Developments in Signature Process Control
NASA Astrophysics Data System (ADS)
Keller, L. B.; Dominski, Marty
1993-01-01
Developments in the adaptive process control technique known as Signature Process Control for Advanced Composites (SPCC) are described. This computer control method for autoclave processing of composites was used to develop an optimum cure cycle for AFR 700B polyamide and for an experimental poly-isoimide. An improved process cycle was developed for Avimid N polyamide. The potential for extending the SPCC technique to pre-preg quality control, press modeling, pultrusion and RTM is briefly discussed.
ERIC Educational Resources Information Center
Schneider, Marlene; Robin, Arthur
This manual describes the Turtle Technique which was developed to help children with behavior problems control their own disruptive behavior. The technique differs from other behavior modification techniques in that it is based upon self-control rather than external control of disruptive behavior. The Turtle Technique first teaches the child how…
USDA-ARS?s Scientific Manuscript database
New tools are clearly needed for integrated mosquito management of Ae. aegypti. We describe the sterile insect technique (SIT) that we are developing as a method to control Ae. aegypti by partnering with two prominent Florida mosquito control districts (MCD) and the FAO/IAEA Insect Pest Control Sub...
Stochastic Feedforward Control Technique
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1990-01-01
Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.
Control technique for planetary rover
NASA Technical Reports Server (NTRS)
Nakatani, Ichiro; Kubota, Takashi; Adachi, Tadashi; Saitou, Hiroaki; Okamoto, Sinya
1994-01-01
Beginning next century, several schemes for sending a planetary rover to the moon or Mars are being planned. As part of the development program, autonomous navigation technology is being studied to allow the rover the ability to move autonomously over a long range of unknown planetary surface. In the previous study, we ran the autonomous navigation experiment on an outdoor test terrain by using a rover test-bed that was controlled by a conventional sense-plan-act method. In some cases during the experiment, a problem occurred with the rover moving into untraversable areas. To improve this situation, a new control technique has been developed that gives the rover the ability of reacting to the outputs of the proximity sensors, a reaction behavior if you will. We have developed a new rover test-bed system on which an autonomous navigation experiment was performed using the newly developed control technique. In this outdoor experiment, the new control technique effectively produced the control command for the rover to avoid obstacles and be guided to the goal point safely.
Selecting a software development methodology. [of digital flight control systems
NASA Technical Reports Server (NTRS)
Jones, R. E.
1981-01-01
The state of the art analytical techniques for the development and verification of digital flight control software is studied and a practical designer oriented development and verification methodology is produced. The effectiveness of the analytic techniques chosen for the development and verification methodology are assessed both technically and financially. Technical assessments analyze the error preventing and detecting capabilities of the chosen technique in all of the pertinent software development phases. Financial assessments describe the cost impact of using the techniques, specifically, the cost of implementing and applying the techniques as well as the relizable cost savings. Both the technical and financial assessment are quantitative where possible. In the case of techniques which cannot be quantitatively assessed, qualitative judgements are expressed about the effectiveness and cost of the techniques. The reasons why quantitative assessments are not possible will be documented.
Development of Control Teaching Material for Mechatronics Education Based on Experience
NASA Astrophysics Data System (ADS)
Tasaki, Takao; Watanabe, Shinichi; Shikanai, Yoshihito; Ozaki, Koichi
In this paper, we have developed a teaching material for technical high school students to understand the control technique. The material makes the students understanding the control technique through the sensibility obtained from the experience of riding the robot. We have considered the correspondence of the teaching material with the ARCS Model. Therefore, the material aims to improve the interest and the willingness to learn mechatronics and control technique by experiencing the difference of the response by the change in the control parameters. As the results of the questionnaire to the technical high school students in the class, we have verified educative effect of the teaching material which can be improved willingness of learning and interesting for mechatronics and control technique.
High-speed reference-beam-angle control technique for holographic memory drive
NASA Astrophysics Data System (ADS)
Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi
2016-09-01
We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.
Parametric Robust Control and System Identification: Unified Approach
NASA Technical Reports Server (NTRS)
Keel, L. H.
1996-01-01
During the period of this support, a new control system design and analysis method has been studied. This approach deals with control systems containing uncertainties that are represented in terms of its transfer function parameters. Such a representation of the control system is common and many physical parameter variations fall into this type of uncertainty. Techniques developed here are capable of providing nonconservative analysis of such control systems with parameter variations. We have also developed techniques to deal with control systems when their state space representations are given rather than transfer functions. In this case, the plant parameters will appear as entries of state space matrices. Finally, a system modeling technique to construct such systems from the raw input - output frequency domain data has been developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-03-01
Industrial, commercial, and institutional (ICI) boilers have been identified as a category that emits more than 25 tons of oxides of nitrogen (NOx) per year. This alternative control techniques (ACT) document provides technical information for use by State and local agencies to develop and implement regulatory programs to control NOx emissions from ICI boilers. Additional ACT documents are being developed for other stationary source categories. Chapter 2 summarizes the findings of this study. Chapter 3 presents information on the ICI boiler types, fuels, operation, and industry applications. Chapter 4 discusses NOx formation and uncontrolled NOx emission factors. Chapter 5 coversmore » alternative control techniques and achievable controlled emission levels. Chapter 6 presents the cost and cost effectiveness of each control technique. Chapter 7 describes environmental and energy impacts associated with implementing the NOx control techniques. Finally, Appendices A through G provide the detailed data used in this study to evaluate uncontrolled and controlled emissions and the costs of controls for several retrofit scenarios.« less
ERIC Educational Resources Information Center
Ellis, Albert
1986-01-01
Examines the emotional control card techniques developed by Sklare, Taylor, and Hyland (1985) to help clients more effectively use the rational-emotive imagery technique of Ellis (1974). Suggests a revision of the emotional control card technique. (NB)
Adaptive Flight Control for Aircraft Safety Enhancements
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.
2008-01-01
This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.
New techniques for test development for tactical auto-pilots using microprocessors
NASA Astrophysics Data System (ADS)
Shemeta, E. H.
1980-07-01
This paper reports on a demonstration of the application of the method to generate system level tests for a typical tactical missile autopilot. The test algorithms are based on the autopilot control law. When loaded on the tester with appropriate control information, the complete autopilot is tested to establish if the specified control law requirements are met. Thus, the test procedure not only checks to see if the hardware is functional, but also checks the operational software. The technique also uses a 'learning' mode to allow minor timing or functional deviations from the expected responses to be incorporated in the test procedures. A potential application of this test development technique is the extraction of production test data for the various subassemblies. The technique will 'learn' the input-output patterns forming the basis for developement and production tests. If successful, these new techniques should allow the test development process to keep pace with semiconductor progress.
Diagnostics and Active Control of Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1998-01-01
This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.
Flow Control Research at NASA Langley in Support of High-Lift Augmentation
NASA Technical Reports Server (NTRS)
Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.
2002-01-01
The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.
Development of a sensitivity analysis technique for multiloop flight control systems
NASA Technical Reports Server (NTRS)
Vaillard, A. H.; Paduano, J.; Downing, D. R.
1985-01-01
This report presents the development and application of a sensitivity analysis technique for multiloop flight control systems. This analysis yields very useful information on the sensitivity of the relative-stability criteria of the control system, with variations or uncertainties in the system and controller elements. The sensitivity analysis technique developed is based on the computation of the singular values and singular-value gradients of a feedback-control system. The method is applicable to single-input/single-output as well as multiloop continuous-control systems. Application to sampled-data systems is also explored. The sensitivity analysis technique was applied to a continuous yaw/roll damper stability augmentation system of a typical business jet, and the results show that the analysis is very useful in determining the system elements which have the largest effect on the relative stability of the closed-loop system. As a secondary product of the research reported here, the relative stability criteria based on the concept of singular values were explored.
NASA Astrophysics Data System (ADS)
Evans, T. E.
2013-07-01
Large edge-localized mode (ELM) control techniques must be developed to help ensure the success of burning and ignited fusion plasma devices such as tokamaks and stellarators. In full performance ITER tokamak discharges, with QDT = 10, the energy released by a single ELM could reach ˜30 MJ which is expected to result in an energy density of 10-15 MJ/m2on the divertor targets. This will exceed the estimated divertor ablation limit by a factor of 20-30. A worldwide research program is underway to develop various types of ELM control techniques in preparation for ITER H-mode plasma operations. An overview of the ELM control techniques currently being developed is discussed along with the requirements for applying these techniques to plasmas in ITER. Particular emphasis is given to the primary approaches, pellet pacing and resonant magnetic perturbation fields, currently being considered for ITER.
NASA Technical Reports Server (NTRS)
Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.
2014-01-01
Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.
NASA Technical Reports Server (NTRS)
Ostroff, A. J.
1973-01-01
Some of the major difficulties associated with large orbiting astronomical telescopes are the cost of manufacturing the primary mirror to precise tolerances and the maintaining of diffraction-limited tolerances while in orbit. One successfully demonstrated approach for minimizing these problem areas is the technique of actively deforming the primary mirror by applying discrete forces to the rear of the mirror. A modal control technique, as applied to active optics, has previously been developed and analyzed. The modal control technique represents the plant to be controlled in terms of its eigenvalues and eigenfunctions which are estimated via numerical approximation techniques. The report includes an extension of previous work using the modal control technique and also describes an optimal feedback controller. The equations for both control laws are developed in state-space differential form and include such considerations as stability, controllability, and observability. These equations are general and allow the incorporation of various mode-analyzer designs; two design approaches are presented. The report also includes a technique for placing actuator and sensor locations at points on the mirror based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure. The locations selected by this technique are used in the computer runs which are described. The results are based upon three different initial error distributions, two mode-analyzer designs, and both the modal and optimal control laws.
The backcross sterility technique
V. C. Mastro; A. Pellegrini-Toole
1991-01-01
The sterile insect technique (SIT) and the induced inherited (F1) sterility technique have been investigated for a number of lepidopterous pests, including the gypsy moths. Another technique, backcross sterility, which could potentially prove as or more useful for control of pest species has been developed for the control of only one lepidopteran...
A variable-gain output feedback control design methodology
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Moerder, Daniel D.; Broussard, John R.; Taylor, Deborah B.
1989-01-01
A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility.
Development of automated optical verification technologies for control systems
NASA Astrophysics Data System (ADS)
Volegov, Peter L.; Podgornov, Vladimir A.
1999-08-01
The report considers optical techniques for automated verification of object's identity designed for control system of nuclear objects. There are presented results of experimental researches and results of development of pattern recognition techniques carried out under the ISTC project number 772 with the purpose of identification of unique feature of surface structure of a controlled object and effects of its random treatment. Possibilities of industrial introduction of the developed technologies in frames of USA and Russia laboratories' lab-to-lab cooperation, including development of up-to-date systems for nuclear material control and accounting are examined.
Improved techniques for thermomechanical testing in support of deformation modeling
NASA Technical Reports Server (NTRS)
Castelli, Michael G.; Ellis, John R.
1992-01-01
The feasibility of generating precise thermomechanical deformation data to support constitutive model development was investigated. Here, the requirement is for experimental data that is free from anomalies caused by less than ideal equipment and procedures. A series of exploratory tests conducted on Hastelloy X showed that generally accepted techniques for strain controlled tests were lacking in at least three areas. Specifically, problems were encountered with specimen stability, thermal strain compensation, and temperature/mechanical strain phasing. The source of these difficulties was identified and improved thermomechanical testing techniques to correct them were developed. These goals were achieved by developing improved procedures for measuring and controlling thermal gradients and by designing a specimen specifically for thermomechanical testing. In addition, innovative control strategies were developed to correctly proportion and phase the thermal and mechanical components of strain. Subsequently, the improved techniques were used to generate deformation data for Hastelloy X over the temperature range, 200 to 1000 C.
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... package printing entitled ``Control Techniques Guidelines for Flexible Package Printing'' (Publication No... adoption of the EPA CTG for flexible packaging printing. EPA develops CTGs as guidance on control... Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control Techniques Guidelines for...
Development of Active DNA Control Technique for DNA Sequencer With a Solid-state Nanopore
NASA Astrophysics Data System (ADS)
Akahori, Rena; Harada, Kunio; Goto, Yusuke; Yanagi, Itaru; Yokoi, Takahide; Oura, Takeshi; Shibahara, Masashi; Takeda, Ken-Ichi
We have developed a technique that can control the arbitrary speeds of DNA passing through a solid-state nanopore of a DNA sequencer. For this active DNA control technique, we used a DNA-immobilized Si probe, larger than the membrane with a nanopore, and used a piezoelectric actuator and stepper motor to drive the probe. This probe enables a user to adjust the relative position between the nanopore and DNA immobilized on the probe without the need for precise lateral control. In this presentation, we demonstrate how DNA (block copolymer ([(dT)25-(dC)25-(dA)50]m)), immobilized on the probe, slid through a nanopore and was pulled out using the active DNA control technique. As the DNA-immobilized probe was being pulled out, we obtained various ion-current signal levels corresponding to the number of different nucleotides in a single strand of DNA.
Optimal cooperative control synthesis of active displays
NASA Technical Reports Server (NTRS)
Garg, S.; Schmidt, D. K.
1985-01-01
A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.
Performance capabilities of a JPL dual-arm advanced teleoperation system
NASA Technical Reports Server (NTRS)
Szakaly, Z. F.; Bejczy, A. K.
1991-01-01
The system comprises: (1) two PUMA 560 robot arms, each equipped with the latest JPL developed smart hands which contain 3-D force/moment and grasp force sensors; (2) two general purpose force reflecting hand controllers; (3) a NS32016 microprocessors based distributed computing system together with JPL developed universal motor controllers; (4) graphics display of sensor data; (5) capabilities for time delay experiments; and (6) automatic data recording capabilities. Several different types of control modes are implemented on this system using different feedback control techniques. Some of the control modes and the related feedback control techniques are described, and the achievable control performance for tracking position and force trajectories are reported. The interaction between position and force trajectory tracking is illustrated. The best performance is obtained by using a novel, task space error feedback technique.
Monitoring Knowledge Base (MKB)
The Monitoring Knowledge Base (MKB) is a compilation of emissions measurement and monitoring techniques associated with air pollution control devices, industrial process descriptions, and permitting techniques, including flexible permit development. Using MKB, one can gain a comprehensive understanding of emissions sources, control devices, and monitoring techniques, enabling one to determine appropriate permit terms and conditions.
NASA Technical Reports Server (NTRS)
Soeder, J. F.
1983-01-01
As turbofan engines become more complex, the development of controls necessitate the use of multivariable control techniques. A control developed for the F100-PW-100(3) turbofan engine by using linear quadratic regulator theory and other modern multivariable control synthesis techniques is described. The assembly language implementation of this control on an SEL 810B minicomputer is described. This implementation was then evaluated by using a real-time hybrid simulation of the engine. The control software was modified to run with a real engine. These modifications, in the form of sensor and actuator failure checks and control executive sequencing, are discussed. Finally recommendations for control software implementations are presented.
Anticipatory Neurofuzzy Control
NASA Technical Reports Server (NTRS)
Mccullough, Claire L.
1994-01-01
Technique of feedback control, called "anticipatory neurofuzzy control," developed for use in controlling flexible structures and other dynamic systems for which mathematical models of dynamics poorly known or unknown. Superior ability to act during operation to compensate for, and adapt to, errors in mathematical model of dynamics, changes in dynamics, and noise. Also offers advantage of reduced computing time. Hybrid of two older fuzzy-logic control techniques: standard fuzzy control and predictive fuzzy control.
NASA Technical Reports Server (NTRS)
Thau, F. E.; Montgomery, R. C.
1980-01-01
Techniques developed for the control of aircraft under changing operating conditions are used to develop a learning control system structure for a multi-configuration, flexible space vehicle. A configuration identification subsystem that is to be used with a learning algorithm and a memory and control process subsystem is developed. Adaptive gain adjustments can be achieved by this learning approach without prestoring of large blocks of parameter data and without dither signal inputs which will be suppressed during operations for which they are not compatible. The Space Shuttle Solar Electric Propulsion (SEP) experiment is used as a sample problem for the testing of adaptive/learning control system algorithms.
Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.
1982-01-01
Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management Techniques include treatments of artificial nest structures, island creation or development, marsh creation or development, greentree reservoirs and mast management, vegetation control, water level control, and revegetation.
Adaptive vibration control of structures under earthquakes
NASA Astrophysics Data System (ADS)
Lew, Jiann-Shiun; Juang, Jer-Nan; Loh, Chin-Hsiung
2017-04-01
techniques, for structural vibration suppression under earthquakes. Various control strategies have been developed to protect structures from natural hazards and improve the comfort of occupants in buildings. However, there has been little development of adaptive building control with the integration of real-time system identification and control design. Generalized predictive control, which combines the process of real-time system identification and the process of predictive control design, has received widespread acceptance and has been successfully applied to various test-beds. This paper presents a formulation of the predictive control scheme for adaptive vibration control of structures under earthquakes. Comprehensive simulations are performed to demonstrate and validate the proposed adaptive control technique for earthquake-induced vibration of a building.
Techniques for development of safety-related software for surgical robots.
Varley, P
1999-12-01
Regulatory bodies require evidence that software controlling potentially hazardous devices is developed to good manufacturing practices. Effective techniques used in other industries assume long timescales and high staffing levels and can be unsuitable for use without adaptation in developing electronic healthcare devices. This paper discusses a set of techniques used in practice to develop software for a particular innovative medical product, an endoscopic camera manipulator. These techniques include identification of potential hazards and tracing their mitigating factors through the project lifecycle.
Application of higher harmonic blade feathering for helicopter vibration reduction
NASA Technical Reports Server (NTRS)
Powers, R. W.
1978-01-01
Higher harmonic blade feathering for helicopter vibration reduction is considered. Recent wind tunnel tests confirmed the effectiveness of higher harmonic control in reducing articulated rotor vibratory hub loads. Several predictive analyses developed in support of the NASA program were shown to be capable of calculating single harmonic control inputs required to minimize a single 4P hub response. In addition, a multiple-input, multiple-output harmonic control predictive analysis was developed. All techniques developed thus far obtain a solution by extracting empirical transfer functions from sampled data. Algorithm data sampling and processing requirements are minimal to encourage adaptive control system application of such techniques in a flight environment.
Development of an evolutionary simulator and an overall control system for intelligent wheelchair
NASA Astrophysics Data System (ADS)
Imai, Makoto; Kawato, Koji; Hamagami, Tomoki; Hirata, Hironori
The goal of this research is to develop an intelligent wheelchair (IWC) system which aids an indoor safe mobility for elderly and disabled people with a new conceptual architecture which realizes autonomy, cooperativeness, and a collaboration behavior. In order to develop the IWC system in real environment, we need design-tools and flexible architecture. In particular, as more significant ones, this paper describes two key techniques which are an evolutionary simulation and an overall control mechanism. The evolutionary simulation technique corrects the error between the virtual environment in a simulator and real one in during the learning of an IWC agent, and coevolves with the agent. The overall control mechanism is implemented with subsumption architecture which is employed in an autonomous robot controller. By using these techniques in both simulations and experiments, we confirm that our IWC system acquires autonomy, cooperativeness, and a collaboration behavior efficiently.
Spacecraft Maneuvering at the Sun/Earth-Moon L2 Libration Point
NASA Astrophysics Data System (ADS)
Shahid, Kamran
Spacecraft formation flying in the vicinity of the Sun/Earth-Moon libration points offers many promising possibilities for space exploration. The concept of formation flying involves the distribution of the functionality of a single spacecraft among several smaller, cooperative spacecraft. The libration points are locations relative to two large orbiting bodies where a third body with relatively small mass can remain stationary relative to the two larger bodies. The most significant perturbation experienced by a spacecraft at the libration point is effect of solar radiation pressure. This thesis presents the development of nonlinear control techniques for maneuvering control at the Sun-Earth/Moon L2 libration point. A new thruster based formation control technique is presented. We also consider a leader/follower formation architecture, and examine the station keeping control of the leader spacecraft and the formation control of the follower spacecraft using solar radiation pressure. Reference trajectories of the leader spacecraft, halo and Lissajous orbits, are determined using a numerical technique in order to take into account all major gravitational perturbations. The nonlinear controllers are developed based on Lyapunov analysis, including non-adaptive and adaptive designs. Thruster based and solar radiation pressure based control laws for spacecraft maneuvering at the Sun-Earth/Moon libration point are developed. Higher order sliding mode control is utilized to address the non-affine structure of the solar sail control inputs. The reduced input solar radiation pressure problem is properly addressed as an underactuated control problem. The development of adaptive control for solar sail equipped spacecraft is an innovation and represents and advancement in solar sailing control technology. Controller performance is evaluated in a high fidelity ephemeris model to reflect a realistic simulated space environment. The numerical results demonstrate the effectiveness of the proposed control techniques for spacecraft maneuvering using solar radiation pressure at the L2 libration point. Stationkeeping accuracies of 50m and formation maintenance accuracies of less than 1m are possible using solar radiation pressure at a sub-L2 libration point. The benefits of these control techniques include increasing libration point mission lifetimes and doubling payload mass fractions as compared to conventional propulsion methods.
Applications of optical sensing for laser cutting and drilling.
Fox, Mahlen D T; French, Paul; Peters, Chris; Hand, Duncan P; Jones, Julian D C
2002-08-20
Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error. We further developed this focus control system for closed-loop control of laser cutting. We show that an extension of the technique can detect deterioration in cut quality, and we describe practical trials carried out on different materials using both oxygen and nitrogen assist gas. We base our techniques on monitoring the light generated by the process, captured nonintrusively by the effector optics and processed remotely from the workpiece. We describe the relationship between the temporal and the chromatic modulation of the detected light and process quality and show how the information can be used as the basis of a process control system.
NASA Technical Reports Server (NTRS)
Bekey, G. A.
1971-01-01
Studies are summarized on the application of advanced analytical and computational methods to the development of mathematical models of human controllers in multiaxis manual control systems. Specific accomplishments include the following: (1) The development of analytical and computer methods for the measurement of random parameters in linear models of human operators. (2) Discrete models of human operator behavior in a multiple display situation were developed. (3) Sensitivity techniques were developed which make possible the identification of unknown sampling intervals in linear systems. (4) The adaptive behavior of human operators following particular classes of vehicle failures was studied and a model structure proposed.
Wang, Shi-ping; He, Xin; Zhou, Yun-fei
2015-12-01
Schistosomiasis is a type of zoonotic parasitosis that severely impairs human health. Rapid detection of infection sources is a key to the control of schistosomiasis. With the effective control of schistosomiasis in China, the detection techniques for infection sources have also been developed. The rate and the intensity of infection among humans and livestocks have been significantly decreased in China, as the control program has entered the transmission control stage in most of the endemic areas. Under this situation, the traditional etiological diagnosing techniques and common immunological methods can not afford rapid detection of infection sources of schistosomiasis. Instead, we are calling for detection methods with higher sensitivity, specificity and stability while being less time-consuming, more convenient and less costing. In recent years, many improved or novel detection methods have been applied for the epidemiological surveillance of schistosomiasis, such as the automatic scanning microscopic image acquisition system, PCR-ELISA, immunosensors, loop-mediated isothermal amplification, etc. The development of new monitoring techniques can facilitate rapid detection of schistosome infection sources in endemic areas.
NASA Technical Reports Server (NTRS)
Schmit, Ryan
2010-01-01
To develop New Flow Control Techniques: a) Knowledge of the Flow Physics with and without control. b) How does Flow Control Effect Flow Physics (What Works to Optimize the Design?). c) Energy or Work Efficiency of the Control Technique (Cost - Risk - Benefit Analysis). d) Supportability, e.g. (size of equipment, computational power, power supply) (Allows Designer to include Flow Control in Plans).
Mosquito Control Techniques Developed for the US Military
USDA-ARS?s Scientific Manuscript database
The USDA developed and field tested new techniques to reduce the risk to deployed military troops from vector-borne diseases. Some of the methods developed included (1) novel military personal protection methods, (2) barrier treatments of artificial materials and natural vegetation, and (3) ground a...
Man-machine interface issues in space telerobotics: A JPL research and development program
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1987-01-01
Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.
A technique for designing active control systems for astronomical telescope mirrors
NASA Technical Reports Server (NTRS)
Howell, W. E.; Creedon, J. F.
1973-01-01
The problem of designing a control system to achieve and maintain the required surface accuracy of the primary mirror of a large space telescope was considered. Control over the mirror surface is obtained through the application of a corrective force distribution by actuators located on the rear surface of the mirror. The design procedure is an extension of a modal control technique developed for distributed parameter plants with known eigenfunctions to include plants whose eigenfunctions must be approximated by numerical techniques. Instructions are given for constructing the mathematical model of the system, and a design procedure is developed for use with typical numerical data in selecting the number and location of the actuators. Examples of actuator patterns and their effect on various errors are given.
How to mathematically optimize drug regimens using optimal control.
Moore, Helen
2018-02-01
This article gives an overview of a technique called optimal control, which is used to optimize real-world quantities represented by mathematical models. I include background information about the historical development of the technique and applications in a variety of fields. The main focus here is the application to diseases and therapies, particularly the optimization of combination therapies, and I highlight several such examples. I also describe the basic theory of optimal control, and illustrate each of the steps with an example that optimizes the doses in a combination regimen for leukemia. References are provided for more complex cases. The article is aimed at modelers working in drug development, who have not used optimal control previously. My goal is to make this technique more accessible in the biopharma community.
Advances in Adaptive Control Methods
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2009-01-01
This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.
$$\\mathscr{H}_2$$ optimal control techniques for resistive wall mode feedback in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, Mitchell; Hanson, Jeremy; Bialek, Jim
DIII-D experiments show that a new, advanced algorithm improves resistive wall mode (RWM) stability control in high performance discharges using external coils. DIII-D can excite strong, locked or nearly locked external kink modes whose rotation frequencies and growth rates are on the order of the magnetic ux di usion time of the vacuum vessel wall. The VALEN RWM model has been used to gauge the e ectiveness of RWM control algorithms in tokamaks. Simulations and experiments have shown that modern control techniques like Linear Quadratic Gaussian (LQG) control will perform better, using 77% less current, than classical techniques when usingmore » control coils external to DIII-D's vacuum vessel. Experiments were conducted to develop control of a rotating n = 1 perturbation using an LQG controller derived from VALEN and external coils. Feedback using this LQG algorithm outperformed a proportional gain only controller in these perturbation experiments over a range of frequencies. Results from high N experiments also show that advanced feedback techniques using external control coils may be as e ective as internal control coil feedback using classical control techniques.« less
$$\\mathscr{H}_2$$ optimal control techniques for resistive wall mode feedback in tokamaks
Clement, Mitchell; Hanson, Jeremy; Bialek, Jim; ...
2018-02-28
DIII-D experiments show that a new, advanced algorithm improves resistive wall mode (RWM) stability control in high performance discharges using external coils. DIII-D can excite strong, locked or nearly locked external kink modes whose rotation frequencies and growth rates are on the order of the magnetic ux di usion time of the vacuum vessel wall. The VALEN RWM model has been used to gauge the e ectiveness of RWM control algorithms in tokamaks. Simulations and experiments have shown that modern control techniques like Linear Quadratic Gaussian (LQG) control will perform better, using 77% less current, than classical techniques when usingmore » control coils external to DIII-D's vacuum vessel. Experiments were conducted to develop control of a rotating n = 1 perturbation using an LQG controller derived from VALEN and external coils. Feedback using this LQG algorithm outperformed a proportional gain only controller in these perturbation experiments over a range of frequencies. Results from high N experiments also show that advanced feedback techniques using external control coils may be as e ective as internal control coil feedback using classical control techniques.« less
Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1998-01-01
The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.
Flight test trajectory control analysis
NASA Technical Reports Server (NTRS)
Walker, R.; Gupta, N.
1983-01-01
Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.
Computer assisted audit techniques for UNIX (UNIX-CAATS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polk, W.T.
1991-12-31
Federal and DOE regulations impose specific requirements for internal controls of computer systems. These controls include adequate separation of duties and sufficient controls for access of system and data. The DOE Inspector General`s Office has the responsibility to examine internal controls, as well as efficient use of computer system resources. As a result, DOE supported NIST development of computer assisted audit techniques to examine BSD UNIX computers (UNIX-CAATS). These systems were selected due to the increasing number of UNIX workstations in use within DOE. This paper describes the design and development of these techniques, as well as the results ofmore » testing at NIST and the first audit at a DOE site. UNIX-CAATS consists of tools which examine security of passwords, file systems, and network access. In addition, a tool was developed to examine efficiency of disk utilization. Test results at NIST indicated inadequate password management, as well as weak network resource controls. File system security was considered adequate. Audit results at a DOE site indicated weak password management and inefficient disk utilization. During the audit, we also found improvements to UNIX-CAATS were needed when applied to large systems. NIST plans to enhance the techniques developed for DOE/IG in future work. This future work would leverage currently available tools, along with needed enhancements. These enhancements would enable DOE/IG to audit large systems, such as supercomputers.« less
Computer assisted audit techniques for UNIX (UNIX-CAATS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polk, W.T.
1991-01-01
Federal and DOE regulations impose specific requirements for internal controls of computer systems. These controls include adequate separation of duties and sufficient controls for access of system and data. The DOE Inspector General's Office has the responsibility to examine internal controls, as well as efficient use of computer system resources. As a result, DOE supported NIST development of computer assisted audit techniques to examine BSD UNIX computers (UNIX-CAATS). These systems were selected due to the increasing number of UNIX workstations in use within DOE. This paper describes the design and development of these techniques, as well as the results ofmore » testing at NIST and the first audit at a DOE site. UNIX-CAATS consists of tools which examine security of passwords, file systems, and network access. In addition, a tool was developed to examine efficiency of disk utilization. Test results at NIST indicated inadequate password management, as well as weak network resource controls. File system security was considered adequate. Audit results at a DOE site indicated weak password management and inefficient disk utilization. During the audit, we also found improvements to UNIX-CAATS were needed when applied to large systems. NIST plans to enhance the techniques developed for DOE/IG in future work. This future work would leverage currently available tools, along with needed enhancements. These enhancements would enable DOE/IG to audit large systems, such as supercomputers.« less
Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.
Mohamed, Amr E.; Dorrah, Hassen T.
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444
NASA Technical Reports Server (NTRS)
Burk, S. M., Jr.; Wilson, C. F., Jr.
1975-01-01
A relatively inexpensive radio-controlled model stall/spin test technique was developed. Operational experiences using the technique are presented. A discussion of model construction techniques, spin-recovery parachute system, data recording system, and movie camera tracking system is included. Also discussed are a method of measuring moments of inertia, scaling of engine thrust, cost and time required to conduct a program, and examples of the results obtained from the flight tests.
NASA Technical Reports Server (NTRS)
Adams, W. M., Jr.; Tiffany, S. H.
1983-01-01
A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.
A multitasking finite state architecture for computer control of an electric powertrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burba, J.C.
1984-01-01
Finite state techniques provide a common design language between the control engineer and the computer engineer for event driven computer control systems. They simplify communication and provide a highly maintainable control system understandable by both. This paper describes the development of a control system for an electric vehicle powertrain utilizing finite state concepts. The basics of finite state automata are provided as a framework to discuss a unique multitasking software architecture developed for this application. The architecture employs conventional time-sliced techniques with task scheduling controlled by a finite state machine representation of the control strategy of the powertrain. The complexitiesmore » of excitation variable sampling in this environment are also considered.« less
Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng
2013-07-01
In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
\\mathscr{H}_2 optimal control techniques for resistive wall mode feedback in tokamaks
NASA Astrophysics Data System (ADS)
Clement, Mitchell; Hanson, Jeremy; Bialek, Jim; Navratil, Gerald
2018-04-01
DIII-D experiments show that a new, advanced algorithm enables resistive wall mode (RWM) stability control in high performance discharges using external coils. DIII-D can excite strong, locked or nearly locked external kink modes whose rotation frequencies and growth rates are on the order of the magnetic flux diffusion time of the vacuum vessel wall. Experiments have shown that modern control techniques like linear quadratic Gaussian (LQG) control require less current than the proportional controller in use at DIII-D when using control coils external to DIII-D’s vacuum vessel. Experiments were conducted to develop control of a rotating n = 1 perturbation using an LQG controller derived from VALEN and external coils. Feedback using this LQG algorithm outperformed a proportional gain only controller in these perturbation experiments over a range of frequencies. Results from high βN experiments also show that advanced feedback techniques using external control coils may be as effective as internal control coil feedback using classical control techniques.
A genetic algorithms approach for altering the membership functions in fuzzy logic controllers
NASA Technical Reports Server (NTRS)
Shehadeh, Hana; Lea, Robert N.
1992-01-01
Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.
Joint Optics Structures Experiment (JOSE)
NASA Technical Reports Server (NTRS)
Founds, David
1987-01-01
The objectives of the JOSE program is to develop, demonstrate, and evaluate active vibration suppression techniques for Directed Energy Weapons (DEW). DEW system performance is highly influenced by the line-of-sight (LOS) stability and in some cases by the wave front quality. The missions envisioned for DEW systems by the Strategic Defense Initiative require LOS stability and wave front quality to be significantly improved over any current demonstrated capability. The Active Control of Space Structures (ACOSS) program led to the development of a number of promising structural control techniques. DEW structures are vastly more complex than any structures controlled to date. They will be subject to disturbances with significantly higher magnitudes and wider bandwidths, while holding higher tolerances on allowable motions and deformations. Meeting the performance requirements of the JOSE program requires upgrading the ACOSS techniques to meet new more stringent requirements, the development of requisite sensors and acturators, improved control processors, highly accurate system identification methods, and the integration of hardware and methodologies into a successful demonstration.
Model Reduction for Control System Design
NASA Technical Reports Server (NTRS)
Enns, D. F.
1985-01-01
An approach and a technique for effectively obtaining reduced order mathematical models of a given large order model for the purposes of synthesis, analysis and implementation of control systems is developed. This approach involves the use of an error criterion which is the H-infinity norm of a frequency weighted error between the full and reduced order models. The weightings are chosen to take into account the purpose for which the reduced order model is intended. A previously unknown error bound in the H-infinity norm for reduced order models obtained from internally balanced realizations was obtained. This motivated further development of the balancing technique to include the frequency dependent weightings. This resulted in the frequency weighted balanced realization and a new model reduction technique. Two approaches to designing reduced order controllers were developed. The first involves reducing the order of a high order controller with an appropriate weighting. The second involves linear quadratic Gaussian synthesis based on a reduced order model obtained with an appropriate weighting.
Statistics based sampling for controller and estimator design
NASA Astrophysics Data System (ADS)
Tenne, Dirk
The purpose of this research is the development of statistical design tools for robust feed-forward/feedback controllers and nonlinear estimators. This dissertation is threefold and addresses the aforementioned topics nonlinear estimation, target tracking and robust control. To develop statistically robust controllers and nonlinear estimation algorithms, research has been performed to extend existing techniques, which propagate the statistics of the state, to achieve higher order accuracy. The so-called unscented transformation has been extended to capture higher order moments. Furthermore, higher order moment update algorithms based on a truncated power series have been developed. The proposed techniques are tested on various benchmark examples. Furthermore, the unscented transformation has been utilized to develop a three dimensional geometrically constrained target tracker. The proposed planar circular prediction algorithm has been developed in a local coordinate framework, which is amenable to extension of the tracking algorithm to three dimensional space. This tracker combines the predictions of a circular prediction algorithm and a constant velocity filter by utilizing the Covariance Intersection. This combined prediction can be updated with the subsequent measurement using a linear estimator. The proposed technique is illustrated on a 3D benchmark trajectory, which includes coordinated turns and straight line maneuvers. The third part of this dissertation addresses the design of controller which include knowledge of parametric uncertainties and their distributions. The parameter distributions are approximated by a finite set of points which are calculated by the unscented transformation. This set of points is used to design robust controllers which minimize a statistical performance of the plant over the domain of uncertainty consisting of a combination of the mean and variance. The proposed technique is illustrated on three benchmark problems. The first relates to the design of prefilters for a linear and nonlinear spring-mass-dashpot system and the second applies a feedback controller to a hovering helicopter. Lastly, the statistical robust controller design is devoted to a concurrent feed-forward/feedback controller structure for a high-speed low tension tape drive.
Investigation of energy management strategies for photovoltaic systems - An analysis technique
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1982-01-01
Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.
Investigation of energy management strategies for photovoltaic systems - An analysis technique
NASA Astrophysics Data System (ADS)
Cull, R. C.; Eltimsahy, A. H.
Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.
Guidance and Control Systems Simulation and Validation Techniques
1988-07-01
AGARDograph No.273 GUIDANCE AND CONTROL SYSTEMS SIMULATION AND VALIDATION TECHNIQUES Edited by Dr William P.Albritton, Jr AMTEC Corporation 213 Ridgelawn...AND DEVELOPMENT PROCESS FOR TACTICAL GUIDED WEAPONS by Dr W.PAlbritton, Jr AMTEC Corporation 213 Ridgelawn Drive Athens, AL 35611, USA Summary A brief
USDA Mosquito Control Product Research for the US Military
USDA-ARS?s Scientific Manuscript database
New techniques that were developed at the USDA to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques to be illustrated include: (1) novel military personal protection methods, (2...
Devices development and techniques research for space life sciences
NASA Astrophysics Data System (ADS)
Zhang, A.; Liu, B.; Zheng, C.
The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed
Hashim, H A; Abido, M A
2015-01-01
This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed.
Hashim, H. A.; Abido, M. A.
2015-01-01
This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed. PMID:25960738
Automated synthesis and composition of taskblocks for control of manufacturing systems.
Holloway, L E; Guan, X; Sundaravadivelu, R; Ashley, J R
2000-01-01
Automated control synthesis methods for discrete-event systems promise to reduce the time required to develop, debug, and modify control software. Such methods must be able to translate high-level control goals into detailed sequences of actuation and sensing signals. In this paper, we present such a technique. It relies on analysis of a system model, defined as a set of interacting components, each represented as a form of condition system Petri net. Control logic modules, called taskblocks, are synthesized from these individual models. These then interact hierarchically and sequentially to drive the system through specified control goals. The resulting controller is automatically converted to executable control code. The paper concludes with a discussion of a set of software tools developed to demonstrate the techniques on a small manufacturing system.
NASA Astrophysics Data System (ADS)
Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.
2013-08-01
Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.
Parameter Estimation for a Hybrid Adaptive Flight Controller
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje
2009-01-01
This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.
Baiting Techniques for Control of Coptotermes Species Within Existing Buildings in Australia
J.R.J. French
1991-01-01
Baiting techniques have been developed over the years to control Coptotermes species, the most economically important termite species in Australia. Given the restrictions on organochlorines as termiticides in North America, this paper highlights research that has focussed on baiting programs against Coptotermes as alternatives to...
Self-Injury in the De Lange Syndrome.
ERIC Educational Resources Information Center
Singh, N. N.; Pulman, Ruth M.
1979-01-01
Psychological treatment techniques for the control of self-injury in a 13-year-old male with de Lange syndrome (a rare disorder characterized by retarded mental and physical development) are presented. Techniques, which included mild punishment, time out, and differential reinforcement, produced a clinically significant control of self-injurious…
NASA Technical Reports Server (NTRS)
Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.
1977-01-01
A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.
General Aviation Interior Noise. Part 3; Noise Control Measure Evaluation
NASA Technical Reports Server (NTRS)
Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)
2002-01-01
The work reported herein is an extension to the work accomplished under NASA Grant NAG1-2091 on the development of noise/source/path identification techniques for single engine propeller driven General Aviation aircraft. The previous work developed a Conditioned Response Analysis (CRA) technique to identify potential noise sources that contributed to the dominating tonal responses within the aircraft cabin. The objective of the present effort was to improve and verify the findings of the CRA and develop and demonstrate noise control measures for single engine propeller driven General Aviation aircraft.
Optical control and diagnostics sensors for gas turbine machinery
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Jenkins, Thomas P.; Heeg, Bauke
2012-10-01
There exists a vast range of optical techniques that have been under development for solving complex measurement problems related to gas-turbine machinery and phenomena. For instance, several optical techniques are ideally suited for studying fundamental combustion phenomena in laboratory environments. Yet other techniques hold significant promise for use as either on-line gas turbine control sensors, or as health monitoring diagnostics sensors. In this paper, we briefly summarize these and discuss, in more detail, some of the latter class of techniques, including phosphor thermometry, hyperspectral imaging and low coherence interferometry, which are particularly suited for control and diagnostics sensing on hot section components with ceramic thermal barrier coatings (TBCs).
[Strategy Discussion for Pollution Control of Post-Consumer Home Medical Equipment].
Zhang, Xu; Xu, Honglei; Huang, Yanhong; Peng, Xiaolong
2015-09-01
Compared with the recycle of post-consumer medical equipments in medical institutions, the treatment of post-consumer home medical equipments (HME) should be consummated in the field of academic research, policy and regulatory plus corresponding supporting industries. The HME industry situation and its classification, main components and properties are reviewed in this paper. The merits and demerits of various pollution control techniques in the recycle of post-consumer medical equipments are analysed. For instance, the source control techniques to improve the property of raw materials, the end treatment technique to recycle the HME and regenerate energy are also discussed. Further, the development prospect of pollution control technique in the recycle of HME and the challenges must face up to are also probed.
NASA Astrophysics Data System (ADS)
Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Raslan, M. I.; Omar, E. Z.; Hamza, A. A.
2018-03-01
The optical setup of the transport intensity equation (TIE) technique is developed to be valid for measuring the optical properties of the highly-oriented anisotropic fibres. This development is based on the microstructure models of the highly-oriented anisotropic fibres and the principle of anisotropy. We provide the setup of TIE technique with polarizer which is controlled via stepper motor. This developed technique is used to investigate the refractive indices in the parallel and perpendicular polarization directions of light for the highly-oriented poly (ethylene terephthalate) (PET) fibres and hence its birefringence. The obtained results through the developed TIE technique for PET fibre are compared with that determined experimentally using the Mach-Zehnder interferometer under the same conditions. The comparison shows a good agreement between the obtained results from the developed technique and that obtained from the Mach-Zehnder interferometer technique.
NASA Technical Reports Server (NTRS)
Behbehani, K.
1980-01-01
A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.
Novel USDA Mosquito Control Techniques for the US Military
USDA-ARS?s Scientific Manuscript database
Novel techniques that we developed at the USDA to protect deployed military troops from the threat of vector-borne diseases are described. Some of the methods developed included (1) novel military personal protection methods, (2) barrier treatments of artificial materials and natural vegetation, and...
DOT National Transportation Integrated Search
2016-04-01
In this study, we developed an adaptive signal control (ASC) framework for connected vehicles (CVs) using agent-based modeling technique. : The proposed framework consists of two types of agents: 1) vehicle agents (VAs); and 2) signal controller agen...
Genome engineering and gene expression control for bacterial strain development.
Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup
2015-01-01
In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fade Mitigation Techniques at Ka-Band
NASA Technical Reports Server (NTRS)
Dissanayake, Asoka (Editor)
1996-01-01
Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.
Automated diagnosis of fetal alcohol syndrome using 3D facial image analysis
Fang, Shiaofen; McLaughlin, Jason; Fang, Jiandong; Huang, Jeffrey; Autti-Rämö, Ilona; Fagerlund, Åse; Jacobson, Sandra W.; Robinson, Luther K.; Hoyme, H. Eugene; Mattson, Sarah N.; Riley, Edward; Zhou, Feng; Ward, Richard; Moore, Elizabeth S.; Foroud, Tatiana
2012-01-01
Objectives Use three-dimensional (3D) facial laser scanned images from children with fetal alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can reliably and accurately identify individuals prenatally exposed to alcohol. Methods A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine learning, and pattern recognition techniques were used to automatically identify a set of facial features that best discriminated individuals with FAS from controls in each sample. Results An automated feature detection and analysis technique was developed and applied to the two study populations. A unique set of facial regions and features were identified for each population that accurately discriminated FAS and control faces without any human intervention. Conclusion Our results demonstrate that computer algorithms can be used to automatically detect facial features that can discriminate FAS and control faces. PMID:18713153
Fault Accommodation in Control of Flexible Systems
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Sparks, Dean W., Jr.; Lim, Kyong B.
1998-01-01
New synthesis techniques for the design of fault accommodating controllers for flexible systems are developed. Three robust control design strategies, static dissipative, dynamic dissipative and mu-synthesis, are used in the approach. The approach provides techniques for designing controllers that maximize, in some sense, the tolerance of the closed-loop system against faults in actuators and sensors, while guaranteeing performance robustness at a specified performance level, measured in terms of the proximity of the closed-loop poles to the imaginary axis (the degree of stability). For dissipative control designs, nonlinear programming is employed to synthesize the controllers, whereas in mu-synthesis, the traditional D-K iteration is used. To demonstrate the feasibility of the proposed techniques, they are applied to the control design of a structural model of a flexible laboratory test structure.
Description of the control system design for the SSF PMAD DC testbed
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Kimnach, Greg L.
1991-01-01
The Power Management and Distribution (PMAD) DC Testbed Control System for Space Station Freedom was developed using a top down approach based on classical control system and conventional terrestrial power utilities design techniques. The design methodology includes the development of a testbed operating concept. This operating concept describes the operation of the testbed under all possible scenarios. A unique set of operating states was identified and a description of each state, along with state transitions, was generated. Each state is represented by a unique set of attributes and constraints, and its description reflects the degree of system security within which the power system is operating. Using the testbed operating states description, a functional design for the control system was developed. This functional design consists of a functional outline, a text description, and a logical flowchart for all the major control system functions. Described here are the control system design techniques, various control system functions, and the status of the design and implementation.
Control system design for flexible structures using data models
NASA Technical Reports Server (NTRS)
Irwin, R. Dennis; Frazier, W. Garth; Mitchell, Jerrel R.; Medina, Enrique A.; Bukley, Angelia P.
1993-01-01
The dynamics and control of flexible aerospace structures exercises many of the engineering disciplines. In recent years there has been considerable research in the developing and tailoring of control system design techniques for these structures. This problem involves designing a control system for a multi-input, multi-output (MIMO) system that satisfies various performance criteria, such as vibration suppression, disturbance and noise rejection, attitude control and slewing control. Considerable progress has been made and demonstrated in control system design techniques for these structures. The key to designing control systems for these structures that meet stringent performance requirements is an accurate model. It has become apparent that theoretically and finite-element generated models do not provide the needed accuracy; almost all successful demonstrations of control system design techniques have involved using test results for fine-tuning a model or for extracting a model using system ID techniques. This paper describes past and ongoing efforts at Ohio University and NASA MSFC to design controllers using 'data models.' The basic philosophy of this approach is to start with a stabilizing controller and frequency response data that describes the plant; then, iteratively vary the free parameters of the controller so that performance measures become closer to satisfying design specifications. The frequency response data can be either experimentally derived or analytically derived. One 'design-with-data' algorithm presented in this paper is called the Compensator Improvement Program (CIP). The current CIP designs controllers for MIMO systems so that classical gain, phase, and attenuation margins are achieved. The center-piece of the CIP algorithm is the constraint improvement technique which is used to calculate a parameter change vector that guarantees an improvement in all unsatisfied, feasible performance metrics from iteration to iteration. The paper also presents a recently demonstrated CIP-type algorithm, called the Model and Data Oriented Computer-Aided Design System (MADCADS), developed for achieving H(sub infinity) type design specifications using data models. Control system design for the NASA/MSFC Single Structure Control Facility are demonstrated for both CIP and MADCADS. Advantages of design-with-data algorithms over techniques that require analytical plant models are also presented.
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1971-01-01
The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.
NASA Astrophysics Data System (ADS)
Amengonu, Yawo H.; Kakad, Yogendra P.
2014-07-01
Quasivelocity techniques were applied to derive the dynamics of a Differential Wheeled Mobile Robot (DWMR) in the companion paper. The present paper formulates a control system design for trajectory tracking of this class of robots. The method develops a feedback linearization technique for the nonlinear system using dynamic extension algorithm. The effectiveness of the nonlinear controller is illustrated with simulation example.
Simulation of intelligent object behavior in a virtual reality system
NASA Astrophysics Data System (ADS)
Mironov, Sergey F.
1998-01-01
This article presents a technique for computer control of a power boat movement in real-time marine trainers or arcade games. The author developed and successfully implemented a general technique allowing intellectual navigation of computer controlled moving objects that proved to be appropriate for real-time applications. This technique covers significant part of necessary behavioral tasks that appear in such titles. At the same time the technique forms a part of a more general system that involves control of less complicated characters of another nature. The system being an open one can be easily used by an action or arcade programming to improve the overall quality of characters artificial intelligence style.
Prevention and Control Strategies to Counter Dengue Virus Infection
Rather, Irfan A.; Parray, Hilal A.; Lone, Jameel B.; Paek, Woon K.; Lim, Jeongheui; Bajpai, Vivek K.; Park, Yong-Ha
2017-01-01
Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus. PMID:28791258
Prevention and Control Strategies to Counter Dengue Virus Infection.
Rather, Irfan A; Parray, Hilal A; Lone, Jameel B; Paek, Woon K; Lim, Jeongheui; Bajpai, Vivek K; Park, Yong-Ha
2017-01-01
Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.
NASA Technical Reports Server (NTRS)
Petro, Andrew J.
1990-01-01
This paper will summarize a range of techniques which have been proposed for controlling the growth of man-made debris in earth orbit. Several techniques developed in studies at the Johnson Space Center will be described in detail. These techniques include the retrieval of inoperative satellites with an orbital maneuvering vehicle and self-disposal devices for satellites and upper stages. Self-disposal devices include propulsive deorbit motors and passive drag-augmentation devices. Concepts for sweeping small debris from the orbital environment will also be described. An evaluation of the technical feasibility and economic practicality of the various control methods will be summarized. In general, methods which prevent the accumulation of large debris objects were found to provide greater promise for control of the debris problem than methods of removing small debris particles.
NASA Technical Reports Server (NTRS)
Shaver, Charles; Williamson, Michael
1986-01-01
The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1991-01-01
Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
NASA Astrophysics Data System (ADS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-04-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
NASA Technical Reports Server (NTRS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-01-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Mosquito Control Techniques Developed for the US Military and an Update on the AMCA
USDA-ARS?s Scientific Manuscript database
Scientists at the USDA Center for Medical, Agricultural and Veterinary Entomology developed and field tested novel techniques to protect deployed military troops from diseases transmitted by mosquitoes and sand flies. Methods that proved to be very effective included (1) novel military personal prot...
The GenTechnique Project: Developing an Open Environment for Learning Molecular Genetics.
ERIC Educational Resources Information Center
Calza, R. E.; Meade, J. T.
1998-01-01
The GenTechnique project at Washington State University uses a networked learning environment for molecular genetics learning. The project is developing courseware featuring animation, hyper-link controls, and interactive self-assessment exercises focusing on fundamental concepts. The first pilot course featured a Web-based module on DNA…
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik
1996-01-01
For a space mission to be successful it is vitally important to have a good control strategy. For example, with the Space Shuttle it is necessary to guarantee the success and smoothness of docking, the smoothness and fuel efficiency of trajectory control, etc. For an automated planetary mission it is important to control the spacecraft's trajectory, and after that, to control the planetary rover so that it would be operable for the longest possible period of time. In many complicated control situations, traditional methods of control theory are difficult or even impossible to apply. In general, in uncertain situations, where no routine methods are directly applicable, we must rely on the creativity and skill of the human operators. In order to simulate these experts, an intelligent control methodology must be developed. The research objectives of this project were: to analyze existing control techniques; to find out which of these techniques is the best with respect to the basic optimality criteria (stability, smoothness, robustness); and, if for some problems, none of the existing techniques is satisfactory, to design new, better intelligent control techniques.
Instrumental color control for metallic coatings
NASA Astrophysics Data System (ADS)
Chou, W.; Han, Bing; Cui, Guihua; Rigg, Bryan; Luo, Ming R.
2002-06-01
This paper describes work investigating a suitable color quality control method for metallic coatings. A set of psychological experiments was carried out based upon 50 pairs of samples. The results were used to test the performance of various color difference formulae. Different techniques were developed by optimising the weights and/or the lightness parametric factors of colour differences calculated from the four measuring angles. The results show that the new techniques give a significant improvement compared to conventional techniques.
Multisensor systems today and tomorrow: Machine control, diagnosis and thermal compensation
NASA Astrophysics Data System (ADS)
Nunzio, D'Addea
2000-05-01
Multisensor techniques that deal with control of tribology test rig and with diagnosis and thermal error compensation of machine tools are the starting point for some consideration about the use of these techniques as in fuzzy and neural net systems. The author comes to conclusion that anticipatory systems and multisensor techniques will have in the next future a great improvement and a great development mainly in the thermal error compensation of machine tools.
1984-01-01
P AD-A14l 969 CONFERENCE PROCEEDINGS ON GUIDANCE AND CONTROL 1 TECHNIQUES FOR ADVANCED SP-.(U,) ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT...findings of these various planning groups relativie to the ’e for advanced controls technology, and the perceived status of the technology t. me-,t... control of large flexible spacecraft. The program has also involved experimental activities to guide Ind validate the theoretical work. The
Approximate analytical relationships for linear optimal aeroelastic flight control laws
NASA Astrophysics Data System (ADS)
Kassem, Ayman Hamdy
1998-09-01
This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.
NASA Technical Reports Server (NTRS)
Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.
1991-01-01
Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.
Design Of Combined Stochastic Feedforward/Feedback Control
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1989-01-01
Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.
Sexual development in fish, practical applications for aquaculture.
Cnaani, A; Levavi-Sivan, B
2009-01-01
Aquaculture is one of the fastest rising sectors of world food production. Hundreds of fish species are cultured, providing an affordable, high quality food source. Two aspects of sexual development are critically important for the continued improvement of cultured fish stocks: sexual dimorphism and control of reproduction. In this paper, we review the main methods used to control sex determination in fish and their application in some of the most widely cultured species. Specifically, we review the techniques available for the production of all-male, all-female, and sterile populations. Techniques for endocrinological control of reproduction are also discussed. 2009 S. Karger AG, Basel.
Dynamics and control of detumbling a disabled spacecraft during rescue operations
NASA Technical Reports Server (NTRS)
Kaplan, M. H.
1973-01-01
Results of a two-year research effort on dynamics and control of detumbling a disabled spacecraft during rescue operations are summarized. Answers to several basic questions about associated techniques and hardware requirements were obtained. Specifically, efforts have included development of operational procedures, conceptual design of remotely controlled modules, feasibility of internal moving mass for stabilization, and optimal techniques for minimum-time detumbling. Results have been documented in several reports and publications.
NASA Astrophysics Data System (ADS)
Guidang, Excel Philip B.; Llanda, Christopher John R.; Palaoag, Thelma D.
2018-03-01
Face Detection Technique as a strategy in controlling a multimedia instructional material was implemented in this study. Specifically, it achieved the following objectives: 1) developed a face detection application that controls an embedded mother-tongue-based instructional material for face-recognition configuration using Python; 2) determined the perceptions of the students using the Mutt Susan’s student app review rubric. The study concludes that face detection technique is effective in controlling an electronic instructional material. It can be used to change the method of interaction of the student with an instructional material. 90% of the students perceived the application to be a great app and 10% rated the application to be good.
A computational algorithm for spacecraft control and momentum management
NASA Technical Reports Server (NTRS)
Dzielski, John; Bergmann, Edward; Paradiso, Joseph
1990-01-01
Developments in the area of nonlinear control theory have shown how coordinate changes in the state and input spaces of a dynamical system can be used to transform certain nonlinear differential equations into equivalent linear equations. These techniques are applied to the control of a spacecraft equipped with momentum exchange devices. An optimal control problem is formulated that incorporates a nonlinear spacecraft model. An algorithm is developed for solving the optimization problem using feedback linearization to transform to an equivalent problem involving a linear dynamical constraint and a functional approximation technique to solve for the linear dynamics in terms of the control. The original problem is transformed into an unconstrained nonlinear quadratic program that yields an approximate solution to the original problem. Two examples are presented to illustrate the results.
Development of Control Models and a Robust Multivariable Controller for Surface Shape Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winters, Scott Eric
2003-06-18
Surface shape control techniques are applied to many diverse disciplines, such as adaptive optics, noise control, aircraft flutter control and satellites, with an objective to achieve a desirable shape for an elastic body by the application of distributed control forces. Achieving the desirable shape is influenced by many factors, such as, actuator locations, sensor locations, surface precision and controller performance. Building prototypes to complete design optimizations or controller development can be costly or impractical. This shortfall, puts significant value in developing accurate modeling and control simulation approaches. This thesis focuses on the field of adaptive optics, although these developments havemore » the potential for application in many other fields. A static finite element model is developed and validated using a large aperture interferometer system. This model is then integrated into a control model using a linear least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised showing functionality for various wavefront aberrations. Utilizing a verified model shows significant value in simulating static surface shape control problems with quantifiable uncertainties. A new dynamic model for a seven actuator deformable mirror is presented and its accuracy is proven through experiment. Bond graph techniques are used to generate the state space model of the multi-actuator deformable mirror including piezo-electric actuator dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H ∞ controller is designed and implemented. This controller proved superior performance as compared to a standard proportional-integral controller (PI) design.« less
USER'S GUIDE: EMISSION CONTROL TECHNOLOGIES AND EMISSION FACTORS FOR UNPAVED ROAD FUGITIVE EMISSIONS
This document assists control agency personnel in evaluating unpaved road fugitive emissions control plans and helps industry personnel develop effective control strategies for unpaved roads. he brochure describes control techniques for reducing unpaved road emissions and methods...
Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing
NASA Technical Reports Server (NTRS)
Khattak, C. P.; Schmid, F.; Smith, M. B.
1982-01-01
A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.
Control Law Design in a Computational Aeroelasticity Environment
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.
2003-01-01
A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.
Systematic methods for the design of a class of fuzzy logic controllers
NASA Astrophysics Data System (ADS)
Yasin, Saad Yaser
2002-09-01
Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.
Quality Attribute Techniques Framework
NASA Astrophysics Data System (ADS)
Chiam, Yin Kia; Zhu, Liming; Staples, Mark
The quality of software is achieved during its development. Development teams use various techniques to investigate, evaluate and control potential quality problems in their systems. These “Quality Attribute Techniques” target specific product qualities such as safety or security. This paper proposes a framework to capture important characteristics of these techniques. The framework is intended to support process tailoring, by facilitating the selection of techniques for inclusion into process models that target specific product qualities. We use risk management as a theory to accommodate techniques for many product qualities and lifecycle phases. Safety techniques have motivated the framework, and safety and performance techniques have been used to evaluate the framework. The evaluation demonstrates the ability of quality risk management to cover the development lifecycle and to accommodate two different product qualities. We identify advantages and limitations of the framework, and discuss future research on the framework.
The dynamics and control of large flexible space structures, 6
NASA Technical Reports Server (NTRS)
Bainum, P. M.
1983-01-01
The controls analysis based on a truncated finite element model of the 122m. Hoop/Column Antenna System focuses on an analysis of the controllability as well as the synthesis of control laws. Graph theoretic techniques are employed to consider controllability for different combinations of number and locations of actuators. Control law synthesis is based on an application of the linear regulator theory as well as pole placement techniques. Placement of an actuator on the hoop can result in a noticeable improvement in the transient characteristics. The problem of orientation and shape control of an orbiting flexible beam, previously examined, is now extended to include the influence of solar radiation environmental forces. For extremely flexible thin structures modification of control laws may be required and techniques for accomplishing this are explained. Effects of environmental torques are also included in previously developed models of orbiting flexible thin platforms.
Quality evaluation and control of end cap welds in PHWR fuel elements by ultrasonic examination
NASA Astrophysics Data System (ADS)
Choi, M. S.; Yang, M. S.
1991-02-01
The current quality control procedure of nuclear fuel end cap weld is mainly dependent on the destructive metallographic examination. A nondestructive examination technique, i.e., ultrasonic examination, has been developed to identify and evaluate weld discontinuities. A few interesting results of the weld quality evaluation by applying the developed ultrasonic examination technique to PHWR fuel welds are presented. In addition, the feasibility of the weld quality control by the ultrasonic examination is discussed. This study shows that the ultrasonic examination is effective and reliable method for detecting abnormal weld contours and weld discontinuities such as micro-fissure, crack, upset split and expulsion, and can be used as a quality control tool for the end cap welding process.
A technique for the assessment of fighter aircraft precision controllability
NASA Technical Reports Server (NTRS)
Sisk, T. R.
1978-01-01
Today's emerging fighter aircraft are maneuvering as well at normal accelerations of 7 to 8 g's as their predecessors did at 4 to 5 g's. This improved maneuvering capability has significantly expanded their operating envelope and made the task of evaluating handling qualities more difficult. This paper describes a technique for assessing the precision controllability of highly maneuverable aircraft, a technique that was developed to evaluate the effects of buffet intensity on gunsight tracking capability and found to be a useful tool for the general assessment of fighter aircraft handling qualities. It has also demonstrated its usefulness for evaluating configuration and advanced flight control system refinements. This technique is believed to have application to future aircraft dynamics and pilot-vehicle interface studies.
Spacecraft drag-free technology development: On-board estimation and control synthesis
NASA Technical Reports Server (NTRS)
Key, R. W.; Mettler, E.; Milman, M. H.; Schaechter, D. B.
1982-01-01
Estimation and control methods for a Drag-Free spacecraft are discussed. The functional and analytical synthesis of on-board estimators and controllers for an integrated attitude and translation control system is represented. The framework for detail definition and design of the baseline drag-free system is created. The techniques for solution of self-gravity and electrostatic charging problems are applicable generally, as is the control system development.
Controlled atmosphere annealing of ion implanted gallium arsenide. Final report 1 Jul 76-30 Nov 79
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C.L.; Eu, V.; Feng, M.
1980-08-01
Controlled atmosphere techniques were developed as an alternative to dielectric encapsulation for the high temperature anneal of ion implanted layers in GaAs. Two approaches: (1) the controlled atmosphere technique (CAT), and (2) the melt controlled ambient technique (MCAT) have been investigated. Using the CAT procedure, which involves annealing in flowing hydrogen with an arsenic overpressure, annealing without detectable surface erosion, has been performed at temperatures as high as 950 C, with or without encapsulants. Impurity diffusion, damage recovery, and electrical activity were investigated as a function of anneal parameters. Range studies of technologically important impurities such as S, Si, Se,more » Be and Mg were carried out. For the first time the role of the encapsulant on implanted profile degradation and the importance of Cr redistribution during the anneal cycle were determined. An improved CAT anneal system capable of production quantity throughput was developed and is in current use for device processing.« less
Algorithmic formulation of control problems in manipulation
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1975-01-01
The basic characteristics of manipulator control algorithms are discussed. The state of the art in the development of manipulator control algorithms is briefly reviewed. Different end-point control techniques are described together with control algorithms which operate on external sensor (imaging, proximity, tactile, and torque/force) signals in realtime. Manipulator control development at JPL is briefly described and illustrated with several figures. The JPL work pays special attention to the front or operator input end of the control algorithms.
Flight test experience with high-alpha control system techniques on the F-14 airplane
NASA Technical Reports Server (NTRS)
Gera, J.; Wilson, R. J.; Enevoldson, E. K.; Nguyen, L. T.
1981-01-01
Improved handling qualities of fighter aircraft at high angles of attack can be provided by various stability and control augmentation techniques. NASA and the U.S. Navy are conducting a joint flight demonstration of these techniques on an F-14 airplane. This paper reports on the flight test experience with a newly designed lateral-directional control system which suppresses such high angle of attack handling qualities problems as roll reversal, wing rock, and directional divergence while simultaneously improving departure/spin resistance. The technique of integrating a piloted simulation into the flight program was used extensively in this program. This technique had not been applied previously to high angle of attack testing and required the development of a valid model to simulate the test airplane at extremely high angles of attack.
Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J
2014-11-01
Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.
Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J
2014-01-01
Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments. PMID:25485128
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator); Hay, C. M.; Thomas, R. W.; Benson, A. S.
1977-01-01
Progress in the evaluation of the static stratification procedure and the development of alternative photointerpretive techniques to the present LACIE procedure for the identification of training fields is reported. Statistically significant signature controlling variables were defined for use in refining the stratification procedure. A subset of the 1973-74 Kansas LACIE segments for wheat was analyzed.
Study of synthesis techniques for insensitive aircraft control systems
NASA Technical Reports Server (NTRS)
Harvey, C. A.; Pope, R. E.
1977-01-01
Insensitive flight control system design criteria was defined in terms of maximizing performance (handling qualities, RMS gust response, transient response, stability margins) over a defined parameter range. Wing load alleviation for the C-5A was chosen as a design problem. The C-5A model was a 79-state, two-control structure with uncertainties assumed to exist in dynamic pressure, structural damping and frequency, and the stability derivative, M sub w. Five new techniques (mismatch estimation, uncertainty weighting, finite dimensional inverse, maximum difficulty, dual Lyapunov) were developed. Six existing techniques (additive noise, minimax, multiplant, sensitivity vector augmentation, state dependent noise, residualization) and the mismatch estimation and uncertainty weighting techniques were synthesized and evaluated on the design example. Evaluation and comparison of these six techniques indicated that the minimax and the uncertainty weighting techniques were superior to the other six, and of these two, uncertainty weighting has lower computational requirements. Techniques based on the three remaining new concepts appear promising and are recommended for further research.
Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Jones, Frank P.; Roncoli, Ralph B.
1986-01-01
This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Goodrick, Dan
2017-01-01
The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads. The subject of this paper is the design of the optimal control architecture, and provides the reader with some techniques for tailoring the architecture, along with detailed simulation results.
Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques.
Engdahl, Susannah M; Christie, Breanne P; Kelly, Brian; Davis, Alicia; Chestek, Cynthia A; Gates, Deanna H
2015-06-13
Novel techniques for the control of upper limb prostheses may allow users to operate more complex prostheses than those that are currently available. Because many of these techniques are surgically invasive, it is important to understand whether individuals with upper limb loss would accept the associated risks in order to use a prosthesis. An online survey of individuals with upper limb loss was conducted. Participants read descriptions of four prosthetic control techniques. One technique was noninvasive (myoelectric) and three were invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces). Participants rated how likely they were to try each technique if it offered each of six different functional features. They also rated their general interest in each of the six features. A two-way repeated measures analysis of variance with Greenhouse-Geisser corrections was used to examine the effect of the technique type and feature on participants' interest in each technique. Responses from 104 individuals were analyzed. Many participants were interested in trying the techniques - 83 % responded positively toward myoelectric control, 63 % toward targeted muscle reinnervation, 68 % toward peripheral nerve interfaces, and 39 % toward cortical interfaces. Common concerns about myoelectric control were weight, cost, durability, and difficulty of use, while the most common concern about the invasive techniques was surgical risk. Participants expressed greatest interest in basic prosthesis features (e.g., opening and closing the hand slowly), as opposed to advanced features like fine motor control and touch sensation. The results of these investigations may be used to inform the development of future prosthetic technologies that are appealing to individuals with upper limb loss.
Multi-interface Level Sensors and New Development in Monitoring and Control of Oil Separators
Bukhari, Syed Faisal Ahmed; Yang, Wuqiang
2006-01-01
In the oil industry, huge saving may be made if suitable multi-interface level measurement systems are employed for effectively monitoring crude oil separators and efficient control of their operation. A number of techniques, e.g. externally mounted displacers, differential pressure transmitters and capacitance rod devices, have been developed to measure the separation process with gas, oil, water and other components. Because of the unavailability of suitable multi-interface level measurement systems, oil separators are currently operated by the trial-and-error approach. In this paper some conventional techniques, which have been used for level measurement in industry, and new development are discussed.
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.
Development of a robust framework for controlling high performance turbofan engines
NASA Astrophysics Data System (ADS)
Miklosovic, Robert
This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.
Space construction base control system
NASA Technical Reports Server (NTRS)
Kaczynski, R. F.
1979-01-01
Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.
NASA Technical Reports Server (NTRS)
1972-01-01
The solar imaging X-ray telescope experiment (designated the S-056 experiment) is described. It will photograph the sun in the far ultraviolet or soft X-ray region. Because of the imaging characteristics of this telescope and the necessity of using special techniques for capturing images on film at these wave lengths, methods were developed for computer processing of the photographs. The problems of image restoration were addressed to develop and test digital computer techniques for applying a deconvolution process to restore overall S-056 image quality. Additional techniques for reducing or eliminating the effects of noise and nonlinearity in S-056 photographs were developed.
ERIC Educational Resources Information Center
Montgomery, Thomas L.; And Others
1975-01-01
The technique of intermittent control systems for air quality control as developed and used by the Tennessee Valley Authority is investigated. Although controversial, all Tennessee Valley Authority sulfur dioxide elimination programs are scheduled to be operational this year. Existing or anticipated intermittent control systems are identified. (BT)
NASA Astrophysics Data System (ADS)
Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping
2018-03-01
This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.
Simulation and Development of Internal Model Control Applications in the Bayer Process
NASA Astrophysics Data System (ADS)
Colombé, Ph.; Dablainville, R.; Vacarisas, J.
Traditional PID feedback control system is limited in its use in the Bayer cycle due to the important and omnipresent time delays which can lead to stability problems and sluggish response. Advanced modern control techniques are available, but suffer in an industrial environment from a lack of simplicity and robustness. In this respect the Internal Model Control (IMC) method may be considered as an exception. After a brief review of the basic theoretical principles behind IMC, an IMC scheme is developed to work with single-input, single-output, discrete-time, nonlinear systems. Two applications of IMC in the Bayer process, both in simulations and on industrial plants, are then described: control of the caustic soda concentration of the aluminate liquor and control of the A12O3/Na20 caust. ratio of the digested slurry, Finally, the results obtained make this technique quite attractive for the alumina industry.
Monitoring fugitive methane and natural gas emissions, validation of measurement techniques.
NASA Astrophysics Data System (ADS)
Robinson, Rod; Innocenti, Fabrizio; Gardiner, Tom; Helmore, Jon; Finlayson, Andrew; Connor, Andy
2017-04-01
The detection and quantification of fugitive and diffuse methane emissions has become an increasing priority in recent years. As the requirements for routine measurement to support industry initiatives increase there is a growing requirement to assess and validate the performance of fugitive emission measurement technologies. For reported emissions traceability and comparability of measurements is important. This talk will present recent work addressing these needs. Differential Absorption Lidar (DIAL) is a laser based remote sensing technology, able to map the concentration of gases in the atmosphere and determine emission fluxes for fugitive emissions. A description of the technique and its application for determining fugitive emissions of methane from oil and gas operations and waste management sites will be given. As DIAL has gained acceptance as a powerful tool for the measurement and quantification of fugitive emissions, and given the rich data it produces, it is being increasingly used to assess and validate other measurement approaches. In addition, to support the validation of technologies, we have developed a portable controlled release facility able to simulate the emissions from area sources. This has been used to assess and validate techniques which are used to monitor emissions. The development and capabilities of the controlled release facility will be described. This talk will report on recent studies using DIAL and the controlled release facility to validate fugitive emission measurement techniques. This includes side by side comparisons of two DIAL systems, the application of both the DIAL technique and the controlled release facility in a major study carried out in 2015 by South Coast Air Quality Management District (SCAQMD) in which a number of optical techniques were assessed and the development of a prototype method validation approach for techniques used to measure methane emissions from shale gas sites. In conclusion the talk will provide an update on the current status in the development of a European Standard for the measurement of fugitive emissions of VOCs and the use of validation data in the standardisation process and discuss the application of this to methane measurement.
NASA Technical Reports Server (NTRS)
Broussard, J. R.; Halyo, N.
1984-01-01
This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.
Self-Tuning of Design Variables for Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Lin, Chaung; Juang, Jer-Nan
2000-01-01
Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.
NASA Technical Reports Server (NTRS)
Stankovic, Ana V.
2003-01-01
Professor Stankovic will be developing and refining Simulink based models of the PM alternator and comparing the simulation results with experimental measurements taken from the unit. Her first task is to validate the models using the experimental data. Her next task is to develop alternative control techniques for the application of the Brayton Cycle PM Alternator in a nuclear electric propulsion vehicle. The control techniques will be first simulated using the validated models then tried experimentally with hardware available at NASA. Testing and simulation of a 2KW PM synchronous generator with diode bridge output is described. The parameters of a synchronous PM generator have been measured and used in simulation. Test procedures have been developed to verify the PM generator model with diode bridge output. Experimental and simulation results are in excellent agreement.
Propulsion Health Monitoring for Enhanced Safety
NASA Technical Reports Server (NTRS)
Butz, Mark G.; Rodriguez, Hector M.
2003-01-01
This report presents the results of the NASA contract Propulsion System Health Management for Enhanced Safety performed by General Electric Aircraft Engines (GE AE), General Electric Global Research (GE GR), and Pennsylvania State University Applied Research Laboratory (PSU ARL) under the NASA Aviation Safety Program. This activity supports the overall goal of enhanced civil aviation safety through a reduction in the occurrence of safety-significant propulsion system malfunctions. Specific objectives are to develop and demonstrate vibration diagnostics techniques for the on-line detection of turbine rotor disk cracks, and model-based fault tolerant control techniques for the prevention and mitigation of in-flight engine shutdown, surge/stall, and flameout events. The disk crack detection work was performed by GE GR which focused on a radial-mode vibration monitoring technique, and PSU ARL which focused on a torsional-mode vibration monitoring technique. GE AE performed the Model-Based Fault Tolerant Control work which focused on the development of analytical techniques for detecting, isolating, and accommodating gas-path faults.
The MSFC Program Control Development Program
NASA Technical Reports Server (NTRS)
1994-01-01
It is the policy of the Marshall Space Flight Center (MSFC) that employees be given the opportunity to develop their individual skills and realize their full potential consistent with their selected career path and with the overall Center's needs and objectives. The MSFC Program Control Development Program has been designed to assist individuals who have selected Program Control or Program Analyst Program Control as a career path to achieve their ultimate career goals. Individuals selected to participate in the MSFC Program Control Development Program will be provided with development training in the various Program Control functional areas identified in the NASA Program Control Model. The purpose of the MSFC Program Control Development Program is to develop individual skills in the various Program Control functions by on-the-job and classroom instructional training on the various systems, tools, techniques, and processes utilized in these areas.
MRAC Control with Prior Model Knowledge for Asymmetric Damaged Aircraft
Zhang, Jing
2015-01-01
This paper develops a novel state-tracking multivariable model reference adaptive control (MRAC) technique utilizing prior knowledge of plant models to recover control performance of an asymmetric structural damaged aircraft. A modification of linear model representation is given. With prior knowledge on structural damage, a polytope linear parameter varying (LPV) model is derived to cover all concerned damage conditions. An MRAC method is developed for the polytope model, of which the stability and asymptotic error convergence are theoretically proved. The proposed technique reduces the number of parameters to be adapted and thus decreases computational cost and requires less input information. The method is validated by simulations on NASA generic transport model (GTM) with damage. PMID:26180839
A perspective of laminar-flow control. [aircraft energy efficiency program
NASA Technical Reports Server (NTRS)
Braslow, A. L.; Muraca, R. J.
1978-01-01
A historical review of the development of laminar flow control technology is presented with reference to active laminar boundary-layer control through suction, the use of multiple suction slots, wind-tunnel tests, continuous suction, and spanwise contamination. The ACEE laminar flow control program is outlined noting the development of three-dimensional boundary-layer codes, cruise-noise prediction techniques, airfoil development, and leading-edge region cleaning. Attention is given to glove flight tests and the fabrication and testing of wing box designs.
Novel casting processes for single-crystal turbine blades of superalloys
NASA Astrophysics Data System (ADS)
Ma, Dexin
2018-03-01
This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thinshell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.
Development of economic MeV-ion microbeam technology at Chiang Mai University
NASA Astrophysics Data System (ADS)
Singkarat, S.; Puttaraksa, N.; Unai, S.; Yu, L. D.; Singkarat, K.; Pussadee, N.; Whitlow, H. J.; Natyanum, S.; Tippawan, U.
2017-08-01
Developing high technologies but in economic manners is necessary and also feasible for developing countries. At Chiang Mai University, Thailand, we have developed MeV-ion microbeam technology based on a 1.7-MV Tandetron tandem accelerator with our limited resources in a cost-effective manner. Instead of using expensive and technically complex electrostatic or magnetic quadrupole focusing lens systems, we have developed cheap MeV-ion microbeams using programmed L-shaped blade aperture and capillary techniques for MeV ion beam lithography or writing and mapping. The programmed L-shaped blade micro-aperture system consists of a pair of L-shaped movable aperture pieces which are controlled by computer to cut off the ion beam for controlling the beam size down to the micrometer order. The capillary technique utilizes our home-fabricated tapered glass capillaries to realize microbeams. Either system can be installed inside the endstation of the MeV ion beam line of the accelerator. Both systems have been applied to MeV-ion beam lithography or writing of micro-patterns for microfluidics applications to fabricate lab-on-chip devices. The capillary technique is being developed for MeV-ion beam mapping of biological samples. The paper reports details of the techniques and introduces some applications.
NASA Astrophysics Data System (ADS)
Guyomar, D.; Mohammadi, S.; Richard, C.
2009-02-01
Piezoelectric transducers in conjunction with appropriate electric networks can be used as a mechanical energy dissipation device. If a piezoelectric element is attached to a structure, it is strained as the structure deforms and converts a portion of the vibration energy into electrical energy that can be dissipated through a shunt network in the form of heating. These vibration control devices experienced a great development in recent years, due to their performances and advantages compared with active techniques. One of them is the synchronized switch damping (SSD) and derived techniques, which were developed in the field of piezoelectric damping, and which lead to a very good trade-off between the simplicity, the required power supply and their performances. This technique consists in a non-linear processing of the piezoelectric voltage, which induces an increase in electromechanical energy conversion. The control law consists in triggering the inverting switch on each extremum of voltage (or displacement). In this study, the proposed method for the switching sequence is based on the statistical evaluation of structural deflection. The purpose of this paper is to present an experimental study of the synchronized switch damping on inductance (SSDI) control technique sensitivity to the system boundary conditions. It is observed that the fundamental natural frequency greatly depends on these conditions. The effect of these constraints is distributed all over the system and significantly affects the results.
Hot-wire anemometry in hypersonic helium flow
NASA Technical Reports Server (NTRS)
Wagner, R. D.; Weinstein, L. M.
1974-01-01
Hot-wire anemometry techniques are described that have been developed and used for hypersonic-helium-flow studies. The short run time available dictated certain innovations in applying conventional hot-wire techniques. Some examples are given to show the application of the techniques used. Modifications to conventional equipment are described, including probe modifications and probe heating controls.
Do erosion control and snakes mesh?
Christopher Barton; Karen Kinkead
2005-01-01
In the battle to curb soil erosion and sedimentation, numberous techniques and products for controlling erosion and sedimentation have been developed and are being implemented. Rolled erosion control products, such as a temporary erosion control blankets and permanent turf reinforcement mats, represent one type of erosion control product that has been used extensively...
Variable-Structure Control of a Model Glider Airplane
NASA Technical Reports Server (NTRS)
Waszak, Martin R.; Anderson, Mark R.
2008-01-01
A variable-structure control system designed to enable a fuselage-heavy airplane to recover from spin has been demonstrated in a hand-launched, instrumented model glider airplane. Variable-structure control is a high-speed switching feedback control technique that has been developed for control of nonlinear dynamic systems.
NASA Technical Reports Server (NTRS)
Carden, J. L.; Browner, R.
1982-01-01
The preparation and analysis of standardized waste samples for controlled ecological life support systems (CELSS) are considered. Analysis of samples from wet oxidation experiments, the development of ion chromatographic techniques utilizing conventional high pressure liquid chromatography (HPLC) equipment, and an investigation of techniques for interfacing an ion chromatograph (IC) with an inductively coupled plasma optical emission spectrometer (ICPOES) are discussed.
Image processing system performance prediction and product quality evaluation
NASA Technical Reports Server (NTRS)
Stein, E. K.; Hammill, H. B. (Principal Investigator)
1976-01-01
The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.
Information support for decision making on dispatching control of water distribution in irrigation
NASA Astrophysics Data System (ADS)
Yurchenko, I. F.
2018-05-01
The research has been carried out on developing the technique of supporting decision making for on-line control, operational management of water allocation for the interfarm irrigation projects basing on the analytical patterns of dispatcher control. This technique provides an increase of labour productivity as well as higher management quality due to the improved level of automation, as well as decision making optimization taking into account diagnostics of the issues, solutions classification, information being required to the decision makers.
An overview of recent advances in system identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1994-01-01
This paper presents an overview of the recent advances in system identification for modal testing and control of large flexible structures. Several techniques are discussed including the Observer/Kalman Filter Identification, the Observer/Controller Identification, and the State-Space System Identification in the Frequency Domain. The System/Observer/Controller Toolbox developed at NASA Langley Research Center is used to show the applications of these techniques to real aerospace structures such as the Hubble spacecraft telescope and the active flexible aircraft wing.
The Hubble Space Telescope Servicing Mission 3A Contamination Control Program
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.
2000-01-01
After nearly 10 years on-orbit, the Hubble Space Telescope (HST) external thermal control materials and paint have degraded due to exposure to the low Earth orbit environment. This presented a potentially large on-orbit contamination source (particles and/or debris). Contamination mitigation techniques were developed to augment existing on-orbit servicing contamination controls. They encompassed mission management, crew training, and crew aids and tools. These techniques were successfully employed during the HST Servicing Mission 3A, December 1999.
DOT National Transportation Integrated Search
1999-12-01
The Federal Aviation Administration (FAA) started an Air Traffic Control Specialist (ATCS) information-scanning program a number : of years ago. The goal is to learn about how controllers use information displays and develop techniques for reducing a...
Liu, Zongcheng; Dong, Xinmin; Xue, Jianping; Li, Hongbo; Chen, Yong
2016-09-01
This brief addresses the adaptive control problem for a class of pure-feedback systems with nonaffine functions possibly being nondifferentiable. Without using the mean value theorem, the difficulty of the control design for pure-feedback systems is overcome by modeling the nonaffine functions appropriately. With the help of neural network approximators, an adaptive neural controller is developed by combining the dynamic surface control (DSC) and minimal learning parameter (MLP) techniques. The key features of our approach are that, first, the restrictive assumptions on the partial derivative of nonaffine functions are removed, second, the DSC technique is used to avoid "the explosion of complexity" in the backstepping design, and the number of adaptive parameters is reduced significantly using the MLP technique, third, smooth robust compensators are employed to circumvent the influences of approximation errors and disturbances. Furthermore, it is proved that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded. Finally, the simulation results are provided to demonstrate the effectiveness of the designed method.
Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight
NASA Technical Reports Server (NTRS)
Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.
2003-01-01
This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.
Problems and potentialities of cultured plant cells in retrospect and prospect
NASA Technical Reports Server (NTRS)
Steward, F. C.; Krikorian, A. D.
1979-01-01
The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.
Disturbance decoupling, decentralized control and the Riccati equation
NASA Technical Reports Server (NTRS)
Garzia, M. R.; Loparo, K. A.; Martin, C. F.
1981-01-01
The disturbance decoupling and optimal decentralized control problems are looked at using identical mathematical techniques. A statement of the problems and the development of their solution approach is presented. Preliminary results are given for the optimal decentralized control problem.
NASA Technical Reports Server (NTRS)
Olcott, T. M.
1972-01-01
A general methodology was developed for spacecraft contaminant control system design. Elements considered for contaminant control were catalytic oxidation with isotope or electrical heat and pre- and post-sorbers, charcoal with regeneration and non-regeneration, and reactive constituents. A technique is described for sizing a charcoal bed for a multiple contaminant load.
NASA Technical Reports Server (NTRS)
1976-01-01
Analytic techniques have been developed for detecting and identifying abrupt changes in dynamic systems. The GLR technique monitors the output of the Kalman filter and searches for the time that the failure occured, thus allowing it to be sensitive to new data and consequently increasing the chances for fast system recovery following detection of a failure. All failure detections are based on functional redundancy. Performance tests of the F-8 aircraft flight control system and computerized modelling of the technique are presented.
Studies and testing of antireflective (AR) coatings for soda-lime glass
NASA Technical Reports Server (NTRS)
Pastirik, E. M.; Sparks, T. G.; Coleman, M. G.
1978-01-01
Processes for producing antireflection films on glass are concentrated in three areas: acid etching of glass, plasma etching of glass, and acid development of sodium silicate films on glass. The best transmission was achieved through the acid etching technique, while the most durable films were produced from development of sodium silicate films. Control of the acid etching technique is presently inadequate for production implementation. While films having excellent antireflective properties were fabricated by plasma etching techniques, all were water soluble.
Control technology development
NASA Astrophysics Data System (ADS)
Schaechter, D. B.
1982-03-01
The main objectives of the control technology development task are given in the slide below. The first is to develop control design techniques based on flexible structural models, rather than simple rigid-body models. Since large space structures are distributed parameter systems, a new degree of freedom, that of sensor/actuator placement, may be exercised for improving control system performance. Another characteristic of large space structures is numerous oscillatory modes within the control bandwidth. Reduced-order controller design models must be developed which produce stable closed-loop systems when combined with the full-order system. Since the date of an actual large-space-structure flight is rapidly approaching, it is vitally important that theoretical developments are tested in actual hardware. Experimental verification is a vital counterpart of all current theoretical developments.
Steering optical comb frequencies by rotating the polarization state
NASA Astrophysics Data System (ADS)
Zhang, Yanyan; Zhang, Xiaofei; Yan, Lulu; Zhang, Pan; Rao, Bingjie; Han, Wei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng
2017-12-01
Optical frequency combs, with precise control of repetition rate and carrier-envelope-offset frequency, have revolutionized many fields, such as fine optical spectroscopy, optical frequency standards, ultra-fast science research, ultra-stable microwave generation and precise ranging measurement. However, existing high bandwidth frequency control methods have small dynamic range, requiring complex hybrid control techniques. To overcome this limitation, we develop a new approach, where a home-made intra-cavity electro-optic modulator tunes polarization state of laser signal rather than only optical length of the cavity, to steer frequencies of a nonlinear-polarization-rotation mode-locked laser. By taking advantage of birefringence of the whole cavity, this approach results in not only broadband but also relative large-dynamic frequency control. Experimental results show that frequency control dynamic range increase at least one order in comparison with the traditional intra-cavity electro-optic modulator technique. In additional, this technique exhibits less side-effect than traditional frequency control methods.
NASA Technical Reports Server (NTRS)
Halyo, N.
1979-01-01
The development of a digital automatic control law for a small jet transport to perform a steep final approach in automatic landings is reported along with the development of a steady-state Kalman filter used to provide smooth estimates to the control law. The control law performs the functions of localizer and glides capture, localizer and glideslope track, decrab, and place. The control law uses the microwave landing system position data, and aircraft body-mounted accelerators, attitude and attitude rate information. The results obtained from a digital simulation of the aircraft dynamics, wind conditions, and sensor noises using the control law and filter developed are described.
Solar Systems and Energy Management Controls. Final Report, 1982-83.
ERIC Educational Resources Information Center
Bergen County Vocational-Technical High School, Hackensack, NJ.
This project was conducted by the Bergen County Vocational-Technical Schools (1) to develop a practical awareness of energy conservation and management techniques for both commercial and domestic applications; (2) to develop four training courses to teach solar troubleshooting and maintenance, commercial energy management control, domestic energy…
Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A Airplane
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Diebler, Corey G.
2005-01-01
A new aerodynamic model has been developed and validated for a modified F/A-18A airplane used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research airplane was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW airplane and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.
Wang, Huanqing; Liu, Peter Xiaoping; Li, Shuai; Wang, Ding
2017-08-29
This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.
Implementation of a stereofluoroscopic system
NASA Technical Reports Server (NTRS)
Rivers, D. B.
1976-01-01
Clinical applications of a 3-D video imaging technique developed by NASA for observation and control of remote manipulators are discussed. Incorporation of this technique in a stereo fluoroscopic system provides reduced radiation dosage and greater vision and mobility of the user.
Teaching Techniques in Clinical Chemistry.
ERIC Educational Resources Information Center
Wilson, Diane
This master's thesis presents several instructional methods and techniques developed for each of eleven topics or subject areas in clinical chemistry: carbohydrate metabolism, lipid metabolism, diagnostic enzymology, endocrinology, toxicology, quality control, electrolytes, acid base balance, hepatic function, nonprotein nitrogenous compounds, and…
Space Shuttle stability and control flight test techniques
NASA Technical Reports Server (NTRS)
Cooke, D. R.
1980-01-01
A unique approach for obtaining vehicle aerodynamic characteristics during entry has been developed for the Space Shuttle. This is due to the high cost of Shuttle testing, the need to open constraints for operational flights, and the fact that all flight regimes are flown starting with the first flight. Because of uncertainties associated with predicted aerodynamic coefficients, nine flight conditions have been identified at which control problems could occur. A detailed test plan has been developed for testing at these conditions and is presented. Due to limited testing, precise computer initiated maneuvers are implemented. These maneuvers are designed to optimize the vehicle motion for determining aerodynamic coefficients. Special sensors and atmospheric measurements are required to provide stability and control flight data during an entire entry. The techniques employed in data reduction are proven programs developed and used at NASA/DFRC.
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Smith, Mark S.; Morelli, Eugene A.
2003-01-01
Near real-time stability and control derivative extraction is required to support flight demonstration of Intelligent Flight Control System (IFCS) concepts being developed by NASA, academia, and industry. Traditionally, flight maneuvers would be designed and flown to obtain stability and control derivative estimates using a postflight analysis technique. The goal of the IFCS concept is to be able to modify the control laws in real time for an aircraft that has been damaged in flight. In some IFCS implementations, real-time parameter identification (PID) of the stability and control derivatives of the damaged aircraft is necessary for successfully reconfiguring the control system. This report investigates the usefulness of Prescribed Simultaneous Independent Surface Excitations (PreSISE) to provide data for rapidly obtaining estimates of the stability and control derivatives. Flight test data were analyzed using both equation-error and output-error PID techniques. The equation-error PID technique is known as Fourier Transform Regression (FTR) and is a frequency-domain real-time implementation. Selected results were compared with a time-domain output-error technique. The real-time equation-error technique combined with the PreSISE maneuvers provided excellent derivative estimation in the longitudinal axis. However, the PreSISE maneuvers as presently defined were not adequate for accurate estimation of the lateral-directional derivatives.
Development of the technology for the fabrication of reliable laminar from control panels
NASA Technical Reports Server (NTRS)
Meade, L. E.; Kays, A. O.; Ferrill, R. S.; Young, H. R.
1977-01-01
Materials were assessed and fabrication techniques were developed for use in the manufacture of wing surface materials compatible with the application of both aluminum alloys and nonmetallic composites. The concepts investigated included perforations and slots in the metallic test panels and microporosity and perforations in the composite test panels. Perforations were produced in the metallic test panels by the electron beam process and slots were developed by controlled gaps between the metal sheets. Microporosity was produced in the composite test panels by the resin bleed process, and perforations were produced by the fugitive fiber technique. Each of these concepts was fabricated into test panels, and air flow tests were conducted on the panels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, Wayne W.; Burton, Glenn W.
2000-06-25
We developed fundamental methods and techniques for transferring germplasm from wild to cultivated species. Germplasm transferred included diverse cytoplasms, new genes for pest resistance, genes controlling dry matter yield and apomixis. Some of the germplasm has been shown to be valuable in plant breeding and has been incorporated into commercial cultivators.
USDA-ARS?s Scientific Manuscript database
New techniques that we developed to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques illustrated included (1) novel military personal protection methods, (2) barrier treatments...
Contamination assessment and control in scientific satellites
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1973-01-01
Techniques for assessment and control of the contamination environment for both particulates and condensible vapors in the vicinity of spacecraft are developed. An analysis of the deposition rate on critical surfaces is made considering sources within the line of sight of the surface in question as well as those obscured from the line of sight. The amount of contamination returned by collision with the surrounding atmosphere is estimated. Scattering and absorption from the induced atmosphere of gases and particulates around the spacecraft are estimated. Finally, design techniques developed for Skylab to reduce the contamination environment to an acceptable level are discussed.
NASA Technical Reports Server (NTRS)
Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.
1980-01-01
A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.
Bibliographic Control at the Crossroads: Do We Get Our Money's Worth?
ERIC Educational Resources Information Center
Koel, Ake I.
1981-01-01
Contrasts traditional objectives for library catalogs with current bibliographic control practices to protest the increasing complexity and cost of cataloging. Research is urged to develop more cost-effective bibliographic control procedures and techniques. Eight references are listed. (RAA)
The development of an audit technique to assess the quality of safety barrier management.
Guldenmund, Frank; Hale, Andrew; Goossens, Louis; Betten, Jeroen; Duijm, Nijs Jan
2006-03-31
This paper describes the development of a management model to control barriers devised to prevent major hazard scenarios. Additionally, an audit technique is explained that assesses the quality of such a management system. The final purpose of the audit technique is to quantify those aspects of the management system that have a direct impact on the reliability and effectiveness of the barriers and, hence, the probability of the scenarios involved. First, an outline of the management model is given and its elements are explained. Then, the development of the audit technique is described. Because the audit technique uses actual major hazard scenarios and barriers within these as its focus, the technique achieves a concreteness and clarity that many other techniques often lack. However, this strength is also its limitation, since the full safety management system is not covered with the technique. Finally, some preliminary experiences obtained from several test sites are compiled and discussed.
A Digital Control Algorithm for Magnetic Suspension Systems
NASA Technical Reports Server (NTRS)
Britton, Thomas C.
1996-01-01
An ongoing program exists to investigate and develop magnetic suspension technologies and modelling techniques at NASA Langley Research Center. Presently, there is a laboratory-scale large air-gap suspension system capable of five degree-of-freedom (DOF) control that is operational and a six DOF system that is under development. Those systems levitate a cylindrical element containing a permanent magnet core above a planar array of electromagnets, which are used for levitation and control purposes. In order to evaluate various control approaches with those systems, the Generic Real-Time State-Space Controller (GRTSSC) software package was developed. That control software package allows the user to implement multiple control methods and allows for varied input/output commands. The development of the control algorithm is presented. The desired functionality of the software is discussed, including the ability to inject noise on sensor inputs and/or actuator outputs. Various limitations, common issues, and trade-offs are discussed including data format precision; the drawbacks of using either Direct Memory Access (DMA), interrupts, or program control techniques for data acquisition; and platform dependent concerns related to the portability of the software, such as memory addressing formats. Efforts to minimize overall controller loop-rate and a comparison of achievable controller sample rates are discussed. The implementation of a modular code structure is presented. The format for the controller input data file and the noise information file is presented. Controller input vector information is available for post-processing by mathematical analysis software such as MATLAB1.
Transgenic Reproductive Cell Ablation.
Lawit, Shai J; Chamberlin, Mark A
2017-01-01
Numerous cell ablation technologies are available and have been used in reproductive tissues, particularly for male tissues and cells. The importance of ablation of reproductive tissues is toward a fundamental understanding reproductive tissue development and fertilization, as well as, in developing sterility lines important to breeding strategies. Here, we describe techniques for developing ablation lines for both male and female reproductive cells. Also discussed are techniques for analysis, quality control, maintenance, and the lessening of pleiotropism in such lines.
Synthesis Methods for Robust Passification and Control
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.
Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers
NASA Astrophysics Data System (ADS)
Taler, Dawid; Sury, Adam
2011-12-01
The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.
Practical Loop-Shaping Design of Feedback Control Systems
NASA Technical Reports Server (NTRS)
Kopasakis, George
2010-01-01
An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the effectiveness of the control design in a methodical and quantifiable way. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs. Unlike conventional ad hoc methodologies of feedback control design, in this approach actuator rates are incorporated into the design right from the start: The relation between actuator speeds and the desired control bandwidth of the system is established explicitly. The technique developed is demonstrated via design examples in a step-by-step tutorial way. Given the actuation system rates and range limits together with design specifications in terms of stability margins, disturbance rejection, and transient response, the procedure involves designing the feedback loop gain to meet the requirements and maximizing the control system effectiveness, without exceeding the actuation system limits and saturating the controller. Then knowing the plant transfer function, the procedure involves designing the controller so that the controller transfer function together with the plant transfer function equate to the designed loop gain. The technique also shows what the limitations of the controller design are and how to trade competing design requirements such as stability margins and disturbance rejection. Finally, the technique is contrasted against other more familiar control design techniques, like PID control, to show its advantages.
Elmer L. Schmidt
1991-01-01
New developments in wood-destroying organisms and in wood protection from the 20th annual meeting (May 1989 at Lappeenranta, Finland) of the International Research Group on Wood Preservation (IRG) are highlighted in the areas of biological control of fungi, dry rot, decay mechanisms and product problems, new techniques, insect problems and control, and developments in...
Tandon, Nikhil; Kalra, Sanjay; Balhara, Yatan Pal Singh; Baruah, Manash P.; Chadha, Manoj; Chandalia, Hemraj B.; Chowdhury, Subhankar; Jothydev, Kesavadev; Kumar, Prasanna K. M.; V., Madhu S.; Mithal, Ambrish; Modi, Sonal; Pitale, Shailesh; Sahay, Rakesh; Shukla, Rishi; Sundaram, Annamalai; Unnikrishnan, Ambika G.; Wangnoo, Subhash K.
2015-01-01
As injectable therapies such as human insulin, insulin analogs, and glucagon-like peptide-1 receptor agonists are used to manage diabetes, correct injection technique is vital for the achievement of glycemic control. The forum for injection technique India acknowledged this need for the first time in India and worked to develop evidence-based recommendations on insulin injection technique, to assist healthcare practitioners in their clinical practice. PMID:25932385
Software techniques for a distributed real-time processing system. [for spacecraft
NASA Technical Reports Server (NTRS)
Lesh, F.; Lecoq, P.
1976-01-01
The paper describes software techniques developed for the Unified Data System (UDS), a distributed processor network for control and data handling onboard a planetary spacecraft. These techniques include a structured language for specifying the programs contained in each module, and a small executive program in each module which performs scheduling and implements the module task.
NASA Astrophysics Data System (ADS)
Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi
2018-04-01
The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.
Control techniques to improve Space Shuttle solid rocket booster separation
NASA Technical Reports Server (NTRS)
Tomlin, D. D.
1983-01-01
The present Space Shuttle's control system does not prevent the Orbiter's main engines from being in gimbal positions that are adverse to solid rocket booster separation. By eliminating the attitude error and attitude rate feedback just prior to solid rocket booster separation, the detrimental effects of the Orbiter's main engines can be reduced. In addition, if angular acceleration feedback is applied, the gimbal torques produced by the Orbiter's engines can reduce the detrimental effects of the aerodynamic torques. This paper develops these control techniques and compares the separation capability of the developed control systems. Currently with the worst case initial conditions and each Shuttle system dispersion aligned in the worst direction (which is more conservative than will be experienced in flight), the solid rocket booster has an interference with the Shuttle's external tank of 30 in. Elimination of the attitude error and attitude rate feedback reduces that interference to 19 in. Substitution of angular acceleration feedback reduces the interference to 6 in. The two latter interferences can be eliminated by atess conservative analysis techniques, that is, by using a root sum square of the system dispersions.
NDE of ceramics and ceramic composites
NASA Technical Reports Server (NTRS)
Vary, Alex; Klima, Stanley J.
1991-01-01
Although nondestructive evaluation (NDE) techniques for ceramics are fairly well developed, they are difficult to apply in many cases for high probability detection of the minute flaws that can cause failure in monolithic ceramics. Conventional NDE techniques are available for monolithic and fiber reinforced ceramic matrix composites, but more exact quantitative techniques needed are still being investigated and developed. Needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in ceramic composites. NDE techniques that will ultimately be applicable to production and quality control of ceramic structures are still emerging from the lab. Needs are different depending on the processing stage, fabrication method, and nature of the finished product. NDE techniques are being developed in concert with materials processing research where they can provide feedback information to processing development and quality improvement. NDE techniques also serve as research tools for materials characterization and for understanding failure processes, e.g., during thermomechanical testing.
HoloHands: games console interface for controlling holographic optical manipulation
NASA Astrophysics Data System (ADS)
McDonald, C.; McPherson, M.; McDougall, C.; McGloin, D.
2013-03-01
The increasing number of applications for holographic manipulation techniques has sparked the development of more accessible control interfaces. Here, we describe a holographic optical tweezers experiment which is controlled by gestures that are detected by a Microsoft Kinect. We demonstrate that this technique can be used to calibrate the tweezers using the Stokes drag method and compare this to automated calibrations. We also show that multiple particle manipulation can be handled. This is a promising new line of research for gesture-based control which could find applications in a wide variety of experimental situations.
Neuro-fuzzy control of structures using acceleration feedback
NASA Astrophysics Data System (ADS)
Schurter, Kyle C.; Roschke, Paul N.
2001-08-01
This paper described a new approach for the reduction of environmentally induced vibration in constructed facilities by way of a neuro-fuzzy technique. The new control technique is presented and tested in a numerical study that involves two types of building models. The energy of each building is dissipated through magnetorheological (MR) dampers whose damping properties are continuously updated by a fuzzy controller. This semi-active control scheme relies on the development of a correlation between the accelerations of the building (controller input) and the voltage applied to the MR damper (controller output). This correlation forms the basis for the development of an intelligent neuro-fuzzy control strategy. To establish a context for assessing the effectiveness of the semi-active control scheme, responses to earthquake excitation are compared with passive strategies that have similar authority for control. According to numerical simulation, MR dampers are less effective control mechanisms than passive dampers with respect to a single degree of freedom (DOF) building model. On the other hand, MR dampers are predicted to be superior when used with multiple DOF structures for reduction of lateral acceleration.
Telepresence system development for application to the control of remote robotic systems
NASA Technical Reports Server (NTRS)
Crane, Carl D., III; Duffy, Joseph; Vora, Rajul; Chiang, Shih-Chien
1989-01-01
The recent developments of techniques which assist an operator in the control of remote robotic systems are described. In particular, applications are aimed at two specific scenarios: The control of remote robot manipulators; and motion planning for remote transporter vehicles. Common to both applications is the use of realistic computer graphics images which provide the operator with pertinent information. The specific system developments for several recently completed and ongoing telepresence research projects are described.
Modern control techniques in active flutter suppression using a control moment gyro
NASA Technical Reports Server (NTRS)
Buchek, P. M.
1974-01-01
Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.
Implementation of Nonlinear Control Laws for an Optical Delay Line
NASA Technical Reports Server (NTRS)
Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard
2000-01-01
This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard
2016-12-29
The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less
Development of a complex experimental system for controlled ecological life support technique
NASA Astrophysics Data System (ADS)
Guo, S.; Tang, Y.; Zhu, J.; Wang, X.; Feng, H.; Ai, W.; Qin, L.; Deng, Y.
A complex experimental system for controlled ecological life support technique can be used as a test platform for plant-man integrated experiments and material close-loop experiments of the controlled ecological life support system CELSS Based on lots of plan investigation plan design and drawing design the system was built through the steps of processing installation and joined debugging The system contains a volume of about 40 0m 3 its interior atmospheric parameters such as temperature relative humidity oxygen concentration carbon dioxide concentration total pressure lighting intensity photoperiod water content in the growing-matrix and ethylene concentration are all monitored and controlled automatically and effectively Its growing system consists of two rows of racks along its left-and-right sides separately and each of which holds two up-and-down layers eight growing beds hold a total area of about 8 4m 2 and their vertical distance can be adjusted automatically and independently lighting sources consist of both red and blue light-emitting diodes Successful development of the test platform will necessarily create an essential condition for next large-scale integrated study of controlled ecological life support technique
Vista goes online: Decision-analytic systems for real-time decision-making in mission control
NASA Technical Reports Server (NTRS)
Barry, Matthew; Horvitz, Eric; Ruokangas, Corinne; Srinivas, Sampath
1994-01-01
The Vista project has centered on the use of decision-theoretic approaches for managing the display of critical information relevant to real-time operations decisions. The Vista-I project originally developed a prototype of these approaches for managing flight control displays in the Space Shuttle Mission Control Center (MCC). The follow-on Vista-II project integrated these approaches in a workstation program which currently is being certified for use in the MCC. To our knowledge, this will be the first application of automated decision-theoretic reasoning techniques for real-time spacecraft operations. We shall describe the development and capabilities of the Vista-II system, and provide an overview of the use of decision-theoretic reasoning techniques to the problems of managing the complexity of flight controller displays. We discuss the relevance of the Vista techniques within the MCC decision-making environment, focusing on the problems of detecting and diagnosing spacecraft electromechanical subsystems component failures with limited information, and the problem of determining what control actions should be taken in high-stakes, time-critical situations in response to a diagnosis performed under uncertainty. Finally, we shall outline our current research directions for follow-on projects.
Evaluation of total energy-rate feedback for glidescope tracking in wind shear
NASA Technical Reports Server (NTRS)
Belcastro, C. M.; Ostroff, A. J.
1986-01-01
Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.
Education for Social Control of Drug Use
ERIC Educational Resources Information Center
Kolbe, Lloyd J.
1978-01-01
Effectiveness of social controls regulating use of legally proscribed drugs is curtailed because social institutions cannot legitimately enter into the dynamics of controlling use--they can only function to proscribe such use. An analysis of the potential for educational organizations to foster development of social control techniques is outlined.…
Using rapid infrared forming to control interfaces in titanium-matrix composites
NASA Technical Reports Server (NTRS)
Warrier, Sunil G.; Lin, Ray Y.
1993-01-01
Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid IR forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times (typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements), the interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are comparable to (in several cases, superior to) those made with conventional diffusion-bonding techniques.
Thermal Characterization of Defects in Aircraft Structures Via Spatially Controlled Heat Application
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.
1997-01-01
Recent advances in thermal imaging technology have spawned a number of new thermal NDE techniques that provide quantitative information about flaws in aircraft structures. Thermography has a number of advantages as an inspection technique. It is a totally noncontacting, nondestructive, imaging technology capable of inspecting a large area in a matter of a few seconds. The development of fast, inexpensive image processors have aided in the attractiveness of thermography as an NDE technique. These image processors have increased the signal to noise ratio of thermography and facilitated significant advances in post-processing. The resulting digital images enable archival records for comparison with later inspections thus providing a means of monitoring the evolution of damage in a particular structure. The National Aeronautics and Space Administration's Langley Research Center has developed a thermal NDE technique designed to image a number of potential flaws in aircraft structures. The technique involves injecting a small, spatially controlled heat flux into the outer surface of an aircraft. Images of fatigue cracking, bond integrity and material loss due to corrosion are generated from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. Spatial tailoring of the heat coupled with the analysis techniques represent a significant improvement in the delectability of flaws over conventional thermal imaging. Results of laboratory experiments on fabricated crack, disbond and material loss samples will be presented to demonstrate the capabilities of the technique. An integral part of the development of this technology is the use of analytic and computational modeling. The experimental results will be compared with these models to demonstrate the utility of such an approach.
Building Energy Modeling and Control Methods for Optimization and Renewables Integration
NASA Astrophysics Data System (ADS)
Burger, Eric M.
This dissertation presents techniques for the numerical modeling and control of building systems, with an emphasis on thermostatically controlled loads. The primary objective of this work is to address technical challenges related to the management of energy use in commercial and residential buildings. This work is motivated by the need to enhance the performance of building systems and by the potential for aggregated loads to perform load following and regulation ancillary services, thereby enabling the further adoption of intermittent renewable energy generation technologies. To increase the generalizability of the techniques, an emphasis is placed on recursive and adaptive methods which minimize the need for customization to specific buildings and applications. The techniques presented in this dissertation can be divided into two general categories: modeling and control. Modeling techniques encompass the processing of data streams from sensors and the training of numerical models. These models enable us to predict the energy use of a building and of sub-systems, such as a heating, ventilation, and air conditioning (HVAC) unit. Specifically, we first present an ensemble learning method for the short-term forecasting of total electricity demand in buildings. As the deployment of intermittent renewable energy resources continues to rise, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. Second, we present a recursive parameter estimation technique for identifying a thermostatically controlled load (TCL) model that is non-linear in the parameters. For TCLs to perform demand response services in real-time markets, online methods for parameter estimation are needed. Third, we develop a piecewise linear thermal model of a residential building and train the model using data collected from a custom-built thermostat. This model is capable of approximating unmodeled dynamics within a building by learning from sensor data. Control techniques encompass the application of optimal control theory, model predictive control, and convex distributed optimization to TCLs. First, we present the alternative control trajectory (ACT) representation, a novel method for the approximate optimization of non-convex discrete systems. This approach enables the optimal control of a population of non-convex agents using distributed convex optimization techniques. Second, we present a distributed convex optimization algorithm for the control of a TCL population. Experimental results demonstrate the application of this algorithm to the problem of renewable energy generation following. This dissertation contributes to the development of intelligent energy management systems for buildings by presenting a suite of novel and adaptable modeling and control techniques. Applications focus on optimizing the performance of building operations and on facilitating the integration of renewable energy resources.
A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory
NASA Technical Reports Server (NTRS)
Gorder, Peter James
1993-01-01
Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.
Application of Semi Active Control Techniques to the Damping Suppression Problem of Solar Sail Booms
NASA Technical Reports Server (NTRS)
Adetona, O.; Keel, L. H.; Whorton, M. S.
2007-01-01
Solar sails provide a propellant free form for space propulsion. These are large flat surfaces that generate thrust when they are impacted by light. When attached to a space vehicle, the thrust generated can propel the space vehicle to great distances at significant speeds. For optimal performance the sail must be kept from excessive vibration. Active control techniques can provide the best performance. However, they require an external power-source that may create significant parasitic mass to the solar sail. However, solar sails require low mass for optimal performance. Secondly, active control techniques typically require a good system model to ensure stability and performance. However, the accuracy of solar sail models validated on earth for a space environment is questionable. An alternative approach is passive vibration techniques. These do not require an external power supply, and do not destabilize the system. A third alternative is referred to as semi-active control. This approach tries to get the best of both active and passive control, while avoiding their pitfalls. In semi-active control, an active control law is designed for the system, and passive control techniques are used to implement it. As a result, no external power supply is needed so the system is not destabilize-able. Though it typically underperforms active control techniques, it has been shown to out-perform passive control approaches and can be unobtrusively installed on a solar sail boom. Motivated by this, the objective of this research is to study the suitability of a Piezoelectric (PZT) patch actuator/sensor based semi-active control system for the vibration suppression problem of solar sail booms. Accordingly, we develop a suitable mathematical and computer model for such studies and demonstrate the capabilities of the proposed approach with computer simulations.
The 3D widgets for exploratory scientific visualization
NASA Technical Reports Server (NTRS)
Herndon, Kenneth P.; Meyer, Tom
1995-01-01
Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.
Nutrient Control Design Manual–State of the Technology Review Report
This EPA document is an interim product in the development of revised design guidance for nitrogen and phosphorus control at municipal WWTPs. This document presents findings from an extensive review of nitrogen and phosphorus control technologies and techniques currently applied...
Contributions of CCLM to advances in quality control.
Kazmierczak, Steven C
2013-01-01
Abstract The discipline of laboratory medicine is relatively young when considered in the context of the history of medicine itself. The history of quality control, within the context of laboratory medicine, also enjoys a relatively brief, but rich history. Laboratory quality control continues to evolve along with advances in automation, measurement techniques and information technology. Clinical Chemistry and Laboratory Medicine (CCLM) has played a key role in helping disseminate information about the proper use and utility of quality control. Publication of important advances in quality control techniques and dissemination of guidelines concerned with laboratory quality control has undoubtedly helped readers of this journal keep up to date on the most recent developments in this field.
The combined control algorithm for large-angle maneuver of HITSAT-1 small satellite
NASA Astrophysics Data System (ADS)
Zhaowei, Sun; Yunhai, Geng; Guodong, Xu; Ping, He
2004-04-01
The HITSAT-1 is the first small satellite developed by Harbin Institute of Technology (HIT) whose mission objective is to test several pivotal techniques. The large angle maneuver control is one of the pivotal techniques of HITSAT-1 and the instantaneous Eulerian axis control algorithm (IEACA) has been applied. Because of using the reaction wheels and magnetorquer as the control actuators, the combined control algorithm has been adopted during the large-angle maneuver course. The computer simulation based on the MATRIX×6.0 software has finished and the results indicated that the combined control algorithm reduced the reaction wheel speeds obviously, and the IEACA algorithm has the advantages of simplicity and efficiency.
Progress in EEG-Based Brain Robot Interaction Systems
Li, Mengfan; Niu, Linwei; Xian, Bin; Zeng, Ming; Chen, Genshe
2017-01-01
The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques. PMID:28484488
Turksoy, Kamuran; Bayrak, Elif Seyma; Quinn, Lauretta; Littlejohn, Elizabeth; Cinar, Ali
2013-05-01
Accurate closed-loop control is essential for developing artificial pancreas (AP) systems that adjust insulin infusion rates from insulin pumps. Glucose concentration information from continuous glucose monitoring (CGM) systems is the most important information for the control system. Additional physiological measurements can provide valuable information that can enhance the accuracy of the control system. Proportional-integral-derivative control and model predictive control have been popular in AP development. Their implementations to date rely on meal announcements (e.g., bolus insulin dose based on insulin:carbohydrate ratios) by the user. Adaptive control techniques provide a powerful alternative that do not necessitate any meal or activity announcements. Adaptive control systems based on the generalized predictive control framework are developed by extending the recursive modeling techniques. Physiological signals such as energy expenditure and galvanic skin response are used along with glucose measurements to generate a multiple-input-single-output model for predicting future glucose concentrations used by the controller. Insulin-on-board (IOB) is also estimated and used in control decisions. The controllers were tested with clinical studies that include seven cases with three different patients with type 1 diabetes for 32 or 60 h without any meal or activity announcements. The adaptive control system kept glucose concentration in the normal preprandial and postprandial range (70-180 mg/dL) without any meal or activity announcements during the test period. After IOB estimation was added to the control system, mild hypoglycemic episodes were observed only in one of the four experiments. This was reflected in a plasma glucose value of 56 mg/dL (YSI 2300 STAT; Yellow Springs Instrument, Yellow Springs, OH) and a CGM value of 63 mg/dL). Regulation of blood glucose concentration with an AP using adaptive control techniques was successful in clinical studies, even without any meal and physical activity announcement.
Chen, G; Fournier, R L; Varanasi, S
1998-02-20
An optimal pH control technique has been developed for multistep enzymatic synthesis reactions where the optimal pH differs by several units for each step. This technique separates an acidic environment from a basic environment by the hydrolysis of urea within a thin layer of immobilized urease. With this technique, a two-step enzymatic reaction can take place simultaneously, in proximity to each other, and at their respective optimal pH. Because a reaction system involving an acid generation represents a more challenging test of this pH control technique, a number of factors that affect the generation of such a pH gradient are considered in this study. The mathematical model proposed is based on several simplifying assumptions and represents a first attempt to provide an analysis of this complex problem. The results show that, by choosing appropriate parameters, the pH control technique still can generate the desired pH gradient even if there is an acid-generating reaction in the system. Copyright 1998 John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
Wendel, Thomas R.; Boland, Joseph R.; Hahne, David E.
1991-01-01
Flight-control laws are developed for a wind-tunnel aircraft model flying at a high angle of attack by using a synthesis technique called direct eigenstructure assignment. The method employs flight guidelines and control-power constraints to develop the control laws, and gain schedules and nonlinear feedback compensation provide a framework for considering the nonlinear nature of the attack angle. Linear and nonlinear evaluations show that the control laws are effective, a conclusion that is further confirmed by a scale model used for free-flight testing.
A Novel Catalyst Deposition Technique for the Growth of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Delzeit, Lance; Cassell, A.; Stevens, R.; Nguyen, C.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
This viewgraph presentation provides information on the development of a technique at NASA's Ames Research Center by which carbon nanotubes (NT) can be grown. The project had several goals which included: 1) scaleability, 2) ability to control single wall nanotube (SWNT) and multiwall nanotube (MWNT) formation, 3) ability to control the density of nanotubes as they grow, 4) ability to apply standard masking techniques for NT patterning. Information regarding the growth technique includes its use of a catalyst deposition process. SWNTs of varying thicknesses can be grown by changing the catalyst composition. Demonstrations are given of various methods of masking including the use of transmission electron microscopic (TEM) grids.
França, R F O; da Silva, C C; De Paula, S O
2013-06-01
In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival.
Hannan, Mahammad A.; Hussein, Hussein A.; Mutashar, Saad; Samad, Salina A.; Hussain, Aini
2014-01-01
With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices. PMID:25615728
NASA Astrophysics Data System (ADS)
Kefauver, W. Neill; Carpenter, Bernie F.
1994-09-01
Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.
NASA Technical Reports Server (NTRS)
Kefauver, W. Neill; Carpenter, Bernie F.
1994-01-01
Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.
Novel neural control for a class of uncertain pure-feedback systems.
Shen, Qikun; Shi, Peng; Zhang, Tianping; Lim, Cheng-Chew
2014-04-01
This paper is concerned with the problem of adaptive neural tracking control for a class of uncertain pure-feedback nonlinear systems. Using the implicit function theorem and backstepping technique, a practical robust adaptive neural control scheme is proposed to guarantee that the tracking error converges to an adjusted neighborhood of the origin by choosing appropriate design parameters. In contrast to conventional Lyapunov-based design techniques, an alternative Lyapunov function is constructed for the development of control law and learning algorithms. Differing from the existing results in the literature, the control scheme does not need to compute the derivatives of virtual control signals at each step in backstepping design procedures. Furthermore, the scheme requires the desired trajectory and its first derivative rather than its first n derivatives. In addition, the useful property of the basis function of the radial basis function, which will be used in control design, is explored. Simulation results illustrate the effectiveness of the proposed techniques.
Zhang, J-F; Xu, J; Bergquist, R; Yu, L-L; Yan, X-L; Zhu, H-Q; Wen, L-Y
2016-01-01
Schistosomiasis, caused by Schistosoma japonicum infection to human, has a documented history of more than 2100years in The People's Republic of China. In spite of great progress in controlling the disease, it is still one of the most serious parasitic diseases in the country. The study and use of diagnostic techniques play an important role in the targeting of chemotherapy that has been continuously applied in the national schistosomiasis control programme for several decades. This paper reviews the development and application of parasitological, immunodiagnostic and molecular diagnostic technology for S. japonicum in The People's Republic of China with a brief mention of diagnostic imagery, such as ultrasound and radiology. When analysing the efficacy and performance characteristics of the main diagnostic techniques in current use, it becomes apparent that approaches that worked well in the past are less suitable now as successful control has shifted the endemic situation towards control and interruption of transmission. The conclusion is that a mutable approach must be adopted choosing the most appropriate diagnostic technique for each control stage (and area), thus modifying the methodology according to the prevailing diagnostic needs in terms of sensitivity and specificity. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Strong, James P.
1987-01-01
A local area matching algorithm was developed on the Massively Parallel Processor (MPP). It is an iterative technique that first matches coarse or low resolution areas and at each iteration performs matches of higher resolution. Results so far show that when good matches are possible in the two images, the MPP algorithm matches corresponding areas as well as a human observer. To aid in developing this algorithm, a control or shell program was developed for the MPP that allows interactive experimentation with various parameters and procedures to be used in the matching process. (This would not be possible without the high speed of the MPP). With the system, optimal techniques can be developed for different types of matching problems.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
[Development of the automatic dental X-ray film processor].
Bai, J; Chen, H
1999-07-01
This paper introduces a multiple-point detecting technique of the density of dental X-ray films. With the infrared ray multiple-point detecting technique, a single-chip microcomputer control system is used to analyze the effectiveness of the film-developing in real time in order to achieve a good image. Based on the new technology, We designed the intelligent automatic dental X-ray film processing.
On the use of fractional order PK-PD models
NASA Astrophysics Data System (ADS)
Ionescu, Clara; Copot, Dana
2017-01-01
Quantifying and controlling depth of anesthesia is a challenging process due to lack of measurement technology for direct effects of drug supply into the body. Efforts are being made to develop new sensor techniques and new horizons are explored for modeling this intricate process. This paper introduces emerging tools available on the ‘engineering market’ imported from the area of fractional calculus. A novel interpretation of the classical drug-effect curve is given, enabling linear control. This enables broadening the horizon of signal processing and control techniques and suggests future research lines.
NASA Astrophysics Data System (ADS)
Arafat, Md Nayeem
Distributed generation systems (DGs) have been penetrating into our energy networks with the advancement in the renewable energy sources and energy storage elements. These systems can operate in synchronism with the utility grid referred to as the grid connected (GC) mode of operation, or work independently, referred to as the standalone (SA) mode of operation. There is a need to ensure continuous power flow during transition between GC and SA modes, referred to as the transition mode, in operating DGs. In this dissertation, efficient and effective transition control algorithms are developed for DGs operating either independently or collectively with other units. Three techniques are proposed in this dissertation to manage the proper transition operations. In the first technique, a new control algorithm is proposed for an independent DG which can operate in SA and GC modes. The proposed transition control algorithm ensures low total harmonic distortion (THD) and less voltage fluctuation during mode transitions compared to the other techniques. In the second technique, a transition control is suggested for a collective of DGs operating in a microgrid system architecture to improve the reliability of the system, reduce the cost, and provide better performance. In this technique, one of the DGs in a microgrid system, referred to as a dispatch unit , takes the additional responsibility of mode transitioning to ensure smooth transition and supply/demand balance in the microgrid. In the third technique, an alternative transition technique is proposed through hybridizing the current and droop controllers. The proposed hybrid transition control technique has higher reliability compared to the dispatch unit concept. During the GC mode, the proposed hybrid controller uses current control. During the SA mode, the hybrid controller uses droop control. During the transition mode, both of the controllers participate in formulating the inverter output voltage but with different weights or coefficients. Voltage source inverters interfacing the DGs as well as the proposed transition control algorithms have been modeled to analyze the stability of the algorithms in different configurations. The performances of the proposed algorithms are verified through simulation and experimental studies. It has been found that the proposed control techniques can provide smooth power flow to the local loads during the GC, SA and transition modes.
NASA Technical Reports Server (NTRS)
Larkin, Paul; Goldstein, Bob
2008-01-01
This paper presents an update to the methods and procedures used in Direct Field Acoustic Testing (DFAT). The paper will discuss some of the recent techniques and developments that are currently being used and the future publication of a reference standard. Acoustic testing using commercial sound system components is becoming a popular and cost effective way of generating a required acoustic test environment both in and out of a reverberant chamber. This paper will present the DFAT test method, the usual setup and procedure and the development and use of a closed-loop, narrow-band control system. Narrow-band control of the acoustic PSD allows all standard techniques and procedures currently used in random control to be applied to acoustics and some examples are given. The paper will conclude with a summary of the development of a standard practice guideline that is hoped to be available in the first quarter of next year.
NASA Technical Reports Server (NTRS)
Kirkpatrick, Andrew; Dawson, David; Campbell, Mark; Jones, Jeff; Ball, Chad G.; Hamilton, Douglas R.; Dulchavsky, Scott; McBeth, Paul; Holcomb, John
2004-01-01
Managing injury and illness during long duration space flight limits efforts to explore beyond low earths orbit. Traumatic injury may be expected to occur in space and is a frequent cause of preventable deaths, often related to uncontrolled or ongoing hemorrhage (H). Such bleeding causes 40% of terrestrial injury mortality. Current guidelines emphasize early control of H compared to intravenous infusions. Recent advances in surgical and critical care may be applicable to trauma care in space, with appropriate considerations of the extreme logistical and personnel limitations. Methods: Recent developments in technique, resuscitation fluids, hemoglobin (Hb) substitutes, hemostatic agents, interventional angiography, damage control principles, and concepts related to suspended animation were reviewed. Results: H associated with instability frequently requires definitive intervention. Direct pressure should be applied to all compressible bleeding, but novel approaches are required for intracavitary noncompressible bleeding. Intravenous hemostatic agents such as recombinant Factor VII may facilitate hemostasis especially when combined with a controlled hypotension approach. Both open and laparoscopic techniques could be used in weightlessness, but require technical expertise not likely to be available. Specific rehearsed invasive techniques such as laparotomy with packing, or arterial catherterization with with robotic intravascular embolization might be considered . Hemodynamic support, thermal manipulation, or pharmacologic induction of a state of metabolic down regulation for whole body preservation may be appropriate. Hypertonic saline, with or without dextran, may temporize vascular support and decrease reperfusion injury, with less mass than other solutions. Hb substitutes have other theoretical advantages. Conclusions: Terrestrial developments suggest potential novel strategies to control H in space, but will required a coordinated program of evaluation and training to evaluate.
The application of machine learning techniques in the clinical drug therapy.
Meng, Huan-Yu; Jin, Wan-Lin; Yan, Cheng-Kai; Yang, Huan
2018-05-25
The development of a novel drug is an extremely complicated process that includes the target identification, design and manufacture, and proper therapy of the novel drug, as well as drug dose selection, drug efficacy evaluation, and adverse drug reaction control. Due to the limited resources, high costs, long duration, and low hit-to-lead ratio in the development of pharmacogenetics and computer technology, machine learning techniques have assisted novel drug development and have gradually received more attention by researchers. According to current research, machine learning techniques are widely applied in the process of the discovery of new drugs and novel drug targets, the decision surrounding proper therapy and drug dose, and the prediction of drug efficacy and adverse drug reactions. In this article, we discussed the history, workflow, and advantages and disadvantages of machine learning techniques in the processes mentioned above. Although the advantages of machine learning techniques are fairly obvious, the application of machine learning techniques is currently limited. With further research, the application of machine techniques in drug development could be much more widespread and could potentially be one of the major methods used in drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Optimized feline vitrectomy technique for therapeutic stem cell delivery to the inner retina
Jayaram, Hari; Becker, Silke; Eastlake, Karen; Jones, Megan F; Charteris, David G; Limb, G Astrid
2014-01-01
Objective To describe an optimized surgical technique for feline vitrectomy which reduces bleeding and aids posterior gel clearance in order to facilitate stem cell delivery to the inner retina using cellular scaffolds. Procedures Three-port pars plana vitrectomies were performed in six-specific pathogen-free domestic cats using an optimized surgical technique to improve access and minimize severe intraoperative bleeding. Results The surgical procedure was successfully completed in all six animals. Lens sparing vitrectomy resulted in peripheral lens touch in one of three animals but without cataract formation. Transient bleeding from sclerotomies, which was readily controlled, was seen in two of the six animals. No cases of vitreous hemorrhage, severe postoperative inflammation, retinal detachment, or endophthalmitis were observed during postoperative follow-up. Conclusions Three-port pars plana vitrectomy can be performed successfully in the cat in a safe and controlled manner when the appropriate precautions are taken to minimize the risk of developing intraoperative hemorrhage. This technique may facilitate the use of feline models of inner retinal degeneration for the development of stem cell transplantation techniques using cellular scaffolds. PMID:24661435
An improved sample loading technique for cellular metabolic response monitoring under pressure
NASA Astrophysics Data System (ADS)
Gikunda, Millicent Nkirote
To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.
Editing of EIA coded, numerically controlled, machine tool tapes
NASA Technical Reports Server (NTRS)
Weiner, J. M.
1975-01-01
Editing of numerically controlled (N/C) machine tool tapes (8-level paper tape) using an interactive graphic display processor is described. A rapid technique required for correcting production errors in N/C tapes was developed using the interactive text editor on the IMLAC PDS-ID graphic display system and two special programs resident on disk. The correction technique and special programs for processing N/C tapes coded to EIA specifications are discussed.
Development of a laboratory prototype spraying flash evaporator.
NASA Technical Reports Server (NTRS)
Gaddis, J. L.
1972-01-01
A functional description of the flash evaporator that is being developed as a candidate for the Space Shuttle Environmental Control System thermal control is presented. A single evaporator configuration uses water as an evaporant to accommodate on-orbit peak heat loads and Freon 22 for terrestrial flight phases below 120,000 ft altitude. Development history, test plans, and operational characteristics are described. Detailed information is included to show: design features, fabrication techniques used for a prototype unit, redundancy considerations, and the control arrangement.
Induction motor speed control using varied duty cycle terminal voltage via PI controller
NASA Astrophysics Data System (ADS)
Azwin, A.; Ahmed, S.
2018-03-01
This paper deals with the PI speed controller for the three-phase induction motor using PWM technique. The PWM generated signal is utilized for voltage source inverter with an optimal duty cycle on a simplified induction motor model. A control algorithm for generating PWM control signal is developed. Obtained results shows that the steady state error and overshoot of the developed system is in the limit under different speed and load condition. The robustness of the control performance would be potential for induction motor performance improvement.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1984-01-01
A unified control synthesis methodology for complex and/or non-conventional flight vehicles are developed. Prediction techniques for the handling characteristics of such vehicles and pilot parameter identification from experimental data are addressed.
Numerical simulation of intelligent compaction technology for construction quality control.
DOT National Transportation Integrated Search
2014-12-01
Intelligent compaction (IC) technique is a fast-developing technology for compaction quality control and acceptance. Proof rolling using the intelligent compaction rollers after completing compaction can eectively identify : the weak spots and sig...
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Brusnikin, E. S.; Karachevtseva, I. P.; Oberst, J.
2016-09-01
The new technique for generation of coordinate control point networks based on photogrammetric processing of heterogeneous planetary images (obtained at different time, scale, with different illumination or oblique view) is developed. The technique is verified with the example for processing the heterogeneous information obtained by remote sensing of Ganymede by the spacecraft Voyager-1, -2 and Galileo. Using this technique the first 3D control point network for Ganymede is formed: the error of the altitude coordinates obtained as a result of adjustment is less than 5 km. The new control point network makes it possible to obtain basic geodesic parameters of the body (axes size) and to estimate forced librations. On the basis of the control point network, digital terrain models (DTMs) with different resolutions are generated and used for mapping the surface of Ganymede with different levels of detail (Zubarev et al., 2015b).
Quad-rotor flight path energy optimization
NASA Astrophysics Data System (ADS)
Kemper, Edward
Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.
[Progress in industrial bioprocess engineering in China].
Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin
2015-06-01
The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.
Experiments in cooperative manipulation: A system perspective
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Cannon, Robert H., Jr.
1989-01-01
In addition to cooperative dynamic control, the system incorporates real time vision feedback, a novel programming technique, and a graphical high level user interface. By focusing on the vertical integration problem, not only these subsystems are examined, but also their interfaces and interactions. The control system implements a multi-level hierarchical structure; the techniques developed for operator input, strategic command, and cooperative dynamic control are presented. At the highest level, a mouse-based graphical user interface allows an operator to direct the activities of the system. Strategic command is provided by a table-driven finite state machine; this methodology provides a powerful yet flexible technique for managing the concurrent system interactions. The dynamic controller implements object impedance control; an extension of Nevill Hogan's impedance control concept to cooperative arm manipulation of a single object. Experimental results are presented, showing the system locating and identifying a moving object catching it, and performing a simple cooperative assembly. Results from dynamic control experiments are also presented, showing the controller's excellent dynamic trajectory tracking performance, while also permitting control of environmental contact force.
Tong, Shao Cheng; Li, Yong Ming; Zhang, Hua-Guang
2011-07-01
In this paper, two adaptive neural network (NN) decentralized output feedback control approaches are proposed for a class of uncertain nonlinear large-scale systems with immeasurable states and unknown time delays. Using NNs to approximate the unknown nonlinear functions, an NN state observer is designed to estimate the immeasurable states. By combining the adaptive backstepping technique with decentralized control design principle, an adaptive NN decentralized output feedback control approach is developed. In order to overcome the problem of "explosion of complexity" inherent in the proposed control approach, the dynamic surface control (DSC) technique is introduced into the first adaptive NN decentralized control scheme, and a simplified adaptive NN decentralized output feedback DSC approach is developed. It is proved that the two proposed control approaches can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded, and the observer errors and the tracking errors converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approaches.
Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.
Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin
2013-03-01
In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Isbel, Ben; Summers, Mathew J
2017-07-01
A capacity model of mindfulness is adopted to differentiate the cognitive faculty of mindfulness from the metacognitive processes required to cultivate this faculty in mindfulness training. The model provides an explanatory framework incorporating both the developmental progression from focussed attention to open monitoring styles of mindfulness practice, along with the development of equanimity and insight. A standardised technique for activating these processes without the addition of secondary components is then introduced. Mindfulness-based interventions currently available for use in randomised control trials introduce components ancillary to the cognitive processes of mindfulness, limiting their ability to draw clear causative inferences. The standardised technique presented here does not introduce such ancillary factors, rendering it a valuable tool with which to investigate the processes activated in mindfulness practice. Copyright © 2017 Elsevier Inc. All rights reserved.
Chan, Edward Y.
2017-01-01
Early versions of the da Vinci robot system (S and Si) have been used to perform pulmonary lung resection with severe limitations. The lack of a vascular robot stapler required the presence of a trained bedside assistant whose role was to place, manipulate and fire the stapler around major vascular structures. Thus, the techniques developed for the Si robot required a skilled bedside assistant to perform stapling of the hilar structure and manipulation of the lung. With the advent of the da Vinci Xi system with a vascular robot stapler, we postulated that we could develop a new port placement and technique to provide total control for the surgeon during the pulmonary lung resection. We found that the “five on a dice” port placement and technique allows for minimal assistance during the lobectomy with full control by the surgeon. This technique uses the full capability of the Xi robot to make the robot-assisted lobectomy a safe and ergonomic operation. PMID:29312746
Kim, Min P; Chan, Edward Y
2017-12-01
Early versions of the da Vinci robot system (S and Si) have been used to perform pulmonary lung resection with severe limitations. The lack of a vascular robot stapler required the presence of a trained bedside assistant whose role was to place, manipulate and fire the stapler around major vascular structures. Thus, the techniques developed for the Si robot required a skilled bedside assistant to perform stapling of the hilar structure and manipulation of the lung. With the advent of the da Vinci Xi system with a vascular robot stapler, we postulated that we could develop a new port placement and technique to provide total control for the surgeon during the pulmonary lung resection. We found that the "five on a dice" port placement and technique allows for minimal assistance during the lobectomy with full control by the surgeon. This technique uses the full capability of the Xi robot to make the robot-assisted lobectomy a safe and ergonomic operation.
State-space self-tuner for on-line adaptive control
NASA Technical Reports Server (NTRS)
Shieh, L. S.
1994-01-01
Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.
Some challenges in designing a lunar, Martian, or microgravity CELSS.
Salisbury, F B
1992-01-01
The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3 xg and in the vacuum of space. Light (energy demanding), CO2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures--and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.
Polymerase Chain Reaction/Rapid Methods Are Gaining a Foothold in Developing Countries.
Ragheb, Suzan Mohammed; Jimenez, Luis
Detection of microbial contamination in pharmaceutical raw materials and finished products is a critical factor to guarantee their safety, stability, and potency. Rapid microbiological methods-such as polymerase chain reaction-have been widely applied to clinical and food quality control analysis. However, polymerase chain reaction applications to pharmaceutical quality control have been rather slow and sporadic. Successful implementation of these methods in pharmaceutical companies in developing countries requires important considerations to provide sensitive and robust assays that will comply with good manufacturing practices. In recent years several publications have encouraged the application of molecular techniques in the microbiological assessment of pharmaceuticals. One of these techniques is polymerase chain reaction (PCR). The successful application of PCR in the pharmaceutical industry in developing countries is governed by considerable factors and requirements. These factors include the setting up of a PCR laboratory and the choice of appropriate equipment and reagents. In addition, the presence of well-trained analysts and establishment of quality control and quality assurance programs are important requirements. The pharmaceutical firms should take into account these factors to allow better chances for regulatory acceptance and wide application of this technique. © PDA, Inc. 2014.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay
2007-01-01
A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Simpson, John; Koshti, Ajay
2006-01-01
A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.
Some challenges in designing a lunar, Martian, or microgravity CELSS
NASA Astrophysics Data System (ADS)
Salisbury, Frank B.
The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3xg and in the vacuum of space. Light (energy demanding), CO 2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures-and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.
Using rapid infrared forming to control interfaces in titanium-matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrier, S.G.; Lin, R.Y.
1993-03-01
Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid IR forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times (typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements), themore » interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are comparable to (in several cases, superior to) those made with conventional diffusion-bonding techniques. 21 refs.« less
NASA Technical Reports Server (NTRS)
Hoban, Francis T. (Editor); Lawbaugh, William M. (Editor); Hoffman, Edward J. (Editor)
1994-01-01
Under the heading of Program Control, a number of related topics are discussed: cost estimating methods; planning and scheduling; cost overruns in the defense industry; the history of estimating; the advantages of cost plus award fee contracts; and how program control techniques led to the success of a NASA development project.
Evaluation of the automatic optical authentication technologies for control systems of objects
NASA Astrophysics Data System (ADS)
Averkin, Vladimir V.; Volegov, Peter L.; Podgornov, Vladimir A.
2000-03-01
The report considers the evaluation of the automatic optical authentication technologies for the automated integrated system of physical protection, control and accounting of nuclear materials at RFNC-VNIITF, and for providing of the nuclear materials nonproliferation regime. The report presents the nuclear object authentication objectives and strategies, the methodology of the automatic optical authentication and results of the development of pattern recognition techniques carried out under the ISTC project #772 with the purpose of identification of unique features of surface structure of a controlled object and effects of its random treatment. The current decision of following functional control tasks is described in the report: confirmation of the item authenticity (proof of the absence of its substitution by an item of similar shape), control over unforeseen change of item state, control over unauthorized access to the item. The most important distinctive feature of all techniques is not comprehensive description of some properties of controlled item, but unique identification of item using minimum necessary set of parameters, properly comprising identification attribute of the item. The main emphasis in the technical approach is made on the development of rather simple technological methods for the first time intended for use in the systems of physical protection, control and accounting of nuclear materials. The developed authentication devices and system are described.
Study of an automatic trajectory following control system
NASA Technical Reports Server (NTRS)
Vanlandingham, H. F.; Moose, R. L.; Zwicke, P. E.; Lucas, W. H.; Brinkley, J. D.
1983-01-01
It is shown that the estimator part of the Modified Partitioned Adaptive Controller, (MPAC) developed for nonlinear aircraft dynamics of a small jet transport can adapt to sensor failures. In addition, an investigation is made into the potential usefulness of the configuration detection technique used in the MPAC and the failure detection filter is developed that determines how a noise plant output is associated with a line or plane characteristic of a failure. It is shown by computer simulation that the estimator part and the configuration detection part of the MPAC can readily adapt to actuator and sensor failures and that the failure detection filter technique cannot detect actuator or sensor failures accurately for this type of system because of the plant modeling errors. In addition, it is shown that the decision technique, developed for the failure detection filter, can accurately determine that the plant output is related to the characteristic line or plane in the presence of sensor noise.
Development of evaluation technique of GMAW welding quality based on statistical analysis
NASA Astrophysics Data System (ADS)
Feng, Shengqiang; Terasaki, Hidenri; Komizo, Yuichi; Hu, Shengsun; Chen, Donggao; Ma, Zhihua
2014-11-01
Nondestructive techniques for appraising gas metal arc welding(GMAW) faults plays a very important role in on-line quality controllability and prediction of the GMAW process. On-line welding quality controllability and prediction have several disadvantages such as high cost, low efficiency, complication and greatly being affected by the environment. An enhanced, efficient evaluation technique for evaluating welding faults based on Mahalanobis distance(MD) and normal distribution is presented. In addition, a new piece of equipment, designated the weld quality tester(WQT), is developed based on the proposed evaluation technique. MD is superior to other multidimensional distances such as Euclidean distance because the covariance matrix used for calculating MD takes into account correlations in the data and scaling. The values of MD obtained from welding current and arc voltage are assumed to follow a normal distribution. The normal distribution has two parameters: the mean µ and standard deviation σ of the data. In the proposed evaluation technique used by the WQT, values of MD located in the range from zero to µ+3 σ are regarded as "good". Two experiments which involve changing the flow of shielding gas and smearing paint on the surface of the substrate are conducted in order to verify the sensitivity of the proposed evaluation technique and the feasibility of using WQT. The experimental results demonstrate the usefulness of the WQT for evaluating welding quality. The proposed technique can be applied to implement the on-line welding quality controllability and prediction, which is of great importance to design some novel equipment for weld quality detection.
Multidisciplinary Techniques and Novel Aircraft Control Systems
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Rogers, James L.; Raney, David L.
2000-01-01
The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.
Multidisciplinary Techniques and Novel Aircraft Control Systems
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Rogers, James L.; Raney, David L.
2000-01-01
The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.
Telerobotic research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Sliwa, Nancy E.
1987-01-01
An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.
NASA Technical Reports Server (NTRS)
Kreifeldt, J. G.; Parkin, L.; Wempe, T. E.; Huff, E. F.
1975-01-01
Perceived orderliness in the ground tracks of five A/C during their simulated flights was studied. Dynamically developing ground tracks for five A/C from 21 separate runs were reproduced from computer storage and displayed on CRTS to professional pilots and controllers for their evaluations and preferences under several criteria. The ground tracks were developed in 20 seconds as opposed to the 5 minutes of simulated flight using speedup techniques for display. Metric and nonmetric multidimensional scaling techniques are being used to analyze the subjective responses in an effort to: (1) determine the meaningfulness of basing decisions on such complex subjective criteria; (2) compare pilot/controller perceptual spaces; (3) determine the dimensionality of the subjects' perceptual spaces; and thereby (4) determine objective measures suitable for comparing alternative traffic management simulations.
Surface electromyogram for the control of anthropomorphic teleoperator fingers.
Gupta, V; Reddy, N P
1996-01-01
Growing importance of telesurgery has led to the need for the development of synergistic control of anthropomorphic teleoperators. Synergistic systems can be developed using direct biological control. The purpose of this study was to develop techniques for direct biocontrol of anthropomorphic teleoperators using surface electromyogram (EMG). A computer model of a two finger teleoperator was developed and controlled using surface EMG from the flexor digitorum superficialis during flexion-extension of the index finger. The results of the study revealed a linear relationship between the RMS EMG and the flexion-extension of the finger model. Therefore, surface EMG can be used as a direct biocontrol for teleoperators and in VR applications.
Sediment control in bridge waterways.
DOT National Transportation Integrated Search
1990-02-01
The objective of this study was to develop guidelines for use of the Iowa Vanes : technique for sediment control in bridge waterways. Iowa Vanes are small flow-training : structures (foils) designed to modify the near-bed flow pattern and redistribut...
ERIC Educational Resources Information Center
Miller, John
1994-01-01
Presents an approach to document numbering, document titling, and process measurement which, when used with fundamental techniques of statistical process control, reveals meaningful process-element variation as well as nominal productivity models. (SR)
Research into the development of a knowledge acquisition taxonomy
NASA Technical Reports Server (NTRS)
Fink, Pamela K.
1991-01-01
Monthly progress reports for September 1990 to January 1991 are given. Topics that are briefly covered include problem solving and learning taxonomies, knowledge acquisition techniques, software design, air traffic control, and space shuttle flight control.
En route air traffic flow simulation.
DOT National Transportation Integrated Search
1971-01-01
The report covers the conception, design, development, and initial implementation of an advanced simulation technique applied to a study of national air traffic flow and its control by En Route Air Route Traffic Control Centers (ARTCC). It is intende...
NASA Technical Reports Server (NTRS)
Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.
2014-01-01
The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.
Aircraft symmetric flight optimization. [gradient techniques for supersonic aircraft control
NASA Technical Reports Server (NTRS)
Falco, M.; Kelley, H. J.
1973-01-01
Review of the development of gradient techniques and their application to aircraft optimal performance computations in the vertical plane of flight. Results obtained using the method of gradients are presented for attitude- and throttle-control programs which extremize the fuel, range, and time performance indices subject to various trajectory and control constraints, including boundedness of engine throttle control. A penalty function treatment of state inequality constraints which generally appear in aircraft performance problems is outlined. Numerical results for maximum-range, minimum-fuel, and minimum-time climb paths for a hypothetical supersonic turbojet interceptor are presented and discussed. In addition, minimum-fuel climb paths subject to various levels of ground overpressure intensity constraint are indicated for a representative supersonic transport. A variant of the Gel'fand-Tsetlin 'method of ravines' is reviewed, and two possibilities for further development of continuous gradient processes are cited - namely, a projection version of conjugate gradients and a curvilinear search.
Optical trapping for complex fluid microfluidics
NASA Astrophysics Data System (ADS)
Vestad, Tor; Oakey, John; Marr, David W. M.
2004-10-01
Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.
NASA Technical Reports Server (NTRS)
Plesniak, Michael W.; Johnston, J. P.
1989-01-01
The construction and development of the multi-component traversing system and associated control hardware and software are presented. A hydrogen bubble/laser sheet flow visualization technique was developed to visually study the characteristics of the mixing layers. With this technique large-scale rollers arising from the Taylor-Gortler instability and its interaction with the primary Kelvin-Helmholtz structures can be studied.
Descriptive Statistical Techniques for Librarians. 2nd Edition.
ERIC Educational Resources Information Center
Hafner, Arthur W.
A thorough understanding of the uses and applications of statistical techniques is integral in gaining support for library funding or new initiatives. This resource is designed to help practitioners develop and manipulate descriptive statistical information in evaluating library services, tracking and controlling limited resources, and analyzing…
Optimal startup control of a jacketed tubular reactor.
NASA Technical Reports Server (NTRS)
Hahn, D. R.; Fan, L. T.; Hwang, C. L.
1971-01-01
The optimal startup policy of a jacketed tubular reactor, in which a first-order, reversible, exothermic reaction takes place, is presented. A distributed maximum principle is presented for determining weak necessary conditions for optimality of a diffusional distributed parameter system. A numerical technique is developed for practical implementation of the distributed maximum principle. This involves the sequential solution of the state and adjoint equations, in conjunction with a functional gradient technique for iteratively improving the control function.
New coding technique for computer generated holograms.
NASA Technical Reports Server (NTRS)
Haskell, R. E.; Culver, B. C.
1972-01-01
A coding technique is developed for recording computer generated holograms on a computer controlled CRT in which each resolution cell contains two beam spots of equal size and equal intensity. This provides a binary hologram in which only the position of the two dots is varied from cell to cell. The amplitude associated with each resolution cell is controlled by selectively diffracting unwanted light into a higher diffraction order. The recording of the holograms is fast and simple.
Adaptations of advanced safety and reliability techniques to petroleum and other industries
NASA Technical Reports Server (NTRS)
Purser, P. E.
1974-01-01
The underlying philosophy of the general approach to failure reduction and control is presented. Safety and reliability management techniques developed in the industries which have participated in the U.S. space and defense programs are described along with adaptations to nonaerospace activities. The examples given illustrate the scope of applicability of these techniques. It is indicated that any activity treated as a 'system' is a potential user of aerospace safety and reliability management techniques.
Multiple excitation nano-spot generation and confocal detection for far-field microscopy.
Mondal, Partha Pratim
2010-03-01
An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.
Multiple excitation nano-spot generation and confocal detection for far-field microscopy
NASA Astrophysics Data System (ADS)
Mondal, Partha Pratim
2010-03-01
An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.
Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.
Development of genome-based anti-virulence therapeutics to control HLB
USDA-ARS?s Scientific Manuscript database
Orthologous gene replacement technique has been developed to confirm functions of key virulence genes in 'Candidatus Liberibacters asiaticus'. These results facilitate the development of antivirulence drugs that specifically target functional domains of virulence gene products to disarm pathogenicit...
Jerome, Jason; Heck, Detlef H.
2011-01-01
Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments. PMID:22275886
Jerome, Jason; Heck, Detlef H
2011-01-01
Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.
Assessment and control of spacecraft electromagnetic interference
NASA Technical Reports Server (NTRS)
1972-01-01
Design criteria are presented to provide guidance in assessing electromagnetic interference from onboard sources and establishing requisite control in spacecraft design, development, and testing. A comprehensive state-of-the-art review is given which covers flight experience, sources and transmission of electromagnetic interference, susceptible equipment, design procedure, control techniques, and test methods.
Advanced design concepts such as Low Impact Development (LID) and Green Solutions (or upland runoff control techniques) are currently being encouraged by the United States Environmental Protection Agency (EPA) as a management practice to contain and control stormwater at the lot ...
An Inexpensive Digital Gradient Controller for HPLC.
ERIC Educational Resources Information Center
Brady, James E.; Carr, Peter W.
1983-01-01
Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…
Quality Space and Launch Requirements Addendum to AS9100C
2015-03-05
45 8.9.1 Statistical Process Control (SPC) .......................................................................... 45 8.9.1.1 Out of Control...Systems Center SME Subject Matter Expert SOW Statement of Work SPC Statistical Process Control SPO System Program Office SRP Standard Repair...individual data exceeding the control limits. Control limits are developed using standard statistical methods or other approved techniques and are based on
A Methodology to Determine the Psychomotor Performance of Helicopter Pilots During Flight Maneuvers.
McMahon, Terry W; Newman, David G
2015-07-01
Helicopter flying is a complex psychomotor task requiring continuous control inputs to maintain stable flight and conduct maneuvers. Flight safety is impaired when this psychomotor performance is compromised. A comprehensive understanding of the psychomotor performance of helicopter pilots, under various operational and physiological conditions, remains to be developed. The purpose of this study was to develop a flight simulator-based technique for capturing psychomotor performance data of helicopter pilots. Three helicopter pilots conducted six low-level flight sequences in a helicopter simulator. Accelerometers applied to each flight control recorded the frequency and magnitude of movements. The mean (± SEM) number of control inputs per flight was 2450 (± 136). The mean (± SEM) number of control inputs per second was 1.96 (± 0.15). The mean (± SEM) force applied was 0.44 G (± 0.05 G). No significant differences were found between pilots in terms of flight completion times or number of movements per second. The number of control inputs made by the hands was significantly greater than the number of foot movements. The left hand control input forces were significantly greater than all other input forces. This study shows that the use of accelerometers in flight simulators is an effective technique for capturing accurate, reliable data on the psychomotor performance of helicopter pilots. This technique can be applied in future studies to a wider range of operational and physiological conditions and mission types in order to develop a greater awareness and understanding of the psychomotor performance demands on helicopter pilots.
Low-Cost Servomotor Driver for PFM Control
Aragon-Jurado, David
2017-01-01
Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM. PMID:29301221
Low-Cost Servomotor Driver for PFM Control.
Aragon-Jurado, David; Morgado-Estevez, Arturo; Perez-Peña, Fernando
2017-12-31
Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM.
Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique
Usuki, T; Ohshima, T; Sakuma, Y; Kawabe, M; Okada, Y; Takemoto, K; Miyazawa, T; Hirose, S; Nakata, Y; Takatsu, M; Yokoyama, N
2006-01-01
An atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs). Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.
Bioengineering Spin-Offs from Dynamical Systems Theory
NASA Astrophysics Data System (ADS)
Collins, J. J.
1997-03-01
Recently, there has been considerable interest in applying concepts and techniques from dynamical systems and statistical physics to physiological systems. In this talk, we present work dealing which two active topics in this area: stochastic resonance and (2) chaos control. Stochastic resonance is a phenomenon wherein the response of nonlinear system to a weak input signal is optimally enhanced by the presence of a particular level of noise. Here we demonstrate that noise-based techniques can be used to lower sensory detection thresholds in humans. We discuss how from a bioengineering and clinical standpoint, these developments may be particularly relevant for individuals with elevated sensory thresholds, such as older adults and patients with peripheral neuropathy. Chaos control techniques have been applied to a wide range of experimental systems, including biological preparations. The application of chaos control to biological systems has led to speculations that these methods may be clinically useful. Here we demonstrate that the principles of chaos control can be utilized to stabilize underlying unstable periodic orbits in non-chaotic biological systems. We discuss how from a bioengineering and clinical standpoint, these developments may be important for suppressing or eliminating certain types of cardiac arrhythmias.
Active field control (AFC) -electro-acoustic enhancement system using acoustical feedback control
NASA Astrophysics Data System (ADS)
Miyazaki, Hideo; Watanabe, Takayuki; Kishinaga, Shinji; Kawakami, Fukushi
2003-10-01
AFC is an electro-acoustic enhancement system using FIR filters to optimize auditory impressions, such as liveness, loudness, and spaciousness. This system has been under development at Yamaha Corporation for more than 15 years and has been installed in approximately 50 venues in Japan to date. AFC utilizes feedback control techniques for recreation of reverberation from the physical reverberation of the room. In order to prevent coloration problems caused by a closed loop condition, two types of time-varying control techniques are implemented in the AFC system to ensure smooth loop gain and a sufficient margin in frequency characteristics to prevent instability. Those are: (a) EMR (electric microphone rotator) -smoothing frequency responses between microphones and speakers by changing the combinations of inputs and outputs periodically; (b) fluctuating-FIR -smoothing frequency responses of FIR filters and preventing coloration problems caused by fixed FIR filters, by moving each FIR tap periodically on time axis with a different phase and time period. In this paper, these techniques are summarized. A block diagram of AFC using new equipment named AFC1, which has been developed at Yamaha Corporation and released recently in the US, is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, A; Samost, A; Viswanathan, A
Purpose: To investigate the hazards in cervical-cancer HDR brachytherapy using a novel hazard-analysis technique, System Theoretic Process Analysis (STPA). The applicability and benefit of STPA to the field of radiation oncology is demonstrated. Methods: We analyzed the tandem and ring HDR procedure through observations, discussions with physicists and physicians, and the use of a previously developed process map. Controllers and their respective control actions were identified and arranged into a hierarchical control model of the system, modeling the workflow from applicator insertion through initiating treatment delivery. We then used the STPA process to identify potentially unsafe control actions. Scenarios weremore » then generated from the identified unsafe control actions and used to develop recommendations for system safety constraints. Results: 10 controllers were identified and included in the final model. From these controllers 32 potentially unsafe control actions were identified, leading to more than 120 potential accident scenarios, including both clinical errors (e.g., using outdated imaging studies for planning), and managerial-based incidents (e.g., unsafe equipment, budget, or staffing decisions). Constraints identified from those scenarios include common themes, such as the need for appropriate feedback to give the controllers an adequate mental model to maintain safe boundaries of operations. As an example, one finding was that the likelihood of the potential accident scenario of the applicator breaking during insertion might be reduced by establishing a feedback loop of equipment-usage metrics and equipment-failure reports to the management controller. Conclusion: The utility of STPA in analyzing system hazards in a clinical brachytherapy system was demonstrated. This technique, rooted in system theory, identified scenarios both technical/clinical and managerial in nature. These results suggest that STPA can be successfully used to analyze safety in brachytherapy and may prove to be an alternative to other hazard analysis techniques.« less
New Technique of High-Performance Torque Control Developed for Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.
2003-01-01
Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a method to clearly visualize the solution. The graphical technique allows a more insightful understanding of the operation of the machine under various conditions.
Method of controlling a resin curing process. [for fiber reinforced composites
NASA Technical Reports Server (NTRS)
Webster, Charles Neal (Inventor); Scott, Robert O. (Inventor)
1989-01-01
The invention relates to an analytical technique for controlling the curing process of fiber-reinforced composite materials that are formed using thermosetting resins. The technique is the percent gel method and involves development of a time-to-gel equation as a function of temperature. From this equation a rate-of-gel equation is then determined, and a percent gel is calculated which is the product of rate-of-gel times time. Percent gel accounting is used to control the proper pressure application point in an autoclave cure process to achieve desired properties in a production composite part.
A Noninvasive Technique for Blocking Vomeronasal Chemoreception in Rattlesnakes
ERIC Educational Resources Information Center
Stark, C. Patrick; Chiszar, David; Smith, Hobart M.
2006-01-01
To examine the effects of vomeronasal deprivation on strike-induced chemosensory searching (SICS) in rattlesnakes we used a newly developed technique to anesthetize the vomeronasal organs. We compared rate of tongue flicking after striking prey in avomic rattlesnakes to vomic controls. Avomic rattlesnakes exhibited significantly fewer tongue…
The Relationship between Classroom Management Strategies and Student Misbehaviors.
ERIC Educational Resources Information Center
Skiba, Russell J.
Because research has determined that specific management techniques can have an effect on the classroom behavior of students, an observational rating scale was developed to assess the type of management techniques six elementary teachers in a program for behaviorally disordered children used to control behavior. Correlational analyses were used to…
Analysis techniques for multivariate root loci. [a tool in linear control systems
NASA Technical Reports Server (NTRS)
Thompson, P. M.; Stein, G.; Laub, A. J.
1980-01-01
Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.
Recent developments in learning control and system identification for robots and structures
NASA Technical Reports Server (NTRS)
Phan, M.; Juang, J.-N.; Longman, R. W.
1990-01-01
This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
Utilization of a CRT display light pen in the design of feedback control systems
NASA Technical Reports Server (NTRS)
Thompson, J. G.; Young, K. R.
1972-01-01
A hierarchical structure of the interlinked programs was developed to provide a flexible computer-aided design tool. A graphical input technique and a data structure are considered which provide the capability of entering the control system model description into the computer in block diagram form. An information storage and retrieval system was developed to keep track of the system description, and analysis and simulation results, and to provide them to the correct routines for further manipulation or display. Error analysis and diagnostic capabilities are discussed, and a technique was developed to reduce a transfer function to a set of nested integrals suitable for digital simulation. A general, automated block diagram reduction procedure was set up to prepare the system description for the analysis routines.
NASA Astrophysics Data System (ADS)
Arnaud, N.; Balembois, L.; Bizouard, M. A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.
2017-02-01
The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry-Perot cavities on the arms and the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.
Neural Networks for Modeling and Control of Particle Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, A. L.; Biedron, S. G.; Chase, B. E.
Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less
Neural Networks for Modeling and Control of Particle Accelerators
NASA Astrophysics Data System (ADS)
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.
2016-04-01
Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...
2016-04-01
Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less
Neural network controller development for a magnetically suspended flywheel energy storage system
NASA Technical Reports Server (NTRS)
Fittro, Roger L.; Pang, Da-Chen; Anand, Davinder K.
1994-01-01
A neural network controller has been developed to accommodate disturbances and nonlinearities and improve the robustness of a magnetically suspended flywheel energy storage system. The controller is trained using the back propagation-through-time technique incorporated with a time-averaging scheme. The resulting nonlinear neural network controller improves system performance by adapting flywheel stiffness and damping based on operating speed. In addition, a hybrid multi-layered neural network controller is developed off-line which is capable of improving system performance even further. All of the research presented in this paper was implemented via a magnetic bearing computer simulation. However, careful attention was paid to developing a practical methodology which will make future application to the actual bearing system fairly straightforward.
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820
Information prioritization for control and automation of space operations
NASA Technical Reports Server (NTRS)
Ray, Asock; Joshi, Suresh M.; Whitney, Cynthia K.; Jow, Hong N.
1987-01-01
The applicability of a real-time information prioritization technique to the development of a decision support system for control and automation of Space Station operations is considered. The steps involved in the technique are described, including the definition of abnormal scenarios and of attributes, measures of individual attributes, formulation and optimization of a cost function, simulation of test cases on the basis of the cost function, and examination of the simulation scenerios. A list is given comparing the intrinsic importances of various Space Station information data.
Control pole placement relationships
NASA Technical Reports Server (NTRS)
Ainsworth, O. R.
1982-01-01
Using a simplified Large Space Structure (LSS) model, a technique was developed which gives algebraic relationships for the unconstrained poles. The relationships, which were obtained by this technique, are functions of the structural characteristics and the control gains. Extremely interesting relationships evolve for the case when the structural damping is zero. If the damping is zero, the constrained poles are uncoupled from the structural mode shapes. These relationships, which are derived for structural damping and without structural damping, provide new insight into the migration of the unconstrained poles for the CFPPS.
NASA Astrophysics Data System (ADS)
Zhang, Jianqiao; Ye, Dong; Sun, Zhaowei; Liu, Chuang
2018-02-01
This paper presents a robust adaptive controller integrated with an extended state observer (ESO) to solve coupled spacecraft tracking maneuver in the presence of model uncertainties, external disturbances, actuator uncertainties including magnitude deviation and misalignment, and even actuator saturation. More specifically, employing the exponential coordinates on the Lie group SE(3) to describe configuration tracking errors, the coupled six-degrees-of-freedom (6-DOF) dynamics are developed for spacecraft relative motion, in which a generic fully actuated thruster distribution is considered and the lumped disturbances are reconstructed by using anti-windup technique. Then, a novel ESO, developed via second order sliding mode (SOSM) technique and adding linear correction terms to improve the performance, is designed firstly to estimate the disturbances in finite time. Based on the estimated information, an adaptive fast terminal sliding mode (AFTSM) controller is developed to guarantee the almost global asymptotic stability of the resulting closed-loop system such that the trajectory can be tracked with all the aforementioned drawbacks addressed simultaneously. Finally, the effectiveness of the controller is illustrated through numerical examples.
Airport Surface Traffic Automation Study.
1988-05-09
the use of Artificial Intellignece * technology in enroute ATC can be applied directly to the surface control problem. 7.6 Development Approach The next...problems in airport surface control. If artificial intelligance provides useful results for airborne automation, the same techniques should prove useful
Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Gregory Francis; Zhang, Jinghe
2014-06-10
Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuitiesmore » caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.« less
Generation of Microbubbles with Applications to Industry and Medicine
NASA Astrophysics Data System (ADS)
Rodríguez-Rodríguez, Javier; Sevilla, Alejandro; Martínez-Bazán, Carlos; Gordillo, José Manuel
2015-01-01
We provide a comprehensive and systematic description of the diverse microbubble generation methods recently developed to satisfy emerging technological, pharmaceutical, and medical demands. We first introduce a theoretical framework unifying the physics of bubble formation in the wide variety of existing types of generators. These devices are then classified according to the way the bubbling process is controlled: outer liquid flows (e.g., coflows, cross flows, and flow-focusing flows), acoustic forcing, and electric fields. We also address modern techniques developed to produce bubbles coated with surfactants and liquid shells. The stringent requirements to precisely control the bubbling frequency, the bubble size, and the properties of the coating make microfluidics the natural choice to implement such techniques.
Development of the L-1011 four-dimensional flight management system
NASA Technical Reports Server (NTRS)
Lee, H. P.; Leffler, M. F.
1984-01-01
The development of 4-D guidance and control algorithms for the L-1011 Flight Management System is described. Four-D Flight Management is a concept by which an aircraft's flight is optimized along the 3-D path within the constraints of today's ATC environment, while its arrival time is controlled to fit into the air traffic flow without incurring or causing delays. The methods developed herein were designed to be compatible with the time-based en route metering techniques that were recently developed by the Dallas/Fort Worth and Denver Air Route Traffic Control Centers. The ensuing development of the 4-D guidance algorithms, the necessary control laws and the operational procedures are discussed. Results of computer simulation evaluation of the guidance algorithms and control laws are presented, along with a description of the software development procedures utilized.
Planning and executing motions for multibody systems in free-fall. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cameron, Jonathan M.
1991-01-01
The purpose of this research is to develop an end-to-end system that can be applied to a multibody system in free-fall to analyze its possible motions, save those motions in a database, and design a controller that can execute those motions. A goal is for the process to be highly automated and involve little human intervention. Ideally, the output of the system would be data and algorithms that could be put in ROM to control the multibody system in free-fall. The research applies to more than just robots in space. It applies to any multibody system in free-fall. Mathematical techniques from nonlinear control theory were used to study the nature of the system dynamics and its possible motions. Optimization techniques were applied to plan motions. Image compression techniques were proposed to compress the precomputed motion data for storage. A linearized controller was derived to control the system while it executes preplanned trajectories.
NASA Astrophysics Data System (ADS)
Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.
1991-03-01
To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).
Active control of jet flowfields
NASA Astrophysics Data System (ADS)
Kibens, Valdis; Wlezien, Richard W.
1987-06-01
Passive and active control of jet shear layer development were investigated as mechanisms for modifying the global characteristics of jet flowfields. Slanted and stepped indeterminate origin (I.O.) nozzles were used as passive, geometry-based control devices which modified the flow origins. Active control techniques were also investigated, in which periodic acoustic excitation signals were injected into the I.O. nozzle shear layers. Flow visualization techniques based on a pulsed copper-vapor laser were used in a phase-conditioned image acquisition mode to assemble optically averaged sets of images acquired at known times throughout the repetition cycle of the basic flow oscillation period. Hot wire data were used to verify the effect of the control techniques on the mean and fluctuating flow properties. The flow visualization images were digitally enhanced and processed to show locations of prominent vorticity concentrations. Three-dimensional vortex interaction patterns were assembled in a format suitable for movie mode on a graphic display workstation, showing the evolution of three-dimensional vortex system in time.
INcreasing Security and Protection through Infrastructure REsilience: The INSPIRE Project
NASA Astrophysics Data System (ADS)
D'Antonio, Salvatore; Romano, Luigi; Khelil, Abdelmajid; Suri, Neeraj
The INSPIRE project aims at enhancing the European potential in the field of security by ensuring the protection of critical information infrastructures through (a) the identification of their vulnerabilities and (b) the development of innovative techniques for securing networked process control systems. To increase the resilience of such systems INSPIRE will develop traffic engineering algorithms, diagnostic processes and self-reconfigurable architectures along with recovery techniques. Hence, the core idea of the INSPIRE project is to protect critical information infrastructures by appropriately configuring, managing, and securing the communication network which interconnects the distributed control systems. A working prototype will be implemented as a final demonstrator of selected scenarios. Controls/Communication Experts will support project partners in the validation and demonstration activities. INSPIRE will also contribute to standardization process in order to foster multi-operator interoperability and coordinated strategies for securing lifeline systems.
Optimized feline vitrectomy technique for therapeutic stem cell delivery to the inner retina.
Jayaram, Hari; Becker, Silke; Eastlake, Karen; Jones, Megan F; Charteris, David G; Limb, G Astrid
2014-07-01
To describe an optimized surgical technique for feline vitrectomy which reduces bleeding and aids posterior gel clearance in order to facilitate stem cell delivery to the inner retina using cellular scaffolds. Three-port pars plana vitrectomies were performed in six-specific pathogen-free domestic cats using an optimized surgical technique to improve access and minimize severe intraoperative bleeding. The surgical procedure was successfully completed in all six animals. Lens sparing vitrectomy resulted in peripheral lens touch in one of three animals but without cataract formation. Transient bleeding from sclerotomies, which was readily controlled, was seen in two of the six animals. No cases of vitreous hemorrhage, severe postoperative inflammation, retinal detachment, or endophthalmitis were observed during postoperative follow-up. Three-port pars plana vitrectomy can be performed successfully in the cat in a safe and controlled manner when the appropriate precautions are taken to minimize the risk of developing intraoperative hemorrhage. This technique may facilitate the use of feline models of inner retinal degeneration for the development of stem cell transplantation techniques using cellular scaffolds. © 2014 The Authors Veterinary Ophthalmology published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Ophthalmologists.
Advanced control techniques for teleoperation in earth orbit
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Brooks, T. L.
1980-01-01
Emerging teleoperation tasks in space invite advancements in teleoperator control technology. This paper briefly summarizes the generic issues related to earth orbital applications of teleoperators, and describes teleoperator control technology development work including visual and non-visual sensors and displays, kinesthetic feedback and computer-aided controls. Performance experiments were carried out using sensor and computer aided controls with promising results which are briefly summarized.
Advanced Curation Protocols for Mars Returned Sample Handling
NASA Astrophysics Data System (ADS)
Bell, M.; Mickelson, E.; Lindstrom, D.; Allton, J.
Introduction: Johnson Space Center has over 30 years experience handling precious samples which include Lunar rocks and Antarctic meteorites. However, we recognize that future curation of samples from such missions as Genesis, Stardust, and Mars S mple Return, will require a high degree of biosafety combined witha extremely low levels of inorganic, organic, and biological contamination. To satisfy these requirements, research in the JSC Advanced Curation Lab is currently focused toward two major areas: preliminary examination techniques and cleaning and verification techniques . Preliminary Examination Techniques : In order to minimize the number of paths for contamination we are exploring the synergy between human &robotic sample handling in a controlled environment to help determine the limits of clean curation. Within the Advanced Curation Laboratory is a prototype, next-generation glovebox, which contains a robotic micromanipulator. The remotely operated manipulator has six degrees-of- freedom and can be programmed to perform repetitive sample handling tasks. Protocols are being tested and developed to perform curation tasks such as rock splitting, weighing, imaging, and storing. Techniques for sample transfer enabling more detailed remote examination without compromising the integrity of sample science are also being developed . The glovebox is equipped with a rapid transfer port through which samples can be passed without exposure. The transfer is accomplished by using a unique seal and engagement system which allows passage between containers while maintaining a first seal to the outside environment and a second seal to prevent the outside of the container cover and port door from becoming contaminated by the material being transferred. Cleaning and Verification Techniques: As part of the contamination control effort, innovative cleaning techniques are being identified and evaluated in conjunction with sensitive cleanliness verification methods. Towards this end, cleaning techniques such as ultrasonication in ultra -pure water (UPW), oxygen (O2) plasma, and carbon dioxide (CO2) "snow" are being used to clean a variety of different contaminants on a variety of different surfaces. Additionally, once cleaned, techniques to directly verify the s rface cleanliness are being developed. Theseu include X ray photoelectron spectroscopy (XPS) quantification, and screening with- contact angle measure ments , which can be correlated with XPS standards. Methods developed in the Advanced Curation Laboratory will determine the extent to which inorganic and biological contamination can be controlled and minimized.
Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony
2008-01-01
This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.
Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.
Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M
2008-01-01
Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
.... What Is a SIP? Section 110 of the CAA requires states to develop air pollution regulations and control... air pollution regulations, control strategies, other means or techniques, and technical analyses... provisions of the CAA. A SIP protects air quality primarily by addressing air pollution at its point of...
Distributed cooperating processes in a mobile robot control system
NASA Technical Reports Server (NTRS)
Skillman, Thomas L., Jr.
1988-01-01
A mobile inspection robot has been proposed for the NASA Space Station. It will be a free flying autonomous vehicle that will leave a berthing unit to accomplish a variety of inspection tasks around the Space Station, and then return to its berth to recharge, refuel, and transfer information. The Flying Eye robot will receive voice communication to change its attitude, move at a constant velocity, and move to a predefined location along a self generated path. This mobile robot control system requires integration of traditional command and control techniques with a number of AI technologies. Speech recognition, natural language understanding, task and path planning, sensory abstraction and pattern recognition are all required for successful implementation. The interface between the traditional numeric control techniques and the symbolic processing to the AI technologies must be developed, and a distributed computing approach will be needed to meet the real time computing requirements. To study the integration of the elements of this project, a novel mobile robot control architecture and simulation based on the blackboard architecture was developed. The control system operation and structure is discussed.
WELDSMART: A vision-based expert system for quality control
NASA Technical Reports Server (NTRS)
Andersen, Kristinn; Barnett, Robert Joel; Springfield, James F.; Cook, George E.
1992-01-01
This work was aimed at exploring means for utilizing computer technology in quality inspection and evaluation. Inspection of metallic welds was selected as the main application for this development and primary emphasis was placed on visual inspection, as opposed to other inspection methods, such as radiographic techniques. Emphasis was placed on methodologies with the potential for use in real-time quality control systems. Because quality evaluation is somewhat subjective, despite various efforts to classify discontinuities and standardize inspection methods, the task of using a computer for both inspection and evaluation was not trivial. The work started out with a review of the various inspection techniques that are used for quality control in welding. Among other observations from this review was the finding that most weld defects result in abnormalities that may be seen by visual inspection. This supports the approach of emphasizing visual inspection for this work. Quality control consists of two phases: (1) identification of weld discontinuities (some of which may be severe enough to be classified as defects), and (2) assessment or evaluation of the weld based on the observed discontinuities. Usually the latter phase results in a pass/fail judgement for the inspected piece. It is the conclusion of this work that the first of the above tasks, identification of discontinuities, is the most challenging one. It calls for sophisticated image processing and image analysis techniques, and frequently ad hoc methods have to be developed to identify specific features in the weld image. The difficulty of this task is generally not due to limited computing power. In most cases it was found that a modest personal computer or workstation could carry out most computations in a reasonably short time period. Rather, the algorithms and methods necessary for identifying weld discontinuities were in some cases limited. The fact that specific techniques were finally developed and successfully demosntrated to work illustrates that the general approach taken here appears to be promising for commercial development of computerized quality inspection systems. Inspection based on these techniques may be used to supplement or substitute more elaborate inspection methods, such as x-ray inspections.
[Application of THz technology to nondestructive detection of agricultural product quality].
Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong
2014-08-01
With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain.
Modelling the human operator of slowly responding systems using linear models
NASA Technical Reports Server (NTRS)
Veldhuyzen, W.
1977-01-01
Control of slowly responding systems, such as, helmsman steering a large ship, is examined. It is shown that the describing function techniques are useful in analyzing the control behavior of the helmsman. Models are developed to describe the helmsman's control behavior. It is shown that the cross over model is applicable to the analysis of control of slowly responding systems.
A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications
Miralles, Vincent; Huerre, Axel; Malloggi, Florent; Jullien, Marie-Caroline
2013-01-01
This review presents an overview of the different techniques developed over the last decade to regulate the temperature within microfluidic systems. A variety of different approaches has been adopted, from external heating sources to Joule heating, microwaves or the use of lasers to cite just a few examples. The scope of the technical solutions developed to date is impressive and encompasses for instance temperature ramp rates ranging from 0.1 to 2,000 °C/s leading to homogeneous temperatures from −3 °C to 120 °C, and constant gradients from 6 to 40 °C/mm with a fair degree of accuracy. We also examine some recent strategies developed for applications such as digital microfluidics, where integration of a heating source to generate a temperature gradient offers control of a key parameter, without necessarily requiring great accuracy. Conversely, Temperature Gradient Focusing requires high accuracy in order to control both the concentration and separation of charged species. In addition, the Polymerase Chain Reaction requires both accuracy (homogeneous temperature) and integration to carry out demanding heating cycles. The spectrum of applications requiring temperature regulation is growing rapidly with increasingly important implications for the physical, chemical and biotechnological sectors, depending on the relevant heating technique. PMID:26835667
Stable adaptive neurocontrollers for spacecraft and space robots
NASA Technical Reports Server (NTRS)
Sanner, Robert M.
1995-01-01
This paper reviews recently developed techniques of adaptive nonlinear control using neural networks, and demonstrates their application to two important practical problems in orbital operations. An adaptive neurocontroller is first developed for spacecraft attitude control applications, and then the same design, slightly modified, is shown to be effective in the control of free-floating orbital manipulators. The algorithms discussed have guaranteed stability and convergence properties, and thus constitute viable alternatives to existing control methodologies. Simulation results are presented demonstrating the performance of each algorithm with representative dynamic models.
Nguyen, Thang; Roddick, Felicity A.; Fan, Linhua
2012-01-01
Biofouling is a critical issue in membrane water and wastewater treatment as it greatly compromises the efficiency of the treatment processes. It is difficult to control, and significant economic resources have been dedicated to the development of effective biofouling monitoring and control strategies. This paper highlights the underlying causes of membrane biofouling and provides a review on recent developments of potential monitoring and control methods in water and wastewater treatment with the aim of identifying the remaining issues and challenges in this area. PMID:24958430
The Role of a Physical Analysis Laboratory in a 300 mm IC Development and Manufacturing Centre
NASA Astrophysics Data System (ADS)
Kwakman, L. F. Tz.; Bicais-Lepinay, N.; Courtas, S.; Delille, D.; Juhel, M.; Trouiller, C.; Wyon, C.; de la Bardonnie, M.; Lorut, F.; Ross, R.
2005-09-01
To remain competitive IC manufacturers have to accelerate the development of most advanced (CMOS) technology and to deliver high yielding products with best cycle times and at a competitive pricing. With the increase of technology complexity, also the need for physical characterization support increases, however many of the existing techniques are no longer adequate to effectively support the 65-45 nm technology node developments. New and improved techniques are definitely needed to better characterize the often marginal processes, but these should not significantly impact fabrication costs or cycle time. Hence, characterization and metrology challenges in state-of-the-art IC manufacturing are both of technical and economical nature. TEM microscopy is needed for high quality, high volume analytical support but several physical and practical hurdles have to be taken. The success rate of FIB-SEM based failure analysis drops as defects often are too small to be detected and fault isolation becomes more difficult in the nano-scale device structures. To remain effective and efficient, SEM and OBIRCH techniques have to be improved or complemented with other more effective methods. Chemical analysis of novel materials and critical interfaces requires improvements in the field of e.g. SIMS, ToF-SIMS. Techniques that previously were only used sporadically, like EBSD and XRD, have become a `must' to properly support backend process development. At the bright side, thanks to major technical advances, techniques that previously were practiced at laboratory level only now can be used effectively for at-line fab metrology: Voltage Contrast based defectivity control, XPS based gate dielectric metrology and XRD based control of copper metallization processes are practical examples. In this paper capabilities and shortcomings of several techniques and corresponding equipment are presented with practical illustrations of use in our Crolles facilities.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended somewhat so that linear models can also be generated from two- and three-dimensional steady-state results. Standard techniques are adequate for reducing the order of one-dimensional CFD-based linear models. However, reduction of linear models based on two- and three-dimensional CFD results is complicated by very sparse, ill-conditioned matrices. Some novel approaches are being investigated to solve this problem.
EXPERIMENTAL AND THEORETICAL EVALUATIONS OF OBSERVATIONAL-BASED TECHNIQUES
Observational Based Methods (OBMs) can be used by EPA and the States to develop reliable ozone controls approaches. OBMs use actual measured concentrations of ozone, its precursors, and other indicators to determine the most appropriate strategy for ozone control. The usual app...
Exploring Techniques of Developing Writing Skill in IELTS Preparatory Courses: A Data-Driven Study
ERIC Educational Resources Information Center
Ostovar-Namaghi, Seyyed Ali; Safaee, Seyyed Esmail
2017-01-01
Being driven by the hypothetico-deductive mode of inquiry, previous studies have tested the effectiveness of theory-driven interventions under controlled experimental conditions to come up with universally applicable generalizations. To make a case in the opposite direction, this data-driven study aims at uncovering techniques and strategies…
Measurement Techniques for Transmit Source Clock Jitter for Weak Serial RF Links
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; Schlesinger, Adam M.
2010-01-01
Techniques for filtering clock jitter measurements are developed, in the context of controlling data modulation jitter on an RF carrier to accommodate low signal-to-noise ratio thresholds of high-performance error correction codes. Measurement artifacts from sampling are considered, and a tutorial on interpretation of direct readings is included.
High purity, low dislocation GaAs single crystals
NASA Technical Reports Server (NTRS)
Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.
1983-01-01
Liquid encapsulated Czochralski crystal growth techniques for producing undoped, high resistivity, low dislocation material suitable for device applications is described. Technique development resulted in reduction of dislocation densities in 3 inch GaAs crystals. Control over the melt stoichiometry was determined to be of critical importance for the reduction of twinning and polycrystallinity during growth.
NASA Technical Reports Server (NTRS)
Tawfik, Hazem
1991-01-01
A relatively simple, inexpensive, and generic technique that could be used in both laboratories and some operation site environments is introduced at the Robotics Applications and Development Laboratory (RADL) at Kennedy Space Center (KSC). In addition, this report gives a detailed explanation of the set up procedure, data collection, and analysis using this new technique that was developed at the State University of New York at Farmingdale. The technique was used to evaluate the repeatability, accuracy, and overshoot of the Unimate Industrial Robot, PUMA 500. The data were statistically analyzed to provide an insight into the performance of the systems and components of the robot. Also, the same technique was used to check the forward kinematics against the inverse kinematics of RADL's PUMA robot. Recommendations were made for RADL to use this technique for laboratory calibration of the currently existing robots such as the ASEA, high speed controller, Automated Radiator Inspection Device (ARID) etc. Also, recommendations were made to develop and establish other calibration techniques that will be more suitable for site calibration environment and robot certification.
A Fully Distributed Approach to the Design of a KBIT/SEC VHF Packet Radio Network,
1984-02-01
topological change and consequent out-modea routing data. Algorithm development has been aided by computer simulation using a finite state machine technique...development has been aided by computer simulation using a finite state machine technique to model a realistic network of up to fifty nodes. This is...use of computer based equipments in weapons systems and their associated sensors and command and control elements and the trend from voice to data
Total Quality Management: Getting Started
1990-08-01
Quality Management (TQM) program using Organizational Development (OD) intervention techniques to gain acceptance of the program. It emphasizes human behavior and the need for collaborative management and consensus in organizational change. Lessons learned stress the importance of choosing a skilled TQM facilitator, training process action teams, and fostering open communication and teamwork to minimize resistance to change. Keywords: Management planning and control, Quality control, Quality , Management , Organization change, Organization development,
NASA Technical Reports Server (NTRS)
Srokowski, A. J.
1978-01-01
The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.
Abd-Alla, Adly M.M.; Bergoin, Max; Parker, Andrew G.; Maniania, Nguya K.; Vlak, Just M.; Bourtzis, Kostas; Boucias, Drion G.; Aksoy, Serap
2013-01-01
Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the trypanosomes, which cause human African trypanosomosis (HAT) or sleeping sickness in humans and African animal trypanosomosis (AAT) or nagana in animals. Due to the lack of effective vaccines and inexpensive drugs for HAT, and the development of resistance of the trypanosomes against the available trypanocidal drugs, vector control remains the most efficient strategy for sustainable management of these diseases. Among the control methods used for tsetse flies, Sterile Insect Technique (SIT), in the frame of area-wide integrated pest management (AW-IPM), represents an effective tactic to suppress and/or eradicate tsetse flies. One constraint in implementing SIT is the mass production of target species. Tsetse flies harbor obligate bacterial symbionts and salivary gland hypertrophy virus which modulate the fecundity of the infected flies. In support of the future expansion of the SIT for tsetse fly control, the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture implemented a six year Coordinated Research Project (CRP) entitled “Improving SIT for Tsetse Flies through Research on their Symbionts and Pathogens”. The consortium focused on the prevalence and the interaction between the bacterial symbionts and the virus, the development of strategies to manage virus infections in tsetse colonies, the use of entomopathogenic fungi to control tsetse flies in combination with SIT, and the development of symbiont-based strategies to control tsetse flies and trypanosomosis. The results of the CRP and the solutions envisaged to alleviate the constraints of the mass rearing of tsetse flies for SIT are presented in this special issue. PMID:22841636
Passivity-based Robust Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
This report provides a brief summary of the research work performed over the duration of the cooperative research agreement between NASA Langley Research Center and Kansas State University. The cooperative agreement which was originally for the duration the three years was extended by another year through no-cost extension in order to accomplish the goals of the project. The main objective of the research was to develop passivity-based robust control methodology for passive and non-passive aerospace systems. The focus of the first-year's research was limited to the investigation of passivity-based methods for the robust control of Linear Time-Invariant (LTI) single-input single-output (SISO), open-loop stable, minimum-phase non-passive systems. The second year's focus was mainly on extending the passivity-based methodology to a larger class of non-passive LTI systems which includes unstable and nonminimum phase SISO systems. For LTI non-passive systems, five different passification. methods were developed. The primary effort during the years three and four was on the development of passification methodology for MIMO systems, development of methods for checking robustness of passification, and developing synthesis techniques for passifying compensators. For passive LTI systems optimal synthesis procedure was also developed for the design of constant-gain positive real controllers. For nonlinear passive systems, numerical optimization-based technique was developed for the synthesis of constant as well as time-varying gain positive-real controllers. The passivity-based control design methodology developed during the duration of this project was demonstrated by its application to various benchmark examples. These example systems included longitudinal model of an F-18 High Alpha Research Vehicle (HARV) for pitch axis control, NASA's supersonic transport wind tunnel model, ACC benchmark model, 1-D acoustic duct model, piezo-actuated flexible link model, and NASA's Benchmark Active Controls Technology (BACT) Wing model. Some of the stability results for linear passive systems were also extended to nonlinear passive systems. Several publications and conference presentations resulted from this research.
Enabling Technologies for Microfluidic Flow Control and Detection
NASA Astrophysics Data System (ADS)
Leslie, Daniel Christopher
Advances in microfluidic technologies have expanded conventional chemical and biological techniques to the point where we can envision rapid, inexpensive and portable analysis. Among the numerous challenges in the development of portable, chip-based technologies are simple flow control and detection strategies, which will be essential to widespread acceptance and implementation at both the point-of-care and in locales with limited facilities/resources. The research presented in this dissertation is focused on the development of precise flow control techniques and new, simplified detection technologies aimed at addressing these challenges. An introduction to the concepts important to microfluidics and a brief history to the field are presented in Chapter 1. Chapter 2 will present the development of a technique for the precise control of small volumes of liquids, where well-studied electrical circuit concepts are employed to create frequency-dependent microfluidic circuits. In this system, elastomeric thin films act as fluidic capacitors and diodes, which, when combined with resistors (channels), make fluidic circuits that are described by analytical models. Metering of two separate chemical inputs with a single oscillatory pneumatic control line is demonstrated by combining simple fluidic circuits (i.e., band-pass filters) to significantly reduce the external hardware required for microfluidic flow control. In order to quantify multiple flow profiles in microfluidic circuits, a novel multiplexed flow measurement method using visible dyes is introduced in Chapter 3 and rapidly determines individual flow in connected channels, post-fabrication device quality and solution viscosity. Another thrust of this dissertation research has been to develop miniaturized bioanalytical systems. Chapter 4 describes the adaption of a nucleic-acid-tagged antibody protein detection reaction to a microfluidic platform for detection of down to 5 E. coli O157:H7 cells. Furthermore, a completely non-contact temperature control platform is developed in Chapter 5 for forensic human identification reactions, based on interferometric temperature sensing and infrared-mediated heating, which simplifies the microfluidic device and its operation. Finally, possible future directions are outlined in Chapter 6 including further simplification of microfluidic instrumentation.
Kinematically redundant robot manipulators
NASA Technical Reports Server (NTRS)
Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.
1987-01-01
Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.
Teleoperator/robot technology can help solve biomedical problems
NASA Technical Reports Server (NTRS)
Heer, E.; Bejczy, A. K.
1975-01-01
Teleoperator and robot technology appears to offer the possibility to apply these techniques to the benefit for the severely handicapped giving them greater self reliance and independence. Major problem areas in the development of prostheses and remotely controlled devices for the handicapped are briefly discussed, and the parallelism with problems in the development of teleoperator/robots identified. A brief description of specific ongoing and projected developments in the area of remotely controlled devices (wheelchairs and manipulators) is provided.
NASA Technical Reports Server (NTRS)
Hennessey, Michael P.; Huang, Paul C.; Bunnell, Charles T.
1989-01-01
An efficient approach to cartesian motion and force control of a 7 degree of freedom (DOF) manipulator is presented. It is based on extending the active stiffness controller to the 7 DOF case in general and use of an efficient version of the gradient projection technique for solving the inverse kinematics problem. Cooperative control is achieved through appropriate configuration of individual manipulator controllers. In addition, other aspects of trajectory generation using standard techniques are integrated into the controller. The method is then applied to a specific manipulator of interest (Robotics Research T-710). Simulation of the kinematics, dynamics, and control are provided in the context of several scenarios: one pertaining to a noncontact pick and place operation; one relating to contour following where contact is made between the manipulator and environment; and one pertaining to cooperative control.
International Instrumentation Symposium, 34th, Albuquerque, NM, May 2-6, 1988, Proceedings
NASA Astrophysics Data System (ADS)
Various papers on aerospace instrumentation are presented. The general topics addressed include: blast and shock, wind tunnel instrumentations and controls, digital/optical sensors, software design/development, special test facilities, fiber optic techniques, electro/fiber optical measurement systems, measurement uncertainty, real time systems, pressure. Also discussed are: flight test and avionics instrumentation, data acquisition techniques, computer applications, thermal force and displacement, science and government, modeling techniques, reentry vehicle testing, strain and pressure.
Identification of Low Order Equivalent System Models From Flight Test Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2000-01-01
Identification of low order equivalent system dynamic models from flight test data was studied. Inputs were pilot control deflections, and outputs were aircraft responses, so the models characterized the total aircraft response including bare airframe and flight control system. Theoretical investigations were conducted and related to results found in the literature. Low order equivalent system modeling techniques using output error and equation error parameter estimation in the frequency domain were developed and validated on simulation data. It was found that some common difficulties encountered in identifying closed loop low order equivalent system models from flight test data could be overcome using the developed techniques. Implications for data requirements and experiment design were discussed. The developed methods were demonstrated using realistic simulation cases, then applied to closed loop flight test data from the NASA F-18 High Alpha Research Vehicle.
NASA Astrophysics Data System (ADS)
Zan, Tao; Wang, Min; Hu, Jianzhong
2010-12-01
Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.
Reliable dual-redundant sensor failure detection and identification for the NASA F-8 DFBW aircraft
NASA Technical Reports Server (NTRS)
Deckert, J. C.; Desai, M. N.; Deyst, J. J., Jr.; Willsky, A. S.
1978-01-01
A technique was developed which provides reliable failure detection and identification (FDI) for a dual redundant subset of the flight control sensors onboard the NASA F-8 digital fly by wire (DFBW) aircraft. The technique was successfully applied to simulated sensor failures on the real time F-8 digital simulator and to sensor failures injected on telemetry data from a test flight of the F-8 DFBW aircraft. For failure identification the technique utilized the analytic redundancy which exists as functional and kinematic relationships among the various quantities being measured by the different control sensor types. The technique can be used not only in a dual redundant sensor system, but also in a more highly redundant system after FDI by conventional voting techniques reduced to two the number of unfailed sensors of a particular type. In addition the technique can be easily extended to the case in which only one sensor of a particular type is available.
Low-Cost Quality Control and Nondestructive Evaluation Technologies for General Aviation Structures
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Gavinsky, Bob; Semanskee, Grant
1998-01-01
NASA's Advanced General Aviation Transport Experiments (AGATE) Program has as a goal to reduce the overall cost of producing private aviation aircraft while maintaining the safety of these aircraft. In order to successfully meet this goal, it is necessary to develop nondestructive inspection techniques which will facilitate the production of the materials used in these aircraft and assure the quality necessary to maintain airworthiness. This paper will discuss a particular class of general aviation materials and several nondestructive inspection techniques that have proven effective for making these inspections. Additionally, this paper will discuss the investigation and application of other commercially available quality control techniques applicable to these structures.
Modeling and managing risk early in software development
NASA Technical Reports Server (NTRS)
Briand, Lionel C.; Thomas, William M.; Hetmanski, Christopher J.
1993-01-01
In order to improve the quality of the software development process, we need to be able to build empirical multivariate models based on data collectable early in the software process. These models need to be both useful for prediction and easy to interpret, so that remedial actions may be taken in order to control and optimize the development process. We present an automated modeling technique which can be used as an alternative to regression techniques. We show how it can be used to facilitate the identification and aid the interpretation of the significant trends which characterize 'high risk' components in several Ada systems. Finally, we evaluate the effectiveness of our technique based on a comparison with logistic regression based models.
FY 2002 Report on Software Visualization Techniques for IV and V
NASA Technical Reports Server (NTRS)
Fotta, Michael E.
2002-01-01
One of the major challenges software engineers often face in performing IV&V is developing an understanding of a system created by a development team they have not been part of. As budgets shrink and software increases in complexity, this challenge will become even greater as these software engineers face increased time and resource constraints. This research will determine which current aspects of providing this understanding (e.g., code inspections, use of control graphs, use of adjacency matrices, requirements traceability) are critical to the performing IV&V and amenable to visualization techniques. We will then develop state-of-the-art software visualization techniques to facilitate the use of these aspects to understand software and perform IV&V.
GVE-Based Dynamics and Control for Formation Flying Spacecraft
NASA Technical Reports Server (NTRS)
Breger, Louis; How, Jonathan P.
2004-01-01
Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.
Bioengineering approaches to controlled protein delivery.
Kobsa, Serge; Saltzman, W Mark
2008-05-01
Proteins are of crucial importance in all biologic organisms, in terms of both structure and function. Their deficits play central roles in many pathologic states, and their potential as powerful therapeutic agents has been widely recognized. Many issues, however, exist in delivery of biologically active proteins to target tissues and organs. Recent advances in biomedical engineering have lead to development of advanced techniques for controlled delivery of peptides and proteins, paving the way for their efficient use in treating human injury and disease. With a particular emphasis on most recent advances, this review discusses currently available techniques for controlled delivery of proteins and considers future research directions.
Adding control to arbitrary unknown quantum operations
Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.
2011-01-01
Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242
Potential Biomarkers and Their Applications for Rapid and Reliable Detection of Malaria
Jain, Priyamvada; Chakma, Babina; Patra, Sanjukta; Goswami, Pranab
2014-01-01
Malaria has been responsible for the highest mortality in most malaria endemic countries. Even after decades of malaria control campaigns, it still persists as a disease of high mortality due to improper diagnosis and rapidly evolving drug resistant malarial parasites. For efficient and economical malaria management, WHO recommends that all malaria suspected patients should receive proper diagnosis before administering drugs. It is thus imperative to develop fast, economical, and accurate techniques for diagnosis of malaria. In this regard an in-depth knowledge on malaria biomarkers is important to identify an appropriate biorecognition element and utilize it prudently to develop a reliable detection technique for diagnosis of the disease. Among the various biomarkers, plasmodial lactate dehydrogenase and histidine-rich protein II (HRP II) have received increasing attention for developing rapid and reliable detection techniques for malaria. The widely used rapid detection tests (RDTs) for malaria succumb to many drawbacks which promotes exploration of more efficient economical detection techniques. This paper provides an overview on the current status of malaria biomarkers, along with their potential utilization for developing different malaria diagnostic techniques and advanced biosensors. PMID:24804253
NASA Technical Reports Server (NTRS)
Halyo, N.
1976-01-01
A digital automatic control law to capture a steep glideslope and track the glideslope to a specified altitude is developed for the longitudinal/vertical dynamics of a CTOL aircraft using modern estimation and control techniques. The control law uses a constant gain Kalman filter to process guidance information from the microwave landing system, and acceleration from body mounted accelerometer data. The filter outputs navigation data and wind velocity estimates which are used in controlling the aircraft. Results from a digital simulation of the aircraft dynamics and the control law are presented for various wind conditions.
Padilla-Valverde, David; Sanchez-Garcia, Susana; García-Santos, Esther; Marcote-Ibañez, Carlos; Molina-Robles, Mercedes; Martín-Fernández, Jesús; Villarejo-Campos, Pedro
2016-09-30
To determine the effectiveness of thermography to control the distribution of abdominal temperature in the development of a closed chemohyperthermia model. For thermographic analysis, we divided the abdominopelvic cavity into nine regions according to a modification of carcinomatosis peritoneal index. A difference of 2.5 °C between and within the quadrants, and thermographic colours, were used as asymmetric criteria. Preclinical study:· Rats Model: Six athymic nude rats, male, rnu/rnu. They were treated with closed technique and open technique. Porcine Model: 12 female large white pigs. Four were treated with open technique and eight with closed recirculation CO 2 technique. Clinical Pilot Study, EUDRACT 2011-006319-69: 18 patients with ovarian cancer were treated with cytoreductive surgery and hyperthermia intraperitoneal chemotherapy, HIPEC, with a closed recirculating CO 2 system. Thermographic control and intra-abdominal temperature assessment was performed at the baseline, when outflow temperature reached 41 °C, and at 30´. The thermographic images showed a higher homogeneity of the intra-abdominal temperature in the closed model respect to the open technique. The thermogram showed a temperature distribution homogeneity when starting the circulation of chemotherapy. There was correlation between the temperature thermographic map in the closed porcine model and pilot study, and reached inflow and outflow temperatures, at half time of HIPEC, of 42/41.4 °C and 42 ± 0.2/41 ± 0.8 °C, respectively. There was no significant impact to the core temperature of patients after reaching the homogeneous temperature distribution. To control homogeneity of temperature distribution is feasible using infra-red digital images in a closed HIPEC with CO 2 recirculation.
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1975-01-01
A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.
Control methodologies for large space structures
NASA Technical Reports Server (NTRS)
Mcree, G. J.; Altonji, E.
1984-01-01
The objectives of this research were to develop techniques of controlling a dc-motor driven flywheel which would apply torque to the structure to which it was mounted. The motor control system was to be implemented using a microprocessor based controller. The purpose of the torque applied by this system was to dampen oscillations of the structure to which it was mounted. Before the work was terminated due to the unavailability of equipment, a system was developed and partially tested which would provide tight control of the flywheel velocity when it received a velocity command in the form of a voltage. The procedure followed in this development was to first model the motor and flywheel system on an analog computer. Prior to the time the microprocessor development system was available, an analog control loop was replaced by the microprocessor and the system was partially tested.
The design and implementation of hydrographical information management system (HIMS)
NASA Astrophysics Data System (ADS)
Sui, Haigang; Hua, Li; Wang, Qi; Zhang, Anming
2005-10-01
With the development of hydrographical work and information techniques, the large variety of hydrographical information including electronic charts, documents and other materials are widely used, and the traditional management mode and techniques are unsuitable for the development of the Chinese Marine Safety Administration Bureau (CMSAB). How to manage all kinds of hydrographical information has become an important and urgent problem. A lot of advanced techniques including GIS, RS, spatial database management and VR techniques are introduced for solving these problems. Some design principles and key techniques of the HIMS including the mixed mode base on B/S, C/S and stand-alone computer mode, multi-source & multi-scale data organization and management, multi-source data integration and diverse visualization of digital chart, efficient security control strategies are illustrated in detail. Based on the above ideas and strategies, an integrated system named Hydrographical Information Management System (HIMS) was developed. And the HIMS has been applied in the Shanghai Marine Safety Administration Bureau and obtained good evaluation.
NASA Technical Reports Server (NTRS)
Palmer, Peter T.; Wong, C. M.; Salmonson, J. D.; Yost, R. A.; Griffin, T. P.; Yates, N. A.; Lawless, James G. (Technical Monitor)
1994-01-01
The utility of MS/MS for both target compound analysis and the structure elucidation of unknowns has been described in a number of references. A broader acceptance of this technique has not yet been realized as it requires large, complex, and costly instrumentation which has not been competitive with more conventional techniques. Recent advancements in ion trap mass spectrometry promise to change this situation. Although the ion trap's small size, sensitivity, and ability to perform multiple stages of mass spectrometry have made it eminently suitable for on-line, real-time monitoring applications, advance automation techniques are required to make these capabilities more accessible to non-experts. Towards this end we have developed custom software for the design and implementation of MS/MS experiments. This software allows the user to take full advantage of the ion trap's versatility with respect to ionization techniques, scan proxies, and ion accumulation/ejection methods. Additionally, expert system software has been developed for autonomous target compound analysis. This software has been linked to ion trap control software and a commercial data system to bring all of the steps in the analysis cycle under control of the expert system. These software development efforts and their utilization for a number of trace analysis applications will be described.
The integrated manual and automatic control of complex flight systems
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
Development of a unified control synthesis methodology for complex and/or non-conventional flight vehicles, and prediction techniques for the handling characteristics of such vehicles are reported. Identification of pilot dynamics and objectives, using time domain and frequency domain methods is proposed.
Application of Green Infrastructure for Combined Sewer Overflow Kansas City, MO
Advanced design concepts such as Low Impact Development (LID) and Green Solutions (or upland runoff control techniques) are currently being encouraged by the United States Environmental Protection Agency (EPA) as a management practice to contain and control stormwater at the lot ...
Model reduction methods for control design
NASA Technical Reports Server (NTRS)
Dunipace, K. R.
1988-01-01
Several different model reduction methods are developed and detailed implementation information is provided for those methods. Command files to implement the model reduction methods in a proprietary control law analysis and design package are presented. A comparison and discussion of the various reduction techniques is included.
ERIC Educational Resources Information Center
Yates, Christopher
Perhaps the most significant development in microcomputer technology over the last two years has been the development of desktop publishing techniques. This technology promises to offer some significant advantages to institutions developing instructional materials in less developed countries, particularly in terms of control, cost effectiveness,…
Mofid, Omid; Mobayen, Saleh
2018-01-01
Adaptive control methods are developed for stability and tracking control of flight systems in the presence of parametric uncertainties. This paper offers a design technique of adaptive sliding mode control (ASMC) for finite-time stabilization of unmanned aerial vehicle (UAV) systems with parametric uncertainties. Applying the Lyapunov stability concept and finite-time convergence idea, the recommended control method guarantees that the states of the quad-rotor UAV are converged to the origin with a finite-time convergence rate. Furthermore, an adaptive-tuning scheme is advised to guesstimate the unknown parameters of the quad-rotor UAV at any moment. Finally, simulation results are presented to exhibit the helpfulness of the offered technique compared to the previous methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Uncontrolled populations of Aedes aegypti pose a significant public health-risk to humans as a vector of dangerous arboviruses in most of the tropical and much of the temperate regions of the world. Aedes aegypti are difficult to control because they exploit abundant artificial containers around ho...
Development and evaluation of vision rehabilitation devices.
Luo, Gang; Peli, Eli
2011-01-01
We have developed a range of vision rehabilitation devices and techniques for people with impaired vision due to either central vision loss or severely restricted peripheral visual field. We have conducted evaluation studies with patients to test the utilities of these techniques in an effort to document their advantages as well as their limitations. Here we describe our work on a visual field expander based on a head mounted display (HMD) for tunnel vision, a vision enhancement device for central vision loss, and a frequency domain JPEG/MPEG based image enhancement technique. All the evaluation studies included visual search paradigms that are suitable for conducting indoor controllable experiments.
Modelling a single phase voltage controlled rectifier using Laplace transforms
NASA Technical Reports Server (NTRS)
Kraft, L. Alan; Kankam, M. David
1992-01-01
The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.
An Airborne Parachute Compartment Test Bed for the Orion Parachute Test Program
NASA Technical Reports Server (NTRS)
Moore, James W.; Romero, Leah M.
2013-01-01
The test program developing parachutes for the Orion/MPCV includes drop tests with parachutes deployed from an Orion-like parachute compartment at a wide range of dynamic pressures. Aircraft and altitude constraints precluded the use of an Orion boilerplate capsule for several test points. Therefore, a dart-shaped test vehicle with a hi-fidelity mock-up of the Orion parachute compartment has been developed. The available aircraft options imposed constraints on the test vehicle development and concept of operations. Delivery of this test vehicle to the desired velocity, altitude, and orientation required for the test is a di cult problem involving multiple engineering disciplines. This paper describes the development of the test technique. The engineering challenges include extraction from an aircraft, reposition of the extraction parachute, and mid-air separation of two vehicles, neither of which has an active attitude control system. The desired separation behavior is achieved by precisely controlling the release point using on-board monitoring of the motion. The design of the test vehicle is also described. The trajectory simulations and other analyses used to develop this technique and predict the behavior of the test vehicle are reviewed in detail. The application of the technique on several successful drop tests is summarized.
Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.
Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan
2014-07-28
Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.
Prakash, Punit; Salgaonkar, Vasant A.; Diederich, Chris J.
2014-01-01
Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in in device design and optimization, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modeling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimization of inverse treatment plans are presented. PMID:23738697
Melt Flow Control in the Directional Solidification of Binary Alloys
NASA Technical Reports Server (NTRS)
Zabaras, Nicholas
2003-01-01
Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.
Spangler, L.H.; Dobeck, L.M.; Repasky, K.S.; Nehrir, A.R.; Humphries, S.D.; Keith, C.J.; Shaw, J.A.; Rouse, J.H.; Cunningham, A.B.; Benson, S.M.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.W.; Diehl, J.R.; Strazisar, B.R.; Fessenden, J.E.; Rahn, T.A.; Amonette, J.E.; Barr, J.L.; Pickles, W.L.; Jacobson, J.D.; Silver, E.A.; Male, E.J.; Rauch, H.W.; Gullickson, K.S.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.
2010-01-01
A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented. ?? 2009 The Author(s).
Development of a stereofluoroscopy system
NASA Technical Reports Server (NTRS)
Rivers, D. B.
1979-01-01
A technique of 3-D video imaging, was developed for use on manned missions for observation and control of remote manipulators. An improved medical diagnostic fluoroscope with a stereo, real-time output was also developed. An explanation of how this system works, and recommendations for future work in this area are presented.
Control algorithms for aerobraking in the Martian atmosphere
NASA Technical Reports Server (NTRS)
Ward, Donald T.; Shipley, Buford W., Jr.
1991-01-01
The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.
NASA Technical Reports Server (NTRS)
Wong, K. W.
1974-01-01
In lunar phototriangulation, there is a complete lack of accurate ground control points. The accuracy analysis of the results of lunar phototriangulation must, therefore, be completely dependent on statistical procedure. It was the objective of this investigation to examine the validity of the commonly used statistical procedures, and to develop both mathematical techniques and computer softwares for evaluating (1) the accuracy of lunar phototriangulation; (2) the contribution of the different types of photo support data on the accuracy of lunar phototriangulation; (3) accuracy of absolute orientation as a function of the accuracy and distribution of both the ground and model points; and (4) the relative slope accuracy between any triangulated pass points.
Intelligent Traffic Quantification System
NASA Astrophysics Data System (ADS)
Mohanty, Anita; Bhanja, Urmila; Mahapatra, Sudipta
2017-08-01
Currently, city traffic monitoring and controlling is a big issue in almost all cities worldwide. Vehicular ad-hoc Network (VANET) technique is an efficient tool to minimize this problem. Usually, different types of on board sensors are installed in vehicles to generate messages characterized by different vehicle parameters. In this work, an intelligent system based on fuzzy clustering technique is developed to reduce the number of individual messages by extracting important features from the messages of a vehicle. Therefore, the proposed fuzzy clustering technique reduces the traffic load of the network. The technique also reduces congestion and quantifies congestion.
Rocket nozzle thermal shock tests in an arc heater facility
NASA Technical Reports Server (NTRS)
Painter, James H.; Williamson, Ronald A.
1986-01-01
A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.
Experimental confirmation of a PDE-based approach to design of feedback controls
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Silcox, R. J.; Metcalf, Vern L.
1995-01-01
Issues regarding the experimental implementation of partial differential equation based controllers are discussed in this work. While the motivating application involves the reduction of vibration levels for a circular plate through excitation of surface-mounted piezoceramic patches, the general techniques described here will extend to a variety of applications. The initial step is the development of a PDE model which accurately captures the physics of the underlying process. This model is then discretized to yield a vector-valued initial value problem. Optimal control theory is used to determine continuous-time voltages to the patches, and the approximations needed to facilitate discrete time implementation are addressed. Finally, experimental results demonstrating the control of both transient and steady state vibrations through these techniques are presented.
Compact Microscope Imaging System With Intelligent Controls Improved
NASA Technical Reports Server (NTRS)
McDowell, Mark
2004-01-01
The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.
On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system
NASA Astrophysics Data System (ADS)
Hajipour, Ahamad; Hajipour, Mojtaba; Baleanu, Dumitru
2018-05-01
This manuscript mainly focuses on the construction, dynamic analysis and control of a new fractional-order financial system. The basic dynamical behaviors of the proposed system are studied such as the equilibrium points and their stability, Lyapunov exponents, bifurcation diagrams, phase portraits of state variables and the intervals of system parameters. It is shown that the system exhibits hyperchaotic behavior for a number of system parameters and fractional-order values. To stabilize the proposed hyperchaotic fractional system with uncertain dynamics and disturbances, an efficient adaptive sliding mode controller technique is developed. Using the proposed technique, two hyperchaotic fractional-order financial systems are also synchronized. Numerical simulations are presented to verify the successful performance of the designed controllers.
Model and controller reduction of large-scale structures based on projection methods
NASA Astrophysics Data System (ADS)
Gildin, Eduardo
The design of low-order controllers for high-order plants is a challenging problem theoretically as well as from a computational point of view. Frequently, robust controller design techniques result in high-order controllers. It is then interesting to achieve reduced-order models and controllers while maintaining robustness properties. Controller designed for large structures based on models obtained by finite element techniques yield large state-space dimensions. In this case, problems related to storage, accuracy and computational speed may arise. Thus, model reduction methods capable of addressing controller reduction problems are of primary importance to allow the practical applicability of advanced controller design methods for high-order systems. A challenging large-scale control problem that has emerged recently is the protection of civil structures, such as high-rise buildings and long-span bridges, from dynamic loadings such as earthquakes, high wind, heavy traffic, and deliberate attacks. Even though significant effort has been spent in the application of control theory to the design of civil structures in order increase their safety and reliability, several challenging issues are open problems for real-time implementation. This dissertation addresses with the development of methodologies for controller reduction for real-time implementation in seismic protection of civil structures using projection methods. Three classes of schemes are analyzed for model and controller reduction: nodal truncation, singular value decomposition methods and Krylov-based methods. A family of benchmark problems for structural control are used as a framework for a comparative study of model and controller reduction techniques. It is shown that classical model and controller reduction techniques, such as balanced truncation, modal truncation and moment matching by Krylov techniques, yield reduced-order controllers that do not guarantee stability of the closed-loop system, that is, the reduced-order controller implemented with the full-order plant. A controller reduction approach is proposed such that to guarantee closed-loop stability. It is based on the concept of dissipativity (or positivity) of linear dynamical systems. Utilizing passivity preserving model reduction together with dissipative-LQG controllers, effective low-order optimal controllers are obtained. Results are shown through simulations.
NASA Technical Reports Server (NTRS)
Patten, William Neff
1989-01-01
There is an evident need to discover a means of establishing reliable, implementable controls for systems that are plagued by nonlinear and, or uncertain, model dynamics. The development of a generic controller design tool for tough-to-control systems is reported. The method utilizes a moving grid, time infinite element based solution of the necessary conditions that describe an optimal controller for a system. The technique produces a discrete feedback controller. Real time laboratory experiments are now being conducted to demonstrate the viability of the method. The algorithm that results is being implemented in a microprocessor environment. Critical computational tasks are accomplished using a low cost, on-board, multiprocessor (INMOS T800 Transputers) and parallel processing. Progress to date validates the methodology presented. Applications of the technique to the control of highly flexible robotic appendages are suggested.
Chihi, Asma; Ben Azza, Hechmi; Jemli, Mohamed; Sellami, Anis
2017-09-01
The aim of this paper is to provide high performance control of pumping system. The proposed method is designed by an indirect field oriented control based on Sliding Mode (SM) technique. The first contribution of this work is to design modified switching surfaces which presented by adding an integral action to the considered controlled variables. Then, in order to prevent the chattering phenomenon, modified nonlinear component is developed. The SM concept and a Lyapunov function are combined to compute the Sliding Mode Control (SMC) gains. Besides, the motor performance is validated by numeric simulations and real time implementation using a dSpace system with DS1104 controller board. Also, to show the effectiveness of the proposed approach, the obtained results are compared with other techniques such as conventional PI, Proportional Sliding Mode (PSM) and backstepping controls. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy Adaptive Control Design and Discretization for a Class of Nonlinear Uncertain Systems.
Zhao, Xudong; Shi, Peng; Zheng, Xiaolong
2016-06-01
In this paper, tracking control problems are investigated for a class of uncertain nonlinear systems in lower triangular form. First, a state-feedback controller is designed by using adaptive backstepping technique and the universal approximation ability of fuzzy logic systems. During the design procedure, a developed method with less computation is proposed by constructing one maximum adaptive parameter. Furthermore, adaptive controllers with nonsymmetric dead-zone are also designed for the systems. Then, a sampled-data control scheme is presented to discretize the obtained continuous-time controller by using the forward Euler method. It is shown that both proposed continuous and discrete controllers can ensure that the system output tracks the target signal with a small bounded error and the other closed-loop signals remain bounded. Two simulation examples are presented to verify the effectiveness and applicability of the proposed new design techniques.
NASA Astrophysics Data System (ADS)
Wieczorek, Piotr; Ligor, Magdalena; Buszewski, Bogusław
Electromigration techniques, including capillary electrophoresis (CE), are widely used for separation and identification of compounds present in food products. These techniques may also be considered as alternate and complementary with respect to commonly used analytical techniques, such as high-performance liquid chromatography (HPLC), or gas chromatography (GC). Applications of CE concern the determination of high-molecular compounds, like polyphenols, including flavonoids, pigments, vitamins, food additives (preservatives, antioxidants, sweeteners, artificial pigments) are presented. Also, the method developed for the determination of proteins and peptides composed of amino acids, which are basic components of food products, are studied. Other substances such as carbohydrates, nucleic acids, biogenic amines, natural toxins, and other contaminations including pesticides and antibiotics are discussed. The possibility of CE application in food control laboratories, where analysis of the composition of food and food products are conducted, is of great importance. CE technique may be used during the control of technological processes in the food industry and for the identification of numerous compounds present in food. Due to the numerous advantages of the CE technique it is successfully used in routine food analysis.
Kirschvink, Joseph L.; Winklhofer, Michael; Walker, Michael M.
2010-01-01
The first demonstrations of magnetic effects on the behaviour of migratory birds and homing pigeons in laboratory and field experiments, respectively, provided evidence for the longstanding hypothesis that animals such as birds that migrate and home over long distances would benefit from possession of a magnetic sense. Subsequent identification of at least two plausible biophysical mechanisms for magnetoreception in animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, led to major efforts over recent decades to test predictions of the two models, as well as efforts to understand the ultrastructure and function of the possible magnetoreceptor cells. Unfortunately, progress in understanding the magnetic sense has been challenged by: (i) the availability of a relatively small number of techniques for analysing behavioural responses to magnetic fields by animals; (ii) difficulty in achieving reproducible results using the techniques; and (iii) difficulty in development and implementation of new techniques that might bring greater experimental power. As a consequence, laboratory and field techniques used to study the magnetic sense today remain substantially unchanged, despite the huge developments in technology and instrumentation since the techniques were developed in the 1950s. New methods developed for behavioural study of the magnetic sense over the last 30 years include the use of laboratory conditioning techniques and tracking devices based on transmission of radio signals to and from satellites. Here we consider methodological developments in the study of the magnetic sense and present suggestions for increasing the reproducibility and ease of interpretation of experimental studies. We recommend that future experiments invest more effort in automating control of experiments and data capture, control of stimulation and full blinding of experiments in the rare cases where automation is impossible. We also propose new experiments to confirm whether or not animals can detect magnetic fields using the radical-pair effect together with an alternate hypothesis that may explain the dependence on light of responses by animals to magnetic field stimuli. PMID:20071390
The wild huckleberries of Oregon and Washingtona dwindling resource.
Don Minore
1972-01-01
An estimated 160,000 acres support huckleberries in Oregon and Washington, but this area is dwindling as trees and shrubs invade the berry fields. Effective vegetation-control methods and huckleberry management techniques have not been developed. However, such techniques are available for the closely related eastern blueberries, and it may be possible to modify these...
An In-Process Surface Roughness Recognition System in End Milling Operations
ERIC Educational Resources Information Center
Yang, Lieh-Dai; Chen, Joseph C.
2004-01-01
To develop an in-process quality control system, a sensor technique and a decision-making algorithm need to be applied during machining operations. Several sensor techniques have been used in the in-process prediction of quality characteristics in machining operations. For example, an accelerometer sensor can be used to monitor the vibration of…
Determination of foliar uptake of water droplets on waxy leaves in controlled environmental system
USDA-ARS?s Scientific Manuscript database
Pertinent techniques for determination of plant cuticle permeability are needed to select proper doses of active ingredients and spray additives to improve pesticide application efficacy. A controlled environmental system with 100% relative humidity was developed for direct measurements of foliar up...
The Use of Decentralized Control in the Design of a Large Segmented Space Reflector
NASA Technical Reports Server (NTRS)
Ryaciotaki-Boussalis, Helen; Mirmirani, Maj; Rad, Khosrow; Morales, Mauricio; Velazquez, Efrain; Chassiakos, Anastasios; Luzardo, Jose-Alberto
1997-01-01
The 3-dimensional model for a segmented reflector telescope is developed using finite element techniques. The structure is decomposed into six subsystems. System control design using neural networks is performed. Performance evaluation is demonstrated via simulation using PRO-MATLAB and SIMULINK.
Research into language concepts for the mission control center
NASA Technical Reports Server (NTRS)
Dellenback, Steven W.; Barton, Timothy J.; Ratner, Jeremiah M.
1990-01-01
A final report is given on research into language concepts for the Mission Control Center (MCC). The Specification Driven Language research is described. The state of the image processing field and how image processing techniques could be applied toward automating the generation of the language known as COmputation Development Environment (CODE or Comp Builder) are discussed. Also described is the development of a flight certified compiler for Comps.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1994-01-01
During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.
Schaeffel, Frank; Simon, Perikles; Feldkaemper, Marita; Ohngemach, Sibylle; Williams, Robert W
2003-09-01
Experiments in animal models of myopia have emphasised the importance of visual input in emmetropisation but it is also evident that the development of human myopia is influenced to some degree by genetic factors. Molecular genetic approaches can help to identify both the genes involved in the control of ocular development and the potential targets for pharmacological intervention. This review covers a variety of techniques that are being used to study the molecular biology of myopia. In the first part, we describe techniques used to analyse visually induced changes in gene expression: Northern Blot, polymerase chain reaction (PCR) and real-time PCR to obtain semi-quantitative and quantitative measures of changes in transcription level of a known gene, differential display reverse transcription PCR (DD-RT-PCR) to search for new genes that are controlled by visual input, rapid amplification of 5' cDNA (5'-RACE) to extend the 5' end of sequences that are regulated by visual input, in situ hybridisation to localise the expression of a given gene in a tissue and oligonucleotide microarray assays to simultaneously test visually induced changes in thousands of transcripts in single experiments. In the second part, we describe techniques that are used to localise regions in the genome that contain genes that are involved in the control of eye growth and refractive errors in mice and humans. These include quantitative trait loci (QTL) mapping, exploiting experimental test crosses of mice and transmission disequilibrium tests (TDT) in humans to find chromosomal intervals that harbour genes involved in myopia development. We review several successful applications of this battery of techniques in myopia research.
Development of a Software Safety Process and a Case Study of Its Use
NASA Technical Reports Server (NTRS)
Knight, J. C.
1996-01-01
Research in the year covered by this reporting period has been primarily directed toward: continued development of mock-ups of computer screens for operator of a digital reactor control system; development of a reactor simulation to permit testing of various elements of the control system; formal specification of user interfaces; fault-tree analysis including software; evaluation of formal verification techniques; and continued development of a software documentation system. Technical results relating to this grant and the remainder of the principal investigator's research program are contained in various reports and papers.
2001-04-01
part of the following report: TITLE: New Information Processing Techniques for Military Systems [les Nouvelles techniques de traitement de l’information...rapidly developing information increasing amount of time is needed for gathering and technology has until now not yet resulted in a substantial...Information Processing Techniques for Military Systems", held in Istanbul, Turkey, 9-11 October 2000, and published in RTO MP-049. 23-2 organisations. The
Marr, Michelle; Baker, Julian; Lambon, Nicky; Perry, Jo
2011-07-01
The hamstring muscles are regularly implicated in recurrent injuries, movement dysfunction and low back pain. Links between limited flexibility and development of neuromusculoskeletal symptoms are frequently reported. The Bowen Technique is used to treat many conditions including lack of flexibility. The study set out to investigate the effect of the Bowen Technique on hamstring flexibility over time. An assessor-blind, prospective, randomised controlled trial was performed on 120 asymptomatic volunteers. Participants were randomly allocated into a control group or Bowen group. Three flexibility measurements occurred over one week, using an active knee extension test. The intervention group received a single Bowen treatment. A repeated measures univariate analysis of variance, across both groups for the three time periods, revealed significant within-subject and between-subject differences for the Bowen group. Continuing increases in flexibility levels were observed over one week. No significant change over time was noted for the control group. Copyright © 2010 Elsevier Ltd. All rights reserved.
Advance of Mechanically Controllable Break Junction for Molecular Electronics.
Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong
2017-06-01
Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.
Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang
2014-07-09
To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.
Qianting, Hu; Yunpei, Liang; Han, Wang; Quanle, Zou; Haitao, Sun
2017-07-01
Coalbed methane (CBM) recovery is a crucial approach to realize the exploitation of a clean energy and the reduction of the greenhouse gas emission. In the past 10 years, remarkable achievements on CBM recovery have been obtained in China. However, some key difficulties still exist such as long borehole drilling in complicated geological condition, and poor gas drainage effect due to low permeability. In this study, intelligent and integrated techniques for CBM recovery are introduced. These integrated techniques mainly include underground CBM recovery techniques and ground well CBM recovery techniques. The underground CBM recovery techniques consist of the borehole formation technique, gas concentration improvement technique, and permeability enhancement technique. According to the division of mining-induced disturbance area, the ground well arrangement area and well structure type in mining-induced disturbance developing area and mining-induced disturbance stable area are optimized to significantly improve the ground well CBM recovery. Besides, automatic devices such as drilling pipe installation device are also developed to achieve remote control of data recording, which makes the integrated techniques intelligent. These techniques can provide key solutions to some long-term difficulties in CBM recovery.
Using object-oriented analysis techniques to support system testing
NASA Astrophysics Data System (ADS)
Zucconi, Lin
1990-03-01
Testing of real-time control systems can be greatly facilitated by use of object-oriented and structured analysis modeling techniques. This report describes a project where behavior, process and information models built for a real-time control system were used to augment and aid traditional system testing. The modeling techniques used were an adaptation of the Ward/Mellor method for real-time systems analysis and design (Ward85) for object-oriented development. The models were used to simulate system behavior by means of hand execution of the behavior or state model and the associated process (data and control flow) and information (data) models. The information model, which uses an extended entity-relationship modeling technique, is used to identify application domain objects and their attributes (instance variables). The behavioral model uses state-transition diagrams to describe the state-dependent behavior of the object. The process model uses a transformation schema to describe the operations performed on or by the object. Together, these models provide a means of analyzing and specifying a system in terms of the static and dynamic properties of the objects which it manipulates. The various models were used to simultaneously capture knowledge about both the objects in the application domain and the system implementation. Models were constructed, verified against the software as-built and validated through informal reviews with the developer. These models were then hand-executed.
NASA Astrophysics Data System (ADS)
Cheng, Shaoyong; Xiu, Shixin; Wang, Jimei; Shen, Zhengchao
2006-11-01
The greenhouse effect of SF6 is a great concern today. The development of high voltage vacuum circuit breakers becomes more important. The vacuum circuit breaker has minimum pollution to the environment. The vacuum interrupter is the key part of a vacuum circuit breaker. The interrupting characteristics in vacuum and arc-controlling technique are the main problems to be solved for a longer gap distance in developing high voltage vacuum interrupters. To understand the vacuum arc characteristics and provide effective technique to control vacuum arc in a long gap distance, the arc mode transition of a cup-type axial magnetic field electrode is observed by a high-speed charge coupled device (CCD) video camera under different gap distances while the arc voltage and arc current are recorded. The controlling ability of the axial magnetic field on vacuum arc obviously decreases when the gap distance is longer than 40 mm. The noise components and mean value of the arc voltage significantly increase. The effective method for controlling the vacuum arc characteristics is provided by long gap distances based on the test results. The test results can be used as a reference to develop high voltage and large capacity vacuum interrupters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, S.K.; Kim, H.S.; Kim, C.G.
1998-05-01
a new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal fluxmore » distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results well demonstrate the effectiveness of the proposed control.« less
Progress in speckle-shift strain measurement
NASA Technical Reports Server (NTRS)
Lant, Christian T.; Barranger, John P.; Oberle, Lawrence G.; Greer, Lawrence C., III
1991-01-01
The Instrumentation and Control Technology Division of the Lewis Research Center has been developing an in-house capability to make one dimensional and two dimensional optical strain measurements on high temperature test specimens. The measurements are based on a two-beam speckle-shift technique. The development of composite materials for use in high temperature applications is generating interest in using the speckle-shift technique to measure strains on small diameter fibers and wires of various compositions. The results of preliminary speckle correlation tests on wire and fiber specimens are covered, and the advanced system currently under development is described.
Precomputed state dependent digital control of a nuclear rocket engine
NASA Technical Reports Server (NTRS)
Johnson, M. R.
1972-01-01
A control method applicable to multiple-input multiple-output nonlinear time-invariant systems in which desired behavior can be expressed explicitly as a trajectory in system state space is developed. The precomputed state dependent control method is basically a synthesis technique in which a suboptimal control law is developed off-line, prior to system operation. This law is obtained by conducting searches at a finite number of points in state space, in the vicinity of some desired trajectory, to obtain a set of constant control vectors which tend to return the system to the desired trajectory. These vectors are used to evaluate the unknown coefficients in a control law having an assumed hyperellipsoidal form. The resulting coefficients constitute the heart of the controller and are used in the on-line computation of control vectors. Two examples of PSDC are given prior to the more detailed description of the NERVA control system development.
NASA Astrophysics Data System (ADS)
Sherley, Patrick L.; Pujol, Alfonso, Jr.; Meadow, John S.
1990-07-01
To provide a means of rendering complex computer architectures languages and input/output modalities transparent to experienced and inexperienced users research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study an artificial intelligence (Al) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user the Al control strategy determines the user''s intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid the control strategy queries the user for additional information. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AT techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure. 1.
An investigation into the enhancement of sea-spray exposed fingerprints on glass.
Goldstone, S L; Francis, S C; Gardner, S J
2015-07-01
Fingerprints are considered one of the best forms of personal identification. While numerous enhancement techniques exist to develop fingerprints under various conditions, the enhancement of fingerprints exposed to sea spray aerosol (SSA) still remains problematic. 1056 fingerprints from four donors, using a depletion series and triplicate repeats, were deposited onto glass panels and exposed to SSA for 1 week and 1 month. Control prints were deposited in the same manner and left under laboratory conditions. All prints were enhanced using fingerprint enhancement techniques available to Forensic Police Officers and subsequently examined for identifiability by a Fingerprint Expert. Significantly fewer identifiable prints (p<0.01) were developed after exposure to SSA for 1 month (11%) compared to exposure for 1 week (69%) (compared to the control prints 99%) for all enhancement techniques. After 1 week's exposure, all techniques enhanced over 50% of prints, except SPR white (12%), with iron (III) oxide and Wetwop™ white producing over 90% identifiable prints. Only iron (III) oxide, Wetwop™ white and SPR black returned any identifiable prints following 1 month's SSA exposure. Iron (III) oxide being significantly better (p<0.01, 67%) than the other techniques. Iron (III) oxide suspension and Wetwop™ white were found to be superior at enhancing prints at both SSA exposure times. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Programmable calculator as a data system controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, A.W.; Strasburg, A.C.
Digital data techniques are in common use for analysis of analog information obtained in various tests, and systems have been developed which use a minicomputer as the central controller and data processor. Now, microprocessors allow new design approaches at considerably less cost. This report outlines an approach to system design based on the use of a programmable calculator as the data system controller. A block diagram of the calculator-controlled data system is shown. It was found that the programmable calculator provides a viable alternative to minicomputers or microprocessors for the development laboratory requiring digital data processing. 3 figures. (RWR)
Use of nanoscale mechanical stimulation for control and manipulation of cell behaviour.
Childs, Peter G; Boyle, Christina A; Pemberton, Gabriel D; Nikukar, Habib; Curtis, Adam S G; Henriquez, Fiona L; Dalby, Matthew J; Reid, Stuart
2016-04-01
The ability to control cell behaviour, cell fate and simulate reliable tissue models in vitro remains a significant challenge yet is crucial for various applications of high throughput screening e.g. drug discovery. Mechanotransduction (the ability of cells to convert mechanical forces in their environment to biochemical signalling) represents an alternative mechanism to attain this control with such studies developing techniques to reproducibly control the mechanical environment in techniques which have potential to be scaled. In this review, the use of techniques such as finite element modelling and precision interferometric measurement are examined to provide context for a novel technique based on nanoscale vibration, also known as "nanokicking". Studies have shown this stimulus to alter cellular responses in both endothelial and mesenchymal stem cells (MSCs), particularly in increased proliferation rate and induced osteogenesis respectively. Endothelial cell lines were exposed to nanoscale vibration amplitudes across a frequency range of 1-100 Hz, and MSCs primarily at 1 kHz. This technique provides significant potential benefits over existing technologies, as cellular responses can be initiated without the use of expensive engineering techniques and/or chemical induction factors. Due to the reproducible and scalable nature of the apparatus it is conceivable that nanokicking could be used for controlling cell behaviour within a wide array of high throughput procedures in the research environment, within drug discovery, and for clinical/therapeutic applications. The results discussed within this article summarise the potential benefits of using nanoscale vibration protocols for controlling cell behaviour. There is a significant need for reliable tissue models within the clinical and pharma industries, and the control of cell behaviour and stem cell differentiation would be highly beneficial. The full potential of this method of controlling cell behaviour has not yet been realised. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Applications of active adaptive noise control to jet engines
NASA Technical Reports Server (NTRS)
Shoureshi, Rahmat; Brackney, Larry
1993-01-01
During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.
Development of Plant Control Diagnosis Technology and Increasing Its Applications
NASA Astrophysics Data System (ADS)
Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru
A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.
Privacy-protecting video surveillance
NASA Astrophysics Data System (ADS)
Wickramasuriya, Jehan; Alhazzazi, Mohanned; Datt, Mahesh; Mehrotra, Sharad; Venkatasubramanian, Nalini
2005-02-01
Forms of surveillance are very quickly becoming an integral part of crime control policy, crisis management, social control theory and community consciousness. In turn, it has been used as a simple and effective solution to many of these problems. However, privacy-related concerns have been expressed over the development and deployment of this technology. Used properly, video cameras help expose wrongdoing but typically come at the cost of privacy to those not involved in any maleficent activity. This work describes the design and implementation of a real-time, privacy-protecting video surveillance infrastructure that fuses additional sensor information (e.g. Radio-frequency Identification) with video streams and an access control framework in order to make decisions about how and when to display the individuals under surveillance. This video surveillance system is a particular instance of a more general paradigm of privacy-protecting data collection. In this paper we describe in detail the video processing techniques used in order to achieve real-time tracking of users in pervasive spaces while utilizing the additional sensor data provided by various instrumented sensors. In particular, we discuss background modeling techniques, object tracking and implementation techniques that pertain to the overall development of this system.
Magnetic suspension system for an Annular Momentum Control Device (AMCD)
NASA Technical Reports Server (NTRS)
1979-01-01
A technique to control a rim suspended in a magnetic field was developed. A complete system was developed, incorporating a support structure, magnetic actuators, a rim drive mechanism, an emergency fail-safe system, servo control system, and control electronics. Open loop and closed loop response of the system at zero speed and at 500 revolutions per minute (r/min) of the rim was obtained and analyzed. The rim was then dynamically balanced and a rim speed of 725 r/min was achieved. An analog simulation of the hardware was developed and tested with the actual control electronics connected to the analog computer. The system under development is stable at rim speeds below 700 r/min. Test results indicate that the rim under test is not rigid. The rim has a warp and a number of binding modes which prevented achievement of higher speeds. Further development efforts are required to achieve higher rim speeds.
Research and development activities in unified control-structure modeling and design
NASA Technical Reports Server (NTRS)
Nayak, A. P.
1985-01-01
Results of work sponsored by JPL and other organizations to develop a unified control/structures modeling and design capability for large space structures is presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. The development of a methodology for global design optimization is recommended as a long term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization. Recommendations are also presented for near term research activities at JPL. The key recommendation is to continue the development of integrated dynamic modeling/control design techniques, with special attention given to the development of structural models specially tailored to support design.
Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime
2010-01-01
This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks.
NASA Astrophysics Data System (ADS)
Massioni, Paolo; Massari, Mauro
2018-05-01
This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as "Sum Of Squares" (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.
Towards an integrated quality control procedure for eddy-covariance data
NASA Astrophysics Data System (ADS)
Vitale, Domenico; Papale, Dario
2017-04-01
The eddy-covariance technique is nowadays the most reliable and direct way, allowing to calculate the main fluxes of Sensible and Latent Heat and of Net Ecosystem Exchange, this last being the result of the difference between the CO2 assimilated by photosynthetic activities and those released to the atmosphere through the ecosystem respiration processes. Despite the improvements in accuracy of measurement instruments and software development, the eddy-covariance technique is not suitable under non-ideal conditions respect to the instruments characteristics and the physical assumption behind the technique mainly related to the well-developed and stationary turbulence conditions. Under these conditions the calculated fluxes are not reliable and need to be flagged and discarded. In order to discover these unavoidable "bad" fluxes and build dataset with the highest quality, several tests applied both on high-frequency (10-20 Hz) raw data and on half-hourly times series have been developed in the past years. Nevertheless, there is an increasing need to develop a standardized quality control procedure suitable not only for the analysis of long-term data, but also for the near-real time data processing. In this paper, we review established quality assessment procedures and present an innovative quality control strategy with the purpose of integrating the existing consolidated procedures with robust and advanced statistical tests more suitable for the analysis of time series data. The performance of the proposed quality control strategy is evaluated both on simulated and EC data distributed by the ICOS research infrastructure. It is concluded that the proposed strategy is able to flag and exclude unrealistic fluxes while being reproducible and retaining the largest possible amount of high quality data.
[GERD: endoscopic antireflux therapies].
Caca, K
2006-08-02
A couple of minimally-invasive, endoscopic antireflux procedures have been developed during the last years. Beside endoscopic suturing these included injection/implantation technique of biopolymers and application of radiofrequency. Radiofrequency (Stretta) has proved only a very modest effect, while implantation techniques have been abandoned due to lack of long-term efficacy (Gatekeeper) or serious side effects (Enteryx). While first generation endoluminal suturing techniques (EndoCinch, ESD) demonstrated a proof of principle their lack of durability, due to suture loss, led to the development of a potentially durable transmural plication technique (Plicator). In a prospective-randomized, sham-controlled trial the Plicator procedure proved superiority concerning reflux symptoms, medication use and esophageal acid exposure (24-h-pH-metry). While long-term data have to be awaited to draw final conclusions, technical improvements will drive innovation in this field.
Tutorial: Terahertz beamforming, from concepts to realizations
NASA Astrophysics Data System (ADS)
Headland, Daniel; Monnai, Yasuaki; Abbott, Derek; Fumeaux, Christophe; Withayachumnankul, Withawat
2018-05-01
The terahertz range possesses significant untapped potential for applications including high-volume wireless communications, noninvasive medical imaging, sensing, and safe security screening. However, due to the unique characteristics and constraints of terahertz waves, the vast majority of these applications are entirely dependent upon the availability of beam control techniques. Thus, the development of advanced terahertz-range beam control techniques yields a range of useful and unparalleled applications. This article provides an overview and tutorial on terahertz beam control. The underlying principles of wavefront engineering include array antenna theory and diffraction optics, which are drawn from the neighboring microwave and optical regimes, respectively. As both principles are applicable across the electromagnetic spectrum, they are reconciled in this overview. This provides a useful foundation for investigations into beam control in the terahertz range, which lies between microwaves and infrared light. Thereafter, noteworthy experimental demonstrations of beam control in the terahertz range are discussed, and these include geometric optics, phased array devices, leaky-wave antennas, reflectarrays, and transmitarrays. These techniques are compared and contrasted for their suitability in applications of terahertz waves.
Development of an automatic subsea blowout preventer stack control system using PLC based SCADA.
Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen
2012-01-01
An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gavin, R. T.
1987-01-01
This paper discusses the development of a new class of US Space Shuttle rendezvous missions which involve a maneuvering target vehicle. The objective of the analysis was to develop an operational plan to take advantage of the target spacecraft's maneuvering ability by making it responsible for a portion of the maneuvers necessary to achieve rendezvous. This work resulted in the development of a region in space relative to the Shuttle, called the control box, into which the target vehicle maneuvers. Furthermore, a mission operations plan was developed to implement the control box technique.
An investigation of dynamic-analysis methods for variable-geometry structures
NASA Technical Reports Server (NTRS)
Austin, F.
1980-01-01
Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.
National plan to enhance aviation safety through human factors improvements
NASA Technical Reports Server (NTRS)
Foushee, Clay
1990-01-01
The purpose of this section of the plan is to establish a development and implementation strategy plan for improving safety and efficiency in the Air Traffic Control (ATC) system. These improvements will be achieved through the proper applications of human factors considerations to the present and future systems. The program will have four basic goals: (1) prepare for the future system through proper hiring and training; (2) develop a controller work station team concept (managing human errors); (3) understand and address the human factors implications of negative system results; and (4) define the proper division of responsibilities and interactions between the human and the machine in ATC systems. This plan addresses six program elements which together address the overall purpose. The six program elements are: (1) determine principles of human-centered automation that will enhance aviation safety and the efficiency of the air traffic controller; (2) provide new and/or enhanced methods and techniques to measure, assess, and improve human performance in the ATC environment; (3) determine system needs and methods for information transfer between and within controller teams and between controller teams and the cockpit; (4) determine how new controller work station technology can optimally be applied and integrated to enhance safety and efficiency; (5) assess training needs and develop improved techniques and strategies for selection, training, and evaluation of controllers; and (6) develop standards, methods, and procedures for the certification and validation of human engineering in the design, testing, and implementation of any hardware or software system element which affects information flow to or from the human.
DOT National Transportation Integrated Search
1988-01-01
The development of a prototype knowledge-based expert system (KBES) for selecting appropriate traffic control strategies and management techniques around highway work zones was initiated. This process was encompassed by the steps that formulate the p...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... significant factual, legal, methodological and policy questions considered in the development of the draft... maximum extent practicable, including management practices, control techniques, and system, design [[Page... that implementation of best management practices (BMPs) designed to control storm water runoff from the...
Statistical Process Control in the Practice of Program Evaluation.
ERIC Educational Resources Information Center
Posavac, Emil J.
1995-01-01
A technique developed to monitor the quality of manufactured products, statistical process control (SPC), incorporates several features that may prove attractive to evaluators. This paper reviews the history of SPC, suggests how the approach can enrich program evaluation, and illustrates its use in a hospital-based example. (SLD)
Real-time pair-feeding of animals
NASA Technical Reports Server (NTRS)
Leon, H. A.; Connolly, J. P.; Hitchman, M. J.; Humbert, J. E.
1972-01-01
Automatic pair-feeding system was developed which immediately dispenses same amount of food to control animal as has been consumed by experimental animal that has free access to food. System consists of: master feeding system; slave feeding station; and control mechanism. Technique performs real time pair-feeding without attendant time lag.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-08
... Promulgation of Implementation Plans; New Mexico; Interstate Transport of Pollution AGENCY: Environmental... provide the air pollution regulations, control strategies, and other means or techniques developed by the...)(2).) List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control...
Behavioral Self-Control and Career Development.
ERIC Educational Resources Information Center
Thoresen, Carl E.; Ewart, Craig K.
A broader view of the career problem and the counselor's role through teaching clients behavioral self-control techniques is offered in this paper. Preliminary discussion includes a review of existing vocational theories and research, in particular, Holland's typology and Super's self-concept theory. It is concluded from these reviews that the…
Integrated structure/control design - Present methodology and future opportunities
NASA Technical Reports Server (NTRS)
Weisshaar, T. A.; Newsom, J. R.; Zeiler, T. A.; Gilbert, M. G.
1986-01-01
Attention is given to current methodology applied to the integration of the optimal design process for structures and controls. Multilevel linear decomposition techniques proved to be most effective in organizing the computational efforts necessary for ISCD (integrated structures and control design) tasks. With the development of large orbiting space structures and actively controlled, high performance aircraft, there will be more situations in which this concept can be applied.
NASA Technical Reports Server (NTRS)
Bybee, Shannon J.
2001-01-01
Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.
Laser-induced contamination control for high-power lasers in space-based LIDAR missions
NASA Astrophysics Data System (ADS)
Alves, Jorge; Pettazzi, Federico; Tighe, Adrian; Wernham, Denny
2017-11-01
In the framework of the ADM-Aeolus satellite mission, successful test campaigns have been performed in ESTEC's laser laboratory, and the efficiency of several mitigation techniques against Laser-Induced Contamination (LIC) have been demonstrated for the ALADIN laser. These techniques include the standard contamination control methods of materials identification with particular tendency to cause LIC, reduction of the outgassing of organic materials by vacuum bake-out and shielding of optical surfaces from the contamination sources. Also novel mitigation methods such as in-situ cleaning via partial pressures, or the usage of molecular absorbers were demonstrated. In this context, a number of highly sensitive optical measurement techniques have been developed and tested to detect and monitor LIC deposits at nanometre level.
Nanoscopic Electrofocusing for Bio-Nanoelectronic Devices
NASA Astrophysics Data System (ADS)
Lakshmanan, Shanmugamurthy
2015-01-01
The ability to arrange precisely designed patterns of nanoparticles into a desired spatial configuration is the key to creating novel nanoscale devices that take advantage of the unique properties of nanomaterials. While two-dimensional arrays of nanoparticles have been demonstrated successfully by various techniques, a controlled way of building ordered arrays of three-dimensional (3D) nanoparticle structures remains challenging. This book describes a new technique called the 'nanoscopic lens' which is able to produce a variety of 3D nano-structures in a controlled manner. This ebook describes the nanoscopic lens technique and how it can serve as the foundation for device development that is not limited to a variety of optical, magnetic and electronic devices, but can also create a wide range of bio-nanoelectronic devices.
Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.
NASA Technical Reports Server (NTRS)
Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.
2014-01-01
This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).
AlOmari, Abdul-Hakeem H; Savkin, Andrey V; Stevens, Michael; Mason, David G; Timms, Daniel L; Salamonsen, Robert F; Lovell, Nigel H
2013-01-01
From the moment of creation to the moment of death, the heart works tirelessly to circulate blood, being a critical organ to sustain life. As a non-stopping pumping machine, it operates continuously to pump blood through our bodies to supply all cells with oxygen and necessary nutrients. When the heart fails, the supplement of blood to the body's organs to meet metabolic demands will deteriorate. The treatment of the participating causes is the ideal approach to treat heart failure (HF). As this often cannot be done effectively, the medical management of HF is a difficult challenge. Implantable rotary blood pumps (IRBPs) have the potential to become a viable long-term treatment option for bridging to heart transplantation or destination therapy. This increases the potential for the patients to leave the hospital and resume normal lives. Control of IRBPs is one of the most important design goals in providing long-term alternative treatment for HF patients. Over the years, many control algorithms including invasive and non-invasive techniques have been developed in the hope of physiologically and adaptively controlling left ventricular assist devices and thus avoiding such undesired pumping states as left ventricular collapse caused by suction. In this paper, we aim to provide a comprehensive review of the developments of control systems and techniques that have been applied to control IRBPs.
Applications of multiple-constraint matrix updates to the optimal control of large structures
NASA Technical Reports Server (NTRS)
Smith, S. W.; Walcott, B. L.
1992-01-01
Low-authority control or vibration suppression in large, flexible space structures can be formulated as a linear feedback control problem requiring computation of displacement and velocity feedback gain matrices. To ensure stability in the uncontrolled modes, these gain matrices must be symmetric and positive definite. In this paper, efficient computation of symmetric, positive-definite feedback gain matrices is accomplished through the use of multiple-constraint matrix update techniques originally developed for structural identification applications. Two systems were used to illustrate the application: a simple spring-mass system and a planar truss. From these demonstrations, use of this multiple-constraint technique is seen to provide a straightforward approach for computing the low-authority gains.
Active Control of Inlet Noise on the JT15D Turbofan Engine
NASA Technical Reports Server (NTRS)
Smith, Jerome P.; Hutcheson, Florence V.; Burdisso, Ricardo A.; Fuller, Chris R.
1999-01-01
This report presents the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the year from November 1997 to December 1998 on the Active Noise Control of Turbofan Engines research project funded by NASA Langley Research Center. The concept of implementing active noise control techniques with fuselage-mounted error sensors is investigated both analytically and experimentally. The analytical part of the project involves the continued development of an advanced modeling technique to provide prediction and design guidelines for application of active noise control techniques to large, realistic high bypass engines of the type on which active control methods are expected to be applied. Results from the advanced analytical model are presented that show the effectiveness of the control strategies, and the analytical results presented for fuselage error sensors show good agreement with the experimentally observed results and provide additional insight into the control phenomena. Additional analytical results are presented for active noise control used in conjunction with a wavenumber sensing technique. The experimental work is carried out on a running JT15D turbofan jet engine in a test stand at Virginia Tech. The control strategy used in these tests was the feedforward Filtered-X LMS algorithm. The control inputs were supplied by single and multiple circumferential arrays of acoustic sources equipped with neodymium iron cobalt magnets mounted upstream of the fan. The reference signal was obtained from an inlet mounted eddy current probe. The error signals were obtained from a number of pressure transducers flush-mounted in a simulated fuselage section mounted in the engine test cell. The active control methods are investigated when implemented with the control sources embedded within the acoustically absorptive material on a passively-lined inlet. The experimental results show that the combination of active control techniques with fuselage-mounted error sensors and passive control techniques is an effective means of reducing radiated noise from turbofan engines. Strategic selection of the location of the error transducers is shown to be effective for reducing the radiation towards particular directions in the farfield. An analytical model is used to predict the behavior of the control system and to guide the experimental design configurations, and the analytical results presented show good agreement with the experimentally observed results.
Prader-Willi Syndrome: Frequently Asked Questions
... techniques or tube feeding for several months after birth, until muscle control improves. Sometime in the following years, usually before school age, children with PWS develop an intense interest ...
Novel method to control antenna currents based on theory of characteristic modes
NASA Astrophysics Data System (ADS)
Elghannai, Ezdeen Ahmed
Characteristic Mode Theory is one of the very few numerical methods that provide a great deal of physical insight because it allows us to determine the natural modes of the radiating structure. The key feature of these modes is that the total induced antenna current, input impedance/admittance and radiation pattern can be expressed as a linear weighted combination of individual modes. Using this decomposition method, it is possible to study the behavior of the individual modes, understand them and therefore control the antennas behavior; in other words, control the currents induced on the antenna structure. This dissertation advances the topic of antenna design by carefully controlling the antenna currents over the desired frequency band to achieve the desired performance specifications for a set of constraints. Here, a systematic method based on the Theory of Characteristic Modes (CM) and lumped reactive loading to achieve the goal of current control is developed. The lumped reactive loads are determined based on the desired behavior of the antenna currents. This technique can also be used to impedance match the antenna to the source/generator connected to it. The technique is much more general than the traditional impedance matching. Generally, the reactive loads that properly control the currents exhibit a combination of Foster and non-Foster behavior. The former can be implemented with lumped passive reactive components, while the latter can be implemented with lumped non-Foster circuits (NFC). The concept of current control is applied to design antennas with a wide band (impedance/pattern) behavior using reactive loads. We successfully applied this novel technique to design multi band and wide band antennas for wireless applications. The technique was developed to match the antenna to resistive and/or complex source impedance and control the radiation pattern at these frequency bands, considering size and volume constraints. A wide band patch antenna was achieved using the developed technique. In addition, the technique was applied to multi band wire less Universal Serial Bus (USB) dongle antenna that serves for WLAN IEEE 802.11 a/b/g/n band applications and Radio Frequency Identification (RFID) tag antenna for 915MHz band applications with superior performance compared to previous published results. This dissertation also discusses the total Q of an antenna from the CM standpoint. A new expression as well as additional physical information about each mode's individual contribution to the total antenna Q are provided. Finally, the theory is used to an analyze the antenna in both radiation and/or scattering modes. In the antenna scattering mode, the field scattered by an antenna contains a component that is the short circuit scattered field, and a second component that is proportional to the radiation field. In this dissertation, an analytical study of this phenomena from the CM standpoint is performed aiming to shed some light on antenna scattering phenomenon where additional physical insight is obtained and thus used to reach desire results.
NASA Technical Reports Server (NTRS)
Lee, Henry A.; Libbey, Charles E.
1961-01-01
Incipient- and developed-spin and recovery characteristics of a modern high-speed fighter design with low aspect ratio have been investigated by means of dynamic model tests. A 1/7-scale radio-controlled model was tested by means of drop tests from a helicopter. Several 1/25-scale models with various configuration changes were tested in the Langley 20-foot free-spinning tunnel. Model results indicated that generally it would be difficult to obtain a developed spin with a corresponding airplane and that either the airplane would recover of its own accord from any poststall motion or the poststall motion could be readily terminated by proper control technique. On occasion, however, the results indicated that if a post-stall motion were allowed to continue, a fully developed spin might be obtainable from which recovery could range from rapid to no recovery at all, even when optimum control technique was used. Satisfactory recoveries could be obtained with a proper-size tail parachute or strake, application of pitching-, rolling-, or yawing-moment rockets, or sufficient differential deflection of the horizontal tail.
Optimal control of underactuated mechanical systems: A geometric approach
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela
2010-08-01
In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.
Synthesis of aircraft structures using integrated design and analysis methods
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Goetz, R. C.
1978-01-01
A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.
Development of Anti-lock Braking System (ABS) for Vehicles Braking
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu; Oamen, Godwin; Vassiljeva, Kristina; Teder, Leo
2016-11-01
This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. This paper provides educational theories and practices on the design of control for system dynamics.
Crew emergency return vehicle autoland feasibility study
NASA Technical Reports Server (NTRS)
Bossi, J. A.; Langehough, M. A.; Lee, K. L.
1989-01-01
The crew emergency return vehicle (CERV) autoland feasibility study focused on determining the controllability of the NASA Langley high lift over drag CERV for performing an automatic landing at a prescribed runway. An autoland system was developed using integral linear quadratic Gaussian (LQG) design techniques. The design was verified using a nonlinear 6 DOF simulation. Simulation results demonstrate that the CERV configuration is a very flyable configuration for performing an autoland mission. Adequate stability and control was demonstrated for wind turbulence and wind shear. Control surface actuator requirements were developed.
Behavior, Expectations and Status
ERIC Educational Resources Information Center
Webster, Jr, Murray; Rashotte, Lisa Slattery
2010-01-01
We predict effects of behavior patterns and status on performance expectations and group inequality using an integrated theory developed by Fisek, Berger and Norman (1991). We next test those predictions using new experimental techniques we developed to control behavior patterns as independent variables. In a 10-condition experiment, predictions…
NASA Technical Reports Server (NTRS)
Stephan, Amy; Erikson, Carol A.
1991-01-01
As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.
Flight software requirements and design support system
NASA Technical Reports Server (NTRS)
Riddle, W. E.; Edwards, B.
1980-01-01
The desirability and feasibility of computer-augmented support for the pre-implementation activities occurring during the development of flight control software was investigated. The specific topics to be investigated were the capabilities to be included in a pre-implementation support system for flight control software system development, and the specification of a preliminary design for such a system. Further, the pre-implementation support system was to be characterized and specified under the constraints that it: (1) support both description and assessment of flight control software requirements definitions and design specification; (2) account for known software description and assessment techniques; (3) be compatible with existing and planned NASA flight control software development support system; and (4) does not impose, but may encourage, specific development technologies. An overview of the results is given.
Fundamental limits to superresolution fluorescence microscopy
NASA Astrophysics Data System (ADS)
Small, Alex
2013-02-01
Superresolution fluorescence microscopy techniques such as PALM, STORM, STED, and Structured Illumination Microscopy (SIM) enable imaging of live cells at nanometer resolution. The common theme in all of these techniques is that the diffraction limit is circumvented by controlling the states of fluorescent molecules. Although the samples are labeled very densely (i.e. with spacing much smaller than the Airy distance), not all of the molecules are emitting at the same time. Consequently, one does not encounter overlapping blurs. In the deterministic techniques (STED, SIM) the achievable resolution scales as the wavelength of light divided by the square root of the intensity of a beam used to control the fluorescent state. In the stochastic techniques (PALM, STORM), the achievable resolution scales as the wavelength of light divided by the square root of the number of photons collected. Although these limits arise from very different mechanisms (parabolic beam profiles for STED and SIM, statistics for PALM and STORM), in all cases the resolution scales inversely with the square root of a measure of the number of photons used in the experiment. We have developed a proof that this relationship between resolution and photon count is universal to techniques that control the states of fluorophores using classical light. Our proof encompasses linear and nonlinear optics, as well as computational post-processing techniques for extracting information beyond the diffraction limit. If there are techniques that can achieve a more efficient relationship between resolution and photon count, those techniques will require light exhibiting non-classical correlations.
A Control Concept for Large Flexible Spacecraft Using Order Reduction Techniques
NASA Technical Reports Server (NTRS)
Thieme, G.; Roth, H.
1985-01-01
Results found during the investigation of control problems of large flexible spacecraft are given. A triple plate configuration of such a spacecraft is defined and studied. The model is defined by modal data derived from infinite element modeling. The order reduction method applied is briefly described. An attitude control concept with low and high authority control has been developed to design an attitude controller for the reduced model. The stability and response of the original system together with the reduced controller is analyzed.
Avian Influenza spread and transmission dynamics
Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong
2015-01-01
The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.
Transonic flight flutter tests of a control surface utilizing an impedance response technique
NASA Technical Reports Server (NTRS)
Mirowitz, L. I.
1975-01-01
Transonic flight flutter tests of the XF3H-1 Demon Airplane were conducted utilizing a frequency response technique in which the oscillating rudder provides the means of system excitation. These tests were conducted as a result of a rudder flutter incident in the transonic speed range. The technique employed is presented including a brief theoretical development of basic concepts. Test data obtained during the flight are included and the method of interpretation of these data is indicated. This method is based on an impedance matching technique. It is shown that an artificial stabilizing device, such as a damper, may be incorporated in the system for test purposes without complicating the interpretation of the test results of the normal configuration. Data are presented which define the margin of stability introduced to the originally unstable rudder by design changes which involve higher control system stiffness and external damper. It is concluded that this technique of flight flutter testing is a feasible means of obtaining flutter stability information in flight.
Rotorcraft Brownout: Advanced Understanding, Control and Mitigation
2008-12-31
the Gauss Seidel iterative method . The overall steps of SIMPLER algorithm can be summarized as: 1. Guess velocity field, 2. Calculate the momentum...techniques and numerical methods , and the team will begin to develop a methodology that is capable of integrating these solutions and highlighting...rotorcraft design optimization techniques will then be undertaken using the validated computational methods . 15. SUBJECT TERMS Rotorcraft
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 8: Thermal control panel
NASA Technical Reports Server (NTRS)
1975-01-01
Technology deficiencies in the area of thermal control for future space missions are identified with emphasis on large space structures and cold controlled environments. Thermal control surfaces, heat pipes, and contamination are considered along with cryogenics, insulation, and design techniques. Major directions forecast for thermal control technology development and space experiments are: (1) extend the useful lifetime of cryogenic systems for space, (2) reduce temperature gradients, and (3) improve temperature stability.
NASA Astrophysics Data System (ADS)
Juanle, Wang; Shuang, Li; Yunqiang, Zhu
2005-10-01
According to the requirements of China National Scientific Data Sharing Program (NSDSP), the research and development of web oriented RS Image Publication System (RSIPS) is based on Java Servlet technique. The designing of RSIPS framework is composed of 3 tiers, which is Presentation Tier, Application Service Tier and Data Resource Tier. Presentation Tier provides user interface for data query, review and download. For the convenience of users, visual spatial query interface is included. Served as a middle tier, Application Service Tier controls all actions between users and databases. Data Resources Tier stores RS images in file and relationship databases. RSIPS is developed with cross platform programming based on Java Servlet tools, which is one of advanced techniques in J2EE architecture. RSIPS's prototype has been developed and applied in the geosciences clearinghouse practice which is among the experiment units of NSDSP in China.
Development of Moire machine vision
NASA Technical Reports Server (NTRS)
Harding, Kevin G.
1987-01-01
Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.
Development of Moire machine vision
NASA Astrophysics Data System (ADS)
Harding, Kevin G.
1987-10-01
Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.
Reirradiation of head and neck cancer using modern highly conformal techniques.
Ho, Jennifer C; Phan, Jack
2018-04-23
Locoregional disease recurrence or development of a second primary cancer after definitive radiotherapy for head and neck cancers remains a treatment challenge. Reirradiation utilizing traditional techniques has been limited by concern for serious toxicity. With the advent of newer, more precise radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT), proton radiotherapy, and stereotactic body radiotherapy (SBRT), there has been renewed interest in curative-intent head and neck reirradiation. However, as most studies were retrospective, single-institutional experiences, the optimal modality is not clear. We provide a comprehensive review of the outcomes of relevant studies using these 3 head and neck reirradiation techniques, followed by an analysis and comparison of the toxicity, tumor control, concurrent systemic therapy, and prognostic factors. Overall, there is evidence that IMRT, proton therapy, and SBRT reirradiation are feasible treatment options that offer a chance for durable local control and survival. Prospective studies, particularly randomized trials, are needed. © 2018 Wiley Periodicals, Inc.
Techniques for optimal crop selection in a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Mccormack, Ann; Finn, Cory; Dunsky, Betsy
1993-01-01
A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.
Techniques for optimal crop selection in a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Mccormack, Ann; Finn, Cory; Dunsky, Betsy
1992-01-01
A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.
Logistic regression applied to natural hazards: rare event logistic regression with replications
NASA Astrophysics Data System (ADS)
Guns, M.; Vanacker, V.
2012-06-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
Akhlaq, Muhammad; Khan, Gul Majid; Jan, Syed Umer; Wahab, Abdul; Hussain, Abid; Nawaz, Asif; Abdelkader, Hamdy
2014-11-01
Diclofenac sodium (DCL-Na) conventional oral tablets exhibit serious side effects when given for a longer period leading to noncompliance. Controlled release matrix tablets of diclofenac sodium were formulated using simple blending (F-1), solvent evaporation (F-2) and co-precipitation techniques (F-3). Ethocel® Standard 7 FP Premium Polymer (15%) was used as a release controlling agent. Drug release study was conducted in 7.4 pH phosphate buffer solutions as dissolution medium in vitro. Pharmacokinetic parameters were evaluated using albino rabbits. Solvent evaporation technique was found to be the best release controlling technique thereby prolonging the release rate up to 24 hours. Accelerated stability studies of the optimized test formulation (F-2) did not show any significant change (p<0.05) in the physicochemical characteristics and release rate when stored for six months. A simple and rapid method was developed for DCL-Na active moiety using HPLC-UV at 276nm. The optimized test tablets (F-2) significantly (p<0.05) exhibited peaks plasma concentration (cmax=237.66±1.98) and extended the peak time (tmax=4.63±0.24). Good in-vitro in vivo correlation was found (R(2)=0.9883) against drug absorption and drug release. The study showed that once-daily controlled release matrix tablets of DCL-Na were successfully developed using Ethocel® Standard 7 FP Premium.
Gurr, Geoff M.; You, Minsheng
2016-01-01
Biological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular – particularly DNA-related – techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to ‘who eats whom’ questions in food-web ecology. Polymerase chain reaction (PCR) approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA) and now – in turn – are being overtaken by next generation sequencing (NGS)-based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate plant defense mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles. PMID:26793225
Development of a digital automatic control law for steep glideslope capture and flare
NASA Technical Reports Server (NTRS)
Halyo, N.
1977-01-01
A longitudinal digital guidance and control law for steep glideslopes using MLS (Microwave Landing System) data is developed for CTOL aircraft using modern estimation and control techniques. The control law covers the final approach phases of glideslope capture, glideslope tracking, and flare to touchdown for automatic landings under adverse weather conditions. The control law uses a constant gain Kalman filter to process MLS and body-mounted accelerometer data to form estimates of flight path errors and wind velocities including wind shear. The flight path error estimates and wind estimates are used for feedback in generating control surface commands. Results of a digital simulation of the aircraft dynamics and the guidance and control law are presented for various wind conditions.
Dual arm coordination and control
NASA Technical Reports Server (NTRS)
Hayati, Samad; Tso, Kam; Lee, Thomas
1989-01-01
A generalized master/slave technique and experimental results for coordinated control of two arms rigidly grasping an object is described. An interactive program has been developed to allow a user the flexibility to select appropriate control modes for a given experiment. This interface allows for control gain adjustments. The results of several experiments performed on this system to demonstrate its capabilities such as transporting an object with or without induced internal forces and movement of a constrained object are offered. The system is further developed to achieve a so-called shared control mode in which an operator specifies the free motion trajectory for a point on the object of manipulation via a joystick while the autonomous control system is used for coordination and control of the arms.
Sunlight-Driven Hydrogen Formation by Membrane-Supported Photoelectrochemical Water Splitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Nathan S.
2014-03-26
This report describes the significant advances in the development of the polymer-supported photoelectrochemical water-splitting system that was proposed under DOE grant number DE-FG02-05ER15754. We developed Si microwire-array photoelectrodes, demonstrated control over the material and light-absorption properties of the microwire-array photoelectrodes, developed inexpensive processes for synthesizing the arrays, and doped the arrays p-type for use as photocathodes. We also developed techniques for depositing metal-nanoparticle catalysts of the hydrogen-evolution reaction (HER) on the wire arrays, investigated the stability and catalytic performance of the nanoparticles, and demonstrated that Ni-Mo alloys are promising earth-abundant catalysts of the HER. We also developed methods that allowmore » reuse of the single-crystalline Si substrates used for microwire growth and methods of embedding the microwire photocathodes in plastic to enable large-scale processing and deployment of the technology. Furthermore we developed techniques for controlling the structure of WO3 films, and demonstrated that structural control can improve the quantum yield of photoanodes. Thus, by the conclusion of this project, we demonstrated significant advances in the development of all components of a sunlight-driven membrane-supported photoelectrochemical water-splitting system. This final report provides descriptions of some of the scientific accomplishments that were achieved under the support of this project and also provides references to the peer-reviewed publications that resulted from this effort.« less
NASA Astrophysics Data System (ADS)
Rose, Michael Benjamin
A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical formulations that are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Priniski, T. Dodson, M. Duco, S. Raftopoulos, R. Ellis, and A. Brooks
In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex threedimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracymore » on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometeraided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.« less
Intraosseous repair of the inferior alveolar nerve in rats: an experimental model.
Curtis, N J; Trickett, R I; Owen, E; Lanzetta, M
1998-08-01
A reliable method of exposure of the inferior alveolar nerve in Wistar rats has been developed, to allow intraosseous repair with two microsurgical techniques under halothane inhalational anaesthesia. The microsuturing technique involves anastomosis with 10-0 nylon sutures; a laser-weld technique uses an albumin-based solder containing indocyanine green, plus an infrared (810 nm wavelength) diode laser Seven animals had left inferior alveolar nerve repairs performed with the microsuture and laser-weld techniques. Controls were provided by unoperated nerves in the repaired cases. Histochemical analysis was performed utilizing neuron counts and horseradish peroxidase tracer (HRP) uptake in the mandibular division of the trigeminal ganglion, following sacrifice and staining of frozen sections with cresyl violet and diaminobenzidene. The results of this analysis showed similar mean neuron counts and mean HRP uptake by neurons for the unoperated controls and both microsuture and laser-weld groups. This new technique of intraosseous exposure of the inferior alveolar nerve in rats is described. It allows reliable and reproducible microsurgical repairs using both microsuture and laser-weld techniques.
NASA Astrophysics Data System (ADS)
Chow, Yu Ting; Chen, Shuxun; Wang, Ran; Liu, Chichi; Kong, Chi-Wing; Li, Ronald A.; Cheng, Shuk Han; Sun, Dong
2016-04-01
Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desired.
Chow, Yu Ting; Chen, Shuxun; Wang, Ran; Liu, Chichi; Kong, Chi-Wing; Li, Ronald A; Cheng, Shuk Han; Sun, Dong
2016-04-12
Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desired.
A developer solution for tank processing of x-ray film under ambient, tropical conditions.
Wayrynen, R E; McKinney, W E
1976-05-01
A modification of a proprietary 90-sec. x-ray-film developer which permits its use as a hand-tank developer at ambient temperatures between 21.6 degrees-30.6 degrees C (80 degrees-100 degrees F) is described. This processing technique is useful in tropical countries where the control of developer temperature is particularly difficult.
Design issues for a reinforcement-based self-learning fuzzy controller
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Dauherity, Walter
1993-01-01
Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.
Robust Nonlinear Feedback Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)
2001-01-01
This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1992-01-01
The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.
NASA Astrophysics Data System (ADS)
Momoh, James A.; Salkuti, Surender Reddy
2016-06-01
This paper proposes a stochastic optimization technique for solving the Voltage/VAr control problem including the load demand and Renewable Energy Resources (RERs) variation. The RERs often take along some inputs like stochastic behavior. One of the important challenges i. e., Voltage/VAr control is a prime source for handling power system complexity and reliability, hence it is the fundamental requirement for all the utility companies. There is a need for the robust and efficient Voltage/VAr optimization technique to meet the peak demand and reduction of system losses. The voltages beyond the limit may damage costly sub-station devices and equipments at consumer end as well. Especially, the RERs introduces more disturbances and some of the RERs are not even capable enough to meet the VAr demand. Therefore, there is a strong need for the Voltage/VAr control in RERs environment. This paper aims at the development of optimal scheme for Voltage/VAr control involving RERs. In this paper, Latin Hypercube Sampling (LHS) method is used to cover full range of variables by maximally satisfying the marginal distribution. Here, backward scenario reduction technique is used to reduce the number of scenarios effectively and maximally retain the fitting accuracy of samples. The developed optimization scheme is tested on IEEE 24 bus Reliability Test System (RTS) considering the load demand and RERs variation.
Using cognitive task analysis to develop simulation-based training for medical tasks.
Cannon-Bowers, Jan; Bowers, Clint; Stout, Renee; Ricci, Katrina; Hildabrand, Annette
2013-10-01
Pressures to increase the efficacy and effectiveness of medical training are causing the Department of Defense to investigate the use of simulation technologies. This article describes a comprehensive cognitive task analysis technique that can be used to simultaneously generate training requirements, performance metrics, scenario requirements, and simulator/simulation requirements for medical tasks. On the basis of a variety of existing techniques, we developed a scenario-based approach that asks experts to perform the targeted task multiple times, with each pass probing a different dimension of the training development process. In contrast to many cognitive task analysis approaches, we argue that our technique can be highly cost effective because it is designed to accomplish multiple goals. The technique was pilot tested with expert instructors from a large military medical training command. These instructors were employed to generate requirements for two selected combat casualty care tasks-cricothyroidotomy and hemorrhage control. Results indicated that the technique is feasible to use and generates usable data to inform simulation-based training system design. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Novel technique for online characterization of cartilaginous tissue properties.
Yuan, Tai-Yi; Huang, Chun-Yuh; Yong Gu, Wei
2011-09-01
The goal of tissue engineering is to use substitutes to repair and restore organ function. Bioreactors are an indispensable tool for monitoring and controlling the unique environment for engineered constructs to grow. However, in order to determine the biochemical properties of engineered constructs, samples need to be destroyed. In this study, we developed a novel technique to nondestructively online-characterize the water content and fixed charge density of cartilaginous tissues. A new technique was developed to determine the tissue mechano-electrochemical properties nondestructively. Bovine knee articular cartilage and lumbar annulus fibrosus were used in this study to demonstrate that this technique could be used on different types of tissue. The results show that our newly developed method is capable of precisely predicting the water volume fraction (less than 3% disparity) and fixed charge density (less than 16.7% disparity) within cartilaginous tissues. This novel technique will help to design a new generation of bioreactors which are able to actively determine the essential properties of the engineered constructs, as well as regulate the local environment to achieve the optimal conditions for cultivating constructs.
Active vibrations and noise control for turboprop application research program activities
NASA Technical Reports Server (NTRS)
Paonessa, A.; Concilio, A.; Lecce, Leonardo V.
1992-01-01
The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.
Active vibrations and noise control for turboprop application research program activities
NASA Astrophysics Data System (ADS)
Paonessa, A.; Concilio, A.; Lecce, Leonardo V.
1992-07-01
The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.
Crossing eastern cottonwood in the greenhouse
R. E. Farmer; W. L. Nance
1968-01-01
Eastern cottonwood (Populus deltoides Bartr.) is the subject of breeding programs designed to develop planting stock with potential for rapid growth, desirable wood properties, and pest resistance (4). Techniques for making controlled crosses within the species are essential to breeding, and their development constitutes an early phase of genetics...
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Ouzts, Peter J.
1991-01-01
Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented.
Advances in dental local anesthesia techniques and devices: An update
Saxena, Payal; Gupta, Saurabh K.; Newaskar, Vilas; Chandra, Anil
2013-01-01
Although local anesthesia remains the backbone of pain control in dentistry, researches are going to seek new and better means of managing the pain. Most of the researches are focused on improvement in the area of anesthetic agents, delivery devices and technique involved. Newer technologies have been developed that can assist the dentist in providing enhanced pain relief with reduced injection pain and fewer adverse effects. This overview will enlighten the practicing dentists regarding newer devices and methods of rendering pain control comparing these with the earlier used ones on the basis of research and clinical studies available. PMID:24163548
Self Organized Multi Agent Swarms (SOMAS) for Network Security Control
2009-03-01
Normal hierarchy vs entangled hierarchy 2.5.7 Quantifying Entangledness . While self organization means that the swarm develops a consistent structure of...flexibility due to centralization of control and com- munication. Thus, self organized, entangled hierarchy multi-agent swarms are evolved in this study to...technique. The resulting design exhibits a self organized multi-agent swarm (SOMAS) with entangled hierarchical control and communication through the
Energy efficiency technologies in cement and steel industry
NASA Astrophysics Data System (ADS)
Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo
2018-02-01
In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.
A comparison of forming technologies for ceramic gas-turbine engine components
NASA Technical Reports Server (NTRS)
Hengst, R. R.; Heichel, D. N.; Holowczak, J. E.; Taglialavore, A. P.; Mcentire, B. J.
1990-01-01
For over ten years, injection molding and slip casting have been actively developed as forming techniques for ceramic gas turbine components. Co-development of these two processes has continued within the U.S. DOE-sponsored Advanced Turbine Technology Application Project (ATTAP). Progress within ATTAP with respect to these two techniques is summarized. A critique and comparison of the two processes are given. Critical aspects of both processes with respect to size, dimensional control, material properties, quality, cost, and potential for manufacturing scale-up are discussed.
Development of advanced avionics systems applicable to terminal-configured vehicles
NASA Technical Reports Server (NTRS)
Heimbold, R. L.; Lee, H. P.; Leffler, M. F.
1980-01-01
A technique to add the time constraint to the automatic descent feature of the existing L-1011 aircraft Flight Management System (FMS) was developed. Software modifications were incorporated in the FMS computer program and the results checked by lab simulation and on a series of eleven test flights. An arrival time dispersion (2 sigma) of 19 seconds was achieved. The 4 D descent technique can be integrated with the time-based metering method of air traffic control. Substantial reductions in delays at today's busy airports should result.
The development of optimal control laws for orbiting tethered platform systems
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Woodard, S.; Juang, J.-N.
1986-01-01
A mathematical model of the open and closed loop in-orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Lagrangian formulation yields equations describing platform pitch, subsatellite tether-line swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.
The development of optimal control laws for orbiting tethered platform systems
NASA Technical Reports Server (NTRS)
Bainum, P. M.
1986-01-01
A mathematical model of the open and closed loop in orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Langrangian formulation yields equations describing platform pitch, subsatellite tetherline swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.
NASA Astrophysics Data System (ADS)
Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.
2016-04-01
Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.
Control of Atmospheric Emissions in the Wood Pulping Industry, Volume 3.
ERIC Educational Resources Information Center
Hendrickson, E. R.; And Others
Volume 3 contains chapters 9 through 13 of the final report on the control of atmospheric emissions in the wood pulping industry. These chapters deal with the following topics: sampling and analytical techniques; on-going research related to reduction of emissions; research and development recommendations; current industry investment and operating…
Automation of a laboratory particleboard press
Robert L. Geimer; Gordon H. Stevens; Richard E. Kinney
1982-01-01
A manually operated particleboard press was converted to a fully automatic, programable system with updated data collection capabilities. Improved control has permitted observations of very small changes in pressing variables resulting in the development of a technique capable of reducing press times by 70 percent. Accurate control of the press is obtained through an...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... (Workgroup) for 2 years. The Workgroup provides an opportunity for stakeholders to give policy and technical advice on efforts to develop and implement sea lamprey control techniques alternative to lampricides in... Workgroup provides recommendations and advice to the Cooperative on: Feasible and appropriate sea lamprey...
Model transformations for state-space self-tuning control of multivariable stochastic systems
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.
1988-01-01
The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.