Science.gov

Sample records for control systems current

  1. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  2. Central Neural Control of the Cardiovascular System: Current Perspectives

    ERIC Educational Resources Information Center

    Dampney, Roger A. L.

    2016-01-01

    This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system.…

  3. Central Neural Control of the Cardiovascular System: Current Perspectives

    ERIC Educational Resources Information Center

    Dampney, Roger A. L.

    2016-01-01

    This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system.…

  4. Superconducting fault current controller/current controller

    DOEpatents

    Cha, Yung S.

    2004-06-15

    A superconducting fault current controller/current controller employs a superconducting-shielded core reactor (SSCR) with a variable impedance in a secondary circuit to control current in a primary circuit such as an electrical distribution system. In a second embodiment, a variable current source is employed in a secondary circuit of an SSCR to control current in the primary circuit. In a third embodiment, both a variable impedance in one secondary circuit and a variable current source in a second circuit of an SSCR are employed for separate and independent control of current in the primary circuit.

  5. Central neural control of the cardiovascular system: current perspectives.

    PubMed

    Dampney, Roger A L

    2016-09-01

    This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system. Such cardiovascular regulatory mechanisms do not operate in isolation but are closely coordinated with respiratory and other regulatory mechanisms to maintain homeostasis. The brain regulates the cardiovascular system by two general means: 1) feedforward regulation, often referred to as "central command," and 2) feedback or reflex regulation. In most situations (e.g., during exercise, defensive behavior, sleep, etc.), both of these general mechanisms contribute to overall cardiovascular homeostasis. The review first describes the mechanisms and central circuitry subserving the baroreceptor, chemoreceptor, and other reflexes that work together to regulate an appropriate level of blood pressure and blood oxygenation and then considers the brain mechanisms that defend the body against more complex environmental challenges, using dehydration and cold and heat stress as examples. The last section of the review considers the central mechanisms regulating cardiovascular function associated with different behaviors, with a specific focus on defensive behavior and exercise.

  6. Fault tolerance control of phase current in permanent magnet synchronous motor control system

    NASA Astrophysics Data System (ADS)

    Chen, Kele; Chen, Ke; Chen, Xinglong; Li, Jinying

    2014-08-01

    As the Photoelectric tracking system develops from earth based platform to all kinds of moving platform such as plane based, ship based, car based, satellite based and missile based, the fault tolerance control system of phase current sensor is studied in order to detect and control of failure of phase current sensor on a moving platform. By using a DC-link current sensor and the switching state of the corresponding SVPWM inverter, the failure detection and fault control of three phase current sensor is achieved. Under such conditions as one failure, two failures and three failures, fault tolerance is able to be controlled. The reason why under the method, there exists error between fault tolerance control and actual phase current, is analyzed, and solution to weaken the error is provided. The experiment based on permanent magnet synchronous motor system is conducted, and the method is proven to be capable of detecting the failure of phase current sensor effectively and precisely, and controlling the fault tolerance simultaneously. With this method, even though all the three phase current sensors malfunction, the moving platform can still work by reconstructing the phase current of the motor.

  7. Turbine Engine Clearance Control Systems: Current Practices and Future Directions

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Steinetz, Bruce M.

    2002-01-01

    Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed $1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

  8. Inrush Current Control Circuit

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  9. [An automatic torque control system for a bicycle ergometer equipped with an eddy current brake].

    PubMed

    Kikinev, V V

    2007-01-01

    The main elements of the loading device of a bicycle ergometer, including an eddy current brake and a torque sensor, are described. The automatic torque control system, which includes the loading device, is equipped with a stabilizing feedback controller that optimally approximates the closed-loop transfer function of the target model. The reduced transfer function model of the controller is of the fourth order. A method featuring a modulation-demodulation loop is suggested for implementation of the control system.

  10. Design Method of ILQ Robust Current Control System for Synchronous Reluctance Electrical Motors

    NASA Astrophysics Data System (ADS)

    Amano, Yoko; Takami, Hiroshi; Fujii, Takao

    In this paper, a robust current control system for a synchronous reluctance electrical motor by an ILQ (Inverse Linear Quadratic) design method is proposed newly. First, for performing simultaneously decouple and large region linearization of an d-q axes system in the synchronous reluctance electrical motor using nonlinear state feedback, it is derived that a linear current-voltage state equation linearized model by the d-q axes decouple of the synchronous reluctance electrical motor. Next, according to the ILQ design method, an optimum solution and an optimal condition that achieve the robust current control system for the synchronous reluctance electrical motor are analytically derived, then the robust current control system can be designed. Finally, in practical experiments, we compare the proposed method with the PI (Proportional Integral) control method, the creativity and the usefulness of the proposed method are confirmed by experimental results.

  11. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-06-05

    A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.

  12. Stray current control for the new St.Louis Metrolink light rail system

    SciTech Connect

    Fitzgerald, J.H. III

    1994-12-31

    The new Metrolink light rail transit system runs from Lambert International Airport into downtown St. Louis and across the Eads bridge to East St. Louis, Illinois. Various steps have been taken to control stray current because of the complexity of underground structures along the right of way. The rail system is now in operation and the effectiveness of the stray current control program is being evaluated through a test program and the cooperation of all concerned.

  13. Bending strain engineering in quantum spin hall system for controlling spin currents

    NASA Astrophysics Data System (ADS)

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; Zhai, Feng; Mei, Jiawei; Liu, Feng

    2017-06-01

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. Here the concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. We show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Furthermore, the curved quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.

  14. Bending strain engineering in quantum spin hall system for controlling spin currents.

    PubMed

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; Zhai, Feng; Mei, Jiawei; Liu, Feng

    2017-06-16

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. Here the concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. We show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Furthermore, the curved quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.

  15. Stability synthesis of control system in current fed inverter driven induction motor

    SciTech Connect

    Veda, R.; Irisa, T.; Ito, T.; Mochizuki, T.; Sonoda, T.

    1983-01-01

    This paper presents a new method of synthesizing a stabilizing control system in current fed inverter driven induction motor (CFIDIM). The method is focused on rotor dynamics and a concept of ''damping torque coefficient (DTC)'' is introduced concerning the electrical torque. At first the control system is synthesized on the assumption that an induction motor is driven by an ideally controllable current source. Then perturbed linearized technique indicates that the system can be stabilized if the stator current or frequency is controlled so as to make the DTC positive by feeding back a signal composed of rotor speed. Next, based on this fact, an approach of synthesizing the converter output voltage is presented under a fixed stator frequency. This result clarifies that the stable operation can be achieved by controlling the voltage in proportion to the acceleration of rotor speed or the deviation of electrical torque. These analytical results are verified with laboratory field tests.

  16. High Current Power Controller

    DTIC Science & Technology

    1981-04-01

    AFWAL-TR-81- 2016 U iui.N HIGH CURRENT Ŕ POWER CONTROLLER P. E. McCOLLUM Audwo ROCKWELL INTERNATIONAL AUTONETICS STRATEGIC SYSTEMS DIVISION 3370...personnel. During norm3l operation, HCP \\.s pose no hazard, bLt unde- certain operating conditions potential noaza-ds do exist. They are: (1) During

  17. New computer control system for the high current ion implanter PR-80

    NASA Astrophysics Data System (ADS)

    Sunouchi, T.; Sasaki, M.; Sato, S.; Harada, M.

    1989-02-01

    For a current semiconductor fabrication line, an ion implanter should have the versatility to handle different types of process menus and it should be FA compatible. An optical loopway linked microprocessor control system has been developed for our high current ion implanter. The system is compatible with SECS-II, and its preventive maintenance program is a powerful tool for efficient operation of the implanter.

  18. A New Type Hi-Speed BLDC Control System Base on Indirect Current Control Strategy

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Wang, Y. C.; Zhang, F. G.; Jin, S.

    2017-05-01

    High speed BLDC has the characteristic as larger air gap smaller armature inductance, traditional PWM modulation will produce a great number of high frequency current harmonics which led problem like large torque ripple and serious motor heat. In the meantime traditional PWM modulation use the diode rectifier which cause harmonic pollution in electric power net. To solve the problem above, proposes a new motor controller topology. Using the IGBT device to replace the diode on frequency converter rectifier side, apply the power factor correction technology, reduce the pollution on the grid. Using busbar current modulation on the inverter, driving bridge-arm use 3-phase 6-state open as driving Mode, realize the control on a 10000r/min,10kw BLDC. The results of Simulation on matlab show the topological structure as proposed can effectively improve the network side power factor and reduce the motor armature winding harmonic and motor torque ripple.

  19. An Optimization System with Parallel Processing for Reducing Common-Mode Current on Electronic Control Unit

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuji; Uno, Takanori; Asai, Hideki

    In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.

  20. Application of PI Current Controller in Single Phase Inverter System Connected to Non Linear Load

    NASA Astrophysics Data System (ADS)

    Chai Anak Ajot, Tracy; Salimin, Suriana; Aziz, Roziah

    2017-08-01

    This study is concerned with the problem of network power quality when inverter systems are connected to a nonlinear load. Nonlinear loads are well known as one of the biggest source of harmonics in the power system. Besides that, inverter systems also have their nonlinearity characteristic because of the electronic components. As the inverter system is connected to nonlinear load, it resulting in harmonic distortion-related problem and draw non-sinusoidal currents in the system, thus reducing the power quality in the system. The application of Proportional Integral controller in this system is the main interest of this study. This current controller capable of reducing total harmonic distortion and improve the state of current waveform. This paper focuses on application of simple manual trial and error tuning technique to produce the optimum value for the gains. The result of study verifies the trial and error manual tuning of PI current controller in compensating harmonic distortions. Simulation and modelling of the system are successfully developed using Matlab/Simulink.

  1. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    NASA Astrophysics Data System (ADS)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  2. Smart monitoring system based on adaptive current control for superconducting cable test

    SciTech Connect

    Arpaia, Pasquale; Ballarino, Amalia; Montenero, Giuseppe; Daponte, Vincenzo; Svelto, Cesare

    2014-12-15

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, “Performance improvement of a measurement station for superconducting cable test,” Rev. Sci. Instrum.83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  3. Smart monitoring system based on adaptive current control for superconducting cable test

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  4. Passive transdermal systems whitepaper incorporating current chemistry, manufacturing and controls (CMC) development principles.

    PubMed

    Van Buskirk, Glenn A; Arsulowicz, Daniel; Basu, Prabir; Block, Lawrence; Cai, Bing; Cleary, Gary W; Ghosh, Tapash; González, Mario A; Kanios, David; Marques, Margareth; Noonan, Patrick K; Ocheltree, Terrance; Schwarz, Peter; Shah, Vinod; Spencer, Thomas S; Tavares, Lino; Ulman, Katherine; Uppoor, Rajendra; Yeoh, Thean

    2012-03-01

    In this whitepaper, the Manufacturing Technical Committee (MTC) of the Product Quality Research Institute has updated the 1997 Transdermal Drug Delivery Systems Scale-Up and Post Approval Change workshop report findings to add important new product development and control principles. Important topics reviewed include ICH harmonization, quality by design, process analytical technologies, product and process validation, improvements to control of critical excipients, and discussion of Food and Drug Administration's Guidance on Residual Drug in Transdermal and Related Drug Delivery Systems as well as current thinking and trends on in vitro-in vivo correlation considerations for transdermal systems.

  5. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  6. Bending strain engineering in quantum spin hall system for controlling spin currents

    DOE PAGES

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; ...

    2017-06-16

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less

  7. Spatial temperature control with a 27 MHz current source interstitial hyperthermia system.

    PubMed

    Kaatee, R S; Crezee, H; Kanis, B P; Lagendijk, J J; Levendag, P C; Visser, A G

    1997-01-01

    This article gives an overview of the properties of a 27 MHz current source interstitial hyperthermia system, affecting temperature uniformity. Applicators can be inserted in standard flexible afterloading catheters. Maximum temperatures are measured with seven-point constantan-manganin thermocouple probes inside each applicator. Temperature can be controlled automatically using a simple control algorithm. Three-dimensional power absorption and thermal models for inhomogeneous tissues are available to optimize applicator geometry and phase configuration. Properties of the interstitial heating system have been verified both in phantom experiments and in in vivo treatments of rhabdomyosarcomas implanted in the flank of a rat. An experiment with four electrodes in one catheter proves that longitudinal control of the specific absorption rate (SAR) is feasible. Local cooling applied by cold water circulation through a catheter perpendicular to the afterloading catheter could be compensated by independent control of electrode power. Furthermore, comparison of two different phase configurations using four dual electrode applicators shows that the SAR distribution can be manipulated significantly, utilizing the phase of the electrodes. Finally, the temperature can be controlled safely and model calculations are in fair agreement with the measurements. The features of the 27 MHz current source interstitial hyperthermia system enable spatial temperature control at approximately 1.5 cm.

  8. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  9. Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

    NASA Technical Reports Server (NTRS)

    Ray, Charles D.; Carrasquillo, Robyn L.; Minton-Summers, Silvia

    1997-01-01

    This paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station (ISS). Current activities include ECLSS computer model development, component design and development, subsystem integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.

  10. Guidance, navigation & control systems for sounding rockets - flight results, current status and the future

    NASA Astrophysics Data System (ADS)

    Ljunge, Lars

    2005-08-01

    At the 16th ESA Symposium on European Rockets and Balloons, two newly developed guidance and control systems by Saab Ericsson Space were presented: The S19D guidance and control system, which uses DS19 hardware to execute S19 type guidance and control. The GCS/DMARS guidance, navigation and control system, which is a modernisation of the GCS/RIINS. These two and the third recent system, the DS19, were developed as replacements for the analog S19 and the GCS/RIINS, both of which use very old technology. The design drivers or the DS19, the S19D and the GCS/DMARS are: User requirements. New technology with improved performance capability becoming available. Current technology becoming old and replacement parts hard to come by. This paper first lists some guidance related user requirements, and then discusses the performance that has been achieved in the various guidance systems, including the S19, for comparison. This is first done from a theoretical point of view and then by analyzing actual flight data. The ability of the systems to fulfil the user requirements is also discussed and finally, a look is taken into the future.

  11. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  12. Controlling Fringe Sensitivity of Electro-Optic Holography Systems Using Laser Diode Current Modulation

    NASA Technical Reports Server (NTRS)

    Bybee, Shannon J.

    2001-01-01

    Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.

  13. Improving the Dynamic Response during Field Weakening Control of IPMSM Drive System using Adaptive Hysteresis Current Control Technique

    NASA Astrophysics Data System (ADS)

    Naik, Amiya; Panda, Anup Kumar; Kar, Sanjeeb Kumar

    2016-06-01

    This paper presents the control of IPMSM drive in flux weakening region, for high speed applications. An adaptive hysteresis band current controller has been designed and implemented in this work to overcome the drawbacks which are present in case of conventional hysteresis band current controllers such as: high torque ripple, more current error, large variation in switching frequency etc. The proposed current controller is a hysteresis controller in which the hysteresis band is programmed as a function of variation of motor speed and load current. Any variation in those parameters causes an appropriate change in the band which in turns reduces the torque ripple as well as current error of the machine. The proposed scheme is modeled and tested in the MATLAB-Simulink environment for the effectiveness of the study. Further, the result is validated experimentally by using TMS320F2812 digital signal processor.

  14. A new eddy current model for magnetic bearing control system design

    NASA Technical Reports Server (NTRS)

    Feeley, Joseph J.; Ahlstrom, Daniel J.

    1992-01-01

    This paper describes a new VLSI-based controller for the implementation of a Linear-Quadratic-Gaussian (LQG) theory-based control system. Use of the controller is demonstrated by design of a controller for a magnetic bearing and its performance is evaluated by computer simulation.

  15. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    NASA Astrophysics Data System (ADS)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  16. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

  17. The development of control and monitoring system on marine current renewable energy Case study: strait of Toyapakeh - Nusa Penida, Bali

    NASA Astrophysics Data System (ADS)

    Arief, I. S.; Suherman, I. H.; Wardani, A. Y.; Baidowi, A.

    2017-05-01

    Control and monitoring system is a continuous process of securing the asset in the Marine Current Renewable Energy. A control and monitoring system is existed each critical components which is embedded in Failure Mode Effect Analysis (FMEA) method. As the result, the process in this paper developed through a matrix sensor. The matrix correlated to critical components and monitoring system which supported by sensors to conduct decision-making.

  18. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    NASA Astrophysics Data System (ADS)

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  19. Current measuring system

    DOEpatents

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  20. Current measuring system

    DOEpatents

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  1. Improving Control System Security through the Evaluation of Current Trends in Computer Security Research

    SciTech Connect

    Rolston

    2005-03-01

    At present, control system security efforts are primarily technical and reactive in nature. What has been overlooked is the need for proactive efforts, focused on the IT security research community from which new threats might emerge. Evaluating cutting edge IT security research and how it is evolving can provide defenders with valuable information regarding what new threats and tools they can anticipate in the future. Only known attack methodologies can be blocked, and there is a gap between what is known to the general security community and what is being done by cutting edge researchers --both those trying to protect systems and those trying to compromise them. The best security researchers communicate with others in their field; they know what cutting edge research is being done; what software can be penetrated via this research; and what new attack techniques and methodologies are being circulated in the black hat community. Standardization of control system applications, operating systems, and networking protocols is occurring at a rapid rate, following a path similar to the standardization of modern IT networks. Many attack methodologies used on IT systems can be ported over to the control system environment with little difficulty. It is extremely important to take advantage of the lag time between new research, its use on traditional IT networks, and the time it takes to port the research over for use on a control system network. Analyzing nascent trends in IT security and determining their applicability to control system networks provides significant information regarding defense mechanisms needed to secure critical infrastructure more effectively. This work provides the critical infrastructure community with a better understanding of how new attacks might be launched, what layers of defense will be needed to deter them, how the attacks could be detected, and how their impact could be limited.

  2. CMOS current controlled fully balanced current conveyor

    NASA Astrophysics Data System (ADS)

    Chunhua, Wang; Qiujing, Zhang; Haiguang, Liu

    2009-07-01

    This paper presents a current controlled fully balanced second-generation current conveyor circuit (CF-BCCII). The proposed circuit has the traits of fully balanced architecture, and its X-Y terminals are current controllable. Based on the CFBCCII, two biquadratic universal filters are also proposed as its applications. The CFBCCII circuits and the two filters were fabricated with chartered 0.35-μm CMOS technology; with ±1.65 V power supply voltage, the total power consumption of the CFBCCII circuit is 3.6 mW. Comparisons between measured and HSpice simulation results are also given.

  3. Childhood cerebral palsy and the use of positioning systems to control body posture: Current practices.

    PubMed

    Pérez-de la Cruz, S

    2015-08-20

    One of the consequences of poor postural control in children with cerebral palsy is hip dislocation. This is due to the lack of weight-bearing in the sitting and standing positions. Orthotic aids can be used to prevent onset and/or progression. The aim of this study is to analyse the effectiveness of positioning systems in achieving postural control in patients with cerebral palsy, and discuss these findings with an emphasis on what may be of interest in the field of neurology. We selected a total of 18 articles on interventions in cerebral palsy addressing posture and maintenance of ideal postures to prevent deformities and related problems. The main therapeutic approaches employed combinations of botulinum toxin and orthoses, which reduced the incidence of hip dislocation although these results were not significant. On the other hand, using positioning systems in 3 different positions decreases use of botulinum toxin and surgery in children under 5 years old. The drawback is that these systems are very uncomfortable. Postural control systems helps control hip deformities in children with cerebral palsy. However, these systems must be used for prolonged periods of time before their effects can be observed. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  4. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: current and advanced act control system definition study

    SciTech Connect

    Not Available

    1982-04-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability (2) angle of attack limiting (3) lateral/directional augmented stability (4) gust load alleviation (5) maneuver load control and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  5. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  6. Controlled current inductors

    NASA Technical Reports Server (NTRS)

    Thaler, S.

    1970-01-01

    Magnetic permeability and shape of special core inserts are varied to produce desired changes in saturation characteristics of current dependent inductor, thus improving its inductance-to-current properties. Materials and saturation levels of the core pieces are selected to permit a wide variety of relationships between inductance and current.

  7. Magnetoelectric control of spin currents

    SciTech Connect

    Gómez, J. E.; Vargas, J. M.; Avilés-Félix, L.; Butera, A.

    2016-06-13

    The ability to control the spin current injection has been explored on a hybrid magnetoelectric system consisting of a (011)-cut ferroelectric lead magnesium niobate-lead titanate (PMNT) single crystal, a ferromagnetic FePt alloy, and a metallic Pt. With this PMNT/FePt/Pt structure we have been able to control the magnetic field position or the microwave excitation frequency at which the spin pumping phenomenon between FePt and Pt occurs. We demonstrate that the magnetoelectric heterostructure operating in the L-T (longitudinal magnetized-transverse polarized) mode couples the PMNT crystal to the magnetostrictive FePt/Pt bilayer, displaying a strong magnetoelectric coefficient of ∼140 Oe cm kV{sup −1}. Our results show that this mechanism can be effectively exploited as a tunable spin current intensity emitter and open the possibility to create an oscillating or a bistable switch to effectively manipulate spin currents.

  8. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  9. Current control circuitry

    DOEpatents

    Taubman, Matthew S [Richland, WA

    2005-03-15

    Among the embodiments of the present invention is an apparatus that includes a transistor (30), a servo device (40), and a current source (50). The servo device (40) is operable to provide a common base mode of operation of the transistor (30) by maintaining an approximately constant voltage level at the transistor base (32b). The current source (150) is operable to provide a bias current to the transistor (30). A first device (24) provides an input signal to an electrical node (70) positioned between the emitter (32e) of the transistor (30) and the current source (50). A second device (26) receives an output signal from the collector (32c) of the transistor (30).

  10. [Current situations and problems of quality control for medical imaging display systems].

    PubMed

    Shibutani, Takayuki; Setojima, Tsuyoshi; Ueda, Katsumi; Takada, Katsumi; Okuno, Teiichi; Onoguchi, Masahisa; Nakajima, Tadashi; Fujisawa, Ichiro

    2015-04-01

    Diagnostic imaging has been shifted rapidly from film to monitor diagnostic. Consequently, Japan medical imaging and radiological systems industries association (JIRA) have recommended methods of quality control (QC) for medical imaging display systems. However, in spite of its need by majority of people, executing rate is low. The purpose of this study was to validate the problem including check items about QC for medical imaging display systems. We performed acceptance test of medical imaging display monitors based on Japanese engineering standards of radiological apparatus (JESRA) X-0093*A-2005 to 2009, and performed constancy test based on JESRA X-0093*A-2010 from 2010 to 2012. Furthermore, we investigated the cause of trouble and repaired number. Medical imaging display monitors had 23 inappropriate monitors about visual estimation, and all these monitors were not criteria of JESRA about luminance uniformity. Max luminance was significantly lower year-by-year about measurement estimation, and the 29 monitors did not meet the criteria of JESRA about luminance deviation. Repaired number of medical imaging display monitors had 25, and the cause was failure liquid crystal panel. We suggested the problems about medical imaging display systems.

  11. CONTROL SYSTEM FOR THE LITHIUM BEAM EDGE PLASMA CURRENT DENSITY DIAGNOSTIC ON THE DIII-D TOKAMAK

    SciTech Connect

    PEAVY,J.J; CARY,W.P; THOMAS,D.M; KELLMAN,D.H; HOYT,D.M; DELAWARE,S.W; PRONKO,S.G.E; HARRIS,T.E

    2003-10-01

    OAK-B135 An edge plasma current density diagnostic employing a neutralized lithium ion beam system has been installed on the DIII-D tokamak. The lithium beam control system is designed around a GE Fanuc 90-30 series PLC and Cimplicity{reg_sign} HMI (Human Machine Interface) software. The control system operates and supervises a collection of commercial and in-house designed high voltage power supplies for beam acceleration and focusing, filament and bias power supplies for ion creation, neutralization, vacuum, triggering, and safety interlocks. This paper provides an overview of the control system, while highlighting innovative aspects including its remote operation, pulsed source heating and pulsed neutralizer heating, optimizing beam regulation, and beam ramping, ending with a discussion of its performance.

  12. CURRENT TRANSFER SYSTEMS

    DOEpatents

    Watt, D.A.

    1956-07-01

    A current transfer system is described for transferring current between a rotating member and a co-axial stationary member. The particular area of application for the invention is in connection with homopolar generators where a low voltage and high current are generated. The current tramsfer system of the invention comprises a rotor member and a co-axial stator member wherein one of the members is shaped to provide a circumferential surface concave in section and the other member is shaped to have a peripheral portion in close proximity to the surface, whereby a liquid metal can be stably supported between the two members when they are moving relative to one another to establish an electrical conducting path between the members.

  13. Models in the Design and Validation of Eddy Current Inspection for Cracking in the Shuttle Reaction Control System Thruster

    NASA Technical Reports Server (NTRS)

    Aldrin, John C.; Williams, Phillip A.; Wincheski, Russell (Buzz) A.

    2008-01-01

    A case study is presented for using models in eddy current NDE design for crack detection in Shuttle Reaction Control System thruster components. Numerical methods were used to address the complex geometry of the part and perform parametric studies of potential transducer designs. Simulations were found to show agreement with experimental results. Accurate representation of the coherent noise associated with the measurement and part geometry was found to be critical to properly evaluate the best probe designs.

  14. Optimal control of a class of nonlinear parabolic PDE systems arising in fusion plasma current profile dynamics

    NASA Astrophysics Data System (ADS)

    Ou, Yongsheng

    The need for new sources of energy is expected to become a critical problem within the next few decades. Nuclear fusion arises as a potential source of energy with sufficient energy density to supply the world population with its steadily increasing energy demands. The need to optimize the tokamak concept for the design of an economical, possibly steady state, fusion power plant have motivated extensive international research aimed at finding the so-called "advanced tokamak (AT) operation scenarios." It has been demonstrated that simultaneous real-time control of the current and pressure profiles could lead to the steady state sustainment of an internal transport barrier (ITB), and so to a stationary optimized plasma regime. It has also been suggested that global current profile control, eventually combined with pressure profile control, can be an effective mechanism for neoclassical tearing mode (NTM) control and avoidance. The control of linear or quasi-linear parabolic diffusion-reaction partial differential equations (PDE) has been extensively studied using interior control (see [1] and references therein) or boundary control (see [2] and references therein). Recently, the control of bilinear parabolic partial differential equations via actuation of the diffusive coefficient term, named diffusivity control here, has caught increasing interest. The diffusive coefficient term in a parabolic PDE is not necessary fixed or uncontrollable. For example, the diffusivity control problem arises in the control of the current density profile in magnetically confined fusion plasmas [3], where physical actuators such as plasma total current, line-averaged density and non-inductive total power are used to steer the plasma current density to a desired profile in a designated time period. By modulating these physical actuators it is possible not only to vary the amount of non-inductive current driven into the system (interior control) and the total plasma current (boundary

  15. Reconfigurable Drive Current System

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable drive current system includes drive stages, each of which includes a high-side transistor and a low-side transistor in a totem pole configuration. A current monitor is coupled to an output of each drive stage. Input channels are provided to receive input signals. A processor is coupled to the input channels and to each current monitor for generating at least one drive signal using at least one of the input signals and current measured by at least one of the current monitors. A pulse width modulation generator is coupled to the processor and each drive stage for varying the drive signals as a function of time prior to being supplied to at least one of the drive stages.

  16. Optimal control of the electronic current density: Application to one- and two-dimensional one-electron systems

    SciTech Connect

    Kammerlander, David; Marques, Miguel A. L.; Castro, Alberto

    2011-04-15

    Quantum optimal control theory is a powerful tool for engineering quantum systems subject to external fields such as the ones created by intense lasers. The formulation relies on a suitable definition for a target functional, that translates the intended physical objective to a mathematical form. We propose the use of target functionals defined in terms of the one-particle density and its current. A strong motivation for this is the possibility of using time-dependent density-functional theory for the description of the system dynamics. We exemplify this idea by defining an objective functional that on one hand attempts a large overlap with a target density and on the other hand minimizes the current. The latter requirement leads to optimized states with increased stability, which we prove with a few examples of one- and two-dimensional one-electron systems.

  17. Bivalve fouling of nuclear power plant service-water systems. Volume 2. Current status of biofouling surveillance and control techniques

    SciTech Connect

    Daling, P.M.; Johnson, K.I.

    1985-03-01

    This report describes the current status of techniques for detection and control of cooling-water system fouling by bivalve mollusks at nuclear power plants. The effectiveness of these techniques is evaluated on the basis of information gathered from a literature review and in interviews with nuclear power plant personnel. Biofouling detection techniques examined in this report include regular maintenance, in-service inspection, and testing. Generally, these methods have been inadequate for detecting biofouling. Recommendations for improving biofouling detection capabilities are presented. Biofouling prevention (or control) methods that are examined in this report include intake screen systems, thermal treatment, preventive maintenance, chemical treatment alternatives, and antifoulant coatings. Recommendations for improving biofouling control methods at operating nuclear power plants are presented. Additional techniques that could be implemented at future power plants or that require further research are also described.

  18. Current sheet in plasma as a system with a controlling parameter

    SciTech Connect

    Fridman, Yu. A. Chukbar, K. V.

    2015-08-15

    A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein−Greene−Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.

  19. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study, volume 1

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.

  20. Team Training for Command and Control Systems: Recommendations for Application of Current Technology.

    DTIC Science & Technology

    1982-04-01

    simulator ISD Instructional system development JSS Joint surveillance system MAUT Multiattribute utility theory MCC Mission crew commander NCO Non... utility theory ( MAUT ) to team evaluation decision- making. 14 At present the evaluative techniques for determining the readiness of teams are either...expert apply to judge the combat readiness of a team? These questions are candidates for development involving the application of multiattribute

  1. Selection of Air Traffic Controllers for Automated Systems: Applications from Current Research

    DTIC Science & Technology

    1990-11-01

    auxiliary display, voice switching, and control panels. Display screens will have multi-color capability. Data entry devices will include a keyboard and...defensive and initiates an investigation of the selection procedure. This is primarily a legal or administrative matter, although psychologists are...historical distinctions among test types (e.g., verbal, quantitative, spatial) reflect small but important differences in 9 predicting job success. Such

  2. B-2 and other current flight test control center system architectures

    NASA Technical Reports Server (NTRS)

    Hill, Jerry

    1991-01-01

    The topics covered include the following: (1) telemetry processing independent of source; (2) generic system/software; (3) time homogeneity; (4) low latency networks; (5) distributed processing; (6) all data available to all workstations; and (7) recall of data in real time.

  3. Current topics in glycemic control by wearable artificial pancreas or bedside artificial pancreas with closed-loop system.

    PubMed

    Hanazaki, Kazuhiro; Munekage, Masaya; Kitagawa, Hiroyuki; Yatabe, Tomoaki; Munekage, Eri; Shiga, Mai; Maeda, Hiromichi; Namikawa, Tsutomu

    2016-09-01

    The incidence of diabetes is increasing at an unprecedented pace and has become a serious health concern worldwide during the last two decades. Despite this, adequate glycemic control using an artificial pancreas has not been established, although the 21st century has seen rapid developments in this area. Herein, we review current topics in glycemic control for both the wearable artificial pancreas for type 1 and type 2 diabetic patients and the bedside artificial pancreas for surgical diabetic patients. In type 1 diabetic patients, nocturnal hypoglycemia associated with insulin therapy remains a serious problem that could be addressed by the recent development of a wearable artificial pancreas. This smart phone-like device, comprising a real-time, continuous glucose monitoring system and insulin pump system, could potentially significantly reduce nocturnal hypoglycemia compared with conventional glycemic control. Of particular interest in this space are the recent inventions of a low-glucose suspend feature in the portable systems that automatically stops insulin delivery 2 h following a glucose sensor value <70 mg/dL and a bio-hormonal pump system consisting of insulin and glucagon pumps. Perioperative tight glycemic control using a bedside artificial pancreas with the closed-loop system has also proved safe and effective for not only avoiding hypoglycemia, but also for reducing blood glucose level variability resulting in good surgical outcomes. We hope that a more sophisticated artificial pancreas with closed-loop system will now be taken up for routine use worldwide, providing enormous relief for patients suffering from uncontrolled hyperglycemia, hypoglycemia, and/or variability in blood glucose concentrations.

  4. Current and potential productivity of wheat for a controlled environment life support system

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1989-01-01

    Several determinants of crop growth are analyzed to determine theoretical and potentially achievable productivity. These include: incident photosynthetic photon flux (PPF); percent absorption of the incident PPF by photo synthetic tissue; photosynthetic efficiency; respiratory carbon use efficiency; and harvest index. The effects of optimal environmental and cultural factors on each of these determinants are also investigated. Results indicate that an increase in the percentage of absorbed photons is responsible for most of the improvement in wheat yields in an optimal controlled environment. An integrated PPF of 150 mol/sq m per d has produced 60 g/sq m per d of grain. There is almost a linear increase in wheat yields with increasing PPF. At intermediate and equal integrated daily PPF levels, photoperiod had little effect on yield per day or energy efficiency. Decreasing temperature from 23 to 17 deg increased yield per day by 20 percent but increased the life cycle from 62 to 89 days.

  5. Current and potential productivity of wheat for a controlled environment life support system

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1989-01-01

    Several determinants of crop growth are analyzed to determine theoretical and potentially achievable productivity. These include: incident photosynthetic photon flux (PPF); percent absorption of the incident PPF by photo synthetic tissue; photosynthetic efficiency; respiratory carbon use efficiency; and harvest index. The effects of optimal environmental and cultural factors on each of these determinants are also investigated. Results indicate that an increase in the percentage of absorbed photons is responsible for most of the improvement in wheat yields in an optimal controlled environment. An integrated PPF of 150 mol/sq m per d has produced 60 g/sq m per d of grain. There is almost a linear increase in wheat yields with increasing PPF. At intermediate and equal integrated daily PPF levels, photoperiod had little effect on yield per day or energy efficiency. Decreasing temperature from 23 to 17 deg increased yield per day by 20 percent but increased the life cycle from 62 to 89 days.

  6. Current and potential productivity of wheat for a controlled environment life support system

    NASA Astrophysics Data System (ADS)

    Bugbee, B. G.; Salisbury, F. B.

    The productivity of higher plants is determined by the incident photosynthetic photon flux (PPF) and the efficiency of the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes are analyzed to determine theoretical and potentially achievable productivity. The effects of optimal environmental and cultural factors on each of these four factors is also analyzed. Results indicate that an increase in the percentage of absorbed photons is responsible for most of the improvement in wheat yields in an optimal controlled environment. Several trials confirm that there is an almost linear increase in wheat yields with increasing PPF. An integrated PPF of 150 mol m-2 d-1 (2.5 times summer sunlight) has produced 60 g m-2 d-1 of grain. Apparently, yield would continue to increase with even higher PPF's. Energy efficiency increased with PPF to about 600 μmol m-2 s-1, then slowly decreased. We are now seeking to improve efficiency at intermediate PPF levels (1000 μmol m-2 s-1) before further exploring potential productivity. At intermediate and equal integrated daily PPF levels, photoperiod had little effect on yield per day or energy efficiency. Decreasing temperature from 23° to 17° increased yield per day by 20% but increased the life cycle from 62 to 89 days. We hope to achieve both high productivity and energy efficiency. Research reported in this paper was supported by the National Aeronautics and Space Administration Cooperative Agreement 2-139, administered through the Ames Research Center, Moffett Field, CA. Support was also received from the Utah Agricultural Experiment Station. This is Utah Agricultural Experiment Station paper no. 3653.

  7. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    NASA Astrophysics Data System (ADS)

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-06-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change.

  8. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    PubMed Central

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-01-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260

  9. The California Current System

    NASA Image and Video Library

    2017-09-28

    This February 8, 2016 composite image reveals the complex distribution of phytoplankton in one of Earth's eastern boundary upwelling systems — the California Current. Recent work suggests that our warming climate my be increasing the intensity of upwelling in such regions with possible repercussions for the species that comprise those ecosystems. NASA's OceanColor Web is supported by the Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Center. Our responsibilities include the collection, processing, calibration, validation, archive and distribution of ocean-related products from a large number of operational, satellite-based remote-sensing missions providing ocean color, sea surface temperature and sea surface salinity data to the international research community since 1996. Credit: NASA/Goddard/Suomin-NPP/VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Morphology control and high critical currents in superconducting thin films in the Tl-Ca-Ba-Cu-O system

    NASA Astrophysics Data System (ADS)

    Ginley, D. S.; Kwak, J. F.; Venturini, E. L.; Morosin, B.; Baughman, R. J.

    1989-08-01

    Superconducting polycrystalline thin films in the Tl-Ca-Ba-Cu-O system have been prepared by electron beam evaporation followed by appropriate sintering and annealing. The configuration employed (free or confined surface) to sinter the films determines the morphology varying from random to highly oriented, respectively. These films are predominantly the Tl 2Ca 2Ba 2Cu 3O 10 phase, but some contain up to 50 at % Tl 2CaBa 2Cu 2O 8, demonstrating a toleration of variable stoichiometry. The key to obtaining high quality materials with short air sintering times is precise control of the Tl and oxygen partial pressures. Transition temperatures to 110 K and transport critical current densities to 600 000 A/cm 2 at 76 K have been attained. The best films (room temperature resistance p < 1 mΩcm) show no evidence of weak links, but do exhibit weak flux pinning at 77 K. On the other hand, films with p > 1 mΩcm show a definite correlation between critical current and p, consistent with the presence of weak links.

  11. Control System Damps Vibrations

    NASA Technical Reports Server (NTRS)

    Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.

    1983-01-01

    New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.

  12. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  13. Potentiometric flow injection sensing system for determination of heparin based on current-controlled release of protamine.

    PubMed

    Lei, Jiahong; Ding, Jiawang; Chen, Yan; Qin, Wei

    2015-02-09

    A flow injection system incorporated with a polycation-sensitive polymeric membrane electrode in the flow cell is proposed for potentiometric determination of heparin. An external current in nano-ampere scale is continuously applied across the polymeric membrane for controlled release of protamine from the inner filling solution to the sample solution, which makes the electrode membrane regenerate quickly after each measurement. The protamine released at membrane-sample interface is consumed by heparin injected into the flow cell via their strong electrostatic interaction, thus decreasing the measured potential, by which heparin can be detected. Under optimized conditions, a linear relationship between the potential peak height and the concentration of heparin in the sample solution can be obtained in the range of 0.1-2.0 U mL(-1), and the detection limit is 0.06 U mL(-1). The proposed potentiometric sensing system has been successfully applied to the determination of heparin in undiluted sheep whole blood. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Utilization of a hardware-in-the-loop-system for controlling the speed of an eddy current brake

    NASA Astrophysics Data System (ADS)

    Kramer, V.; Mishra, R.; Brauneis, P.; Schmidt, K.

    2012-05-01

    Rapid prototyping with a hardware-in-the-loop (HiL) system significantly reduces the development time for controller-type testing and is widely used in various fields of engineering. In this discussion, a controller is developed for a speed control application utilizing a magnetic brake. A mathematical model is presented first that has been implemented in Matlab/ Simulink. The controller development steps are described that will form the basis of a control system for a wind turbine. A test is carried out that simulates the wind turbine inertial load.

  15. Avionics performance analysis: A historical review and a current assessment of flight instrumentation and control systems in civil aviation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The role of flight instrumentation and control systems in the advancement of civil aviation to the safest form of commercial transportation is discussed. Safety, cost reduction, and increased capabilities provided by recent developments are emphasized. Cost/performance considerations are considered in terms of determining the relative values of comparable systems or the absolute worth of a system.

  16. Root controls on water redistribution and carbon uptake in the soil-plant system under current and future climate

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Marani, M.; Albertson, J. D.; Katul, G.

    2013-10-01

    Understanding photosynthesis and plant water management as a coupled process remains an open scientific problem. Current eco-hydrologic models characteristically describe plant photosynthetic and hydraulic processes through ad hoc empirical parameterizations with no explicit accounting for the main pathways over which carbon and water uptake interact. Here, a soil-plant-atmosphere continuum model is proposed that mechanistically couples photosynthesis and transpiration rates, including the main leaf physiological controls exerted by stomata. The proposed approach links the soil-to-leaf hydraulic transport to stomatal regulation, and closes the coupled photosynthesis-transpiration problem by maximizing leaf carbon gain subject to a water loss constraint. The approach is evaluated against field data from a grass site and is shown to reproduce the main features of soil moisture dynamics and hydraulic redistribution. In particular, it is shown that the differential soil drying produced by diurnal root water uptake drives a significant upward redistribution of moisture both through a conventional Darcian flow and through the root system, consistent with observations. In a numerical soil drying experiment, it is demonstrated that more than 50% of diurnal transpiration is supplied by nocturnal upward water redistribution, and some 12% is provided directly through root hydraulic redistribution. For a prescribed leaf area density, the model is then used to diagnose how elevated atmospheric CO2 concentration and increased air temperature jointly impact soil moisture, transpiration, photosynthesis, and whole-plant water use efficiency, along with compensatory mechanisms such as hydraulic lift using several canonical forms of root-density distribution.

  17. Initial operation and current status of the Fermilab DZero VMEbus-based hardware control and monitor system

    SciTech Connect

    Goodwin, R.; Florian, R.; Johnson, M.; Jones, A.; Shea, M.

    1989-11-01

    DZero is a large colliding beams detector at Fermilab. The control system for this detector includes twenty-five VMEbus-based 68020 computers interconnected using the IEEE-802.5 Token Ring local area network. In operation, the system will monitor about fifteen thousand analog channels and several thousand digital status bits, interfaced to the 68020 computers by the MIL-1553 multiplexed data bus. In addition, the VMEbus control system uses a memory-mapped multi-VMEbus interconnect to download parameters to more than one hundred VMEbus data crates in the experiment. Remote host computers can then read and set memory in the detector crates over the network by accessing memory in the control crates. This is an extremely useful feature during the construction phase, because low level diagnostics and testing of all the detector electronics can be done over the Token Ring network using either IBM-PC compatible computers or the laboratory-wide VAX system. The VMEbus control system hardware is now being installed in the DZero movable counting house. Installation is expected to be complete later this year. 4 refs., 2 figs.

  18. Analytical Model and Characteristics of Current-Observer-Based Induction Motor Speed-Sensorless Vector Control System Taking into Account Iron Loss

    NASA Astrophysics Data System (ADS)

    Tsuji, Mineo; Xu, Fujin; Tsuruda, Yasutaka; Hamasaki, Shin-Ichi

    We have proposed a current-observer-based speed-sensorless vector control system that is in a rotating reference frame and takes into account iron loss. By deriving a linear model and by computing the trajectories of poles and zeros, the system stability on various parameters such as operating points, observer gain, controller gain and stator resistance has been investigated. Furthermore, an exact analytical model including PWM control, dead time and non-ideal features of power devices is developed. The characteristic improvement and stability limit of the proposed system are discussed by simulation and experiment.

  19. Defining and resolving current systems in geospace

    NASA Astrophysics Data System (ADS)

    Ganushkina, N. Y.; Liemohn, M. W.; Dubyagin, S.; Daglis, I. A.; Dandouras, I.; De Zeeuw, D. L.; Ebihara, Y.; Ilie, R.; Katus, R.; Kubyshkina, M.; Milan, S. E.; Ohtani, S.; Ostgaard, N.; Reistad, J. P.; Tenfjord, P.; Toffoletto, F.; Zaharia, S.; Amariutei, O.

    2015-11-01

    Electric currents flowing through near-Earth space (R ≤ 12 RE) can support a highly distorted magnetic field topology, changing particle drift paths and therefore having a nonlinear feedback on the currents themselves. A number of current systems exist in the magnetosphere, most commonly defined as (1) the dayside magnetopause Chapman-Ferraro currents, (2) the Birkeland field-aligned currents with high-latitude "region 1" and lower-latitude "region 2" currents connected to the partial ring current, (3) the magnetotail currents, and (4) the symmetric ring current. In the near-Earth nightside region, however, several of these current systems flow in close proximity to each other. Moreover, the existence of other temporal current systems, such as the substorm current wedge or "banana" current, has been reported. It is very difficult to identify a local measurement as belonging to a specific system. Such identification is important, however, because how the current closes and how these loops change in space and time governs the magnetic topology of the magnetosphere and therefore controls the physical processes of geospace. Furthermore, many methods exist for identifying the regions of near-Earth space carrying each type of current. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques. The influence of definitional choice on the resulting interpretation of physical processes governing geospace dynamics is presented and discussed.

  20. Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: Current knowledge and future directions

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD), a biological alternative to soil fumigation, has been shown to control a wide range of soil-borne pathogens and nematodes in numerous crop production systems across Japan, the Netherlands and the U.S. A brief review of the status of the science behind ASD and its...

  1. CONTROL SYSTEM

    DOEpatents

    Shannon, R.H.; Williamson, H.E.

    1962-10-30

    A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)

  2. Current computational models do not reveal the importance of the nervous system in long-term control of arterial pressure.

    PubMed

    Osborn, John W; Averina, Viktoria A; Fink, Gregory D

    2009-04-01

    Arterial pressure is regulated over long periods of time by neural, hormonal and local control mechanisms, which ultimately determine the total blood volume and how it is distributed between the various vascular compartments of the circulation. A full understanding of the complex interplay of these mechanisms can be greatly facilitated by the use of mathematical models. In 1967, Guyton and Coleman published a model for long-term control of arterial pressure that focused on renal control of body sodium and water and thus total blood volume. The central point of their model is that the long-term level of arterial pressure is determined exclusively by the 'renal function curve', which relates arterial pressure to urinary excretion of salt and water. The contribution of the sympathetic nervous system to setting the long-term level of arterial pressure in the model is limited. In light of the overwhelming evidence for a major role of the sympathetic nervous system in long-term control of arterial pressure and the pathogenesis of hypertension, new mathematical models for long-term control of arterial pressure may be necessary. Despite the prominence and general acceptance of the Guyton-Coleman model in the field of hypertension research, we argue here that it overestimates the importance of renal control of body fluids and total blood volume in blood pressure regulation. Furthermore, we suggest that it is possible to construct an alternative model in which sympathetic nervous system activity plays an important role in long-term control of arterial pressure independent of its effects on total blood volume.

  3. Current computational models do not reveal the importance of the nervous system in long-term control of arterial pressure

    PubMed Central

    Osborn, John W.; Averina, Viktoria A.; Fink, Gregory D.

    2009-01-01

    Arterial pressure is regulated over long periods of time by neural, hormonal and local control mechanisms, which ultimately determine the total blood volume and how it is distributed between the various vascular compartments of the circulation. A full understanding of the complex interplay of these mechanisms can be greatly facilitated by the use of mathematical models. In 1967, Guyton and Coleman published a model for long-term control of arterial pressure that focused on renal control of body sodium and water and thus total blood volume. The central point of their model is that the long-term level of arterial pressure is determined exclusively by the ‘renal function curve’, which relates arterial pressure to urinary excretion of salt and water. The contribution of the sympathetic nervous system to setting the long-term level of arterial pressure in the model is limited. In light of the overwhelming evidence for a major role of the sympathetic nervous system in long-term control of arterial pressure and the pathogenesis of hypertension, new mathematical models for long-term control of arterial pressure may be necessary. Despite the prominence and general acceptance of the Guyton–Coleman model in the field of hypertension research, we argue here that it overestimates the importance of renal control of body fluids and total blood volume in blood pressure regulation. Furthermore, we suggest that it is possible to construct an alternative model in which sympathetic nervous system activity plays an important role in long-term control of arterial pressure independent of its effects on total blood volume. PMID:19286640

  4. Current limiting remote power control module

    NASA Technical Reports Server (NTRS)

    Hopkins, Douglas C.

    1990-01-01

    The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.

  5. A Report on Current Logistics System Concepts.

    DTIC Science & Technology

    1985-12-01

    This modernization represents a quantum improvement over current systems, that have a 6- hour lag between movement and management visibility. NAVY...Unified Material Management System 0 DSSC - Direct Support Stock Control 0 SASSY-Supported Activities Supply System 0 Base Property Control Office...support contract has been awarded and Phase I and II completed (I -establish the M3S standard data structure, and [I-convert SASSY/ DSSC to a DBMS at the

  6. Current systems in the Martian Space

    NASA Astrophysics Data System (ADS)

    Li, Lei; Ma, Yingjuan; Zhang, Yiteng; Liu, Tongdi; Xie, Lianghai

    2012-07-01

    Based on a single fluid, multi-species MHD model(Ma et al., 2004), the distribution of the currents in the Martian space are calculated and analyzed. The results show there are 4 categories of currents, the bow shock current, magnetic pileup boundary current, the ionosphere current and the magnetotail current in the Martian space. Currents flow on the surface of the bow shock independently, with the peak current density located around the subsolar point. At dayside, the magnetic pileup boundary current closes through the ionosphere; while at nightside, magnetic pileup boundary current couples with the central current sheet in the tail region to form a complete circuit. The orientation and polarity of the currents are mainly controlled by the IMF and the crustal fields. With the crustal magnetic fields, the distribution of current in the space near the planet is quite complicated. For example, we find looped, wrinkled current streamlines in the southern ionosphere, and the central current sheet at night side is splinted into several slices. However, the crustal magnetic fields do not change the general orientation of the ionospheric current, and the influence of the crustal magnetic fields on the current system is mainly limited within ~1.8R _{M} from the planet.

  7. [Investigation on the current status of oral health care in the disease controls system in Sichuan Province].

    PubMed

    Zhuo, Wang; Ying, Deng; Wei, Yin; Xiaoxia, Liu; Yujin, He; Jun, He

    2015-04-01

    To analyze the status and characteristics of dental manpower in the center for disease controls (CDC) in Sichuan Province and to provide more evidence for strengthening the oral healthcare workforce in the CDC system. A mass survey on dental manpower was made in CDCs in Sichuan Province through questionnaire investigation. Data were collected and entered with the Epidemiological Dynamic Data Collection (EDDC) platform and analyzed with SPSS 13.0 software. Sichuan Province had 0.15 hospitals providing oral health services and 0.38 dentists on average per 10,000 people. About 65.53% (135/206) of the CDCs had one department responsible for the oral health service. However, oral health care personnel comprised only 2.23% (237/10,624) of the personnel of the whole CDC system. About 64.67% (119/184) of county CDCs and 47.62% (10/21) of city CDCs knew well the dental health status of local residents. Less than 5% of the CDCs used the data and assisted in the policy making of public health administrators. The dental care personal deficit exists in the CDC system in Sichuan Province. The distribution and composition of dental manpower are not reasonable. The oral health service ability of CDCs in Sichuan Province should be strengthened and improved.

  8. Current Concepts in Conception Control

    PubMed Central

    Ringrose, C. A. Douglas

    1963-01-01

    The progressive increase in world population has become a most urgent global problem in recent years. Man has, however, been interested in controlling his reproductivity at the family level for many centuries. Historical aspects of this saga are reviewed. The modern era of conception control was ushered in by Makepeace et al. in 1937 when ovulation inhibition by progesterone was demonstrated. Confirmation of this by Pincus and associates, and development of the potent oral progestational agents, the 19-norsteroids, have made efficient reliable contraception a reality. Experience with one of these agents (Ortho-Novum, 2 mg.) in 115 patients through 805 cycles is presented. Conception control was 100% effective at this dosage. Side effects were minimal. Only three of the women discontinued the tablets because of these effects. All but five in this group of 115 preferred the oral contraceptives to methods previously employed. PMID:13973987

  9. Current approaches to myopia control.

    PubMed

    Leo, Seo Wei

    2017-05-01

    Myopia is a global problem, being particularly prevalent in the urban areas of east and southeast Asia. In addition to the direct economic and social burdens, associated ocular complications may lead to substantial vision loss. With prevalence of myopia above 80% and high myopia over 20%, it is crucial to control myopia. The aim of this review to is provide an update on the interventions to slow the onset of myopia and retard its progression. The epidemic of myopia is characterized by increasingly early onset, combined with high myopia progression rates. There are two pathways for myopia control: firstly to slow the onset of myopia and secondly to reduce or prevent progression. Increased time outdoors can reduce the onset of myopia. Atropine 0.01% dose offers an appropriate risk-benefit ratio, with no clinically significant visual side effects balanced against a significant 50% reduction in myopia progression. Orthokeratology contact lenses can slow axial length elongation, but infective keratitis is a risk. Peripheral defocussing lenses may both have a role in slowing myopic progression in a subset of children and further help our understanding of the physiologic control of ocular growth. Myopia control can be achieved by slowing the onset of myopia, which now appears to be possible through increasing time outdoors and slowing the progression of myopia with interventions like atropine and orthokeratology.

  10. Controlled battery charging system

    SciTech Connect

    Randolph, D.B.

    1991-07-02

    This patent describes a controlled battery charging system for charging a battery having terminals. It comprises: a transformer having a primary coil connected to a source of alternating current, and a secondary coil having output leads and a center tap, full wave rectifier means connected to the output leads to the secondary coil, the rectifier means including a pair of gate controlled rectifiers having direct current output leads, a battery charging circuit connected to the output leads to the rectifiers and having output means electrically contacting the terminals of a battery to be charged, a unijunction relaxation oscillator circuit connected to the rectifiers to trigger the gate controlled rectifiers into conduction to produce a DC charging current in the charging circuit, an electronic current limiting control circuit comprising a current limiting amplifier having a positive input, a negative input, and an output, a resistive line connected to center tap, a negative input lead connecting the center tap to the negative input of the current limiting amplifier, voltage input means connected to the positive input for supplying a voltage to the current limiting amplifier more positive than a voltage supplied to the negative input, voltage supply means connecting the current limiting amplifier to the battery charging circuit, and control means connecting the output of the current limiting amplifier to the unijunction relaxation oscillator circuit operative to turn off the DC charging circuit when the charging current exceeds a predetermined current value.

  11. Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock

    DOEpatents

    Groombridge, Clifton E.

    1996-01-01

    An improvement to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a "soft" reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided.

  12. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system.

    PubMed

    Miura, Hidekazu; Yamada, Akihiro; Shiraishi, Yasuyuki; Yambe, Tomoyuki

    2015-08-01

    We have been developing transcutaneous energy transmission system (TETS) for a ventricular assist device, shape memory alloy (SMA) fibered artificial organs and so on, the system has high efficiency and a compact size. In this paper, we summarize the development, design method and characteristics of the TETS. New control methods for stabilizing output voltage or current of the TETS are proposed. These methods are primary side, are outside of the body, not depending on a communication system from the inside the body. Basically, the TETS operates at the fixed frequency with a suitable compensation capacitor so that the internal impedance is minimalized and a flat load characteristic is obtained. However, when the coil shifted from the optimal position, the coupling factor changes and the output is fluctuated. TETS has a resonant property; its output can be controlled by changing the driving frequency. The continuous current to continuous voltage driving method was implemented by changing driving frequency and setting of limitation of low side frequency. This method is useful for battery charging system for electrically driven artificial hearts and also useful for SMA fibered artificial organs which need intermittent high peak power comsumption. In this system, the internal storage capacitor is charged slowly while the fibers are turned off and discharge the energy when the fibers are turned on. We examined the effect of the system. It was found that the size and maximum output of the TETS would able to be reduced.

  13. Opportunities for improving risk communication during the permitting process for entomophagous biological control agents: A review of current systems

    USDA-ARS?s Scientific Manuscript database

    Concerns about potentially irreversible non-target impacts from the importation and release of entomophagous biological control agents (BCAs) have resulted in increasingly stringent import requirements by National Plant Protection Organizations. Despite numerous scientific publications on the poten...

  14. LCL Current Control Loop Stability Design

    NASA Astrophysics Data System (ADS)

    Delepaut, Christophe; Kuremyr, Tobias; Martin, Manuel; Tonicello, Ferdinando

    2014-08-01

    Latching Current Limiters include a control loop meant at limiting the current in case of downstream failure. Such current control loop consists typically of a simple proportional feedback gain from a current measurement shunt resistance and may result in very limited phase margin for specified operating conditions. The present paper investigates the combination of a proportional and derivative feedback to mitigate the lack of stability margin, providing a comprehensive overview on designing Latching Current Limiters for stability. For illustration purpose, a LCL based on radiation hardened ITAR free components is considered. A breadboard has been manufactured and the reported phase margin measurements demonstrate performances in line with the analytic results.

  15. SERVOMOTOR CONTROL SYSTEM

    DOEpatents

    MacNeille, S.M.

    1958-12-01

    Control systems for automatic positioning of an electric motor operated vapor valve are described which is operable under the severe conditions existing in apparatus for electro-magnetlcally separating isotopes. In general, the system includes a rotor for turning the valve comprising two colls mounted mutually perpendicular to each other and also perpendicular to the magnetic field of the isotope separating apparatus. The coils are furnished with both a-c and d- c current by assoclate control circuitry and a position control is provided for varying the ratlo of the a-c currents in the coils and at the same time, but in an inverse manner, the ratio between the d-c currents in the coils is varied. With the present system the magnitude of the motor torque is constant for all valves of the rotor orientatlon angle.

  16. Automatic system for ionization chamber current measurements.

    PubMed

    Brancaccio, Franco; Dias, Mauro S; Koskinas, Marina F

    2004-12-01

    The present work describes an automatic system developed for current integration measurements at the Laboratório de Metrologia Nuclear of Instituto de Pesquisas Energéticas e Nucleares. This system includes software (graphic user interface and control) and a module connected to a microcomputer, by means of a commercial data acquisition card. Measurements were performed in order to check the performance and for validating the proposed design.

  17. Current research on regenerative systems.

    PubMed

    Shapira, J; Mandel, A D; Quattrone, P D; Bell, N L

    1969-01-01

    Multiple studies directed toward the development of a regenerative life support system have shown that easily synthesized organic compounds and microbiological materials are potentially capable of being used as foods for long-duration space missions. Animal feeding studies have supported these views. The organic compounds presently believed to offer the greatest potential are glycerol, simple glycerol derivatives such as triacetin, and formose sugars. Laboratory studies indicate that glycerol can be synthesized from formaldehyde which in turn is obtained by the direct catalytic oxidation of methane, a by-product of the Sabatier reaction used in spacecraft atmosphere control system. Formose sugars are derived from the self-condensation of formaldehyde. Mixtures of glycerol and triacetin have been shown to be suitable as a major component of diets fed to weanling rats for prolonged periods. These compounds do not exist as stereoisomers and therefore offer advantages over the formose sugars. Hydrogenomonas eutropha is the microbiological system under investigation. An automated system for the continuous autotrophic production of Hydrogenomonas bacteria is in operation, and the nutritional requirements for growth in the system using urea as a nitrogen source are being studied. Nutritional evaluation of Hydrogenomonas bacteria has shown they are capable of supplying the total protein requirement of growing rats for prolonged periods. The potential and problems of these regenerative systems and the prospects for the accomplishment of a totally regenerative food system will be discussed.

  18. Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock

    SciTech Connect

    Groombridge, C.E.

    1996-11-19

    An improvement is described to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a ``soft`` reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided. 10 figs.

  19. Amoeba-related health risk in drinking water systems: could monitoring of amoebae be a complementary approach to current quality control strategies?

    PubMed

    Codony, Francesc; Pérez, Leonardo Martín; Adrados, Bárbara; Agustí, Gemma; Fittipaldi, Mariana; Morató, Jordi

    2012-01-01

    Culture-based methods for fecal indicator microorganisms are the standard protocol to assess potential health risk from drinking water systems. However, these traditional fecal indicators are inappropriate surrogates for disinfection-resistant fecal pathogens and the indigenous pathogens that grow in drinking water systems. There is now a range of molecular-based methods, such as quantitative PCR, which allow detection of a variety of pathogens and alternative indicators. Hence, in addition to targeting total Escherichia coli (i.e., dead and alive) for the detection of fecal pollution, various amoebae may be suitable to indicate the potential presence of pathogenic amoeba-resisting microorganisms, such as Legionellae. Therefore, monitoring amoeba levels by quantitative PCR could be a useful tool for directly and indirectly evaluating health risk and could also be a complementary approach to current microbial quality control strategies for drinking water systems.

  20. Potentiometric flow injection system for determination of reductants using a polymeric membrane permanganate ion-selective electrode based on current-controlled reagent delivery.

    PubMed

    Song, Wenjing; Ding, Jiawang; Liang, Rongning; Qin, Wei

    2011-10-17

    A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  2. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  3. Indirect control of antiferromagnetic domain walls with spin current.

    PubMed

    Wieser, R; Vedmedenko, E Y; Wiesendanger, R

    2011-02-11

    The indirect controlled displacement of an antiferromagnetic domain wall by a spin current is studied by Landau-Lifshitz-Gilbert spin dynamics. The antiferromagnetic domain wall can be shifted both by a spin-polarized tunnel current of a scanning tunneling microscope or by a current driven ferromagnetic domain wall in an exchange coupled antiferromagnetic-ferromagnetic layer system. The indirect control of antiferromagnetic domain walls opens up a new and promising direction for future spin device applications based on antiferromagnetic materials.

  4. Fuzzy Current-Mode Control and Stability Analysis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2000-01-01

    In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.

  5. Controlling local currents in molecular junctions

    NASA Astrophysics Data System (ADS)

    Yadalam, Hari Kumar; Harbola, Upendra

    2016-09-01

    The effects of nonequilibrium constraints and dephasing on the circulating currents in molecular junctions are analyzed. Circulating currents are manifestations of quantum effects and can be induced either by externally applied bias or an external magnetic field through the molecular system. In a symmetric Aharonov-Bohm ring, bond currents have two contributions, bias driven and magnetic field driven. We analyze the competition between these two contributions and show that, as a consequence, current through one of the branches can be completely suppressed. We then study the effect of asymmetry (as a result of chemical substitution) on the current pathways inside the molecule and study asymmetry-induced circulating currents (without magnetic field) by tuning the coupling strength of the substituent (at finite bias).

  6. Cryogenic Control System

    SciTech Connect

    Goloborod'ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  7. Captive Water Current Power System

    SciTech Connect

    Wuenscher, H. F.; Wuenscher, H. A.

    1984-01-31

    Current energy is converted into shaft power in two stages; First, buoyant power units with stationary hydrofoil wings reach faster than the current speed by sweeping out a captive path. Second, turbines at said power units convert the fast relative local current into shaft power. Power units sweeping along the water surface, using cycloidal turbine methods, as well as power units sweeping on a submerged path, using axial flow turbine methods, are described.

  8. Beam current controller for laser ion source

    DOEpatents

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  9. Lightning current waveform measuring system

    NASA Technical Reports Server (NTRS)

    Wojtasinski, R. J.; Fuchs, J. C.; Grove, C. H. (Inventor)

    1978-01-01

    An apparatus is described for monitoring current waveforms produced by lightning strikes which generate currents in an elongated cable. These currents are converted to voltages and to light waves for being transmitted over an optical cable to a remote location. At the remote location, the waves are reconstructed back into electrical waves for being stored into a memory. The information is stored within the memory with a timing signal so that only different signals need be stored in order to reconstruct the wave form.

  10. Current control of light by nonreciprocal magnetoplasmonics

    NASA Astrophysics Data System (ADS)

    Gong, Yongkang; Li, Kang; Carver, Sara; Martinez, Juan Jose; Huang, Jungang; Thueux, Yoann; Avlonitis, Nick; Copner, Nigel

    2015-05-01

    The ability to actively control light has long been a major scientific and technological goal. We proposed a scheme that allows for active control of light by utilizing the nonreciprocal magnetoplasmonic effect. As a proof of concept, we applied current signal through an ultrathin metallic film in a magneto-plasmonic multilayer and found that dynamic photonic nonreciprocity appears in magnetic-optical material layer due to the magnetic field being induced from current signal and modulates surface plasmon polaritons trapped in the metal surface and the light reflected. The proposed concept provides a possible way for the active control of light and could find potential applications such as ultrafast optoelectronic signal processing for plasmonic nanocircuit technology and ultrafast/large-aperture free-space electro-optic modulation platform for wireless laser communication technology.

  11. Current control of light by nonreciprocal magnetoplasmonics

    SciTech Connect

    Gong, Yongkang Li, Kang; Carver, Sara; Martinez, Juan Jose; Huang, Jungang; Copner, Nigel; Thueux, Yoann; Avlonitis, Nick

    2015-05-11

    The ability to actively control light has long been a major scientific and technological goal. We proposed a scheme that allows for active control of light by utilizing the nonreciprocal magnetoplasmonic effect. As a proof of concept, we applied current signal through an ultrathin metallic film in a magneto-plasmonic multilayer and found that dynamic photonic nonreciprocity appears in magnetic-optical material layer due to the magnetic field being induced from current signal and modulates surface plasmon polaritons trapped in the metal surface and the light reflected. The proposed concept provides a possible way for the active control of light and could find potential applications such as ultrafast optoelectronic signal processing for plasmonic nanocircuit technology and ultrafast/large-aperture free-space electro-optic modulation platform for wireless laser communication technology.

  12. Current Profile Control in DIII-D

    NASA Astrophysics Data System (ADS)

    Schuster, E. M.; Barton, J. E.; Boyer, M. D.; Wehner, W. P.; Ferron, J. R.; Humphreys, D. A.; Hyatt, A. W.; Jackson, G. L.; Luce, T. C.; Walker, M. L.

    2014-10-01

    Experimental results successfully demonstrate the potential of physics-model-based control for systematic attainment of desired q profiles, with the subsequent benefit of enabling exploration and reproducibility. The control scheme is constructed by embedding a nonlinear, control-oriented, physics-based model of the plasma dynamics into the control design process. This modeling approach combines first-principles laws with empirical correlations obtained from physical observations, which leads to PDE models capturing the high-dimensionality and nonlinearity of the plasma response. Model-based control design includes not only the synthesis of feedback controllers for robust regulation or tracking, but also the determination of optimal feedforward actuator trajectories for a systematic approach to scenario planning. Feedforward+feedback (closed loop) control experiments in DIII-D consistently demonstrate improved current-profile control performance relative to feedforward (open loop) control alone. Supported by the US Department of Energy under DE-SC0001334, DE-SC0010661 and DE-FC02-04ER54698.

  13. VOC Control: Current practices and future trends

    SciTech Connect

    Moretti, E.C.; Mukhopadhyay, N. )

    1993-07-01

    One of the most formidable challenges posed by the Clean Air Act Amendments of 1990 (CAAA) is the search for efficient and economical control strategies for volatile organic compounds (VOCs). VOCs are precursors to ground-level ozone, a major component in the formation of smog. Under the CAAA, thousands of currently unregulated sources will be required to reduce or eliminate VOC emissions. In addition, sources that are currently regulated may seek to evaluate alternative VOC control strategies to meet stricter regulatory requirements such as the maximum achievable control technology (MACT) requirements in Title III of the CAAA. Because of the increasing attention being given to VOC control, the American Institute of Chemical Engineers' (AIChE) Center for Waste Reduction Technologies (CWRT) initiated a study of VOC control technologies and regulatory initiatives. A key objective of the project was to identify and describe existing VOC control technologies and air regulations, as well as emerging technologies and forthcoming regulations. That work is the basis for this article.

  14. Economic implications of current systems

    NASA Technical Reports Server (NTRS)

    Daniel, R. E.; Aster, R. W.

    1983-01-01

    The primary goals of this study are to estimate the value of R&D to photovoltaic (PV) metallization systems cost, and to provide a method for selecting an optimal metallization method for any given PV system. The value-added cost and relative electrical performance of 25 state-of-the-art (SOA) and advanced metallization system techniques are compared.

  15. Digitally Controllable Current Amplifier and Current Conveyors in Practical Application of Controllable Frequency Filter

    NASA Astrophysics Data System (ADS)

    Polak, Josef; Jerabek, Jan; Langhammer, Lukas; Sotner, Roman; Dvorak, Jan; Panek, David

    2016-07-01

    This paper presents the simulations results in comparison with the measured results of the practical realization of the multifunctional second order frequency filter with a Digitally Adjustable Current Amplifier (DACA) and two Dual-Output Controllable Current Conveyors (CCCII +/-). This filter is designed for use in current mode. The filter was designed of the single input multiple outputs (SIMO) type, therefore it has only one input and three outputs with individual filtering functions. DACA element used in a newly proposed circuit is present in form of an integrated chip and the current conveyors are implemented using the Universal Current Conveyor (UCC) chip with designation UCC-N1B. Proposed frequency filter enables independent control of the pole frequency using parameters of two current conveyors and also independent control of the quality factor by change of a current gain of DACA.

  16. Voltage controller/current limiter for ac

    NASA Technical Reports Server (NTRS)

    Wu, T. T.

    1980-01-01

    Circuit protects ac power systems for overload failures, limits power surge and short-circuit currents to 150 percent of steady state level, regulates ac output voltage, and soft starts loads. Limiter generates dc error signal in response to line fluctuations and dumps power when overload is reached. Device is inserted between ac source and load.

  17. Multivariable current control for electrically and magnetically coupled superconducting magnets

    SciTech Connect

    Owen, E.W.; Shimer, D.W.

    1985-02-08

    Superconducting magnet systems under construction and projected for the future contain magnets that are magnetically coupled and electrically connected with shared power supplies. A change in one power supply voltage affects all of the magnet currents. A current controller for these systems must be designed as a multivariable system. The paper describes a method, based on decoupling control, for the rational design of these systems. Dynamic decoupling is achieved by cross-feedback of the measured currents. A network of gains at the input decouples the system statically and eliminates the steady-state error. Errors are then due to component variations. The method has been applied to the magnet system of the MFTF-B, at the Lawrence Livermore National Laboratory.

  18. A current-controlled, dynamic magnonic crystal

    NASA Astrophysics Data System (ADS)

    Chumak, A. V.; Neumann, T.; Serga, A. A.; Hillebrands, B.; Kostylev, M. P.

    2009-10-01

    We present a current-controlled magnonic crystal consisting of a ferrite film in which spin waves propagate and a set of parallel, periodically spaced, current conducting stripes placed close to the film surface. The current flow causes a sine-like variation of the film's internal magnetic field, which can be modulated by changing the amount of current. Transmission measurements reveal a single, pronounced rejection band. With increasing current strength the rejection band depth and its width increase strongly. Moreover, it is possible to switch the artificial, periodic structure on and off, so that the waveguide makes a transition from full rejection to full transmission within less than 50 ns. Numerical simulations confirm the experimental results and show that the spin-wave propagation in the crystal can be effectively described as a scattering process in the first Born approximation. Three ways to increase the reflection efficiency of the magnonic crystal are identified: an increased number of periods, an increased lattice constant and a decreased spacing between the current carrying structure and the waveguide.

  19. Stray current interference control for HVDC earth currents

    SciTech Connect

    Fitzgerald, J.H. III

    1995-06-01

    High-voltage direct current (HVDC) transmission lines exist around the world, with several in the US. When one conductor must be taken out of operation (in case of emergency), the earth may be used as an alternate conductor. The earth current may be accumulated on and discharged from underground metallic structures that cross the voltage gradient created by the current. Test results on two lines showed that stray current interference is not a major problem if mitigated properly.

  20. Direct current power transmission systems

    SciTech Connect

    Padiyar, K.R.

    1991-01-01

    This book represents text on HVDC transmission available. It deals with the various aspects of the state of the art in HVDC transmission technology. This book presents many aspects of interactions of AC/DC systems. Modeling and analysis of DC systems are also discussed in detail.

  1. Celsius Control system.

    PubMed

    Badjatia, Neeraj

    2004-01-01

    The Celsius Control system (Innercool Therapies, Inc.) is an intravascular cooling catheter system consisting of the Celsius Control catheter,circulating set, and the Celsius Control console. Based on clinical studies, the system has recently received Food and Drug Administration approval for use as a device to induce, maintain, and reverse mild hypothermia in neurosurgical patients in surgery and recovery/intensive care, and is currently being marketed in the 10.7 Fr and 14 Fr catheter sizes. It works to regulate temperature by circulating sterile saline through the Celsius Control console, which contains an integrated assembly comprising a temperature and pressure sensing block,supply and return lines, and a 20-{m} filter with connective tubing and an independent heat exchanger and pump. The system relies on digital core temperature readings from either esophageal or bladder temperature probes. After the system is turned on, approximately 150 mL of sterile saline solution is pumped through the console and is cooled to achieve the preset temperature. This cooled saline subsequently circulates from the console through the catheter in a closed-loop manner. The distal portion of the catheter incorporates a flexible distal metallic heat transfer element that is designed to allow for direct exchange of thermal energy with blood circulating around the catheter.

  2. Control and dynamic systems

    SciTech Connect

    Leondes, C.T. . Dept. of Electrical Engineering)

    1991-01-01

    This volume contains papers on analysis and control system techniques for electric power systems. Topics include: modeling and control of electric power systems, dynamic state estimation techniques, optimal power flow algorithms, and neural networks in power systems.

  3. Eddy Current System and Method for Crack Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)

    2012-01-01

    An eddy current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound eddy current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.

  4. Control and dynamic systems

    SciTech Connect

    Leondes, C.T. . Dept. of Electrical Engineering)

    1991-01-01

    This volume covers topics pertaining to analysis and control system techniques for electric power systems. Topics include: computer relaying in power systems, power system generation expansion, expert systems for power systems, and power flow algorithms.

  5. Expert system for analyzing eddy current measurements

    DOEpatents

    Levy, Arthur J.; Oppenlander, Jane E.; Brudnoy, David M.; Englund, James M.; Loomis, Kent C.

    1994-01-01

    A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner.

  6. Expert system for analyzing eddy current measurements

    SciTech Connect

    Levy, A.J.; Oppenlander, J.E.; Brudnoy, D.M.; Englund, J.M.; Loomis, K.C.

    1994-08-16

    A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner. 21 figs.

  7. Current contact lens care systems.

    PubMed

    Rakow, Phyllis L

    2003-09-01

    Contact lens care has been revolutionized and simplified with the development of multipurpose solutions, less sensitizing preservatives and disinfectants, better protein removers, and reaction-free, one-bottle care systems for patients who have had adverse responses to existing care products. As the complexity of lens care has decreased, compliance has increased. Nevertheless, good compliance is dependent on technician training and a thorough understanding of the chemistry and mechanism of action of each care system. Care products are constantly evolving, and the practitioner should become familiar with each new solution as it is introduced to ensure that patients are also kept up-to-date.

  8. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  9. OPTIMUM SYSTEMS CONTROL,

    DTIC Science & Technology

    Variational calculus and continuous optimal control, (4) The maximum principle and Hamilton Jacobi theory, (5) Optimum systems control examples, (6...Discrete variational calculus and the discrete maximum principle, (7) Optimum control of distributed parameter systems, (8) Optimum state estimation in

  10. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  11. Multivariable Control Systems

    DTIC Science & Technology

    1968-01-01

    one). Examples abound of systems with numerous controlled variables, and the modern tendency is toward ever greater utilization of systems and plants of this kind. We call them multivariable control systems (MCS).

  12. NEPHROGENIC SYSTEMIC FIBROSIS: CURRENT CONCEPTS

    PubMed Central

    Basak, Prasanta; Jesmajian, Stephen

    2011-01-01

    Nephrogenic systemic fibrosis (NSF) was first described in 2000 as a scleromyxedema-like illness in patients on chronic hemodialysis. The relationship between NSF and gadolinium contrast during magnetic resonance imaging was postulated in 2006, and subsequently, virtually all published cases of NSF have had documented prior exposure to gadolinium-containing contrast agents. NSF has been reported in patients from a variety of ethnic backgrounds from America, Europe, Asia and Australia. Skin lesions may evolve into poorly demarcated thickened plaques that range from erythematous to hyperpigmented. With time, the skin becomes markedly indurated and tethered to the underlying fascia. Extracutaneous manifestations also occur. The diagnosis of NSF is based on the presence of characteristic clinical features in the setting of chronic kidney disease, and substantiated by skin histology. Differential diagnosis is with scleroderma, scleredema, scleromyxedema, graft-versus-host disease, etc. NSF has a relentlessly progressive course. While there is no consistently successful treatment for NSF, improving renal function seems to slow or arrest the progression of this condition. Because essentially all cases of NSF have developed following exposure to a gadolinium-containing contrast agent, prevention of this devastating condition involves the careful avoidance of administering these agents to individuals at risk. PMID:21572795

  13. Current control of PMSM based on maximum torque control reference frame

    NASA Astrophysics Data System (ADS)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  14. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  15. HVDC control developments - addressing system requirements

    SciTech Connect

    Hauth, R.L.; Patel, H.S.; Piwko, R.J.

    1984-01-01

    This article describes typical high voltage direct current (HVDC) control systems and some of the new developments in the control area. HVDC control systems are showing their flexible characteristics as demonstrated, for example, by the new modulation, torsional damping, and alternating current voltage and reactive power controllers. Extensive studies are conducted to design and integrate such controllers into HVDC systems and to assure against any detrimental interactions within the total control system. 8 figures.

  16. Isolation of all-trans lycopene by high-speed counter-current chromatography using a temperature-controlled solvent system.

    PubMed

    Baldermann, Susanne; Ropeter, Katharina; Köhler, Nils; Fleischmann, Peter

    2008-05-23

    The effect of solvent system, partition coefficient, retention of stationary phase, column, revolution speed, and flow rate of mobile phase are well known parameters to effect HSCCC (high-speed counter-current chromatography) separations. Temperature effects on chromatographic techniques like HPLC and GC are well studied, but the influence of temperature on CCC solvent systems is hardly investigated. This paper presents the influence of temperature on several key parameters (partition coefficient, settling time, volume ratios) in the hydrophobic HSCCC solvent system hexane:dichloromethane:acetonitrile (30:11:18, v/v/v) used for the isolation of lycopene from tomato paste at 10, 15, 20 and 25 degrees C.

  17. NASA Iced Aerodynamics and Controls Current Research

    NASA Technical Reports Server (NTRS)

    Addy, Gene

    2009-01-01

    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  18. Wisdom Appliance Control System

    NASA Astrophysics Data System (ADS)

    Hendrick; Jheng, Jyun-Teng; Tsai, Chen-Chai; Liou, Jia-Wei; Wang, Zhi-Hao; Jong, Gwo-Jia

    2017-07-01

    Intelligent appliances wisdom involves security, home care, convenient and energy saving, but the home automation system is still one of the core unit, and also using micro-processing electronics technology to centralized and control the home electrical products and systems, such as: lighting, television, fan, air conditioning, stereo, it composed of front-controller systems and back-controller panels, user using front-controller to control command, and then through the back-controller to powered the device.

  19. The three dimensional current system during substorms

    NASA Astrophysics Data System (ADS)

    Gjerloev, Jesper; Hoffman, Robert

    2013-04-01

    We present results from a comprehensive statistical study of the ionospheric current system and it's coupling to the magnetosphere during classical bulge type substorms. We identified 116 substorms and determined the global ionospheric current system before and during the substorm using the SuperMAG initiative and global auroral images obtained by the Polar VIS Earth camera. The westward electrojet (WEJ) is centered around 65 / 72 deg magnetic latitude post-midnight / pre-midnight. Thus, we find a distinct latitudinal shift between the locations of the westward electrojet at these local times. The spatiotemporal behavior of the WEJ differs at these two local times. Attempting to explain this significant finding we propose two possible simple current systems. 1) The classical substorm current wedge, which is a single 3D current system. The distinct poleward kink and the different spatiotemporal behavior, however, present considerable complications for this solution. 2) A new 3D current system that consists of 2 wedge type systems: the classical substorm current wedge in the pre-midnight region and another current wedge in the post-midnight region. The latter maps to the inner magnetosphere. To support the empirical modeling we performed Biot and Savart integrations to simulate the ground perturbations. We present results of the statistical study, show typical events, results from the simulations, and discuss the implications for our understanding of the 3D current system associated with substorms.

  20. Current and Future Flight Operating Systems

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan

    2007-01-01

    This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.

  1. Stray current characteristics of DC transit systems

    SciTech Connect

    Moody, K.J. . Transportation Technologies Div.)

    1994-06-01

    The re-emergence and rapid growth of use of DC-powered transit systems around the world has led to the adaptation of three distinct operational modes: grounded, ungrounded, and diode grounded. Each of these modes causes widely varying amounts of stray current in systems using the running rails for negative return current. The advantages of each operational mode and the possible stray current effects on transit and adjacent utility structures are discussed.

  2. The bridge-type fault current controller--a new facts controller

    SciTech Connect

    Boenig, Heinrich J.; Mielke, C. H.; Burley, B. L.; Chen, Hong; Waynert, J. A.; Willis, J. O.

    2002-01-01

    The operation of a novel current controller, which can also function as a fault current limiter and as a solid-state ac circuit breaker, is presented. The controller, which consists of a thyristor bridge, an inductor, and an optional bias power supply, is installed in series with the voltage source and the load, For load current values smaller than a preset value, the inductor of the current controller presents no impedance to the ac current flow. For values higher than the preset current value, the inductor is switched automatically into the ac circuit and limits the amount of current flow. Theoretical results in the form of circuit simulations and experimental results with a single-phase unit, operating on a 13.7 kV three-phase system with peak short-circuit currents of 3140 Arms, are presented.

  3. The Power Systems Development Facility -- Current status

    SciTech Connect

    Pinkston, T.E.; Maxwell, J.D.; Leonard, R.F.; Vimalchand, P.

    1995-11-01

    Southern Company Services, Inc. (SCS) has entered into a cooperative agreement with the US Department of Energy (DOE) to build and operate the Power Systems Development Facility (PSDF), currently under construction in Wilsonville, Alabama, 40 miles southeast of Birmingham. The objectives of the PSDF are to develop advanced coal-fired power generation technologies through testing and evaluation of hot gas cleanup systems and other major components at the pilot scale. The performance of components will be assessed and demonstrated in an integrated mode of operation and at a component size readily scaleable to commercial systems. The facility will initially contain five modules: (1) a transport reactor gasifier and combustor, (2) an advanced pressurized fluidized-bed combustion (APFBC) system, (3) a particulate control module, (4) an advanced burner-gas turbine module, and (5) a fuel cell. The five modules will initially be configured into two separate test trains, the transport reactor train (2 tons/hour of coal feed) and the APFBC train (3 tons/hour of coal feed). In addition to a project description, the project design and construction status, preparations for operations, and project test plans are reported in this paper.

  4. Response Current from Spin-Vortex-Induced Loop Current System to Feeding Current

    NASA Astrophysics Data System (ADS)

    Morisaki, Tsubasa; Wakaura, Hikaru; Abou Ghantous, Michel; Koizumi, Hiroyasu

    2017-07-01

    The spin-vortex-induced loop current (SVILC) is a loop current generated around a spin-vortex formed by itinerant electrons. It is generated by a U(1) instanton created by the single-valued requirement of wave functions with respect to the coordinate, and protected by the topological number, "winding number". In a system with SVILCs, a macroscopic persistent current is generated as a collection of SVILCs. In the present work, we consider the situation where external currents are fed in the SVILC system and response currents are measured as spontaneous currents that flow through leads attached to the SVILC system. The response currents from SVILC systems are markedly different from the feeding currents in their directions and magnitude, and depend on the original current pattern of the SVILC system; thus, they may be used in the readout process in the recently proposed SVILC quantum computer, a quantum computer that utilizes SVILCs as qubits. We also consider the use of the response current to detect SVILCs.

  5. Control and dynamic systems

    SciTech Connect

    Leondes, C.T. . Dept. of Electrical Engineering)

    1991-01-01

    This volume covers topics related to analysis and control system techniques for electric power systems. Topics include: simulation of multimachine power system dynamics, computer simulation in electric distribution systems, transient stability assessment, dynamic stability analysis, and improved power system control techniques.

  6. Crawling the Control System

    SciTech Connect

    Theodore Larrieu

    2009-10-01

    Information about accelerator operations and the control system resides in various formats in a variety of places on the lab network. There are operating procedures, technical notes, engineering drawings, and other formal controlled documents. There are programmer references and API documentation generated by tools such as doxygen and javadoc. There are the thousands of electronic records generated by and stored in databases and applications such as electronic logbooks, training materials, wikis, and bulletin boards and the contents of text-based configuration files and log files that can also be valuable sources of information. The obvious way to aggregate all these sources is to index them with a search engine that users can then query from a web browser. Toward this end, the Google "mini" search appliance was selected and implemented because of its low cost and its simple web-based configuration and management. In addition to crawling and indexing electronic documents, the appliance provides an API that has been used to supplement search results with live control system data such as current values of EPICS process variables and graphs of recent data from the archiver.

  7. Current collection and current closure in the Tethered Satellite System

    NASA Technical Reports Server (NTRS)

    Drobot, Adam; Satyanarayana, P.; Chang, Chia-Lie; Tsang, Kang; Papadopoulos, Dennis

    1991-01-01

    Current collection and closure-path modeling are examined analytically with respect to the Tethered Satellite System (TSS). A particle-in cell code is compared with a one-dimensional unmagnetized fluid code to model the behavior of a positively charged satellite in the ionosphere. The morphology of the sheath and the sheath-region processes are thus examined, and the influence of ions leaving the sheath region is found to cause the attraction of an electron current that is 40 times greater than the steady state value. The enhancement is transient and enhances the acceleration of the electrons in the sheath. A set of modified MHD equations, including those for ion inertia, quasineutrality, and electron drift, is employed to model TSS current closure. Whistler modes are found to exist and can be excited as the TSS passes through the ionosphere. Important conclusions include a significant fluctuation level in the steady state sheath, an ion void which affects the electron population, and some long-lived electrons trapped in the settled sheath with respect to two directions.

  8. Current collection and current closure in the Tethered Satellite System

    NASA Technical Reports Server (NTRS)

    Drobot, Adam; Satyanarayana, P.; Chang, Chia-Lie; Tsang, Kang; Papadopoulos, Dennis

    1991-01-01

    Current collection and closure-path modeling are examined analytically with respect to the Tethered Satellite System (TSS). A particle-in cell code is compared with a one-dimensional unmagnetized fluid code to model the behavior of a positively charged satellite in the ionosphere. The morphology of the sheath and the sheath-region processes are thus examined, and the influence of ions leaving the sheath region is found to cause the attraction of an electron current that is 40 times greater than the steady state value. The enhancement is transient and enhances the acceleration of the electrons in the sheath. A set of modified MHD equations, including those for ion inertia, quasineutrality, and electron drift, is employed to model TSS current closure. Whistler modes are found to exist and can be excited as the TSS passes through the ionosphere. Important conclusions include a significant fluctuation level in the steady state sheath, an ion void which affects the electron population, and some long-lived electrons trapped in the settled sheath with respect to two directions.

  9. Control and dynamic systems

    SciTech Connect

    Leondes, C.T. . Dept. of Electrical Engineering)

    1991-01-01

    This book covers analysis and control system techniques for electric power systems. Topics include: concurrent processing in power system analysis, power system protection, voltage collapse, reliability techniques in large electric power systems, optimization in hydroelectric systems, and linear programming methods for optimal energy plant operation.

  10. Sustained currents in coupled diffusive systems

    NASA Astrophysics Data System (ADS)

    Larralde, Hernán; Sanders, David P.

    2014-08-01

    Coupling two diffusive systems may give rise to a nonequilibrium stationary state (NESS) with a non-trivial persistent, circulating current. We study a simple example that is exactly soluble, consisting of random walkers with different biases towards a reflecting boundary, modelling, for example, Brownian particles with different charge states in an electric field. We obtain analytical expressions for the concentrations and currents in the NESS for this model, and exhibit the main features of the system by numerical simulation.

  11. Heating and current drive systems for TPX

    SciTech Connect

    Swain, D.; Goranson, P.; Halle, A. von; Bernabei, S.; Greenough, N.

    1994-05-24

    The heating and current drive (H and CD) system proposed for the TPX tokamak will consist of ion cyclotron, neutral beam, and lower hybrid systems. It will have 17.5 MW of installed H and CD power initially, and can be upgraded to 45 MW. It will be used to explore advanced confinement and fully current-driven plasma regimes with pulse lengths of up to 1,000 s.

  12. Heating and current drive systems for TPX

    SciTech Connect

    Swain, D.; Goranson, P.; Halle, A. von; Bernabei, S.; Greenough, N.

    1994-11-01

    The heating and current drive (H&CD) system proposed for the TPX tokamak will consist of ion cyclotron, neutral beam, and lower hybrid systems. It will have 17.5 MW of installed H&CD power initially, and can be upgraded to 45 MW. It will be used to explore advanced confinement and fully current-driven plasma regimes with pulse lengths of up to 1000 s.

  13. SNS LINAC RF control system.

    SciTech Connect

    Regan, A. H.; Kwon, S. I.; Prokop, M. S.; Rohlev, T. S.; Thomson, D. W.; Ma, H.

    2002-01-01

    The SNS linac RF control system (RFCS) is currently in development. A system is being installed in a superconducting test stand at Jefferson Laboratory presently. Two systems will soon be installed at Oak Ridge National Laboratory (ORNL) and more are due to be installed early next year. The RF control system provides field control for the entire SNS linac, including an RFQ and 6 DTL cavities at 402.5 MHz as well as three different types of cavities at of 805 MHz: 4 CCL cavities, 36 medium beta superconducting (SRF) cavities, and 45 high beta superconducting cavities. In addition to field control, it provides cavity resonance control, and incorporates high power protect functions. This paper will discuss the RFCS design to date, with emphasis on the challenges of providing a universal digital system for use on each of the individual cavity types. The RF control system hardware has been designed to minimize the amount of changes for all of the applications. Through software/firmware modification and changing a couple of frequency-dependent filters, the same control system design can be used for all five cavity types. The SNS is the first to utilize SRF cavities for a pulsed high-current proton accelerator, thereby making RF control especially challenging.

  14. The ILC global control system.

    SciTech Connect

    Carwardine, J.; Arnold, N.; Lenkszus, F.; Saunders, C.; Rehlich, K.; Simrock, S.; Banerjee, B.; Chase, B.; Gottschalk, E.; Joireman, P.; Kasley, P.; Lackey, S.; McBride, P.; Pavlicek, V.; Patrick, J.; Votava, M.; Wolbers, S.; Furukawa, K.; Michizono, S.; Larsen , R .S.; Downing, R.; FNAL; DESY; KEK; SLAC

    2008-01-01

    The scale and performance parameters of the ILC require new thinking in regards to control system design. This design work has begun quite early in comparison to most accelerator projects, with the goal of uniquely high overall accelerator availability. Among the design challenges are high control system availability, precision timing and rf phase reference distribution, standardizing of interfaces, operability, and maintainability. We present the current state of the design and take a prospective look at ongoing research and development projects.

  15. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  16. Boiler control systems engineering

    SciTech Connect

    Gilman, J.

    2005-07-01

    The book provides in-depth coverage on how to safely and reliably control the firing of a boiler. Regardless of the capacity or fuel, certain fundamental control systems are required for boiler control. Large utility systems are more complex due to the number of burners and the overall capacity and equipment. This book covers engineering details on control systems and provides specific examples of boiler control including configuration and tuning. References to requirements are based on the 2004 NFPA 85 along with other ISA standards. Detailed chapters cover: Boiler fundamentals including piping and instrument diagrams (P&IDs) and a design basis checklist; Control of boilers, from strategies and bumpless transfer to interlock circuitry and final control elements; Furnace draft; Feedwater; Coal-fired boilers; Fuel and air control; Steam temperature; Burner management systems; Environment; and Control valve sizing. 2 apps.

  17. Digital Optical Control System

    NASA Astrophysics Data System (ADS)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.

    1988-09-01

    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  18. Intermittent Control Systems

    ERIC Educational Resources Information Center

    Montgomery, Thomas L.; And Others

    1975-01-01

    The technique of intermittent control systems for air quality control as developed and used by the Tennessee Valley Authority is investigated. Although controversial, all Tennessee Valley Authority sulfur dioxide elimination programs are scheduled to be operational this year. Existing or anticipated intermittent control systems are identified. (BT)

  19. Intermittent Control Systems

    ERIC Educational Resources Information Center

    Montgomery, Thomas L.; And Others

    1975-01-01

    The technique of intermittent control systems for air quality control as developed and used by the Tennessee Valley Authority is investigated. Although controversial, all Tennessee Valley Authority sulfur dioxide elimination programs are scheduled to be operational this year. Existing or anticipated intermittent control systems are identified. (BT)

  20. Robust current control-based generalized predictive control with sliding mode disturbance compensation for PMSM drives.

    PubMed

    Liu, Xudong; Zhang, Chenghui; Li, Ke; Zhang, Qi

    2017-09-06

    This paper addresses the current control of permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and disturbances. A generalized predictive current control method combined with sliding mode disturbance compensation is proposed to satisfy the requirement of fast response and strong robustness. Firstly, according to the generalized predictive control (GPC) theory based on the continuous time model, a predictive current control method is presented without considering the disturbance, which is convenient to be realized in the digital controller. In fact, it's difficult to derive the exact motor model and parameters in the practical system. Thus, a sliding mode disturbance compensation controller is studied to improve the adaptiveness and robustness of the control system. The designed controller attempts to combine the merits of both predictive control and sliding mode control, meanwhile, the controller parameters are easy to be adjusted. Lastly, the proposed controller is tested on an interior PMSM by simulation and experiment, and the results indicate that it has good performance in both current tracking and disturbance rejection. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A Superconducting transformer system for high current cable testing

    SciTech Connect

    Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

    2010-02-15

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  2. A superconducting transformer system for high current cable testing.

    PubMed

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  3. A novel microsatellite control system

    SciTech Connect

    Moore, K.R.; Frigo, J.R.; Tilden, M.W.

    1998-02-01

    The authors are researching extremely simple yet quite capable analog pulse-coded neural networks for ``smaller-faster-cheaper`` spacecraft attitude and control systems. The will demonstrate a prototype microsatellite that uses their novel control method to autonomously stabilize itself in the ambient magnetic field and point itself at the brightest available light source. Though still in design infancy, the ``Nervous Net`` controllers described could allow for space missions not currently possible given conventional satellite hardware. Result, prospects and details are presented.

  4. Commutated automatic gain control system

    NASA Technical Reports Server (NTRS)

    Yost, S. R.

    1982-01-01

    The commutated automatic gain control (AGC) system was designed and built for the prototype Loran-C receiver is discussed. The current version of the prototype receiver, the Mini L-80, was tested initially in 1980. The receiver uses a super jolt microcomputer to control a memory aided phase loop (MAPLL). The microcomputer also controls the input/output, latitude/longitude conversion, and the recently added AGC system. The AGC control adjusts the level of each station signal, such that the early portion of each envelope rise is about at the same amplitude in the receiver envelope detector.

  5. Ergatic dynamic control systems

    NASA Technical Reports Server (NTRS)

    Pavlov, V. V. (Editor); Drozdova, T. I. (Editor); Antomonov, Y. G. (Editor); Golego, V. N. (Editor); Ivakhnenko, A. G. (Editor); Meleshev, A. M. (Editor)

    1977-01-01

    Synthesis and analysis of systems containing a man in their control circuits are considered. The concepts of ergonomics and ergatic systems are defined, and tasks and problems of ergonomics are outlined. The synthesis of the structure of an astronautic ergatic organism is presented, as well as the synthesis of nonstationary ergatic systems. Problems of selecting the criteria for complex systems are considered, and the results are presented from a study of ergatic control systems with any degree of human participation.

  6. Predictive current control of permanent magnet synchronous motor based on linear active disturbance rejection control

    NASA Astrophysics Data System (ADS)

    Li, Kunpeng

    2017-01-01

    The compatibility problem between rapidity and overshooting in the traditional predictive current control structure is inevitable and difficult to solve by reason of using PI controller. A novel predictive current control (PCC) algorithm for permanent magnet synchronous motor (PMSM) based on linear active disturbance rejection control (LADRC) is presented in this paper. In order to displace PI controller, the LADRC strategy which consisted of linear state error feedback (LSEF) control algorithm and linear extended state observer (LESO), is designed based on the mathematic model of PMSM. The purpose of LSEF is to make sure fast response to load mutation and system uncertainties, and LESO is designed to estimate the uncertain disturbances. The principal structures of the proposed system are speed outer loop based on LADRC and current inner loop based on predictive current control. Especially, the instruction value of qaxis current in inner loop is derived from the control quantity which is designed in speed outer loop. The simulation is carried out in Matlab/Simulink software, and the results illustrate that the dynamic and static performances of proposed system are satisfied. Moreover the robust against model parameters mismatch is enhanced obviously.

  7. Robust Control Systems.

    DTIC Science & Technology

    1981-12-01

    Controller ................... 38 Sampled-Data Performance Analysis ............. 44 Doyle and Stein Technique in Discrete-Time Systems - 1...48 Doyle and Stein Technique in Discretd-Time System.s - 2 ................................. 50 Enhancing Robustness of... Technique Extended to Sampled-Data Controllers ................ 73 G715 Robustness Enhancement by Directly D"?C TAB E

  8. Stray current control in rehabilitating rail transit facilities

    SciTech Connect

    Fitzgerald, J.H. III; Bosma, R.; Paladines, F.

    1999-05-01

    An old Chicago direct current electrified railway yard and shop are being rehabilitated. Modern stray current control techniques are being introduced. Efficient rail operation and safety for the public and operating personnel are paramount. Metra is Chicago's commuter railroad, serving six counties in the metropolitan area. The Electric District, which was electrified in 1926, is a heavy rail system from downtown, serving the south side and suburbs. Operating on the same tracks from Randolph St., to Kensington is America's last electric interurban line, the Chicago South Shore and South Bend Railroad. All trains operate on 1,500-V direct current (DC) propulsion from an overhead catenary system, with the running rails as the negative return.

  9. Class A/AB second-generation current conveyor with controlled current gain

    NASA Astrophysics Data System (ADS)

    Fabre, A.; Mimeche, N.

    1994-08-01

    A new second-generation current conveyor whose current transfer from X to Z is controlled by a current, is introduced. It functions in class A/AB and uses a mixed translinear loop and two complementary current mirrors with controlled gain. SPICE simulation results, are given. They underline the high potential of the circuit.

  10. Control of Nonlinear Systems.

    DTIC Science & Technology

    1980-02-26

    6-7 C. Minimum Energy Regulators for Commutative Bilinear Systems .................... ........ 8-9 D. Control Law.s for Certain Aerospace...class of nonlinear systems (3,10]. (c) Minimum energy regulators for commutative bilinear systems [3,10]. (D) Control laws for certain aerospace...With Delay in Control," IEEE Trans. on Auto Contr., Vol. AC-20, pp. 702-704, 1975, and [3].) - !. 8 C. Minimum Energy Regulators for Commutative Bilinear

  11. Control Systems & LEED

    SciTech Connect

    Cooperman, Alissa; Dieckmann, John; Brodrick, James

    2012-06-01

    This article discusses the LEED guidelines (2009 v3), and corresponding points, that can only be attained using control systems for lighting, HVAC, and/or the entire building. Integrating and centralizing control systems allows for better building management, energy savings and can potentially award 29 points towards certification across the following categories: Sustainable Sites, Energy & Atmosphere, and Indoor Air Quality. In closing, potential energy savings are highlighted and the overall market potential for control systems are summarized.

  12. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  13. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  14. The ILC control system.

    SciTech Connect

    Carwardine, J.; Saunders, C.; Arnold, N.; Lenkszus, F.; Rehlich, K.; Simrock, S.; Banerjee, b.; Chase, B.; Gottschalk, E.; Joireman, P.; Kasley, P.; Lackey, S.; McBride, P.; Pavlicek, V.; Patrick, J.; Votava, M.; Wolbers, S.; Furukawa, K.; Michizono, S.; Larson, R.S.; Downing, R.; DESY; FNAL; SLAC

    2007-01-01

    Since the last ICALEPCS, a small multi-region team has developed a reference design model for a control system for the International Linear Collider as part of the ILC Global Design Effort. The scale and performance parameters of the ILC accelerator require new thinking in regards to control system design. Technical challenges include the large number of accelerator systems to be controlled, the large scale of the accelerator facility, the high degree of automation needed during accelerator operations, and control system equipment requiring 'Five Nines' availability. The R&D path for high availability touches the control system hardware, software, and overall architecture, and extends beyond traditional interfaces into the technical systems. Software considerations for HA include fault detection through exhaustive out-of-band monitoring and automatic state migration to redundant systems, while the telecom industry's emerging ATCA standard - conceived, specified, and designed for High Availability - is being evaluated for suitability for ILC front-end electronics.

  15. Predictability of the California Current System

    NASA Technical Reports Server (NTRS)

    Miller, Arthur J.; Chereskin, T.; Cornuelle, B. D.; Niiler, P. P.; Moisan, J. R.; Lindstrom, Eric (Technical Monitor)

    2001-01-01

    The physical and biological oceanography of the Southern California Bight (SCB), a highly productive subregion of the California Current System (CCS) that extends from Point Conception, California, south to Ensenada, Mexico, continues to be extensively studied. For example, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has sampled this region for over 50 years, providing an unparalleled time series of physical and biological data. However, our understanding of what physical processes control the large-scale and mesoscale variations in these properties is incomplete. In particular, the non-synoptic and relatively coarse spatial sampling (70km) of the hydrographic grid does not completely resolve the mesoscale eddy field (Figure 1a). Moreover, these unresolved physical variations exert a dominant influence on the evolution of the ecosystem. In recent years, additional datasets that partially sample the SCB have become available. Acoustic Doppler Current Profiler (ADCP) measurements, which now sample upper-ocean velocity between stations, and sea level observations along TOPEX tracks give a more complete picture of the mesoscale variability. However, both TOPEX and ADCP are well-sampled only along the cruise or orbit tracks and coarsely sampled in time and between tracks. Surface Lagrangian drifters also sample the region, although irregularly in time and space. SeaWiFS provides estimates of upper-ocean chlorophyll-a (chl-alpha), usually giving nearly complete coverage for week-long intervals, depending on cloud coverage. Historical ocean color data from the Coastal Zone Color Scanner (CZCS) has been used extensively to determine phytoplankton patterns and variability, characterize the primary production across the SCB coastal fronts, and describe the seasonal and interannual variability in pigment concentrations. As in CalCOFI, these studies described much of the observed structures and their variability over relatively large space and

  16. Control and optimization system

    DOEpatents

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  17. Intelligent Control Systems Research

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.

    1994-01-01

    Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.

  18. Integrated blending control system

    SciTech Connect

    Cogbill, R.B.; Dodd, T.J.; Heilman, P.W.; Heronemus, D.L.; Sears, L.R.; Berryman, L.N.; Baker, R.L.; Guffee, L.E.; Prucha, D.A.; Roberts, D.M.

    1989-07-25

    This patent describes a proppant control system. It comprises: storage bin means for storing particulate material; surge bin means for receiving a flow of the particulate material from the storage bin means; first conveyor means for providing a flow of particulate material to the surge bin means from the storage bin means; second conveyor means for transferring a controllable quantity of the particulate material from the surge bin means; and proppant control means. The control means include: first speed control means for remotely controlling the speed of the first conveyor means; and second speed control means for remotely controlling the speed of the second conveyor means.

  19. EVALUATION OF CONSTANT CURRENT WELD CONTROL FOR PINCH WELDING

    SciTech Connect

    Korinko, P; STANLEY, S; HOWARD, H

    2005-10-11

    Modern weld controllers typically use current to control the weld process. SRS uses a legacy voltage control method. This task was undertaken to determine if the improvements in the weld control equipment could be implemented to provide improvements to the process control. The constant current mode of operation will reduce weld variability by about a factor of 4. The constant voltage welds were slightly hotter than the constant current welds of the same nominal current. The control mode did not appear to adversely affect the weld quality, but appropriate current ranges need to be established and a qualification methodology for both welding and shunt calibrations needs to be developed and documented.

  20. LSST camera control system

    NASA Astrophysics Data System (ADS)

    Marshall, Stuart; Thaler, Jon; Schalk, Terry; Huffer, Michael

    2006-06-01

    The LSST Camera Control System (CCS) will manage the activities of the various camera subsystems and coordinate those activities with the LSST Observatory Control System (OCS). The CCS comprises a set of modules (nominally implemented in software) which are each responsible for managing one camera subsystem. Generally, a control module will be a long lived "server" process running on an embedded computer in the subsystem. Multiple control modules may run on a single computer or a module may be implemented in "firmware" on a subsystem. In any case control modules must exchange messages and status data with a master control module (MCM). The main features of this approach are: (1) control is distributed to the local subsystem level; (2) the systems follow a "Master/Slave" strategy; (3) coordination will be achieved by the exchange of messages through the interfaces between the CCS and its subsystems. The interface between the camera data acquisition system and its downstream clients is also presented.

  1. Alaska SAR Facility mass storage, current system

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chu, Eugene; Bicknell, Tom

    1993-01-01

    This paper examines the mass storage systems that are currently in place at the Alaska SAR Facility (SAF). The architecture of the facility will be presented including specifications of the mass storage media that are currently used and the performances that we have realized from the various media. The distribution formats and media are also discussed. Because the facility is expected to service future sensors, the new requirements and possible solutions to these requirements are also discussed.

  2. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems

    SciTech Connect

    Boellaard, Ronald; Rausch, Ivo; Beyer, Thomas; Delso, Gaspar; Yaqub, Maqsood; Quick, Harald H.; Sattler, Bernhard

    2015-10-15

    Purpose: Integrated positron emission tomography/magnetic resonance (PET/MR) systems derive the PET attenuation correction (AC) from dedicated MR sequences. While MR-AC performs reasonably well in clinical patient imaging, it may fail for phantom-based quality control (QC). The authors assess the applicability of different protocols for PET QC in multicenter PET/MR imaging. Methods: The National Electrical Manufacturers Association NU 2 2007 image quality phantom was imaged on three combined PET/MR systems: a Philips Ingenuity TF PET/MR, a Siemens Biograph mMR, and a GE SIGNA PET/MR (prototype) system. The phantom was filled according to the EANM FDG-PET/CT guideline 1.0 and scanned for 5 min over 1 bed. Two MR-AC imaging protocols were tested: standard clinical procedures and a dedicated protocol for phantom tests. Depending on the system, the dedicated phantom protocol employs a two-class (water and air) segmentation of the MR data or a CT-based template. Differences in attenuation- and SUV recovery coefficients (RC) are reported. PET/CT-based simulations were performed to simulate the various artifacts seen in the AC maps (μ-map) and their impact on the accuracy of phantom-based QC. Results: Clinical MR-AC protocols caused substantial errors and artifacts in the AC maps, resulting in underestimations of the reconstructed PET activity of up to 27%, depending on the PET/MR system. Using dedicated phantom MR-AC protocols, PET bias was reduced to −8%. Mean and max SUV RC met EARL multicenter PET performance specifications for most contrast objects, but only when using the dedicated phantom protocol. Simulations confirmed the bias in experimental data to be caused by incorrect AC maps resulting from the use of clinical MR-AC protocols. Conclusions: Phantom-based quality control of PET/MR systems in a multicenter, multivendor setting may be performed with sufficient accuracy, but only when dedicated phantom acquisition and processing protocols are used for

  3. Dynamics of the southern California current system

    NASA Astrophysics Data System (ADS)

    di Lorenzo, Emanuele

    The dynamics of seasonal to long-term variability of the Southern California Current System (SCCS) is studied using a four dimensional space-time analysis of the 52 year (1949--2000) California Cooperative Oceanic Fisheries Investigations (CalCOFI) hydrography combined with a sensitivity analysis of an eddy permitting primitive equation ocean model under various forcing scenarios. The dynamics of the seasonal cycle in the SCCS can be summarized as follows. In spring upwelling favorable winds force an upward tilt of the isopycnals along the coast (equatorward flow). Quasi-linear Rossby waves are excited by the ocean adjustment to the isopycnal displacement. In summer as these waves propagate offshore poleward flow develops at the coast and the Southern California Eddy (SCE) reaches its seasonal maxima. Positive wind stress curl in the Southern California Bight is important in maintaining poleward flow and locally reinforcing the SCE with an additional upward displacement of isopycnals through Ekman pumping. At the end of summer and throughout the fall instability processes within the SCE are a generating mechanism for mesoscale eddies, which fully develop in the offshore waters during winter. On decadal timescales a warming trend in temperature (1 C) and a deepening trend in the depth of the mean thermocline (20 m) between 1950 and 1998 are found to be primarily forced by large-scale decadal fluctuations in surface heat fluxes combined with horizontal advection by the mean currents. After 1998 the surface heat fluxes suggest the beginning of a period of cooling, which is consistent with colder observed ocean temperatures. The temporal and spatial distribution of the warming is coherent over the entire northeast Pacific Ocean. Salinity changes are decoupled from temperature and uncorrelated with indices of large-scale oceanic variability. Temporal modulation of southward horizontal advection by the California Current is the primary mechanism controlling local

  4. Low current extended duration spark ignition system

    DOEpatents

    Waters, Stephen Howard; Chan, Anthony Kok-Fai

    2005-08-30

    A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.

  5. Manual control of unstable systems

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Hogue, J. R.; Parseghian, Z.

    1986-01-01

    Under certain operational regimes and failure modes, air and ground vehicles can present the human operator with a dynamically unstable or divergent control task. Research conducted over the last two decades has explored the ability of the human operator to control unstable systems under a variety of circumstances. Past research is reviewed and human operator control capabilities are summarized. A current example of automobile directional control under rear brake lockup conditions is also reviewed. A control system model analysis of the driver's steering control task is summarized, based on a generic driver/vehicle model presented at last year's Annual Manual. Results from closed course braking tests are presented that confirm the difficulty the average driver has in controlling the unstable directional dynamics arising from rear wheel lockup.

  6. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  7. Novel microsatellite control system

    SciTech Connect

    Moore, K.R.; Frigo, J.R.; Tilden, M.W.

    1996-12-31

    The authors are developing extremely simple yet quite capable analog pulse-coded neural networks for smaller-faster-cheaper spacecraft attitude and control systems. They will demonstrate a prototype microsatellite that uses the novel control system to autonomously stabilize itself in the ambient magnetic field and point itself at the brightest available light source.

  8. Systems Modelling and Control.

    ERIC Educational Resources Information Center

    Kershenbaum, L. S.; And Others

    1980-01-01

    Describes aims, objectives content, and instructional strategies of a course in systems modelling and control at Imperial College, England. Major problem areas include multivariable control system design, estimation and filtering, and the design and use of adaptive "self-tuning" regulators. (Author/JN)

  9. The DESI instrument control system

    NASA Astrophysics Data System (ADS)

    Honscheid, K.; Elliott, A. E.; Beaufore, L.; Buckley-Geer, E.; Castander, F.; daCosta, L.; Fausti, A.; Kent, S.; Kirkby, D.; Neilsen, E.; Reil, K.; Serrano, S.; Slozar, A.

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) , a new instrument currently under construction for the Mayall 4m telescope at Kitt Peak National Observatory, will consist of a wide-field optical corrector with a 3.2 degree diameter field of view, a focal plane with 5,000 robotically controlled fiber positioners and 10 fiber fed broadband spectrographs. This article describes the design of the DESI instrument control system (ICS). The ICS coordinates fiber positioner operations, interfaces to the Mayall telescope control system, monitors operating conditions, reads out the 30 spectrograph CCDs and provides observer support and data quality monitoring.

  10. Analyzing Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.

  11. Analyzing Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.

  12. Cockpit control system

    NASA Technical Reports Server (NTRS)

    Lesnewski, David; Snow, Russ M.; Paufler, Dave; Schnieder, George; Athousake, Roxanne; Combs, Lisa

    1993-01-01

    The purpose of this project is to provide a detail design for the cockpit control system of the Viper PFT. The statement of work for this project requires provisions for control of the ailerons, elevator, rudder, and elevator trim. The system should provide adjustment for pilot stature, rigging, and maintenance. MIL-STD-1472 is used as a model for human factors criterion. The system is designed to the pilot limit loading outlined in FAR part 23.397. The general philosophy behind this design is to provide a simple, reliable control system which will withstand the daily abuse that is experienced in the training environment without excessive cost or weight penalties.

  13. Control system testing

    NASA Astrophysics Data System (ADS)

    Whittler, W. H.; Collart, R. E.

    1984-08-01

    A three stage process of ground testing of the Space Telescope Pointing Control System is used for verification prior to on-orbit operation. First, development tests are conducted in a laboratory environment using flight/engineering model control sensor and actuators configured with an engineering model of the flight computer and data management system breadboards. These development tests validate the results of computer simulations predicting control system performance. Integration tests bring together flight system elements and software interfaced to a software simulation of vehicle dynamics to confirm closed loop performance. The final ground test phase, flight systems testing, is conducted on the fully assembled Space Telescope, verifies interfaces with the Fine Guidance Sensors and includes a thermal vacuum testing period. During the final test phase, the Point Control System is exercised with the dynamics simulator running in real time.

  14. Tuberculosis control in prisons: current situation and research gaps.

    PubMed

    Dara, Masoud; Acosta, Colleen D; Melchers, Natalie V S Vinkeles; Al-Darraji, Haider A A; Chorgoliani, Dato; Reyes, Hernan; Centis, Rosella; Sotgiu, Giovanni; D'Ambrosio, Lia; Chadha, Sarabjit S; Migliori, Giovanni Battista

    2015-03-01

    Tuberculosis (TB) in penitentiary services (prisons) is a major challenge to TB control. This review article describes the challenges that prison systems encounter in TB control and provides solutions for the more efficient use of limited resources based on the three pillars of the post-2015 End TB Strategy. This paper also proposes research priorities for TB control in prisons based on current challenges. Articles (published up to 2011) included in a recent systematic review on TB control in prisons were further reviewed. In addition, relevant articles in English (published 1990 to May 2014) were identified by searching keywords in PubMed and Google Scholar. Article bibliographies and conference abstracts were also hand-searched. Despite being a serious cause of morbidity and mortality among incarcerated populations, many prison systems encounter a variety of challenges that hinder TB control. These include, but are not limited to, insufficient laboratory capacity and diagnostic tools, interrupted supply of medicines, weak integration between civilian and prison TB services, inadequate infection control measures, and low policy priority for prison healthcare. Governmental commitment, partnerships, and sustained financing are needed in order to facilitate improvements in TB control in prisons, which will translate to the wider community. Copyright © 2015 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  15. Direct current power delivery system and method

    DOEpatents

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  16. PRESSURE SYSTEM CONTROL

    DOEpatents

    Esselman, W.H.; Kaplan, G.M.

    1961-06-20

    The control of pressure in pressurized liquid systems, especially a pressurized liquid reactor system, may be achieved by providing a bias circuit or loop across a closed loop having a flow restriction means in the form of an orifice, a storage tank, and a pump connected in series. The subject invention is advantageously utilized where control of a reactor can be achieved by response to the temperature and pressure of the primary cooling system.

  17. Drone Control System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  18. Balanced bridge feedback control system

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  19. Power Systems Control Architecture

    SciTech Connect

    James Davidson

    2005-01-01

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  20. [Ultraminiature electrochemical and photoelectric current sources and their possible use for controlled induction of immune system activity and in other medical applications].

    PubMed

    Namiot, V A; Kliukin, L M; Kliukin, T V; Kuznetsov, A A

    2009-01-01

    The possibility of producing microparticles (10-1000 nm) suitable for the introduction into biological cells and tissues and producing the electrical field and electrical currents around them due to electrochemical and photoelectric processes is discussed. A number of phenomena related to antitumor immunity are discussed, and several hypotheses to explain them are invoked. Among them is the hypothesis that the antitumor activity of the immune system may be associated with some agents that are phagocytized by the cells of the macrophage series and promote their activation. Presumably, cell activation is triggered by the damage to phagosomes caused by the phagocytized agent. It is suggested to use for cell activation an artificial agent consisting of the above-mentioned electrically active microscopic particles. For example, it may consist of microscopic particles of semiconductor with zones of n- and p-type conductivity. Such particles act as microscopic photoelectric cells: when exposed to optical radiation, they generate a potential difference, which causes disruption and damage of phagosome membranes and results in the activation of immune cells.

  1. An Improved Model Predictive Current Controller of Switched Reluctance Machines Using Time-Multiplexed Current Sensor

    PubMed Central

    Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang

    2017-01-01

    This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554

  2. An Improved Model Predictive Current Controller of Switched Reluctance Machines Using Time-Multiplexed Current Sensor.

    PubMed

    Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang

    2017-05-17

    This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller.

  3. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  4. Desiccant humidity control system

    NASA Technical Reports Server (NTRS)

    Amazeen, J. (Editor)

    1973-01-01

    A regenerable sorbent system was investigated for controlling the humidity and carbon dioxide concentration of the space shuttle cabin atmosphere. The sorbents considered for water and carbon dioxide removal were silica gel and molecular sieves. Bed optimization and preliminary system design are discussed along with system optimization studies and weight penalites.

  5. Control Oriented System Identification

    DTIC Science & Technology

    1993-08-01

    The research goals for this grant were to obtain algorithms for control oriented system identification is to construct dynamical models of systems...and measured information. Algorithms for this type of nonlinear system identification have been given that produce models suitable for gain scheduled

  6. Load Control System Reliability

    SciTech Connect

    Trudnowski, Daniel

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  7. IGISOL control system modernization

    NASA Astrophysics Data System (ADS)

    Koponen, J.; Hakala, J.

    2016-06-01

    Since 2010, the IGISOL research facility at the Accelerator laboratory of the University of Jyväskylä has gone through major changes. Comparing the new IGISOL4 facility to the former IGISOL3 setup, the size of the facility has more than doubled, the length of the ion transport line has grown to about 50 m with several measurement setups and extension capabilities, and the accelerated ions can be fed to the facility from two different cyclotrons. The facility has evolved to a system comprising hundreds of manual, pneumatic and electronic devices. These changes have prompted the need to modernize also the facility control system taking care of monitoring and transporting the ion beams. In addition, the control system is also used for some scientific data acquisition tasks. Basic guidelines for the IGISOL control system update have been remote control, safety, usability, reliability and maintainability. Legacy components have had a major significance in the control system hardware and for the renewed control system software the Experimental Physics and Industrial Control System (EPICS) has been chosen as the architectural backbone.

  8. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.

    2014-01-01

    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  9. SSRF Beamline Control System

    SciTech Connect

    Zheng, L. F.; Liu, P.; Zhang, Z. H.; Hu, C.; Mi, Q. R.; Wu, Y. F.; Gong, P. R.; Zhu, Z. X.; Li, Z.

    2010-06-23

    There are seven beamlines in the Phase-I of SSRF. Five of them are equipped with Insertion Devices, while two with Bending Magnets. The beamline control system is based on the standard hardware and software architecture. The VME(PowerPC) with VxWorks is used for motion control, while the personal computers with Scientific Linux are the front end controllers of equipment protection and personnel safety systems. The control software is developed under EPICS which makes various experimental programs of Blu-Ice, LabView, VC and SPEC conveniently access Monochromators, mirror chambers and other optical components.

  10. What is system control?

    SciTech Connect

    Hirst, E.; Kirby, B.

    1999-11-01

    Just as the aviation industry needs air-traffic controllers to manage the movement of airplanes for safety and commerce, so too, the electricity industry requires system operators. The electrical-system-control functions encompass a range of activities that support commercial transactions and maintain bulk-power reliability. As part of a project for the Edison Electric Institute, the authors examined the functions and costs of system control and the issues that need to be resolved in a restructured electricity industry (Hirst and Kirby 1998).

  11. Cylindrical gravity currents in a rotating system

    NASA Astrophysics Data System (ADS)

    Wu, Ching-Sen; Dai, Albert

    2016-11-01

    This study aims at investigating the dynamical processes in the formation of stable cylindrical gravity currents, by a full-depth lock release, in a rotating system conducted by direct numerical simulations. The simulations reproduce the major features observed in the laboratory and provide more detailed flow information. Both the qualitative and quantitative measures are provided through the flow patterns and the predicted energy budgets. At the initial stage, during tenth of a revolution of the system, the Kelvin-Helmholtz vortices form and the flow structure maintain nearly axisymmetric. Afterwards, three-dimensionality of flow quickly develops and the outer rim of current breaks away from the body, which gives rise to the maximum dissipation rate in the system. The detached outer rim continues to propagate outward until a maximum radius of propagation is attained. Then the body of current exhibits a regularly contraction-relaxation motion in a period, the energy is transformed back and forth between potential energy and kinetic energy. With the use of high-resolution of numerical computations, the formation of lobe-and-cleft structure and swirling strength for the rotating gravity currents are clearly observed.

  12. Plasma current resonance in asymmetric toroidal systems

    SciTech Connect

    Hazeltine, R. D.; Catto, Peter J.

    2015-09-15

    The well-known singularity in the magnetic differential equation for plasma current in an asymmetric toroidal confinement system is resolved by including in the pressure tensor corrections stemming from finite Larmor radius. The result provides an estimate of the amplitude of spikes in the parallel current that occur on rational magnetic surfaces. Resolution of the singularity is shown to depend on both the ambipolarity condition—the requirement of zero surface-averaged radial current—and the form of the magnetic differential equation near the rational surface.

  13. Reduction of Return Current Noise by Energy-Compensating Active Control

    NASA Astrophysics Data System (ADS)

    Azuma, Satoshi; Yamasakit, Hisanori; Itoh, Daisuke; Maruyama, Takafumi

    A newly proposed Energy-Compensating Active Control is implemented to reduce the return current noise which is caused by inverter-driven electric car systems. The Energy-Compensating Active Control detects the energy charged at the filter capacitor, reduces the energy and current of the noise frequency component by simple feedback loop incorporated with the conventional motor torque controller. No additional sensors or circuit arrangements are necessary, therefore the return current can be attenuated effectively without any further cost. The return current with an inverter system is measured using a current probe and a FFT analyzer, and it is shown that the 25Hz noise current is reduced by up to 10dB with the control. The results explain that the low frequency return current noise can be attenuated with the simple control scheme, which would expectedly reduce the size of filter reactors and capacitors to meet with the current limit level of signaling system's track relays.

  14. Current Technology for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Compiler)

    1992-01-01

    Interest in thermal protection systems for high-speed vehicles is increasing because of the stringent requirements of such new projects as the Space Exploration Initiative, the National Aero-Space Plane, and the High-Speed Civil Transport, as well as the needs for improved capabilities in existing thermal protection systems in the Space Shuttle and in turbojet engines. This selection of 13 papers from NASA and industry summarizes the history and operational experience of thermal protection systems utilized in the national space program to date, and also covers recent development efforts in thermal insulation, refractory materials and coatings, actively cooled structures, and two-phase thermal control systems.

  15. Survey of Digital Feedback Systems in High Current Storage Rings

    SciTech Connect

    Teytelman, Dmitry

    2003-06-06

    In the last decade demand for brightness in synchrotron light sources and luminosity in circular colliders led to construction of multiple high current storage rings. Many of these new machines require feedback systems to achieve design stored beam currents. In the same time frame the rapid advances in the technology of digital signal processing allowed the implementation of these complex feedback systems. In this paper I concentrate on three applications of feedback to storage rings: orbit control in light sources, coupled-bunch instability control, and low-level RF control. Each of these applications is challenging in areas of processing bandwidth, algorithm complexity, and control of time-varying beam and system dynamics. I will review existing implementations as well as comment on promising future directions.

  16. MULTIPLE ECH LAUNCHER CONTROL SYSTEM

    SciTech Connect

    GREEN,M.T; PONCE,D; GRUNLOH,H.J; ELLIS,R.A; GROSNICKLE,W.H; HUMPHREY,R.L

    2003-10-01

    OAK-B135 The addition of new, high power gyrotrons to the heating and current drive arsenal at DIII-D, required a system upgrade for control of fully steerable ECH Launchers. Each launcher contains two pointing mirrors with two degrees of mechanical freedom. The two flavors of motion are called facet and tilt. Therefore up to four channels of motion per launcher need to be controlled. The system utilizes absolute encoders to indicate mirror position and therefore direction of the microwave beam. The launcher movement is primarily controlled by PLC, but future iterations of design, may require this control to be accomplished by a CPU on fast bus such as Compact PCI. This will be necessary to accomplish real time position control. Safety of equipment and personnel is of primary importance when controlling a system of moving parts. Therefore multiple interlocks and fault status enunciators have been implemented. This paper addresses the design of a Multiple ECH Launcher Control System, and characterizes the flexibility needed to upgrade to a real time position control system in the future.

  17. Weld analysis and control system

    NASA Technical Reports Server (NTRS)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  18. Remotely controllable mixing system

    NASA Technical Reports Server (NTRS)

    Belew, R. R. (Inventor)

    1986-01-01

    This invention relates to a remotely controllable mixing system in which a plurality of mixing assemblies are arranged in an annular configuration, and wherein each assembly employs a central chamber and two outer, upper and lower chambers. Valves are positioned between chambers, and these valves for a given mixing assembly are operated by upper and lower control rotors, which in turn are driven by upper and lower drive rotors. Additionally, a hoop is compressed around upper control rotors and a hoop is compressed around lower control rotors to thus insure constant frictional engagement between all control rotors and drive rotors. The drive rollers are driven by a motor.

  19. Pain control following inguinal herniorrhaphy: current perspectives

    PubMed Central

    Bjurstrom, Martin F; Nicol, Andrea L; Amid, Parviz K; Chen, David C

    2014-01-01

    Inguinal hernia repair is one of the most common surgeries performed worldwide. With the success of modern hernia repair techniques, recurrence rates have significantly declined, with a lower incidence than the development of chronic postherniorrhaphy inguinal pain (CPIP). The avoidance of CPIP is arguably the most important clinical outcome and has the greatest impact on patient satisfaction, health care utilization, societal cost, and quality of life. The etiology of CPIP is multifactorial, with overlapping neuropathic and nociceptive components contributing to this complex syndrome. Treatment is often challenging, and no definitive treatment algorithm exists. Multidisciplinary management of this complex problem improves outcomes, as treatment must be individualized. Current medical, pharmacologic, interventional, and surgical management strategies are reviewed. PMID:24920934

  20. Electrical current measurement system for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Heller, S.; Mueller, F.; Kroener, M.; Woias, P.

    2016-11-01

    The measurement of the dynamic power consumption is an important task in the field of energy harvesting regarding the characterization and optimization of low power systems. This paper reports on the development and characterization of a computer-controlled measurement system for the measurement of the dynamic current consumption of low power systems in a range from 100 nA to 100 μA, with a time resolution down to 1 μs.

  1. Document for 270 Voltage Direct Current (270 V dc) System

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The paper presents the technical design and application information established by the SAE Aerospace Recommended Practice concerning the generation, distribution, control, and utilization of aircraft 270 V dc electrical power systems and support equipment. Also presented are references and definitions making it possible to compare various electrical systems and components. A diagram of the generic 270 V Direct Current High-Voltage Direct System is included.

  2. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    Digital techniques are discussed for application to the servo and control systems of large antennas. The tracking loop for an antenna at a STADAN tracking site is illustrated. The augmentation mode is also considered.

  3. Linear Hereditary Control Systems,

    DTIC Science & Technology

    Relationships between external and internal models for systems with time lags are discussed. The use of various canonical forms for the models in solving optimal control problems is considered. (Author)

  4. Review of Current Nuclear Vacuum System Technologies

    SciTech Connect

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  5. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  6. Rip current monitoring using GPS buoy system

    NASA Astrophysics Data System (ADS)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was

  7. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  8. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  9. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...

  10. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...

  11. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...

  12. Current status of aggressive blood pressure control

    PubMed Central

    Chrysant, Steven G

    2011-01-01

    The concept of treatment of hypertension has gone through wide swings over the years. From ignoring blood pressure (BP) treatment initially, to aggressive BP control recently. As newer and more effective drugs were developed, it was possible to lower BP to very low levels. However, recent studies have shown that aggressive BP control might not be in the best interest of the patient. Low levels of diastolic BP (DBP) have been associated with increased cardiovascular events, a situation known as the J-curve effect. This has been seen mostly with low DBP, since the coronary arteries are perfused during the diastolic phase of the cardiac cycle. Due to an autoregulatory mechanism, the heart is protected against wide fluctuations of BP. However, the presence of coronary heart disease, hypertension, especially with left ventricular hypertrophy, shift the curve to higher BP levels and makes the heart more liable to DBP fluctuations. The J-Curve effect has been reported by most investigators, but not by others. Recently, a J-Curve effect has been observed with systolic BP (SBP), as well. In contrast to the heart, the brain is very infrequently subjected to J-curve effect, and in contrast to the heart, the brain’s blood flow autoregulation depends mostly on the SBP. A Medline search of the English literature on this subject was conducted between 1992 and 2010 and 11 pertinent articles were selected. These articles with collateral literature will be discussed in this concise review. PMID:21499494

  13. Current status of aggressive blood pressure control.

    PubMed

    Chrysant, Steven G

    2011-03-26

    The concept of treatment of hypertension has gone through wide swings over the years. From ignoring blood pressure (BP) treatment initially, to aggressive BP control recently. As newer and more effective drugs were developed, it was possible to lower BP to very low levels. However, recent studies have shown that aggressive BP control might not be in the best interest of the patient. Low levels of diastolic BP (DBP) have been associated with increased cardiovascular events, a situation known as the J-curve effect. This has been seen mostly with low DBP, since the coronary arteries are perfused during the diastolic phase of the cardiac cycle. Due to an autoregulatory mechanism, the heart is protected against wide fluctuations of BP. However, the presence of coronary heart disease, hypertension, especially with left ventricular hypertrophy, shift the curve to higher BP levels and makes the heart more liable to DBP fluctuations. The J-Curve effect has been reported by most investigators, but not by others. Recently, a J-Curve effect has been observed with systolic BP (SBP), as well. In contrast to the heart, the brain is very infrequently subjected to J-curve effect, and in contrast to the heart, the brain's blood flow autoregulation depends mostly on the SBP. A Medline search of the English literature on this subject was conducted between 1992 and 2010 and 11 pertinent articles were selected. These articles with collateral literature will be discussed in this concise review.

  14. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  15. Liquid Level Control System.

    DTIC Science & Technology

    A system for controlling liquid flow from an inlet into a tank comprising a normally closed poppet valve controlled by dual pressure chambers each...containing a diaphragm movable by the pressure of the liquid in the inlet to cause the valve to close. Pressure against the diaphragms is relieved by

  16. Rotor control system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Maciolek, Joseph R. (Inventor)

    1987-01-01

    A helicopter rotor control system (13) including a stop azimuth controller (32) for establishing the value of a deceleration command (15') to a deceleration controller (23), a transition azimuth predictor (41) and a position reference generator (55), which are effective during the last revolution of said rotor (14) to establish a correction indication (38) to adjust the deceleration command (15') to ensure that one of the rotor blades (27) stops at a predetermined angular position.

  17. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System

    PubMed Central

    Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  18. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    PubMed

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  19. High-current plasma contactor neutralizer system

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.

    1989-01-01

    A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.

  20. Current therapy of systemic sclerosis (scleroderma).

    PubMed

    Müller-Ladner, U; Benning, K; Lang, B

    1993-04-01

    Treatment of systemic sclerosis (scleroderma) presents a challenge to both the patient and the physician. Established approaches include long-term physiotherapy, disease-modifying agents such as D-penicillamine, and treatment of organ involvement. These efforts are often unsatisfactory since the results are poor. However, recent advances include treatment of Raynaud's phenomenon (plasmapheresis, stanozolol, and prostacyclin analogues), scleroderma renal crisis (angiotensin-converting enzyme inhibitors), and gastric hypomotility (cisapride). This article covers the current approaches to the disease-modifying therapy including those related to the function of collagen-producing fibroblasts, vascular alterations, and the cellular and humoral immune system, as well as treatment of involved organs.

  1. An expert system for restructurable control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan

    1988-01-01

    Work in progress on an expert system which restructures and tunes control systems on-line is presented. The expert system coordinates the different methods for redesigning and implementing the control strategies due to system changes. The research is directed toward aircraft and jet engine applications. The implementation is written in LISP and is currently running on a special purpose LISP machine.

  2. Current advances in systems and integrative biology

    PubMed Central

    Robinson, Scott W.; Fernandes, Marco; Husi, Holger

    2014-01-01

    Systems biology has gained a tremendous amount of interest in the last few years. This is partly due to the realization that traditional approaches focusing only on a few molecules at a time cannot describe the impact of aberrant or modulated molecular environments across a whole system. Furthermore, a hypothesis-driven study aims to prove or disprove its postulations, whereas a hypothesis-free systems approach can yield an unbiased and novel testable hypothesis as an end-result. This latter approach foregoes assumptions which predict how a biological system should react to an altered microenvironment within a cellular context, across a tissue or impacting on distant organs. Additionally, re-use of existing data by systematic data mining and re-stratification, one of the cornerstones of integrative systems biology, is also gaining attention. While tremendous efforts using a systems methodology have already yielded excellent results, it is apparent that a lack of suitable analytic tools and purpose-built databases poses a major bottleneck in applying a systematic workflow. This review addresses the current approaches used in systems analysis and obstacles often encountered in large-scale data analysis and integration which tend to go unnoticed, but have a direct impact on the final outcome of a systems approach. Its wide applicability, ranging from basic research, disease descriptors, pharmacological studies, to personalized medicine, makes this emerging approach well suited to address biological and medical questions where conventional methods are not ideal. PMID:25379142

  3. Current advances in systems and integrative biology.

    PubMed

    Robinson, Scott W; Fernandes, Marco; Husi, Holger

    2014-08-01

    Systems biology has gained a tremendous amount of interest in the last few years. This is partly due to the realization that traditional approaches focusing only on a few molecules at a time cannot describe the impact of aberrant or modulated molecular environments across a whole system. Furthermore, a hypothesis-driven study aims to prove or disprove its postulations, whereas a hypothesis-free systems approach can yield an unbiased and novel testable hypothesis as an end-result. This latter approach foregoes assumptions which predict how a biological system should react to an altered microenvironment within a cellular context, across a tissue or impacting on distant organs. Additionally, re-use of existing data by systematic data mining and re-stratification, one of the cornerstones of integrative systems biology, is also gaining attention. While tremendous efforts using a systems methodology have already yielded excellent results, it is apparent that a lack of suitable analytic tools and purpose-built databases poses a major bottleneck in applying a systematic workflow. This review addresses the current approaches used in systems analysis and obstacles often encountered in large-scale data analysis and integration which tend to go unnoticed, but have a direct impact on the final outcome of a systems approach. Its wide applicability, ranging from basic research, disease descriptors, pharmacological studies, to personalized medicine, makes this emerging approach well suited to address biological and medical questions where conventional methods are not ideal.

  4. The GIANO control software system

    NASA Astrophysics Data System (ADS)

    Rossetti, Emanuel; Oliva, Ernesto; Origlia, Livia

    2008-08-01

    GIANO is an ultra-stable IR echelle spectrometer, optimized for both low (R~=400) and high (R~=50,000) resolution, that will be installed at the Nasmyth-B focus of the Italian national telescope (TNG). At the beginning of this year the assembling phase of GIANO has started, at the Infrared Laboratory of INAFArcetri, and is currently in progress. We describe, here, the general control software structure of the instrument concerning both the user interface and the controls of all subsystems. We present also the software interface which provides the communication with the cryogenic system of the instrument and is handled by means of a Programmable Logic Controller.

  5. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    The application of small computers using digital techniques for operating the servo and control system of large antennas is discussed. The advantages of the system are described. The techniques were evaluated with a forty foot antenna and the Sigma V computer. Programs have been completed which drive the antenna directly without the need for a servo amplifier, antenna position programmer or a scan generator.

  6. ACCESS Pointing Control System

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James; Trauger, John; Moody, Dwight; Egerman, Robert; Vallone, Phillip; Elias, Jason; Hejal, Reem; Camelo, Vanessa; Bronowicki, Allen; O'Connor, David; Partrick, Richard; Orzechowski, Pawel; Spitter, Connie; Lillie, Chuck

    2010-01-01

    ACCESS (Actively-Corrected Coronograph for Exoplanet System Studies) was one of four medium-class exoplanet concepts selected for the NASA Astrophysics Strategic Mission Concept Study (ASMCS) program in 2008/2009. The ACCESS study evaluated four major coronograph concepts under a common space observatory. This paper describes the high precision pointing control system (PCS) baselined for this observatory.

  7. ACCESS Pointing Control System

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James; Trauger, John; Moody, Dwight; Egerman, Robert; Vallone, Phillip; Elias, Jason; Hejal, Reem; Camelo, Vanessa; Bronowicki, Allen; hide

    2010-01-01

    ACCESS (Actively-Corrected Coronograph for Exoplanet System Studies) was one of four medium-class exoplanet concepts selected for the NASA Astrophysics Strategic Mission Concept Study (ASMCS) program in 2008/2009. The ACCESS study evaluated four major coronograph concepts under a common space observatory. This paper describes the high precision pointing control system (PCS) baselined for this observatory.

  8. Apparatus for electrode current control in linear MHD generators

    DOEpatents

    Demirjian, Ara M.; Solbes, Albert

    1984-01-01

    Apparatus for controlling a plurality of opposing, electrode, direct-currents at pre-set locations across a channel that comprises a converter for converting each electrode current into first and second periodic control signals which are 180.degree. out of phase with respect to each other and which have equal magnitudes corresponding to the magnitude of the associated electrode current; and couplers for magnetically coupling individual ones of the first control signals and for magnetically coupling individual ones of the second signals such that the corresponding electrode currents are equalized or rendered proportional by balancing the same in the same or constant ratios in accordance with the locations of the electrode currents.

  9. CNEOST Control Software System

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhao, H. B.; Xia, Y.; Lu, H.; Li, B.

    2015-03-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the message passing mechanism via WebSocket protocol, and improves its flexibility, expansibility, and scalability. The user interface with responsive web design realizes the remote operating under both desktop and mobile devices. The stable operating of software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.

  10. Information Survivability Control Systems

    DTIC Science & Technology

    1999-01-01

    interfaces with higher-level (e.g., Federal Reserve ) and lower-level (e.g., branch) control systems. A hierarchical structure is natural to support...level hierarchical banking system with branch banks at the leaves, money-center banks in the middle, and the Federal Reserve system at the root...center in question, then the check deposit request is routed there. If not, then the check must be routed through the Federal Reserve . Checks for small

  11. The ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  12. Analysis of modern optimal control theory applied to plasma position and current control in TFTR

    SciTech Connect

    Firestone, M.A.

    1981-09-01

    The strong compression TFTR discharge has been segmented into regions where linear dynamics can approximate the plasma's interaction with the OH and EF power supply systems. The dynamic equations for these regions are utilized within the linear optimal control theory framework to provide active feedback gains to control the plasma position and current. Methods are developed to analyze and quantitatively evaluate the quality of control in a nonlinear, more realistic simulation. Tests are made of optimal control theory's assumptions and requirements, and the feasibility of this method for TFTR is assessed.

  13. High-side Digitally Current Controlled Biphasic Bipolar Microstimulator

    PubMed Central

    Hanson, Timothy L.; Ómarsson, Björn; O'Doherty, Joseph E.; Peikon, Ian D.; Lebedev, Mikhail; Nicolelis, Miguel AL.

    2012-01-01

    Electrical stimulation of nervous tissue has been extensively used as both a tool in experimental neuroscience research and as a method for restoring of neural functions in patients suffering from sensory and motor disabilities. In the central nervous system, intracortical microstimulation (ICMS) has been shown to be an effective method for inducing or biasing perception, including visual and tactile sensation. ICMS also holds promise for enabling brain-machine-brain interfaces (BMBIs) by directly writing information into the brain. Here we detail the design of a high-side, digitally current-controlled biphasic, bipolar microstimulator, and describe the validation of the device in vivo. As many applications of this technique, including BMBIs, require recording as well as stimulation, we pay careful attention to isolation of the stimulus channels and parasitic current injection. With the realized device and standard recording hardware - without active artifact rejection - we are able to observe stimulus artifacts of less than 2 ms in duration. PMID:22328184

  14. High-side digitally current controlled biphasic bipolar microstimulator.

    PubMed

    Hanson, Timothy L; Ómarsson, Björn; O'Doherty, Joseph E; Peikon, Ian D; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2012-05-01

    Electrical stimulation of nervous tissue has been extensively used as both a tool in experimental neuroscience research and as a method for restoring of neural functions in patients suffering from sensory and motor disabilities. In the central nervous system, intracortical microstimulation (ICMS) has been shown to be an effective method for inducing or biasing perception, including visual and tactile sensation. ICMS also holds promise for enabling brain-machine-brain interfaces (BMBIs) by directly writing information into the brain. Here we detail the design of a high-side, digitally current-controlled biphasic, bipolar microstimulator, and describe the validation of the device in vivo. As many applications of this technique, including BMBIs, require recording as well as stimulation, we pay careful attention to isolation of the stimulus channels and parasitic current injection. With the realized device and standard recording hardware-without active artifact rejection-we are able to observe stimulus artifacts of less than 2 ms in duration.

  15. Symmetry and the thermodynamics of currents in open quantum systems

    NASA Astrophysics Data System (ADS)

    Manzano, Daniel; Hurtado, Pablo I.

    2014-09-01

    Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.

  16. Field-Aligned Current Systems at Mercury

    NASA Astrophysics Data System (ADS)

    Heyner, Daniel; Exner, Willi

    2017-04-01

    Mercury exhibits a very dynamic magnetosphere, which is partially due to strong dayside reconnection and fast magnetospheric convection. It has been shown that dayside reconnection occurs even on low magnetic shear angles across the magnetopause. This drives quasi-steady region 1 field-aligned currents (FAC) that are observable in in-situ MESSENGER data. Here, the structure of the Hermean FAC-system is discussed and compared to the terrestrial counterpart. Due to the lack of a significant ionosphere at Mercury, it has to be examined how much of the poloidal FAC is reflected back to the magnetosphere, closed via toroidal currents in the planetary interior or via Pedersen currents in the tenuous exosphere. This investigation gives insights into the planetary conductivity structure as well as the exospheric plasma densities. Furthermore, it will be examined how much the only partially developed ring current at Mercury produces possible region 2 FAC signatures. We conclude with requirements to simulations that are needed to forecast the FAC structure on the southern hemisphere that will be closely studied with the upcoming BepiColombo mission.

  17. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  18. Improved control strategy for PI-R current of DFIG considering voltage and current harmonics compensation

    NASA Astrophysics Data System (ADS)

    Song, S. Y.; Liu, Q. H.; Zhao, Y. N.; Liu, S. Y.

    2016-08-01

    With the rapid development of wind power generation, the related research of wind power control and integration issues has attracted much attention, and the focus of the research are shifting away from the ideal power grid environment to the actual power grid environment. As the main stream wind turbine generator, a doubly-fed induction generator (DFIG) is connected to the power grid directly by its stator, so it is particularly sensitive to the power grid. This paper studies the improvement of DFIG control technology in the power grid harmonic environment. Based on the DFIG dynamic model considering the power grid harmonic environment, this paper introduces the shortcomings of the common control strategy of DFIG, and puts forward the enhanced method. The decoupling control of the system is realized by compensating the coupling between the rotor harmonic voltage and harmonic current, improving the control performance. In addition, the simulation experiments on PSCAD/EMTDC are carried out to verify the correctness and effectiveness of the improved scheme.

  19. LSST control system

    NASA Astrophysics Data System (ADS)

    Schumacher, Germán; Warner, Michael; Krabbendam, Victor

    2006-06-01

    The Large Synoptic Survey Telescope (LSST) will be a large, wide-field ground-based telescope designed to obtain sequential images of the entire visible sky every few nights. The LSST, in spite of its large field of view and short 15 second exposures, requires a very accurate pointing and tracking performance. The high efficiency specified for the whole system implies that observations will be acquired in blind pointing mode and tracking demands calculated from blind pointing as well. This paper will provide a high level overview of the LSST Control System (LCS) and details of the Telescope Control System (TCS), explaining the characteristics of the system components and the interactions among them. The LCS and TCS will be designed around a distributed architecture to maximize the control efficiency and to support the highly robotic nature of the LSST System. In addition to its control functions, the LCS will capture, organize and store system wide state information, to make it available for monitoring, evaluation and calibration processes. An evaluation of the potential communications middleware software to be utilized for data transport, is also included.

  20. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  1. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  2. Current technology for thermal protection systems

    SciTech Connect

    Scotti, S.J.

    1992-10-01

    Interest in thermal protection systems for high-speed vehicles is increasing because of the stringent requirements of such new projects as the Space Exploration Initiative, the National Aero-Space Plane, and the High-Speed Civil Transport, as well as the needs for improved capabilities in existing thermal protection systems in the Space Shuttle and in turbojet engines. This selection of 13 papers from NASA and industry summarizes the history and operational experience of thermal protection systems utilized in the national space program to date, and also covers recent development efforts in thermal insulation, refractory materials and coatings, actively cooled structures, and two-phase thermal control systems. Separate abstracts were prepared for papers of this report.

  3. Current control in inertial Brownian motors by noise recycling

    NASA Astrophysics Data System (ADS)

    Jia, Zheng-Lin; Li, Kai-Yi; Li, Chun; Yang, Chun-Yan; Mei, Dong-Cheng

    2015-03-01

    The transport properties of an inertial Brownian motor were numerically studied in the presence of recycled noise, which is obtained by re-injecting a fraction of the primary white noise after a processing time, being introduced into the system in a multiplicative way. The simulation results indicate that various parameters such as the external driving force, the friction coefficient, the mass of the particle, the recycling strength, and the delay time can induce the current reversal phenomenon when the sign of the recycling strength is in agreement with the sign of the external bias force, otherwise the current reversal cannot be observed. Additionally, the asymptotic mean velocity as a function of the delay time of the recycled noise always shows a resonance-like behavior with the presence of a maximum current. These results demonstrate that the delay time and the recycling strength of the recycled noise can be used as the feasible and flexible control parameters for the amplitude and direction of the current.

  4. Interdisciplinary modeling of the California Current System

    NASA Astrophysics Data System (ADS)

    Edwards, C. A.; Veneziani, M.; Broquet, G.; Goebel, N.; Moore, A. M.; Zehr, J. P.; Follows, M.

    2008-12-01

    The California Current System (CCS) refers to the collection of poleward and equatorward surface and subsurface currents that extends along the west coast of North America and a thousand kilometers offshore where it merges with the larger Pacific circulation. It exhibits strong seasonal fluctuations and rich mesoscale variability and supports a productive and diverse ecosystem with geographically varying communities. We report on the development and evaluation of an interdisciplinary modeling effort for this region. For the physical model, we use the Regional Ocean Modeling System, driven at the surface by output from the Coupled Ocean Atmosphere Mesoscale Prediction System and coupled at the lateral boundaries to GODAE- derived fields from the project, Estimating the Circulation and Climate of the Ocean. The forward physical model is evaluated using in situ hydrographic measurements and satellite-derived data. An incremental, strong-constraint, 4-dimensional variational approach assimilates this data, with evaluations based on model- data error statistics of both analysis and forecast fields. The ecosystem model, run in the forward model, supports 78 phytoplankton species and demonstrates self-organizing behavior. We focus this talk on the challenges associated with complex model evaluation in the coastal ocean. ~

  5. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  6. REACTOR CONTROL SYSTEM

    DOEpatents

    MacNeill, J.H.; Estabrook, J.Y.

    1960-05-10

    A reactor control system including a continuous tape passing through a first coolant passageway, over idler rollers, back through another parallel passageway, and over motor-driven rollers is described. Discrete portions of fuel or poison are carried on two opposed active sections of the tape. Driving the tape in forward or reverse directions causes both active sections to be simultaneously inserted or withdrawn uniformly, tending to maintain a more uniform flux within the reactor. The system is particularly useful in mobile reactors, where reduced inertial resistance to control rod movement is important.

  7. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  8. Survey of current and emerging technologies for biological contamination control

    NASA Astrophysics Data System (ADS)

    Frick, Andreas; Mogul, Rakesh

    2012-07-01

    This study will survey current and emerging technologies for biological contamination control within the context of planetary protection. Using a systems analysis approach, our objective is to compare various implementation variables across tasks ranging from surface cleaning to full-system sterilization for spacecraft and spacecraft components. Methods reviewed include vapor-phase hydrogen peroxide, plasma-phase sterilants such as oxygen and hydrogen peroxide, dry heat, laser-based techniques, supercritical carbon dioxide-based methods, and advanced bio-barriers. These methods will be evaluated in relation to relevant mission architectures and will address aspects of sample return missions. Results from this study, therefore, will offer new insights into the present-day engineering capabilities and future developmental concerns for missions targeting icy satellites, Mars, and other locations of astrochemical and astrobiological significance.

  9. Optical controlled keyboard system

    NASA Astrophysics Data System (ADS)

    Budzyński, Łukasz; Długosz, Dariusz; Niewiarowski, Bartosz; Zajkowski, Maciej

    2011-06-01

    Control systems of our computers are common devices, based on the manipulation of keys or a moving ball. Completely healthy people have no problems with the operation of such devices. Human disability makes everyday activities become a challenge and create trouble. When a man can not move his hands, the work becomes difficult or often impossible. Controlled optical keyboard is a modern device that allows to bypass the limitations of disability limbs. The use of wireless optical transmission allows to control computer using a laser beam, which cooperates with the photodetectors. The article presents the construction and operation of non-contact optical keyboard for people with disabilities.

  10. Explosive magnetic source of current with controllable output voltage

    NASA Astrophysics Data System (ADS)

    Dudai, P. V.; Zimenkov, A. A.; Ivanov, V. A.; Ivanov, E. I.; Karpov, G. V.; Polyushko, S. M.; Skobelev, A. N.; Fevralev, A. Yu.

    2015-01-01

    The paper describes a small-size explosive current source with controllable output voltage shaping a megaampere current pulse. This energy source comprises a helical explosive magnetic generator and an explosive sectionalized current opening switch and is designed to power gas-discharge chambers of the plasma focus type. Control of the output voltage of the pulsed current source is performed in such a manner that in each of the series-connected sections of the explosive current opening switch, voltage is generated with a given time shift relative to the neighboring section.

  11. Modern tandem control systems

    NASA Astrophysics Data System (ADS)

    Lutz, J. R.; Marsaudon, J. C.

    1993-04-01

    Nowadays, tandem electrostatic accelerators can benefit greatly from the growing possibilities provided by modern control facilities. Controlling an electrostatic accelerator first requires the solution of technological problems raised by the necessity of fitting inside the tank equipment which is highly stressed by the physical environment. Then, these controls can take advantage of new techniques which appear on the market. Present computer technology provides cheap powerful workstations for efficient operator interfacing, and new modular and distributed control concepts have been developed for general use in experimental physics, in data acquisition and in control systems. The general trend towards standardization is now accepted for both hardware and software and this brings benefits to the designer and the user.

  12. Shock absorber control system

    SciTech Connect

    Nakano, Y.; Ohira, M.; Ushida, M.; Miyagawa, T.; Shimodaira, T.

    1987-01-13

    A shock absorber control system is described for controlling a dampening force of a shock absorber of a vehicle comprising: setting means for setting a desired dampening force changeable within a predetermined range; drive means for driving the shock absorber to change the dampening force of the shock absorber linearly; control means for controlling the drive means in accordance with the desired dampening force when the setting of the desired dampening force has been changed; detecting means for detecting an actual dampening force of the shock absorber; and correcting means for correcting the dampening force of the shock absorber by controlling the drive means in accordance with a difference between the desired dampening force and the detected actual dampening force.

  13. Engine speed control system

    SciTech Connect

    Otsuka, K.

    1983-02-01

    An idle control system for an automobile internal combustion engine includes an idle control unit for controlling the operation of an electromagnetically operated actuator. While the engine has a combustible mixture intake passage leading to the engine and a throttle valve operatively positioned inside the mixture intake passage for controlling the flow of a combustible air-fuel mixture towards the engine, the actuator is utilized to adjust either the effective cross sectional area of a bypass air passage leading from the air source to the mixture intake passage at a position downstream of the throttle valve or the opening of the throttle valve, to control the engine speed during idling to a predetermined value.

  14. Remotely controllable mixing system

    NASA Technical Reports Server (NTRS)

    Belew, Robert R. (Inventor)

    1987-01-01

    A remotely controllable mixing system (210) in which a plurality of mixing assemblies (10a-10e) are arranged in an annular configuration, and wherein each assembly (10) employs a central chamber (16) and two outer, upper and lower, chambers (12, 14). Valves (18, 20) are positioned between chambers, and these valves (18, 20) for a given mixing assembly (10) are operated by upper and lower control rotors (29), which in turn are driven by upper and lower drive rotors (270, 270b). Additionally, a hoop (278) is compressed around upper control rotors (29) and a hoop (278b) is compressed around lower control rotors (29) to thus insure constant frictional engagement between all control rotors (29) and drive rotors (270, 270b). The drive rollers (270, 270b) are driven by a motor (213).

  15. RHIC control system

    NASA Astrophysics Data System (ADS)

    Barton, D. S.; Binello, S.; Buxton, W.; Clifford, T.; D'Ottavio, T.; Hartmann, H.; Hoff, L. T.; Katz, R.; Kennell, S.; Kerner, T.; Laster, J.; Lee, R. C.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B. R.; Olsen, R.; Piacentino, J.; Skelly, J. F.

    2003-03-01

    The RHIC control system architecture is hierarchical and consists of two physical layers with a fiber-optic network connection. The Front-End Level systems consist of VME chassis with processors running a real-time operating system and both VME I/O modules and remote bus interfaces. Accelerator device software interfaces are implemented as objects in C++. The network implementation uses high speed, switched Ethernet technology. Specialized hardware modules were built for waveform control of power supplies, multiplexed signal acquisition, and timing services. The Console Level systems are Unix workstations. A strong emphasis has been given to developing highly reusable, standard software tools for use in building physics and diagnostic application software.

  16. Active control system trends

    NASA Technical Reports Server (NTRS)

    Yore, E. E.; Gunderson, D. C.

    1976-01-01

    The active control concepts which achieve the benefit of improved mission performance and lower cost and generate system trends towards improved dynamic performance, more integration, and digital fly by wire mechanization are described. Analytical issues and implementation requirements and tools and approaches developed to address the analytical and implementation issues are briefly discussed.

  17. Timing control system

    NASA Technical Reports Server (NTRS)

    Wiker, Gordon A. (Inventor); Wells, Jr., George H. (Inventor)

    1989-01-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not overshoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  18. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C.

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  19. Timing control system

    NASA Astrophysics Data System (ADS)

    Wiker, Gordon A.; Wells, George H., Jr.

    1987-09-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not over shoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  20. Timing Control System

    NASA Technical Reports Server (NTRS)

    Wiker, Gordon A. (Inventor); Wells, George H., Jr. (Inventor)

    1987-01-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not over shoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  1. Over Current Protection for PFM Control DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Yamada, Kouhei; Sugahara, Satoshi; Fujii, Nobuo

    An over current protection method suitable for Fixed ON-time PFM (Pulse Frequency Modulation) Control DC-DC converters is proposed. It is based on inductor bottom current limiting, realized by monitoring the synchronous rectifier current and extending the OFF-phase of the main switch until it decreases to a predetermined limit, and can properly limit the output current even in case of short circuit. A Fixed ON-time PFM DC-DC converter with the proposed over current protection was designed and fabricated in CMOS IC. Its current limiting operation was verified with simulations and measurements.

  2. An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters

    PubMed Central

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-01-01

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061

  3. Telerobot control system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)

    1993-01-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  4. Fluidic control systems for projectiles

    NASA Astrophysics Data System (ADS)

    Garlow, D.; Muggeridge, D.

    1983-06-01

    Current indirect fire weapons, such as artillery and large caliber mortars, are characterized by the low cost and high fire rate of their purely ballistic projectiles. A major prospective development in antiarmor technology will involve the incorporation of terminal guidance technology into these indirect fire projectiles in order to increase their effectiveness. Attention is presently given to the development of a cost-competitive, guided projectile that can survive the shock of gun launching, employing fluidic reaction jet controls in lieu of aerodynamic surfaces. The fluidic reaction jet control system presently described employs warm gas as its working fluid and has survived 15,000-g launch shocks, delivering 15 lbs of thrust control in a two-axis system with a 50-Hz dynamic response.

  5. Microprocessor control for standardized power control systems

    NASA Technical Reports Server (NTRS)

    Green, D. G.; Perry, E.

    1978-01-01

    The use of microcomputers in space-oriented power systems as a replacement for existing inflexible analog type controllers has been proposed. This study examines multiprocessor systems, various modularity concepts and presents a conceptualized power system incorporating a multiprocessor controller as well as preliminary results from a breadboard model of the proposed system.

  6. The CMS tracker control system

    NASA Astrophysics Data System (ADS)

    Dierlamm, A.; Dirkes, G. H.; Fahrer, M.; Frey, M.; Hartmann, F.; Masetti, L.; Militaru, O.; Shah, S. Y.; Stringer, R.; Tsirou, A.

    2008-07-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 104 power supply parameters, about 103 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 105 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention.

  7. Management control system description

    SciTech Connect

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  8. Dynamitron control systems

    NASA Astrophysics Data System (ADS)

    Lisanti, Thomas F.

    2005-12-01

    The Dynamitron control system utilizes the latest personal computer technology in control circuitry and components. Both the DPC-2000 and newer Millennium series of control systems make use of their modular architecture in both software and hardware to keep up with customer and engineering demands. This also allows the main structure of the software to remain constant for the user while software drivers are easily changed as hardware demands are modified and improved. The system is presented as four units; the Remote I/O (Input/Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the accelerator. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. All process parameters are printed to a report at regular intervals during a process run for record keeping.

  9. Current speaker detection system using lip motion information

    NASA Astrophysics Data System (ADS)

    Kwon, Heak-bong; Song, Young-jun; Chang, Un-dong; Ahn, Jae-hyeong

    2005-03-01

    In this paper, we propose a system that detects the current speaker in multi-speaker videoconferencing by using lip motion. First, the system detects the face and lip region of each of the candidate speakers using face color and shape information. Then, to detect the current speaker, it calculates the change between the current frame and the previous frame in lip region. To close-up the detected current speaker, we used two CCD cameras. One is a general CCD camera, the other is a PTZ camera controlled by RS-232C serial port. The experimental result is the proposed system capable of detecting the face of current speaker in a video feed with more than three people, regardless of orientation of the faces. With this system, it only takes 4 to 5 seconds to zoom in on the speaker from the initial reference image. Also, it is a more efficient image transmission system for such things as video conferencing and internet broadcasting because it offers a close up face image at a resolution of 320x240, while at the same time providing a whole background image.

  10. Adaptive Current Control Method for Hybrid Active Power Filter

    NASA Astrophysics Data System (ADS)

    Chau, Minh Thuyen

    2016-09-01

    This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.

  11. ITER Plasma Control System Development

    NASA Astrophysics Data System (ADS)

    Snipes, Joseph; ITER PCS Design Team

    2015-11-01

    The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.

  12. Current topical and systemic therapies for itch.

    PubMed

    Leslie, Tabi Anika; Greaves, Malcolm W; Yosipovitch, Gil

    2015-01-01

    Itch is a common distressing symptom which may be caused by multifactorial aetiologies including inflammatory skin diseases, systemic diseases, neuropathic conditions and psychogenic disorders. Itch is a term used synonymously with pruritus and is defined as acute if it lasts less than 6 weeks or chronic if it persists for more than 6 weeks. It can have the same impact on the quality of life as chronic pain and shares many of the same pathophysiological pathways. Depending on the aetiology of the itch, different pathogenic mechanisms have been postulated with a number of mediators identified. These include histamine, leukotrienes, proteases, neuropeptides, cytokines and opioids, which may activate peripheral itch-mediating C-fibres via receptors on the nerve terminals and central neuronal pathways. Therefore, there is no single universally effective anti-itch treatment available. First-line treatments for itch include topical therapies, such as emollients, mild cleansers (low pH), topical anaesthetics, steroids, calcineurin inhibitors and coolants (menthol). Treatment with systemic therapies can vary according to the aetiology of the chronic itch. Non-sedating antihistamines are helpful in conditions such as urticaria where the itch is primarily histamine mediated. Although the itch of eczema is not mediated by histamine, sedating antihistamines at night are helpful to break the itch-scratch cycle. Chronic itch may also be treated with other systemic therapies, such as anticonvulsants, antidepressants as well as mu-opioid antagonists, kappa-opioid agonists and phototherapy, depending on the cause of the itch. This article summarises the topical and systemic therapies available with our current understanding of the pathophysiology of itch.

  13. Solar energy control system

    NASA Astrophysics Data System (ADS)

    Currie, J. R.

    1981-12-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  14. Current drive and current profile control studies in the Tokamak Physics Experiment (TPX)

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Porkolab, M.; Sugiyama, L.; Kessel, C.

    1996-02-01

    Simulation studies of noninductive current profile control have been carried out for the Tokamak Physics Experiment (TPX).1 The predicted MHD equilibria have been analyzed for ideal ballooning stability and stability to the low-n, external kink modes. An advanced rf physics technique for off-axis current profile control has also been investigated for TPX. This scheme utilizes mode conversion and electron absorption in a D-(3He) plasma mixture.

  15. The UMC control system

    SciTech Connect

    Dallard, K.E.; Adams, R.J.

    1983-05-01

    The control system for the Central Cormorant Underwater Manifold Centre (UMC) is an important step forward in developing the technology of subsea production. It provides reliable, fast operation of over 250 UMC valves and sensors at a distance of 7 kilometres. Included in the paper is an overview of the complete control system with selected components described in more detail. Principal guidelines which shaped the final design configuration are also discussed and problems encountered during design and manufacture are highlighted. The paper stresses the thorough testing that was an essential requirement prior to installation. Finally, general conclusions are drawn about the approach taken which would be of benefit to similar projects in the future.

  16. California current system - Predators and the preyscape

    NASA Astrophysics Data System (ADS)

    Ainley, David G.; Adams, Peter B.; Jahncke, Jaime

    2015-06-01

    The preyscape of the California Current System (CCS), one of the most productive marine areas on Earth (Glantz and Thompson, 1981), is highly variable, as evidenced by the papers in this issue, and as such presents a challenge to Ecosystem-based fishery management (EBFM), which attempts to integrate ecosystem considerations as part of fishery management and conservation decisions. Approaches to EBFM for the waters off Washington, Oregon, and California, the CCS, have been initiated (PFMC, 2007, 2013), and are continually being developed. To inform this process, a workshop was held in September 2013 to: i) gather together the existing information on forage fish and predator dynamics in the CCS; ii) consider temporal (seasonal, annual, decadal) and spatial availability of prey complexes and why these patterns of availability occur and change; iii) summarize and present that information for discussion to a large range of experts in oceanography, fish and fisheries management, seabirds, marine mammals, and ecosystem management; and, iv) synthesize this information to be useable by fishery agencies. The papers in this special Journal of Marine Systems issue address these four points. While the full results and recommendations can be found here - "http://www.pointblue.org/uploads/assets/calcurrent/REPORT_Forage_Fish_Workshop_FINAL.pdf"

  17. OAJ control system

    NASA Astrophysics Data System (ADS)

    Antón, J. L.; Yanes-Díaz, A.; Rueda-Teruel, S.; Luis-Simoes, R.; Chueca, S.; Lasso-Cabrera, N. M.; Bello, R.; Jiménez, D.; Suárez, O.; Guillén, L.; López-Alegre, G.; Rodríguez, M. A.; de Castro, S.; Nevot, C.; Sánchez-Artigot, J.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Ederoclite, A.; Varela, J.; Valdivielso, L.; Cristóbal-Hornillos, D.; López-Sainz, A.; Hernández-Fuertes, J.; Díaz-Martín, M. C.; Iglesias-Marzoa, R.; Abril, J.; Lamadrid, J. L.; Maicas, N.; Rodríguez, S.; Tilve, V.; Civera, T.; Muniesa, D. J.

    2015-05-01

    The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located at the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys leveraging two unprecedented telescopes with unusually large fields of view: the JST/T250, a 2.55 m telescope with a 3 deg field of view, and the JAST/T80, an 83 cm telescope with a 2 deg field of view. The immediate objective of these telescopes for the next years is carrying out two unique photometric surveys covering several thousands square degrees: J-PAS and J-PLUS, each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure and exoplanets. JST and JAST will be equipped with panoramic cameras being developed within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (˜10{k}×10{k}) CCDs covering the entire focal plane. CEFCA engineering team has been designing the OAJ control system as a global concept to manage, monitor, control and service the observatory systems, not only astronomical but also infrastructure and other facilities. We will give an overview of OAJ's control system from an engineering point of view.

  18. [Current concepts of polytrauma management: from ATLS to "damage control"].

    PubMed

    Stahel, P F; Heyde, C E; Wyrwich, W; Ertel, W

    2005-09-01

    In recent years, the implementation of standardized protocols for polytrauma management has led to a significant improvement in trauma care as well as to a decrease in post-traumatic morbidity and mortality. As such, the "Advanced Trauma Life Support" (ATLS) protocol of the American College of Surgeons for the acute management of severely injured patients has been established as a gold standard in most European countries since the 1990s. Continuative concepts to the ATLS program include the "Definitive Surgical Trauma Care" (DSTC) algorithm and the concept of "damage control" surgery for polytraumatized patients with immediate life-threatening injuries. These phase-oriented therapeutic strategies appraise the injured patient of the whole extent of the sustained injuries and are in sharp contrast to previous modalities of "early total care" which advocate immediate definitive surgical intervention. The approach of "damage control" surgery takes into account the influence of systemic post-traumatic inflammatory and metabolic reactions of the organism and is aimed at reducing both the primary and the secondary, delayed, mortality in severely injured patients. The present paper provides an overview of the current state of management algorithms for polytrauma patients, with a focus on the standard concepts of ATLS and "damage control".

  19. A Novel Current Angle Control Scheme in a Current Source Inverter Fed Permanent Magnet Synchronous Motor Drive for Automotive Applications

    SciTech Connect

    Tang, Lixin; Su, Gui-Jia

    2011-01-01

    This paper describes a novel speed control scheme to operate a current source inverter (CSI) driven surface-mounted permanent magnet synchronous machine (SPMSM) for hybrid electric vehicles (HEVs) applications. The idea is to use the angle of the current vector to regulate the rotor speed while keeping the two dc-dc converter power switches on all the time to boost system efficiency. The effectiveness of the proposed scheme was verified with a 3 kW CSI-SPMSM drive prototype.

  20. Electrically controlled optical latch and switch requires less current

    NASA Technical Reports Server (NTRS)

    Pieczonka, W. A.; Roy, M. M.; Yeh, T. H.

    1966-01-01

    Electrically controlled optical latch consists of a sensitive phototransistor and a solid-state light source. This design requires less current to activate an optically activated switch than in prior art.

  1. A partial Hamiltonian approach for current value Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Naz, R.; Mahomed, F. M.; Chaudhry, Azam

    2014-10-01

    We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.

  2. Current Trends in Vector Control: Adapting to Selective Pressure

    DTIC Science & Technology

    2008-11-16

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023975 TITLE: Current Trends in Vector Control: Adapting to Selective...ADP023967 thru ADP023976 UNCLASSIFIED Current Trends in Vector Control: Adapting to Selective Pressure Kendra Lawrence MAJ, Medical Service Corps...of Research, is to mitigate the products to the forefront that may fulfill risk posed by arthropods to DoD mission needs. The Department of personnel

  3. Wavefront control system for the Keck telescope

    SciTech Connect

    Brase, J. M., LLNL

    1998-03-01

    The laser guide star adaptive optics system currently being developed for the Keck 2 telescope consists of several major subsystems: the optical bench, wavefront control, user interface and supervisory control, and the laser system. The paper describes the design and implementation of the wavefront control subsystem that controls a 349 actuator deformable mirror for high order correction and tip-tilt mirrors for stabilizing the image and laser positions.

  4. Current status of dentin adhesive systems.

    PubMed

    Leinfelder, K F

    1998-12-01

    Undoubtedly, dentin bonding agents have undergone a major evolution during the last several years. The shear bond strength of composite resin to the surface of dentin is actually greater than the inherent strength of the dentin itself under well-controlled conditions. No longer must the clinician depend only upon the bonding to enamel as the sole bonding mechanism. Bonding to both types of dental structure permits even better reinforcement of the tooth itself. Perhaps even more important than the high level of bonding exhibited by the current dentin adhesives is their ability to seal the dentin. So effective is this sealing capability that it is now possible to protect the pulpal tissue from microbial invasion through the dentinal tubules. Further, by enclosing the odontoblastic processes and preventing fluid flow, the potential for postoperative sensitivity is diminished considerably. In fact, so evolutionary is the concept of bonding that the procedures associated with the restoration of teeth has changed dramatically. Undoubtedly, far greater improvements can be anticipated in the future.

  5. Space Shuttle Program (SSP) Orbiter Main Propulsion System (MPS) Gaseous Hydrogen (GH2) Flow Control Valve (FCV) Poppet Eddy Current (EC) Inspection Probability of Detection (POD) Study. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Prosser, William H.

    2011-01-01

    The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the Appendices to the main report.

  6. Space Shuttle Program (SSP) Orbiter Main Propulsion System (MPS) Gaseous Hydrogen (GH2) Flow Control Valve (FCV) Poppet Eddy Current (EC) Inspection Probability of Detection (POD) Study. Volume 1

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Prosser, William H.

    2011-01-01

    The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the findings and recommendations from the NESC assessment.

  7. Multiprocessor Adaptive Control Of A Dynamic System

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Hyland, David C.

    1995-01-01

    Architecture for fully autonomous digital electronic control system developed for use in identification and adaptive control of dynamic system. Architecture modular and hierarchical. Combines relatively simple, standardized processing units into complex parallel-processing subsystems. Although architecture based on neural-network concept, processing units themselves not neural networks; processing units implemented by programming of currently available microprocessors.

  8. Current Status of the Nitrogen Oxygen Recharge System

    NASA Technical Reports Server (NTRS)

    Dick, Brandon

    2011-01-01

    This paper presents an overview of the Nitrogen Oxygen Recharge System (NORS) to date and the current development status of the system. NORS is an element of the International Space Station (ISS) Environmental Control and Life Support Systems (ECLSS) used to resupply the ISS with Nitrogen and Oxygen following the impending retirement of the Space Shuttle. The paper will discuss why NASA is developing NORS, including a summary of other concepts considered, and other related concepts currently being developed by NASA. The current system architecture will be described, along with a summary of the current design of the NORS. The overall programmatic schedule of the NORS in the context of the upcoming shuttle retirement and future launch vehicle development will also be presented. Finally, the paper will examine the significant technical challenges encountered during the requirements and preliminary design phase of NORS development. A key challenge to the development of NORS is the international shipment - and associated regulations - of pressurized Oxygen, which is necessary due to the use of launch vehicles based in Japan and French Guiana to send NORS gasses to the ISS. The storage and use of relatively large quantities of high pressure (41,000 kPa) Oxygen and Nitrogen within the ISS, which is unprecedented both on the ISS and other space vehicles, has had a significant impact on the design and architecture of the system. The high pressure of the system also poses unique thermal considerations, which has led to the development of a heater system for thermal conditioning of high pressure gas to avoid thermal impacts on downstream hardware. The on-orbit envelope allocated to the NORS has changed (gotten smaller) and has impacted both the design and architecture of the system. Finally, the balance of safety considerations associated with these high pressure gasses, particularly high pressure Oxygen, with the functionality of the system has profoundly impacted the form

  9. MIRADAS control system

    NASA Astrophysics Data System (ADS)

    Rosich Minguell, Josefina; Garzón Lopez, Francisco

    2012-09-01

    The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5μm bandpass) was selected in 2010 by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, Institut de Física d'Altes Energies, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autónoma de México. This paper shows an overview of the MIRADAS control software, which follows the standards defined by the telescope to permit the integration of this software on the GTC Control System (GCS). The MIRADAS Control System is based on a distributed architecture according to a component model where every subsystem is selfcontained. The GCS is a distributed environment written in object oriented C++, which runs components in different computers, using CORBA middleware for communications. Each MIRADAS observing mode, including engineering, monitoring and calibration modes, will have its own predefined sequence, which are executed in the GCS Sequencer. These sequences will have the ability of communicating with other telescope subsystems.

  10. Gas turbine engine control system

    NASA Technical Reports Server (NTRS)

    Idelchik, Michael S. (Inventor)

    1991-01-01

    A control system and method of controlling a gas turbine engine. The control system receives an error signal and processes the error signal to form a primary fuel control signal. The control system also receives at least one anticipatory demand signal and processes the signal to form an anticipatory fuel control signal. The control system adjusts the value of the anticipatory fuel control signal based on the value of the error signal to form an adjusted anticipatory signal and then the adjusted anticipatory fuel control signal and the primary fuel control signal are combined to form a fuel command signal.

  11. Current-potential characteristics of electrochemical systems

    SciTech Connect

    Battaglia, Vincent S.

    1993-07-01

    This dissertation contains investigations in three distinct areas. Chapters 1 and 2 provide an analysis of the effects of electromagnetic phenomena during the initial stages of cell discharge. Chapter 1 includes the solution to Maxwell`s equations for the penetration of the axial component of an electric field into an infinitely long cylindrical conductor. Chapter 2 contains the analysis of the conductor included in a radial circuit. Chapter 3 provides a complete description of the equations that describe the growth of an oxide film. A finite difference program was written to solve the equations. The system investigated is the iron/iron oxide in a basic, aqueous solution. Chapters 4 and 5 include the experimental attempts for replacing formaldehyde with an innocuous reducing agent for electroless deposition. In chapter 4, current-versus-voltage curves are provided for a sodium thiosulfate bath in the presence of a copper disk electrode. Also provided are the cathodic polarization curves of a copper/EDTA bath in the presence of a copper electrode. Chapter 5 contains the experimental results of work done with sodium hypophosphite as a reducing agent. Mixed-potential-versus-time curves for solutions containing various combinations of copper sulfate, nickel chloride, and hypophosphite in the presence of a palladium disk electrode provide an indication of the reducing power of the solutions.

  12. Current treatment options in systemic Sclerosis (Scleroderma).

    PubMed

    Stummvoll, G H

    2002-01-01

    Systemic Sclerosis (SSc) or Scleroderma is a generalized autoimmune disease with variable involvement of the skin and major organs. Etiology and pathogenesis are still largely unknown, but a variety of humoral and cellular autoimmune phenomena can be observed, and a pivotal role of T lymphocytes in SSc pathogenesis is postulated. The rarity of the disease, the wide spectrum of clinical manifestations and severity as well as a variable course render therapy in SSc a major challenge. In view of the immunopathogenesis of SSc, many (presumed) immunomodulatory agents have been used, but no single agent has been proven to be convincingly effective. Trials with extracorporeal therapies (such as photopheresis, plasmapheresis) or even stem cell transplantation are in progress. In contrast to the hitherto unsuccessful therapeutic approaches for the overall disease course, some life-threatening organ manifestations can often be treated successfully, e.g. interstitial pneumonitis with i.v. cyclophosphamide and scleroderma renal crisis with ACE inhibitors and haemodialysis, respectively. Furthermore, pharmacological and supportive treatment of Raynaud's phenomenon and gastrointestinal involvement can alleviate the burden of the disease. Current therapeutic options as well as hitherto investigated immunomodulators are reviewed in this article.

  13. Assessment of heliostat control system methods

    SciTech Connect

    Pearson, J; Chen, B

    1986-01-01

    Automatic control and communication between the major components in solar thermal central receiver systems is critically needed for the optimal and safe operation of these systems. This report assesses novel and cost-effective approaches to the control of the solar collector field and the communication with the central plant computer/control system. The authors state that radio frequency and carrier-current communication approaches have the greatest potential to improve cost-effectiveness relative to the current dedicated control wiring approaches. In addition, based on their analysis, the authors recommend distributed control, which is becoming an industry-wide control standard, for the individual concentrators within the collector field rather than the current central computer approach. The vastly improved cost and performance ofmicroprocessors and other solid-state electronics, which has continually and rapidly proceeded for more than five years, is the major reason for these conclusions.

  14. Spaceport Command and Control System Automated Testing

    NASA Technical Reports Server (NTRS)

    Stein, Meriel

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  15. Spaceport Command and Control System Automation Testing

    NASA Technical Reports Server (NTRS)

    Hwang, Andrew

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  16. Tokamak plasma current disruption infrared control system

    DOEpatents

    Kugel, Henry W.; Ulrickson, Michael

    1987-01-01

    In a magnetic plasma confinment device having an inner toroidal limiter mounted on an inner wall of a plasma containment vessel, an arrangement is provided for monitoring vertical temperature profiles of the limiter. The temperature profiles are taken at brief time intervals, in a time scan fashion. The time scans of the vertical temperature profile are continuously monitored to detect the presence of a peaked temperature excursion, which, according to the present invention, is a precursor of a subsequent major plasma disruption. A fast scan of the temperature profile is made so as to provide a time interval in real time prior to the major plasma disruption, such that corrective action can be taken to reduce the harmful effects of the plasma disruption.

  17. Tokamak plasma current disruption infrared control system

    DOEpatents

    Kugel, H.W.; Ulrickson, M.

    1984-04-16

    This invention is directed to the diagnosis and detection of gross or macroinstabilities in a magnetically-confined fusion plasma device. Detection is performed in real time, and is prompt such that correction of the instability can be initiated in a timely fashion.

  18. The flexible grinding technology based on the electric current control

    NASA Astrophysics Data System (ADS)

    Peng, Liwen; Yao, Bin; Li, Fei; Wang, Xiao; Yao, Boshi

    2012-01-01

    A flexible grinding technology based on the electric current control is presented to resolve the problem of low rigidity of PCB during grinding, the thickness of which varies from 0.1mm up to 3.5 mm. The comparative results between the real-time current and the setting current in the process of grinding control the frequency and the number of servo pulse, and then the servo motor adjusts the grinding depth of brushing roller at several different rotational speeds, namely, realizing the constant grinding force during grinding. The results show that the PCB can be grinded efficiently and accurately by means of the flexible grinding technology based on the electric current control.

  19. The Fermilab Accelerator control system

    NASA Astrophysics Data System (ADS)

    Bogert, Dixon

    1986-06-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100 000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A "Host" computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration, and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded "events" in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of "exception conditions" and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the "Host" processors.

  20. Controlling ultrafast currents by the nonlinear photogalvanic effect

    NASA Astrophysics Data System (ADS)

    Wachter, Georg; Sato, Shunsuke A.; Floss, Isabella; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-12-01

    We investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femtosecond optical laser pulses. Ab initio simulations based on time-dependent density functional theory predict ultrafast direct currents that can be viewed as a nonlinear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity of about {I}{{c}}˜ 3× {10}13 W cm-2. We trace this switching to the transition from nonlinear polarisation currents to the tunnelling excitation regime. The latter is found to be sensitive to the relative orientation between laser polarisation and chemical bonds. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. While two temporally separated laser pulses lead to currents along one direction their temporal overlap can reverse the current. We find the ultrafast current control by the nonlinear photogalvanic effect to be remarkably robust and insensitive to the laser-pulse shape and the carrier-envelope phase.

  1. BLTC control system software

    SciTech Connect

    Logan, J.B., Fluor Daniel Hanford

    1997-02-10

    This is a direct revision to Rev. 0 of the BLTC Control System Software. The entire document is being revised and released as HNF-SD-FF-CSWD-025, Rev 1. The changes incorporated by this revision include addition of a feature to automate the sodium drain when removing assemblies from sodium wetted facilities. Other changes eliminate locked in alarms during cold operation and improve the function of the Oxygen Analyzer. See FCN-620498 for further details regarding these changes. Note the change in the document number prefix, in accordance with HNF-MD-003.

  2. Smog control system

    SciTech Connect

    Eichhorn, C.D.

    1992-01-01

    A smog control system is designed comprised of fans or blowers which are located to introduce air into a smog particle destruction chamber operated with laser energy. The smog particles are broken down and the air is passed into a filtering chamber which may adopt the form of a liquid charcoal chamber. The air may be bubbled through the liquid charcoal and the effluent may then be passed into a freshening agent chamber. The air may then pass as an effluent from the freshening agent chamber. A liquid charcoal supply may be connected to the liquid charcoal chamber and the recovered liquid charcoal which has been spent may be reused for other purposes.

  3. Airflow control system

    DOEpatents

    Motszko, Sean Ronald; McEnaney, Ryan Patrick; Brush, Jeffrey Alan; Zimmermann, Daniel E.

    2007-03-13

    A dual airflow control system for an environment having a first air zone and a second air zone. The system includes a first input device operable to generate a first input signal indicative of a desired airflow to the first zone and a second input device operable to generate a second input signal indicative of a desired airflow to the second zone. First and second flow regulators are configured to regulate airflow to the first and second zones, respectively, such that the first and second regulators selectively provide the airflow to each of the first and second zones based on the first and second input signals. A single actuator is associated with the first and second flow regulators. The actuator is operable to simultaneously actuate the first and second flow regulators based on an input from the first and second input devices to allow the desired airflows to the first and the second zones.

  4. Current trends in small vocabulary speech recognition for equipment control

    NASA Astrophysics Data System (ADS)

    Doukas, Nikolaos; Bardis, Nikolaos G.

    2017-09-01

    Speech recognition systems allow human - machine communication to acquire an intuitive nature that approaches the simplicity of inter - human communication. Small vocabulary speech recognition is a subset of the overall speech recognition problem, where only a small number of words need to be recognized. Speaker independent small vocabulary recognition can find significant applications in field equipment used by military personnel. Such equipment may typically be controlled by a small number of commands that need to be given quickly and accurately, under conditions where delicate manual operations are difficult to achieve. This type of application could hence significantly benefit by the use of robust voice operated control components, as they would facilitate the interaction with their users and render it much more reliable in times of crisis. This paper presents current challenges involved in attaining efficient and robust small vocabulary speech recognition. These challenges concern feature selection, classification techniques, speaker diversity and noise effects. A state machine approach is presented that facilitates the voice guidance of different equipment in a variety of situations.

  5. Current and potential distributions in corrosion systems

    SciTech Connect

    Smyrl, W.H.

    1980-01-01

    Current and potential distribution calculations in corrosion are reviewed. The mathematical methods used, and the specific results for galvanic corrosion, cathodic protection, and localized corrosion are described.

  6. CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES FOR THE VENTILATION SYSTEM AND A PLC SWITCH FOR AUTOMATIC CO (CARBON MONOXIDE) SYSTEM. THE AIR TESTING SYSTEM IS FREE STANDING AND THE FANS ARE COMPUTER-OPERATED. - Alaskan Way Viaduct and Battery Street Tunnel, Seattle, King County, WA

  7. Food reward system: current perspectives and future research needs

    PubMed Central

    Woods, Stephen C.; Pelchat, Marcia; Grigson, Patricia Sue; Stice, Eric; Farooqi, Sadaf; Khoo, Chor San; Mattes, Richard D.; Beauchamp, Gary K.

    2015-01-01

    This article reviews current research and cross-disciplinary perspectives on the neuroscience of food reward in animals and humans, examines the scientific hypothesis of food addiction, discusses methodological and terminology challenges, and identifies knowledge gaps and future research needs. Topics addressed herein include the role of reward and hedonic aspects in the regulation of food intake, neuroanatomy and neurobiology of the reward system in animals and humans, responsivity of the brain reward system to palatable foods and drugs, translation of craving versus addiction, and cognitive control of food reward. The content is based on a workshop held in 2013 by the North American Branch of the International Life Sciences Institute. PMID:26011903

  8. APS control system operating system choice

    SciTech Connect

    Knott, M.; Kraimer, M.; Lenkszus, F.

    1990-05-01

    The purpose of this document is to set down the reasons and decisions regarding what is an important choice for the APS Control System design staff, namely the choice of an operating system for its principle computer resources. Since the choice also may affect cost estimates and the design handbook, there is a further need to document the process. The descriptions and explanations which follow are intended for reading by other APS technical area managers and will contain a minimum of buzz-words, and where buzz-words are used, they will be explained. The author hopes that it will help in understanding the current trends and developments in the volatile and fast-developing computer field.

  9. The Wavefront Clock Technique Applied to Current VLBI Systems

    NASA Astrophysics Data System (ADS)

    Kiuchi, Hitoshi; Kondo, Tetsuro

    1996-02-01

    A prototype wavefront clock system has been developed for application to current VLBI systems. The reference clock for both the front-end and back-end of a VLBI system is controlled at the observing site according to a calculated a priori delay rate. By using this system, fringe stopping is simultaneously performed on all received frequencies and both the upper side band (USB) and the lower side band (LSB) of a frequency-converter signal. Also, it can be used to reduce the large fringe rate (Doppler frequency) inherent in space VLBI, especially when used with an FX-type correlation proces sor. This wavefront clock method will be beneficial to users of conventional VLBI systems and will not require any modification. The reference point for the Doppler compensation can be taken at an ideal point , like the center of the Earth. Moreover, it is possible to use it as a pseudo-fringe simulator for checking the correlation processor.

  10. Comparative radiopacity of six current adhesive systems.

    PubMed

    de Moraes Porto, Isabel Cristina Celerino; Honório, Naira Cândido; Amorim, Dayse Annie Nicácio; de Melo Franco, Aurea Valéria; Penteado, Luiz Alexandre Moura; Parolia, Abhishek

    2014-01-01

    The radiopacity of contemporary adhesive systems has been mentioned as the indication for replacement of restorations due to misinterpretation of radiographic images. This study aimed to evaluate the radiopacity of contemporary bonding agents and to compare their radiodensities with those of enamel and dentin. To measure the radiopacity, eight specimens were fabricated from Clearfil SE Bond (CF), Xeno V (XE), Adper SE Bond (ASE), Magic Bond (MB), Single Bond 2 (SB), Scotchbond Multipurpose (SM), and gutta-percha (positive control). The optical densities of enamel, dentin, the bonding agents, gutta-percha, and an aluminium (Al) step wedge were obtained from radiographic images using image analysis software. The radiographic density data were analyzed statistically by analysis of variance and Tukey's test (α =0.05). Significant differences were found between ASE and all other groups tested and between XE and CF. No statistical difference was observed between the radiodensity of 1 mm of Al and 1 mm of dentin, between 2 mm of Al and enamel, and between 5 mm of Al and gutta-percha. Five of the six adhesive resins had radiopacity values that fell below the value for dentin, whereas the radiopacity of ASE adhesive was greater than that of dentin but below that of enamel. This investigation demonstrates that only ASE presented a radiopacity within the values of dentin and enamel. CF, XE, MB, SB, and SM adhesives are all radiolucent and require alterations to their composition to facilitate their detection by means of radiographic images.

  11. Robust tuning of robot control systems

    NASA Technical Reports Server (NTRS)

    Minis, I.; Uebel, M.

    1992-01-01

    The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller.

  12. Control System for Bearingless Motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2008-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  13. Control system for bearingless motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  14. First-principles-driven model-based current profile control for the DIII-D tokamak via LQI optimal control

    NASA Astrophysics Data System (ADS)

    Boyer, Mark D.; Barton, Justin; Schuster, Eugenio; Luce, Tim C.; Ferron, John R.; Walker, Michael L.; Humphreys, David A.; Penaflor, Ben G.; Johnson, Robert D.

    2013-10-01

    In tokamak fusion plasmas, control of the spatial distribution profile of the toroidal plasma current plays an important role in realizing certain advanced operating scenarios. These scenarios, characterized by improved confinement, magnetohydrodynamic stability, and a high fraction of non-inductively driven plasma current, could enable steady-state reactor operation with high fusion gain. Current profile control experiments at the DIII-D tokamak focus on using a combination of feedforward and feedback control to achieve a targeted current profile during the ramp-up and early flat-top phases of the shot and then to actively maintain this profile during the rest of the discharge. The dynamic evolution of the current profile is nonlinearly coupled with several plasma parameters, motivating the design of model-based control algorithms that can exploit knowledge of the system to achieve desired performance. In this work, we use a first-principles-driven, control-oriented model of the current profile evolution in low confinement mode (L-mode) discharges in DIII-D to design a feedback control law for regulating the profile around a desired trajectory. The model combines the magnetic diffusion equations with empirical correlations for the electron temperature, resistivity, and non-inductive current drive. To improve tracking performance of the system, a nonlinear input transformation is combined with a linear-quadratic-integral (LQI) optimal controller designed to minimize a weighted combination of the tracking error and controller effort. The resulting control law utilizes the total plasma current, total external heating power, and line averaged plasma density as actuators. A simulation study was used to test the controller's performance and ensure correct implementation in the DIII-D plasma control system prior to experimental testing. Experimental results are presented that show the first-principles-driven model-based control scheme's successful rejection of input

  15. Control Spin Current and Data Recording on Spin Storage Medium

    NASA Astrophysics Data System (ADS)

    Krupa, M. M.

    2014-12-01

    The paper presents the results of experimental studies of the physical mechanisms and dynamics of magnetization reversal of the films Al2O3/Tb25Co5Fe70/Al2O3, Al2O3/Tb22Co5Fe73/Al2O3, Al2O3/Tb19Co5Fe76/Al2O3, Al2O3/Co30Fe70/Al2O3 with a single magnetic layer and the films Al2O3/Tb22Co5Fe73/Pr6O11/Tb19Co5Fe76/Al2O3, Al2O3/Co80Fe20/Pr6O11/Co30Fe70/Al2O3 with two magnetic layers radiated by picosecond (τi ≈ 80 ps) and femtosecond (τi ≈ 130 fs) laser pulses. The experimental samples of spin transistors and data recording devices on the spin storage medium are also described. The results of studies have shown that magnetic switching effects in the nanolayers under femtosecond laser pulses can be used for creation of systems of high-speed controlling of spin currents with the response time τ ≤ 10-11s. Conclusions from the studies are the following: thermomagnetic switching under the influence of an external magnetic field or a demagnetization field, magnetic switching of antiferromagnetic films under the influence of an effective internal field of antiferromagnetic interaction between magnetic sublattices rare-earth and transitive metals, magnetic switching under the influence of a magnetic field of the inverse Faraday effect, or under the influence of a magnetic field of a spin current. The magnetic switching of magnetic layers under action of the magnetic field of a spin current is the most important for practical use in elements of spintronics. This mechanism of magnetic reversal takes place only in multilayer nanofilms and the heterogeneous multilayer magnetic nanofilms are the base material for creation of spintronic devices. The great advantage of the magnetization reversal of magnetic nanolayers of the spin current is that the mechanism of magnetization reversal is working in the films with perpendicular anisotropy and in the films with in-plane anisotropy. The injection of polarized electrons can also be realized using short electrical pulses. That is

  16. Current drive and current profile control studies in the Tokamak Physics Experiment (TPX)

    SciTech Connect

    Bonoli, P.T.; Porkolab, M.; Sugiyama, L.; Kessel, C.

    1996-02-01

    Simulation studies of noninductive current profile control have been carried out for the Tokamak Physics Experiment (TPX).{sup 1} The predicted MHD equilibria have been analyzed for ideal ballooning stability and stability to the low-{ital n}, external kink modes. An advanced rf physics technique for off-axis current profile control has also been investigated for TPX. This scheme utilizes mode conversion and electron absorption in a D-({sup 3}He) plasma mixture. {copyright} {ital 1996 American Institute of Physics.}

  17. Cosmic - the SLC control system migration challenge

    NASA Astrophysics Data System (ADS)

    MacKenzie, R. R.

    2002-01-01

    The current SLC control system was designed and constructed over 20 years ago. Many of the technologies on which it was based are obsolete and difficult to maintain. The VMS system that forms the core of the Control System is still robust but third party applications are almost non-existent and its long-term future is in doubt. The need for a Control System at SLAC that can support experiments for the foreseeable future is not in doubt. The present B-Factory or PEPII experiment is projected to run at least 10 years. An FEL laser of unprecedented intensity plus an ongoing series of fixed target experiments is also in our future. The Next Linear Collider or NLC may also be in our future although somewhat farther distant in time. The NLC has performance requirements an order of magnitude greater than anything we have built to date. In addition to large numbers of IOCs and process variables, Physicists would like to archive everything all the time. This makes the NLC Control System a bit like a detector system as well. The NLC Control System will also need the rich suite of accelerator applications that are available with the current SLC Control System plus many more that are now only a glimmer in the eyes of Accelerator Physicists. How can we migrate gradually away from the current SLC Control System towards a design that will scale to the NLC while keeping everything operating smoothly for the ongoing experiments.

  18. COSMIC - The SLAC Control System Migration Challenge

    SciTech Connect

    MacKenzie, Ronald R.

    2002-01-18

    The current SLC control system was designed and constructed over 20 years ago. Many of the technologies on which it was based are obsolete and difficult to maintain. The VMS system that forms the core of the Control System is still robust but third party applications are almost non-existent and its long-term future is in doubt. The need for a Control System at SLAC that can support experiments for the foreseeable future is not in doubt. The present B-Factory or PEPII experiment is projected to run at least 10 years. An FEL laser of unprecedented intensity plus an ongoing series of fixed target experiments is also in our future. The Next Linear Collider or NLC may also be in our future although somewhat farther distant in time. The NLC has performance requirements an order of magnitude greater than anything we have built to date. In addition to large numbers of IOCs and process variables, Physicists would like to archive everything all the time. This makes the NLC Control System a bit like a detector system as well. The NLC Control System will also need the rich suite of accelerator applications that are available with the current SLC Control System plus many more that are now only a glimmer in the eyes of Accelerator Physicists. How can we migrate gradually away from the current SLC Control System towards a design that will scale to the NLC while keeping everything operating smoothly for the ongoing experiments?

  19. Control of precision pointing system

    NASA Astrophysics Data System (ADS)

    Gu, Zheng

    Distributed-parameter modeling of tube with moving mass using Magnetic Compressional Damping Treatment (MCDT) is developed. Hamilton's principle is utilized to develop the model and boundary condition of a tube with moving mass using MCDT. Based on the electromagnetic theory, the relation between the generated magnet force of the actuator (MCDT) and the control current is determined. A stable control strategy is developed to damp out the vibration of the tube with moving mass using MCDT system. The fundamental characteristics of an active and a passive version of the Magnetic Compressional Damping Treatment (MCDT) are investigated by the finite element method. The damping characteristics of tube/MCDT system are modeled by Golla-Hughes-McTavish (GHM) method in order to predict the tube response in the time domain. The numerical results are verified through experimentation using a cantilevered tube treated with MCDT at the free end. The tube vibration due to an internally moving load is controlled by the MCDT using a deflection feedback controller. Close agreement is obtained between theory and experiments. The effectiveness of the MCDT in attenuating structural vibration of the tube has also been clearly demonstrated in the time and frequency domains. The developed theoretical and experimental techniques present invaluable tools for designing and predicting the performance of precision pointing tubes different damping treatments when subjected to moving loads.

  20. Thrust-Vector-Control System

    NASA Technical Reports Server (NTRS)

    Murray, Jonathan

    1992-01-01

    Control gains computed via matrix Riccati equation. Software-based system controlling aim of gimbaled rocket motor on spacecraft adaptive and optimal in sense it adjusts control gains in response to feedback, according to optimizing algorithm based on cost function. Underlying control concept also applicable, with modifications, to thrust-vector control on vertical-takeoff-and-landing airplanes, control of orientations of scientific instruments, and robotic control systems.

  1. Pollution control system

    SciTech Connect

    Voliva, B.H.; Bernstein, I.B.

    1984-09-25

    A pollution control system is disclosed wherein condensable pollutants are removed from a high-temperature gas stream by counterflow contact in a vertical tower with downwardly flowing, relatively cool absorbent oil. The absorbent is at a sufficiently low temperature so as to rapidly condense a portion of the pollutants in order to form a fog of fine droplets of pollutant entrained by the gas stream, which fog is incapable of being absorbed by the absorbent. The remainder of the condensable pollutants is removed by downwardly flowing absorbent oil, and the gas and entrained fog are directed from the tower to gas/droplet separation means, such as an electrostatic precipitator. The fog is thereby separated from the gas and substantially pollutant-free gas is discharged to the atmosphere.

  2. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  3. Basic control systems engineering

    SciTech Connect

    Lewis, P.H.; Yang, C.

    1997-12-31

    This book is one of the latest at the basic or introductory level, which is addressed to undergraduate juniors and seniors across several engineering disciplines such as mechanical, chemical, aerospace, and electrical. In fact, the background of the authors include electrical and aerospace engineering, respectively. The book contains the standard material presented at the undergraduate level. However, there appears to have been a serious attempt by the authors to address several practical implementation issues such as actuator saturation and other nonlinearities, bandwidth limitations, etc. In addition, there is an elementary consideration of the control of discrete event dynamical systems, a subject that has not traditionally been considered in elementary texts, but which nevertheless is increasingly important in industrial applications.

  4. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  5. Automatic reactor control system for transient operation

    NASA Astrophysics Data System (ADS)

    Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.

    Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.

  6. Switchable spin-current source controlled by magnetic domain walls.

    PubMed

    Savero Torres, W; Laczkowski, P; Nguyen, V D; Rojas Sanchez, J C; Vila, L; Marty, A; Jamet, M; Attané, J P

    2014-07-09

    Using nonlocal spin injection, spin-orbit coupling, or spincaloritronic effects, the manipulation of pure spin currents in nanostructures underlies the development of new spintronic devices. Here, we demonstrate the possibility to create switchable pure spin current sources, controlled by magnetic domain walls. When the domain wall is located at a given point of the magnetic circuit, a pure spin current is injected into a nonmagnetic wire. Using the reciprocal measurement configuration, we demonstrate that the proposed device can also be used as a pure spin current detector. Thanks to its simple geometry, this device can be easily implemented in spintronics applications; in particular, a single current source can be used both to induce the domain wall motion and to generate the spin signal.

  7. Robust adaptive control of HVDC systems

    SciTech Connect

    Reeve, J.; Sultan, M. )

    1994-07-01

    The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.

  8. Turbocharger control system

    SciTech Connect

    Kawabata, Y.

    1987-02-17

    This patent describes a turbocharger control system utilized in an internal combustion engine having a turbocharger turbine with a downstream passage, a combustion chamber, an exhaust treatment device, an actuator, a link mechanism connected to the actuator, a compressor, and a throttle valve. The engine also has an engine intake manifold, air flow passage means leading from the compressor to the throttle valve and an exhaust passage leading from the combustion chamber. The system comprises: bypass passage means connecting the exhaust passage leading from the combustion chamber to the turbocharger turbine with the downstream passage of the turbine so as to connect the combustion chamber directly to the exhaust treatment device around the turbine; a waste gate valve connected to the actuator by means of the link mechanism so as to close the bypass passage wherein the actuator comprises a first chamber continuously communicating with atmospheric pressure, a second chamber connected to the air flow passage means leading from the compressor to the throttle valve, and a third chamber connected to the engine intake manifold; first spring means interposed in the first chamber for biasing the waste gate valve toward a closed position; and second spring means interposed in the third chamber and having a stronger spring load characteristic than the first spring means for biasing the waste gate valve towards an opened position.

  9. General Information: Chapman Conference on Magnetospheric Current Systems

    NASA Technical Reports Server (NTRS)

    Spicer, Daniel S.; Curtis, Steven

    1999-01-01

    The goal of this conference is to address recent achievements of observational, computational, theoretical, and modeling studies, and to foster communication among people working with different approaches. Electric current systems play an important role in the energetics of the magnetosphere. This conference will target outstanding issues related to magnetospheric current systems, placing its emphasis on interregional processes and driving mechanisms of current systems.

  10. Environment control system

    DOEpatents

    Sammarone, Dino G.

    1978-01-01

    A system for controlling the environment of an enclosed area in nuclear reactor installations. The system permits the changing of the environment from nitrogen to air, or from air to nitrogen, without the release of any radioactivity or process gas to the outside atmosphere. In changing from a nitrogen to an air environment, oxygen is inserted into the enclosed area at the same rate which the nitrogen-oxygen gas mixture is removed from the enclosed area. The nitrogen-oxygen gas mixture removed from the enclosed area is mixed with hydrogen, the hydrogen recombining with the oxygen present in the gas to form water. The water is then removed from the system and, if it contains any radioactive products, can be utilized to form concrete, which can then be transferred to a licensed burial site. The process gas is purified further by stripping it of carbon dioxide and then distilling it to remove any xenon, krypton, and other fission or non-condensable gases. The pure nitrogen is stored as either a cryogenic liquid or a gas. In changing from an air to nitrogen environment, the gas is removed from the enclosed area, mixed with hydrogen to remove the oxygen present, dried, passed through adsorption beds to remove any fission gases, and reinserted into the enclosed area. Additionally, the nitrogen stored during the nitrogen to air change, is inserted into the enclosed area, the nitrogen from both sources being inserted into the enclosed area at the same rate as the removal of the gas from the containment area. As designed, the amount of nitrogen stored during the nitrogen to air change substantially equals that required to replace oxygen removed during an air to nitrogen change.

  11. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  12. [Current progress of the artificial accommodation system].

    PubMed

    Bretthauer, G; Gengenbach, U; Nagel, J A; Beck, C; Fliedner, J; Koker, L; Krug, M; Martin, T; Stachs, O; Guthoff, R F

    2014-12-01

    In case of presbyopia or cataract the "artificial accommodation system" represents one future possibility to durably restore the ability to accommodate. The work presented describes recent progress in the development of the artificial accommodation system. Major advances were achieved in the fields of the actuator system for the active optics, the pupil near reflex sensor, the communication system, the power supply system as well as in system integration. Beside the technical advances, first trials were performed to implant the artificial accommodation system into animals. These trials showed that the new lens shaped design and the C-shaped haptics are beneficial for implantation and secure fixation of the implant inside the capsular bag. Georg Thieme Verlag KG Stuttgart · New York.

  13. Thermal control system technology discipline

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.

    1990-01-01

    Viewgraphs on thermal control systems technology discipline for Space Station Freedom are presented. Topics covered include: heat rejection; heat acquisition and transport; monitoring and control; passive thermal control; and analysis and test verification.

  14. NSLS control system upgrade status

    SciTech Connect

    Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

    1993-07-01

    The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

  15. Current profile control experiments in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Malmberg, J. A.; Marrelli, L.; Martin, P.; Spizzo, G.

    2002-11-01

    EXTRAP T2R is a high aspect ratio (R=1.24 m, a = 0.183 m) reversed-field pinch device, characterised by a double, thin shell system. The simultaneous presence of many m=1, |n| > 11 tearing modes is responsible for a magnetic field turbulence, which is believed to produce the rather high energy and particle transport that is observed in this type of magnetic configuration. In this paper first results from current profile control experiments (PPCD) in a thin shell device are shown. When an edge poloidal electric field is transiently applied, an increase of the electron temperature and of the electron density is seen, which is consistent with an increase of the thermal content of the plasma. At the same time, the soft x-ray emission, measured with a newly installed miniaturised camera, shows a peaking of the profile in the core. Furthermore, the amplitudes of the m=1 tearing modes are reduced and and the rotation velocities increase during PPCD, which is also consistent with a reduction of magnetic turbulence and a heating of the plasma

  16. Macroscopic strain controlled ion current in an elastomeric microchannel

    SciTech Connect

    Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven; Innes, Laura; Dennin, Michael; Li, Yongxue; Esser-Kahn, Aaron P.; Valdevit, Lorenzo; Sun, Lizhi; Siwy, Zuzanna

    2015-05-07

    We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hysteretic (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.

  17. Solar cell system having alternating current output

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1980-01-01

    A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.

  18. Control of bootstrap current in the pedestal region of tokamaks

    SciTech Connect

    Shaing, K. C.; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by the electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.

  19. 13. VIEW OF CONTROL CONSOLE CURRENTLY USED ON OCCASION FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF CONTROL CONSOLE CURRENTLY USED ON OCCASION FOR AMATUER RADIO AND TO PERIODICALLY ACTIVE STATION KPS. NOTE CLOCK ON WALL. SHADED PORTIONS ON 24HR CLOCK (15-18 AND 45-48 MINUTES) INDICATED MINUTES EACH HOUR WHEN STATIONS WOULD NOT TRANSMIT AND LISTEN FOR WEAK DISTRESS SIGNALS. - Marconi Radio Sites, Receiving, Point Reyes Station, Marin County, CA

  20. Basic mechanisms controlling the sweeping efficiency of propagating current sheets

    NASA Astrophysics Data System (ADS)

    Berkery, J. W.; Choueiri, E. Y.

    2006-02-01

    The basic mechanisms controlling the sweeping efficiency of propagating current sheets are investigated through experiments and analytical modelling. The sweeping efficiency of a current sheet in a parallel plate gas-fed pulsed plasma accelerator is defined as the ratio of the current sheet mass to the total available propellant mass. Permeability of neutrals through the sheet, and leakage of mass out of the sheet and into a cathode wake, decrease the sweeping efficiency. The sweeping efficiency of current sheets in argon, neon, helium and hydrogen propellants at different initial pressures was determined through measurements of sheet velocity with high speed photography and of sheet mass with laser interferometry. The mechanism that controls the sweeping efficiency of propagating current sheets was found to be an interplay of two processes: the flux of mass entering the sheet and the leakage of mass at the cathode, with the former dependent on the degree of permeability and the latter dependent on the level of ion current as determined by the ion Hall parameter.

  1. Networked control of microgrid system of systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  2. Standing Alfven wave current system at Io: Voyager 1 observations

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Neubauer, F. M.; Ness, N. F.

    1980-01-01

    The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io is explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the magnetic field experiment on Voyager 1 on 5 March 1979 when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 million amps. A mass density of 7400 to 13600 proton mass units per Cu cm is derived which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050 to 1500 per cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.

  3. Explorations of electric current system in solar active regions. I - Empirical inferences of the current flows

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.; Liu, X. P.

    1987-01-01

    Techniques to identify sources of electric current systems and their channels of flow in solar active regions are explored. Measured photospheric vector magnetic fields together with high-resolution white-light and H-alpha filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980.

  4. Library Systems: Current Developments and Future Directions.

    ERIC Educational Resources Information Center

    Healy, Leigh Watson

    This report was commissioned in response to concerns expressed about the gap between institutional digital library initiatives and the products offered by library systems vendors. The study analyzes from the perspective of libraries the strategies, visions, and products that vendors of integrated library systems are offering as solutions. Case…

  5. Information Systems: Current Developments and Future Expansion.

    ERIC Educational Resources Information Center

    1970

    On May 20, 1970, a one-day seminar was held for Congressional members and staff. The papers given at this seminar and included in the proceedings are: (1) "Understanding Information Systems" by J. D. Aron, (2) "Computer Applications in Political Science" by Kenneth Janda, (3) "Who's the Master of Your Information System?" by Marvin Kornbluh, (4)…

  6. Instrumentation, Control, and Intelligent Systems

    SciTech Connect

    Not Available

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  7. Contoured Surface Eddy Current Inspection System

    DOEpatents

    Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford

    2003-04-08

    Eddy current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible eddy current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.

  8. Spin-torque switching and control using chirped AC currents

    NASA Astrophysics Data System (ADS)

    Klughertz, Guillaume; Friedland, Lazar; Hervieux, Paul-Antoine; Manfredi, Giovanni

    2017-10-01

    We propose to use oscillating spin currents with slowly varying frequency (chirp) to manipulate and control the magnetization dynamics in a nanomagnet. By recasting the Landau–Lifshitz–Slonczewski equation in a quantum-like two-level formalism, we show that a chirped spin current polarized in the direction normal to the anisotropy axis can induce a stable precession of the magnetic moment at any angle (up to 90^\\circ ) with respect to the anisotropy axis. The drive current can be modest (10^6~A~cm-2 or lower) provided the chirp rate is sufficiently slow. The induced precession is stable against thermal noise, even for small nano-objects at room temperature. Complete reversal of the magnetization can be achieved by adding a small external magnetic field antiparallel to the easy axis. Alternatively, a combination of chirped ac and dc currents with different polarization directions can also be used to trigger the reversal.

  9. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Kendall, Greg T. (Inventor); Morgan, Walter R. (Inventor)

    2010-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  10. Towards a new Mercator Observatory Control System

    NASA Astrophysics Data System (ADS)

    Pessemier, W.; Raskin, G.; Prins, S.; Saey, P.; Merges, F.; Padilla, J. P.; Van Winckel, H.; Waelkens, C.

    2010-07-01

    A new control system is currently being developed for the 1.2-meter Mercator Telescope at the Roque de Los Muchachos Observatory (La Palma, Spain). Formerly based on transputers, the new Mercator Observatory Control System (MOCS) consists of a small network of Linux computers complemented by a central industrial controller and an industrial real-time data communication network. Python is chosen as the high-level language to develop flexible yet powerful supervisory control and data acquisition (SCADA) software for the Linux computers. Specialized applications such as detector control, auto-guiding and middleware management are also integrated in the same Python software package. The industrial controller, on the other hand, is connected to the majority of the field devices and is targeted to run various control loops, some of which are real-time critical. Independently of the Linux distributed control system (DCS), this controller makes sure that high priority tasks such as the telescope motion, mirror support and hydrostatic bearing control are carried out in a reliable and safe way. A comparison is made between different controller technologies including a LabVIEW embedded system, a PROFINET Programmable Logic Controller (PLC) and motion controller, and an EtherCAT embedded PC (soft-PLC). As the latter is chosen as the primary platform for the lower level control, a substantial part of the software is being ported to the IEC 61131-3 standard programming languages. Additionally, obsolete hardware is gradually being replaced by standard industrial alternatives with fast EtherCAT communication. The use of Python as a scripting language allows a smooth migration to the final MOCS: finished parts of the new control system can readily be commissioned to replace the corresponding transputer units of the old control system with minimal downtime. In this contribution, we give an overview of the systems design, implementation details and the current status of the project.

  11. Nuclear Command and Control: Current Programs and Issues

    DTIC Science & Technology

    2006-05-03

    Altitude Electromagnetic Pulse ( HEMP ) and High Power Microwave (HPM) Devices: Threat Assessments, by Clay Wilson. 54 Dee Ann Divis, “Protection Not in...control, medical care, food preservation and distribution, or heating as the primary control computers or power systems fail. The potential result would be

  12. Current position on software for the automatic data acquisition system

    SciTech Connect

    Not Available

    1988-01-01

    This report describes the current concepts for software to control the operation of the Automatic Data Acquisition System (ADAS) proposed for the Deaf Smith County, Texas, Exploratory Shaft Facility (ESF). The purpose of this report is to provide conceptual details of how the ADAS software will execute the data acquisition function, and how the software will make collected information available to the test personnel, the Data Management Group (DMG), and other authorized users. It is not intended that this report describe all of the ADAS functions in exact detail, but the concepts included herein will form the basis for the formal ADAS functional requirements definition document. 5 refs., 14 figs.

  13. Development of a current-controlled defibrillator for clinical tests.

    PubMed

    Fischer, M; Schönegg, M; Schöchlin, J; Bolz, A

    2002-01-01

    The work presented here is only a part of the development for a new current-controlled defibrillator. In the diploma thesis "Development and construction of a current-controlled defibrillator for clinical tests" the most important part was the control and safety of the defibrillator. To ensure a safe circuit design, a risk-analysis and a Failure Mode and Effects Analysis (FMEA) were necessary. Another major part was the programming of a microcontroller in embedded C and a programmable logic device in Very High Speed Integrated Circuit Description Language (VHDL). The circuit had to be constructed, and the defibrillator was optically decoupled from the laptop for safety reasons. The waveform-data can be transmitted to the microcontroller from the laptop, and the logged data is then transmitted back.

  14. Differential voltage current controlled current conveyor with low-voltage operation capability

    NASA Astrophysics Data System (ADS)

    Laoudias, C.; Psychalinos, C.

    2014-07-01

    A novel differential voltage current controlled current conveyor topology is introduced in this article. It has the capability for operating in a low-voltage power supply environment and, also, offers resistorless filter realisations. The main attractive offered benefit is that the handling of AC signals is exclusively performed by nMOS transistors and, thus, the proposed element has capability for high-frequency operation. The performance of the proposed cell has been experimentally verified through the realisation of two 3rd-order filters, derived according to the leapfrog and component substitution methods. The filter topologies have been fabricated through the AMS 0.35 µm CMOS process.

  15. SRS control system upgrade requirements

    SciTech Connect

    Hill, L.F.

    1998-08-04

    This document defines requirements for an upgrade of the Sodium Removal System (SRS) control system. The upgrade is being performed to solve a number of maintainability and operability issues. The upgraded system will provide the same functions, controls and interlocks as the present system, and in addition provide enhanced functionality in areas discussed in this document.

  16. System for controlling apnea

    DOEpatents

    Holzrichter, John F

    2015-05-05

    An implanted stimulation device or air control device are activated by an external radar-like sensor for controlling apnea. The radar-like sensor senses the closure of the air flow cavity, and associated control circuitry signals (1) a stimulator to cause muscles to open the air passage way that is closing or closed or (2) an air control device to open the air passage way that is closing or closed.

  17. Indirect learning control for nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  18. System for lower hybrid current startup

    NASA Astrophysics Data System (ADS)

    Ohkubo, K.; Kako, E.; Watari, T.

    1984-03-01

    The following researches on the plasma diagnostics for R-project have been carried out, based on the general principles established previously: (1) Detailed design of microwave interferometer. (2) Detailed design of far-infrared laser interferometer. (3) Estimation of signal-to-noise ratio in the Thomson scattering system of ruby laser light; after detailed design of it. (4) Detailed design of electron cyclotron emission (ECE) measurements. (4) Investigation of extreme ultraviolet to visible spectroscopy and determination of measuring system specifications.

  19. Distributed systems status and control

    NASA Technical Reports Server (NTRS)

    Kreidler, David; Vickers, David

    1990-01-01

    Concepts are investigated for an automated status and control system for a distributed processing environment. System characteristics, data requirements for health assessment, data acquisition methods, system diagnosis methods and control methods were investigated in an attempt to determine the high-level requirements for a system which can be used to assess the health of a distributed processing system and implement control procedures to maintain an accepted level of health for the system. A potential concept for automated status and control includes the use of expert system techniques to assess the health of the system, detect and diagnose faults, and initiate or recommend actions to correct the faults. Therefore, this research included the investigation of methods by which expert systems were developed for real-time environments and distributed systems. The focus is on the features required by real-time expert systems and the tools available to develop real-time expert systems.

  20. Managing the inventory control system.

    PubMed

    Daniels, C E

    1985-02-01

    The four functions of management--planning, organizing, directing, and controlling--are described in relation to the hospital pharmacy inventory control system. Planning includes the development of inventory system objectives and identification of the resources needed to complete them. Organizing requires the manager to decide on the best method of grouping system activities and resources to complete the objectives in order of priority. Directing is a continual activity that involves obtaining optimal performance from the inventory system resources available. Controlling consists of regulation and verification of inventory system activities. The effective inventory system manager integrates planning, organizing, directing, and controlling in a continuous cycle.

  1. Geometrical control of pure spin current induced domain wall depinning

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.; Reeve, R. M.; Voto, M.; Savero-Torres, W.; Richter, N.; Vila, L.; Attané, J. P.; Lopez-Diaz, L.; Kläui, Mathias

    2017-03-01

    We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this can be explained by the asymmetry of the pinning potential. By direct comparison of the calculated efficiencies for different external field and spin current directions, we are able to disentangle the different contributions from the spin transfer torque, Joule heating and the Oersted field. The observed high efficiency of the pure spin current induced spin transfer torque allows for a complete depinning of the domain wall at zero external field for a charge current density of 6\\centerdot {{10}11} A m-2, which is attributed to the optimal control of the position of the domain wall.

  2. [Current status and future of surgical robotic systems].

    PubMed

    Esumi, G; Tomikawa, M; Hashizume, M; Konishi, K; Shimada, M; Sugimachi, K

    2001-09-01

    In this review, we are commenting the current status and the future of surgical robotic systems. AESOP is a voice-controlled laparoscope manipulator that enables the "Solo-surgery". ZEUS is a master-slave manipulator that is characterized by its simplicity and lightness. da Vinci is another master-slave manipulator that has more range of freedom, therefore a surgeon can perform the operation with fewer difficulties. The technological development of high-quality and real-time 3D simulation, minimization of scopes and power saving techniques made these surgical robots realized. Although many pending matters such as lack of safety guideline or lack of accuracy of sensor/monitor have been raised in current surgical robotics, the development of the technologies may promise to resolve such matters in the future.

  3. The RHIC cryogenic control system

    SciTech Connect

    Farah, Y.; Sondericker, J.

    1993-08-01

    A cryogenic process control system for the RHIC Project is discussed. It is independent of the main RHIC Control System, consisting of an upgrade of the existing 24.8 Kw helium refrigerator control section with the addition of a ring control section that regulates and monitors all cryogenic signals in the RHIC tunnel. The system is fully automated, which can run without the continuous presence of operators.

  4. Space Shuttle flight control system

    NASA Technical Reports Server (NTRS)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  5. Current dental adhesives systems. A narrative review.

    PubMed

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  6. The Remote Computer Control (RCC) system

    NASA Technical Reports Server (NTRS)

    Holmes, W.

    1980-01-01

    A system to remotely control job flow on a host computer from any touchtone telephone is briefly described. Using this system a computer programmer can submit jobs to a host computer from any touchtone telephone. In addition the system can be instructed by the user to call back when a job is finished. Because of this system every touchtone telephone becomes a conversant computer peripheral. This system known as the Remote Computer Control (RCC) system utilizes touchtone input, touchtone output, voice input, and voice output. The RCC system is microprocessor based and is currently using the INTEL 80/30microcomputer. Using the RCC system a user can submit, cancel, and check the status of jobs on a host computer. The RCC system peripherals consist of a CRT for operator control, a printer for logging all activity, mass storage for the storage of user parameters, and a PROM card for program storage.

  7. Coherent laser radar: Current European systems

    NASA Technical Reports Server (NTRS)

    Vaughan, J. Michael

    1985-01-01

    Coherent laser radar systems at 10 micrometers have been studied in Europe for well over a decade. In the past few years, the level of activity has increased rapidly and work is now in progress on systems and components at a large number of research institutions and industrial firms. Some of the organizations have had specific involvement with wind and aerosol measuring lidars, while others are largely concerned with components. Some of the particular European strong points are reviewed in device physics and technology. In addition to wind measurement systems, much work has been done on other applications of coherent laser radar including ranging, imaging, and coherent DIAL studies. Some of these other applications are also outlined.

  8. Multivariable current control for electrically and magnetically coupled superconducting magnets. Revision 1

    SciTech Connect

    Owen, E.W.; Shimer, D.W.

    1985-02-08

    Superconducting magnet systems under construction and projected for the future contain magnets that are magnetically coupled and electrically connected with shared power supplies. A change in one power supply voltage affects all of the magnet currents. A current controller for these system must be designed as a multivariable system. The power describes a method, based on decoupling control, for the rational design of these systems. Dynamic decoupling is achieved by cross-feedback of the measured currents. A network of gains at the input decouples the system statically and eliminates the steady-state error. Errors are then due to component variations. The method has been applied to the magnet system of the MFTF-B, at the Lawrence Livermore National Laboratory.

  9. Thermodynamics of feedback controlled systems

    NASA Astrophysics Data System (ADS)

    Cao, F. J.; Feito, M.

    2009-04-01

    We compute the entropy reduction in feedback controlled systems due to the repeated operation of the controller. This was the lacking ingredient to establish the thermodynamics of these systems, and in particular of Maxwell’s demons. We illustrate some of the consequences of our general results by deriving the maximum work that can be extracted from isothermal feedback controlled systems. As a case example, we finally study a simple system that performs an isothermal information-fueled particle pumping.

  10. Methods, systems and apparatus for synchronous current regulation of a five-phase machine

    DOEpatents

    Gallegos-Lopez, Gabriel; Perisic, Milun

    2012-10-09

    Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.

  11. Control of the current density profile with lower hybrid current drive on PBX-M

    SciTech Connect

    Bell, R.E.; Bernabei, S.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kozub, T.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Takahashi, H.; Tighe, W.; Valeo, E.; von Goeler, S.; Blush, L.; Doerner, R.; Schmitz, L.; Tynan, G.; Dunlap, J.; England, A.; Harris, J.; Hirshman, S.; Isler, R.; Lee, D.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Levinton, F.; Timini, F.

    1993-07-01

    Lower hybrid current drive (LHCD) is being explored as a means to control the current density profile on PBX-M with the goal of raising the central safety factor q(O) to values of 1.5-2 to facilitate access to a full-volume second stable regime. Initial experiments have been conducted with up to 400 kW of 4.6 GHz LH power in circular and indented plasmas with modest parameters. A tangential-viewing two-dimensional hard x-ray imaging diagnostic has been used to observe the bremsstrahlung emission from the suprathermal electrons generated during LHCD. Hollow hard x-ray images have indicated off-axis localization of the driven current. A serious obstacle to the control of the current density profile with LHCD is the concomitant generation of MHD activity, which can seriously degrade the confinement of suprathermal electrons. By combining neutral beam injection with LHCD, an MHD-free condition has been obtained where q(O) is raised above 1.

  12. Supervisory control systems

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.

    1974-01-01

    The various functions of a computer are considered that serve in connecting the man, with his displays and controls, to an external environment, manipulator activators and the interoceptors that are in the actuators, and to the interosensors and the motors or the actuators to drive the sensors. Projected is an improved exoskeleton mechanism with computer control and some supervisory control that may give a quadriplegic the ability to walk and run around.

  13. Supervisory control systems

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.

    1974-01-01

    The various functions of a computer are considered that serve in connecting the man, with his displays and controls, to an external environment, manipulator activators and the interoceptors that are in the actuators, and to the interosensors and the motors or the actuators to drive the sensors. Projected is an improved exoskeleton mechanism with computer control and some supervisory control that may give a quadriplegic the ability to walk and run around.

  14. D0 Cryo System Control System Autodialer

    SciTech Connect

    Urbin, J.; /Fermilab

    1990-04-17

    The DO cryogenic system is controlled by a TI565-PLC based control system. This allows the system to be unmanned when in steady state operation. System experts will need to be contacted when system parameters exceed normal operating points and reach alarm setpoints. The labwide FIRUS system provides one alarm monitor and communication link. An autodialer provides a second and more flexible alarm monitor and communication link. The autodialer monitors contact points in the control system and after receiving indication of an alarm accesses a list of experts which it calls until it receives an acknowledgement. There are several manufacturers and distributors of autodialer systems. This EN explains the search process the DO cryo group used to fmd an autodialer system that fit the cryo system's needs and includes information and specs for the unit we chose.

  15. Controls of maglev suspension systems

    SciTech Connect

    Cai, Y.; Zhu, S.; Chen, S.S.; Rote, D.M.

    1993-06-01

    This study investigates alternative control designs of maglev vehicle suspension systems. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. A one-dimensional vehicle with two degrees of freedom, to simulate the German Transrapid Maglev System, is used for suspension control designs. The transient and frequency responses of suspension systems and PSDs of vehicle accelerations are calculated to evaluate different control designs. The results show that active and semi-active control designs indeed improve the response of vehicle and provide an acceptable ride comfort for maglev systems.

  16. Control-System Design Program

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1987-01-01

    Control-theory design package, Optimal Regulator Algorithms for Control of Linear Systems (ORACLS), developed to aid in design of controllers and optimal filters for systems modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, Linear-Quadratic-Gaussian (LQG) problem, most widely accepted method of determining optimal control policy. Provides for solution to time-in-variant continuous or discrete LQG problems. Attractive to control-system designer providing rigorous tool for dealing with multi-input and multi-output dynamic systems in continuous and discrete form. CDO version written in FORTRAN IV. VAX version written in FORTRAN 77.

  17. Myoelectric hand prosthesis force control through servo motor current feedback.

    PubMed

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  18. The ATLAS Detector Control System

    NASA Astrophysics Data System (ADS)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  19. Automatic control system design of laser interferometer

    NASA Astrophysics Data System (ADS)

    Lu, Qingjie; Li, Chunjie; Sun, Hao; Ren, Shaohua; Han, Sen

    2015-10-01

    There are a lot of shortcomings with traditional optical adjustment in interferometry, such as low accuracy, time-consuming, labor-intensive, uncontrollability, and bad repetitiveness, so we treat the problem by using wireless remote control system. Comparing to the traditional method, the effect of vibration and air turbulence will be avoided. In addition the system has some peculiarities of low cost, high reliability and easy operation etc. Furthermore, the switching between two charge coupled devices (CCDs) can be easily achieved with this wireless remote control system, which is used to collect different images. The wireless transmission is achieved by using Radio Frequency (RF) module and programming the controller, pulse width modulation (PWM) of direct current (DC) motor, real-time switching of relay and high-accuracy displacement control of FAULHABER motor are available. The results of verification test show that the control system has good stability with less than 5% packet loss rate, high control accuracy and millisecond response speed.

  20. Electric Machine with Boosted Inductance to Stabilize Current Control

    NASA Technical Reports Server (NTRS)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  1. Prevention and control of schistosomiasis: a current perspective

    PubMed Central

    Inobaya, Marianette T; Olveda, Remigio M; Chau, Thao NP; Olveda, David U; Ross, Allen GP

    2014-01-01

    Schistosomiasis is a neglected tropical disease that ranks second only to malaria in terms of human suffering in the tropics and subtropics. Five species are known to infect man and there are currently over 240 million people infected worldwide. The cornerstone of control to date has been mass drug administration with 40 mg/kg of praziquantel but there are problems with this approach. Human and bovine vaccines are in various stages of development. Integrated control, targeting the life cycle, is the only approach that will lead to sustainability and future elimination. PMID:25400499

  2. Intraoral scanning systems - a current overview.

    PubMed

    Zimmermann, M; Mehl, A; Mörmann, W H; Reich, S

    2015-01-01

    There is no doubt today about the possibilities and potential of digital impression-taking with the aid of intraoral optical impression systems, and the past few years have seen a considerable increase in the range of optical intraoral scanners available on the market. On the strength of numerous innovations and a wider range of indications in orthodontics and implantology, intraoral scanning systems appear to be a highly promising development for the future. Digital impression-taking with intraoral scanners has already shown itself in some respects to be clearly superior to conventional impression- taking. Particularly worthy of mention is the versatile integration of digital impressions into diagnostic and treatment concepts to provide a customizable healthcare solution for the patient. It remains exciting to look forward to future developments that will allow us to observe digital impression-taking--as with other digital applications already established in everyday life--becoming firmly established in the routine of dentistry and dental technology. This article presents an overview of the benefits and limitations of digital impression-taking using intraoral scanning systems, and includes a summary of all the relevant intraoral scanners available on the market at present.

  3. Duct Flow Control System.

    DTIC Science & Technology

    is ejected under pressure tangentially of local duct surfaces through Coanda affected slots at the trailing edge of the duct from which only the...channel passages in order to modify the flow stream through the duct so as to perform certain functions such as thrust control and steerage control effects enhancing vehicle maneuverability.

  4. Fluid delivery control system

    SciTech Connect

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  5. Controlled Stochastic Dynamical Systems

    DTIC Science & Technology

    2007-04-18

    the existence of value functions of two-player zero-sum stochastic differential games Indiana Univ. Math. Journal, 38 (1989), pp 293-314. [6] George ...control problems, Adv. Appl. Prob., 15, (1983) pp 225-254. [10] Karatzas, I. Ocone, D., Wang, H. and Zervos , M., Finite fuel singular control with

  6. Reversible control of current across lipid membranes by local heating

    PubMed Central

    Urban, Patrick; Kirchner, Silke R.; Mühlbauer, Christian; Lohmüller, Theobald; Feldmann, Jochen

    2016-01-01

    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels. PMID:26940847

  7. FLEXIBLE CONTROL OF DENSITY CURRENT MIGRATION BY USING SLUICE GATE

    NASA Astrophysics Data System (ADS)

    Akahori, Ryosuke; Yoshikawa, Yasuhiro; Yasuda, Hiroyasu

    Controlling adverse density currents has been an important issue on water quality and ecosystems of brackish water regions. This study proposes to apply sluice gate for flexible control of density current migration in open channels. Hydraulic characteristics of density flows around a sluice gate are investigated by flume experiments employing the Particle Image Velocimetry technique and numerical calculations by a Large Eddy Simulation model. The results show that the behavior of density front migration under a sluice gate is dominated by internal Froude number of both fresh water and salt water layers, and entrainment of salt water in a downstream region of a dike is influenced by evolution of instantaneous flow structures in a fresh water layer.

  8. Reversible control of current across lipid membranes by local heating

    NASA Astrophysics Data System (ADS)

    Urban, Patrick; Kirchner, Silke R.; Mühlbauer, Christian; Lohmüller, Theobald; Feldmann, Jochen

    2016-03-01

    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels.

  9. Reversible control of current across lipid membranes by local heating.

    PubMed

    Urban, Patrick; Kirchner, Silke R; Mühlbauer, Christian; Lohmüller, Theobald; Feldmann, Jochen

    2016-03-04

    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels.

  10. Autorotation flight control system

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward N. (Inventor); Lee, Dong-Chan (Inventor); Aponso, Bimal L. (Inventor)

    2011-01-01

    The present invention provides computer implemented methodology that permits the safe landing and recovery of rotorcraft following engine failure. With this invention successful autorotations may be performed from well within the unsafe operating area of the height-velocity profile of a helicopter by employing the fast and robust real-time trajectory optimization algorithm that commands control motion through an intuitive pilot display, or directly in the case of autonomous rotorcraft. The algorithm generates optimal trajectories and control commands via the direct-collocation optimization method, solved using a nonlinear programming problem solver. The control inputs computed are collective pitch and aircraft pitch, which are easily tracked and manipulated by the pilot or converted to control actuator commands for automated operation during autorotation in the case of an autonomous rotorcraft. The formulation of the optimal control problem has been carefully tailored so the solutions resemble those of an expert pilot, accounting for the performance limitations of the rotorcraft and safety concerns.

  11. Automated Visual Control System For Gob Feeders

    NASA Astrophysics Data System (ADS)

    Molesworth, Hugh; Vann, Tony

    1983-08-01

    The usable throughput and hence profitability of an automated glass bottle production line depends, amongst other factors, on the weight of glass in each bottle. Present techniques often rely on manual weighing of bottles on a sample basis with manual control of the feeder which forms the gobs from which the bottles are produced. Currently available automated weighing systems provide improved control although the weight measurement is still done only on a sample basis. All such weight measurement systems produce an undesirable delay before the bottle is safely available for weighing. This paper describes an automated visual gob weight control system which overcomes both of the above major limitations of existing control systems. The weight of every gob is calculated by visual scanning in free fall before the bottle is formed, allowing a fast and accurate closed-loop control system to be implemented.

  12. Current system associated with small dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Palin, Laurianne; Jacquey, Christian; Opgenoorth, Hermann; Connors, Martin; Sergeev, Victor; Sauvaud, Jean-André; Nakamura, Rumi; Reeves, Geoffrey D.; Singer, Howard; Angelopoulos, Vassilis; Turc, Lucile

    2015-04-01

    We present a case study of eight successive Plasma Sheet (PS) activations (usually referred to as « Bursty Bulk Flows » or « Dipolarisation Fronts ») associated with small individual BZGSM increases on 31 March 2009 (0200 - 0900 UT). This series of events happens during generally very quiet SW conditions, over a period of 7 hours preceding a substorm onset at 1230 UT. The amplitude of the dipolarizations increases with time. The low amplitude dipolarization fronts are associated with few (1 or 2) Rapid Flux Transfer events (Eh > 2mV/m), whereas the large amplitude ones engulf many more RFT events. All PS activations are associated with a small and localised current wedge(« wedgelet ») which seems to be the consequence of RFT arrival in the near tail. Ground magnetic perturbations affect a larger part of the contracted auroral oval for the events with more RTF event embedded (> 5). Dipolarisation Fronts with very low amplitude, a type usually not included in statistical studies, are of particular interest because we found them associated with clear wedgelets and particle injections at geosynchronous orbit. This exceptional dataset highlights the role of flow bursts in the magnetotail and brings up the question: are we in this case observing the smallest form of a substorm ?

  13. NADIR: A Flexible Archiving System Current Development

    NASA Astrophysics Data System (ADS)

    Knapic, C.; De Marco, M.; Smareglia, R.; Molinaro, M.

    2014-05-01

    The New Archiving Distributed InfrastructuRe (NADIR) is under development at the Italian center for Astronomical Archives (IA2) to increase the performances of the current archival software tools at the data center. Traditional softwares usually offer simple and robust solutions to perform data archive and distribution but are awkward to adapt and reuse in projects that have different purposes. Data evolution in terms of data model, format, publication policy, version, and meta-data content are the main threats to re-usage. NADIR, using stable and mature framework features, answers those very challenging issues. Its main characteristics are a configuration database, a multi threading and multi language environment (C++, Java, Python), special features to guarantee high scalability, modularity, robustness, error tracking, and tools to monitor with confidence the status of each project at each archiving site. In this contribution, the development of the core components is presented, commenting also on some performance and innovative features (multi-cast and publisher-subscriber paradigms). NADIR is planned to be developed as simply as possible with default configurations for every project, first of all for LBT and other IA2 projects.

  14. Bibliographic Access and Control System.

    ERIC Educational Resources Information Center

    Kelly, Betsy; And Others

    1982-01-01

    Presents a brief summary of the functions of the Bibliographic Access & Control System (BACS) implemented at the Washington University School of Medicine Library, and outlines the design, development, and uses of the system. Bibliographic control of books and serials and user access to the system are also discussed. (Author/JL)

  15. Superposed Epoch Analysis of Current Systems During Intense Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Katus, R. M.

    2013-05-01

    A statistical approach to investigating the intensity and timing of storm-time current systems is conducted and presented. The Hot Electron and Ion Drift Integrator (HEIDI) model was used to simulate all of the intense storms (Dstmin < -100 nT) from solar cycle 23 (1996-2005). Five different HEIDI input combinations were used to create a large collection of numerical results, varying the plasma outer boundary condition and electric field description in the model. The simulation results are then combined with a normalized superposed epoch analysis, where each phase of each storm is prorated to the average duration of that phase and then all of the storms are averaged together. The azimuthal currents in the HEIDI simulation domain are classified as westward and eastward symmetric ring current, partial ring current, banana current, and tail current. The average behavior of these current systems with respect to the HEIDI plasma and electric field boundary conditions are then presented and discussed. It is found that the Volland-Stern electric field produces an earlier increase in the inner magnetospheric current systems because of the usage of the 3-h Kp index. A self-consistent electric field develops the current systems a few hours later, but produces much stronger asymmetric current systems (partial, banana, and tail currents), especially in the main phase of the storm. Applying a nonuniform local time distribution for the plasma outer boundary condition slightly increases the magnitudes of the current systems, but this effect is smaller than the electric field influence.

  16. Moving Object Control System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    2001-01-01

    A method is provided for controlling two objects relatively moveable with respect to each other. A plurality of receivers are provided for detecting a distinctive microwave signal from each of the objects and measuring the phase thereof with respect to a reference signal. The measured phase signal is used to determine a distance between each of the objects and each of the plurality of receivers. Control signals produced in response to the relative distances are used to control the position of the two objects.

  17. Food reward system: current perspectives and future research needs.

    PubMed

    Alonso-Alonso, Miguel; Woods, Stephen C; Pelchat, Marcia; Grigson, Patricia Sue; Stice, Eric; Farooqi, Sadaf; Khoo, Chor San; Mattes, Richard D; Beauchamp, Gary K

    2015-05-01

    This article reviews current research and cross-disciplinary perspectives on the neuroscience of food reward in animals and humans, examines the scientific hypothesis of food addiction, discusses methodological and terminology challenges, and identifies knowledge gaps and future research needs. Topics addressed herein include the role of reward and hedonic aspects in the regulation of food intake, neuroanatomy and neurobiology of the reward system in animals and humans, responsivity of the brain reward system to palatable foods and drugs, translation of craving versus addiction, and cognitive control of food reward. The content is based on a workshop held in 2013 by the North American Branch of the International Life Sciences Institute. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute.

  18. A differential-delay control for ramped magnet current

    SciTech Connect

    Murray, J. . Dept. of Electrical Engineering); Olsen, R. )

    1992-01-01

    A differential-delay control system has been designed and implemented for the main dipole magnet power supply of the booster ring at the National Synchrotron Light Source at Brookhaven National Lab. The control algorithm was implemented on a floating-point digital signal processor; in tests, the use of digital signal-processing techniques gave a factor of ten improvement in the tracking response time, together with a modest improvement in tracking accuracy.

  19. A differential-delay control for ramped magnet current

    SciTech Connect

    Murray, J.; Olsen, R.

    1992-11-01

    A differential-delay control system has been designed and implemented for the main dipole magnet power supply of the booster ring at the National Synchrotron Light Source at Brookhaven National Lab. The control algorithm was implemented on a floating-point digital signal processor; in tests, the use of digital signal-processing techniques gave a factor of ten improvement in the tracking response time, together with a modest improvement in tracking accuracy.

  20. Supervisory Control of Networked Control Systems

    DTIC Science & Technology

    2006-01-15

    consisting of 3 Koala robots [Lem06b]. The robots are controlled by MICA2 wireless processor modules. The robots communicate over the MICA2’s...preliminary documentation of a wireless autonomous robotic testbed. The system consists of 3 Koala (K-team Inc.) robots that are controlled by the MICA2...by this project. MICA-KoalaBot Hardware: The Koala robot is an autonomous wheeled vehicle that has 16 infrared (IR) proximity sensors around its

  1. Fuel cell stack monitoring and system control

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-02-17

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.

  2. A telerobotic digital controller system

    NASA Technical Reports Server (NTRS)

    Brown, Richard J.

    1992-01-01

    This system is a network of joint mounted dual axes digital servo-controllers (DDSC), providing control of various joints and end effectors of different robotic systems. This report provides description of and user required information for the Digital Controller System Network (DSCN) and, in particular, the DDSC, Model DDSC-2, developed to perform the controller functions. The DDSC can control 3 phase brushless or brush type DC motors, requiring up to 8 amps. Only four wires, two for power and 2 for serial communication, are required, except for local sensor and motor connections. This highly capable, very flexible, programmable servo-controller, contained on a single, compact printed circuit board measuring only 4.5 x 5.1 inches, is applicable to control systems of all types from sub-arc second precision pointing to control of robotic joints and end effectors. This document concentrates on the robotic applications for the DDSC.

  3. Systems and methods for commutating inductor current using a matrix converter

    DOEpatents

    Ransom, Ray M; Kajouke, Lateef A; Perisic, Milun

    2012-10-16

    Systems and methods are provided for delivering current using a matrix converter in a vehicle. An electrical system comprises an AC interface, a first conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the first conversion module, and a control module coupled to the first conversion module. The control module is configured to operate the first conversion module in a bidirectional operating mode to commutate current bidirectionally. When a magnitude of the current through the inductive element is greater than a first threshold value, the control module operates the conversion module in a unidirectional operating mode, wherein current is commutated unidirectionally.

  4. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2005-07-27

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the rebuilding of the prototype using the improved valve design described in the last report. Most of the components have been received and assembly has begun. Testing is expected to resume in August. In April, a paper was presented at the American Association of Drilling Engineers National Technical Conference in Houston. The paper was well received, and several oilfield service and supply companies sent inquiries regarding commercial distribution of the system. These are currently being pursued, but none have yet been finalized.

  5. Model of control of glow discharge electron gun current for microelectronics production applications

    NASA Astrophysics Data System (ADS)

    Denbnovetsky, S. V.; Melnyk, V. I.; Melnyk, I. V.; Tugay, B. A.

    2003-04-01

    The problems of simulation of discharge current control and its gas-dynamic stabilization for technological glow discharge electron guns with a cold cathode are considered in a paper. Such guns are successfully operated in soft vacuum and can be used in modern microelectronic technologies for providing of thermal operations with using different technological gases including active ones. The results of theoretical and experimental investigation of automatic control system of current of electron gun which were used for deposition of coatings in reactive gas medium are presented in article. Time of regulation for considered system did not exceed 400 ms. Is proved, that the automatic control of a current of a glow discharge electron gun by pressure variation its volume is effective on all operation range of pressure, and the minimum time of a current regulation can be tens -- hundred of ms, and this fact is allow to use in the majority of technological operations for microelectronic production.

  6. Dynamics and stabilization of peak current-mode controlled buck converter with constant current load

    NASA Astrophysics Data System (ADS)

    Leng, Min-Rui; Zhou, Guo-Hua; Zhang, Kai-Tun; Li, Zhen-Hua

    2015-10-01

    The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. Project supported by the National Natural Science Foundation of China (Grant No. 61371033), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142027), the Sichuan Provincial Youth Science and Technology Fund, China (Grant Nos. 2014JQ0015 and 2013JQ0033), and the Fundamental Research Funds for the Central Universities, China (Grant No. SWJTU11CX029).

  7. Spaceport Command and Control System Software Development

    NASA Technical Reports Server (NTRS)

    Glasser, Abraham

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires a large amount of intensive testing that will properly measure the capabilities of the system. Automating the test procedures would save the project money from human labor costs, as well as making the testing process more efficient. Therefore, the Exploration Systems Division (formerly the Electrical Engineering Division) at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  8. Tests Of Helicopter Control System

    NASA Technical Reports Server (NTRS)

    Hilbert, Kathryn B.; Lebacqz, J. Victor; Hindson, William S.

    1988-01-01

    Advanced control systems being developed for rotorcraft. Report discusses aspects of development of multivariable, explicit-model-following control system for CH-47B fly-by-wire helicopter. Project part of recent trend toward use of highly-augmented, high-gain flight-control systems to assist pilots of military helicopters in performance of demanding tasks and to improve handling qualities of aircraft.

  9. An intelligent CNC machine control system architecture

    SciTech Connect

    Miller, D.J.; Loucks, C.S.

    1996-10-01

    Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications using platform-independent software.

  10. Virtual smile design systems: a current review.

    PubMed

    Zimmermann, Moritz; Mehl, Albert

    2015-01-01

    In the age of digital dentistry, virtual treatment planning is becoming an increasingly important element of dental practice. Thanks to new technological advances in the computer- assisted design and computer-assisted manufacturing (CAD/CAM) of dental restorations, predictable interdisciplinary treatment using the backward planning approach appears useful and feasible. Today, a virtual smile design can be used as the basis for creating an esthetic virtual setup of the desired final result. The virtual setup, in turn, is used to plan further treatment steps in an interdisciplinary team approach, and communicate the results to the patient. The smile design concept and the esthetic analyses required for it are described in this article. We include not only a step-by-step description of the virtual smile design workflow, but also describe and compare the several available smile design options and systems. Subsequently, a brief discussion of the advantages and limitations of virtual smile design is followed by a section on different ways to integrate a two-dimensional (2D) smile design into the digital three-dimensional (3D) workflow. New technological developments are also described, such as the integration of smile designs in digital face scans, and 3D diagnostic follow-up using intraoral scanners.

  11. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  12. High-speed current dq PI controller for vector controlled PMSM drive.

    PubMed

    Marufuzzaman, Mohammad; Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era.

  13. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    PubMed Central

    Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era. PMID:24574913

  14. Ground Control System Description Document

    SciTech Connect

    Eric Loros

    2001-07-31

    The Ground Control System contributes to the safe construction and operation of the subsurface facility, including accesses and waste emplacement drifts, by maintaining the configuration and stability of the openings during construction, development, emplacement, and caretaker modes for the duration of preclosure repository life. The Ground Control System consists of ground support structures installed within the subsurface excavated openings, any reinforcement made to the rock surrounding the opening, and inverts if designed as an integral part of the system. The Ground Control System maintains stability for the range of geologic conditions expected at the repository and for all expected loading conditions, including in situ rock, construction, operation, thermal, and seismic loads. The system maintains the size and geometry of operating envelopes for all openings, including alcoves, accesses, and emplacement drifts. The system provides for the installation and operation of sensors and equipment for any required inspection and monitoring. In addition, the Ground Control System provides protection against rockfall for all subsurface personnel, equipment, and the engineered barrier system, including the waste package during the preclosure period. The Ground Control System uses materials that are sufficiently maintainable and that retain the necessary engineering properties for the anticipated conditions of the preclosure service life. These materials are also compatible with postclosure waste isolation performance requirements of the repository. The Ground Control System interfaces with the Subsurface Facility System for operating envelopes, drift orientation, and excavated opening dimensions, Emplacement Drift System for material compatibility, Monitored Geologic Repository Operations Monitoring and Control System for ground control instrument readings, Waste Emplacement/Retrieval System to support waste emplacement operations, and the Subsurface Excavation System

  15. AUTOMATIC FREQUENCY CONTROL SYSTEM

    DOEpatents

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  16. Communicating Networked Control Systems

    DTIC Science & Technology

    2007-03-31

    Bahamas, pages 1010-1015. 64. Carmen Del Vecchio and I.C. Paschalidis, “Supply Contracts with Service Level Requirements”, Proceedings of the IFAC...control using Monte Carlo sensing,” Proc. IEEE International Conference on Robotics and Automation, pp. 3058-3063, 2005. 10. S.B. Andersson, A.A. Handzel, V...Analysis, Madrid Spain. 20. S. Andersson and D. Hristu-Varsakelis, “Language-based feedback control using Monte -Carlo sensing”, to be subm. To IEEE Int’l

  17. Improved Load Compensation using Harmonic Compensator in dq0 Current Controller for DSTATCOM

    NASA Astrophysics Data System (ADS)

    Geddada, Nagesh; Mishra, Mahesh Kumar

    2014-12-01

    This paper presents distribution static compensator (DSTATCOM) with dq0 current controller and sine pulse width modulation (SPWM) switching for compensation of unbalanced nonlinear load in distribution system. DSTATCOM, connected in parallel to load at the point of common coupling (PCC), is used for supplying reactive and harmonic components of load current demand. This dq0 current controller is implemented in synchronous reference frame (SRF) rotating at fundamental frequency and consists of harmonic compensation (HC) regulator along with proportional integrator (PI) regulator. HC regulator is realized by number of sinusoidal signal integrators (SSIs) in parallel. The SSI provides high gain for tuned harmonic frequency and helps in minimizing filter current tracking error while compensating for load harmonic currents. Zero-axis controller, which compensates load neutral current and helps in obtaining balanced utility currents, is provided along with d, q controllers. SPWM switching generates inverter gating pulses at constant frequency, which reduces stress levels on VSI switches and simplifies the design of interface filter. Simulation studies of DSTATCOM load compensation with dq0 current controller are carried out in Matlab/Simulink and experimental verification is done using dSpace 1104 with Matlab real-time interface (RTI).

  18. The Advanced Photon Source control system

    SciTech Connect

    Knott, M.J.; McDowell, W.P.; Lenkszus, F.R.; Kraimer, M.R.; Arnold, N.D.; Daly, R.T.; Gunderson, G.R.; Cha, Ben-Chin K.; Anderson, M.D.

    1991-01-01

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), is a 7-GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible and expandable control system. The control system must be capable of operating the APS storage ring alone, and in conjunction with its injector synchrotron for filling, as well as operating both storage ring and injection facilities as machines with separate missions. The control system design is based on the (now classic) precepts of high-performance workstations as operators consoles, distributed microprocessors to control equipment interfacing and preprocess data, and an interconnecting network. The current design includes about 45 distributed microprocessors and five console systems, which may consist of one or more workstations. 6 refs., 2 figs.

  19. Robust Control of the Spatial Current Profile in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Barton, J.; Schuster, E.; Walker, M. L.; Humphreys, D. A.

    2011-10-01

    Advanced tokamak operating scenarios, characterized by large noninductively driven plasma currents, typically require active regulation of a specific current density profile. Non-model-based control of the q profile has been tested at DIII-D. However, some present limitations of the controller motivate the design of a model-based controller that accounts for the dynamics of the whole q profile in response to the control actuators. A control-oriented model of the current profile evolution in DIII-D was recently developed and used to design feedforward control schemes. In order to reject the effects of external disturbances to the system, a feedback control input needs to be added to the feedforward input. In this work, we report on the design of a robust feedback controller, on the implementation of the combined model-based feedforward + feedback controller in the DIII-D Plasma Control System, and on the experimental validation of the combined controller in the DIII-D tokamak. Supported by the NSF CAREER award program ECCS-0645086 and the US DOE under DE-FG02-09ER55064 and DE-FC02-04ER54698.

  20. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  1. Neural prosthetic systems: current problems and future directions.

    PubMed

    Chestek, Cindy A; Cunningham, John P; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen I; Shenoy, Krishna V

    2009-01-01

    By decoding neural activity into useful behavioral commands, neural prosthetic systems seek to improve the lives of severely disabled human patients. Motor decoding algorithms, which map neural spiking data to control parameters of a device such as a prosthetic arm, have received particular attention in the literature. Here, we highlight several outstanding problems that exist in most current approaches to decode algorithm design. These include two problems that we argue will unlikely result in further dramatic increases in performance, specifically spike sorting and spiking models. We also discuss three issues that have been less examined in the literature, and we argue that addressing these issues may result in dramatic future increases in performance. These include: non-stationarity of recorded waveforms, limitations of a linear mappings between neural activity and movement kinematics, and the low signal to noise ratio of the neural data. We demonstrate these problems with data from 39 experimental sessions with a non-human primate performing reaches and with recent literature. In all, this study suggests that research in cortically-controlled prosthetic systems may require reprioritization to achieve performance that is acceptable for a clinically viable human system.

  2. A dedicated compressor monitoring system employing current signature analysis

    SciTech Connect

    Castleberry, K.N.; Smith, S.F.

    1993-04-15

    The use of motor current signature analysis (CSA) has been established as a useful method for periodic monitoring of electrically driven equipment. CSA is, moreover, especially well suited as the basis for a dedicated continuous monitoring system in an industrial setting. This paper presents just such an application that has been developed and installed in the US government uranium enrichment plant at Portsmouth, Ohio. The system, which is designed to detect specific axial-flow compressor problems in 1700-hp gaseous diffusion compressors, is described in detail along with an explanation of detected fault conditions and the required signal manipulations. Amplitude demodulation and subsequent digital processing of motor signals sensed from area control room ammeter loops are used to accomplish the desired monitoring task. Using modified off-the-shelf multiplexing equipment, a 386-type personal computer, and special digital signal processing hardware, the system is presently configured to monitor ten compressors but is expandable to monitor more than 100. Within its first few days of operation in September 1992, the system detected a compressor problem that, when corrected, resulted in a cost avoidance of about $150,000, which more than paid for the hardware and software development costs. Finally, plans to expand system coverage in the coming year are also discussed.

  3. The CARMA Control System

    NASA Astrophysics Data System (ADS)

    Gwon, C.; Beard, A. D.; Daniel, P.; Hobbs, R.; Scott, S. L.; Kraybill, J. C.; Leitch, E.; Mehringer, D. M.; Plante, R.; Amarnath, N. S.; Pound, M. W.; Rauch, K. P.; Teuben, P. J.

    2004-07-01

    The Combined Array for Research in Millimeter-wave Astronomy (CARMA) will be the combination of the BIMA, OVRO, and SZA millimeter arrays. With first light scheduled for 2005, CARMA will be the first heterogeneous millimeter array, combining antennas varying from 3.5 m to 10.4 m in diameter. The controls for CARMA involve creating a uniform interface for all antennas. The antennas are grouped into five independently-controlled sub-arrays, which will be used for scientific observations, engineering, or maintenance. The sub-arrays are controlled by two components: the Sub-array Command Processor (SCP) and the Sub-array Tracker (SAT). While each sub-array has a dedicated SCP for handling command processing, a single SAT computes and distributes slowly varying parameters to the necessary sub-arrays. The sub-array interface uses CORBA distributed objects to physically separate the user interface from the array. This allows for stability in the core engine controlling the array while enabling flexibility in the user interface implementation.

  4. Aircraft landing control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)

    1982-01-01

    Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.

  5. Automatic welder control system

    SciTech Connect

    Cecil, D.G.; Mumford, W.E.; Yajie Chen.

    1993-06-15

    A spot welder for joining a plurality of parts is described, said spot welder comprising: an electrode electrically coupled to a weld controller; a first cylinder assembly having a cylinder housing, a piston and piston rod attached thereto for linearly displacing said electrode; a linear variable displacement transducer (LVDT) for detecting the displacement of said piston rod relative to the first cylinder housing and generating a LVDT signal responsive thereto; a microprocessor controlled monitor cooperating with the weld controller for evaluating the LVDT signal occurring during each cylinder movement to determine proper part fit up and to compensate for electrode wear prior to the initiation of welding, for monitoring real time displacement of the electrode as a result of welding, in order to cooperate with the weld controller to vary weld duration responsive to the electrode displacement; and a second cylinder assembly for linearly displacing said first cylinder assembly between a retracted position to facilitate part removal and an extended position in which welding occurs.

  6. INSTRUCTIONAL QUALITY CONTROL SYSTEMS.

    ERIC Educational Resources Information Center

    MONROE, BRUCE

    A REVIEW OF THE LITERATURE, A MAIL SURVEY, AND A TEXTUAL ANALYSIS OF JUNIOR COLLEGE DOCUMENTS INDICATE THAT, WHILE CALIFORNIA JUNIOR COLLEGES ARE CONCERNED ABOUT THE QUALITY AND EFFECTIVENESS OF INSTRUCTION, CONTROL OF THAT QUALITY IS RARELY A SYSTEMATIC ROUTINE ENTERPRISE BASED ON EXAMINATION OF BEHAVIOR CHANGES IN STUDENTS FOLLOWING INSTRUCTION.…

  7. Current Issues in Human Spacecraft Thermal Control Technology

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2008-01-01

    Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.

  8. Current Issues in Human Spacecraft Thermal Control Technology

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2008-01-01

    Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.

  9. HBT-EP Program: MHD Dynamics and Active Control through 3D Fields and Currents

    NASA Astrophysics Data System (ADS)

    Navratil, G. A.; Abler, M. C.; Bialek, J.; Brooks, J. W.; Byrne, P. J.; Desanto, S.; Hughes, P. E.; Levesque, J. P.; Mauel, M. E.; Rhodes, D. J.; Hansen, C. J.

    2016-10-01

    The HBT-EP active mode control research program aims to: (i) advance understanding of the effects of 3D shaping on advanced tokamak fusion performance, (ii) resolve important MHD issues associated with disruptions, and (iii) measure and mitigate the effects of 3D scrape-off layer (SOL) currents through active and passive control of the plasma edge and conducting boundary structures. A GPU-based low latency control system uses 96 inputs and 64 outputs to control the plasma boundary. An in-vessel adjustable ferritic wall is used to study ferritic RWMs with increased growth rates, RMP response, and disruptivity. A quasi-linear sharp-boundary model is developed to study effects of toroidal curvature and plasma shaping on beta limits with resistive plasmas and walls. Measurement of currents between vessel sections reveals currents running from the plasma to the wall during wall-touching kink modes and disruptions. Asymmetries in plasma current are observed using segmented Rogowski coils. Biased electrodes in the plasma are used to control rotation of external kinks and drive currents in the SOL. An extensive array of SOL current monitors and edge drive electrodes will be installed for pioneering studies of helical edge current control. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  10. The APS control system network

    SciTech Connect

    Sidorowicz, K.V.; McDowell, W.P.

    1995-12-31

    The APS accelerator control system is a distributed system consisting of operator interfaces, a network, and computer-controlled interfaces to hardware. This implementation of a control system has come to be called the {open_quotes}Standard Model.{close_quotes} The operator interface is a UNDC-based workstation with an X-windows graphical user interface. The workstation may be located at any point on the facility network and maintain full functionality. The function of the network is to provide a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The crate or input/output controller (IOC) provides direct control and input/output interfaces for each accelerator subsystem. The network is an integral part of all modem control systems and network performance will determine many characteristics of a control system. This paper will describe the overall APS network and examine the APS control system network in detail. Metrics are provided on the performance of the system under various conditions.

  11. Current status and strategies for viral hepatitis control in Korea.

    PubMed

    Sinn, Dong Hyun; Cho, Eun Ju; Kim, Ji Hoon; Kim, Do Young; Kim, Yoon Jun; Choi, Moon Seok

    2017-09-01

    Viral hepatitis is one of major global health challenges with increasing disease burden worldwide. Hepatitis B virus and hepatitis C virus infections are major causes of chronic liver diseases. They can lead to cirrhosis, hepatocellular carcinoma, and death in significant portion of affected people. Transmission of hepatitis B virus can be blocked by vaccination. Progression of hepatitis B virus-related liver diseases can be prevented by long-term viral suppression with effective drugs. Although vaccine for hepatitis C virus is currently unavailable, hepatitis C virus infection can be eradicated by oral direct antiviral agents. To eliminate viral hepatitis, World Health Organization (WHO) has urged countries to develop national goals and targets through reducing 90% of new infections and providing universal access to key treatment services up to 80%. This can lead to 65% reduction of viral hepatitis-related mortality. Here, we discuss some key features of viral hepatitis, strategies to control viral hepatitis suggested by WHO, and current status and strategies for viral hepatitis control in South Korea. To achieve the goal of viral hepatitis elimination by 2030 in South Korea, an independent 'viral hepatitis sector' in Centers for Disease Control & Prevention (CDC) needs to be established to organize and execute comprehensive strategy for the management of viral hepatitis in South Korea.

  12. Modal control of structural systems

    NASA Astrophysics Data System (ADS)

    Miller, D. F.; Wells, W. R.

    1984-11-01

    There is much interest in the practical control of large space structures such as space transportation systems and large communication satellites. The control task is normally thought of in terms of maintaining specified shape configurations, orientation and alignment, vibration suppression and pointing accuracy, etc. Because of their inherent flexibility, they are generally analyzed as distributed parameter systems which creates difficulties in the design and analysis of controllers for them. Modal control techniques have been developed to bypass problems associated with distributed parameter theory. Modal control is built upon the notion that certain specified system modes can be controlled by appropriate design of the associated closed-loop eigenvalues. This reduces the number of sensors and actuators needed to effect the control of the structure. An undesirable phenomenon, referred to as observation and control spillover, can occur if the number of sensors and actuators used is small. Spillover refers to the phenomenon in which energy intended to go solely into the controlled modes leaks into the uncontrolled modes. This report discusses the control of flexible systems described by a generalized one-dimensional wave equation which relates the structure displacement to the force distribution acting on the structure. Optimal control involving the minimization of a quadratic performance index representing control and modal energy content is considered. Typically this control formulation leads to a state feedback algorithm.

  13. Effective mass discontinuity and current oscillations in stratified systems

    NASA Astrophysics Data System (ADS)

    Halilov, S.; Mil'shtein, S.

    2015-11-01

    Tunnelling transport in modulated film, which occurs either stoichiometrically or due to a stress field, is analysed in terms of the variable carrier effective mass tensor. It is shown that the mass tensor discontinuity alone, i.e. with no actual potential barrier present, may lead to current oscillations versus the size of the modulated region. While both effects of mass discontinuity and the band offset upon the carrier flow are formally described in terms of wave mechanics, their mechanisms are quite distinct: the magnitude of the current oscillations due to mass disruption is determined by the differential mass across the interface, i.e. by change in the covalency due to structural modulation, whereas the band offset is generally an effect of the affinity change across the interface. Both effects are superimposed by the 3D kinematic coupling of the orthogonal transport, either constructively or destructively, leading to an oscillatory dependence of the current magnitude on the film dimension. As an illustration, the analysis is applied to a Si1-x Ge x /Si stratified structure to demonstrate the effect of quasi-bound states on the transport. The modelling is corroborated by a device simulation of a SiGe system in a heterojunction bipolar transistor setting. The findings can be used as a general method to control anisotropic tunnelling transport in stratified structures.

  14. Nonlinear Control Systems

    DTIC Science & Technology

    2009-11-18

    in a trim condition is a typical problem of output regulation near an equilibrium setting, tailless or nearly tailless aircraft , such as UCAV’s...control to produce significant nonlinear excursions. Taking advantage of these nonequilibrium nonlinearities in tailless aircraft also promises to...will also have multiple nonlinear axes and a smaller domain of stability than conventional aircraft , involving nonlinear trajectories which cannot be

  15. A Sensorless Predictive Current Controlled Boost Converter by Using an EKF with Load Variation Effect Elimination Function

    PubMed Central

    Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng

    2015-01-01

    To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm. PMID:25928061

  16. The Galileo scan platform pointing control system - A modern control theoretic viewpoint

    NASA Technical Reports Server (NTRS)

    Sevaston, G. E.; Macala, G. A.; Man, G. K.

    1985-01-01

    The current Galileo scan platform pointing control system (SPPCS) is described, and ways in which modern control concepts could serve to enhance it are considered. Of particular interest are: the multi-variable design model and overall control system architecture, command input filtering, feedback compensator and command input design, stability robustness constraint for both continuous time control systems and for sampled data control systems, and digital implementation of the control system. The proposed approach leads to the design of a system that is similar to current Galileo SPPCS configuration, but promises to be more systematic.

  17. Control of Nonlinear Systems

    DTIC Science & Technology

    2004-01-01

    characteristics, and applied to presented small-gain theorems guaranteeing the lack of oscillatory or more complicated behavior in a large class of Lotka ... Volterra systems with predator-prey interactions as well as chemostats, which describe the interaction between microbial species which are competing

  18. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  19. Virtual Control Systems Environment (VCSE)

    SciTech Connect

    Atkins, Will

    2012-10-08

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  20. SP-100 control system modeling

    NASA Technical Reports Server (NTRS)

    Meyer, R. A.; Halfen, F. J.; Alley, A. D.

    1987-01-01

    SP-100 Control Systems modeling was done using a thermal hydraulic transient analysis model called ARIES-S. The ARIES-S Computer Simulation provides a basis for design, integration and analysis of the reactor including the control and protection systems. It is a modular digital computer simulation written in FORTRAN that operates interactively in real time on a VAX minicomputer.

  1. Control systems on Lie groups.

    NASA Technical Reports Server (NTRS)

    Jurdjevic, V.; Sussmann, H. J.

    1972-01-01

    The controllability properties of systems which are described by an evolution equation in a Lie group are studied. The revelant Lie algebras induced by a right invariant system are singled out, and the basic properties of attainable sets are derived. The homogeneous case and the general case are studied, and results are interpreted in terms of controllability. Five examples are given.

  2. Virtual Control Systems Environment (VCSE)

    ScienceCinema

    Atkins, Will

    2016-07-12

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  3. Control systems on Lie groups.

    NASA Technical Reports Server (NTRS)

    Jurdjevic, V.; Sussmann, H. J.

    1972-01-01

    The controllability properties of systems which are described by an evolution equation in a Lie group are studied. The revelant Lie algebras induced by a right invariant system are singled out, and the basic properties of attainable sets are derived. The homogeneous case and the general case are studied, and results are interpreted in terms of controllability. Five examples are given.

  4. Preventative maintenance for control systems

    SciTech Connect

    Corbett, G.O.

    1985-05-01

    Preventative maintenance of the control systems should be performed on a required interval. Most manufacturers specify six to twelve month intervals. However, inspections can often be accomplished when the control units or mechanical systems are out of service for a malfunction repair. A procedural checklist for proper maintenance is given.

  5. Switching Systems: Controllability and Control Design

    DTIC Science & Technology

    2009-04-25

    REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 20-05-2009 2. REPORT TYPE Final...Report 3. DATES COVERED (From – To) 25 April 2008 - 07-Jul-09 5a. CONTRACT NUMBER FA8655-08- 1 -3016 5b. GRANT NUMBER 4. TITLE AND SUBTITLE

  6. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  7. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  8. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  9. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  10. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  11. Mammalian biodiversity on Madagascar controlled by ocean currents.

    PubMed

    Ali, Jason R; Huber, Matthew

    2010-02-04

    Madagascar hosts one of the world's most unusual, endemic, diverse and threatened concentrations of fauna. To explain its unique, imbalanced biological diversity, G. G. Simpson proposed the 'sweepstakes hypothesis', according to which the ancestors of Madagascar's present-day mammal stock rafted there from Africa. This is an important hypothesis in biogeography and evolutionary theory for how animals colonize new frontiers, but its validity is questioned. Studies suggest that currents were inconsistent with rafting to Madagascar and that land bridges provided the migrants' passage. Here we show that currents could have transported the animals to the island and highlight evidence inconsistent with the land-bridge hypothesis. Using palaeogeographic reconstructions and palaeo-oceanographic modelling, we find that strong surface currents flowed from northeast Mozambique and Tanzania eastward towards Madagascar during the Palaeogene period, exactly as required by the 'sweepstakes process'. Subsequently, Madagascar advanced north towards the equatorial gyre and the regional current system evolved into its modern configuration with flows westward from Madagascar to Africa. This may explain why no fully non-aquatic land mammals have colonized Madagascar since the arrival of the rodents and carnivorans during the early-Miocene epoch. One implication is that rafting may be the dominant means of overseas dispersal in the Cenozoic era when palaeocurrent directions are properly considered.

  12. Overview of the Equatorial Electrojet and Related Ionospheric Current Systems

    DTIC Science & Technology

    2007-11-02

    NUWC-NPT Technical Report 11,676 25 April 2005 Overview of the Equatorial Electrojet and Related Ionospheric Current Systems John P. Casey...Overview of the Equatorial Electrojet and Related Ionospheric Current Systems PR A590045 6. AUTHOR(S) John P. Casey 7. PERFORMING ORGANIZATION NAME(S) AND...that flows in the ionosphere in a narrow zone above the magnetic dip equator during the daytime. The electrojet current produces a large enhancement of

  13. Laboratory experiments on magnetic reconnection and current systems

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Gekelman, W.; Pfister, H.

    After a brief review of laboratory experiments involving magnetic reconnection a series of basic physics experiments on reconnection phenomena is described. These include magnetic annihilation, transport of magnetic energy by waves, stable and unstable current sheets, energy conversion mechanisms, and the role of global current systems vs. local reconnection processes. Current systems driven by electric fields resulting in particle flows are examined. Also, the role of a magnetic field component B(y) along the separator has been investigated.

  14. Control of centrifugal blood pump based on the motor current.

    PubMed

    Iijima, T; Inamoto, T; Nogawa, M; Takatani, S

    1997-07-01

    In this study, centrifugal pump performance was examined in a mock circulatory loop to derive an automatic pump rotational speed (rpm) control method. The pivot bearing supported sealless centrifugal pump was placed in the left ventricular apex to aorta bypass mode. The pneumatic pulsatile ventricle was used to simulate the natural ventricle. To simulate the suction effect in the ventricle, a collapsible rubber tube was placed in the inflow port of the centrifugal pump in series with the apex of the simulated ventricle. Experimentally, the centrifugal pump speed (rpm) was gradually increased to simulate the suction effect. The pump flow through the centrifugal pump measured by an electromagnetic flowmeter, the aortic pressure, and the motor current were continuously digitized at 100 Hz and stored in a personal computer. The analysis of the cross-spectral density between the pump flow and motor current waveforms revealed that 2 waveforms were highly correlated at the frequency range between 0 and 4 Hz, with the coherence and phase angles being close to 1.0 and 0 degree, respectively. The fast Fourier transform analysis of the motor current indicated that the second harmonic component of the motor current power density increased with the occurrence of the suction effect in the circuit. The ratio of the fundamental to the second harmonic component decreased less than 1.3 as the suction effect developed in the circuit. It is possible to detect and prevent the suction effect of the centrifugal blood pump in the natural ventricle through analysis of the motor current waveform.

  15. CENTRAL CONTROL SYSTEM

    DOEpatents

    Borst, L.B.

    1959-09-22

    A control element is presented for neutronic reactors. The element is longitudinally expansible and compressible and remains within the reactor core at all times. The effectiveness of the element as to neutron absorption is varied by longitudinally compressing or expanding the element, the effectiveness being greatest when the element is fullv expanded and least when it is fully compressed. Two embodiments of the invention are described, one being a coiled spring and the other being an element formed from a plurality of interconnected links.

  16. Current Control and Future Risk in Asthma Management

    PubMed Central

    Sims, Erika J; Haughney, John; Ryan, Dermot; Thomas, Mike

    2011-01-01

    Despite international and national guidelines, poor asthma control remains an issue. Asthma exacerbations are costly to both the individual, and the healthcare provider. Improvements in our understanding of the therapeutic benefit of asthma therapies suggest that, in general, while long-acting bronchodilator therapy improves asthma symptoms, the anti-inflammatory activity of inhaled corticosteroids reduces acute asthma exacerbations. Studies have explored factors which could be predictive of exacerbations. A history of previous exacerbations, poor asthma control, poor inhaler technique, a history of lower respiratory tract infections, poor adherence to medication, the presence of allergic rhinitis, gastro-oesophageal reflux disease, psychological dysfunction, smoking and obesity have all been implicated as having a predictive role in the future risk of asthma exacerbation. Here we review the current literature and discuss this in the context of primary care management of asthma. PMID:21966601

  17. Controlled Levitation of Colloids through Direct Current Electric Fields.

    PubMed

    Silvera Batista, Carlos A; Rezvantalab, Hossein; Larson, Ronald G; Solomon, Michael J

    2017-07-07

    We report the controlled levitation of surface-modified colloids in direct current (dc) electric fields at distances as far as 75 μm from an electrode surface. Instead of experiencing electrophoretic deposition, colloids modified through metallic deposition or the covalent bonding of poly(ethylene glycol) (PEG) undergo migration and focusing that results in levitation at these large distances. The levitation is a sensitive function of the surface chemistry and magnitude of the field, thus providing the means to achieve control over the levitation height. Experiments with particles of different surface charge show that levitation occurs only when the absolute zeta potential is below a threshold value. An electrodiffusiophoretic mechanism is proposed to explain the observed large-scale levitation.

  18. Chaos control by electric current in an enzymatic reaction.

    PubMed

    Lekebusch, A; Förster, A; Schneider, F W

    1996-09-01

    We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.

  19. Expert system controlled microwave tubes

    SciTech Connect

    Siambis, J.; Bacher, H.; Bemis, T.; Hargreaves, T.; Rogers, R.; Symons, R.; Vaughan, R.; Kolte, G.; Lee, M.

    1995-12-31

    The design, manufacture, reliable, long-life operation and life-time cost-effective performance and recycling of high value microwave tubes can benefit significantly by the introduction and integration of expert system controls in microwave tubes. Expert systems are based on a computer module equipped with (a) sensors to measure the state of the system (b) a database and computational capability to compare the measured state of the system against a programmed state (c) capable of deciding and initiating corrective action on the state of the system through (d) adaptive controls and activators capable of modifying the operating state. The authors have begun the investigation and development of an expert system using the klystron tube L-5838 as a testbed. Initially, all sensors and controls are placed outside the vacuum envelope of the tube in order to minimize the insertion cost of the expert system. They report here on an expert system for the input cavity of the klystron tube.

  20. Digital Fire Control Systems Support

    DTIC Science & Technology

    2012-09-27

    Systems ( DFCS ) for the M119A2 and M777A2. The DFCS is a fully integrated digital fire control system that has weapon platform application to the...Lightweight 155 mm (LW155) Towed Howitzer and the M119A2 Lightweight 105mm Towed Howitzer. 15. SUBJECT TERMS Digital Fire Control Systems ( DFCS ) 16...Joint Lightweight 155, has been tasked to develop and maintain the Digital Fire Control Systems ( DFCS ) for the M119A2 and M777A2. The DFCS is a fully

  1. Argonne's atlas control system upgrade.

    SciTech Connect

    Munson, F.; Quock, D.; Chapin, B.; Figueroa, J.

    1999-09-27

    The ATLAS facility (Argonne Tandem-Linac Accelerator System) is located at the Argonne National Laboratory. The facility is a tool used in nuclear and atomic physics research, which focuses primarily on heavy-ion physics. The accelerator as well as its control system are evolutionary in nature, and consequently, continue to advance. In 1998 the most recent project to upgrade the ATLAS control system was completed. This paper briefly reviews the upgrade, and summarizes the configuration and features of the resulting control system.

  2. Control of Dynamical Systems

    DTIC Science & Technology

    1976-07-30

    I, Academic Press, pp. 211-222, 1976. [24] LASALLE , J.P. (with E.N. Onwuchekwa) An Invariance Principle for Vector Liapunov Functions. Dynamical...Press, Inc. pp. XVii-XXi, 1976. V-7 [59] LASALLE , J.P. Stability Theory and Invariance Principles . Chapter 5: Topological Dynamtical Systems...to extend the earlier work of Hurt in [50] in applying the invariance principle to extend Liapunov’s direct method. An exposition of some of these

  3. Current HPLC Methods for Assay of Nano Drug Delivery Systems.

    PubMed

    Tekkeli, Serife Evrim Kepekci; Kiziltas, Mustafa Volkan

    2017-01-01

    In nano drug formulations the mechanism of release is a critical process to recognize controlled and targeted drug delivery systems. In order to gain high bioavailability and specificity from the drug to reach its therapeutic goal, the active substance must be loaded into the nanoparticles efficiently. Therefore, the amount in biological fluids or tissues and the remaining amount in nano carriers are very important parameters to understand the potential of the nano drug delivery systems. For this aim, suitable and validated quantitation methods are required to determine released drug concentrations from nano pharmaceutical formulations. HPLC (High Performance Liquid Chromatography) is one of the most common techniques used for determination of released drug content out of nano drug formulations, in different physical conditions, over different periods of time. Since there are many types of HPLC methods depending on detector and column types, it is a challenge for the researchers to choose a suitable method that is simple, fast and validated HPLC techniques for their nano drug delivery systems. This review's goal is to compare HPLC methods that are currently used in different nano drug delivery systems in order to provide detailed and useful information for researchers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Probing other solar systems with current and future adaptive optics

    SciTech Connect

    Macintosh, B; Marois, C; Phillion, D; Poyneer, L; Graham, J; Zuckerman, B; Gavel, D; Veran, J; Wilhelmsen-Evans, J; Mellis, C

    2008-09-08

    Over the past decade, the study of extrasolar planets through indirect techniques--primarily Doppler measurements--has revolutionized our understanding of other solar systems. The next major step in this field will be the direct detection and characterization, via imaging and spectroscopy, of the planets themselves. To achieve this, we must separate the light from the faint planet from the extensive glare of its parent star. We pursued this goal using the current generation of adaptive optics (AO) systems on large ground-based telescopes, using infrared imaging to search for the thermal emission from young planets and developing image processing techniques to distinguish planets from telescope-induced artifacts. Our new Angular Differential Imaging (ADI) technique, which uses the sidereal rotation of the Earth and telescope, is now standard for ground-based high-contrast imaging. Although no young planets were found in our surveys, we placed the strongest limits yet on giant planets in wide orbits (>30 AU) around young stars and characterized planetary companion candidates. The imaging of planetary companions on solar-system-like scales (5-30 AU) will require a new generation of advanced AO systems that are an order of magnitude more powerful than the LLNL-built Keck AO system. We worked to develop and test the key technologies needed for these systems, including a spatially-filtered wavefront sensor, efficient and accurate wavefront reconstruction algorithms, and precision AO wavefront control at the sub-nm level. LLNL has now been selected by the Gemini Observatory to lead the construction of the Gemini Planet Imager, a $24M instrument that will be the most advanced AO system in the world.

  5. Control principles of complex systems

    NASA Astrophysics Data System (ADS)

    Liu, Yang-Yu; Barabási, Albert-László

    2016-07-01

    A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: it requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in dynamical systems and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these questions here recent advances on the controllability and the control of complex networks are reviewed, exploring the intricate interplay between the network topology and dynamical laws. The pertinent mathematical results are matched with empirical findings and applications. Uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

  6. New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT

    NASA Astrophysics Data System (ADS)

    Zeng, Wubing; Ding, Yonghua; Yi, Bin; Xu, Hangyu; Rao, Bo; Zhang, Ming; Liu, Minghai

    2014-11-01

    In order to advance the research on suppressing tearing modes and driving plasma rotation, a DC power supply (PS) system has been developed for dynamic resonant magnetic perturbation (DRMP) coils and applied in the J-TEXT experiment. To enrich experimental phenomena in the J-TEXT tokamak, applying the circulating current four-quadrant operation mode in the DRMP DC PS system is proposed. By using the circulating current four-quadrant operation, DRMP coils can be smoothly controlled without the dead-time when the current polarity reverses. Essential circuit analysis, control optimization and simulation of desired scenarios have been performed for normal current. Relevant simulation and test results are also presented.

  7. Defining the effective temperature of a quantum driven system from current-current correlation functions

    NASA Astrophysics Data System (ADS)

    Caso, A.; Arrachea, L.; Lozano, G. S.

    2012-08-01

    We calculate current-current correlation functions and find an expression for the zero-frequency noise of multiterminal systems driven by harmonically time-dependent voltages within the Keldysh non-equilibrium Green's functions formalism. We also propose a fluctuation-dissipation relation for current-current correlation functions to define an effective temperature. We discuss the behavior of this temperature and compare it with the local temperature determined by a thermometer and with the effective temperature defined from a single-particle fluctuation-dissipation relation. We show that for low frequencies all the definitions of the temperature coincide.

  8. Uzaybimer Radio Telescope Control System

    NASA Astrophysics Data System (ADS)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  9. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  10. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2008-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce NOx, SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of NOx, SOx and heavy metals, while isolating useful by-products streams of sulfuric acid and nitric acid as well as solids for the recovery of the heavy metals.

  11. Decentralized System Control.

    DTIC Science & Technology

    1986-04-01

    03-1 UNCLASSIFIED RRDC-TR-85-199 F30662-GI-C-029? F/O 9/2 UL U-- IIII"I 1.25 .4 11fl1.6 N ~ATIONAL BUREAU OF STANDARDS- 1963- * ....% S.A. 7-* S *.S .p...DECENTRALIZED SYSTEM CONTROLDTC JUL 251986 N Carnegie-Mellon University S L~~ E. Douglas Jensen, Raymond K. Clark, Robert P. Colwell. Charlie Y. Hitchcock...Chuck P. Kollar, C. Douglass Locke, John P. Lehoczky, J. Duane Northcutt, Norm L. Pieszkoch, N . Peter M. Schwarz, Lul Sha, Samuel E. Shipman, Hide Tokuda

  12. Active Shimmy Control System

    DTIC Science & Technology

    1975-12-01

    reviewed by thoe nformation Offite (01) end Is reslesuabe to the National Technical Wnrdstleftiv Oervico (WI2B). At N13..S it iuil be, avail-able th the...Figure 2, - are used only for the passive system. BH and BL are hydraulic (velocity squared) and linear shimmy damper constants, and KALP in the...NOTES KPH i.63E6 1.403E6 x KrI 11.20 5000 .. X &T, ~ ipl, , x KOC 77270 - X KALP 18000 -X IPH 69.7 83.9 X ITH .68 x "ITI, .03 - x ITII2 3.h9 - xIA .o

  13. Fuel control system for an engine

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor)

    1999-01-01

    A fuel control system responsive to a power controller and controlling a fuel delivery system. The fuel control system includes a control arm connected to both the power controller and the fuel delivery system, a position sensor connected to the control arm, and a trim controller connected to the control arm at a pivot point and connected to the position sensor.

  14. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  15. Rotor Current Control of DFIG for Improving Fault Ride - Through Using a Novel Sliding Mode Control Approach

    NASA Astrophysics Data System (ADS)

    Cai, Guowei; Liu, Cheng; Yang, Deyou

    2013-11-01

    The doubly fed induction generators (DFIG) have been recognized as the dominant technology used in wind power generation systems with the rapid development of wind power. However, continuous operation of DFIG may cause a serious wind turbine generators tripping accident, due to destructive over-current in the rotor winding which is caused by the power system fault or inefficient fault ride-through (FRT) strategy. A new rotor current control scheme in the rotor-side converter (RSC) ispresented to enhance FRT capacities of grid-connected DFIG. Due to the strongly nonlinear nature of DFIG and insensitive to DFIG parameter's variations, a novel sliding mode controller was designed. The controller combines extended state observer (ESO) with sliding model variable structure control theory. The simulation is carried out to verify the effectiveness of the proposed control approach under various types of grid disturbances. It is shown that the proposed controller provides enhanced transient features than the classic proportional-integral control. The proposed control method can effectively reduce over-current in the RSC, and the transient pulse value of electromagnetic torque is too large under power grid fault.

  16. Restoration and testing of an HTS fault current controller

    SciTech Connect

    Waynert, J. A.; Boenig, H.; Mielke, C. H.; Willis, J. O.; Burley, B. L.

    2002-01-01

    A three-phase, 1200 A, 12.5 kV fault current controller using three HTS 4 mH coils, was built by industry and tested in 1999 at the Center Substation of Southern California Edison in Norwalk, CA. During the testing, it appeared that each of the three single-phase units had experienced a voltage breakdown, one externally and two internally. Los Alamos National Laboratory (LANL) was asked by DOE to restore the operation of the fault current controller provided the HTS coils had not been damaged during the initial substation tests. When the internally-failed coil vacuum vessels were opened it became evident that in these two vessels, a flashover had occurred at the high voltage bus section leading to the terminals of the superconducting coil. An investigation into the failure mechanism resulted in six possible causes for the flashover. Based on these causes, the high voltage bus was completely redesigned. Single-phase tests were successfully performed on the modified unit at a 13.7 kV LANL substation. This paper presents the postulated voltage flashover failure mechanisms, the new high voltage bus design which mitigates the failure mechanisms, the sequence of tests used to validate the new design, and finally, the results of variable load and short-circuit tests with the single-phase unit operating on the LANL 13.7 kV substation.

  17. The Large-Scale Current System During Auroral Substorms

    NASA Astrophysics Data System (ADS)

    Gjerloev, Jesper

    2015-04-01

    The substorm process has been discussed for more than four decades and new empirical large-scale models continue to be published. The continued activity implies both the importance and the complexity of the problem. We recently published a new model of the large-scale substorm current system (Gjerloev and Hoffman, JGR, 2014). Based on data from >100 ground magnetometers (obtained from SuperMAG), 116 isolated substorms, global auroral images (obtained by the Polar VIS Earth Camera) and a careful normalization technique we derived an empirical model of the ionospheric equivalent current system. Our model yield some unexpected features that appear inconsistent with the classical single current wedge current system. One of these features is a distinct latitudinal shift of the westward electrojet (WEJ) current between the pre- and post-midnight region and we find evidence that these two WEJ regions are quasi disconnected. This, and other observational facts, led us to propose a modified 3D current system configuration that consists of 2 wedge type systems: a current wedge in the pre-midnight region (bulge current wedge), and another current wedge system in the post-midnight region (oval current wedge). The two wedge systems are shifted in latitude but overlap in local time in the midnight region. Our model is at considerable variance with previous global models and conceptual schematics of the large-scale substorm current system. We speculate that the data coverage, the methodologies and the techniques used in these previous global studies are the cause of the differences in solutions. In this presentation we present our model, compare with other published models and discuss possible causes for the differences.

  18. Control Systems Cyber Security Standards Support Activities

    SciTech Connect

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  19. Influences of various magnetospheric and ionospheric current systems on geomagnetically induced currents around the world

    NASA Astrophysics Data System (ADS)

    Villiers, J. S.; Kosch, M.; Yamazaki, Y.; Lotz, S.

    2017-02-01

    Ground-based observations of geomagnetic field (B field) are usually a superposition of signatures from different source current systems in the magnetosphere and ionosphere. Fluctuating B fields generate geoelectric fields (E fields), which drive geomagnetically induced currents (GIC) in technological conducting media at the Earth's surface. We introduce a new Fourier integral B field model of east/west directed line current systems over a one-dimensional multilayered Earth in plane geometry. Derived layered-Earth profiles, given in the literature, are needed to calculate the surface impedance, and therefore reflection coefficient in the integral. The 2003 Halloween storm measurements were Fourier transformed for B field spectrum Levenberg-Marquardt least squares inversion over latitude. The inversion modeled strengths of the equatorial electrojets, auroral electrojets, and ring currents were compared to the forward problem computed strength. It is found the optimized and direct results match each other closely and supplement previous established studies about these source currents. Using this model, a data set of current system magnitudes may be used to develop empirical models linking solar wind activity to magnetospheric current systems. In addition, the ground E fields are also calculated directly, which serves as a proxy for computing GIC in conductor-based networks.

  20. Backstepping Control of the Current Profile in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Barton, J.; Schuster, E.; Walker, M. L.; Humphreys, D. A.

    2011-10-01

    Control of the spatial profile of the plasma current in tokamaks has been demonstrated to be a key condition for advanced scenarios with improved confinement and steady-state operation. Non-model-based controllers tested at DIII-D have shown limitations, motivating the design of model-based controllers that account for the dynamics of the q profile. In this work, we utilize a control-oriented model of the current profile evolution in DIII-D to design a backstepping boundary control law for regulating the current profile around a desired feed-forward trajectory. The control scheme makes use of the total plasma current, total power, and line averaged density as actuators. A simulation study is done to test the control law against uncertainties in the model parameters and initial conditions, as well as input disturbances. Finally, the implementation of the controller in the DIII-D plasma control system is discussed and experimental results are presented. Supported by the NSF CAREER award program ECCS-0645086 and the US DOE under DE-FG02-09ER55064 and DE-FC02-04ER54698.