derived AOCS Model

    NASA Astrophysics Data System (ADS)

    Ilic, Dubravka; Latvala, Timo; Varpaaniemi, Kimmo; Vaisanen, Pauli; Troubitsyna, Elena; Laibinis, Linas

    2010-08-01

    Attitude & Orbit Control System (AOCS) refers to a wider class of control systems which are used to determine and control the attitude of the spacecraft while in orbit, based on the information obtained from various sensors. In this paper, we propose an approach to evaluate a typical (yet somewhat simplified) AOCS architecture using formal development - based on the Event-B method. As a starting point, an Ada specification of the AOCS is translated into a formal specification and further refined to incorporate all the details of its original source code specification. This way we are able not only to evaluate the Ada specification by expressing and verifying specific system properties in our formal models, but also to determine how well the chosen modelling framework copes with the level of detail required for an actual implementation and code generation from the derived models.

  12. Finite time control for MIMO nonlinear system based on higher-order sliding mode.

    PubMed

    Liu, Xiangjie; Han, Yaozhen

    2014-11-01

    Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. [Research of controlling of smart home system based on P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie

    2014-08-01

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

  14. Consensus-Based Formation Control of a Class of Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Gonzalez, Oscar R.

    2014-01-01

    This paper presents a consensus-based formation control scheme for autonomous multi-agent systems represented by double integrator dynamics. Assuming that the information graph topology consists of an undirected connected graph, a leader-based consensus-type control law is presented and shown to provide asymptotic formation stability when subjected to piecewise constant formation velocity commands. It is also shown that global asymptotic stability is preserved in the presence of (0, infinity)- sector monotonic non-decreasing actuator nonlinearities.

  15. A general U-block model-based design procedure for nonlinear polynomial control systems

    NASA Astrophysics Data System (ADS)

    Zhu, Q. M.; Zhao, D. Y.; Zhang, Jianhua

    2016-10-01

    The proposition of U-model concept (in terms of 'providing concise and applicable solutions for complex problems') and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies.

  16. High precision locating control system based on VCM for Talbot lithography

    NASA Astrophysics Data System (ADS)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  17. A novel BCI-controlled pneumatic glove system for home-based neurorehabilitation.

    PubMed

    Coffey, Aodhán L; Leamy, Darren J; Ward, Tomás E

    2014-01-01

    Commercially available devices for Brain-Computer Interface (BCI)-controlled robotic stroke rehabilitation are prohibitively expensive for many researchers who are interested in the topic and physicians who would utilize such a device. Additionally, they are cumbersome and require a technician to operate, increasing the inaccessibility of such devices for home-based robotic stroke rehabilitation therapy. Presented here is the design, implementation and test of an inexpensive, portable and adaptable BCI-controlled hand therapy device. The system utilizes a soft, flexible, pneumatic glove which can be used to deflect the subject's wrist and fingers. Operation is provided by a custom-designed pneumatic circuit. Air flow is controlled by an embedded system, which receives serial port instruction from a PC running real-time BCI software. System tests demonstrate that glove control can be successfully driven by a real-time BCI. A system such as the one described here may be used to explore closed loop neurofeedback rehabilitation in stroke relatively inexpensively and potentially in home environments.

  18. The Design and Transfer of Advanced Command and Control (C2) Computer-Based Systems

    DTIC Science & Technology

    1980-03-31

    TECHNICAL REPORT 80-02 QUARTERLY TECHNICAL REPORT: THE DESIGN AND TRANSFER OF ADVANCED COMMAND AND CONTROL (C 2 ) COMPUTER-BASED SYSTEMS ARPA...The Tasks/Objectives and/or Purposes of the overall project are connected with the design , development, demonstration and transfer of advanced...command and control (C2 ) computer-based systems; this report covers work in the computer-based design and transfer areas only. The Technical Problems thus

  19. Using Agent-Based Modeling to Enhance System-Level Real-time Control of Urban Stormwater Systems

    NASA Astrophysics Data System (ADS)

    Rimer, S.; Mullapudi, A. M.; Kerkez, B.

    2017-12-01

    The ability to reduce combined-sewer overflow (CSO) events is an issue that challenges over 800 U.S. municipalities. When the volume of a combined sewer system or wastewater treatment plant is exceeded, untreated wastewater then overflows (a CSO event) into nearby streams, rivers, or other water bodies causing localized urban flooding and pollution. The likelihood and impact of CSO events has only exacerbated due to urbanization, population growth, climate change, aging infrastructure, and system complexity. Thus, there is an urgent need for urban areas to manage CSO events. Traditionally, mitigating CSO events has been carried out via time-intensive and expensive structural interventions such as retention basins or sewer separation, which are able to reduce CSO events, but are costly, arduous, and only provide a fixed solution to a dynamic problem. Real-time control (RTC) of urban drainage systems using sensor and actuator networks has served as an inexpensive and versatile alternative to traditional CSO intervention. In particular, retrofitting individual stormwater elements for sensing and automated active distributed control has been shown to significantly reduce the volume of discharge during CSO events, with some RTC models demonstrating a reduction upwards of 90% when compared to traditional passive systems. As more stormwater elements become retrofitted for RTC, system-level RTC across complete watersheds is an attainable possibility. However, when considering the diverse set of control needs of each of these individual stormwater elements, such system-level RTC becomes a far more complex problem. To address such diverse control needs, agent-based modeling is employed such that each individual stormwater element is treated as an autonomous agent with a diverse decision making capabilities. We present preliminary results and limitations of utilizing the agent-based modeling computational framework for the system-level control of diverse, interacting

  20. EKF-Based Enhanced Performance Controller Design for Nonlinear Stochastic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    In this paper, a novel control algorithm is presented to enhance the performance of tracking property for a class of non-linear dynamic stochastic systems with unmeasurable variables. To minimize the entropy of tracking errors without changing the existing closed loop with PI controller, the enhanced performance loop is constructed based on the state estimation by extended Kalman Filter and the new controller is designed by full state feedback following this presented control algorithm. Besides, the conditions are obtained for the stability analysis in the mean square sense. In the end, the comparative simulation results are given to illustrate the effectivenessmore » of proposed control algorithm.« less

  1. A support vector machine based control application to the experimental three-tank system.

    PubMed

    Iplikci, Serdar

    2010-07-01

    This paper presents a support vector machine (SVM) approach to generalized predictive control (GPC) of multiple-input multiple-output (MIMO) nonlinear systems. The possession of higher generalization potential and at the same time avoidance of getting stuck into the local minima have motivated us to employ SVM algorithms for modeling MIMO systems. Based on the SVM model, detailed and compact formulations for calculating predictions and gradient information, which are used in the computation of the optimal control action, are given in the paper. The proposed MIMO SVM-based GPC method has been verified on an experimental three-tank liquid level control system. Experimental results have shown that the proposed method can handle the control task successfully for different reference trajectories. Moreover, a detailed discussion on data gathering, model selection and effects of the control parameters have been given in this paper. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Low-Cost Control System Built Upon Consumer-Based Electronics For Supervisory Control Of A Gas-Operated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetherington Jr, G Randall; Vineyard, Edward Allan; Mahderekal, Isaac

    A preliminary evaluation of the performance of a consumer-based control system was conducted by the Oak Ridge National Laboratory (ORNL) and Southwest Gas as part of a cooperative research and development agreement (CRADA) authorized by the Department of Energy (DOE) (Mahderekal et al. (2013). The goal of the research was to evaluate the low-cost approach as a solution for implementing a supervisory control system for a residential gas-operated heat pump. The design incorporated two consumer-based micro-controllers; the Arduino Mega-2650 and the BeagleBone (white). Ten five-ton heat pump systems were designed, fabricated, and operationally tested in the Las Vega NV region.more » A robust data set was produced that allowed detailed assessment of the reliability and the operational perfromance of the newly developed control system. Experiences gained from the test provided important points of improvement for subsequent evolution of the heat pump technology.« less

  3. Instrumentation and Control Needs for Reliable Operation of Lunar Base Surface Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Turso, James; Chicatelli, Amy; Bajwa, Anupa

    2005-01-01

    As one of the near-term goals of the President's Vision for Space Exploration, establishment of a multi-person lunar base will require high-endurance power systems which are independent of the sun, and can operate without replenishment for several years. These requirements may be obtained using nuclear power systems specifically designed for use on the lunar surface. While it is envisioned that such a system will generally be supervised by humans, some of the evolutions required maybe semi or fully autonomous. The entire base complement for near-term missions may be less than 10 individuals, most or all of which may not be qualified nuclear plant operators and may be off-base for extended periods thus, the need for power system autonomous operation. Startup, shutdown, and load following operations will require the application of advanced control and health management strategies with an emphasis on robust, supervisory, coordinated control of, for example, the nuclear heat source, energy conversion plant (e.g., Brayton Energy Conversion units), and power management system. Autonomous operation implies that, in addition to being capable of automatic response to disturbance input or load changes, the system is also capable of assessing the status of the integrated plant, determining the risk associated with the possible actions, and making a decision as to the action that optimizes system performance while minimizing risk to the mission. Adapting the control to deviations from design conditions and degradation due to component failures will be essential to ensure base inhabitant safety and mission success. Intelligent decisions will have to be made to choose the right set of sensors to provide the data needed to do condition monitoring and fault detection and isolation because of liftoff weight and space limitations, it will not be possible to have an extensive set of instruments as used for earth-based systems. Advanced instrumentation and control technologies will be

  4. A Framework for Context Sensitive Risk-Based Access Control in Medical Information Systems

    PubMed Central

    Choi, Donghee; Kim, Dohoon; Park, Seog

    2015-01-01

    Since the access control environment has changed and the threat of insider information leakage has come to the fore, studies on risk-based access control models that decide access permissions dynamically have been conducted vigorously. Medical information systems should protect sensitive data such as medical information from insider threat and enable dynamic access control depending on the context such as life-threatening emergencies. In this paper, we suggest an approach and framework for context sensitive risk-based access control suitable for medical information systems. This approach categorizes context information, estimating and applying risk through context- and treatment-based permission profiling and specifications by expanding the eXtensible Access Control Markup Language (XACML) to apply risk. The proposed framework supports quick responses to medical situations and prevents unnecessary insider data access through dynamic access authorization decisions in accordance with the severity of the context and treatment. PMID:26075013

  5. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  6. Model-based control strategies for systems with constraints of the program type

    NASA Astrophysics Data System (ADS)

    Jarzębowska, Elżbieta

    2006-08-01

    The paper presents a model-based tracking control strategy for constrained mechanical systems. Constraints we consider can be material and non-material ones referred to as program constraints. The program constraint equations represent tasks put upon system motions and they can be differential equations of orders higher than one or two, and be non-integrable. The tracking control strategy relies upon two dynamic models: a reference model, which is a dynamic model of a system with arbitrary order differential constraints and a dynamic control model. The reference model serves as a motion planner, which generates inputs to the dynamic control model. It is based upon a generalized program motion equations (GPME) method. The method enables to combine material and program constraints and merge them both into the motion equations. Lagrange's equations with multipliers are the peculiar case of the GPME, since they can be applied to systems with constraints of first orders. Our tracking strategy referred to as a model reference program motion tracking control strategy enables tracking of any program motion predefined by the program constraints. It extends the "trajectory tracking" to the "program motion tracking". We also demonstrate that our tracking strategy can be extended to a hybrid program motion/force tracking.

  7. Integrated control strategy for autonomous decentralized conveyance systems based on distributed MEMS arrays

    NASA Astrophysics Data System (ADS)

    Zhou, Lingfei; Chapuis, Yves-Andre; Blonde, Jean-Philippe; Bervillier, Herve; Fukuta, Yamato; Fujita, Hiroyuki

    2004-07-01

    In this paper, the authors proposed to study a model and a control strategy of a two-dimensional conveyance system based on the principles of the Autonomous Decentralized Microsystems (ADM). The microconveyance system is based on distributed cooperative MEMS actuators which can produce a force field onto the surface of the device to grip and move a micro-object. The modeling approach proposed here is based on a simple model of a microconveyance system which is represented by a 5 x 5 matrix of cells. Each cell is consisted of a microactuator, a microsensor, and a microprocessor to provide actuation, autonomy and decentralized intelligence to the cell. Thus, each cell is able to identify a micro-object crossing on it and to decide by oneself the appropriate control strategy to convey the micro-object to its destination target. The control strategy could be established through five simple decision rules that the cell itself has to respect at each calculate cycle time. Simulation and FPGA implementation results are given in the end of the paper in order to validate model and control approach of the microconveyance system.

  8. PSO-tuned PID controller for coupled tank system via priority-based fitness scheme

    NASA Astrophysics Data System (ADS)

    Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal

    2015-05-01

    The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.

  9. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    NASA Astrophysics Data System (ADS)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  10. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  11. Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge

    2017-08-01

    A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.

  12. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space

  13. Control-based method to identify underlying delays of a nonlinear dynamical system.

    PubMed

    Yu, Dongchuan; Frasca, Mattia; Liu, Fang

    2008-10-01

    We suggest several stationary state control-based delay identification methods which do not require any structural information about the controlled systems and are applicable to systems described by delayed ordinary differential equations. This proposed technique includes three steps: (i) driving a system to a steady state; (ii) perturbing the control signal for shifting the steady state; and (iii) identifying all delays by detecting the time that the system is abruptly drawn out of stationarity. Some aspects especially important for applications are discussed as well, including interaction delay identification, stationary state convergence speed, performance comparison, and the influence of noise on delay identification. Several examples are presented to illustrate the reliability and robustness of all delay identification methods suggested.

  14. Information distribution in distributed microprocessor based flight control systems

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Lee, P. S.

    1977-01-01

    This paper presents an optimal control theory that accounts for variable time intervals in the information distribution to control effectors in a distributed microprocessor based flight control system. The theory is developed using a linear process model for the aircraft dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved that provides the control law that minimizes the expected value of a quadratic cost function. An example is presented where the theory is applied to the control of the longitudinal motions of the F8-DFBW aircraft. Theoretical and simulation results indicate that, for the example problem, the optimal cost obtained using a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained using a known uniform information update interval.

  15. A Thermal Expert System (TEXSYS) development overview - AI-based control of a Space Station prototype thermal bus

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hack, E. C.

    1990-01-01

    A knowledge-based control system for real-time control and fault detection, isolation and recovery (FDIR) of a prototype two-phase Space Station Freedom external thermal control system (TCS) is discussed in this paper. The Thermal Expert System (TEXSYS) has been demonstrated in recent tests to be capable of both fault anticipation and detection and real-time control of the thermal bus. Performance requirements were achieved by using a symbolic control approach, layering model-based expert system software on a conventional numerical data acquisition and control system. The model-based capabilities of TEXSYS were shown to be advantageous during software development and testing. One representative example is given from on-line TCS tests of TEXSYS. The integration and testing of TEXSYS with a live TCS testbed provides some insight on the use of formal software design, development and documentation methodologies to qualify knowledge-based systems for on-line or flight applications.

  16. An observer-based compensator for distributed delays in integrated control systems

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1989-01-01

    This paper presents an algorithm for compensation of delays that are distributed within a control loop. The observer-based algorithm is especially suitable for compensating network-induced delays that are likely to occur in integrated control systems of the future generation aircraft. The robustness of the algorithm relative to uncertainties in the plant model have been examined.

  17. Method and system to perform energy-extraction based active noise control

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul (Inventor); Joshi, Suresh M. (Inventor)

    2009-01-01

    A method to provide active noise control to reduce noise and vibration in reverberant acoustic enclosures such as aircraft, vehicles, appliances, instruments, industrial equipment and the like is presented. A continuous-time multi-input multi-output (MIMO) state space mathematical model of the plant is obtained via analytical modeling and system identification. Compensation is designed to render the mathematical model passive in the sense of mathematical system theory. The compensated system is checked to ensure robustness of the passive property of the plant. The check ensures that the passivity is preserved if the mathematical model parameters are perturbed from nominal values. A passivity-based controller is designed and verified using numerical simulations and then tested. The controller is designed so that the resulting closed-loop response shows the desired noise reduction.

  18. A system framework of inter-enterprise machining quality control based on fractal theory

    NASA Astrophysics Data System (ADS)

    Zhao, Liping; Qin, Yongtao; Yao, Yiyong; Yan, Peng

    2014-03-01

    In order to meet the quality control requirement of dynamic and complicated product machining processes among enterprises, a system framework of inter-enterprise machining quality control based on fractal was proposed. In this system framework, the fractal-specific characteristic of inter-enterprise machining quality control function was analysed, and the model of inter-enterprise machining quality control was constructed by the nature of fractal structures. Furthermore, the goal-driven strategy of inter-enterprise quality control and the dynamic organisation strategy of inter-enterprise quality improvement were constructed by the characteristic analysis on this model. In addition, the architecture of inter-enterprise machining quality control based on fractal was established by means of Web service. Finally, a case study for application was presented. The result showed that the proposed method was available, and could provide guidance for quality control and support for product reliability in inter-enterprise machining processes.

  19. Quantitative safety assessment of air traffic control systems through system control capacity

    NASA Astrophysics Data System (ADS)

    Guo, Jingjing

    Quantitative Safety Assessments (QSA) are essential to safety benefit verification and regulations of developmental changes in safety critical systems like the Air Traffic Control (ATC) systems. Effectiveness of the assessments is particularly desirable today in the safe implementations of revolutionary ATC overhauls like NextGen and SESAR. QSA of ATC systems are however challenged by system complexity and lack of accident data. Extending from the idea "safety is a control problem" in the literature, this research proposes to assess system safety from the control perspective, through quantifying a system's "control capacity". A system's safety performance correlates to this "control capacity" in the control of "safety critical processes". To examine this idea in QSA of the ATC systems, a Control-capacity Based Safety Assessment Framework (CBSAF) is developed which includes two control capacity metrics and a procedural method. The two metrics are Probabilistic System Control-capacity (PSC) and Temporal System Control-capacity (TSC); each addresses an aspect of a system's control capacity. And the procedural method consists three general stages: I) identification of safety critical processes, II) development of system control models and III) evaluation of system control capacity. The CBSAF was tested in two case studies. The first one assesses an en-route collision avoidance scenario and compares three hypothetical configurations. The CBSAF was able to capture the uncoordinated behavior between two means of control, as was observed in a historic midair collision accident. The second case study compares CBSAF with an existing risk based QSA method in assessing the safety benefits of introducing a runway incursion alert system. Similar conclusions are reached between the two methods, while the CBSAF has the advantage of simplicity and provides a new control-based perspective and interpretation to the assessments. The case studies are intended to investigate the

  20. Observer-based adaptive backstepping control for fractional order systems with input saturation.

    PubMed

    Sheng, Dian; Wei, Yiheng; Cheng, Songsong; Wang, Yong

    2017-07-03

    An observer-based fractional order anti-saturation adaptive backstepping control scheme is proposed for incommensurate fractional order systems with input saturation and partial measurable state in this paper. On the basis of stability analysis, a novel state observer is established first since the only information we could acquire is the system output. In order to compensate the saturation, a series of virtual signals are generated via the construction of fractional order auxiliary system. Afterwards, the controller design is carried out in accordance with the adaptive backstepping control method by introduction of the indirect Lyapunov method. To highlight the effectiveness of the proposed control scheme, simulation examples are demonstrated at last. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Hierarchical Ada robot programming system (HARPS)- A complete and working telerobot control system based on the NASREM model

    NASA Technical Reports Server (NTRS)

    Leake, Stephen; Green, Tom; Cofer, Sue; Sauerwein, Tim

    1989-01-01

    HARPS is a telerobot control system that can perform some simple but useful tasks. This capability is demonstrated by performing the ORU exchange demonstration. HARPS is based on NASREM (NASA Standard Reference Model). All software is developed in Ada, and the project incorporates a number of different CASE (computer-aided software engineering) tools. NASREM was found to be a valid and useful model for building a telerobot control system. Its hierarchical and distributed structure creates a natural and logical flow for implementing large complex robust control systems. The ability of Ada to create and enforce abstraction enhanced the implementation of such control systems.

  2. Real-time data acquisition and telemetry based irrigation control system

    DOEpatents

    Slater, John M.; Svoboda, John M.

    2005-12-13

    A data acquisition and telemetry based control system for use in facilitating substantially real time management of an agricultural irrigation system. The soil moisture sensor includes a reader and a plurality of probes. The probes each include an electronic circuit having a moisture sensing capacitor in operative communication with the soil whose moisture is to be measured. Each probe also includes a receive/transmit antenna and the reader includes a transmit/receive antenna, so that as the reader passes near the probe, the reader transmits a digital excitation signal to the electronic circuit of the biodegradable probe via an inductive couple formed between the transmit/receive antenna of the reader and the receive/transmit coil of the probe. The electronic circuit uses an energy component of the excitation signal to generate a digital data signal which indicates the moisture content of the soil adjacent to the moisture sensing capacitor. The probe sends the data signal to the reader which then uses the data signal to develop a corresponding set of watering instructions which are then transmitted to a control module in communication with the irrigation system. The control module sends corresponding control signals to nozzles of the irrigation system causing the irrigation system to disperse water in a manner consistent with the moisture content data transmitted by the probes to the reader. Because the irrigation system moves continuously through the field to be irrigated, the moisture content data acquisition and resultant water dispersal by the irrigation system occur substantially in real time.

  3. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control.

    PubMed

    Lopes, Thomas; Hatt, Séverin; Xu, Qinxuan; Chen, Julian; Liu, Yong; Francis, Frédéric

    2016-12-01

    Wheat (Triticum aestivum L.) is one of the most cultivated crops in temperate climates. As its pests are mainly controlled with insecticides that are harmful to the environment and human health, alternative practices such as intercropping have been studied for their potential to promote biological control. Based on the published literature, this study aimed to review the effect of wheat-based intercropping systems on insect pests and their natural enemies. Fifty original research papers were obtained from a systematic search of the peer-reviewed literature. Results from a vote-counting analysis indicated that, in the majority of studies, pest abundance was significantly reduced in intercropping systems compared with pure stands. However, the occurrence of their natural enemies as well as predation and parasitism rates were not significantly increased. The country where the studies took place, the type of intercropping and the crop that was studied in the association had significant effects on these results. These findings show that intercropping is a viable practice to reduce insecticide use in wheat production systems. Nevertheless, other practices could be combined with intercropping to favour natural enemies and enhance pest control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Sliding mode disturbance observer-based control of a twin rotor MIMO system.

    PubMed

    Rashad, Ramy; El-Badawy, Ayman; Aboudonia, Ahmed

    2017-07-01

    This work proposes a robust tracking controller for a helicopter laboratory setup known as the twin rotor MIMO system (TRMS) using an integral sliding mode controller. To eliminate the discontinuity in the control signal, the controller is augmented by a sliding mode disturbance observer. The actuator dynamics is handled using a backstepping approach which is applicable due to the continuous chattering-free nature of the command signals generated using the disturbance observer based controller. To avoid the complexity of analytically differentiating the command signals, a first order sliding mode differentiator is used. Stability analysis of the closed loop system and the ultimate boundedness of the tracking error is proved using Lyapunov stability arguments. The proposed controller is validated by several simulation studies and is compared to other schemes in the literature. Experimental results using a hardware-in-the-loop system validate the robustness and effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. A microprocessor-based control system for the Vienna PDS microdensitometer

    NASA Technical Reports Server (NTRS)

    Jenkner, H.; Stoll, M.; Hron, J.

    1984-01-01

    The Motorola Exorset 30 system, based on a Motorola 6809 microprocessor which serves as control processor for the microdensitometer is presented. User communication and instrument control are implemented in this syatem; data transmission to a host computer is provided via standard interfaces. The Vienna PDS system (VIPS) software was developed in BASIC and M6809 assembler. It provides efficient user interaction via function keys and argument input in a menu oriented environment. All parameters can be stored on, and retrieved from, minifloppy disks, making it possible to set up large scanning tasks. Extensive user information includes continuously updated status and coordinate displays, as well as a real time graphic display during scanning.

  6. Research on numerical control system based on S3C2410 and MCX314AL

    NASA Astrophysics Data System (ADS)

    Ren, Qiang; Jiang, Tingbiao

    2008-10-01

    With the rapid development of micro-computer technology, embedded system, CNC technology and integrated circuits, numerical control system with powerful functions can be realized by several high-speed CPU chips and RISC (Reduced Instruction Set Computing) chips which have small size and strong stability. In addition, the real-time operating system also makes the attainment of embedded system possible. Developing the NC system based on embedded technology can overcome some shortcomings of common PC-based CNC system, such as the waste of resources, low control precision, low frequency and low integration. This paper discusses a hardware platform of ENC (Embedded Numerical Control) system based on embedded processor chip ARM (Advanced RISC Machines)-S3C2410 and DSP (Digital Signal Processor)-MCX314AL and introduces the process of developing ENC system software. Finally write the MCX314AL's driver under the embedded Linux operating system. The embedded Linux operating system can deal with multitask well moreover satisfy the real-time and reliability of movement control. NC system has the advantages of best using resources and compact system with embedded technology. It provides a wealth of functions and superior performance with a lower cost. It can be sure that ENC is the direction of the future development.

  7. Observer-based output feedback control of networked control systems with non-uniform sampling and time-varying delay

    NASA Astrophysics Data System (ADS)

    Meng, Su; Chen, Jie; Sun, Jian

    2017-10-01

    This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.

  8. Position control of an electro-pneumatic system based on PWM technique and FLC.

    PubMed

    Najjari, Behrouz; Barakati, S Masoud; Mohammadi, Ali; Futohi, Muhammad J; Bostanian, Muhammad

    2014-03-01

    In this paper, modeling and PWM based control of an electro-pneumatic system, including the four 2-2 valves and a double acting cylinder are studied. Dynamic nonlinear behavior of the system, containing fast switching solenoid valves and a pneumatic cylinder, as well as electrical, magnetic, mechanical, and fluid subsystems are modeled. A DC-DC power converter is employed to improve solenoid valve performance and suppress system delay. Among different position control methods, a proportional integrator derivative (PID) controller and fuzzy logic controller (FLC) are evaluated. An experimental setup, using an AVR microcontroller is implemented. Simulation and experimental results verify the effectiveness of the proposed control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Learning control system design based on 2-D theory - An application to parallel link manipulator

    NASA Technical Reports Server (NTRS)

    Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.

    1990-01-01

    An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.

  10. Experimental study of a self-powered and sensing MR-damper-based vibration control system

    NASA Astrophysics Data System (ADS)

    Sapiński, Bogdan

    2011-10-01

    The paper deals with a semi-active vibration control system based on a magnetorheological (MR) damper. The study outlines the model and the structure of the system, and describes its experimental investigation. The conceptual design of this system involves harvesting energy from structural vibrations using an energy extractor based on an electromagnetic transduction mechanism (Faraday's law). The system consists of an electromagnetic induction device (EMI) prototype and an MR damper of RD-1005 series manufactured by Lord Corporation. The energy extracted is applied to control the damping characteristics of the MR damper. The model of the system was used to prove that the proposed vibration control system is feasible. The system was realized in the semi-active control strategy with energy recovery and examined through experiments in the cases where the control coil of the MR damper was voltage-supplied directly from the EMI or voltage-supplied via the rectifier, or supplied with a current control system with two feedback loops. The external loop used the sky-hook algorithm whilst the internal loop used the algorithm switching the photorelay, at the output from the rectifier. Experimental results of the proposed vibration control system were compared with those obtained for the passive system (MR damper is off-state) and for the system with an external power source (conventional system) when the control coil of the MR damper was supplied by a DC power supply and analogue voltage amplifier or a DC power supply and a photorelay. It was demonstrated that the system is able to power-supply the MR damper and can adjust itself to structural vibrations. It was also found that, since the signal of induced voltage from the EMI agrees well with that of the relative velocity signal across the damper, the device can act as a 'velocity-sign' sensor.

  11. A computer-based servo system for controlling isotonic contractions of muscle.

    PubMed

    Smith, J P; Barsotti, R J

    1993-11-01

    We have developed a computer-based servo system for controlling isotonic releases in muscle. This system is a composite of commercially available devices: an IBM personal computer, an analog-to-digital (A/D) board, an Akers AE801 force transducer, and a Cambridge Technology motor. The servo loop controlling the force clamp is generated by computer via the A/D board, using a program written in QuickBASIC 4.5. Results are shown that illustrate the ability of the system to clamp the force generated by either skinned cardiac trabeculae or single rabbit psoas fibers down to the resolution of the force transducer within 4 ms. This rate is independent of the level of activation of the tissue and the size of the load imposed during the release. The key to the effectiveness of the system consists of two algorithms that are described in detail. The first is used to calculate the error signal to hold force to the desired level. The second algorithm is used to calculate the appropriate gain of the servo for a particular fiber and the size of the desired load to be imposed. The results show that the described computer-based method for controlling isotonic releases in muscle represents a good compromise between simplicity and performance and is an alternative to the custom-built digital/analog servo devices currently being used in studies of muscle mechanics.

  12. Smart monitoring system based on adaptive current control for superconducting cable test.

    PubMed

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  13. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Warren

    2004-06-01

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (D&D) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix andmore » by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the

  14. Nonlinear frequency response based adaptive vibration controller design for a class of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Thenozhi, Suresh; Tang, Yu

    2018-01-01

    Frequency response functions (FRF) are often used in the vibration controller design problems of mechanical systems. Unlike linear systems, the FRF derivation for nonlinear systems is not trivial due to their complex behaviors. To address this issue, the convergence property of nonlinear systems can be studied using convergence analysis. For a class of time-invariant nonlinear systems termed as convergent systems, the nonlinear FRF can be obtained. The present paper proposes a nonlinear FRF based adaptive vibration controller design for a mechanical system with cubic damping nonlinearity and a satellite system. Here the controller gains are tuned such that a desired closed-loop frequency response for a band of harmonic excitations is achieved. Unlike the system with cubic damping, the satellite system is not convergent, therefore an additional controller is utilized to achieve the convergence property. Finally, numerical examples are provided to illustrate the effectiveness of the proposed controller.

  15. Development concerns for satellite-based air traffic control surveillance systems

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.

    1985-01-01

    Preliminary results of an investigation directed toward the configuration of a practical system design which can form the baseline for assessing the applications and value of a satellite based air traffic surveillance system for future use in the National Airspace System (NAS) are described. This work initially studied the characteristics and capabilities of a satellite configuration which would operate compatibly with the signal structure and avionics of the next generation air traffic control secondary surveillance radar system, the Mode S system. A compatible satellite surveillance system concept is described and an analysis is presented of the link budgets for the various transmission paths. From this, the satellite characteristics are established involving a large multiple feed L band antenna of approximately 50 meter aperture dimension. Trade offs involved in several of the alternative large aperture antennas considered are presented as well as the influence of various antenna configurations on the performance capabilities of the surveillance system. The features and limitations of the use of large aperture antenna systems for air traffic surveillance are discussed. Tentative results of this continuing effort are summarized with a brief description of follow on investigations involving other space based antenna systems concepts.

  16. Adaptive control of servo system based on LuGre model

    NASA Astrophysics Data System (ADS)

    Jin, Wang; Niancong, Liu; Jianlong, Chen; Weitao, Geng

    2018-03-01

    This paper established a mechanical model of feed system based on LuGre model. In order to solve the influence of nonlinear factors on the system running stability, a nonlinear single observer is designed to estimate the parameter z in the LuGre model and an adaptive friction compensation controller is designed. Simulink simulation results show that the control method can effectively suppress the adverse effects of friction and external disturbances. The simulation show that the adaptive parameter kz is between 0.11-0.13, and the value of gamma1 is between 1.9-2.1. Position tracking error reaches level 10-3 and is stabilized near 0 values within 0.3 seconds, the compensation method has better tracking accuracy and robustness.

  17. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs.

    PubMed

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  18. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  19. Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network.

    PubMed

    Jeng, J T; Lee, T T

    2000-01-01

    A Chebyshev polynomial-based unified model (CPBUM) neural network is introduced and applied to control a magnetic bearing systems. First, we show that the CPBUM neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural network. It turns out that the CPBUM neural network is more suitable in the design of controller than the conventional feedforward/recurrent neural network. Second, we propose the inverse system method, based on the CPBUM neural networks, to control a magnetic bearing system. The proposed controller has two structures; namely, off-line and on-line learning structures. We derive a new learning algorithm for each proposed structure. The experimental results show that the proposed neural network architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  20. NLCC controller for SEPIC-based micro-wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Justin Nayagam, Brintha Jane; Sathi, Rama Reddy; Olimuthu, Divya

    2017-04-01

    The growth of the power industry is gaining greater momentum as the usage of the non-conventional energy sources that include fuel, solar, and wind energies, increases. Wind energy conversion systems (WECSs) are gaining more popularity and are expected to be able to control the power at the output. This paper describes the current control (CC), non-linear carrier charge control (NLCCC), and fuzzy logic control (FLC) applied to the single-ended primary inductor converter (SEPIC)-based WECS. The current controller has an inherent overcurrent protection with better line noise rejection. The pulses for the switch of the SEPIC are obtained by comparing the current flowing through it with the virtual current reference. FLC is also investigated for the micro-wind energy conversion system (μWECS), since it improves the damping characteristics of WECS over a wide range of operating points. This cannot attain the unity power factor rectification. In this paper, NLCCC is proposed for high-power factor rectifier-based SEPIC in continuous conduction mode (CCM) for μWECS. The proposed converter provides an output voltage with low input current ripple due to the presence of the inductor at the input side. By comparing the signal proportional to the integral of switch current with a periodic non-linear carrier wave, the duty ratio of the converter switch is determined for the NLCC controller. By selecting the shape of the periodic non-linear carrier wave the input-line current can be made to follow the input-line voltage. This work employs a parabolic carrier waveform generator. The output voltage is regulated for changes in the wind speed. The results obtained prove the effectiveness of the NLCC controller in improving the power factor.

  1. A microprocessor-based position control system for a telescope secondary mirror

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Barrows, W. F.; Clappier, R. R.; Lee, G. K.

    1983-01-01

    The pointing requirements for the Shuttle IR Telescope Facility (SIRTF), which consists of an 0.85-m cryogenically cooled IR telescope, call for an image stability of 0.25 arcsec. Attention is presently given to a microprocessor-based position control system developed for the control of the SIRTF secondary mirror, employing a special control law (to minimize energy dissipation), a precision capacitive position sensor, and a specially designed power amplifier/actuator combination. The microprocessor generates the command angular position and rate waveforms in order to maintain a 90 percent dwell time/10 percent transition time ratio independently of chop frequency or amplitude. Performance and test results of a prototype system designed for use with a demonstration model of the SIRTF focal plane fine guidance sensor are presented.

  2. Adaptive learning and control for MIMO system based on adaptive dynamic programming.

    PubMed

    Fu, Jian; He, Haibo; Zhou, Xinmin

    2011-07-01

    Adaptive dynamic programming (ADP) is a promising research field for design of intelligent controllers, which can both learn on-the-fly and exhibit optimal behavior. Over the past decades, several generations of ADP design have been proposed in the literature, which have demonstrated many successful applications in various benchmarks and industrial applications. While many of the existing researches focus on multiple-inputs-single-output system with steepest descent search, in this paper we investigate a generalized multiple-input-multiple-output (GMIMO) ADP design for online learning and control, which is more applicable to a wide range of practical real-world applications. Furthermore, an improved weight-updating algorithm based on recursive Levenberg-Marquardt methods is presented and embodied in the GMIMO approach to improve its performance. Finally, we test the performance of this approach based on a practical complex system, namely, the learning and control of the tension and height of the looper system in a hot strip mill. Experimental results demonstrate that the proposed approach can achieve effective and robust performance.

  3. Terminal Sliding Mode-Based Consensus Tracking Control for Networked Uncertain Mechanical Systems on Digraphs.

    PubMed

    Chen, Gang; Song, Yongduan; Guan, Yanfeng

    2018-03-01

    This brief investigates the finite-time consensus tracking control problem for networked uncertain mechanical systems on digraphs. A new terminal sliding-mode-based cooperative control scheme is developed to guarantee that the tracking errors converge to an arbitrarily small bound around zero in finite time. All the networked systems can have different dynamics and all the dynamics are unknown. A neural network is used at each node to approximate the local unknown dynamics. The control schemes are implemented in a fully distributed manner. The proposed control method eliminates some limitations in the existing terminal sliding-mode-based consensus control methods and extends the existing analysis methods to the case of directed graphs. Simulation results on networked robot manipulators are provided to show the effectiveness of the proposed control algorithms.

  4. The ACE multi-user web-based Robotic Observatory Control System

    NASA Astrophysics Data System (ADS)

    Mack, P.

    2003-05-01

    We have developed an observatory control system that can be operated in interactive, remote or robotic modes. In interactive and remote mode the observer typically acquires the first object then creates a script through a window interface to complete observations for the rest of the night. The system closes early in the event of bad weather. In robotic mode observations are submitted ahead of time through a web-based interface. We present observations made with a 1.0-m telescope using these methods.

  5. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    NASA Astrophysics Data System (ADS)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  6. Optimization-Based Robust Nonlinear Control

    DTIC Science & Technology

    2006-08-01

    ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in

  7. Model based manipulator control

    NASA Technical Reports Server (NTRS)

    Petrosky, Lyman J.; Oppenheim, Irving J.

    1989-01-01

    The feasibility of using model based control (MBC) for robotic manipulators was investigated. A double inverted pendulum system was constructed as the experimental system for a general study of dynamically stable manipulation. The original interest in dynamically stable systems was driven by the objective of high vertical reach (balancing), and the planning of inertially favorable trajectories for force and payload demands. The model-based control approach is described and the results of experimental tests are summarized. Results directly demonstrate that MBC can provide stable control at all speeds of operation and support operations requiring dynamic stability such as balancing. The application of MBC to systems with flexible links is also discussed.

  8. A CPS Based Optimal Operational Control System for Fused Magnesium Furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Tian-you; Wu, Zhi-wei; Wang, Hong

    Fused magnesia smelting for fused magnesium furnace (FMF) is an energy intensive process with high temperature and comprehensive complexities. Its operational index namely energy consumption per ton (ECPT) is defined as the consumed electrical energy per ton of acceptable quality and is difficult to measure online. Moreover, the dynamics of ECPT cannot be precisely modelled mathematically. The model parameters of the three-phase currents of the electrodes such as the molten pool level, its variation rate and resistance are uncertain and nonlinear functions of the changes in both the smelting process and the raw materials composition. In this paper, an integratedmore » optimal operational control algorithm proposed is composed of a current set-point control, a current switching control and a self-optimized tuning mechanism. The tight conjoining of and coordination between the computational resources including the integrated optimal operational control, embedded software, industrial cloud, wireless communication and the physical resources of FMF constitutes a cyber-physical system (CPS) based embedded optimal operational control system. Successful application of this system has been made for a production line with ten fused magnesium furnaces in a factory in China, leading to a significant reduced ECPT.« less

  9. Passivity-based control of linear time-invariant systems modelled by bond graph

    NASA Astrophysics Data System (ADS)

    Galindo, R.; Ngwompo, R. F.

    2018-02-01

    Closed-loop control systems are designed for linear time-invariant (LTI) controllable and observable systems modelled by bond graph (BG). Cascade and feedback interconnections of BG models are realised through active bonds with no loading effect. The use of active bonds may lead to non-conservation of energy and the overall system is modelled by proposed pseudo-junction structures. These structures are build by adding parasitic elements to the BG models and the overall system may become singularly perturbed. The structures for these interconnections can be seen as consisting of inner structures that satisfy energy conservation properties and outer structures including multiport-coupled dissipative fields. These fields highlight energy properties like passivity that are useful for control design. In both interconnections, junction structures and dissipative fields for the controllers are proposed, and passivity is guaranteed for the closed-loop systems assuring robust stability. The cascade interconnection is applied to the structural representation of closed-loop transfer functions, when a stabilising controller is applied to a given nominal plant. Applications are given when the plant and the controller are described by state-space realisations. The feedback interconnection is used getting necessary and sufficient stability conditions based on the closed-loop characteristic polynomial, solving a pole-placement problem and achieving zero-stationary state error.

  10. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    NASA Astrophysics Data System (ADS)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  11. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  12. A knowledge-based approach to identification and adaptation in dynamical systems control

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Wong, C. M.

    1988-01-01

    Artificial intelligence techniques are applied to the problems of model form and parameter identification of large-scale dynamic systems. The object-oriented knowledge representation is discussed in the context of causal modeling and qualitative reasoning. Structured sets of rules are used for implementing qualitative component simulations, for catching qualitative discrepancies and quantitative bound violations, and for making reconfiguration and control decisions that affect the physical system. These decisions are executed by backward-chaining through a knowledge base of control action tasks. This approach was implemented for two examples: a triple quadrupole mass spectrometer and a two-phase thermal testbed. Results of tests with both of these systems demonstrate that the software replicates some or most of the functionality of a human operator, thereby reducing the need for a human-in-the-loop in the lower levels of control of these complex systems.

  13. Research on regional intrusion prevention and control system based on target tracking

    NASA Astrophysics Data System (ADS)

    Liu, Yanfei; Wang, Jieling; Jiang, Ke; He, Yanhui; Wu, Zhilin

    2017-08-01

    In view of the fact that China’s border is very long and the border prevention and control measures are single, we designed a regional intrusion prevention and control system which based on target-tracking. The system consists of four parts: solar panel, radar, electro-optical equipment, unmanned aerial vehicle and intelligent tracking platform. The solar panel provides independent power for the entire system. The radar detects the target in real time and realizes the high precision positioning of suspicious targets, then through the linkage of electro-optical equipment, it can achieve full-time automatic precise tracking of targets. When the target appears within the range of detection, the drone will be launched to continue the tracking. The system is mainly to realize the full time, full coverage, whole process integration and active realtime control of the border area.

  14. An RFID-Based Manufacturing Control Framework for Loosely Coupled Distributed Manufacturing System Supporting Mass Customization

    NASA Astrophysics Data System (ADS)

    Chen, Ruey-Shun; Tsai, Yung-Shun; Tu, Arthur

    In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.

  15. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and

  16. Power consumption analysis of pump station control systems based on fuzzy controllers with discrete terms in iThink software

    NASA Astrophysics Data System (ADS)

    Muravyova, E. A.; Bondarev, A. V.; Sharipov, M. I.; Galiaskarova, G. R.; Kubryak, A. I.

    2018-03-01

    In this article, power consumption of pumping station control systems is discussed. To study the issue, two simulation models of oil level control in the iThink software have been developed, using a frequency converter only and using a frequency converter and a fuzzy controller. A simulation of the oil-level control was carried out in a graphic form, and plots of pumps power consumption were obtained. Based on the initial and obtained data, the efficiency of the considered control systems has been compared, and also the power consumption of the systems was shown graphically using a frequency converter only and using a frequency converter and a fuzzy controller. The models analysis has shown that it is more economical and safe to use a control circuit with a frequency converter and a fuzzy controller.

  17. Optimal Control-Based Adaptive NN Design for a Class of Nonlinear Discrete-Time Block-Triangular Systems.

    PubMed

    Liu, Yan-Jun; Tong, Shaocheng

    2016-11-01

    In this paper, we propose an optimal control scheme-based adaptive neural network design for a class of unknown nonlinear discrete-time systems. The controlled systems are in a block-triangular multi-input-multi-output pure-feedback structure, i.e., there are both state and input couplings and nonaffine functions to be included in every equation of each subsystem. The design objective is to provide a control scheme, which not only guarantees the stability of the systems, but also achieves optimal control performance. The main contribution of this paper is that it is for the first time to achieve the optimal performance for such a class of systems. Owing to the interactions among subsystems, making an optimal control signal is a difficult task. The design ideas are that: 1) the systems are transformed into an output predictor form; 2) for the output predictor, the ideal control signal and the strategic utility function can be approximated by using an action network and a critic network, respectively; and 3) an optimal control signal is constructed with the weight update rules to be designed based on a gradient descent method. The stability of the systems can be proved based on the difference Lyapunov method. Finally, a numerical simulation is given to illustrate the performance of the proposed scheme.

  18. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  19. Development of an automatic subsea blowout preventer stack control system using PLC based SCADA.

    PubMed

    Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen

    2012-01-01

    An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Neural Approximation-Based Adaptive Control for a Class of Nonlinear Nonstrict Feedback Discrete-Time Systems.

    PubMed

    Yan-Jun Liu; Shu Li; Shaocheng Tong; Chen, C L Philip

    2017-07-01

    In this paper, an adaptive control approach-based neural approximation is developed for a class of uncertain nonlinear discrete-time (DT) systems. The main characteristic of the considered systems is that they can be viewed as a class of multi-input multioutput systems in the nonstrict feedback structure. The similar control problem of this class of systems has been addressed in the past, but it focused on the continuous-time systems. Due to the complicacies of the system structure, it will become more difficult for the controller design and the stability analysis. To stabilize this class of systems, a new recursive procedure is developed, and the effect caused by the noncausal problem in the nonstrict feedback DT structure can be solved using a semirecurrent neural approximation. Based on the Lyapunov difference approach, it is proved that all the signals of the closed-loop system are semiglobal, ultimately uniformly bounded, and a good tracking performance can be guaranteed. The feasibility of the proposed controllers can be validated by setting a simulation example.

  1. Health Information System Role-Based Access Control Current Security Trends and Challenges.

    PubMed

    de Carvalho Junior, Marcelo Antonio; Bandiera-Paiva, Paulo

    2018-01-01

    This article objective is to highlight implementation characteristics, concerns, or limitations over role-based access control (RBAC) use on health information system (HIS) using industry-focused literature review of current publishing for that purpose. Based on the findings, assessment for indication of RBAC is obsolete considering HIS authorization control needs. We have selected articles related to our investigation theme "RBAC trends and limitations" in 4 different sources related to health informatics or to the engineering technical field. To do so, we have applied the following search query string: "Role-Based Access Control" OR "RBAC" AND "Health information System" OR "EHR" AND "Trends" OR "Challenges" OR "Security" OR "Authorization" OR "Attacks" OR "Permission Assignment" OR "Permission Relation" OR "Permission Mapping" OR "Constraint". We followed PRISMA applicable flow and general methodology used on software engineering for systematic review. 20 articles were selected after applying inclusion and exclusion criteria resulting contributions from 10 different countries. 17 articles advocate RBAC adaptations. The main security trends and limitations mapped were related to emergency access, grant delegation, and interdomain access control. Several publishing proposed RBAC adaptations and enhancements in order to cope current HIS use characteristics. Most of the existent RBAC studies are not related to health informatics industry though. There is no clear indication of RBAC obsolescence for HIS use.

  2. Control Structures for VSC-based FACTS Devices under Normal and Faulted AC-systems

    NASA Astrophysics Data System (ADS)

    Babaei, Saman

    This thesis is concerned with improving the Flexible AC Transmission Systems (FACTS) devices performance under the normal and fault AC-system conditions by proposing new control structures and also converter topologies. The combination of the increasing electricity demand and restrictions in expanding the power system infrastructures has urged the utility owners to deploy the utility-scaled power electronics in the power system. Basically, FACTS is referred to the application of the power electronics in the power systems. Voltage Source Converter (VSC) is the preferred building block of the FACTS devices and many other utility-scale power electronics applications. Despite of advances in the semiconductor technology and ultra-fast microprocessor based controllers, there are still many issues to address and room to improve[25]. An attempt is made in this thesis to address these important issues of the VSC-based FACTS devices and provide solutions to improve them.

  3. Establishing a Quality Control System for Stem Cell-Based Medicinal Products in China

    PubMed Central

    2015-01-01

    Stem cell-based medicinal products (SCMPs) are emerging as novel therapeutic products. The success of its development depends on the existence of an effective quality control system, which is constituted by quality control technologies, standards, reference materials, guidelines, and the associated management system in accordance with regulatory requirements along product lifespan. However, a worldwide, effective quality control system specific for SCMPs is still far from established partially due to the limited understanding of stem cell sciences and lack of quality control technologies for accurately assessing the safety and biological effectiveness of SCMPs before clinical use. Even though, based on the existing regulations and current stem cell sciences and technologies, initial actions toward the goal of establishing such a system have been taken as exemplified by recent development of new “interim guidelines” for governing quality control along development of SCMPs and new development of the associated quality control technologies in China. In this review, we first briefly introduced the major institutions involved in the regulation of cell substrates and therapeutic cell products in China and the existing regulatory documents and technical guidelines used as critical references for developing the new interim guidelines. With focus only on nonhematopoietic stem cells, we then discussed the principal quality attributes of SCMPs as well as our thinking of proper testing approaches to be established with relevant evaluation technologies to ensure all quality requirements of SCMPs along different manufacturing processes and development stages. At the end, some regulatory and technical challenges were also discussed with the conclusion that combined efforts should be taken to promote stem cell regulatory sciences to establish the effective quality control system for SCMPs. PMID:25471126

  4. A decision tree-based on-line preventive control strategy for power system transient instability prevention

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Dong, Zhao Yang; Zhang, Rui; Wong, Kit Po

    2014-02-01

    Maintaining transient stability is a basic requirement for secure power system operations. Preventive control deals with modifying the system operating point to withstand probable contingencies. In this article, a decision tree (DT)-based on-line preventive control strategy is proposed for transient instability prevention of power systems. Given a stability database, a distance-based feature estimation algorithm is first applied to identify the critical generators, which are then used as features to develop a DT. By interpreting the splitting rules of DT, preventive control is realised by formulating the rules in a standard optimal power flow model and solving it. The proposed method is transparent in control mechanism, on-line computation compatible and convenient to deal with multi-contingency. The effectiveness and efficiency of the method has been verified on New England 10-machine 39-bus test system.

  5. Robustness of delayed multistable systems with application to droop-controlled inverter-based microgrids

    NASA Astrophysics Data System (ADS)

    Efimov, Denis; Schiffer, Johannes; Ortega, Romeo

    2016-05-01

    Motivated by the problem of phase-locking in droop-controlled inverter-based microgrids with delays, the recently developed theory of input-to-state stability (ISS) for multistable systems is extended to the case of multistable systems with delayed dynamics. Sufficient conditions for ISS of delayed systems are presented using Lyapunov-Razumikhin functions. It is shown that ISS multistable systems are robust with respect to delays in a feedback. The derived theory is applied to two examples. First, the ISS property is established for the model of a nonlinear pendulum and delay-dependent robustness conditions are derived. Second, it is shown that, under certain assumptions, the problem of phase-locking analysis in droop-controlled inverter-based microgrids with delays can be reduced to the stability investigation of the nonlinear pendulum. For this case, corresponding delay-dependent conditions for asymptotic phase-locking are given.

  6. Wide-area Power System Damping Control Coordination Based on Particle Swarm Optimization with Time Delay Considered

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Jiang, Y.

    2017-10-01

    To ensure satisfactory dynamic performance of controllers in time-delayed power systems, a WAMS-based control strategy is investigated in the presence of output feedback delay. An integrated approach based on Pade approximation and particle swarm optimization (PSO) is employed for parameter configuration of PSS. The coordination configuration scheme of power system controllers is achieved by a series of stability constraints at the aim of maximizing the minimum damping ratio of inter-area mode of power system. The validity of this derived PSS is verified on a prototype power system. The findings demonstrate that the proposed approach for control design could damp the inter-area oscillation and enhance the small-signal stability.

  7. Spacecraft attitude control using a smart control system

    NASA Technical Reports Server (NTRS)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Traditionally, spacecraft attitude control has been implemented using control loops written in native code for a space hardened processor. The Naval Research Lab has taken this approach during the development of the Attitude Control Electronics (ACE) package. After the system was developed and delivered, NRL decided to explore alternate technologies to accomplish this same task more efficiently. The approach taken by NRL was to implement the ACE control loops using systems technologies. The purpose of this effort was to: (1) research capabilities required of an expert system in processing a classic closed-loop control algorithm; (2) research the development environment required to design and test an embedded expert systems environment; (3) research the complexity of design and development of expert systems versus a conventional approach; and (4) test the resulting systems against the flight acceptance test software for both response and accuracy. Two expert systems were selected to implement the control loops. Criteria used for the selection of the expert systems included that they had to run in both embedded systems and ground based environments. Using two different expert systems allowed a comparison of the real-time capabilities, inferencing capabilities, and the ground-based development environment. The two expert systems chosen for the evaluation were Spacecraft Command Language (SCL), and NEXTPERT Object. SCL is a smart control system produced for the NRL by Interface and Control Systems (ICS). SCL was developed to be used for real-time command, control, and monitoring of a new generation of spacecraft. NEXPERT Object is a commercially available product developed by Neuron Data. Results of the effort were evaluated using the ACE test bed. The ACE test bed had been developed and used to test the original flight hardware and software using simulators and flight-like interfaces. The test bed was used for testing the expert systems in a 'near-flight' environment

  8. Multi-agent based control of large-scale complex systems employing distributed dynamic inference engine

    NASA Astrophysics Data System (ADS)

    Zhang, Daili

    Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications

  9. Development of monitoring and control system for a mine main fan based on frequency converter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. C.; Zhang, R. W.; Kong, X. Z.; Y Gong, J.; Chen, Q. G.

    2013-12-01

    In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production.

  10. Integrated control of lateral and vertical vehicle dynamics based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Yun, Chaochun; Jiang, Haobin; Chen, Yuexia

    2014-03-01

    The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.

  11. Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints.

    PubMed

    Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai

    2015-07-01

    The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.

  12. SP-100 Control System Design

    NASA Astrophysics Data System (ADS)

    Shukla, Jaikaran N.; Halfen, Frank J.; Brynsvold, Glen V.; Syed, Akbar; Jiang, Thomas J.; Wong, Kwok K.; Otwell, Robert L.

    1994-07-01

    Recent work in lower power generic early applications for the SP-100 have resulted in control system design simplification for a 20 kWe design with thermoelectric power conversion. This paper presents the non-mission-dependent control system features for this design. The control system includes a digital computer based controller, dual purpose control rods and drives, temperature sensors, and neutron flux monitors. The thaw system is mission dependent and can be either electrical or based on NaK trace lines. Key features of the control system and components are discussed. As was the case for higher power applications, the initial on-orbit approach to criticality involves the relatively fast withdrawal of the control-rods to a near-critical position followed by slower movement through critical and into the power range. The control system performs operating maneuvers as well as providing for automatic startup, shutdown, restart, and reactor protection.

  13. Observer-based H∞ resilient control for a class of switched LPV systems and its application

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Zhao, Jun

    2016-11-01

    This paper deals with the issue of observer-based H∞ resilient control for a class of switched linear parameter-varying (LPV) systems by utilising a multiple parameter-dependent Lyapunov functions method. First, attention is focused upon the design of a resilient observer, an observer-based resilient controller and a parameter and estimate state-dependent switching signal, which can stabilise and achieve the disturbance attenuation for the given systems. Then, a solvability condition of the H∞ resilient control problem is given in terms of matrix inequality for the switched LPV systems. This condition allows the H∞ resilient control problem for each individual subsystem to be unsolvable. The observer, controller, and switching signal are explicitly computed by solving linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed control scheme is illustrated by its application to a turbofan engine, which can hardly be handled by the existing approaches.

  14. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueiredo, J., E-mail: joao.figueiredo@jet.efda.org; Mailloux, J.; Kirov, K.

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguidesmore » facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.« less

  15. An arc control and protection system for the JET lower hybrid antenna based on an imaging system.

    PubMed

    Figueiredo, J; Mailloux, J; Kirov, K; Kinna, D; Stamp, M; Devaux, S; Arnoux, G; Edwards, J S; Stephen, A V; McCullen, P; Hogben, C

    2014-11-01

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  16. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    PubMed

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  17. Simulation and analysis of main steam control system based on heat transfer calculation

    NASA Astrophysics Data System (ADS)

    Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai

    2018-05-01

    In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.

  18. A unifying framework for systems modeling, control systems design, and system operation

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Indictor, Mark B.; Ingham, Michel D.; Rasmussen, Robert D.; Stringfellow, Margaret V.

    2005-01-01

    Current engineering practice in the analysis and design of large-scale multi-disciplinary control systems is typified by some form of decomposition- whether functional or physical or discipline-based-that enables multiple teams to work in parallel and in relative isolation. Too often, the resulting system after integration is an awkward marriage of different control and data mechanisms with poor end-to-end accountability. System of systems engineering, which faces this problem on a large scale, cries out for a unifying framework to guide analysis, design, and operation. This paper describes such a framework based on a state-, model-, and goal-based architecture for semi-autonomous control systems that guides analysis and modeling, shapes control system software design, and directly specifies operational intent. This paper illustrates the key concepts in the context of a large-scale, concurrent, globally distributed system of systems: NASA's proposed Array-based Deep Space Network.

  19. Pointing and figure control system for a space-based far-IR segmented telescope

    NASA Technical Reports Server (NTRS)

    Lau, Kenneth

    1993-01-01

    A pointing and figure control system for two space-based far-IR telescopes, the 10-20 m Large Deployable Reflector and the 3.6 m Submillimeter Intermediate Mission, is described. The figure maintenance control system is designed to counter the optical elements translational and rotational changes induced by long-term thermal drifts that the support structure may experience. The pointing system applies optical truss to telescope pointing; a laser metrology system is used to transfer pointing informaton from an external fine guidance sensor to the telescope optical boresight, defined by the primary mirror, secondary mirror, and focal plane assembly.

  20. Design of intelligent vehicle control system based on single chip microcomputer

    NASA Astrophysics Data System (ADS)

    Zhang, Congwei

    2018-06-01

    The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.

  1. Embedded system based on PWM control of hydrogen generator with SEPIC converter

    NASA Astrophysics Data System (ADS)

    Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo

    2017-09-01

    The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste

  2. A Document-Based EHR System That Controls the Disclosure of Clinical Documents Using an Access Control List File Based on the HL7 CDA Header.

    PubMed

    Takeda, Toshihiro; Ueda, Kanayo; Nakagawa, Akito; Manabe, Shirou; Okada, Katsuki; Mihara, Naoki; Matsumura, Yasushi

    2017-01-01

    Electronic health record (EHR) systems are necessary for the sharing of medical information between care delivery organizations (CDOs). We developed a document-based EHR system in which all of the PDF documents that are stored in our electronic medical record system can be disclosed to selected target CDOs. An access control list (ACL) file was designed based on the HL7 CDA header to manage the information that is disclosed.

  3. Design and initial validation of a wireless control system based on WSN

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Li, Luyu; Li, Peng; Wang, Xu; Liu, Hang; Ou, Jinping

    2013-04-01

    At present, cantilever structure used widely in civil structures will generate continuous vibration by external force due to their low damping characteristic, which leads to a serious impact on the working performance and service time. Therefore, it is very important to control the vibration of these structures. The active vibration control is the primary means of controlling the vibration with high precision and strong adaptive ability. Nowadays, there are many researches using piezoelectric materials in the structural vibration control. Piezoelectric materials are cheap, reliable and they can provide braking and sensing method harmless to the structure, therefore they have broad usage. They are used for structural vibration control in a lot of civil engineering research currently. In traditional sensor applications, information exchanges with the monitoring center or a computer system through wires. If wireless sensor networks(WSN) technology is used, cabling links is not needed, thus the cost of the whole system is greatly reduced. Based on the above advantages, a wireless control system is designed and validated through preliminary tests. The system consists of a cantilever, PVDF as sensor, signal conditioning circuit(SCM), A/D acquisition board, control arithmetic unit, D/A output board, power amplifier, piezoelectric bimorph as actuator. DSP chip is used as the control arithmetic unit and PD control algorithm is embedded in it. PVDF collects the parameters of vibration, sends them to the SCM after A/D conversion. SCM passes the data to the DSP through wireless technology, and DSP calculates and outputs the control values according to the control algorithm. The output signal is amplified by the power amplifier to drive the piezoelectric bimorph for vibration control. The structural vibration duration reduces to 1/4 of the uncontrolled case, which verifies the feasibility of the system.

  4. Development of an Amine-based System for Combined Carbon Dioxide, Humidity, and Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Reiss, Julie; Filburn, Tom; Seery, Thomas; Smith, Fred; Perry, Jay

    2005-01-01

    A number of amine-based carbon dioxide (CO2) removal systems have been developed for atmosphere revitalization in closed loop life support systems. Most recently, Hamilton Sundstrand developed an amine-based sorbent, designated SA9T, possessing approximately 2-fold greater capacity compared to previous formulations. This new formulation has demonstrated applicability for controlling CO2 levels within vehicles and habitats as well as during extravehicular activity (EVA). System volume is competitive with existing technologies. Further enhancements in system performance can be realized by incorporating humidity and trace contaminant control functions within an amine-based atmosphere revitalization system. A 3-year effort to develop prototype hardware capable of removing CO2, H2O, and trace contaminants from a cabin atmosphere has been initiated. Progress pertaining to defining system requirements and identifying alternative amine formulations and substrates is presented.

  5. [Design of a miniaturized blood temperature-varying system based on computer distributed control].

    PubMed

    Xu, Qiang; Zhou, Zhaoying; Peng, Jiegang; Zhu, Junhua

    2007-10-01

    Blood temperature-varying has been widely applied in clinical practice such as extracorporeal circulation for whole-body perfusion hyperthermia (WBPH), body rewarming and blood temperature-varying in organ transplantation. This paper reports a novel DCS (Computer distributed control)-based blood temperature-varying system which includes therapy management function and whose hardware and software can be extended easily. Simulation results illustrate that this system provides precise temperature control with good performance in various operation conditions.

  6. Model-based adaptive sliding mode control of the subcritical boiler-turbine system with uncertainties.

    PubMed

    Tian, Zhen; Yuan, Jingqi; Xu, Liang; Zhang, Xiang; Wang, Jingcheng

    2018-05-25

    As higher requirements are proposed for the load regulation and efficiency enhancement, the control performance of boiler-turbine systems has become much more important. In this paper, a novel robust control approach is proposed to improve the coordinated control performance for subcritical boiler-turbine units. To capture the key features of the boiler-turbine system, a nonlinear control-oriented model is established and validated with the history operation data of a 300 MW unit. To achieve system linearization and decoupling, an adaptive feedback linearization strategy is proposed, which could asymptotically eliminate the linearization error caused by the model uncertainties. Based on the linearized boiler-turbine system, a second-order sliding mode controller is designed with the super-twisting algorithm. Moreover, the closed-loop system is proved robustly stable with respect to uncertainties and disturbances. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves excellent tracking performance, strong robustness and chattering reduction. Copyright © 2018. Published by Elsevier Ltd.

  7. ? observer-based decentralised fuzzy control design for nonlinear interconnected systems: an application to vehicle dynamics

    NASA Astrophysics Data System (ADS)

    Latrach, Chedia; Kchaou, Mourad; Guéguen, Hervé

    2017-05-01

    In this study, a decentralised output learning control strategy for a class of nonlinear interconnected systems is studied. Based on Takagi-Sugeno fuzzy (TS) model to approximate the considered interconnected nonlinear systems, a decentralised observer-based control scheme is designed to override the external disturbances such that the ? performance is achieved. The appealing attributes of this approach include: (1) the closed-loop system exhibits a robustness against nonlinear interconnections and external disturbance, (2) by one-step procedure, the gain matrices of observer and controller are obtained on a single step. In simulation results, the controller design is evaluated on the steering stability of a car where the nonlinear model describes the side slip, roll and yaw motions of the automotive vehicle equipped with four-wheel-steering and active suspension.

  8. Centralized PI control for high dimensional multivariable systems based on equivalent transfer function.

    PubMed

    Luan, Xiaoli; Chen, Qiang; Liu, Fei

    2014-09-01

    This article presents a new scheme to design full matrix controller for high dimensional multivariable processes based on equivalent transfer function (ETF). Differing from existing ETF method, the proposed ETF is derived directly by exploiting the relationship between the equivalent closed-loop transfer function and the inverse of open-loop transfer function. Based on the obtained ETF, the full matrix controller is designed utilizing the existing PI tuning rules. The new proposed ETF model can more accurately represent the original processes. Furthermore, the full matrix centralized controller design method proposed in this paper is applicable to high dimensional multivariable systems with satisfactory performance. Comparison with other multivariable controllers shows that the designed ETF based controller is superior with respect to design-complexity and obtained performance. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A low power flash-FPGA based brain implant micro-system of PID control.

    PubMed

    Lijuan Xia; Fattah, Nabeel; Soltan, Ahmed; Jackson, Andrew; Chester, Graeme; Degenaar, Patrick

    2017-07-01

    In this paper, we demonstrate that a low power flash FPGA based micro-system can provide a low power programmable interface for closed-loop brain implant inter- faces. The proposed micro-system receives recording local field potential (LFP) signals from an implanted probe, performs closed-loop control using a first order control system, then converts the signal into an optogenetic control stimulus pattern. Stimulus can be implemented through optoelectronic probes. The long term target is for both fundamental neuroscience applications and for clinical use in treating epilepsy. Utilizing our device, closed-loop processing consumes only 14nJ of power per PID cycle compared to 1.52μJ per cycle for a micro-controller implementation. Compared to an application specific digital integrated circuit, flash FPGA's are inherently programmable.

  10. Monitoring System and Temperature Controlling on PID Based Poultry Hatching Incubator

    NASA Astrophysics Data System (ADS)

    Shafiudin, S.; Kholis, N.

    2018-04-01

    Poultry hatching cultivation is essential to be observed in terms of temperature stability by using artificial penetration incubator which applies On/Off control. The On/Off control produces relatively long response time to reach steady-state conditions. Moreover, how the system works makes the component worn out because the lamp is on-off periodically. Besides, the cultivation in the market is less suitable to be used in an environment which has fluctuating temperature because it may influence plant’s temperature stability. The study aims to design automatic poultry hatching cultivation that can repair the temperature’s response of plant incubator to keep stable and in line with the intended set-point temperature value by using PID controller. The method used in PID controlling is designed to identify plant using ARX (Auto Regressive eXogenous) MATLAB which is dynamic/non-linear to obtain mathematical model and PID constants value that is appropriate to system. The hardware design for PID-based egg incubator uses Arduino Uno R3, as the main controller that includes PID source, and PWM, to keep plant temperature stability, which is integrated with incandescent light actuators and sensors where DHTI 1 sensor as the reader as temperature condition and plant humidity. The result of the study showed that PID constants value of each plant is different. For parallel 15 Watt plant, Kp = 3.9956, Ki = 0.361, Kd = 0, while for parallel 25 Watt plant, the value of Kp = 5.714, Ki = 0.351, Kd = 0. The PID constants value were capable to produce stable system response which is based on set-point with steady state error’s value is around 5%, that is 2.7%. With hatching percentage of 70-80%, the hatching process is successful in air-conditioned environment (changeable).

  11. Research and development of a control system for multi axis cooperative motion based on PMAC

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu

    2017-10-01

    Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.

  12. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    NASA Astrophysics Data System (ADS)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  13. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    PubMed

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  14. Reinforcement-learning-based output-feedback control of nonstrict nonlinear discrete-time systems with application to engine emission control.

    PubMed

    Shih, Peter; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A

    2009-10-01

    A novel reinforcement-learning-based output adaptive neural network (NN) controller, which is also referred to as the adaptive-critic NN controller, is developed to deliver the desired tracking performance for a class of nonlinear discrete-time systems expressed in nonstrict feedback form in the presence of bounded and unknown disturbances. The adaptive-critic NN controller consists of an observer, a critic, and two action NNs. The observer estimates the states and output, and the two action NNs provide virtual and actual control inputs to the nonlinear discrete-time system. The critic approximates a certain strategic utility function, and the action NNs minimize the strategic utility function and control inputs. All NN weights adapt online toward minimization of a performance index, utilizing the gradient-descent-based rule, in contrast with iteration-based adaptive-critic schemes. Lyapunov functions are used to show the stability of the closed-loop tracking error, weights, and observer estimates. Separation and certainty equivalence principles, persistency of excitation condition, and linearity in the unknown parameter assumption are not needed. Experimental results on a spark ignition (SI) engine operating lean at an equivalence ratio of 0.75 show a significant (25%) reduction in cyclic dispersion in heat release with control, while the average fuel input changes by less than 1% compared with the uncontrolled case. Consequently, oxides of nitrogen (NO(x)) drop by 30%, and unburned hydrocarbons drop by 16% with control. Overall, NO(x)'s are reduced by over 80% compared with stoichiometric levels.

  15. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    NASA Astrophysics Data System (ADS)

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  16. System and method for temperature control in an oxygen transport membrane based reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean M.

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  17. A rule-based expert system for generating control displays at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Coulter, Karen J.

    1994-12-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool.

  18. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2016-03-01

    Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.

  19. Intelligent Home Control System Based on ARM10

    NASA Astrophysics Data System (ADS)

    Chen, G. X.; Jiang, J.; Zhong, L. H.

    2017-10-01

    Intelligent home is becoming the hot spot of social attention in the 21st century. When it is in China, it is a really new industry. However, there is no doubt that Intelligent home will become a new economic growth point of social development; it will change the life-style of human being. To develop the intelligent home, we should keep up with the development trend of technology. This is the reason why I talk about the intelligent home control system here. In this paper, intelligent home control system is designed for alarm and remote control on gas- leaking, fire disaster, earthquake prediction, etc., by examining environmental changes around house. When the Intelligent home control system has detected an accident occurs, the processor will communicate with the GSM module, informing the house keeper the occurrence of accident. User can receive and send the message to the system to cut the power by mobile phone. The system can get access to DCCthrough ARM10 JTAG interface, using DCC to send and receive messages. At the same time, the debugger on the host is mainly used to receive the user’s command and send it to the debug component in the target system. The data that returned from the target system is received and displayed to the user in a certain format.

  20. Optimality based repetitive controller design for track-following servo system of optical disk drives.

    PubMed

    Chen, Wentao; Zhang, Weidong

    2009-10-01

    In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.

  1. SPring-8 beamline control system.

    PubMed

    Ohata, T; Konishi, H; Kimura, H; Furukawa, Y; Tamasaku, K; Nakatani, T; Tanabe, T; Matsumoto, N; Ishii, M; Ishikawa, T

    1998-05-01

    The SPring-8 beamline control system is now taking part in the control of the insertion device (ID), front end, beam transportation channel and all interlock systems of the beamline: it will supply a highly standardized environment of apparatus control for collaborative researchers. In particular, ID operation is very important in a third-generation synchrotron light source facility. It is also very important to consider the security system because the ID is part of the storage ring and is therefore governed by the synchrotron ring control system. The progress of computer networking systems and the technology of security control require the development of a highly flexible control system. An interlock system that is independent of the control system has increased the reliability. For the beamline control system the so-called standard model concept has been adopted. VME-bus (VME) is used as the front-end control system and a UNIX workstation as the operator console. CPU boards of the VME-bus are RISC processor-based board computers operated by a LynxOS-based HP-RT real-time operating system. The workstation and the VME are linked to each other by a network, and form the distributed system. The HP 9000/700 series with HP-UX and the HP 9000/743rt series with HP-RT are used. All the controllable apparatus may be operated from any workstation.

  2. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    NASA Astrophysics Data System (ADS)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  3. Research on Performance of Wire-controlled Hydraulic Steering System Based on Four-wheel Steering

    NASA Astrophysics Data System (ADS)

    Tao, P.; Jin, X. H.

    2018-05-01

    In this paper, the steering stability and control strategy of forklift are put forward. Drive based on yawing moment distribution of rotary torque coordination control method, through analyzing the linear two degree of freedom model of forklift truck, forklift yawing angular velocity and mass center side-slip Angle of expectations, as the control target parameters system, using fuzzy controller output driving forklift steering the yawing moment, to drive rotary torque distribution, make the forklift truck to drive horizontal pendulum angular velocity and side-slip Angle tracking reference model very well. In this paper, the lateral stability control system were designed, the joint simulation in MATLAB/Simulink, the simulation results show that under the different partial load, the control system can effectively to control side forklift lateral stability, enhanced the forklift driving safety, for the side forklift steering stability study provides a theoretical basis.

  4. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  5. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    PubMed

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  6. Research and design of intelligent distributed traffic signal light control system based on CAN bus

    NASA Astrophysics Data System (ADS)

    Chen, Yu

    2007-12-01

    Intelligent distributed traffic signal light control system was designed based on technologies of infrared, CAN bus, single chip microprocessor (SCM), etc. The traffic flow signal is processed with the core of SCM AT89C51. At the same time, the SCM controls the CAN bus controller SJA1000/transceiver PCA82C250 to build a CAN bus communication system to transmit data. Moreover, up PC realizes to connect and communicate with SCM through USBCAN chip PDIUSBD12. The distributed traffic signal light control system with three control styles of Vehicle flux, remote and PC is designed. This paper introduces the system composition method and parts of hardware/software design in detail.

  7. Universal block diagram based modeling and simulation schemes for fractional-order control systems.

    PubMed

    Bai, Lu; Xue, Dingyü

    2017-05-08

    Universal block diagram based schemes are proposed for modeling and simulating the fractional-order control systems in this paper. A fractional operator block in Simulink is designed to evaluate the fractional-order derivative and integral. Based on the block, the fractional-order control systems with zero initial conditions can be modeled conveniently. For modeling the system with nonzero initial conditions, the auxiliary signal is constructed in the compensation scheme. Since the compensation scheme is very complicated, therefore the integrator chain scheme is further proposed to simplify the modeling procedures. The accuracy and effectiveness of the schemes are assessed in the examples, the computation results testify the block diagram scheme is efficient for all Caputo fractional-order ordinary differential equations (FODEs) of any complexity, including the implicit Caputo FODEs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2018-04-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  9. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2017-12-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  10. A Voltage-Responsive Free-Blockage Controlled-Release System Based on Hydrophobicity Switching.

    PubMed

    Jiao, Xiangyu; Sun, Ruijuan; Cheng, Yaya; Li, Fengyu; Du, Xin; Wen, Yongqiang; Song, Yanlin; Zhang, Xueji

    2017-05-19

    Controlled-release systems based on mesoporous silica nanomaterials (MSNs) have drawn great attention owing to their potential biomedical applications. Various switches have been designed to control the release of cargoes through the construction of physical blocking units on the surface of MSNs. However, such physical blockages are limited by poor sealing ability and low biocompatibility, and most of them lack closure ability. Herein, a voltage-responsive controlled-release system was constructed by functionalizing the nanopore of MSNs with ferrocene. The system realized free-blockage controlled release and achieved pulsatile release. The nanopores of the ferrocene-functionalized MSNs were hydrophobic enough to prevent invasion of the solution. Once a suitable voltage was applied, the nanopores became hydrophilic, which was followed by invasion of the solution and the release of the cargos. Moreover, pulsatile release was realized, which avoided unexpected release after the stimulus disappeared. Thus, we believe that our studies provide new insight into highly effective blockage for MSNs. Furthermore, the voltage-responsive release system is expected to find use in electrical stimulation combination therapy and bioelectricity-responsive release. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Review of Statistical Disclosure Control Techniques Employed by Web-Based Data Query Systems.

    PubMed

    Matthews, Gregory J; Harel, Ofer; Aseltine, Robert H

    We systematically reviewed the statistical disclosure control techniques employed for releasing aggregate data in Web-based data query systems listed in the National Association for Public Health Statistics and Information Systems (NAPHSIS). Each Web-based data query system was examined to see whether (1) it employed any type of cell suppression, (2) it used secondary cell suppression, and (3) suppressed cell counts could be calculated. No more than 30 minutes was spent on each system. Of the 35 systems reviewed, no suppression was observed in more than half (n = 18); observed counts below the threshold were observed in 2 sites; and suppressed values were recoverable in 9 sites. Six sites effectively suppressed small counts. This inquiry has revealed substantial weaknesses in the protective measures used in data query systems containing sensitive public health data. Many systems utilized no disclosure control whatsoever, and the vast majority of those that did deployed it inconsistently or inadequately.

  12. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias

    1992-01-01

    One of the important issues in the lunar base architecture is the design of a Thermal Control System (TCS) to reject the low temperature heat from the base. The TCS ensures that the base and all components inside are maintained within the operating temperature range. A significant portion of the total mass of the TCS is due to the radiator. Shading the radiation from the sun and the hot lunar soil could decrease the radiator operating temperature significantly. Heat pumps have been in use for terrestrial applications. To optimize the mass of the heat pump augmented TCS, all promising options have to be evaluated and compared. Careful attention is given to optimizing system operating parameters, working fluids, and component masses. The systems are modeled for full load operation.

  13. Design of optical axis jitter control system for multi beam lasers based on FPGA

    NASA Astrophysics Data System (ADS)

    Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang

    2018-02-01

    A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.

  14. A compensation controller based on a regional pole-assignment method for AMD control systems with a time-varying delay

    NASA Astrophysics Data System (ADS)

    Li, Zuohua; Chen, Chaojun; Teng, Jun; Wang, Ying

    2018-04-01

    Active mass damper/driver (AMD) control system has been proposed as an effective tool for high-rise buildings to resist strong dynamic loads. However, such disadvantage as time-varying delay in AMD control systems impedes their application in practices. Time-varying delay, which has an effect on the performance and stability of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems, is considered in the paper. In addition, a new time-delay compensation controller based on regional pole-assignment method is presented. To verify its effectiveness, the proposed method is applied to a numerical example of a ten-storey frame and an experiment of a single span four-storey steel frame. Both numerical and experimental results demonstrate that the proposed method can enhance the performances of an AMD control system with time-varying delays.

  15. Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury

    2017-04-01

    This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.

  16. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    PubMed

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  18. Energy efficient model based algorithm for control of building HVAC systems.

    PubMed

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  20. Control of solar energy systems

    NASA Astrophysics Data System (ADS)

    Sizov, Iu. M.; Zakhidov, R. A.; Baranov, V. G.

    Two approaches to the control of large solar energy systems, i.e., programmed control and control systems relying on the use of orientation transducers and feedback, are briefly reviewed, with particular attention given to problems associated with these control systems. A new control system for large solar power plants is then proposed which is based on a combination of these approaches. The general design of the control system is shown and its principle of operation described. The efficiency and cost effectiveness of the approach proposed here are demonstrated.

  1. Gas turbine engine control system

    NASA Technical Reports Server (NTRS)

    Idelchik, Michael S. (Inventor)

    1991-01-01

    A control system and method of controlling a gas turbine engine. The control system receives an error signal and processes the error signal to form a primary fuel control signal. The control system also receives at least one anticipatory demand signal and processes the signal to form an anticipatory fuel control signal. The control system adjusts the value of the anticipatory fuel control signal based on the value of the error signal to form an adjusted anticipatory signal and then the adjusted anticipatory fuel control signal and the primary fuel control signal are combined to form a fuel command signal.

  2. Nonlinear system controller design based on domain of attaction: An application to CELSS analysis and control

    NASA Technical Reports Server (NTRS)

    Babcock, P. S., IV

    1986-01-01

    Nonlinear system controller design based on the domain of attraction is presented. This is particularly suited to investigating Closed Ecological Life Support Systems (CELSS) models. In particular, the dynamic consequences of changes in the waste storage capacity and system mass, and how information is used for control in CELSS models are examined. The models' high dimensionality and nonlinear state equations make them difficult to analyze by any other technique. The domain of attraction is the region in initial conditions that tend toward an attractor and it is delineated by randomly selecting initial conditions from the region of state space being investigated. Error analysis is done by repeating the domain simulations with independent samples. A refinement of this region is the domain of performance which is the region of initial conditions meeting a performance criteria. In nonlinear systems, local stability does not insure stability over a larger region. The domain of attraction marks out this stability region; hence, it can be considered a measure of a nonlinear system's ability to recovery from state perturbations. Considering random perturbations, the minimum radius of the domain is a measure of the magnitude of perturbations for which recovery is guaranteed. Design of both linear and nonlinear controllers are shown. Three CELSS models, with 9 to 30 state variable, are presented. Measures of the domain of attraction are used to show the global behavior of these models under a variety of design and controller scenarios.

  3. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    NASA Astrophysics Data System (ADS)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester

  4. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  5. Informational Closed-Loop Coding-Decoding Control Concept as the Base of the Living or Organized Systems Theory

    NASA Astrophysics Data System (ADS)

    Kirvelis, Dobilas; Beitas, Kastytis

    2008-10-01

    The aim of this work is to show that the essence of life and living systems is their organization as bioinformational technology on the base of informational anticipatory control. Principal paradigmatic and structural schemes of functional organization of life (organisms and their systems) are constructed on the basis of systemic analysis and synthesis of main phenomenological features of living world. Life is based on functional elements that implement engineering procedures of closed-loop coding-decoding control (CL-CDC). Phenomenon of natural bioinformational control appeared and developed on the Earth 3-4 bln years ago, when the life originated as a result of chemical and later biological evolution. Informatics paradigm considers the physical and chemical transformations of energy and matter in organized systems as flows that are controlled and the signals as means for purposive informational control programs. The social and technical technological systems as informational control systems are a latter phenomenon engineered by man. The information emerges in organized systems as a necessary component of control technology. Generalized schemes of functional organization on levels of cell, organism and brain neocortex, as the highest biosystem with CL-CDC, are presented. CL-CDC concept expands the understanding of bioinformatics.

  6. Policy-based secure communication with automatic key management for industrial control and automation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernoguzov, Alexander; Markham, Thomas R.; Haridas, Harshal S.

    A method includes generating at least one access vector associated with a specified device in an industrial process control and automation system. The specified device has one of multiple device roles. The at least one access vector is generated based on one or more communication policies defining communications between one or more pairs of devices roles in the industrial process control and automation system, where each pair of device roles includes the device role of the specified device. The method also includes providing the at least one access vector to at least one of the specified device and one ormore » more other devices in the industrial process control and automation system in order to control communications to or from the specified device.« less

  7. Passivity-based sliding mode control for a polytopic stochastic differential inclusion system.

    PubMed

    Liu, Leipo; Fu, Zhumu; Song, Xiaona

    2013-11-01

    Passivity-based sliding mode control for a polytopic stochastic differential inclusion (PSDI) system is considered. A control law is designed such that the reachability of sliding motion is guaranteed. Moreover, sufficient conditions for mean square asymptotic stability and passivity of sliding mode dynamics are obtained by linear matrix inequalities (LMIs). Finally, two examples are given to illustrate the effectiveness of the proposed method. © 2013 ISA. Published by ISA. All rights reserved.

  8. Control and optimization system

    DOEpatents

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  9. The B-747 flight control system maintenance and reliability data base for cost effectiveness tradeoff studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Primary and automatic flight controls are combined for a total flight control reliability and maintenance cost data base using information from two previous reports and additional cost data gathered from a major airline. A comparison of the current B-747 flight control system effects on reliability and operating cost with that of a B-747 designed for an active control wing load alleviation system is provided.

  10. Completion of the LANSCE Proton Storage Ring Control System Upgrade -- A Successful Integration of EPICS Into a Running Control System

    NASA Astrophysics Data System (ADS)

    Schaller, S. C.; Bjorklund, E. A.; Carr, G. P.; Faucett, J. A.; Oothoudt, M. A.

    1997-05-01

    The Los Alamos Neutron Scattering Center (LANSCE) Proton Storage Ring (PSR) control system upgrade was completed in 1996. In previous work, much of a PDP-11-based control system was replaced with Experimental Physics and Industrial Control System (EPICS) controls. Several parts of the old control system which used a VAX for operator displays and direct access to a CAMAC serial highway still remained. The old system was preserved as a "fallback" if the new EPICS-based system had problems. The control system upgrade completion included conversion of several application programs to EPICS-based operator interfaces, moving some data acquisition hardware to EPICS Input-Output Controllers (IOCs), and the implementation of new gateway software to complete the overall control system interoperability. Many operator interface (OPI) screens, written by LANSCE operators, have been incorporated in the new system. The old PSR control system hardware was removed. The robustness and reliability of the new controls obviated the need for a fallback capability.

  11. JCMT observatory control system

    NASA Astrophysics Data System (ADS)

    Rees, Nicholas P.; Economou, Frossie; Jenness, Tim; Kackley, Russell D.; Walther, Craig A.; Dent, William R. F.; Folger, Martin; Gao, Xiaofeng; Kelly, Dennis; Lightfoot, John F.; Pain, Ian; Hovey, Gary J.; Redman, Russell O.

    2002-12-01

    The JCMT, the world's largest sub-mm telescope, has had essentially the same VAX/VMS based control system since it was commissioned. For the next generation of instrumentation we are implementing a new Unix/VxWorks based system, based on the successful ORAC system that was recently released on UKIRT. The system is now entering the integration and testing phase. This paper gives a broad overview of the system architecture and includes some discussion on the choices made. (Other papers in this conference cover some areas in more detail). The basic philosophy is to control the sub-systems with a small and simple set of commands, but passing detailed XML configuration descriptions along with the commands to give the flexibility required. The XML files can be passed between various layers in the system without interpretation, and so simplify the design enormously. This has all been made possible by the adoption of an Observation Preparation Tool, which essentially serves as an intelligent XML editor.

  12. Improved disturbance rejection for predictor-based control of MIMO linear systems with input delay

    NASA Astrophysics Data System (ADS)

    Shi, Shang; Liu, Wenhui; Lu, Junwei; Chu, Yuming

    2018-02-01

    In this paper, we are concerned with the predictor-based control of multi-input multi-output (MIMO) linear systems with input delay and disturbances. By taking the future values of disturbances into consideration, a new improved predictive scheme is proposed. Compared with the existing predictive schemes, our proposed predictive scheme can achieve a finite-time exact state prediction for some smooth disturbances including the constant disturbances, and a better disturbance attenuation can also be achieved for a large class of other time-varying disturbances. The attenuation of mismatched disturbances for second-order linear systems with input delay is also investigated by using our proposed predictor-based controller.

  13. Capacitor regenerative braking system of electric wheelchair for senior citizen based on variable frequency chopper control.

    PubMed

    Takahashi, Yoshiaki; Seki, Hirokazu

    2009-01-01

    This paper proposes a novel regenerative braking control system of electric wheelchairs for senior citizen. "Electric powered wheelchair", which generates the driving force by electric motors according to the human operation, is expected to be widely used as a mobility support system for elderly people. This study focuses on the braking control to realize the safety and smooth stopping motion using the regenerative braking control technique based on fuzzy algorithm. The ride quality improvement and energy recycling can be expected by the proposed control system with stopping distance estimation and variable frequency control on the step-up/down chopper type of capacitor regenerative circuit. Some driving experiments confirm the effectiveness of the proposed control system.

  14. Apparatus for controlling system state based on unique identifiers

    DOEpatents

    Drotning, William D.

    2002-01-01

    An apparatus allows workers to assert and release control over the energization of a system. The apparatus does not require the workers to carry any additional paraphernalia, and is not be easily defeated by other workers. Users asserting and releasing control present tokens uniquely identifying each user to a reader, and the apparatus prevents transition of the system to an undesired state until an appropriate number of users are currently asserting control. For example, a dangerous manufacturing robot can be prevented from energizing until all the users that have asserted control when entering the robot's controlled space have subsequently released control when leaving the robot's controlled space.

  15. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  16. Development of controlled drug release systems based on thiolated polymers.

    PubMed

    Bernkop-Schnürch, A; Scholler, S; Biebel, R G

    2000-05-03

    The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.

  17. The Control Based on Internal Average Kinetic Energy in Complex Environment for Multi-robot System

    NASA Astrophysics Data System (ADS)

    Yang, Mao; Tian, Yantao; Yin, Xianghua

    In this paper, reference trajectory is designed according to minimum energy consumed for multi-robot system, which nonlinear programming and cubic spline interpolation are adopted. The control strategy is composed of two levels, which lower-level is simple PD control and the upper-level is based on the internal average kinetic energy for multi-robot system in the complex environment with velocity damping. Simulation tests verify the effectiveness of this control strategy.

  18. Analysis of maizena drying system using temperature control based fuzzy logic method

    NASA Astrophysics Data System (ADS)

    Arief, Ulfah Mediaty; Nugroho, Fajar; Purbawanto, Sugeng; Setyaningsih, Dyah Nurani; Suryono

    2018-03-01

    Corn is one of the rice subtitution food that has good potential. Corn can be processed to be a maizena, and it can be used to make type of food that has been made from maizena, viz. Brownies cake, egg roll, and other cookies. Generally, maizena obtained by drying process carried out 2-3 days under the sun. However, drying process not possible during the rainy season. This drying process can be done using an automatic drying tool. This study was to analyze the design result and manufacture of maizena drying system with temperature control based fuzzylogic method. The result show that temperature of drying system with set point 40°C - 60°C work in suitable condition. The level of water content in 15% (BSN) and temperatureat 50°C included in good drying process. Time required to reach the set point of temperature in 50°C is 7.05 minutes. Drying time for 500 gr samples with temperature 50°C and power capacity 127.6 watt was 1 hour. Based on the result, drying process using temperature control based fuzzy logic method can improve energy efficiency than the conventional method of drying using a direct sunlight source with a temperature that cannot be directly controlled by human being causing the quality of drying result of flour is erratic.

  19. Implementing supercritical water oxidation technology in a lunar base environmental control/life support system

    NASA Technical Reports Server (NTRS)

    Meyer Sedej, M.

    1985-01-01

    A supercritical water oxidation system (SCWOS) offers several advantages for a lunar base environmental control/life support system (ECLSS) compared to an ECLSS based on Space Station technology. In supercritically heated water (630 K, 250 atm) organic materials mix freely with oxygen and undergo complete combustion. Inorganic salts lose solubility and precipitate out. Implementation of SCWOS can make an ECLSS more efficient and reliable by elimination of several subsystems and by reduction in potential losses of life support consumables. More complete closure of the total system reduces resupply requirements from the earth, a crucial cost item in maintaining a lunar base.

  20. Web/smart phone based control and feedback systems for irrigation systems

    USDA-ARS?s Scientific Manuscript database

    The role of the internet and mobile devices in the control and feedback of irrigation systems is reviewed. This role is placed in the larger context of four distinct components required for irrigation management, including 1. the control panel; 2. remote control; 3. soil, plant, and weather (SPW) se...

  1. Application of systems and control theory-based hazard analysis to radiation oncology.

    PubMed

    Pawlicki, Todd; Samost, Aubrey; Brown, Derek W; Manger, Ryan P; Kim, Gwe-Ya; Leveson, Nancy G

    2016-03-01

    Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis. The STPA procedure starts with the definition of high-level accidents for radiation oncology at the medical center and the hazards leading to those accidents. From there, the hierarchical safety control structure of the radiation oncology clinic is modeled, i.e., the controls that are used to prevent accidents and provide effective treatment. Using STPA, unsafe control actions (behaviors) are identified that can lead to the hazards as well as causal scenarios that can lead to the identified unsafe control. This information can be used to eliminate or mitigate potential hazards. The STPA procedure is demonstrated on a new online adaptive cranial radiosurgery procedure that omits the CT simulation step and uses CBCT for localization, planning, and surface imaging system during treatment. The STPA procedure generated a comprehensive set of causal scenarios that are traced back to system hazards and accidents. Ten control loops were created for the new SRS procedure, which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Eighty three unsafe control actions were identified as well as 472 causal scenarios that could lead to those unsafe control actions. STPA provides a method for understanding the role of management decisions and hospital operations on system safety and generating process design requirements to prevent hazards and accidents. The interaction of people, hardware, and software is highlighted. The method of STPA produces results that can be used to improve

  2. System and method for controlling power consumption in a computer system based on user satisfaction

    DOEpatents

    Yang, Lei; Dick, Robert P; Chen, Xi; Memik, Gokhan; Dinda, Peter A; Shy, Alex; Ozisikyilmaz, Berkin; Mallik, Arindam; Choudhary, Alok

    2014-04-22

    Systems and methods for controlling power consumption in a computer system. For each of a plurality of interactive applications, the method changes a frequency at which a processor of the computer system runs, receives an indication of user satisfaction, determines a relationship between the changed frequency and the user satisfaction of the interactive application, and stores the determined relationship information. The determined relationship can distinguish between different users and different interactive applications. A frequency may be selected from the discrete frequencies at which the processor of the computer system runs based on the determined relationship information for a particular user and a particular interactive application running on the processor of the computer system. The processor may be adapted to run at the selected frequency.

  3. Control Parameters Optimization Based on Co-Simulation of a Mechatronic System for an UA-Based Two-Axis Inertially Stabilized Platform.

    PubMed

    Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao

    2015-08-14

    This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS(®); then, to analyze the system's kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB(®) SIMULINK(®) controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance.

  4. A Programmable System for Motion Control

    NASA Technical Reports Server (NTRS)

    Nowlin, Brent C.

    2003-01-01

    The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.

  5. A simulation-based study on different control strategies for variable speed pump in distributed ground source heat pump systems

    DOE PAGES

    Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin

    2016-01-01

    Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less

  6. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    PubMed

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  8. Automated Cryocooler Monitor and Control System Software

    NASA Technical Reports Server (NTRS)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  9. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  10. Security Encryption Scheme for Communication of Web Based Control Systems

    NASA Astrophysics Data System (ADS)

    Robles, Rosslin John; Kim, Tai-Hoon

    A control system is a device or set of devices to manage, command, direct or regulate the behavior of other devices or systems. The trend in most systems is that they are connected through the Internet. Traditional Supervisory Control and Data Acquisition Systems (SCADA) is connected only in a limited private network Since the internet Supervisory Control and Data Acquisition Systems (SCADA) facility has brought a lot of advantages in terms of control, data viewing and generation. Along with these advantages, are security issues regarding web SCADA, operators are pushed to connect Control Systems through the internet. Because of this, many issues regarding security surfaced. In this paper, we discuss web SCADA and the issues regarding security. As a countermeasure, a web SCADA security solution using crossed-crypto-scheme is proposed to be used in the communication of SCADA components.

  11. Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer

    NASA Astrophysics Data System (ADS)

    Wu, Yun-jie; Li, Guo-fei

    2018-01-01

    Based on sliding mode extended state observer (SMESO) technique, an adaptive disturbance compensation finite control set optimal control (FCS-OC) strategy is proposed for permanent magnet synchronous motor (PMSM) system driven by voltage source inverter (VSI). So as to improve robustness of finite control set optimal control strategy, a SMESO is proposed to estimate the output-effect disturbance. The estimated value is fed back to finite control set optimal controller for implementing disturbance compensation. It is indicated through theoretical analysis that the designed SMESO could converge in finite time. The simulation results illustrate that the proposed adaptive disturbance compensation FCS-OC possesses better dynamical response behavior in the presence of disturbance.

  12. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  13. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    PubMed

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Cellular Decomposition Based Hybrid-Hierarchical Control Systems with Applications to Flight Management Systems

    NASA Technical Reports Server (NTRS)

    Caines, P. E.

    1999-01-01

    The work in this research project has been focused on the construction of a hierarchical hybrid control theory which is applicable to flight management systems. The motivation and underlying philosophical position for this work has been that the scale, inherent complexity and the large number of agents (aircraft) involved in an air traffic system imply that a hierarchical modelling and control methodology is required for its management and real time control. In the current work the complex discrete or continuous state space of a system with a small number of agents is aggregated in such a way that discrete (finite state machine or supervisory automaton) controlled dynamics are abstracted from the system's behaviour. High level control may then be either directly applied at this abstracted level, or, if this is in itself of significant complexity, further layers of abstractions may be created to produce a system with an acceptable degree of complexity at each level. By the nature of this construction, high level commands are necessarily realizable at lower levels in the system.

  15. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    PubMed

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  16. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    NASA Technical Reports Server (NTRS)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  17. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miltiadis Alamaniotis; Vivek Agarwal

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less

  18. Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon

    PubMed Central

    Sun, Ruijuan; Wang, Wenqian; Wen, Yongqiang; Zhang, Xueji

    2015-01-01

    Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple “separated” switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind. PMID:28347110

  19. Minimal-Approximation-Based Distributed Consensus Tracking of a Class of Uncertain Nonlinear Multiagent Systems With Unknown Control Directions.

    PubMed

    Choi, Yun Ho; Yoo, Sung Jin

    2017-03-28

    A minimal-approximation-based distributed adaptive consensus tracking approach is presented for strict-feedback multiagent systems with unknown heterogeneous nonlinearities and control directions under a directed network. Existing approximation-based consensus results for uncertain nonlinear multiagent systems in lower-triangular form have used multiple function approximators in each local controller to approximate unmatched nonlinearities of each follower. Thus, as the follower's order increases, the number of the approximators used in its local controller increases. However, the proposed approach employs only one function approximator to construct the local controller of each follower regardless of the order of the follower. The recursive design methodology using a new error transformation is derived for the proposed minimal-approximation-based design. Furthermore, a bounding lemma on parameters of Nussbaum functions is presented to handle the unknown control direction problem in the minimal-approximation-based distributed consensus tracking framework and the stability of the overall closed-loop system is rigorously analyzed in the Lyapunov sense.

  20. Passivity-Based Control for Two-Wheeled Robot Stabilization

    NASA Astrophysics Data System (ADS)

    Uddin, Nur; Aryo Nugroho, Teguh; Agung Pramudito, Wahyu

    2018-04-01

    A passivity-based control system design for two-wheeled robot (TWR) stabilization is presented. A TWR is a statically-unstable non-linear system. A control system is applied to actively stabilize the TWR. Passivity-based control method is applied to design the control system. The design results in a state feedback control law that makes the TWR closed loop system globally asymptotically stable (GAS). The GAS is proven mathematically. The TWR stabilization is demonstrated through computer simulation. The simulation results show that the designed control system is able to stabilize the TWR.

  1. LMI-based stability analysis of fuzzy-model-based control systems using approximated polynomial membership functions.

    PubMed

    Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles

    2011-06-01

    Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.

  2. Control Parameters Optimization Based on Co-Simulation of a Mechatronic System for an UA-Based Two-Axis Inertially Stabilized Platform

    PubMed Central

    Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao

    2015-01-01

    This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS®; then, to analyze the system’s kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB® SIMULINK® controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance. PMID:26287210

  3. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  4. Secure UNIX socket-based controlling system for high-throughput protein crystallography experiments.

    PubMed

    Gaponov, Yurii; Igarashi, Noriyuki; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Suzuki, Mamoru; Kosuge, Takashi; Wakatsuki, Soichi

    2004-01-01

    A control system for high-throughput protein crystallography experiments has been developed based on a multilevel secure (SSL v2/v3) UNIX socket under the Linux operating system. Main features of protein crystallography experiments (purification, crystallization, loop preparation, data collecting, data processing) are dealt with by the software. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data, that are stored in Network File Server) in a relational database (MySQL). The system consists of several servers and clients. TCP/IP secure UNIX sockets with four predefined behaviors [(a) listening to a request followed by a reply, (b) sending a request and waiting for a reply, (c) listening to a broadcast message, and (d) sending a broadcast message] support communications between all servers and clients allowing one to control experiments, view data, edit experimental conditions and perform data processing remotely. The usage of the interface software is well suited for developing well organized control software with a hierarchical structure of different software units (Gaponov et al., 1998), which will pass and receive different types of information. All communication is divided into two parts: low and top levels. Large and complicated control tasks are split into several smaller ones, which can be processed by control clients independently. For communicating with experimental equipment (beamline optical elements, robots, and specialized experimental equipment etc.), the STARS server, developed at the Photon Factory, is used (Kosuge et al., 2002). The STARS server allows any application with an open socket to be connected with any other clients that control experimental equipment. Majority of the source code is written in C/C++. GUI modules of the system were built mainly using Glade user interface builder for GTK+ and Gnome under Red Hat Linux 7.1 operating system.

  5. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  6. PESO - The Python Based Control System of the Ondrejov 2m Telescope

    NASA Astrophysics Data System (ADS)

    Skoda, P.; Fuchs, J.; Honsa, J.

    2005-12-01

    Python has been gaining a good reputation and respectability in many areas of software development. We have chosen Python after getting the new CCD detector for the coudé spectrograph of Ondřejov observatory 2m telescope. The VersArray detector from Roper Scientific came only with the closed source library PVCAM of low-level camera control functions for Linux, so we had to write the whole astronomical data acquisition system from scratch and integrate it with the current spectrograph and telescope control systems. The final result of our effort, PESO (Python Exposure System for Ondřejov) is a highly comfortable GUI-based environment allowing the observer to change the spectrograph configuration, choose the detector acquisition mode, select the exposure parameters, and monitor the exposure progress. All of the relevant information from the control computers is written into the FITS headers by the PyFITS module, and the acquired CCD frame is immediately displayed in an SAO DS9 window using XPA calls. The GTK-based front end design was drawn in the Glade visual development tool, giving the shape and position of all widgets in single XML file, which is used in Python by a simple call of the PyGlade module. We describe our experience with the design and implementation of PESO, stressing the easiness of quick changes of the GUI, together with the capability of separate testing of every module using the Python debugger, IPython.

  7. Design of PID temperature control system based on STM32

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru

    2018-03-01

    A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.

  8. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.

    PubMed

    Lin, C T; Jou, C P

    2000-01-01

    This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.

  9. Controlling system for smart hyper-spectral imaging array based on liquid-crystal Fabry-Perot device

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Chen, Xin; Rong, Xin; Liu, Kan; Zhang, Xinyu; Ji, An; Xie, Changsheng

    2011-11-01

    A research for developing a kind of smart spectral imaging detection technique based on the electrically tunable liquidcrystal (LC) FP structure is launched. It has some advantages of low cost, highly compact integration, perfuming wavelength selection without moving any micro-mirror of FP device, and the higher reliability and stability. The controlling system for hyper-spectral imaging array based on LC-FP device includes mainly a MSP430F5438 as its core. Considering the characteristics of LC-FP device, the controlling system can provide a driving signal of 1-10 kHz and 0- 30Vrms for the device in a static driving mode. This paper introduces the hardware designing of the control system in detail. It presents an overall hardware solutions including: (1) the MSP430 controlling circuit, and (2) the operational amplifier circuit, and (3) the power supply circuit, and (4) the AD conversion circuit. The techniques for the realization of special high speed digital circuits, which is necessary for the PCB employed, is also discussed.

  10. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system.

    PubMed

    Paul, Rimi; Sengupta, Anindita

    2017-11-01

    A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Fuzzy logic controllers: A knowledge-based system perspective

    NASA Technical Reports Server (NTRS)

    Bonissone, Piero P.

    1993-01-01

    Over the last few years we have seen an increasing number of applications of Fuzzy Logic Controllers. These applications range from the development of auto-focus cameras, to the control of subway trains, cranes, automobile subsystems (automatic transmissions), domestic appliances, and various consumer electronic products. In summary, we consider a Fuzzy Logic Controller to be a high level language with its local semantics, interpreter, and compiler, which enables us to quickly synthesize non-linear controllers for dynamic systems.

  12. A WebGIS-based command control system for forest fire fighting

    NASA Astrophysics Data System (ADS)

    Yang, Jianyu; Ming, Dongping; Zhang, Xiaodong; Huang, Haitao

    2006-10-01

    Forest is a finite resource and fire prevention is crucial work. However, once a forest fire or accident occurs, timely and effective fire-fighting is the only necessary measure. The aim of this research is to build a computerized command control system based on WEBGIS to direct fire-fighting. Firstly, this paper introduces the total technique flow and functional modules of the system. Secondly, this paper analyses the key techniques for building the system, and they are data obtaining, data organizing & management, architecture of WebGIS and sharing & interoperation technique. In the end, this paper demonstrates the on line martial symbol editing function to show the running result of system. The practical application of this system showed that it played very important role in the forest fire fighting work. In addition, this paper proposes some strategic recommendations for the further development of the system.

  13. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  14. Large space structure model reduction and control system design based upon actuator and sensor influence functions

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Lang, J. H.; Johnson, T. L.; Shih, S.; Staelin, D. H.

    1983-01-01

    A model reduction procedure based on aggregation with respect to sensor and actuator influences rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the aggregated and residual states are derived. These expressions lead to the development of control system design constraints which are sufficient to guarantee, to within the validity of the perturbations, that the residual states are not destabilized by control systems designed from the reduced model. A numerical example is provided to illustrate the application of the aggregation and control system design method.

  15. Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems.

    PubMed

    Hou, Yi-You

    2017-09-01

    This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.

  16. A ground based phase control system for the solar power satellite. Executive summary, volume 1, phase 3

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1980-01-01

    The Solar Power Satellite (SPS) concept and the reference phase control system investigated in earlier efforts are reviewed. A summary overview of the analysis and selection of the pilot signal and power transponder design is presented along with the SOLARSIM program development and the simulated SPS phase control performance. Evaluations of the ground based phase control system as an alternate phase control concept are summarized.

  17. Navigation technique for MR-endoscope system using a wireless accelerometer-based remote control device.

    PubMed

    Kumamoto, Etsuko; Takahashi, Akihiro; Matsuoka, Yuichiro; Morita, Yoshinori; Kutsumi, Hiromu; Azuma, Takeshi; Kuroda, Kagayaki

    2013-01-01

    The MR-endoscope system can perform magnetic resonance (MR) imaging during endoscopy and show the images obtained by using endoscope and MR. The MR-endoscope system can acquire a high-spatial resolution MR image with an intraluminal radiofrequency (RF) coil, and the navigation system shows the scope's location and orientation inside the human body and indicates MR images with a scope view. In order to conveniently perform an endoscopy and MR procedure, the design of the user interface is very important because it provides useful information. In this study, we propose a navigation system using a wireless accelerometer-based controller with Bluetooth technology and a navigation technique to set the intraluminal RF coil using the navigation system. The feasibility of using this wireless controller in the MR shield room was validated via phantom examinations of the influence on MR procedures and navigation accuracy. In vitro examinations using an isolated porcine stomach demonstrated the effectiveness of the navigation technique using a wireless remote-control device.

  18. Effectiveness-weighted control of cooling system components

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  19. Adaptive Control Based Harvesting Strategy for a Predator-Prey Dynamical System.

    PubMed

    Sen, Moitri; Simha, Ashutosh; Raha, Soumyendu

    2018-04-23

    This paper deals with designing a harvesting control strategy for a predator-prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.

  20. First Operational Experience With a High-Energy Physics Run Control System Based on Web Technologies

    NASA Astrophysics Data System (ADS)

    Bauer, Gerry; Beccati, Barbara; Behrens, Ulf; Biery, Kurt; Branson, James; Bukowiec, Sebastian; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa Perez, Jose Antonio; Deldicque, Christian; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gulmini, Michele; Hatton, Derek; Hwong, Yi Ling; Loizides, Constantin; Ma, Frank; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K.; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Sumorok, Konstanty; Yoon, Andre Sungho

    2012-08-01

    Run control systems of modern high-energy particle physics experiments have requirements similar to those of today's Internet applications. The Compact Muon Solenoid (CMS) collaboration at CERN's Large Hadron Collider (LHC) therefore decided to build the run control system for its detector based on web technologies. The system is composed of Java Web Applications distributed over a set of Apache Tomcat servlet containers that connect to a database back-end. Users interact with the system through a web browser. The present paper reports on the successful scaling of the system from a small test setup to the production data acquisition system that comprises around 10.000 applications running on a cluster of about 1600 hosts. We report on operational aspects during the first phase of operation with colliding beams including performance, stability, integration with the CMS Detector Control System and tools to guide the operator.

  1. Nation-Wide, Web-Based, Geographic Information System for the Integrated Surveillance and Control of Dengue Fever in Mexico

    PubMed Central

    Hernández-Ávila, Juan Eugenio; Rodríguez, Mario-Henry; Santos-Luna, René; Sánchez-Castañeda, Veronica; Román-Pérez, Susana; Ríos-Salgado, Víctor Hugo; Salas-Sarmiento, Jesús Alberto

    2013-01-01

    Dengue fever incidence and its geographical distribution are increasing throughout the world. Quality and timely information is essential for its prevention and control. A web based, geographically enabled, dengue integral surveillance system (Dengue-GIS) was developed for the nation-wide collection, integration, analysis and reporting of geo-referenced epidemiologic, entomologic, and control interventions data. Consensus in the design and practical operation of the system was a key factor for its acceptance. Working with information systems already implemented as a starting point facilitated its acceptance by officials and operative personnel. Dengue-GIS provides the geographical detail needed to plan, asses and evaluate the impact of control activities. The system is beginning to be adopted as a knowledge base by vector control programs. It is used to generate evidence on impact and cost-effectiveness of control activities, promoting the use of information for decision making at all levels of the vector control program. Dengue-GIS has also been used as a hypothesis generator for the academic community. This GIS-based model system for dengue surveillance and the experience gathered during its development and implementation could be useful in other dengue endemic countries and extended to other infectious or chronic diseases. PMID:23936394

  2. Black start research of the wind and storage system based on the dual master-slave control

    NASA Astrophysics Data System (ADS)

    Leng, Xue; Shen, Li; Hu, Tian; Liu, Li

    2018-02-01

    Black start is the key to solving the problem of large-scale power failure, while the introduction of new renewable clean energy as a black start power supply was a new hotspot. Based on the dual master-slave control strategy, the wind and storage system was taken as the black start reliable power, energy storage and wind combined to ensure the stability of the micorgrid systems, to realize the black start. In order to obtain the capacity ratio of the storage in the small system based on the dual master-slave control strategy, and the black start constraint condition of the wind and storage combined system, obtain the key points of black start of wind storage combined system, but also provide reference and guidance for the subsequent large-scale wind and storage combined system in black start projects.

  3. Algorithms for sum-of-squares-based stability analysis and control design of uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Ataei-Esfahani, Armin

    In this dissertation, we present algorithmic procedures for sum-of-squares based stability analysis and control design for uncertain nonlinear systems. In particular, we consider the case of robust aircraft control design for a hypersonic aircraft model subject to parametric uncertainties in its aerodynamic coefficients. In recent years, Sum-of-Squares (SOS) method has attracted increasing interest as a new approach for stability analysis and controller design of nonlinear dynamic systems. Through the application of SOS method, one can describe a stability analysis or control design problem as a convex optimization problem, which can efficiently be solved using Semidefinite Programming (SDP) solvers. For nominal systems, the SOS method can provide a reliable and fast approach for stability analysis and control design for low-order systems defined over the space of relatively low-degree polynomials. However, The SOS method is not well-suited for control problems relating to uncertain systems, specially those with relatively high number of uncertainties or those with non-affine uncertainty structure. In order to avoid issues relating to the increased complexity of the SOS problems for uncertain system, we present an algorithm that can be used to transform an SOS problem with uncertainties into a LMI problem with uncertainties. A new Probabilistic Ellipsoid Algorithm (PEA) is given to solve the robust LMI problem, which can guarantee the feasibility of a given solution candidate with an a-priori fixed probability of violation and with a fixed confidence level. We also introduce two approaches to approximate the robust region of attraction (RROA) for uncertain nonlinear systems with non-affine dependence on uncertainties. The first approach is based on a combination of PEA and SOS method and searches for a common Lyapunov function, while the second approach is based on the generalized Polynomial Chaos (gPC) expansion theorem combined with the SOS method and searches

  4. Indirect learning control for nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  5. Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems

    NASA Astrophysics Data System (ADS)

    Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof

    The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.

  6. Human factor engineering based design and modernization of control rooms with new I and C systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larraz, J.; Rejas, L.; Ortega, F.

    2012-07-01

    Instrumentation and Control (I and C) systems of the latest nuclear power plants are based on the use of digital technology, distributed control systems and the integration of information in data networks (Distributed Control and Instrumentation Systems). This has a repercussion on Control Rooms (CRs), where the operations and monitoring interfaces correspond to these systems. These technologies are also used in modernizing I and C systems in currently operative nuclear power plants. The new interfaces provide additional capabilities for operation and supervision, as well as a high degree of flexibility, versatility and reliability. An example of this is the implementationmore » of solutions such as compact stations, high level supervision screens, overview displays, computerized procedures, new operational support systems or intelligent alarms processing systems in the modernized Man-Machine Interface (MMI). These changes in the MMI are accompanied by newly added Software (SW) controls and new solutions in automation. Tecnatom has been leading various projects in this area for several years, both in Asian countries and in the United States, using in all cases international standards from which Tecnatom own methodologies have been developed and optimized. The experience acquired in applying this methodology to the design of new control rooms is to a large extent applicable also to the modernization of current control rooms. An adequate design of the interface between the operator and the systems will facilitate safe operation, contribute to the prompt identification of problems and help in the distribution of tasks and communications between the different members of the operating shift. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (authors)« less

  7. The architecture of adaptive neural network based on a fuzzy inference system for implementing intelligent control in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Gimazov, R.; Shidlovskiy, S.

    2018-05-01

    In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.

  8. Fuzzy observer-based control for maximum power-point tracking of a photovoltaic system

    NASA Astrophysics Data System (ADS)

    Allouche, M.; Dahech, K.; Chaabane, M.; Mehdi, D.

    2018-04-01

    This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H∞ observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.

  9. The use of a GIS-based malaria information system for malaria research and control in South Africa.

    PubMed

    Martin, Carrin; Curtis, Bronwyn; Fraser, Colleen; Sharp, Brian

    2002-12-01

    The paper aims to outline the innovative development and application of a Geographical Information System based Malaria Information System for malaria research and control in South Africa. This system is a product of collaboration between the Malaria Control Programmes and the Malaria Research Programme of the Medical Research Council of South Africa. The ability of such a system to process data timeously into a usable format is discussed, as well as its relevance to malaria research, appropriate malaria control measures, tourism, and social and economic development.

  10. Linear matrix inequality-based nonlinear adaptive robust control with application to unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Kun, David William

    Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external

  11. Management and control of self-replicating systems: A systems model

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G.

    1982-01-01

    In 1980, a conceptual engineering approach to self-replicating systems was achieved. The design was based on von Newmann's kinematic version of self-replicating automata. The systems management and control and the organization of the control elements are reported. After developing the functional requirements of such a system, a hierarchy of three management and control levels is described. These are an autonomous, an external, and an intelligent management and control system. Systems recycling, systems specialization, and information replication are discussed.

  12. FPGA-based Upgrade to RITS-6 Control System, Designed with EMP Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold D. Anderson, John T. Williams

    2009-07-01

    The existing control system for the RITS-6, a 20-MA 3-MV pulsed-power accelerator located at Sandia National Laboratories, was built as a system of analog switches because the operators needed to be close enough to the machine to hear pulsed-power breakdowns, yet the electromagnetic pulse (EMP) emitted would disable any processor-based solutions. The resulting system requires operators to activate and deactivate a series of 110-V relays manually in a complex order. The machine is sensitive to both the order of operation and the time taken between steps. A mistake in either case would cause a misfire and possible machine damage. Basedmore » on these constraints, a field-programmable gate array (FPGA) was chosen as the core of a proposed upgrade to the control system. An FPGA is a series of logic elements connected during programming. Based on their connections, the elements can mimic primitive logic elements, a process called synthesis. The circuit is static; all paths exist simultaneously and do not depend on a processor. This should make it less sensitive to EMP. By shielding it and using good electromagnetic interference-reduction practices, it should continue to operate well in the electrically noisy environment. The FPGA has two advantages over the existing system. In manual operation mode, the synthesized logic gates keep the operators in sequence. In addition, a clock signal and synthesized countdown circuit provides an automated sequence, with adjustable delays, for quickly executing the time-critical portions of charging and firing. The FPGA is modeled as a set of states, each state being a unique set of values for the output signals. The state is determined by the input signals, and in the automated segment by the value of the synthesized countdown timer, with the default mode placing the system in a safe configuration. Unlike a processor-based system, any system stimulus that results in an abort situation immediately executes a shutdown, with only a

  13. A new active variable stiffness suspension system using a nonlinear energy sink-based controller

    NASA Astrophysics Data System (ADS)

    Anubi, Olugbenga Moses; Crane, Carl D.

    2013-10-01

    This paper presents the active case of a variable stiffness suspension system. The central concept is based on a recently designed variable stiffness mechanism which consists of a horizontal control strut and a vertical strut. The horizontal strut is used to vary the load transfer ratio by actively controlling the location of the point of attachment of the vertical strut to the car body. The control algorithm, effected by a hydraulic actuator, uses the concept of nonlinear energy sink (NES) to effectively transfer the vibrational energy in the sprung mass to a control mass, thereby reducing the transfer of energy from road disturbance to the car body at a relatively lower cost compared to the traditional active suspension using the skyhook concept. The analyses and simulation results show that a better performance can be achieved by subjecting the point of attachment of a suspension system, to the chassis, to the influence of a horizontal NES system.

  14. Energy-Saving Tunnel Illumination System Based on LED's Intelligent Control

    NASA Astrophysics Data System (ADS)

    Guo, Shanshan; Gu, Hanting; Wu, Lan; Jiang, Shuixiu

    2011-02-01

    At present there is a lot of electric energy wastage in tunnel illumination, whose design is based on the maximum brightness outside and the maximum vehicle speed all year round. LED's energy consumption is low, and the control of its brightness is simple and effective. It can be quickly adjusted between 0-100% of its maximum brightness, and will not affect the service life. Therefore, using LED as tunnel's illumination source, we can achieve a good energy saving effect. According to real-time data acquisition of vehicle speed, traffic flow and brightness outside the tunnel, the auto real-time control of tunnel illumination can be achieved. And the system regulated the LED luminance by means of combination of LED power module and intelligent control module. The tunnel information was detected by inspection equipments, which included luminometer, vehicle detector, and received by RTU(Remote Terminal Unit), then synchronously transmitted to PC. After data processing, RTU emitted the dimming signal to the LED driver to adjust the brightness of LED. Despite the relatively high cost of high-power LED lights, the enormous energy-saving effect and the well-behaved controllability is beyond compare to other lighting devices.

  15. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.

  16. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  17. WELDSMART: A vision-based expert system for quality control

    NASA Technical Reports Server (NTRS)

    Andersen, Kristinn; Barnett, Robert Joel; Springfield, James F.; Cook, George E.

    1992-01-01

    This work was aimed at exploring means for utilizing computer technology in quality inspection and evaluation. Inspection of metallic welds was selected as the main application for this development and primary emphasis was placed on visual inspection, as opposed to other inspection methods, such as radiographic techniques. Emphasis was placed on methodologies with the potential for use in real-time quality control systems. Because quality evaluation is somewhat subjective, despite various efforts to classify discontinuities and standardize inspection methods, the task of using a computer for both inspection and evaluation was not trivial. The work started out with a review of the various inspection techniques that are used for quality control in welding. Among other observations from this review was the finding that most weld defects result in abnormalities that may be seen by visual inspection. This supports the approach of emphasizing visual inspection for this work. Quality control consists of two phases: (1) identification of weld discontinuities (some of which may be severe enough to be classified as defects), and (2) assessment or evaluation of the weld based on the observed discontinuities. Usually the latter phase results in a pass/fail judgement for the inspected piece. It is the conclusion of this work that the first of the above tasks, identification of discontinuities, is the most challenging one. It calls for sophisticated image processing and image analysis techniques, and frequently ad hoc methods have to be developed to identify specific features in the weld image. The difficulty of this task is generally not due to limited computing power. In most cases it was found that a modest personal computer or workstation could carry out most computations in a reasonably short time period. Rather, the algorithms and methods necessary for identifying weld discontinuities were in some cases limited. The fact that specific techniques were finally developed and

  18. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    NASA Astrophysics Data System (ADS)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-12-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  19. Delay-based signal shapers and acfa 2020 blended wing body flight control system

    NASA Astrophysics Data System (ADS)

    Kucera, V.; Hromčík, M.

    2013-12-01

    The purpose of this paper is twofold. First: results related to application of signal shapers, imposed on pilot's commands, in cooperation with feedback flight control system (FCS) are reported for the case of ACFA2020 (Active Control for Flexible 2020 Aircraft) blended-wingbody (BWB) design. The results suggest that signal shapers can cooperate nicely both with FCS focused on the rigid-body dynamics only, as well as with an implemented and properly working active damping system. In both cases, the amount of vibrations due to pilot's inputs (manoeuvres) can be substantially reduced. Second: combination of signal shapers and rate-limiters is discussed in detail. Rate-limiters, representing finite achievable rates of servos for control surfaces, deteriorate considerably performance of the delay-based shapers. Configuration proposes only open-loop response of the free aircraft (without controller) for shaped reference respect to nonlinearities at action surface. Standard versions of the shapers cannot be therefore directly applied, especially for higher control surfaces deflections. Instead, two efficient alternatives can be used, suggested in the paper, that take the rate limitations into account at the design stage already.

  20. Web-based interactive drone control using hand gesture

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng

    2018-01-01

    This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.

  1. Web-based interactive drone control using hand gesture.

    PubMed

    Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng

    2018-01-01

    This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.

  2. Design and experiment of vehicular charger AC/DC system based on predictive control algorithm

    NASA Astrophysics Data System (ADS)

    He, Guangbi; Quan, Shuhai; Lu, Yuzhang

    2018-06-01

    For the car charging stage rectifier uncontrollable system, this paper proposes a predictive control algorithm of DC/DC converter based on the prediction model, established by the state space average method and its prediction model, obtained by the optimal mathematical description of mathematical calculation, to analysis prediction algorithm by Simulink simulation. The design of the structure of the car charging, at the request of the rated output power and output voltage adjustable control circuit, the first stage is the three-phase uncontrolled rectifier DC voltage Ud through the filter capacitor, after by using double-phase interleaved buck-boost circuit with wide range output voltage required value, analyzing its working principle and the the parameters for the design and selection of components. The analysis of current ripple shows that the double staggered parallel connection has the advantages of reducing the output current ripple and reducing the loss. The simulation experiment of the whole charging circuit is carried out by software, and the result is in line with the design requirements of the system. Finally combining the soft with hardware circuit to achieve charging of the system according to the requirements, experimental platform proved the feasibility and effectiveness of the proposed predictive control algorithm based on the car charging of the system, which is consistent with the simulation results.

  3. [Discussion on research thinking of traditional Chinese medicine standardization system based on whole process quality control].

    PubMed

    Dong, Ling; Sun, Yu; Pei, Wen-Xuan; Dai, Jun-Dong; Wang, Zi-Yu; Pan, Meng; Chen, Jiang-Peng; Wang, Yun

    2017-12-01

    The concept of "Quality by design" indicates that good design for the whole life cycle of pharmaceutical production enables the drug to meet the expected quality requirements. Aiming at the existing problems of the traditional Chinese medicine (TCM) industry, the TCM standardization system was put forward in this paper from the national strategic level, under the guidance by the idea of quality control in international manufacturing industry and with considerations of TCM industry's own characteristics and development status. The connotation of this strategy was to establish five interrelated systems: multi-indicators system based on tri-indicators system, quality standard and specification system of TCM herbal materials and decoction pieces, quality traceability system, data monitoring system based on whole-process quality control, and whole-process quality management system of TCM, and achieve the whole process systematic and scientific study in TCM industry through "top-level design-implement in steps-system integration" workflow. This article analyzed the correlation between the quality standards of all links, established standard operating procedures of each link and whole process, and constructed a high standard overall quality management system for TCM industry chains, in order to provide a demonstration for the establishment of TCM whole-process quality control system and provide systematic reference and basis for standardization strategy in TCM industry. Copyright© by the Chinese Pharmaceutical Association.

  4. Damping torque analysis of VSC-based system utilizing power synchronization control

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Du, W. J.; Zheng, K. Y.; Wang, H. F.

    2017-05-01

    Power synchronization control is a new control strategy of VSC-HVDC for connecting a weak power system. Different from the vector control method, this control method utilizes the internal synchronization mechanism in ac systems, in principle, similar to the operation of a synchronous machine. So that the parameters of controllers in power synchronization control will change the electromechanical oscillation modes and make an impact on the transient stability of power system. This paper present a mathematical model for small-signal stability analysis of VSC station used power synchronization control and analyse the impact of the dynamic interactions by calculating the contribution of the damping torque from the power synchronization control, besides, the parameters of controllers which correspond to damping torque and synchronous torque in the power synchronization control is defined respectively. At the end of the paper, an example power system is presented to demonstrate and validate the theoretical analysis and associated conclusions are made.

  5. Model Predictive Control-based Power take-off Control of an Oscillating Water Column Wave Energy Conversion System

    NASA Astrophysics Data System (ADS)

    Rajapakse, G.; Jayasinghe, S. G.; Fleming, A.; Shahnia, F.

    2017-07-01

    Australia’s extended coastline asserts abundance of wave and tidal power. The predictability of these energy sources and their proximity to cities and towns make them more desirable. Several tidal current turbine and ocean wave energy conversion projects have already been planned in the coastline of southern Australia. Some of these projects use air turbine technology with air driven turbines to harvest the energy from an oscillating water column. This study focuses on the power take-off control of a single stage unidirectional oscillating water column air turbine generator system, and proposes a model predictive control-based speed controller for the generator-turbine assembly. The proposed method is verified with simulation results that show the efficacy of the controller in extracting power from the turbine while maintaining the speed at the desired level.

  6. Human factors considerations in the evaluation of processor-based signal and train control systems

    DOT National Transportation Integrated Search

    2007-06-01

    In August 2001, the Federal Railroad Administration issued the notice of proposed rulemaking: Standards for Development and : Use of Processor-Based Signal and Train Control Systems (49 Code of Federal Regulations Part 236). This proposed rule addres...

  7. Integrated control design for driver assistance systems based on LPV methods

    NASA Astrophysics Data System (ADS)

    Gáspár, Péter; Németh, Balázs

    2016-12-01

    The paper proposes a control design method for a driver assistance system. In the operation of the system, a predefined trajectory required by the driver with a steering command is followed. During manoeuvres the control system generates differential brake moment and the auxiliary front-wheel steering angle and changes the camber angles of the wheels in order to improve the tracking of the road trajectory. The performance specifications are guaranteed by the local controllers, i.e. the brake, the steering, and the suspension systems, while the coordination of these components is provided by the supervisor. The advantage of this architecture is that local controllers are designed independently, which is ensured by the fact that the monitoring signals are taken into consideration in the formalisation of their performance specifications. The fault-tolerant control can be achieved by incorporating the detected fault signals in their performance specifications. The control system also uses a driver model, with which the reference signal can be generated. In the control design, the parameter-dependent linear parameter-varyingmethod, which meets the performance specifications, is used. The operation of the control system is illustrated through different normal and emergency vehicle manoeuvres with a high-accuracy simulation software.

  8. H∞ output tracking control of uncertain and disturbed nonlinear systems based on neural network model

    NASA Astrophysics Data System (ADS)

    Li, Chengcheng; Li, Yuefeng; Wang, Guanglin

    2017-07-01

    The work presented in this paper seeks to address the tracking problem for uncertain continuous nonlinear systems with external disturbances. The objective is to obtain a model that uses a reference-based output feedback tracking control law. The control scheme is based on neural networks and a linear difference inclusion (LDI) model, and a PDC structure and H∞ performance criterion are used to attenuate external disturbances. The stability of the whole closed-loop model is investigated using the well-known quadratic Lyapunov function. The key principles of the proposed approach are as follows: neural networks are first used to approximate nonlinearities, to enable a nonlinear system to then be represented as a linearised LDI model. An LMI (linear matrix inequality) formula is obtained for uncertain and disturbed linear systems. This formula enables a solution to be obtained through an interior point optimisation method for some nonlinear output tracking control problems. Finally, simulations and comparisons are provided on two practical examples to illustrate the validity and effectiveness of the proposed method.

  9. The equipment access software for a distributed UNIX-based accelerator control system

    NASA Astrophysics Data System (ADS)

    Trofimov, Nikolai; Zelepoukine, Serguei; Zharkov, Eugeny; Charrue, Pierre; Gareyte, Claire; Poirier, Hervé

    1994-12-01

    This paper presents a generic equipment access software package for a distributed control system using computers with UNIX or UNIX-like operating systems. The package consists of three main components, an application Equipment Access Library, Message Handler and Equipment Data Base. An application task, which may run in any computer in the network, sends requests to access equipment through Equipment Library calls. The basic request is in the form Equipment-Action-Data and is routed via a remote procedure call to the computer to which the given equipment is connected. In this computer the request is received by the Message Handler. According to the type of the equipment connection, the Message Handler either passes the request to the specific process software in the same computer or forwards it to a lower level network of equipment controllers using MIL1553B, GPIB, RS232 or BITBUS communication. The answer is then returned to the calling application. Descriptive information required for request routing and processing is stored in the real-time Equipment Data Base. The package has been written to be portable and is currently available on DEC Ultrix, LynxOS, HPUX, XENIX, OS-9 and Apollo domain.

  10. Development of similarity theory for control systems

    NASA Astrophysics Data System (ADS)

    Myshlyaev, L. P.; Evtushenko, V. F.; Ivushkin, K. A.; Makarov, G. V.

    2018-05-01

    The area of effective application of the traditional similarity theory and the need necessity of its development for systems are discussed. The main statements underlying the similarity theory of control systems are given. The conditions for the similarity of control systems and the need for similarity control control are formulated. Methods and algorithms for estimating and similarity control of control systems and the results of research of control systems based on their similarity are presented. The similarity control of systems includes the current evaluation of the degree of similarity of control systems and the development of actions controlling similarity, and the corresponding targeted change in the state of any element of control systems.

  11. The JCMT Observatory Control System

    NASA Astrophysics Data System (ADS)

    Rees, Nick; Economou, Frossie; Jenness, Tim; Kackley, Russell; Walther, Craig; Dent, Bill; Folger, Martin; Gao, Xiaofeng; Kelly, Dennis; Lightfoot, John; Pain, Ian; Hovey, Gary; Willis, Tony; Redman, Russell

    The JCMT, the world's largest sub-mm telescope, has had essentially the same VAX/VMS based control system since it was commissioned. For the next generation of instrumentation we are implementing a new Unix/VxWorks based system, based on the successful ORAC system that was recently released on UKIRT. This paper gives a broad overview of the system architecture and includes some discussion on the choices made. The pros and cons of using XML as an inherent part of the system architecture are also discussed.

  12. Control and communication co-design: analysis and practice on performance improvement in distributed measurement and control system based on fieldbus and Ethernet.

    PubMed

    Liang, Geng

    2015-01-01

    In this paper, improving control performance of a networked control system by reducing DTD in a different perspective was investigated. Two different network architectures for system implementation were presented. Analysis and improvement dealing with DTD for the experimental control system were expounded. Effects of control scheme configuration on DTD in the form of FB were investigated and corresponding improvements by reallocation of FB and re-arrangement of schedule table are proposed. Issues of DTD in hybrid network were investigated and corresponding approaches to improve performance including (1) reducing DTD in PLC or PAC by way of IEC61499 and (2) cascade Smith predictive control with BPNN-based identification were proposed and investigated. Control effects under the proposed methodologies were also given. Experimental and field practices validated these methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Stability and performance of propulsion control systems with distributed control architectures and failures

    NASA Astrophysics Data System (ADS)

    Belapurkar, Rohit K.

    Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.

  14. PSO Based PI Controller Design for a Solar Charger System

    PubMed Central

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713

  15. PSO based PI controller design for a solar charger system.

    PubMed

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).

  16. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    PubMed

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  17. Statistical process control based chart for information systems security

    NASA Astrophysics Data System (ADS)

    Khan, Mansoor S.; Cui, Lirong

    2015-07-01

    Intrusion detection systems have a highly significant role in securing computer networks and information systems. To assure the reliability and quality of computer networks and information systems, it is highly desirable to develop techniques that detect intrusions into information systems. We put forward the concept of statistical process control (SPC) in computer networks and information systems intrusions. In this article we propose exponentially weighted moving average (EWMA) type quality monitoring scheme. Our proposed scheme has only one parameter which differentiates it from the past versions. We construct the control limits for the proposed scheme and investigate their effectiveness. We provide an industrial example for the sake of clarity for practitioner. We give comparison of the proposed scheme with EWMA schemes and p chart; finally we provide some recommendations for the future work.

  18. Evaluation of a commercial system for CAMAC-based control of the Chalk River Laboratories tandem-accelerator-superconducting-cyclotron complexcomplex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, B.F.; Caswell, D.J.; Slater, W.R.

    1992-04-01

    This paper discusses the control system of the Tandem Accelerator Superconducting Cyclotron (TASCC) of AECL Research at its Chalk River Laboratories which is presently based on a PDP-11 computer and the IAS operating system. The estimated expense of a custom conversion of the system to a current, equivalent operating system is prohibitive. The authors have evaluated a commercial control package from VISTA Control Systems based on VAX microcomputers and the VMS operating system. Vsystem offers a modern, graphical operator interface, an extensive software toolkit for configuration of the system and a multi-feature data-logging capability, all of which far surpass themore » functionality of the present control system. However, the implementation of some familiar, practical features that TASCC operators find to be essential has proven to be challenging. The assessment of Vsystem, which is described in terms of presently perceived strengths and weaknesses, is, on balance, very positive.« less

  19. Conceptual design of data acquisition and control system for two Rf driver based negative ion source for fusion R&D

    NASA Astrophysics Data System (ADS)

    Soni, Jigensh; Yadav, R. K.; Patel, A.; Gahlaut, A.; Mistry, H.; Parmar, K. G.; Mahesh, V.; Parmar, D.; Prajapati, B.; Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Pandya, K.; Chakraborty, A.

    2013-02-01

    Twin Source - An Inductively coupled two RF driver based 180 kW, 1 MHz negative ion source experimental setup is initiated at IPR, Gandhinagar, under Indian program, with the objective of understanding the physics and technology of multi-driver coupling. Twin Source [1] (TS) also provides an intermediate platform between operational ROBIN [2] [5] and eight RF drivers based Indian test facility -INTF [3]. A twin source experiment requires a central system to provide control, data acquisition and communication interface, referred as TS-CODAC, for which a software architecture similar to ITER CODAC core system has been decided for implementation. The Core System is a software suite for ITER plant system manufacturers to use as a template for the development of their interface with CODAC. The ITER approach, in terms of technology, has been adopted for the TS-CODAC so as to develop necessary expertise for developing and operating a control system based on the ITER guidelines as similar configuration needs to be implemented for the INTF. This cost effective approach will provide an opportunity to evaluate and learn ITER CODAC technology, documentation, information technology and control system processes, on an operational machine. Conceptual design of the TS-CODAC system has been completed. For complete control of the system, approximately 200 Nos. control signals and 152 acquisition signals are needed. In TS-CODAC, control loop time required is within the range of 5ms - 10 ms, therefore for the control system, PLC (Siemens S-7 400) has been chosen as suggested in the ITER slow controller catalog. For the data acquisition, the maximum sampling interval required is 100 micro second, and therefore National Instruments (NI) PXIe system and NI 6259 digitizer cards have been selected as suggested in the ITER fast controller catalog. This paper will present conceptual design of TS -CODAC system based on ITER CODAC Core software and applicable plant system integration processes.

  20. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    NASA Astrophysics Data System (ADS)

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  1. Pythium invasion of plant-based life support systems: biological control and sources

    NASA Technical Reports Server (NTRS)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  2. Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers.

    PubMed

    Juan Chen; Zhuang, Bo; Chen, YangQuan; Cui, Baotong

    2017-05-09

    This paper is concerned with diffusion control problem of a tempered anomalous diffusion system based on fractional-order PI controllers. The contribution of this paper is to introduce fractional-order PI controllers into the tempered anomalous diffusion system for mobile actuators motion and spraying control. For the proposed control force, convergence analysis of the system described by mobile actuator dynamical equations is presented based on Lyapunov stability arguments. Moreover, a new Centroidal Voronoi Tessellation (CVT) algorithm based on fractional-order PI controllers, henceforth called FOPI-based CVT algorithm, is provided together with a modified simulation platform called Fractional-Order Diffusion Mobile Actuator-Sensor 2-Dimension Fractional-Order Proportional Integral (FO-Diff-MAS2D-FOPI). Finally, extensive numerical simulations for the tempered anomalous diffusion process are presented to verify the effectiveness of our proposed fractional-order PI controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient.

    PubMed

    Chen, Juan; Cui, Baotong; Chen, YangQuan

    2018-06-11

    This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. TFTR diagnostic control and data acquisition system

    NASA Astrophysics Data System (ADS)

    Sauthoff, N. R.; Daniels, R. E.

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man-machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ``groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  5. TFTR diagnostic control and data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  6. Access Control Management for SCADA Systems

    NASA Astrophysics Data System (ADS)

    Hong, Seng-Phil; Ahn, Gail-Joon; Xu, Wenjuan

    The information technology revolution has transformed all aspects of our society including critical infrastructures and led a significant shift from their old and disparate business models based on proprietary and legacy environments to more open and consolidated ones. Supervisory Control and Data Acquisition (SCADA) systems have been widely used not only for industrial processes but also for some experimental facilities. Due to the nature of open environments, managing SCADA systems should meet various security requirements since system administrators need to deal with a large number of entities and functions involved in critical infrastructures. In this paper, we identify necessary access control requirements in SCADA systems and articulate access control policies for the simulated SCADA systems. We also attempt to analyze and realize those requirements and policies in the context of role-based access control that is suitable for simplifying administrative tasks in large scale enterprises.

  7. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    NASA Astrophysics Data System (ADS)

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  8. Interface For Fault-Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Shaver, Charles; Williamson, Michael

    1989-01-01

    Interface unit and controller emulator developed for research on electronic helicopter-flight-control systems equipped with artificial intelligence. Interface unit interrupt-driven system designed to link microprocessor-based, quadruply-redundant, asynchronous, ultra-reliable, fault-tolerant control system (controller) with electronic servocontrol unit that controls set of hydraulic actuators. Receives digital feedforward messages from, and transmits digital feedback messages to, controller through differential signal lines or fiber-optic cables (thus far only differential signal lines have been used). Analog signals transmitted to and from servocontrol unit via coaxial cables.

  9. Robust passive control for a class of uncertain neutral systems based on sliding mode observer.

    PubMed

    Liu, Zhen; Zhao, Lin; Kao, Yonggui; Gao, Cunchen

    2017-01-01

    The passivity-based sliding mode control (SMC) problem for a class of uncertain neutral systems with unmeasured states is investigated. Firstly, a particular non-fragile state observer is designed to generate the estimations of the system states, based upon which a novel integral-type sliding surface function is established for the control process. Secondly, a new sufficient condition for robust asymptotic stability and passivity of the resultant sliding mode dynamics (SMDs) is obtained in terms of linear matrix inequalities (LMIs). Thirdly, the finite-time reachability of the predesigned sliding surface is ensured by resorting to a novel adaptive SMC law. Finally, the validity and superiority of the scheme are justified via several examples. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Autonomous Power System intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  11. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  12. The New Feedback Control System of RFX-mod Based on the MARTe Real-Time Framework

    NASA Astrophysics Data System (ADS)

    Manduchi, G.; Luchetta, A.; Soppelsa, A.; Taliercio, C.

    2014-06-01

    A real-time system has been successfully used since 2004 in the RFX-mod nuclear fusion experiment to control the position of the plasma and its Magneto Hydrodynamic (MHD) modes. However, its latency and the limited computation power of the used processors prevented the usage of more aggressive control algorithms. Therefore a new hardware and software architecture has been designed to overcome such limitations and to provide a shorter latency and a much increased computation power. The new system is based on a Linux multi-core server and uses MARTe, a framework for real-time control which is gaining interest in the fusion community.

  13. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    PubMed

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  14. Intelligence Control System for Landfills Based on Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Huang, Chuan; Gong, Jian

    2018-06-01

    This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  15. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    PubMed

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  16. Proximity-based access control for context-sensitive information provision in SOA-based systems

    NASA Astrophysics Data System (ADS)

    Rajappan, Gowri; Wang, Xiaofei; Grant, Robert; Paulini, Matthew

    2014-06-01

    Service Oriented Architecture (SOA) has enabled open-architecture integration of applications within an enterprise. For net-centric Command and Control (C2), this elucidates information sharing between applications and users, a critical requirement for mission success. The Information Technology (IT) access control schemes, which arbitrate who gets access to what information, do not yet have the contextual knowledge to dynamically allow this information sharing to happen dynamically. The access control might prevent legitimate users from accessing information relevant to the current mission context, since this context may be very different from the context for which the access privileges were configured. We evaluate a pair of data relevance measures - proximity and risk - and use these as the basis of dynamic access control. Proximity is a measure of the strength of connection between the user and the resource. However, proximity is not sufficient, since some data might have a negative impact, if leaked, which far outweighs importance to the subject's mission. For this, we use a risk measure to quantify the downside of data compromise. Given these contextual measures of proximity and risk, we investigate extending Attribute-Based Access Control (ABAC), which is used by the Department of Defense, and Role-Based Access Control (RBAC), which is widely used in the civilian market, so that these standards-based access control models are given contextual knowledge to enable dynamic information sharing. Furthermore, we consider the use of such a contextual access control scheme in a SOA-based environment, in particular for net-centric C2.

  17. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    PubMed

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  18. An Adaptive Coordinated Control for an Offshore Wind Farm Connected VSC Based Multi-Terminal DC Transmission System

    NASA Astrophysics Data System (ADS)

    Kumar, M. Ajay; Srikanth, N. V.

    2015-01-01

    The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.

  19. Weld analysis and control system

    NASA Technical Reports Server (NTRS)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  20. Effectiveness-weighted control method for a cooling system

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  1. Observer-Based Non-PDC Control for Networked T-S Fuzzy Systems With an Event-Triggered Communication.

    PubMed

    Peng, Chen; Ma, Shaodong; Xie, Xiangpeng

    2017-02-07

    This paper addresses the problem of an event-triggered non-parallel distribution compensation (PDC) control for networked Takagi-Sugeno (T-S) fuzzy systems, under consideration of the limited data transmission bandwidth and the imperfect premise matching membership functions. First, a unified event-triggered T-S fuzzy model is provided, in which: 1) a fuzzy observer with the imperfect premise matching is constructed to estimate the unmeasurable states of the studied system; 2) a fuzzy controller is designed following the same premise as the observer; and 3) an output-based event-triggering transmission scheme is designed to economize the restricted network resources. Different from the traditional PDC method, the synchronous premise between the fuzzy observer and the T-S fuzzy system are no longer needed in this paper. Second, by use of Lyapunov theory, a stability criterion and a stabilization condition are obtained for ensuring asymptotically stable of the studied system. On account of the imperfect premise matching conditions are well considered in the derivation of the above criteria, less conservation can be expected to enhance the design flexibility. Compared with some existing emulation-based methods, the controller gains are no longer required to be known a priori. Finally, the availability of proposed non-PDC design scheme is illustrated by the backing-up control of a truck-trailer system.

  2. Fuzzy logic control and optimization system

    DOEpatents

    Lou, Xinsheng [West Hartford, CT

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  3. Neural-Network-Based Adaptive Decentralized Fault-Tolerant Control for a Class of Interconnected Nonlinear Systems.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2018-01-01

    This paper is concerned with the adaptive decentralized fault-tolerant tracking control problem for a class of uncertain interconnected nonlinear systems with unknown strong interconnections. An algebraic graph theory result is introduced to address the considered interconnections. In addition, to achieve the desirable tracking performance, a neural-network-based robust adaptive decentralized fault-tolerant control (FTC) scheme is given to compensate the actuator faults and system uncertainties. Furthermore, via the Lyapunov analysis method, it is proven that all the signals of the resulting closed-loop system are semiglobally bounded, and the tracking errors of each subsystem exponentially converge to a compact set, whose radius is adjustable by choosing different controller design parameters. Finally, the effectiveness and advantages of the proposed FTC approach are illustrated with two simulated examples.

  4. Sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage.

    PubMed

    Weng, Falu; Liu, Mingxin; Mao, Weijie; Ding, Yuanchun; Liu, Feifei

    2018-05-10

    The problem of sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage is investigated in this paper. The objective of designing controllers is to guarantee the stability and anti-disturbance performance of the closed-loop systems while some sensor outages happen. Firstly, based on matrix transformation, the state-space model of structural systems with sensor outages and uncertainties appearing in the mass, damping and stiffness matrices is established. Secondly, by considering most of those earthquakes or strong winds happen in a very short time, and it is often the peak values make the structures damaged, the finite-time stability analysis method is introduced to constrain the state responses in a given time interval, and the H-infinity stability is adopted in the controller design to make sure that the closed-loop system has a prescribed level of disturbance attenuation performance during the whole control process. Furthermore, all stabilization conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using the LMI Toolbox. Finally, numerical examples are given to demonstrate the effectiveness of the proposed theorems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. A robust H∞ control-based hierarchical mode transition control system for plug-in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Jiao, Xiaohong; Li, Liang; Zhang, Yuanbo; Chen, Zheng

    2018-01-01

    To realize a fast and smooth operating mode transition process from electric driving mode to engine-on driving mode, this paper presents a novel robust hierarchical mode transition control method for a plug-in hybrid electric bus (PHEB) with pre-transmission parallel hybrid powertrain. Firstly, the mode transition process is divided into five stages to clearly describe the powertrain dynamics. Based on the dynamics models of powertrain and clutch actuating mechanism, a hierarchical control structure including two robust H∞ controllers in both upper layer and lower layer is proposed. In upper layer, the demand clutch torque can be calculated by a robust H∞controller considering the clutch engaging time and the vehicle jerk. While in lower layer a robust tracking controller with L2-gain is designed to perform the accurate position tracking control, especially when the parameters uncertainties and external disturbance occur in the clutch actuating mechanism. Simulation and hardware-in-the-loop (HIL) test are carried out in a traditional driving condition of PHEB. Results show that the proposed hierarchical control approach can obtain the good control performance: mode transition time is greatly reduced with the acceptable jerk. Meanwhile, the designed control system shows the obvious robustness with the uncertain parameters and disturbance. Therefore, the proposed approach may offer a theoretical reference for the actual vehicle controller.

  6. MonALISA, an agent-based monitoring and control system for the LHC experiments

    NASA Astrophysics Data System (ADS)

    Balcas, J.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.

    2017-10-01

    MonALISA, which stands for Monitoring Agents using a Large Integrated Services Architecture, has been developed over the last fifteen years by California Insitute of Technology (Caltech) and its partners with the support of the software and computing program of the CMS and ALICE experiments at the Large Hadron Collider (LHC). The framework is based on Dynamic Distributed Service Architecture and is able to provide complete system monitoring, performance metrics of applications, Jobs or services, system control and global optimization services for complex systems. A short overview and status of MonALISA is given in this paper.

  7. PI Passivity-Based Control for Maximum Power Extraction of a Wind Energy System with Guaranteed Stability Properties

    NASA Astrophysics Data System (ADS)

    Cisneros, Rafael; Gao, Rui; Ortega, Romeo; Husain, Iqbal

    2016-10-01

    The present paper proposes a maximum power extraction control for a wind system consisting of a turbine, a permanent magnet synchronous generator, a rectifier, a load and one constant voltage source, which is used to form the DC bus. We propose a linear PI controller, based on passivity, whose stability is guaranteed under practically reasonable assumptions. PI structures are widely accepted in practice as they are easier to tune and simpler than other existing model-based methods. Real switching based simulations have been performed to assess the performance of the proposed controller.

  8. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    PubMed

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.

  9. The application of intelligent process control to space based systems

    NASA Technical Reports Server (NTRS)

    Wakefield, G. Steve

    1990-01-01

    The application of Artificial Intelligence to electronic and process control can help attain the autonomy and safety requirements of manned space systems. An overview of documented applications within various industries is presented. The development process is discussed along with associated issues for implementing an intelligence process control system.

  10. Systematic plan of building Web geographic information system based on ActiveX control

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Li, Deren; Zhu, Xinyan; Chen, Nengcheng

    2003-03-01

    A systematic plan of building Web Geographic Information System (WebGIS) using ActiveX technology is proposed in this paper. In the proposed plan, ActiveX control technology is adopted in building client-side application, and two different schemas are introduced to implement communication between controls in users¡ browser and middle application server. One is based on Distribute Component Object Model (DCOM), the other is based on socket. In the former schema, middle service application is developed as a DCOM object that communicates with ActiveX control through Object Remote Procedure Call (ORPC) and accesses data in GIS Data Server through Open Database Connectivity (ODBC). In the latter, middle service application is developed using Java language. It communicates with ActiveX control through socket based on TCP/IP and accesses data in GIS Data Server through Java Database Connectivity (JDBC). The first one is usually developed using C/C++, and it is difficult to develop and deploy. The second one is relatively easy to develop, but its performance of data transfer relies on Web bandwidth. A sample application is developed using the latter schema. It is proved that the performance of the sample application is better than that of some other WebGIS applications in some degree.

  11. High frequency signal acquisition and control system based on DSP+FPGA

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-qi; Zhang, Da-zhi; Yin, Ya-dong

    2017-10-01

    This paper introduces a design and implementation of high frequency signal acquisition and control system based on DSP + FPGA. The system supports internal/external clock and internal/external trigger sampling. It has a maximum sampling rate of 400MBPS and has a 1.4GHz input bandwidth for the ADC. Data can be collected continuously or periodically in systems and they are stored in DDR2. At the same time, the system also supports real-time acquisition, the collected data after digital frequency conversion and Cascaded Integrator-Comb (CIC) filtering, which then be sent to the CPCI bus through the high-speed DSP, can be assigned to the fiber board for subsequent processing. The system integrates signal acquisition and pre-processing functions, which uses high-speed A/D, high-speed DSP and FPGA mixed technology and has a wide range of uses in data acquisition and recording. In the signal processing, the system can be seamlessly connected to the dedicated processor board. The system has the advantages of multi-selectivity, good scalability and so on, which satisfies the different requirements of different signals in different projects.

  12. Intelligent Home Control System Based on Single Chip Microcomputer

    NASA Astrophysics Data System (ADS)

    Yang, Libo

    2017-12-01

    Intelligent home as a way to achieve the realization of the family information has become an important part of the development of social information, Internet of Things because of its huge application prospects, will be smart home industry in the development process of a more realistic breakthrough in the smart home industry development has great significance. This article is based on easy to implement, easy to operate, close to the use of the design concept, the use of STC89C52 microcontroller as the control core for the control terminal, and including infrared remote control, buttons, Web interface, including multiple control sources to control household appliances. The second chapter of this paper describes the design of the hardware and software part of the specific implementation, the fifth chapter is based on the design of a good function to build a specific example of the environment.

  13. An intelligent control system for failure detection and controller reconfiguration

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.

    1994-01-01

    We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.

  14. A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Wong, Edmond; Simon, Donald L.

    1994-01-01

    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.

  15. A Study on Components of Internal Control-Based Administrative System in Secondary Schools

    ERIC Educational Resources Information Center

    Montri, Paitoon; Sirisuth, Chaiyuth; Lammana, Preeda

    2015-01-01

    The aim of this study was to study the components of the internal control-based administrative system in secondary schools, and make a Confirmatory Factor Analysis (CFA) to confirm the goodness of fit of empirical data and component model that resulted from the CFA. The study consisted of three steps: 1) studying of principles, ideas, and theories…

  16. Bringing Control System User Interfaces to the Web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xihui; Kasemir, Kay

    With the evolution of web based technologies, especially HTML5 [1], it becomes possible to create web-based control system user interfaces (UI) that are cross-browser and cross-device compatible. This article describes two technologies that facilitate this goal. The first one is the WebOPI [2], which can seamlessly display CSS BOY [3] Operator Interfaces (OPI) in web browsers without modification to the original OPI file. The WebOPI leverages the powerful graphical editing capabilities of BOY and provides the convenience of re-using existing OPI files. On the other hand, it uses generic JavaScript and a generic communication mechanism between the web browser andmore » web server. It is not optimized for a control system, which results in unnecessary network traffic and resource usage. Our second technology is the WebSocket-based Process Data Access (WebPDA) [4]. It is a protocol that provides efficient control system data communication using WebSocket [5], so that users can create web-based control system UIs using standard web page technologies such as HTML, CSS and JavaScript. WebPDA is control system independent, potentially supporting any type of control system.« less

  17. Multicopter control with Navio using REX control system

    NASA Astrophysics Data System (ADS)

    Golembiovsky, Matej; Dedek, Jan; Ozana, Stepan

    2017-06-01

    This article deals with study of possible connection of the REXcontrols platform with Raspberry Pi based control system and Navio2 expansion board. This board is designed for development of autonomous robotic platforms type car, plane or multicopter. In this article, control system REXcontrols is introduced and its integration possibilities for control board Navio2 are discussed. The main discussed aspects are communication possibilities of the REXcontrols system with external scripts which further on allow control of this board. The main reasons for this undertaking are vast possibilities of archiving, visualization, signal processing and control which REXcontrols system allows. The control itself of the navio2 board is done through numerous interfaces. Specifically it is a pair of SPI data buses, an I2C data bus, UART and multiple GPIO pins. However, since REXcontrols control system has only limited access to these data buses, it is necessary to establish the communication through external scripts. For this purpose REXcontrols is equipped with mechanisms; SILO, EPC and REXLANG which are described in the article. Due to its simple implementation into REXcontrols and the option to utilize available libraries for communication with Navio2 board in external script, an EPC block was selected for the final implementation.

  18. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    NASA Astrophysics Data System (ADS)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  19. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  20. Network-based production quality control

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Tseng, Bill; Chiou, Richard

    2007-09-01

    This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.

  1. Controlling Microbial Byproducts using Model-Based Substrate Monitoring and Control Strategies

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.; Blackwell, Charles; Mancinelli, Rocco L.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    We have developed a computer-controlled bioreactor system to study various aspects of microbially-mediated nitrogen cycling. The system has been used to investigate methods for controlling microbial denitrification (the dissimilatory reduction of nitrate to N2O and N2) in hydroponic plant growth chambers. Such chambers are key elements of advanced life support systems being designed for use on long duration space missions, but nitrogen use efficiency in them is reduced by denitrification. Control software architecture was designed which permits the heterogeneous control of system hardware using traditional feedback control, and quantitative and qualitative models of various system features. Model-based feed forward control entails prediction of future systems in states and automated regulation of system parameters to achieve desired and avoid undesirable system states. A bacterial growth rate model based on the classic Monod model of saturation kinetics was used to evaluate the response of several individual denitrifying species to varying environmental conditions. The system and models are now being applied to mixed microbial communities harvested from the root zone of a hydroponic growth chamber. The use of a modified Monod organism interaction model was evaluated as a means of achieving more accurate description of the dynamic behavior of the communities. A minimum variance parameter estimation routine was also' used to calibrate the constant parameters in the model by iterative evaluation of substrate (nitrate) uptake and growth kinetics. This representation of processes and interactions aids in the formulation of control laws. The feed forward control strategy being developed will increase system autonomy, reduce crew intervention and limit the accumulation of undesirable waste products (NOx).

  2. A fault-tolerant intelligent robotic control system

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Tso, Kam Sing

    1993-01-01

    This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control system being developed for space and commercial applications that require high dependability. The comprehensive strategy integrates system level hardware/software fault tolerance with task level handling of uncertainties and unexpected events for robotic control. The underlying architecture for system level fault tolerance is the distributed recovery block which protects against application software, system software, hardware, and network failures. Task level fault tolerance provisions are implemented in a knowledge-based system which utilizes advanced automation techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from unexpected events. The two level design provides tolerance of two or more faults occurring serially at any level of command, control, sensing, or actuation. The potential benefits of such a fault tolerant robotic control system include: (1) a minimized potential for damage to humans, the work site, and the robot itself; (2) continuous operation with a minimum of uncommanded motion in the presence of failures; and (3) more reliable autonomous operation providing increased efficiency in the execution of robotic tasks and decreased demand on human operators for controlling and monitoring the robotic servicing routines.

  3. Data-Based Predictive Control with Multirate Prediction Step

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  4. Design and performance analysis of generalised integrator-based controller for grid connected PV system

    NASA Astrophysics Data System (ADS)

    Saxena, Hemant; Singh, Alka; Rai, J. N.

    2018-07-01

    This article discusses the design and control of a single-phase grid-connected photovoltaic (PV) system. A 5-kW PV system is designed and integrated at the DC link of an H-bridge voltage source converter (VSC). The control of the VSC and switching logic is modelled using a generalised integrator (GI). The use of GI or its variants such as second-order GI have recently evolved for synchronisation and are being used as phase locked loop (PLL) circuits for grid integration. Design of PLL circuits and the use of transformations such as Park's and Clarke's are much easier in three-phase systems. But obtaining in-phase and quadrature components becomes an important and challenging issue in single-phase systems. This article addresses this issue and discusses an altogether different application of GI for the design of compensator based on the extraction of in-phase and quadrature components. GI is frequently used as a PLL; however, in this article, it is not used for synchronisation purposes. A new controller has been designed for a single-phase grid-connected PV system working as a single-phase active compensator. Extensive simulation results are shown for the working of integrated PV system under different atmospheric and operating conditions during daytime as well as night conditions. Experimental results showing the proposed control approach are presented and discussed for the hardware set-up developed in the laboratory.

  5. Model based design introduction: modeling game controllers to microprocessor architectures

    NASA Astrophysics Data System (ADS)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  6. Thermal Vacuum Control Systems Options for Test Facilities

    NASA Technical Reports Server (NTRS)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  7. The ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  8. Direct-coupled microcomputer-based building emulator for building energy management and control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, H.N.

    1999-07-01

    In this paper, the development and implementation of a direct-coupled building emulator for a building energy management and control system (EMCS) is presented. The building emulator consists of a microcomputer and a computer model of an air-conditioning system implemented in a modular dynamic simulation software package for direct-coupling to an EMCS, without using analog-to-digital and digital-to-analog converters. The building emulator can be used to simulate in real time the behavior of the air-conditioning system under a given operating environment and subject to a given usage pattern. Software modules for data communication, graphical display, dynamic data exchange, and synchronization of simulationmore » outputs with real time have been developed to achieve direct digital data transfer between the building emulator and a commercial EMCS. Based on the tests conducted, the validity of the building emulator has been established and the proportional-plus-integral control function of the EMCS assessed.« less

  9. Progress in multirate digital control system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1991-01-01

    A new methodology for multirate sampled-data control design based on a new generalized control law structure, two new parameter-optimization-based control law synthesis methods, and a new singular-value-based robustness analysis method are described. The control law structure can represent multirate sampled-data control laws of arbitrary structure and dynamic order, with arbitrarily prescribed sampling rates for all sensors and update rates for all processor states and actuators. The two control law synthesis methods employ numerical optimization to determine values for the control law parameters. The robustness analysis method is based on the multivariable Nyquist criterion applied to the loop transfer function for the sampling period equal to the period of repetition of the system's complete sampling/update schedule. The complete methodology is demonstrated by application to the design of a combination yaw damper and modal suppression system for a commercial aircraft.

  10. [Analysis of color gamut of LCD system based on LED backlight with area-controlling technique].

    PubMed

    Li, Fu-Wen; Jin, Wei-Qi; Shao, Xi-Bin; Zhang, Li-Lei; Wan, Li-Fang

    2010-05-01

    Color gamut as a significant performance index for display system describes the color reproduction ability IN real scenes. Liquid crystal display (LCD) is the most popular technology in flat panel display. However, conventional cold cathode fluorescent lamp (CCFL) backlight of LCD can not behave high color gamut compared with cathode ray tube (CRT). The common used method of color gamut measuring for LCD system is introduced at the beginning. According to the inner structure and display principle of LCD system, there are three major factors deciding LCD's color gamut: spectral properties of backlight, transmittance properties of color filters and performance of liquid crystal panel. Instead of conventional backlight CCFL, RGB-LED backlight is used for improving color reproduction of LCD display system. Due to the imperfect match between RGB-LED' s spectra and color filter's transmittance, the color filter would reduce the color gamut of LCD system more or less. Therefore, LCD system based on LED backlight with area-control technique is introduced which modifies backlight control signal according to the input signal After analyzing and calculating the spectra of LED backlight which passes through the color filters using method of colorimetry, the area sizes of color gamut triangles of RGB-LED backlight with area-control and RGB-LED backlight without area-control LCD systems are compared and the relationship between color gamut and varying contrast of liquid crystal panel is analyzed. It is indicated that LED backlight with area-control technique can avoid color saturation dropping and have little effects on the contrast variation of liquid crystal panel. In other words, LED backlight with area-control technique relaxes the requirements of both color filter performance and liquid crystal panel. Thus, it is of importance to improve the color gamut of the current LCD system with area-control LED backlight.

  11. Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.

    2016-04-01

    In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.

  12. Dissipative rendering and neural network control system design

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.

    1995-01-01

    Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using

  13. A nonlinear controller design for permanent magnet motors using a synchronization-based technique inspired from the Lorenz system.

    PubMed

    Zaher, Ashraf A

    2008-03-01

    The dynamic behavior of a permanent magnet synchronous machine (PMSM) is analyzed. Nominal and special operating conditions are explored to show that the PMSM can experience chaos. A nonlinear controller is introduced to control these unwanted chaotic oscillations and to bring the PMSM to a stable steady state. The designed controller uses a pole-placement approach to force the closed-loop system to follow the performance of a simple first-order linear system with zero steady-state error to a desired set point. The similarity between the mathematical model of the PMSM and the famous chaotic Lorenz system is utilized to design a synchronization-based state observer using only the angular speed for feedback. Simulation results verify the effectiveness of the proposed controller in eliminating the chaotic oscillations while using a single feedback signal. The superiority of the proposed controller is further demonstrated by comparing it with a conventional PID controller. Finally, a laboratory-based experiment was conducted using the MCK2812 C Pro-MS(BL) motion control kit to confirm the theoretical results and to verify both the causality and versatility of the proposed controller.

  14. Adaptive control of space based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.

  15. Thermal Control System Automation Project (TCSAP)

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.

    1991-01-01

    Information is given in viewgraph form on the Space Station Freedom (SSF) Thermal Control System Automation Project (TCSAP). Topics covered include the assembly of the External Thermal Control System (ETCS); the ETCS functional schematic; the baseline Fault Detection, Isolation, and Recovery (FDIR), including the development of a knowledge based system (KBS) for application of rule based reasoning to the SSF ETCS; TCSAP software architecture; the High Fidelity Simulator architecture; the TCSAP Runtime Object Database (RODB) data flow; KBS functional architecture and logic flow; TCSAP growth and evolution; and TCSAP relationships.

  16. Proportional assist ventilation system based on proportional solenoid valve control.

    PubMed

    Lua, A C; Shi, K C; Chua, L P

    2001-07-01

    A new proportional assist ventilation (PAV) method using a proportional solenoid valve (PSV) to control air supply to patients suffering from respiratory disabilities, was studied. The outlet flow and pressure from the proportional solenoid valve at various air supply pressures were tested and proven to be suitable for pressure and flow control in a PAV system. In vitro tests using a breathing simulator, which has been proven to possess the general characteristics of human respiratory system in spontaneous breathing tests, were conducted and the results demonstrated the viability of this PAV system in normalizing the breathing patterns of patients with abnormally high resistances and elastances as well as neuromuscular weaknesses. With a back-up safety mechanism incorporated in the control program, pressure "run-away" can be effectively prevented and safe operation of the system can be guaranteed.

  17. Adaptive control of periodic systems

    NASA Astrophysics Data System (ADS)

    Tian, Zhiling

    2009-12-01

    Adaptive control is needed to cope with parametric uncertainty in dynamical systems. The adaptive control of LTI systems in both discrete and continuous time has been studied for four decades and the results are currently used widely in many different fields. In recent years, interest has shifted to the adaptive control of time-varying systems. It is known that the adaptive control of arbitrarily rapidly time-varying systems is in general intractable, but systems with periodically time-varying parameters (LTP systems) which have much more structure, are amenable to mathematical analysis. Further, there is also a need for such control in practical problems which have arisen in industry during the past twenty years. This thesis is the first attempt to deal with the adaptive control of LTP systems. Adaptive Control involves estimation of unknown parameters, adjusting the control parameters based on the estimates, and demonstrating that the overall system is stable. System theoretic properties such as stability, controllability, and observability play an important role both in formulating of the problems, as well as in generating solutions for them. For LTI systems, these properties have been studied since 1960s, and algebraic conditions that have to be satisfied to assure these properties are now well established. In the case of LTP systems, these properties can be expressed only in terms of transition matrices that are much more involved than those for LTI systems. Since adaptive control problems can be formulated only when these properties are well understood, it is not surprising that systematic efforts have not been made thus far for formulating and solving adaptive control problems that arise in LTP systems. Even in the case of LTI systems, it is well recognized that problems related to adaptive discrete-time system are not as difficult as those that arise in the continuous-time systems. This is amply evident in the solutions that were derived in the 1980s and

  18. A knowledge-based control system for air-scour optimisation in membrane bioreactors.

    PubMed

    Ferrero, G; Monclús, H; Sancho, L; Garrido, J M; Comas, J; Rodríguez-Roda, I

    2011-01-01

    Although membrane bioreactors (MBRs) technology is still a growing sector, its progressive implementation all over the world, together with great technical achievements, has allowed it to reach a mature degree, just comparable to other more conventional wastewater treatment technologies. With current energy requirements around 0.6-1.1 kWh/m3 of treated wastewater and investment costs similar to conventional treatment plants, main market niche for MBRs can be areas with very high restrictive discharge limits, where treatment plants have to be compact or where water reuse is necessary. Operational costs are higher than for conventional treatments; consequently there is still a need and possibilities for energy saving and optimisation. This paper presents the development of a knowledge-based decision support system (DSS) for the integrated operation and remote control of the biological and physical (filtration and backwashing or relaxation) processes in MBRs. The core of the DSS is a knowledge-based control module for air-scour consumption automation and energy consumption minimisation.

  19. Adaptive control of space-based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    A control method is presented that achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. The 15-DOF system dynamics are divided into two components: a 9-DOF invertible portion and 6-DOF noninvertible portion. A controller is then designed to achieve trajectory tracking of the invertible portion of the system, which consists of the manipulator-joint positions and the orientation of the base. The motion of the noninvertible portion is bounded but otherwise unspecified. This portion of the system consists of the position of the robot's base and the position of the reaction wheels. A simulation is presented to demonstrate the effectiveness of the controller. A quadratic polynomial is used to generate the desired trajectory to illustrate the trajectory-tracking capability of the controller.

  20. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  1. Changing an automated drug inventory control system to a data base design.

    PubMed

    Bradish, R A

    1982-09-01

    A pharmacy department's change from indexed sequential access files to a data base management system (DBMS) for purposes of automated inventory control is described. The DBMS has three main functional areas: (1) inventory ordering and accountability, (2) charging of interdepartmental and intradepartmental orders, and (3) data manipulation with report design for management control. There are seven files directly related to the inventory ordering and accountability area. Each record can be accessed directly or through another file. Information on the quantity of a drug on hand, drug(s) supplied by a specific vendor, status of a purchase order, or calculation of an estimated order quantity can be retrieved quickly. In the drug master file, two records contain a reorder point and safety-stock level that are determined by searching the entries in the order history file and vendor master file. The intradepartmental and interdepartmental orders section contains five files assigned to record and store information on drug distribution. All items removed from the stockroom and distributed are recorded, and reports can be generated for itemized bills, total cost by area, and as formatted files for the accounts payable department. The design, development, and implementation of the DBMS took approximately a year using a part-time pharmacist and minimal outside help, while the previous system required constant expensive help of a programmer/analyst. The DBMS has given the pharmacy department a flexible inventory management system with increased drug control, decreased operating expenses, increased use of department personnel, and the ability to develop and enhance other systems.

  2. Predictive IP controller for robust position control of linear servo system.

    PubMed

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. A Comparison of Exposure Control Procedures in CAT Systems Based on Different Measurement Models for Testlets

    ERIC Educational Resources Information Center

    Boyd, Aimee M.; Dodd, Barbara; Fitzpatrick, Steven

    2013-01-01

    This study compared several exposure control procedures for CAT systems based on the three-parameter logistic testlet response theory model (Wang, Bradlow, & Wainer, 2002) and Masters' (1982) partial credit model when applied to a pool consisting entirely of testlets. The exposure control procedures studied were the modified within 0.10 logits…

  4. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  5. Safety Metrics for Human-Computer Controlled Systems

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G; Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  6. 76 FR 63899 - Positive Train Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ...-0028, Notice No. 2] RIN 2130-AC27 Positive Train Control Systems AGENCY: Federal Railroad...-based criteria in order to avoid positive train control (PTC) system implementation on track segments... and Compliance, Staff Director, Signal & Train Control Division, Federal Railroad Administration, Mail...

  7. Adaptive integral backstepping sliding mode control for opto-electronic tracking system based on modified LuGre friction model

    NASA Astrophysics Data System (ADS)

    Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin

    2017-12-01

    In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.

  8. Attractant-based systems as pesticide alternatives for control of tropical fruit flies (Diptera: Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Mass trapping and attract-and-kill bait stations are two attractant based systems that are being used or are under development as pesticide alternatives for control of a number of pest tephritid fruit flies. Results of field trials for suppression of Caribbean fruit flies in guava orchards in Florid...

  9. Control system health test system and method

    DOEpatents

    Hoff, Brian D.; Johnson, Kris W.; Akasam, Sivaprasad; Baker, Thomas M.

    2006-08-15

    A method is provided for testing multiple elements of a work machine, including a control system, a component, a sub-component that is influenced by operations of the component, and a sensor that monitors a characteristic of the sub-component. In one embodiment, the method is performed by the control system and includes sending a command to the component to adjust a first parameter associated with an operation of the component. Also, the method includes detecting a sensor signal from the sensor reflecting a second parameter associated with a characteristic of the sub-component and determining whether the second parameter is acceptable based on the command. The control system may diagnose at least one of the elements of the work machine when the second parameter of the sub-component is not acceptable.

  10. A distributed predictive control approach for periodic flow-based networks: application to drinking water systems

    NASA Astrophysics Data System (ADS)

    Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-10-01

    This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.

  11. An architecture for rule based system explanation

    NASA Technical Reports Server (NTRS)

    Fennel, T. R.; Johannes, James D.

    1990-01-01

    A system architecture is presented which incorporate both graphics and text into explanations provided by rule based expert systems. This architecture facilitates explanation of the knowledge base content, the control strategies employed by the system, and the conclusions made by the system. The suggested approach combines hypermedia and inference engine capabilities. Advantages include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. User models are suggested to control the type, amount, and order of information presented.

  12. Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor.

    PubMed

    Ruan, Jujun; Zhang, Chao; Li, Ya; Li, Peiyi; Yang, Zaizhi; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao

    2017-02-01

    This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.

  14. Web-based telemedicine system is useful for monitoring glucose control in pregnant women with diabetes.

    PubMed

    Carral, Florentino; Ayala, María del Carmen; Fernández, Juan Jesús; González, Carmen; Piñero, Antonia; García, Gloria; Cañavate, Concepción; Jiménez, Ana Isabel; García, Concepción

    2015-05-01

    The aim of this study was to examine the impact of a Web-based telemedicine system for monitoring glucose control in pregnant women with diabetes on healthcare visits, metabolic control, and pregnancy outcomes. A prospective, single-center, interventional study with two parallel groups was performed in Puerto Real University Hospital (Cadiz, Spain). Women were assigned to two different glucose monitoring groups: the control group (CG), which was managed only by follow-ups with the Gestational Diabetes Unit (GDU), and the telemedicine group (TMG), which was monitored by both more spaced GDU visits and a Web-based telemedicine system. The number of healthcare visits, degree of metabolic control, and maternal and neonatal outcomes were evaluated. One hundred four pregnant women with diabetes (77 with gestational diabetes, 16 with type 1 diabetes, and 11 with type 2 diabetes) were included in the TMG (n=40) or in the CG (n=64). There were no significant differences in mean glycated hemoglobin level during pregnancy or after delivery, despite a significantly lower number of visits to the GDU (3.2±2.3 vs. 5.9±2.3 visits; P<0.001), nurse educator (1.7±1.3 vs. 3.0±1.7 visits; P<0.001), and general practitioner (3.7±2.0 vs. 4.9±2.8 visits; P<0.034) in the TMG. There were no significant differences between groups in maternal or neonatal outcomes. A Web-based telemedicine system can be a useful tool facilitating the management of pregnant diabetes patients, as a complement to conventional outpatient clinic visits.

  15. Comprehensive Evaluation of Biological Growth Control by Chlorine-Based Biocides in Power Plant Cooling Systems Using Tertiary Effluent

    PubMed Central

    Chien, Shih-Hsiang; Dzombak, David A.; Vidic, Radisav D.

    2013-01-01

    Abstract Recent studies have shown that treated municipal wastewater can be a reliable cooling water alternative to fresh water. However, elevated nutrient concentration and microbial population in wastewater lead to aggressive biological proliferation in the cooling system. Three chlorine-based biocides were evaluated for the control of biological growth in cooling systems using tertiary treated wastewater as makeup, based on their biocidal efficiency and cost-effectiveness. Optimal chemical regimens for achieving successful biological growth control were elucidated based on batch-, bench-, and pilot-scale experiments. Biocide usage and biological activity in planktonic and sessile phases were carefully monitored to understand biological growth potential and biocidal efficiency of the three disinfectants in this particular environment. Water parameters, such as temperature, cycles of concentration, and ammonia concentration in recirculating water, critically affected the biocide performance in recirculating cooling systems. Bench-scale recirculating tests were shown to adequately predict the biocide residual required for a pilot-scale cooling system. Optimal residuals needed for proper biological growth control were 1, 2–3, and 0.5–1 mg/L as Cl2 for NaOCl, preformed NH2Cl, and ClO2, respectively. Pilot-scale tests also revealed that Legionella pneumophila was absent from these cooling systems when using the disinfectants evaluated in this study. Cost analysis showed that NaOCl is the most cost-effective for controlling biological growth in power plant recirculating cooling systems using tertiary-treated wastewater as makeup. PMID:23781129

  16. Comprehensive Evaluation of Biological Growth Control by Chlorine-Based Biocides in Power Plant Cooling Systems Using Tertiary Effluent.

    PubMed

    Chien, Shih-Hsiang; Dzombak, David A; Vidic, Radisav D

    2013-06-01

    Recent studies have shown that treated municipal wastewater can be a reliable cooling water alternative to fresh water. However, elevated nutrient concentration and microbial population in wastewater lead to aggressive biological proliferation in the cooling system. Three chlorine-based biocides were evaluated for the control of biological growth in cooling systems using tertiary treated wastewater as makeup, based on their biocidal efficiency and cost-effectiveness. Optimal chemical regimens for achieving successful biological growth control were elucidated based on batch-, bench-, and pilot-scale experiments. Biocide usage and biological activity in planktonic and sessile phases were carefully monitored to understand biological growth potential and biocidal efficiency of the three disinfectants in this particular environment. Water parameters, such as temperature, cycles of concentration, and ammonia concentration in recirculating water, critically affected the biocide performance in recirculating cooling systems. Bench-scale recirculating tests were shown to adequately predict the biocide residual required for a pilot-scale cooling system. Optimal residuals needed for proper biological growth control were 1, 2-3, and 0.5-1 mg/L as Cl 2 for NaOCl, preformed NH 2 Cl, and ClO 2 , respectively. Pilot-scale tests also revealed that Legionella pneumophila was absent from these cooling systems when using the disinfectants evaluated in this study. Cost analysis showed that NaOCl is the most cost-effective for controlling biological growth in power plant recirculating cooling systems using tertiary-treated wastewater as makeup.

  17. A multi-mode manipulator display system for controlling remote robotic systems

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.

    1994-01-01

    The objective and contribution of the research presented in this paper is to provide a Multi-Mode Manipulator Display System (MMDS) to assist a human operator with the control of remote manipulator systems. Such systems include space based manipulators such as the space shuttle remote manipulator system (SRMS) and future ground controlled teleoperated and telescience space systems. The MMDS contains a number of display modes and submodes which display position control cues position data in graphical formats, based primarily on manipulator position and joint angle data. Therefore the MMDS is not dependent on visual information for input and can assist the operator especially when visual feedback is inadequate. This paper provides descriptions of the new modes and experiment results to date.

  18. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  19. Telerobot control system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)

    1993-01-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  20. XRF inductive bead fusion and PLC based control system

    NASA Astrophysics Data System (ADS)

    Zhu, Jin-hong; Wang, Ying-jie; Shi, Hong-xin; Chen, Qing-ling; Chen, Yu-xi

    2009-03-01

    In order to ensure high-quality X-ray fluorescence spectrometry (XRF) analysis, an inductive bead fusion machine was developed. The prototype consists of super-audio IGBT induction heating power supply, rotation and swing mechanisms, and programmable logic controller (PLC). The system can realize sequence control, mechanical movement control, output current and temperature control. Experimental results show that the power supply can operate at an ideal quasi-resonant state, in which the expected power output and the required temperature can be achieved for rapid heating and the uniform formation of glass beads respectively.

  1. Embedded controller for GEM detector readout system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek

    2013-10-01

    This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.

  2. Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with application to spark engine EGR operation.

    PubMed

    Shih, Peter; Kaul, Brian C; Jagannathan, S; Drallmeier, James A

    2008-08-01

    A novel reinforcement-learning-based dual-control methodology adaptive neural network (NN) controller is developed to deliver a desired tracking performance for a class of complex feedback nonlinear discrete-time systems, which consists of a second-order nonlinear discrete-time system in nonstrict feedback form and an affine nonlinear discrete-time system, in the presence of bounded and unknown disturbances. For example, the exhaust gas recirculation (EGR) operation of a spark ignition (SI) engine is modeled by using such a complex nonlinear discrete-time system. A dual-controller approach is undertaken where primary adaptive critic NN controller is designed for the nonstrict feedback nonlinear discrete-time system whereas the secondary one for the affine nonlinear discrete-time system but the controllers together offer the desired performance. The primary adaptive critic NN controller includes an NN observer for estimating the states and output, an NN critic, and two action NNs for generating virtual control and actual control inputs for the nonstrict feedback nonlinear discrete-time system, whereas an additional critic NN and an action NN are included for the affine nonlinear discrete-time system by assuming the state availability. All NN weights adapt online towards minimization of a certain performance index, utilizing gradient-descent-based rule. Using Lyapunov theory, the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates, and observer estimates are shown. The adaptive critic NN controller performance is evaluated on an SI engine operating with high EGR levels where the controller objective is to reduce cyclic dispersion in heat release while minimizing fuel intake. Simulation and experimental results indicate that engine out emissions drop significantly at 20% EGR due to reduction in dispersion in heat release thus verifying the dual-control approach.

  3. Stand-alone digital data storage control system including user control interface

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D. (Inventor); Gray, David L. (Inventor)

    1994-01-01

    A storage control system includes an apparatus and method for user control of a storage interface to operate a storage medium to store data obtained by a real-time data acquisition system. Digital data received in serial format from the data acquisition system is first converted to a parallel format and then provided to the storage interface. The operation of the storage interface is controlled in accordance with instructions based on user control input from a user. Also, a user status output is displayed in accordance with storage data obtained from the storage interface. By allowing the user to control and monitor the operation of the storage interface, a stand-alone, user-controllable data storage system is provided for storing the digital data obtained by a real-time data acquisition system.

  4. Robust LS-SVM-based adaptive constrained control for a class of uncertain nonlinear systems with time-varying predefined performance

    NASA Astrophysics Data System (ADS)

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping

    2018-03-01

    This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.

  5. Attitude control of the space construction base: A modular approach

    NASA Technical Reports Server (NTRS)

    Oconnor, D. A.

    1982-01-01

    A planar model of a space base and one module is considered. For this simplified system, a feedback controller which is compatible with the modular construction method is described. The systems dynamics are decomposed into two parts corresponding to base and module. The information structure of the problem is non-classical in that not all system information is supplied to each controller. The base controller is designed to accommodate structural changes that occur as the module is added and the module controller is designed to regulate its own states and follow commands from the base. Overall stability of the system is checked by Liapunov analysis and controller effectiveness is verified by computer simulation.

  6. Robust tuning of robot control systems

    NASA Technical Reports Server (NTRS)

    Minis, I.; Uebel, M.

    1992-01-01

    The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller.

  7. The Design of Power System Stability Controller Based on the PCH Theory and Improved Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Zhijian; Yin, Donghui; Yan, Jun

    2017-05-01

    Low frequency oscillation is still frequently happened in the power system and it affects the safety and stability of power system directly. With the continuously expending of the interconnection scale of power grid, the risk of low frequency oscillation becomes more and more noticeable. Firstly, the basic theory of port-controlled Hamilton (PCH) and its application is analyzed. Secondly, based on the PCH theory and the dynamic model of system, from the viewpoint of energy, the nonlinear stability controller of power system is designed. By the improved genetic algorithm, the parameters of the PCH model are optimized. Finally, a simulation model with PCH is built to vary the effectiveness of the method proposed in this paper.

  8. High pressure common rail injection system modeling and control.

    PubMed

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Manual control of unstable systems

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Hogue, J. R.; Parseghian, Z.

    1986-01-01

    Under certain operational regimes and failure modes, air and ground vehicles can present the human operator with a dynamically unstable or divergent control task. Research conducted over the last two decades has explored the ability of the human operator to control unstable systems under a variety of circumstances. Past research is reviewed and human operator control capabilities are summarized. A current example of automobile directional control under rear brake lockup conditions is also reviewed. A control system model analysis of the driver's steering control task is summarized, based on a generic driver/vehicle model presented at last year's Annual Manual. Results from closed course braking tests are presented that confirm the difficulty the average driver has in controlling the unstable directional dynamics arising from rear wheel lockup.

  10. Continuous uniformly finite time exact disturbance observer based control for fixed-time stabilization of nonlinear systems with mismatched disturbances

    PubMed Central

    Liu, Chongxin; Liu, Hang

    2017-01-01

    This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme. PMID:28406966

  11. Baseline Architecture of ITER Control System

    NASA Astrophysics Data System (ADS)

    Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.

    2011-08-01

    The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.

  12. Optimal Control Strategy Design Based on Dynamic Programming for a Dual-Motor Coupling-Propulsion System

    PubMed Central

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch. PMID:25540814

  13. Optimal control strategy design based on dynamic programming for a dual-motor coupling-propulsion system.

    PubMed

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch.

  14. Characteristic investigation and control of a modular multilevel converter-based HVDC system under single-line-to-ground fault conditions

    DOE PAGES

    Shi, Xiaojie; Wang, Zhiqiang; Liu, Bo; ...

    2014-05-16

    This paper presents the analysis and control of a multilevel modular converter (MMC)-based HVDC transmission system under three possible single-line-to-ground fault conditions, with special focus on the investigation of their different fault characteristics. Considering positive-, negative-, and zero-sequence components in both arm voltages and currents, the generalized instantaneous power of a phase unit is derived theoretically according to the equivalent circuit model of the MMC under unbalanced conditions. Based on this model, a novel double-line frequency dc-voltage ripple suppression control is proposed. This controller, together with the negative-and zero-sequence current control, could enhance the overall fault-tolerant capability of the HVDCmore » system without additional cost. To further improve the fault-tolerant capability, the operation performance of the HVDC system with and without single-phase switching is discussed and compared in detail. Lastly, simulation results from a three-phase MMC-HVDC system generated with MATLAB/Simulink are provided to support the theoretical analysis and proposed control schemes.« less

  15. Thermal control extravehicular life support system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of a comprehensive study which defined an Extravehicular Life Support System Thermal Control System (TCS) are presented. The design of the prototype hardware and a detail summary of the prototype TCS fabrication and test effort are given. Several heat rejection subsystems, water management subsystems, humidity control subsystems, pressure control schemes and temperature control schemes were evaluated. Alternative integrated TCS systems were studied, and an optimum system was selected based on quantitative weighing of weight, volume, cost, complexity and other factors. The selected subsystem contains a sublimator for heat rejection, bubble expansion tank for water management, a slurper and rotary separator for humidity control, and a pump, a temperature control valve, a gas separator and a vehicle umbilical connector for water transport. The prototype hardware complied with program objectives.

  16. The CFHT MegaCam control system: new solutions based on PLCs, WorldFIP fieldbus and Java softwares

    NASA Astrophysics Data System (ADS)

    Rousse, Jean Y.; Boulade, Olivier; Charlot, Xavier; Abbon, P.; Aune, Stephan; Borgeaud, Pierre; Carton, Pierre-Henri; Carty, M.; Da Costa, J.; Deschamps, H.; Desforge, D.; Eppele, Dominique; Gallais, Pascal; Gosset, L.; Granelli, Remy; Gros, Michel; de Kat, Jean; Loiseau, Denis; Ritou, J. L.; Starzynski, Pierre; Vignal, Nicolas; Vigroux, Laurent G.

    2003-03-01

    MegaCam is a wide-field imaging camera built for the prime focus of the 3.6m Canada-France-Hawaii Telescope. This large detector has required new approaches from the hardware up to the instrument control system software. Safe control of the three sub-systems of the instrument (cryogenics, filters and shutter), measurement of the exposure time with an accuracy of 0.1%, identification of the filters and management of the internal calibration source are the major challenges that are taken up by the control system. Another challenge is to insure all these functionalities with the minimum space available on the telescope structure for the electrical hardware and a minimum number of cables to keep the highest reliability. All these requirements have been met with a control system which different elements are linked by a WorldFip fieldbus on optical fiber. The diagnosis and remote user support will be insured with an Engineering Control System station based on software developed on Internet JAVA technologies (applets, servlets) and connected on the fieldbus.

  17. Design of Solar Street Lamp Control System Based on MPPT

    NASA Astrophysics Data System (ADS)

    Cui, Fengying

    This paper proposes a new solar street lamp control system which is composed of photovoltaic cell, controller, battery and load. In this system controller as the key part applies the microchip to achieve many functions. According to the nonlinear output characteristics of solar cell and the influence of environment, it uses the perturbation and observation (P&O) method to realize the maximum power point tracking (MPPT) and promotes the efficiency. In order to prolong the battery life the pulse width modulation (PWM) charge mode is selected to control the battery capacity and provent the battery from the state of over-charge and over-discharge. Meanwhile the function of temperature compensation, charge and discharge protection are set to improve the running safety and stability.

  18. Development and validation of a weather-based warning system to advise fungicide applications to control dollar spot on turfgrass.

    PubMed

    Smith, D L; Kerns, J P; Walker, N R; Payne, A F; Horvath, B; Inguagiato, J C; Kaminski, J E; Tomaso-Peterson, M; Koch, P L

    2018-01-01

    Dollar spot is one of the most common diseases of golf course turfgrass and numerous fungicide applications are often required to provide adequate control. Weather-based disease warning systems have been developed to more accurately time fungicide applications; however, they tend to be ineffective and are not currently in widespread use. The primary objective of this research was to develop a new weather-based disease warning system to more accurately advise fungicide applications to control dollar spot activity across a broad geographic and climactic range. The new dollar spot warning system was developed from data collected at field sites in Madison, WI and Stillwater, OK in 2008 and warning system validation sites were established in Madison, WI, Stillwater, OK, Knoxville, TN, State College, PA, Starkville, MS, and Storrs, CT between 2011 and 2016. A meta-analysis of all site-years was conducted and the most effective warning system for dollar spot development consisted of a five-day moving average of relative humidity and average daily temperature. Using this model the highest effective probability that provided dollar spot control similar to that of a calendar-based program across the numerous sites and years was 20%. Additional analysis found that the 20% spray threshold provided comparable control to the calendar-based program while reducing fungicide usage by up to 30%, though further refinement may be needed as practitioners implement this warning system in a range of environments not tested here. The weather-based dollar spot warning system presented here will likely become an important tool for implementing precision disease management strategies for future turfgrass managers, especially as financial and regulatory pressures increase the need to reduce pesticide usage on golf course turfgrass.

  19. Development and validation of a weather-based warning system to advise fungicide applications to control dollar spot on turfgrass

    PubMed Central

    Smith, D. L.; Kerns, J. P.; Walker, N. R.; Payne, A. F.; Horvath, B.; Inguagiato, J. C.; Kaminski, J. E.; Tomaso-Peterson, M.

    2018-01-01

    Dollar spot is one of the most common diseases of golf course turfgrass and numerous fungicide applications are often required to provide adequate control. Weather-based disease warning systems have been developed to more accurately time fungicide applications; however, they tend to be ineffective and are not currently in widespread use. The primary objective of this research was to develop a new weather-based disease warning system to more accurately advise fungicide applications to control dollar spot activity across a broad geographic and climactic range. The new dollar spot warning system was developed from data collected at field sites in Madison, WI and Stillwater, OK in 2008 and warning system validation sites were established in Madison, WI, Stillwater, OK, Knoxville, TN, State College, PA, Starkville, MS, and Storrs, CT between 2011 and 2016. A meta-analysis of all site-years was conducted and the most effective warning system for dollar spot development consisted of a five-day moving average of relative humidity and average daily temperature. Using this model the highest effective probability that provided dollar spot control similar to that of a calendar-based program across the numerous sites and years was 20%. Additional analysis found that the 20% spray threshold provided comparable control to the calendar-based program while reducing fungicide usage by up to 30%, though further refinement may be needed as practitioners implement this warning system in a range of environments not tested here. The weather-based dollar spot warning system presented here will likely become an important tool for implementing precision disease management strategies for future turfgrass managers, especially as financial and regulatory pressures increase the need to reduce pesticide usage on golf course turfgrass. PMID:29522560

  20. Design and implementation of an Internet based effective controlling and monitoring system with wireless fieldbus communications technologies for process automation--an experimental study.

    PubMed

    Cetinceviz, Yucel; Bayindir, Ramazan

    2012-05-01

    The network requirements of control systems in industrial applications increase day by day. The Internet based control system and various fieldbus systems have been designed in order to meet these requirements. This paper describes an Internet based control system with wireless fieldbus communication designed for distributed processes. The system was implemented as an experimental setup in a laboratory. In industrial facilities, the process control layer and the distance connection of the distributed control devices in the lowest levels of the industrial production environment are provided with fieldbus networks. In this paper, the Internet based control system that will be able to meet the system requirements with a new-generation communication structure, which is called wired/wireless hybrid system, has been designed on field level and carried out to cover all sectors of distributed automation, from process control, to distributed input/output (I/O). The system has been accomplished by hardware structure with a programmable logic controller (PLC), a communication processor (CP) module, two industrial wireless modules and a distributed I/O module, Motor Protection Package (MPP) and software structure with WinCC flexible program used for the screen of Scada (Supervisory Control And Data Acquisition), SIMATIC MANAGER package program ("STEP7") used for the hardware and network configuration and also for downloading control program to PLC. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A Web-Based System for Monitoring and Controlling Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Salas, Andrea O.; Rogers, James L.

    1997-01-01

    In today's competitive environment, both industry and government agencies are under enormous pressure to reduce the time and cost of multidisciplinary design projects. A number of frameworks have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. An examination of current frameworks reveals weaknesses in various areas such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, in conjunction with an existing framework, can improve these areas of weakness. This paper describes a system that executes a sequence of programs, monitors and controls the design process through a Web-based interface, and visualizes intermediate and final results through the use of Java(Tm) applets. A small sample problem, which includes nine processes with two analysis programs that are coupled to an optimizer, is used to demonstrate the feasibility of this approach.

  2. Model-based system-of-systems engineering for space-based command, control, communication, and information architecture design

    NASA Astrophysics Data System (ADS)

    Sindiy, Oleg V.

    This dissertation presents a model-based system-of-systems engineering (SoSE) approach as a design philosophy for architecting in system-of-systems (SoS) problems. SoS refers to a special class of systems in which numerous systems with operational and managerial independence interact to generate new capabilities that satisfy societal needs. Design decisions are more complicated in a SoS setting. A revised Process Model for SoSE is presented to support three phases in SoS architecting: defining the scope of the design problem, abstracting key descriptors and their interrelations in a conceptual model, and implementing computer-based simulations for architectural analyses. The Process Model enables improved decision support considering multiple SoS features and develops computational models capable of highlighting configurations of organizational, policy, financial, operational, and/or technical features. Further, processes for verification and validation of SoS models and simulations are also important due to potential impact on critical decision-making and, thus, are addressed. Two research questions frame the research efforts described in this dissertation. The first concerns how the four key sources of SoS complexity---heterogeneity of systems, connectivity structure, multi-layer interactions, and the evolutionary nature---influence the formulation of SoS models and simulations, trade space, and solution performance and structure evaluation metrics. The second question pertains to the implementation of SoSE architecting processes to inform decision-making for a subset of SoS problems concerning the design of information exchange services in space-based operations domain. These questions motivate and guide the dissertation's contributions. A formal methodology for drawing relationships within a multi-dimensional trade space, forming simulation case studies from applications of candidate architecture solutions to a campaign of notional mission use cases, and

  3. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft.

    PubMed

    Wang, Xingjian; Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-10-25

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  4. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    PubMed Central

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  5. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control.

    PubMed

    Mobayen, Saleh

    2018-06-01

    This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Research on automatic control system of greenhouse

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Qi, Guoyang; Li, Zeyu; Wu, Qiannan; Meng, Yupeng

    2017-03-01

    This paper introduces a kind of automatic control system of single-chip microcomputer and a temperature and humidity sensor based on the greenhouse, describes the system's hardware structure, working principle and process, and a large number of experiments on the effect of the control system, the results show that the system can ideally control temperature and room temperature and humidity, can be used in indoor breeding and planting, and has the versatility and portability.

  7. GPC-Based Stable Reconfigurable Control

    NASA Technical Reports Server (NTRS)

    Soloway, Don; Shi, Jian-Jun; Kelkar, Atul

    2004-01-01

    This paper presents development of multi-input multi-output (MIMO) Generalized Pre-dictive Control (GPC) law and its application to reconfigurable control design in the event of actuator saturation. A Controlled Auto-Regressive Integrating Moving Average (CARIMA) model is used to describe the plant dynamics. The control law is derived using input-output description of the system and is also related to the state-space form of the model. The stability of the GPC control law without reconfiguration is first established using Riccati-based approach and state-space formulation. A novel reconfiguration strategy is developed for the systems which have actuator redundancy and are faced with actuator saturation type failure. An elegant reconfigurable control design is presented with stability proof. Several numerical examples are presented to demonstrate the application of various results.

  8. Solid-state transformer-based new traction drive system and control

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Shang, Jing; Zhang, Zhixue; Liu, Huadong; Huang, Zihao

    2017-11-01

    A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developing the next-generation electric traction system which will be efficient and lightweight, with high power density. For the purpose of reducing system volume and weight and improving efficiency and grid-side power quality, an efficient SSTT optimized topology combining high-voltage cascaded rectifiers with high-power high-frequency LLC resonant converter is proposed. On this basis, an integrated control strategy built upon synchronous rotating reference frame is presented to achieve unified control over fundamental active, reactive and harmonic components. The carrier-interleaving phase shift modulation strategy is proposed to improve the harmonic performance of cascaded rectifiers. In view of the secondary pulsating existing in a single-phase system, the mathematical model of secondary power transfer is built, and the mechanism of pulsating voltage resulting in beat frequency of LLC resonant converter is revealed, so as to design optimum matching of system parameters. Simulation and experimental results have verified that the traction system and control scheme mentioned in this paper are reasonable and superior and that they meet the future application requirements for rail transit.

  9. Simulation and experiment of a fuzzy logic based MPPT controller for a small wind turbine system

    NASA Astrophysics Data System (ADS)

    Petrila, Diana; Muntean, Nicolae

    2012-09-01

    This paper describes the development of a fuzzy logic based maximum power point tracking (MPPT) strategy for a variable speed wind turbine system (VSWT). For this scope, a fuzzy logic controller (FLC) was described, simulated and tested on a real time "hardware in the loop" wind turbine emulator. Simulation and experimental results show that the controller is able to track the maximum power point for various wind conditions and validate the proposed control strategy.

  10. F-15 IFCS: Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2007-01-01

    This viewgraph presentation describes the F-15 Intelligent Flight Control System (IFCS). The goals of this project include: 1) Demonstrate revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions; and 2) Demonstrate advance neural network-based flight control technology for new aerospace systems designs.

  11. Enhanced control of a flexure-jointed micromanipulation system using a vision-based servoing approach

    NASA Astrophysics Data System (ADS)

    Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.

    2018-01-01

    This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.

  12. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  13. Integrated control system for electron beam processes

    NASA Astrophysics Data System (ADS)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  14. Design of Distributed Engine Control Systems with Uncertain Delay.

    PubMed

    Liu, Xiaofeng; Li, Yanxi; Sun, Xu

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.

  15. Design of Distributed Engine Control Systems with Uncertain Delay

    PubMed Central

    Li, Yanxi; Sun, Xu

    2016-01-01

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005

  16. Control torque generation of a CMG-based small satellite with MTGAC system: a trade-off study

    NASA Astrophysics Data System (ADS)

    Salleh, M. B.; Suhadis, N. M.; Rajendran, P.; Mazlan, N. M.

    2018-05-01

    In this paper, the gimbal angle compensation method using magnetic control law has been adopted for a small satellite operating in low earth orbit under disturbance toques influence. Three light weight magnetic torquers have been used to generate the magnetic compensation torque to bring diverge gimbals at preferable angle. The magnetic control torque required to compensate the gimbal angle is based on the gimbal error rate which depends on the gimbal angle converging time. A simulation study has been performed without and with the MTGAC system to investigate the amount of generated control torque as a trade-off between the power consumption, attitude control performance and CMG dynamic performance. Numerical simulations show that the satellite with the MTGAC system generates more control torques which leads to the additional power requirement but in return results in a favorable attitude control performance and gimbal angle management.

  17. Time-varying sliding-coefficient-based decoupled terminal sliding-mode control for a class of fourth-order systems.

    PubMed

    Bayramoglu, Husnu; Komurcugil, Hasan

    2014-07-01

    A time-varying sliding-coefficient-based decoupled terminal sliding mode control strategy is presented for a class of fourth-order systems. First, the fourth-order system is decoupled into two second-order subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients. Then, the control target of one subsystem to another subsystem was embedded. Thereafter, a terminal sliding mode control method was utilized to make both subsystems converge to their equilibrium points in finite time. The simulation results on the inverted pendulum system demonstrate that the proposed method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    PubMed

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  19. A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation

    NASA Astrophysics Data System (ADS)

    Ji, Xuewu; He, Xiangkun; Lv, Chen; Liu, Yahui; Wu, Jian

    2018-06-01

    Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme.

  20. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.