Alternatives for Jet Engine Control. Volume 1: Modelling and Control Design with Jet Engine Data
NASA Technical Reports Server (NTRS)
Sain, M. K.
1985-01-01
This document compiles a comprehensive list of publications supported by, or related to, National Aeronautics and Space Administration Grant NSG-3048, entitled "Alternatives for Jet Engine Control". Dr. Kurt Seldner was the original Technical Officer for the grant, at Lewis Research Center. Dr. Bruce Lehtinen was the final Technical Officer. At the University of Notre Dame, Drs. Michael K. Sain and R. Jeffrey Leake were the original Project Directors, with Dr. Sain becoming the final Project Director. Publications cover work over a ten-year period. The Final Report is divided into two parts. Volume i, "Modelling and Control Design with Jet Engine Data", follows in this report. Volume 2, "Modelling and Control Design with Tensors", has been bound separately.
Back to the future: estimating pre-injury brain volume in patients with traumatic brain injury.
Ross, David E; Ochs, Alfred L; D Zannoni, Megan; Seabaugh, Jan M
2014-11-15
A recent meta-analysis by Hedman et al. allows for accurate estimation of brain volume changes throughout the life span. Additionally, Tate et al. showed that intracranial volume at a later point in life can be used to estimate reliably brain volume at an earlier point in life. These advancements were combined to create a model which allowed the estimation of brain volume just prior to injury in a group of patients with mild or moderate traumatic brain injury (TBI). This volume estimation model was used in combination with actual measurements of brain volume to test hypotheses about progressive brain volume changes in the patients. Twenty six patients with mild or moderate TBI were compared to 20 normal control subjects. NeuroQuant® was used to measure brain MRI volume. Brain volume after the injury (from MRI scans performed at t1 and t2) was compared to brain volume just before the injury (volume estimation at t0) using longitudinal designs. Groups were compared with respect to volume changes in whole brain parenchyma (WBP) and its 3 major subdivisions: cortical gray matter (GM), cerebral white matter (CWM) and subcortical nuclei+infratentorial regions (SCN+IFT). Using the normal control data, the volume estimation model was tested by comparing measured brain volume to estimated brain volume; reliability ranged from good to excellent. During the initial phase after injury (t0-t1), the TBI patients had abnormally rapid atrophy of WBP and CWM, and abnormally rapid enlargement of SCN+IFT. Rates of volume change during t0-t1 correlated with cross-sectional measures of volume change at t1, supporting the internal reliability of the volume estimation model. A logistic regression analysis using the volume change data produced a function which perfectly predicted group membership (TBI patients vs. normal control subjects). During the first few months after injury, patients with mild or moderate TBI have rapid atrophy of WBP and CWM, and rapid enlargement of SCN+IFT. The magnitude and pattern of the changes in volume may allow for the eventual development of diagnostic tools based on the volume estimation approach. Copyright © 2014 Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
2001-06-01
Volume 3 documents the development of a micromechanics fracture and healing model for asphalt : concrete. This model can be used to calculate the density and growth of microcracks during repeated direct : tensile controlled-strain loading. The model ...
Lee, G H; Hur, W; Bremmon, C E; Flickinger, M C
1996-03-20
A simulation was developed based on experimental data obtained in a 14-L reactor to predict the growth and L-lysine accumulation kinetics, and change in volume of a large-scale (250-m(3)) Bacillus methanolicus methanol-based process. Homoserine auxotrophs of B. methanolicus MGA3 are unique methylotrophs because of the ability to secrete lysine during aerobic growth and threonine starvation at 50 degrees C. Dissolved methanol (100 mM), pH, dissolved oxygen tension (0.063 atm), and threonine levels were controlled to obtain threonine-limited conditions and high-cell density (25 g dry cell weight/L) in a 14-L reactor. As a fed-batch process, the additions of neat methanol (fed on demand), threonine, and other nutrients cause the volume of the fermentation to increase and the final lysine concentration to decrease. In addition, water produced as a result of methanol metabolism contributes to the increase in the volume of the reactor. A three-phase approach was used to predict the rate of change of culture volume based on carbon dioxide production and methanol consumption. This model was used for the evaluation of volume control strategies to optimize lysine productivity. A constant volume reactor process with variable feeding and continuous removal of broth and cells (VF(cstr)) resulted in higher lysine productivity than a fed-batch process without volume control. This model predicts the variation in productivity of lysine with changes in growth and in specific lysine productivity. Simple modifications of the model allows one to investigate other high-lysine-secreting strains with different growth and lysine productivity characteristics. Strain NOA2#13A5-2 which secretes lysine and other end-products were modeled using both growth and non-growth-associated lysine productivity. A modified version of this model was used to simulate the change in culture volume of another L-lysine producing mutant (NOA2#13A52-8A66) with reduced secretion of end-products. The modified simulation indicated that growth-associated production dominates in strain NOA2#13A52-8A66. (c) 1996 John Wiley & Sons, Inc.
DOT National Transportation Integrated Search
2001-06-01
Volume 3 documents the development of a micromechanics fracture and healing model for asphalt concrete. This model can be used to calculate the density and growth of microcracks during repeated direct tensile controlled-strain loading. The model is b...
NASA Astrophysics Data System (ADS)
Burgess, P. M.; Steel, R. J.
2016-12-01
Decoding a history of Earth's surface dynamics from strata requires robust quantitative understanding of supply and accommodation controls. The concept of stratigraphic solution sets has proven useful in this decoding, but application and development of this approach has so far been surprisingly limited. Stratal control volumes, areas and trajectories are new approaches defined here, building on previous ideas about stratigraphic solution sets, to help analyse and understand the sedimentary record of Earth surface dynamics. They may have particular application reconciling results from outcrop and subsurface analysis with results from analogue and numerical experiments. Stratal control volumes are sets of points in a three-dimensional volume, with axes of subsidence, sediment supply and eustatic rates of change, populated with probabilities derived from analysis of subsidence, supply and eustasy timeseries (Figure 1). These empirical probabilities indicate the likelihood of occurrence of any particular combination of control rates defined by any point in the volume. The stratal control volume can then by analysed to determine which parts of the volume represent relative sea-level fall and rise, where in the volume particular stacking patterns will occur, and how probable those stacking patterns are. For outcrop and subsurface analysis, using a stratal control area with eustasy and subsidence combined on a relative sea-level axis allows similar analysis, and may be preferable. A stratal control trajectory is a history of supply and accommodation creation rates, interpreted from outcrop or subsurface data, or observed in analogue and numerical experiments, and plotted as a series of linked points forming a trajectory through the stratal control volume (Figure 1) or area. Three examples are presented, one from outcrop and two theoretical. Much work remains to be done to build a properly representative database of stratal controls, but careful comparison of stratal control volume and trajectories constructed from outcrop analysis, subsurface analysis and experimental models may help the convergence, reconciliation and future evolution of these different approaches.
Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Saxon, Jeff (Technical Monitor)
2002-01-01
In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 2: TECHNICAL DOCUMENTATION
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 3: PROGRAMMER'S MAINTENANCE MANUAL
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 1: USER'S GUIDE
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
Development of a theoretical framework for analyzing cerebrospinal fluid dynamics
Cohen, Benjamin; Voorhees, Abram; Vedel, Søren; Wei, Timothy
2009-01-01
Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis. PMID:19772652
Yu, Yi-Lin; Yang, Yun-Ju; Lin, Chin; Hsieh, Chih-Chuan; Li, Chiao-Zhu; Feng, Shao-Wei; Tang, Chi-Tun; Chung, Tzu-Tsao; Ma, Hsin-I; Chen, Yuan-Hao; Ju, Da-Tong; Hueng, Dueng-Yuan
2017-01-01
Tumor control rates of pituitary adenomas (PAs) receiving adjuvant CyberKnife stereotactic radiosurgery (CK SRS) are high. However, there is currently no uniform way to estimate the time course of the disease. The aim of this study was to analyze the volumetric responses of PAs after CK SRS and investigate the application of an exponential decay model in calculating an accurate time course and estimation of the eventual outcome.A retrospective review of 34 patients with PAs who received adjuvant CK SRS between 2006 and 2013 was performed. Tumor volume was calculated using the planimetric method. The percent change in tumor volume and tumor volume rate of change were compared at median 4-, 10-, 20-, and 36-month intervals. Tumor responses were classified as: progression for >15% volume increase, regression for ≤15% decrease, and stabilization for ±15% of the baseline volume at the time of last follow-up. For each patient, the volumetric change versus time was fitted with an exponential model.The overall tumor control rate was 94.1% in the 36-month (range 18-87 months) follow-up period (mean volume change of -43.3%). Volume regression (mean decrease of -50.5%) was demonstrated in 27 (79%) patients, tumor stabilization (mean change of -3.7%) in 5 (15%) patients, and tumor progression (mean increase of 28.1%) in 2 (6%) patients (P = 0.001). Tumors that eventually regressed or stabilized had a temporary volume increase of 1.07% and 41.5% at 4 months after CK SRS, respectively (P = 0.017). The tumor volume estimated using the exponential fitting equation demonstrated high positive correlation with the actual volume calculated by magnetic resonance imaging (MRI) as tested by Pearson correlation coefficient (0.9).Transient progression of PAs post-CK SRS was seen in 62.5% of the patients receiving CK SRS, and it was not predictive of eventual volume regression or progression. A three-point exponential model is of potential predictive value according to relative distribution. An exponential decay model can be used to calculate the time course of tumors that are ultimately controlled.
Control volume based hydrocephalus research; analysis of human data
NASA Astrophysics Data System (ADS)
Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer
2010-11-01
Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.
Role of beach morphology in wave overtopping hazard assessment
NASA Astrophysics Data System (ADS)
Phillips, Benjamin; Brown, Jennifer; Bidlot, Jean-Raymond; Plater, Andrew
2017-04-01
Understanding the role of beach morphology in controlling wave overtopping volume will further minimise uncertainties in flood risk assessments at coastal locations defended by engineered structures worldwide. XBeach is used to model wave overtopping volume for a 1:200 yr joint probability distribution of waves and water levels with measured, pre- and post-storm beach profiles. The simulation with measured bathymetry is repeated with and without morphological evolution enabled during the modelled storm event. This research assesses the role of morphology in controlling wave overtopping volumes for hazardous events that meet the typical design level of coastal defence structures. Results show disabling storm-driven morphology under-represents modelled wave overtopping volumes by up to 39% under high Hs conditions, and has a greater impact on the wave overtopping rate than the variability applied within the boundary conditions due to the range of wave-water level combinations that meet the 1:200 yr joint probability criterion. Accounting for morphology in flood modelling is therefore critical for accurately predicting wave overtopping volumes and the resulting flood hazard and to assess economic losses.
[Compatible biomass models of natural spruce (Picea asperata)].
Wang, Jin Chi; Deng, Hua Feng; Huang, Guo Sheng; Wang, Xue Jun; Zhang, Lu
2017-10-01
By using nonlinear measurement error method, the compatible tree volume and above ground biomass equations were established based on the volume and biomass data of 150 sampling trees of natural spruce (Picea asperata). Two approaches, controlling directly under total aboveground biomass and controlling jointly from level to level, were used to design the compatible system for the total aboveground biomass and the biomass of four components (stem, bark, branch and foliage), and the total ground biomass could be estimated independently or estimated simultaneously in the system. The results showed that the R 2 of the one variable and bivariate compatible tree volume and aboveground biomass equations were all above 0.85, and the maximum value reached 0.99. The prediction effect of the volume equations could be improved significantly when tree height was included as predictor, while it was not significant in biomass estimation. For the compatible biomass systems, the one variable model based on controlling jointly from level to level was better than the model using controlling directly under total above ground biomass, but the bivariate models of the two methods were similar. Comparing the imitative effects of the one variable and bivariate compatible biomass models, the results showed that the increase of explainable variables could significantly improve the fitness of branch and foliage biomass, but had little effect on other components. Besides, there was almost no difference between the two methods of estimation based on the comparison.
DOT National Transportation Integrated Search
1974-08-01
Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...
Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing; Su, Ji; Zhang, Qiming
2004-01-01
An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.
Geometry modeling and grid generation using 3D NURBS control volume
NASA Technical Reports Server (NTRS)
Yu, Tzu-Yi; Soni, Bharat K.; Shih, Ming-Hsin
1995-01-01
The algorithms for volume grid generation using NURBS geometric representation are presented. The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and volume. This approach bridges the gap between CAD surface/volume definition and surface/volume grid generation. Computational examples associated with practical configurations have shown the utilization of these algorithms.
Model-based flow rate control for an orfice-type low-volume air sampler
USDA-ARS?s Scientific Manuscript database
The standard method of measuring air suspended particulate matter concentration per volume of air consists of continuously drawing a defined volume of air across a filter over an extended period of time, then measuring the mass of the filtered particles and dividing it by the total volume sampled ov...
Wen, Xin-Xin; Xu, Chao; Zong, Chun-Lin; Feng, Ya-Fei; Ma, Xiang-Yu; Wang, Fa-Qi; Yan, Ya-Bo; Lei, Wei
2016-07-01
Micro-finite element (μFE) models have been widely used to assess the biomechanical properties of trabecular bone. How to choose a proper sample volume of trabecular bone, which could predict the real bone biomechanical properties and reduce the calculation time, was an interesting problem. Therefore, the purpose of this study was to investigate the relationship between different sample volumes and apparent elastic modulus (E) calculated from μFE model. 5 Human lumbar vertebral bodies (L1-L5) were scanned by micro-CT. Cubic concentric samples of different lengths were constructed as the experimental groups and the largest possible volumes of interest (VOI) were constructed as the control group. A direct voxel-to-element approach was used to generate μFE models and steel layers were added to the superior and inferior surface to mimic axial compression tests. A 1% axial strain was prescribed to the top surface of the model to obtain the E values. ANOVA tests were performed to compare the E values from the different VOIs against that of the control group. Nonlinear function curve fitting was performed to study the relationship between volumes and E values. The larger cubic VOI included more nodes and elements, and more CPU times were needed for calculations. E values showed a descending tendency as the length of cubic VOI decreased. When the volume of VOI was smaller than (7.34mm(3)), E values were significantly different from the control group. The fit function showed that E values approached an asymptotic values with increasing length of VOI. Our study demonstrated that apparent elastic modulus calculated from μFE models were affected by the sample volumes. There was a descending tendency of E values as the length of cubic VOI decreased. Sample volume which was not smaller than (7.34mm(3)) was efficient enough and timesaving for the calculation of E. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zheng, Yefeng; Barbu, Adrian; Georgescu, Bogdan; Scheuering, Michael; Comaniciu, Dorin
2008-11-01
We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.
Evaluation of Intersection Traffic Control Measures through Simulation
NASA Astrophysics Data System (ADS)
Asaithambi, Gowri; Sivanandan, R.
2015-12-01
Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.
Dodecafluoropentane Emulsion Decreases Infarct Volume in a Rabbit Ischemic Stroke Model
Culp, William C.; Woods, Sean D.; Skinner, Robert D.; Brown, Aliza T.; Lowery, John D.; Johnson, Jennifer L. H.; Unger, Evan C.; Hennings, Leah J.; Borrelli, Michael J.; Roberson, Paula K.
2011-01-01
Purpose To assess the efficacy of dodecafluoropentane emulsion (DDFPe), a nano droplet emulsion with significant oxygen transport potential, in decreasing infarct volume using an insoluble emboli rabbit stroke model. Methods New Zealand White rabbits (n=64; 5.1±0.50 kg) received angiography and embolic spheres in the internal carotid artery occluding branches. Rabbits were randomly assigned to groups in 4-hour and 7-hour studies. Four-hour groups included: control (n=7, embolized without treatment) or DDFPe treatment 30-min before stroke (n=7), or at stroke onset (n=8), 30-min after stroke (n=5), 1-hour after stroke (n=7), 2-hours after stroke (n=5), or 3-hours after stroke (n=6). Seven-hour groups included control (n=6), DDFPe at 1-hour after stroke (n=8), and DDFPe at 6-hours after stroke (n=5). DDFPe dose was 2% w/v (weight/volume) intravenous injection, 0.6 mL/kg, and repeated every 90 minutes as time allowed. Following euthanasia infarct volume was determined using vital stains on brain sections. Results At 4-hours, median percent infarct volume decreased for all DDFPe treatment times (pre-treatment=0.30%, p=0.004; onset=0.20%, p=0.004; 30-min=0.35%, p=0.009, 1-hour=0.30%, p=0.01, 2-hours=0.40%, p=0.009, 3-hours=0.25%, p=0.003) compared with controls (3.20%). At 7-hours, median percent infarct volume decreased with treatment at 1-hour (0.25%, p=0.007) but not for 6-hours (1.4%, p=0.49) compared with controls (2.2%). Conclusions Intravenous DDFPe in an animal model decreases infarct volumes and protects brain tissue from ischemia justifying further investigation. PMID:22079515
Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results
NASA Technical Reports Server (NTRS)
Glass, B. J. (Editor)
1992-01-01
The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.
Thermal Expert System (TEXSYS): Systems automony demonstration project, volume 1. Overview
NASA Technical Reports Server (NTRS)
Glass, B. J. (Editor)
1992-01-01
The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS test bed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.
Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results
NASA Astrophysics Data System (ADS)
Glass, B. J.
1992-10-01
The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.
PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties
NASA Astrophysics Data System (ADS)
Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.
2018-02-01
Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)
Brain volume and fatigue in patients with postpoliomyelitis syndrome.
Trojan, Daria A; Narayanan, Sridar; Francis, Simon J; Caramanos, Zografos; Robinson, Ann; Cardoso, Mauro; Arnold, Douglas L
2014-03-01
Acute paralytic poliomyelitis is associated with encephalitis. Early brain inflammation may produce permanent neuronal injury with brain atrophy, which may result in symptoms such as fatigue. Brain volume has not been assessed in postpoliomyelitis syndrome (PPS). To determine whether brain volume is decreased compared with that in normal controls, and whether brain volume is associated with fatigue in patients with PPS. A cross-sectional study. Tertiary university-affiliated hospital postpolio and multiple sclerosis (MS) clinics. Forty-nine ambulatory patients with PPS, 28 normal controls, and 53 ambulatory patients with MS. We studied the brains of all study subjects with magnetic resonance imaging by using a 1.5 T Siemens Sonata machine. The subjects completed the Fatigue Severity Scale. Multivariable linear regression models were computed to evaluate the contribution of PPS and MS compared with controls to explain brain volume. Normalized brain volume (NBV) was assessed with the automated program Structured Image Evaluation, using Normalization, of Atrophy method from the acquired magnetic resonance images. This method may miss brainstem atrophy. Technically adequate NBV measurements were available for 42 patients with PPS, 27 controls, and 49 patients with MS. The mean (standard deviation) age was 60.9 ± 7.6 years for patients with PPS, 47.0 ± 14.6 years for controls, and 46.2 ± 9.4 years for patients with MS. In a multivariable model adjusted for age and gender, NBV was not significantly different in patients with PPS compared with that in controls (P = .28). As expected, when using a similar model for patients with MS, NBV was significantly decreased compared with that in controls (P = .006). There was no significant association between NBV and fatigue in subjects with PPS (Spearman ρ = 0.23; P = .19). No significant whole-brain atrophy was found, and no association of brain volume with fatigue in PPS. Brain atrophy was confirmed in MS. It is possible that brainstem atrophy was not recognized by this study. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Yu, Yi-Lin; Yang, Yun-Ju; Lin, Chin; Hsieh, Chih-Chuan; Li, Chiao-Zhu; Feng, Shao-Wei; Tang, Chi-Tun; Chung, Tzu-Tsao; Ma, Hsin-I; Chen, Yuan-Hao; Ju, Da-Tong; Hueng, Dueng-Yuan
2017-01-01
Abstract Tumor control rates of pituitary adenomas (PAs) receiving adjuvant CyberKnife stereotactic radiosurgery (CK SRS) are high. However, there is currently no uniform way to estimate the time course of the disease. The aim of this study was to analyze the volumetric responses of PAs after CK SRS and investigate the application of an exponential decay model in calculating an accurate time course and estimation of the eventual outcome. A retrospective review of 34 patients with PAs who received adjuvant CK SRS between 2006 and 2013 was performed. Tumor volume was calculated using the planimetric method. The percent change in tumor volume and tumor volume rate of change were compared at median 4-, 10-, 20-, and 36-month intervals. Tumor responses were classified as: progression for >15% volume increase, regression for ≤15% decrease, and stabilization for ±15% of the baseline volume at the time of last follow-up. For each patient, the volumetric change versus time was fitted with an exponential model. The overall tumor control rate was 94.1% in the 36-month (range 18–87 months) follow-up period (mean volume change of −43.3%). Volume regression (mean decrease of −50.5%) was demonstrated in 27 (79%) patients, tumor stabilization (mean change of −3.7%) in 5 (15%) patients, and tumor progression (mean increase of 28.1%) in 2 (6%) patients (P = 0.001). Tumors that eventually regressed or stabilized had a temporary volume increase of 1.07% and 41.5% at 4 months after CK SRS, respectively (P = 0.017). The tumor volume estimated using the exponential fitting equation demonstrated high positive correlation with the actual volume calculated by magnetic resonance imaging (MRI) as tested by Pearson correlation coefficient (0.9). Transient progression of PAs post-CK SRS was seen in 62.5% of the patients receiving CK SRS, and it was not predictive of eventual volume regression or progression. A three-point exponential model is of potential predictive value according to relative distribution. An exponential decay model can be used to calculate the time course of tumors that are ultimately controlled. PMID:28121913
Warren, Samantha; Partridge, Mike; Carrington, Rhys; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.
2014-01-01
Purpose This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm3. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5 Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA62.5) was compared to a standard dose plan of 50 Gy/25 fractions (RA50). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA50) to 56.3% (RA62.5), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA50) versus 5.6% (RA62.5) P<.001 and median lung NTCP 6.5% (RA50) versus 7.5% (RA62.5) P<.001. Conclusions Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials. PMID:25304796
Wettability control of droplet deposition and detachment.
Baret, Jean-Christophe; Brinkmann, Martin
2006-04-14
The conditions for droplet deposition on plane substrates are studied using electrowetting to continuously modulate the surface wettability. Droplets of controlled volume attached to the tip of a pipette are brought into contact with the surface. During retraction of the pipette the droplets are deposited or detach completely depending on volume and contact angle. The experimental limit of deposition in the contact angle or volume plane is in good agreement with analytical and numerical predictions obtained within the capillary model.
DOT National Transportation Integrated Search
1978-05-01
The User Delay Cost Model (UDCM) is a Monte Carlo computer simulation of essential aspects of Terminal Control Area (TCA) air traffic movements that would be affected by facility outages. The model can also evaluate delay effects due to other factors...
A 3-D Finite-Volume Non-hydrostatic Icosahedral Model (NIM)
NASA Astrophysics Data System (ADS)
Lee, Jin
2014-05-01
The Nonhydrostatic Icosahedral Model (NIM) formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM's modeling goal is to improve numerical accuracy for weather and climate simulations as well as to utilize the state-of-art computing architecture such as massive parallel CPUs and GPUs to deliver routine high-resolution forecasts in timely manner. NIM dynamic corel innovations include: * A local coordinate system remapped spherical surface to plane for numerical accuracy (Lee and MacDonald, 2009), * Grid points in a table-driven horizontal loop that allow any horizontal point sequence (A.E. MacDonald, et al., 2010), * Flux-Corrected Transport formulated on finite-volume operators to maintain conservative positive definite transport (J.-L, Lee, ET. Al., 2010), *Icosahedral grid optimization (Wang and Lee, 2011), * All differentials evaluated as three-dimensional finite-volume integrals around the control volume. The three-dimensional finite-volume solver in NIM is designed to improve pressure gradient calculation and orographic precipitation over complex terrain. NIM dynamical core has been successfully verified with various non-hydrostatic benchmark test cases such as internal gravity wave, and mountain waves in Dynamical Cores Model Inter-comparisons Projects (DCMIP). Physical parameterizations suitable for NWP are incorporated into NIM dynamical core and successfully tested with multimonth aqua-planet simulations. Recently, NIM has started real data simulations using GFS initial conditions. Results from the idealized tests as well as real-data simulations will be shown in the conference.
A Spanish model for quantification and management of construction waste.
Solís-Guzmán, Jaime; Marrero, Madelyn; Montes-Delgado, Maria Victoria; Ramírez-de-Arellano, Antonio
2009-09-01
Currently, construction and demolition waste (C&D waste) is a worldwide issue that concerns not only governments but also the building actors involved in construction activity. In Spain, a new national decree has been regulating the production and management of C&D waste since February 2008. The present work describes the waste management model that has inspired this decree: the Alcores model implemented with good results in Los Alcores Community (Seville, Spain). A detailed model is also provided to estimate the volume of waste that is expected to be generated on the building site. The quantification of C&D waste volume, from the project stage, is essential for the building actors to properly plan and control its disposal. This quantification model has been developed by studying 100 dwelling projects, especially their bill of quantities, and defining three coefficients to estimate the demolished volume (CT), the wreckage volume (CR) and the packaging volume (CE). Finally, two case studies are included to illustrate the usefulness of the model to estimate C&D waste volume in both new construction and demolition projects.
Strategic Control Algorithm Development : Volume 4A. Computer Program Report.
DOT National Transportation Integrated Search
1974-08-01
A description of the strategic algorithm evaluation model is presented, both at the user and programmer levels. The model representation of an airport configuration, environmental considerations, the strategic control algorithm logic, and the airplan...
Strategic Control Algorithm Development : Volume 4B. Computer Program Report (Concluded)
DOT National Transportation Integrated Search
1974-08-01
A description of the strategic algorithm evaluation model is presented, both at the user and programmer levels. The model representation of an airport configuration, environmental considerations, the strategic control algorithm logic, and the airplan...
Chen, Li; Luo, Tianyou; Lv, Fajin; Shi, Dandan; Qiu, Jiang; Li, Qi; Fang, Weidong; Peng, Juan; Li, Yongmei; Zhang, Zhiwei; Li, Yang
2016-09-01
Clinical studies have shown that thalamus infarction (TI) affects memory function. The thalamic nucleus is directly or indirectly connected to the hippocampal system in animal models. However, this connection has not been investigated using structural magnetic resonance imaging (MRI) in humans. From the pathological perspective, TI patients may serve as valid models for revealing the interaction between the thalamus and hippocampus in memory function. In this study, we aim to assess different hippocampal subfield volumes in TI patients and control subjects using MRI and test their associations with memory function. A total of 37 TI patients (TI group), 38 matched healthy control subjects (HC group), and 22 control patients with other stroke location (SC group) underwent 3.0-T MRI scans and clinical memory examinations. Hippocampal subfield volumes were measured and compared by using FreeSurfer software. We examined the correlation between hippocampal subfield volumes and memory scores. Smaller ipsilesional presubiculum and subiculum volumes were observed, and former was related to graphics recall in both left and right TI patients. The left subiculum volume was correlated with short-delayed recall in left TI patients. The right presubiculum volume was correlated with short- and long-delayed recall in right TI patients. TI was found to result in hippocampal abnormality and memory deficits, and its neural mechanisms might be related with and interaction between the thalamus and hippocampus.
Uncontrolled Hemorrhage Differs From Volume- or Pressure-Matched Controlled Hemorrhage in Swine
2007-10-01
differences between these models, we evaluated the relationship between blood volume loss and blood pressure in controlled versus uncontrolled hemorrhage...aortotomy; (2) group P, controlled hemorrhage matched to the blood pressure profile of group U; or (3) group V, controlled hemorrhage matched to the...hemorrhage and received no fluid resuscitation. Group U resulted in a blood loss of 17.6 T 0.7 mL kgj1 and a reduction in blood pressure to 28 T 3 mmHg at
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; DaSilva, Arlindo; Atlas, Robert (Technical Monitor)
2001-01-01
Toward the development of a finite-volume Data Assimilation System (fvDAS), a consistent finite-volume methodology is developed for interfacing the NASA/DAO's Physical Space Statistical Analysis System (PSAS) to the joint NASA/NCAR finite volume CCM3 (fvCCM3). To take advantage of the Lagrangian control-volume vertical coordinate of the fvCCM3, a novel "shaving" method is applied to the lowest few model layers to reflect the surface pressure changes as implied by the final analysis. Analysis increments (from PSAS) to the upper air variables are then consistently put onto the Lagrangian layers as adjustments to the volume-mean quantities during the analysis cycle. This approach is demonstrated to be superior to the conventional method of using independently computed "tendency terms" for surface pressure and upper air prognostic variables.
NASA Astrophysics Data System (ADS)
McCullough, R. R.; Jordon, J. B.; Brammer, A. T.; Manigandan, K.; Srivatsan, T. S.; Allison, P. G.; Rushing, T. W.
2014-01-01
In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.
Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 2: Noise Control
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H. (Editor)
1991-01-01
Flight vehicles and the underlying concepts of noise generation, noise propagation, noise prediction, and noise control are studied. This volume includes those chapters that relate to flight vehicle noise control and operations: human response to aircraft noise; atmospheric propagation; theoretical models for duct acoustic propagation and radiation; design and performance of duct acoustic treatment; jet noise suppression; interior noise; flyover noise measurement and prediction; and quiet aircraft design and operational characteristics.
Control volume based hydrocephalus research
NASA Astrophysics Data System (ADS)
Cohen, Benjamin; Voorhees, Abram; Wei, Timothy
2008-11-01
Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.
NASA Astrophysics Data System (ADS)
Salinas, P.; Pavlidis, D.; Xie, Z.; Osman, H.; Pain, C. C.; Jackson, M. D.
2018-01-01
We present a new, high-order, control-volume-finite-element (CVFE) method for multiphase porous media flow with discontinuous 1st-order representation for pressure and discontinuous 2nd-order representation for velocity. The method has been implemented using unstructured tetrahedral meshes to discretize space. The method locally and globally conserves mass. However, unlike conventional CVFE formulations, the method presented here does not require the use of control volumes (CVs) that span the boundaries between domains with differing material properties. We demonstrate that the approach accurately preserves discontinuous saturation changes caused by permeability variations across such boundaries, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than using conventional CVFE methods. We resolve a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media.
Mechanical properties and failure behavior of unidirectional porous ceramics
NASA Astrophysics Data System (ADS)
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.
2016-04-01
We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.
Mechanical properties and failure behavior of unidirectional porous ceramics.
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J
2016-04-14
We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.
Combining quantitative and qualitative breast density measures to assess breast cancer risk.
Kerlikowske, Karla; Ma, Lin; Scott, Christopher G; Mahmoudzadeh, Amir P; Jensen, Matthew R; Sprague, Brian L; Henderson, Louise M; Pankratz, V Shane; Cummings, Steven R; Miglioretti, Diana L; Vachon, Celine M; Shepherd, John A
2017-08-22
Accurately identifying women with dense breasts (Breast Imaging Reporting and Data System [BI-RADS] heterogeneously or extremely dense) who are at high breast cancer risk will facilitate discussions of supplemental imaging and primary prevention. We examined the independent contribution of dense breast volume and BI-RADS breast density to predict invasive breast cancer and whether dense breast volume combined with Breast Cancer Surveillance Consortium (BCSC) risk model factors (age, race/ethnicity, family history of breast cancer, history of breast biopsy, and BI-RADS breast density) improves identifying women with dense breasts at high breast cancer risk. We conducted a case-control study of 1720 women with invasive cancer and 3686 control subjects. We calculated ORs and 95% CIs for the effect of BI-RADS breast density and Volpara™ automated dense breast volume on invasive cancer risk, adjusting for other BCSC risk model factors plus body mass index (BMI), and we compared C-statistics between models. We calculated BCSC 5-year breast cancer risk, incorporating the adjusted ORs associated with dense breast volume. Compared with women with BI-RADS scattered fibroglandular densities and second-quartile dense breast volume, women with BI-RADS extremely dense breasts and third- or fourth-quartile dense breast volume (75% of women with extremely dense breasts) had high breast cancer risk (OR 2.87, 95% CI 1.84-4.47, and OR 2.56, 95% CI 1.87-3.52, respectively), whereas women with extremely dense breasts and first- or second-quartile dense breast volume were not at significantly increased breast cancer risk (OR 1.53, 95% CI 0.75-3.09, and OR 1.50, 95% CI 0.82-2.73, respectively). Adding continuous dense breast volume to a model with BCSC risk model factors and BMI increased discriminatory accuracy compared with a model with only BCSC risk model factors (C-statistic 0.639, 95% CI 0.623-0.654, vs. C-statistic 0.614, 95% CI 0.598-0.630, respectively; P < 0.001). Women with dense breasts and fourth-quartile dense breast volume had a BCSC 5-year risk of 2.5%, whereas women with dense breasts and first-quartile dense breast volume had a 5-year risk ≤ 1.8%. Risk models with automated dense breast volume combined with BI-RADS breast density may better identify women with dense breasts at high breast cancer risk than risk models with either measure alone.
Body fluid volumes in rats with mestranol-induced hypertension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, W.L. Jr.; Johnson, J.A.; Kurz, K.D.
Because estrogens have been reported to produce sodium retention, this study investigated the possibility that hypertension in rats resulting from the ingestion of an estrogen used as an oral contraceptive could be due to increases in body fluid volumes. Female rats were given feed containing mestranol for 1, 3, and 6 mo; control rats were given the feed without mestranol. The mestranol-treated rats had higher arterial pressures than the controls only after 6 mo of treatment. Plasma volume, extracellular fluid volume, and total body water were measured in each rat by the distribution volumes of radioiodinated serum albumin, /sup 32/SO/submore » 4/, and tritiated water, respectively. The body fluid volumes, expressed per 100 g of body weight, were not different between the mestranol-treated rats and their controls at any of the three treatment times. Due to differences in body weight and lean body mass between the mestranol-treated and the control rats, these volumes also were expressed per 100 g of lean body mass. Again, no differences were observed between the mestranol-treated rats and the control rats for any of these body fluid compartments at any of the treatment times. These studies, therefore, were unable to provide evidence that increases in body fluid volumes contributed to the elevated arterial pressure in this rat model of oral contraceptive hypertension.« less
Bili, Eleni; Bili, Authors Eleni; Dampala, Kaliopi; Iakovou, Ioannis; Tsolakidis, Dimitrios; Giannakou, Anastasia; Tarlatzis, Basil C
2014-08-01
The aim of this study was to determine the performance of prostate specific antigen (PSA) and ultrasound parameters, such as ovarian volume and outline, in the diagnosis of polycystic ovary syndrome (PCOS). This prospective, observational, case-controlled study included 43 women with PCOS, and 40 controls. Between day 3 and 5 of the menstrual cycle, fasting serum samples were collected and transvaginal ultrasound was performed. The diagnostic performance of each parameter [total PSA (tPSA), total-to-free PSA ratio (tPSA:fPSA), ovarian volume, ovarian outline] was estimated by means of receiver operating characteristic (ROC) analysis, along with area under the curve (AUC), threshold, sensitivity, specificity as well as positive (+) and negative (-) likelihood ratios (LRs). Multivariate logistical regression models, using ovarian volume and ovarian outline, were constructed. The tPSA and tPSA:fPSA ratio resulted in AUC of 0.74 and 0.70, respectively, with moderate specificity/sensitivity and insufficient LR+/- values. In the multivariate logistic regression model, the combination of ovarian volume and outline had a sensitivity of 97.7% and a specificity of 97.5% in the diagnosis of PCOS, with +LR and -LR values of 39.1 and 0.02, respectively. In women with PCOS, tPSA and tPSA:fPSA ratio have similar diagnostic performance. The use of a multivariate logistic regression model, incorporating ovarian volume and outline, offers very good diagnostic accuracy in distinguishing women with PCOS patients from controls. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, volume 1
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
Identification and control of flexible space structures were studied. Exploration of the most advanced modeling estimation, identification and control methodologies to flexible space structures was discussed. The following general areas were discussed: space platforms, antennas, and flight experiments; control/structure interactions - modeling, integrated design and optimization, control and stabilization, and shape control; control technology; control of space stations; large antenna control, dynamics and control experiments, and control/structure interaction experiments.
Friedman, Avner; Lachowicz, Mirosław; Ledzewicz, Urszula; Piotrowska, Monika Joanna; Szymanska, Zuzanna
2017-02-01
This volume was inspired by the topics presented at the international conference "Micro and Macro Systems in Life Sciences" which was held on Jun 8-12, 2015 in Będlewo, Poland. System biology is an approach which tries to understand how micro systems, at the molecular and cellular levels, affect macro systems such as organs, tissue and populations. Thus it is not surprising that a major theme of this volume evolves around cancer and its treatment. Articles on this topic include models for tumor induced angiogenesis, without and with delays, metastatic niche of the bone marrow, drug resistance and metronomic chemotherapy, and virotherapy of glioma. Methods range from dynamical systems to optimal control. Another well represented topic of this volume is mathematical modeling in epidemiology. Mathematical approaches to modeling and control of more specific diseases like malaria, Ebola or human papillomavirus are discussed as well as a more general approaches to the SEIR, and even more general class of models in epidemiology, by using the tools of optimal control and optimization. The volume also brings up challenges in mathematical modeling of other diseases such as tuberculosis. Partial differential equations combined with numerical approaches are becoming important tools in modeling not only tumor growth and treatment, but also other diseases, such as fibrosis of the liver, and atherosclerosis and its associated blood flow dynamics, and our volume presents a state of the art approach on these topics. Understanding mathematics behind the cell motion, appearance of the special patterns in various cell populations, and age structured mutations are among topics addressed inour volume. A spatio-temporal models of synthetic genetic oscillators brings the analysis to the gene level which is the focus of much of current biological research. Mathematics can help biologists to explain the collective behavior of bacterial, a topic that is also presented here. Finally some more across the discipline topics are being addresses, which can appear as a challenge in studying problems in systems biology on all, macro, meso and micro levels. They include numerical approaches to stochastic wave equation arising in modeling Brownian motion, discrete velocity models, many particle approximations as well as very important aspect on the connection between discrete measurement and the construction of the models for various phenomena, particularly the one involving delays. With the variety of biological topics and their mathematical approaches we very much hope that the reader of the Mathematical Biosciences and Engineering will find this volume interesting and inspirational for their own research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Carrington, Rhys
2014-10-01
Purpose: This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials: Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm{sup 3}. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5more » Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA{sub 62.5}) was compared to a standard dose plan of 50 Gy/25 fractions (RA{sub 50}). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results: Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA{sub 50}) to 56.3% (RA{sub 62.5}), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA{sub 50}) versus 5.6% (RA{sub 62.5}) P<.001 and median lung NTCP 6.5% (RA{sub 50}) versus 7.5% (RA{sub 62.5}) P<.001. Conclusions: Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials.« less
SU-F-R-51: Radiomics in CT Perfusion Maps of Head and Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesteruk, M; Riesterer, O; Veit-Haibach, P
2016-06-15
Purpose: The aim of this study was to test the predictive value of radiomics features of CT perfusion (CTP) for tumor control, based on a preselection of radiomics features in a robustness study. Methods: 11 patients with head and neck cancer (HNC) and 11 patients with lung cancer were included in the robustness study to preselect stable radiomics parameters. Data from 36 HNC patients treated with definitive radiochemotherapy (median follow-up 30 months) was used to build a predictive model based on these parameters. All patients underwent pre-treatment CTP. 315 texture parameters were computed for three perfusion maps: blood volume, bloodmore » flow and mean transit time. The variability of texture parameters was tested with respect to non-standardizable perfusion computation factors (noise level and artery contouring) using intraclass correlation coefficients (ICC). The parameter with the highest ICC in the correlated group of parameters (inter-parameter Spearman correlations) was tested for its predictive value. The final model to predict tumor control was built using multivariate Cox regression analysis with backward selection of the variables. For comparison, a predictive model based on tumor volume was created. Results: Ten parameters were found to be stable in both HNC and lung cancer regarding potentially non-standardizable factors after the correction for inter-parameter correlations. In the multivariate backward selection of the variables, blood flow entropy showed a highly significant impact on tumor control (p=0.03) with concordance index (CI) of 0.76. Blood flow entropy was significantly lower in the patient group with controlled tumors at 18 months (p<0.1). The new model showed a higher concordance index compared to the tumor volume model (CI=0.68). Conclusion: The preselection of variables in the robustness study allowed building a predictive radiomics-based model of tumor control in HNC despite a small patient cohort. This model was found to be superior to the volume-based model. The project was supported by the KFSP Tumor Oxygenation of the University of Zurich, by a grant of the Center for Clinical Research, University and University Hospital Zurich and by a research grant from Merck (Schweiz) AG.« less
2014-01-01
Background our objective was to examine the plasma levels of three biological markers involved in cerebral ischemia (IL-6, glutamate and TNF-alpha) in stroke patients and compare them with two different rat models of focal ischemia (embolic stroke model- ES and permanent middle cerebral artery occlusion ligation model-pMCAO) to evaluate which model is most similar to humans. Secondary objectives: 1) to analyze the relationship of these biological markers with the severity, volume and outcome of the brain infarction in humans and the two stroke models; and 2) to study whether the three biomarkers are also increased in response to damage in organs other than the central nervous system, both in humans and in rats. Methods Multi-center, prospective, case-control study including acute stroke patients (n = 58) and controls (n = 19) with acute non-neurological diseases Main variables: plasma biomarker levels on admission and at 72 h; stroke severity (NIHSS scale) and clinical severity (APACHE II scale); stroke volume; functional status at 3 months (modified Rankin Scale [mRS] and Barthel index [BI]). Experimental groups: ES (n = 10), pMCAO (n = 6) and controls (tissue stress by leg compression) (n = 6). Main variables: plasma biomarker levels at 3 and 72 h; volume of ischemic lesion (H&E) and cell death (TUNEL). Results in stroke patients, IL-6 correlated significantly with clinical severity (APACHE II scale), stroke severity (NIHSS scale), infarct volume (cm3) and clinical outcome (mRS) (r = 0.326, 0.497, 0.290 and 0.444 respectively; P < 0.05). Glutamate correlated with stroke severity, but not with outcome, and TNF-alpha levels with infarct volume. In animals, The ES model showed larger infarct volumes (median 58.6% vs. 29%, P < 0.001) and higher inflammatory biomarkers levels than pMCAO, except for serum glutamate levels which were higher in pMCAO. The ES showed correlations between the biomarkers and cell death (r = 0.928 for IL-6; P < 0.001; r = 0.765 for TNF-alpha, P < 0.1; r = 0.783 for Glutamate, P < 0.1) and infarct volume (r = 0.943 for IL-6, P < 0.0001) more similar to humans than pMCAO. IL-6, glutamate and TNF-α levels were not higher in cerebral ischemia than in controls. Conclusions Both models, ES and pMCAO, show differences that should be considered when conducting translational studies. IL-6, Glutamate and TNF-α are not specific for cerebral ischemia either in humans or in rats. PMID:25086655
A modeling technique for STOVL ejector and volume dynamics
NASA Technical Reports Server (NTRS)
Drummond, C. K.; Barankiewicz, W. S.
1990-01-01
New models for thrust augmenting ejector performance prediction and feeder duct dynamic analysis are presented and applied to a proposed Short Take Off and Vertical Landing (STOVL) aircraft configuration. Central to the analysis is the nontraditional treatment of the time-dependent volume integrals in the otherwise conventional control-volume approach. In the case of the thrust augmenting ejector, the analysis required a new relationship for transfer of kinetic energy from the primary flow to the secondary flow. Extraction of the required empirical corrections from current steady-state experimental data is discussed; a possible approach for modeling insight through Computational Fluid Dynamics (CFD) is presented.
Incorporation of Condensation Heat Transfer in a Flow Network Code
NASA Technical Reports Server (NTRS)
Anthony, Miranda; Majumdar, Alok
2002-01-01
Pure water is distilled from waste water in the International Space Station. The distillation assembly consists of an evaporator, a compressor and a condenser. Vapor is periodically purged from the condenser to avoid vapor accumulation. Purged vapor is condensed in a tube by coolant water prior to entering the purge pump. The paper presents a condensation model of purged vapor in a tube. This model is based on the Finite Volume Method. In the Finite Volume Method, the flow domain is discretized into multiple control volumes and a simultaneous analysis is performed.
Gao, Yuqin; Yuan, Yu; Wang, Huaizhi; Schmidt, Arthur R; Wang, Kexuan; Ye, Liu
2017-05-01
The urban agglomeration polders type of flood control pattern is a general flood control pattern in the eastern plain area and some of the secondary river basins in China. A HEC-HMS model of Qinhuai River basin based on the flood control pattern was established for simulating basin runoff, examining the impact of urban agglomeration polders on flood events, and estimating the effects of urbanization on hydrological processes of the urban agglomeration polders in Qinhuai River basin. The results indicate that the urban agglomeration polders could increase the peak flow and flood volume. The smaller the scale of the flood, the more significant the influence of the polder was to the flood volume. The distribution of the city circle polder has no obvious impact on the flood volume, but has effect on the peak flow. The closer the polder is to basin output, the smaller the influence it has on peak flows. As the level of urbanization gradually improving of city circle polder, flood volumes and peak flows gradually increase compared to those with the current level of urbanization (the impervious rate was 20%). The potential change in flood volume and peak flow with increasing impervious rate shows a linear relationship.
DOT National Transportation Integrated Search
1978-05-01
The User Delay Cost Model (UDCM) is a Monte Carlo simulation of certain classes of movement of air traffic in the Boston Terminal Control Area (TCA). It incorporates a weather module, an aircraft generation module, a facilities module, and an air con...
Twentieth Annual Conference on Manual Control, Volume 1
NASA Technical Reports Server (NTRS)
Hart, S. G. (Compiler); Hartzell, E. J. (Compiler)
1984-01-01
The 48 papers presented were devoted to humanopeator modeling, application of models to simulation and operational environments, aircraft handling qualities, teleopertors, fault diagnosis, and biodynamics.
Sensitivities of Greenland ice sheet volume inferred from an ice sheet adjoint model
NASA Astrophysics Data System (ADS)
Heimbach, P.; Bugnion, V.
2009-04-01
We present a new and original approach to understanding the sensitivity of the Greenland ice sheet to key model parameters and environmental conditions. At the heart of this approach is the use of an adjoint ice sheet model. Since its introduction by MacAyeal (1992), the adjoint method has become widespread to fit ice stream models to the increasing number and diversity of satellite observations, and to estimate uncertain model parameters such as basal conditions. However, no attempt has been made to extend this method to comprehensive ice sheet models. As a first step toward the use of adjoints of comprehensive three-dimensional ice sheet models we have generated an adjoint of the ice sheet model SICOPOLIS of Greve (1997). The adjoint was generated by means of the automatic differentiation (AD) tool TAF. The AD tool generates exact source code representing the tangent linear and adjoint model of the nonlinear parent model provided. Model sensitivities are given by the partial derivatives of a scalar-valued model diagnostic with respect to the controls, and can be efficiently calculated via the adjoint. By way of example, we determine the sensitivity of the total Greenland ice volume to various control variables, such as spatial fields of basal flow parameters, surface and basal forcings, and initial conditions. Reliability of the adjoint was tested through finite-difference perturbation calculations for various control variables and perturbation regions. Besides confirming qualitative aspects of ice sheet sensitivities, such as expected regional variations, we detect regions where model sensitivities are seemingly unexpected or counter-intuitive, albeit ``real'' in the sense of actual model behavior. An example is inferred regions where sensitivities of ice sheet volume to basal sliding coefficient are positive, i.e. where a local increase in basal sliding parameter increases the ice sheet volume. Similarly, positive ice temperature sensitivities in certain parts of the ice sheet are found (in most regions it is negativ, i.e. an increase in temperature decreases ice sheet volume), the detection of which seems highly unlikely if only conventional perturbation experiments had been used. An effort to generate an efficient adjoint with the newly developed open-source AD tool OpenAD is also under way. Available adjoint code generation tools now open up a variety of novel model applications, notably with regard to sensitivity and uncertainty analyses and ice sheet state estimation or data assimilation.
Hockenberry, Jason M; Lien, Hsien-Ming; Chou, Shin-Yi
2010-10-01
To investigate whether provider volume has an impact on the hazard of mortality for coronary artery bypass grafting (CABG) patients in Taiwan. Multiple sources of linked data from the National Health Insurance Program in Taiwan. The linked data were used to identify 27,463 patients who underwent CABG without concomitant angioplasty or valve procedures and the surgeon and hospital volumes. Generalized estimating equations and hazard models were estimated to assess the impact of volume on mortality. The hazard modeling technique used accounts for bias stemming from unobserved heterogeneity. Both surgeon and hospital volume quartiles are inversely related to the hazard of mortality after CABG. Patients whose surgeon is in the three higher volume quartiles have lower 1-, 3-, 6-, and 12-month mortality after CABG, while only those having their procedure performed at the highest quartile of volume hospitals have lower mortality outcomes. Mortality outcomes are related to provider CABG volume in Taiwan. Unobserved heterogeneity is a concern in the volume-outcome relationship; after accounting for it, surgeon volume effects on short-term mortality are large. Using models controlling for unobserved heterogeneity and examining longer term mortality may still differentiate provider quality by volume. Copyright © Health Research and Educational Trust.
Sharifi, N; Ozgoli, S; Ramezani, A
2017-06-01
Mixed immunotherapy and chemotherapy of tumours is one of the most efficient ways to improve cancer treatment strategies. However, it is important to 'design' an effective treatment programme which can optimize the ways of combining immunotherapy and chemotherapy to diminish their imminent side effects. Control engineering techniques could be used for this. The method of multiple model predictive controller (MMPC) is applied to the modified Stepanova model to induce the best combination of drugs scheduling under a better health criteria profile. The proposed MMPC is a feedback scheme that can perform global optimization for both tumour volume and immune competent cell density by performing multiple constraints. Although current studies usually assume that immunotherapy has no side effect, this paper presents a new method of mixed drug administration by employing MMPC, which implements several constraints for chemotherapy and immunotherapy by considering both drug toxicity and autoimmune. With designed controller we need maximum 57% and 28% of full dosage of drugs for chemotherapy and immunotherapy in some instances, respectively. Therefore, through the proposed controller less dosage of drugs are needed, which contribute to suitable results with a perceptible reduction in medicine side effects. It is observed that in the presence of MMPC, the amount of required drugs is minimized, while the tumour volume is reduced. The efficiency of the presented method has been illustrated through simulations, as the system from an initial condition in the malignant region of the state space (macroscopic tumour volume) transfers into the benign region (microscopic tumour volume) in which the immune system can control tumour growth. Copyright © 2017 Elsevier B.V. All rights reserved.
Front tracking based modeling of the solid grain growth on the adaptive control volume grid
NASA Astrophysics Data System (ADS)
Seredyński, Mirosław; Łapka, Piotr
2017-07-01
The paper presents the micro-scale model of unconstrained solidification of the grain immersed in under-cooled liquid, based on the front tracking approach. For this length scale, the interface tracked through the domain is meant as the solid-liquid boundary. To prevent generation of huge meshes the energy transport equation is discretized on the adaptive control volume (c.v.) mesh. The coupling of dynamically changing mesh and moving front position is addressed. Preliminary results of simulation of a test case, the growth of single grain, are presented and discussed.
Temperature-controlled radiofrequency ablation of different tissues using two-compartment models.
Singh, Sundeep; Repaka, Ramjee
2016-08-30
This study aims to analyse the efficacy of temperature-controlled radiofrequency ablation (RFA) in different tissues. A three-dimensional, 12 cm cubical model representing the healthy tissue has been studied in which spherical tumour of 2.5 cm has been embedded. Different body sites considered in the study are liver, kidney, lung and breast. The thermo-electric analysis has been performed to estimate the temperature distribution and ablation volume. A programmable temperature-controlled RFA has been employed by incorporating the closed-loop feedback PID controller. The model fidelity and integrity have been evaluated by comparing the numerical results with the experimental in vitro results obtained during RFA of polyacrylamide tissue-mimicking phantom gel. The results revealed that significant variations persist among the input voltage requirements and the temperature distributions within different tissues of interest. The highest ablation volume has been produced in hypovascular lungs whereas least ablation volume has been produced in kidney being a highly perfused tissue. The variation in optimal treatment time for complete necrosis of tumour along with quantification of damage to the surrounding healthy tissue has also been reported. The results show that the surrounding tissue environment significantly affects the ablation volume produced during RFA. The optimal treatment time for complete tumour ablation can play a critical role in minimising the damage to the surrounding healthy tissue and ensuring safe and risk free application of RFA. The obtained results emphasise the need for developing organ-specific clinical protocols and systems during RFA of tumour.
A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2001-01-01
A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.
High volume data storage architecture analysis
NASA Technical Reports Server (NTRS)
Malik, James M.
1990-01-01
A High Volume Data Storage Architecture Analysis was conducted. The results, presented in this report, will be applied to problems of high volume data requirements such as those anticipated for the Space Station Control Center. High volume data storage systems at several different sites were analyzed for archive capacity, storage hierarchy and migration philosophy, and retrieval capabilities. Proposed architectures were solicited from the sites selected for in-depth analysis. Model architectures for a hypothetical data archiving system, for a high speed file server, and for high volume data storage are attached.
Decision support system in an international-voice-services business company
NASA Astrophysics Data System (ADS)
Hadianti, R.; Uttunggadewa, S.; Syamsuddin, M.; Soewono, E.
2017-01-01
We consider a problem facing by an international telecommunication services company in maximizing its profit. From voice services by controlling cost and business partnership. The competitiveness in this industry is very high, so that any efficiency from controlling cost and business partnership can help the company to survive in the very high competitiveness situation. The company trades voice traffic with a large number of business partners. There are four trading schemes that can be chosen by this company, namely, flat rate, class tiering, volume commitment, and revenue capped. Each scheme has a specific characteristic on the rate and volume deal, where the last three schemes are regarded as strategic schemes to be offered to business partner to ensure incoming traffic volume for both parties. This company and each business partner need to choose an optimal agreement in a certain period of time that can maximize the company’s profit. In this agreement, both parties agree to use a certain trading scheme, rate and rate/volume/revenue deal. A decision support system is then needed in order to give a comprehensive information to the sales officers to deal with the business partners. This paper discusses the mathematical model of the optimal decision for incoming traffic volume control, which is a part of the analysis needed to build the decision support system. The mathematical model is built by first performing data analysis to see how elastic the incoming traffic volume is. As the level of elasticity is obtained, we then derive a mathematical modelling that can simulate the impact of any decision on trading to the revenue of the company. The optimal decision can be obtained from these simulations results. To evaluate the performance of the proposed method we implement our decision model to the historical data. A software tool incorporating our methodology is currently in construction.
Hockenberry, Jason M; Lien, Hsien-Ming; Chou, Shin-Yi
2010-01-01
Objective To investigate whether provider volume has an impact on the hazard of mortality for coronary artery bypass grafting (CABG) patients in Taiwan. Data Sources/Study Setting Multiple sources of linked data from the National Health Insurance Program in Taiwan. Study Design The linked data were used to identify 27,463 patients who underwent CABG without concomitant angioplasty or valve procedures and the surgeon and hospital volumes. Generalized estimating equations and hazard models were estimated to assess the impact of volume on mortality. The hazard modeling technique used accounts for bias stemming from unobserved heterogeneity. Principal Findings Both surgeon and hospital volume quartiles are inversely related to the hazard of mortality after CABG. Patients whose surgeon is in the three higher volume quartiles have lower 1-, 3-, 6-, and 12-month mortality after CABG, while only those having their procedure performed at the highest quartile of volume hospitals have lower mortality outcomes. Conclusions Mortality outcomes are related to provider CABG volume in Taiwan. Unobserved heterogeneity is a concern in the volume–outcome relationship; after accounting for it, surgeon volume effects on short-term mortality are large. Using models controlling for unobserved heterogeneity and examining longer term mortality may still differentiate provider quality by volume. PMID:20662948
Microfocal angiography of the pulmonary vasculature
NASA Astrophysics Data System (ADS)
Clough, Anne V.; Haworth, Steven T.; Roerig, David T.; Linehan, John H.; Dawson, Christopher A.
1998-07-01
X-ray microfocal angiography provides a means of assessing regional microvascular perfusion parameters using residue detection of vascular indicators. As an application of this methodology, we studied the effects of alveolar hypoxia, a pulmonary vasoconstrictor, on the pulmonary microcirculation to determine changes in regional blood mean transit time, volume and flow between control and hypoxic conditions. Video x-ray images of a dog lung were acquired as a bolus of radiopaque contrast medium passed through the lobar vasculature. X-ray time-absorbance curves were acquired from arterial and microvascular regions-of-interest during both control and hypoxic alveolar gas conditions. A mathematical model based on indicator-dilution theory applied to image residue curves was applied to the data to determine changes in microvascular perfusion parameters. Sensitivity of the model parameters to the model assumptions was analyzed. Generally, the model parameter describing regional microvascular volume, corresponding to area under the microvascular absorbance curve, was the most robust. The results of the model analysis applied to the experimental data suggest a significant decrease in microvascular volume with hypoxia. However, additional model assumptions concerning the flow kinematics within the capillary bed may be required for assessing changes in regional microvascular flow and mean transit time from image residue data.
Spatio-volumetric hazard estimation in the Auckland volcanic field
NASA Astrophysics Data System (ADS)
Bebbington, Mark S.
2015-05-01
The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.
Multi-purpose wind tunnel reaction control model block
NASA Technical Reports Server (NTRS)
Dresser, H. S.; Daileda, J. J. (Inventor)
1978-01-01
A reaction control system nozzle block is provided for testing the response characteristics of space vehicles to a variety of reaction control thruster configurations. A pressurized air system is connected with the supply lines which lead to the individual jet nozzles. Each supply line terminates in a compact cylindrical plenum volume, axially perpendicular and adjacent to the throat of the jet nozzle. The volume of the cylindrical plenum is sized to provide uniform thrust characteristics from each jet nozzle irrespective of the angle of approach of the supply line to the plenum. Each supply line may be plugged or capped to stop the air supply to selected jet nozzles, thereby enabling a variety of nozzle configurations to be obtained from a single model nozzle block.
Physical activity and hippocampal volume in middle-aged patients with type 1 diabetes.
Nunley, Karen A; Leckie, Regina L; Orchard, Trevor J; Costacou, Tina; Aizenstein, Howard J; Jennings, J Richard; Erickson, Kirk I; Rosano, Caterina
2017-04-18
To examine the cross-sectional association between physical activity (PA) and hippocampal volume in middle-aged adults with childhood-onset type 1 diabetes (T1D), and whether hyperglycemia and insulin sensitivity contribute to this relationship. We analyzed neuroimaging and self-reported PA data from 79 adults with T1D from the Pittsburgh Epidemiology of Diabetes Complications Study (mean age 50 years, mean duration 41 years) and 122 similarly aged adults without T1D (mean age 48 years). Linear regression models, controlling for intracranial volume, sex, education, and age, tested associations between PA and gray matter volumes of hippocampi and total brain in the 2 groups. For the T1D group, models further controlled for hyperglycemia and glucose disposal rate, a measure of insulin sensitivity. PA was significantly lower in the T1D than in the non-T1D group (median [interquartile range] 952 kcal [420-2,044] vs 1,614 kcal [588-3,091], respectively). Higher PA was significantly associated with larger hippocampi for T1D, but not for non-T1D (standardized β [ p values] from regression models adjusted for intracranial volume, sex, age, and education: 0.270 [ p < 0.001] and 0.098 [ p = 0.12], respectively). Neither hyperglycemia nor glucose disposal rate substantially modified this association. Relationships between PA and total brain gray matter volume were similar. A cross-sectional association between higher PA and larger hippocampi is already detectable by middle age for these patients with T1D, and it appears robust to chronic hyperglycemia and insulin sensitivity. Proof-of-concept studies should investigate whether increasing PA preserves hippocampal volume and the mechanisms underlying the effects of PA on hippocampal volume. © 2017 American Academy of Neurology.
NASA Astrophysics Data System (ADS)
Engwirda, Darren; Kelley, Maxwell; Marshall, John
2017-08-01
Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.
Birch, Sharla M.; Lenox, Mark W.; Kornegay, Joe N.; Paniagua, Beatriz; Styner, Martin A.; Goodlett, Charles R.; Cudd, Tim A.; Washburn, Shannon E.
2016-01-01
Fetal alcohol spectrum disorder (FASD) is a leading potentially preventable birth defect. Poor nutrition may contribute to adverse developmental outcomes of prenatal alcohol exposure, and supplementation of essential micronutrients such as choline has shown benefit in rodent models. The sheep model of first-trimester binge alcohol exposure was used in this study to model the dose of maternal choline supplementation used in an ongoing prospective clinical trial involving pregnancies at risk for FASD. Primary outcome measures included volumetrics of the whole brain, cerebellum, and pituitary derived from magnetic resonance imaging (MRI) in 6-month-old lambs, testing the hypothesis that alcohol-exposed lambs would have brain volume reductions that would be ameliorated by maternal choline supplementation. Pregnant sheep were randomly assigned to one of five groups – heavy binge alcohol (HBA; 2.5 g/kg/treatment ethanol), heavy binge alcohol plus choline supplementation (HBC; 2.5 g/kg/treatment ethanol and 10 mg/kg/day choline), saline control (SC), saline control plus choline supplementation (SCC; 10 mg/kg/day choline), and normal control (NC). Ewes were given intravenous alcohol (HBA, HBC; mean peak BACs of ~280 mg/dL) or saline (SC, SCC) on three consecutive days per week from gestation day (GD) 4–41; choline was administered on GD 4–148. MRI scans of lamb brains were performed postnatally on day 182. Lambs from both alcohol groups (with or without choline) showed significant reductions in total brain volume; cerebellar and pituitary volumes were not significantly affected. This is the first report of MRI-derived volumetric brain reductions in a sheep model of FASD following binge-like alcohol exposure during the first trimester. These results also indicate that maternal choline supplementation comparable to doses in human studies fails to prevent brain volume reductions typically induced by first-trimester binge alcohol exposure. Future analyses will assess behavioral outcomes along with regional brain and neurohistological measures. PMID:27788773
Twentieth Annual Conference on Manual Control, Volume 2
NASA Technical Reports Server (NTRS)
Hart, S. G. (Compiler); Hartzell, E. J. (Compiler)
1984-01-01
Volume II contains thirty two complete manuscripts and five abstracts. The topics covered include the application of event-related brain potential analysis to operational problems, the subjective evaluation of workload, mental models, training, crew interaction analysis, multiple task performance, and the measurement of workload and performance in simulation.
40 CFR 86.094-14 - Small-volume manufacturers certification procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light...-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.094-14 Small-volume...
A Constitutive Model for Strain-Controlled Strength Degradation of Rockmasses (SDR)
NASA Astrophysics Data System (ADS)
Kalos, A.; Kavvadas, M.
2017-11-01
The paper describes a continuum, rate-independent, incremental plasticity constitutive model applicable in weak rocks and heavily fractured rockmasses, where mechanical behaviour is controlled by rockmass strength rather than structural features (discontinuities). The model describes rockmass structure by a generalised Hoek-Brown Structure Envelope (SE) in the stress space. Stress paths inside the SE are nonlinear and irreversible to better simulate behaviour at strains up to peak strength and under stress reversals. Stress paths on the SE have user-controlled volume dilatancy (gradually reducing to zero at large shear strains) and can model post-peak strain softening of brittle rockmasses via a structure degradation (damage) mechanism triggered by accumulated plastic shear strains. As the SE may strain harden with plastic strains, ductile behaviour can also be modelled. The model was implemented in the Finite Element Code Simulia ABAQUS and was applied in plane strain (2D) excavation of a cylindrical cavity (tunnel) to predict convergence-confinement curves. It is shown that small-strain nonlinearity, variable volume dilatancy and post-peak hardening/softening strongly affect the predicted curves, resulting in corresponding differences of lining pressures in real tunnel excavations.
Control volume based hydrocephalus research; a phantom study
NASA Astrophysics Data System (ADS)
Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy
2009-11-01
Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.
Dumas, Ryan P; Seamon, Mark J; Smith, Brian P; Yang, Wei; Cannon, Jeremy W; Schwab, C William; Reilly, Patrick M; Holena, Daniel N
2018-04-17
The relationship between high volume and improved outcomes has been described for a host of elective high-impact, low-frequency procedures, but there are little data to support such a relationship in high-impact low-frequency procedures in trauma. Using emergency department thoracotomy (EDT) as a model, we hypothesized that patients presenting to centers with higher institutional volumes of EDT would have improved survival referent to those presenting to lower volume institutions. We queried the Pennsylvania Trauma Outcomes Study (PTOS) registry from 2007-2015 for all EDTs performed at level I and II centers identified by ICD-9 procedure codes and a location stamp indicating the emergency department. We examined patient-level risk factors for survival in univariate regression and multivariable regression models. Centers were divided into tertiles of mean annual EDT volume and the association between mean annual EDT volume and patient survival was examined using logistic regression after controlling for patient factors. 1,399 emergency department thoracotomies were performed at 28 centers. Overall survival was 6.8%. After controlling for patient age, mechanism of injury, signs of life, and injury severity, patients presenting to centers in the highest tertile of volume had significantly higher odds of survival compared to patients presenting to centers in the lowest tertile of volume (OR 4.56, 95% CI 1.43-14.50). Patients presenting to centers with higher mean annual volume of EDTs have improved survival compared to those presenting to institutions with lower mean annual EDT volume. Efforts to understand the etiology of this finding may lead to interventions to improve outcomes at lower volume centers. Level 3: Retrospective cohort study.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.
2010-01-01
A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model
2017-04-27
Control In A Porcine Model (Sus Scrofa) Of Polytrauma. PRINCIPAL INVESTIGATOR (PI) / TRAINING COORDINATOR (TC): Lt Col Timothy Williams DEPARTMENT... controlled cortical impact followed by 25% total blood volume rapid hemorrhage. After 30 minutes of hypotension, animals were randomized to 60
NASA Astrophysics Data System (ADS)
Sumitomo, Yoske; Tye, S.-H. Henry; Wong, Sam S. C.
2013-07-01
We study a racetrack model in the presence of the leading α'-correction in flux compactification in Type IIB string theory, for the purpose of getting conceivable de-Sitter vacua in the large compactified volume approximation. Unlike the Kähler Uplift model studied previously, the α'-correction is more controllable for the meta-stable de-Sitter vacua in the racetrack case since the constraint on the compactified volume size is very much relaxed. We find that the vacuum energy density Λ for de-Sitter vacua approaches zero exponentially as the volume grows. We also analyze properties of the probability distribution of Λ in this class of models. As in other cases studied earlier, the probability distribution again peaks sharply at Λ = 0. We also study the Racetrack Kähler Uplift model in the Swiss-Cheese type model.
A novel medical information management and decision model for uncertain demand optimization.
Bi, Ya
2015-01-01
Accurately planning the procurement volume is an effective measure for controlling the medicine inventory cost. Due to uncertain demand it is difficult to make accurate decision on procurement volume. As to the biomedicine sensitive to time and season demand, the uncertain demand fitted by the fuzzy mathematics method is obviously better than general random distribution functions. To establish a novel medical information management and decision model for uncertain demand optimization. A novel optimal management and decision model under uncertain demand has been presented based on fuzzy mathematics and a new comprehensive improved particle swarm algorithm. The optimal management and decision model can effectively reduce the medicine inventory cost. The proposed improved particle swarm optimization is a simple and effective algorithm to improve the Fuzzy interference and hence effectively reduce the calculation complexity of the optimal management and decision model. Therefore the new model can be used for accurate decision on procurement volume under uncertain demand.
Fligor, Brian J; Cox, L Clarke
2004-12-01
To measure the sound levels generated by the headphones of commercially available portable compact disc players and provide hearing healthcare providers with safety guidelines based on a theoretical noise dose model. Using a Knowles Electronics Manikin for Acoustical Research and a personal computer, output levels across volume control settings were recorded from headphones driven by a standard signal (white noise) and compared with output levels from music samples of eight different genres. Many commercially available models from different manufacturers were investigated. Several different styles of headphones (insert, supra-aural, vertical, and circumaural) were used to determine if style of headphone influenced output level. Free-field equivalent sound pressure levels measured at maximum volume control setting ranged from 91 dBA to 121 dBA. Output levels varied across manufacturers and style of headphone, although generally the smaller the headphone, the higher the sound level for a given volume control setting. Specifically, in one manufacturer, insert earphones increased output level 7-9 dB, relative to the output from stock headphones included in the purchase of the CD player. In a few headphone-CD player combinations, peak sound pressure levels exceeded 130 dB SPL. Based on measured sound pressure levels across systems and the noise dose model recommended by National Institute for Occupational Safety and Health for protecting the occupational worker, a maximum permissible noise dose would typically be reached within 1 hr of listening with the volume control set to 70% of maximum gain using supra-aural headphones. Using headphones that resulted in boosting the output level (e.g., insert earphones used in this study) would significantly decrease the maximum safe volume control setting; this effect was unpredictable from one manufacturer to another. In the interest of providing a straightforward recommendation that should protect the hearing of the majority of consumers, reasonable guidelines would include a recommendation to limit headphone use to 1 hr or less per day if using supra-aural style headphones at a gain control setting of 60% of maximum.
Datamining approaches for modeling tumor control probability.
Naqa, Issam El; Deasy, Joseph O; Mu, Yi; Huang, Ellen; Hope, Andrew J; Lindsay, Patricia E; Apte, Aditya; Alaly, James; Bradley, Jeffrey D
2010-11-01
Tumor control probability (TCP) to radiotherapy is determined by complex interactions between tumor biology, tumor microenvironment, radiation dosimetry, and patient-related variables. The complexity of these heterogeneous variable interactions constitutes a challenge for building predictive models for routine clinical practice. We describe a datamining framework that can unravel the higher order relationships among dosimetric dose-volume prognostic variables, interrogate various radiobiological processes, and generalize to unseen data before when applied prospectively. Several datamining approaches are discussed that include dose-volume metrics, equivalent uniform dose, mechanistic Poisson model, and model building methods using statistical regression and machine learning techniques. Institutional datasets of non-small cell lung cancer (NSCLC) patients are used to demonstrate these methods. The performance of the different methods was evaluated using bivariate Spearman rank correlations (rs). Over-fitting was controlled via resampling methods. Using a dataset of 56 patients with primary NCSLC tumors and 23 candidate variables, we estimated GTV volume and V75 to be the best model parameters for predicting TCP using statistical resampling and a logistic model. Using these variables, the support vector machine (SVM) kernel method provided superior performance for TCP prediction with an rs=0.68 on leave-one-out testing compared to logistic regression (rs=0.4), Poisson-based TCP (rs=0.33), and cell kill equivalent uniform dose model (rs=0.17). The prediction of treatment response can be improved by utilizing datamining approaches, which are able to unravel important non-linear complex interactions among model variables and have the capacity to predict on unseen data for prospective clinical applications.
Trabant, Dennis C.
1999-01-01
The volume of four of the largest glaciers on Iliamna Volcano was estimated using the volume model developed for evaluating glacier volumes on Redoubt Volcano. The volume model is controlled by simulated valley cross sections that are constructed by fitting third-order polynomials to the shape of the valley walls exposed above the glacier surface. Critical cross sections were field checked by sounding with ice-penetrating radar during July 1998. The estimated volumes of perennial snow and glacier ice for Tuxedni, Lateral, Red, and Umbrella Glaciers are 8.6, 0.85, 4.7, and 0.60 cubic kilometers respectively. The estimated volume of snow and ice on the upper 1,000 meters of the volcano is about 1 cubic kilometer. The volume estimates are thought to have errors of no more than ?25 percent. The volumes estimated for the four largest glaciers are more than three times the total volume of snow and ice on Mount Rainier and about 82 times the total volume of snow and ice that was on Mount St. Helens before its May 18, 1980 eruption. Volcanoes mantled by substantial snow and ice covers have produced the largest and most catastrophic lahars and floods. Therefore, it is prudent to expect that, during an eruptive episode, flooding and lahars threaten all of the drainages heading on Iliamna Volcano. On the other hand, debris avalanches can happen any time. Fortunately, their influence is generally limited to the area within a few kilometers of the summit.
Okamura, Koichi; Tsubokawa, Tamiji; Johshita, Hiroo; Miyazaki, Hiroshi; Shiokawa, Yoshiaki
2014-01-01
Thrombolysis due to acute ischemic stroke is associated with the risk of hemorrhagic infarction, especially after reperfusion. Recent experimental studies suggest that the main mechanism contributing to hemorrhagic infarction is oxidative stress caused by disruption of the blood-brain barrier. Edaravone, a free radical scavenger, decreases oxidative stress, thereby preventing hemorrhagic infarction during ischemia and reperfusion. In this study, we investigated the effects of edaravone on hemorrhagic infarction in a rat model of hemorrhagic transformation. We used a previously established hemorrhagic transformation model of rats with hyperglycemia. Hyperglycemia was induced by intraperitoneal injection of glucose to all rats (n = 20). The rats with hyperglycemia showed a high incidence of hemorrhagic infarction. Middle cerebral artery occlusion (MCAO) for 1.5 hours followed by reperfusion for 24 hours was performed in edaravone-treated rats (n = 10) and control rats (n = 10). Upon completion of reperfusion, both groups were evaluated for infarct size and hemorrhage volume and the results obtained were compared. Edaravone significantly decreased infarct volume, with the average infarct volume in the edaravone-treated rats (227.6 mm(3)) being significantly lower than that in the control rats (264.0 mm(3)). Edaravone treatment also decreased the postischemic hemorrhage volumes (53.4 mm(3) in edaravone-treated rats vs 176.4 mm(3) in controls). In addition, the ratio of hemorrhage volume to infarct volume was lower in the edaravone-treated rats (23.5%) than in the untreated rats (63.2%). Edaravone attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia.
Magmatic densities control erupted volumes in Icelandic volcanic systems
NASA Astrophysics Data System (ADS)
Hartley, Margaret; Maclennan, John
2018-04-01
Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.
Hippocampal volume in healthy controls given 3-day stress doses of hydrocortisone.
Brown, E Sherwood; Jeon-Slaughter, Haekyung; Lu, Hanzhang; Jamadar, Rhoda; Issac, Sruthy; Shad, Mujeeb; Denniston, Daren; Tamminga, Carol; Nakamura, Alyson; Thomas, Binu P
2015-03-13
In animal models, corticosterone elevations are associated with hippocampal changes that can be prevented with phenytoin. In humans, Cushing's syndrome and long-term prescription corticosteroid use are associated with a reduction in the hippocampal volume. However, little is known about the effects of short-term corticosteroid administration on the hippocampus. The current report examines changes in the hippocampal volume during a brief hydrocortisone exposure and whether volumetric changes can be blocked by phenytoin. A randomized, double-blind, placebo-controlled, within-subject crossover study was conducted in healthy adults (n=17). Participants received hydrocortisone (160 mg/day)/placebo, phenytoin/placebo, both medications together, or placebo/placebo, with 21-day washouts between the conditions. Structural MRI scans and cortisol levels were obtained following each medication condition. No significant difference in the total brain volume was observed with hydrocortisone. However, hydrocortisone was associated with a significant 1.69% reduction in the total hippocampal volume compared with placebo. Phenytoin blocked the volume reduction associated with hydrocortisone. Reduction in hippocampal volume correlated with the change in cortisol levels (r=-0.58, P=0.03). To our knowledge, this is the first report of structural hippocampal changes with brief corticosteroid exposure. The correlation between the change in hippocampal volume and cortisol level suggests that the volume changes are related to cortisol elevation. Although the findings from this pilot study need replication, they suggest that the reductions in hippocampal volume occur even during brief exposure to corticosteroids, and that hippocampal changes can, as in animal models, be blocked by phenytoin. The results may have implications both for understanding the response of the hippocampus to stress as well as for patients receiving prescription corticosteroids.
Hippocampal Volume in Healthy Controls Given 3-Day Stress Doses of Hydrocortisone
Brown, E Sherwood; Jeon-Slaughter, Haekyung; Lu, Hanzhang; Jamadar, Rhoda; Issac, Sruthy; Shad, Mujeeb; Denniston, Daren; Tamminga, Carol; Nakamura, Alyson; Thomas, Binu P
2015-01-01
In animal models, corticosterone elevations are associated with hippocampal changes that can be prevented with phenytoin. In humans, Cushing's syndrome and long-term prescription corticosteroid use are associated with a reduction in the hippocampal volume. However, little is known about the effects of short-term corticosteroid administration on the hippocampus. The current report examines changes in the hippocampal volume during a brief hydrocortisone exposure and whether volumetric changes can be blocked by phenytoin. A randomized, double-blind, placebo-controlled, within-subject crossover study was conducted in healthy adults (n=17). Participants received hydrocortisone (160 mg/day)/placebo, phenytoin/placebo, both medications together, or placebo/placebo, with 21-day washouts between the conditions. Structural MRI scans and cortisol levels were obtained following each medication condition. No significant difference in the total brain volume was observed with hydrocortisone. However, hydrocortisone was associated with a significant 1.69% reduction in the total hippocampal volume compared with placebo. Phenytoin blocked the volume reduction associated with hydrocortisone. Reduction in hippocampal volume correlated with the change in cortisol levels (r=−0.58, P=0.03). To our knowledge, this is the first report of structural hippocampal changes with brief corticosteroid exposure. The correlation between the change in hippocampal volume and cortisol level suggests that the volume changes are related to cortisol elevation. Although the findings from this pilot study need replication, they suggest that the reductions in hippocampal volume occur even during brief exposure to corticosteroids, and that hippocampal changes can, as in animal models, be blocked by phenytoin. The results may have implications both for understanding the response of the hippocampus to stress as well as for patients receiving prescription corticosteroids. PMID:25409592
NASA Technical Reports Server (NTRS)
Nordheim, A. W.
1985-01-01
The erythropoiesis modeling performed in support of the Body Fluid and Blood Volume Regulation tasks is described. The mathematical formulation of the species independent model, the solutions to the steady state and dynamic versions of the model, and the individual species specific models for the human, squirrel monkey, rat and mouse are outlined. A detailed sensitivity analysis of the species independent model response to parameter changes and how those responses change from species to species is presented. The species to species response to a series of simulated stresses directly related to blood volume regulation during space flight is analyzed.
Pancreas volume and fat fraction in children with Type 1 diabetes.
Regnell, S E; Peterson, P; Trinh, L; Broberg, P; Leander, P; Lernmark, Å; Månsson, S; Elding Larsson, H
2016-10-01
People with Type 1 diabetes have smaller pancreases than healthy individuals. Several diseases causing pancreatic atrophy are associated with pancreatic steatosis, but pancreatic fat in Type 1 diabetes has not been measured. This cross-sectional study aimed to compare pancreas size and fat fraction in children with Type 1 diabetes and controls. The volume and fat fraction of the pancreases of 22 children with Type 1 diabetes and 29 controls were determined using magnetic resonance imaging. Pancreas volume was 27% smaller in children with diabetes (median 34.9 cm(3) ) than in controls (47.8 cm(3) ; P < 0.001). Pancreas volume correlated positively with age in controls (P = 0.033), but not in children with diabetes (P = 0.649). Pancreas volume did not correlate with diabetes duration, but it did correlate positively with units of insulin/kg body weight/day (P = 0.048). A linear model of pancreas volume as influenced by age, body surface area and insulin units/kg body weight/day found that insulin dosage correlated with pancreas volume after controlling for both age and body surface area (P = 0.009). Pancreatic fat fraction was not significantly different between the two groups (1.34% vs. 1.57%; P = 0.891). Our findings do not indicate that pancreatic atrophy in Type 1 diabetes is associated with an increased pancreatic fat fraction, unlike some other diseases featuring reduced pancreatic volume. We speculate that our results may support the hypotheses that much of pancreatic atrophy in Type 1 diabetes occurs before the clinical onset of the disease and that exogenous insulin administration decelerates pancreatic atrophy after diabetes onset. © 2016 Diabetes UK.
Effects of Uygur sand therapy on the mechanical properties of femurs in osteoarthritic rabbits.
Maitirouzi, Julaiti; Yanna, Li; Abulizi, Adinaer; Aihemaitiniyazi, Aizezi; Kuerban, Shataer; Shaojun, Huang
2017-01-01
To investigate the effects of Uygur sand therapy on the mechanical properties of the femur bone of osteoarthritic rabbits. Sixteen rabbits were injected with papain in the right posterior femoral articular cavity on the first, fourth and seventh day to establish the osteoarthritis (OA) rabbit model. Animals were divided into the experimental group and control group (8 rabbits each). The experimental group was treated with sand therapy, and the control group received no sand therapy treatment. Computed tomography (CT) scanning was used to collect the data of the femur before modeling, after modeling and 14 and 28 days after sand treatment. A 3D model of the femur was generated with the MIMIC software the bone layer was divided according to the different gray values and the change of the bone volume was analyzed. The body mesh is divided, and the material properties are given, then the three-point bending simulation is performed in Ansys. Additionally, the three-point bending test was performed on all the rabbits' femur to obtain the deflection and maximum stress values. And the effects of the sand treatment on the volume and mechanical properties of the bone were analyzed. Finally, the simulation results are compared with the experimental results, and the effects of sand treatment on the volume and mechanical properties of the bone are analyzed. (1) there is a tendency in the control group to convert the hard bone into dense bone and soft bone, while in the experimental group, the soft bone is converted into dense bone and hard bone obviously; (2) the morphological parameters of the experimental group are lower than those of the control group, whereas the maximum load, maximum normal stress, maximum shear stress of the experimental group are higher than those of the control group. (3) The mechanical test of three-point bending test was carried out using the three dimensional finite element model of rabbit femur. The sand therapy has positive effects on the volume distribution of bone layer and the mechanical properties of the femur of adult osteoarthritic rabbits.
Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik
2008-07-01
Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.
Waterflood control system for maximizing total oil recovery
Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar
2005-06-07
A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.
Waterflood control system for maximizing total oil recovery
Patzek, Tadeusz Wiktor [Oakland, CA; Silin, Dimitriy Borisovich [Pleasant Hill, CA; De, Asoke Kumar [San Jose, CA
2007-07-24
A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.
1989-03-01
IAutomatic Control, AC-22, p 883-885, 1977 /Syntax check EIGA=EIG(A); EIGB=EIG(B); [M,N)=SIZE(EIGA); [PR] SIZE(EIGB); FOR 11I:M,FOR JlI:P,.... EIGAB=EIGA...AIM = implicit model A matrix I/ QI = weighting matrix, ouputs mimic model I/ RI = weighting matrix, controls mimic model // QIHAT = implicit cost II...the dimension is less than 1. // NINPUTS (the number of controls and outputs) is the flag for the dimensio // of the connections. /- // The name of
FABRIC FILTER MODEL FORMAT CHANGE; VOLUME II. USER'S GUIDE
The report describes an improved mathematical model for use by control personnel to determine the adequacy of existing or proposed filter systems designed to minimize coal fly ash emissions. Several time-saving steps have been introduced to facilitate model application by Agency ...
Cosyns, Bernard; Droogmans, Steven; Weytjens, Caroline; Lahoutte, Tony; Van Camp, Guy; Schoors, Danny; Franken, Philippe R
2007-01-01
Background Recent studies have suggested that diabetes mellitus (DM) may cause left ventricular (LV) dysfunction directly resulting in increased susceptibility to heart failure. Using pinhole collimators and advances in data processing, gated SPECT was recently adapted to image the rat heart. The present study was aimed to assess this new imaging technique for quantifying LV function and remodeling from the Streptozotocin (STZ) rat model compared to controls. Methods Twenty one rats were randomly assigned to control or diabetic group. Six months after the induction of diabetes by STZ, Pinhole 99 m Tc-sestamibi gated SPECT was performed for determining rat LV volumes and function. Post-mortem histopathologic analysis was performed to evaluate the determinant of LV remodeling in this model. Results After six months, the normalized to body weight LV End-systolic volume was significantly different in diabetic rats compared to controls (0.46 ± 0.02 vs 0.33 ± 0.03 μL/g; p = 0.01). The normalized LV End-diastolic volume was also different in both groups (1.51 ± 0.03 vs 0.88 ± 0.05 μL/g; p = 0.001) and the normalized stroke volume was significantly higher in STZ-rats (1.05 ± 0.02 vs 0.54 ± 0.06 μL/g; p = 0.001). The muscular fibers were thinner at histology in the diabetic rats (0.44 ± 0.07 vs 0.32 ± 0.06 AU; p = 0.01). Conclusion Pinhole 99 m Tc-sestamibi gated SPECT can successfully be applied for the evaluation of cardiac function and remodeling in STZ-induced diabetic rats. In this model, LV volumes were significantly changed compared to a control population, leading to a LV dysfunction. These findings were consistent with the histopathological abnormalities. Finally, these data further suggest the presence of diabetes cardiomyopathy. PMID:17937784
Controls on Arctic sea ice from first-year and multi-year survival rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunke, Jes
2009-01-01
The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi year ice. The transition to an Arctic that is populated by thinner first year sea ice has important implications for future trends in area and volume. Here we develop a reduced model for Arctic sea ice with which we investigate how the survivability of first year and multi year ice control the mean state, variability, and trends in ice area and volume.
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 1: USER'S GUIDE
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
Controls on Arctic sea ice from first-year and multi-year ice survival rates
NASA Astrophysics Data System (ADS)
Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.
2009-12-01
The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be reached as the climate is further warmed. Finally, we suggest novel model validation techniques based upon comparing the characteristics of FY and MY ice within models to observations. We propose that keeping an account of FY and MY ice area within sea ice models offers a powerful new way to evaluate model projections of sea ice in a greenhouse warming climate.
Ahn, S S; Kim, S H; Lee, J E; Ahn, K J; Kim, D J; Choi, H S; Kim, J; Shin, N-Y; Lee, S-K
2015-02-01
BBB disruption after acute ischemic stroke and subsequent permeability increase may be enhanced by reperfusion. Agmatine has been reported to attenuate BBB disruption. Our aim was to evaluate the effects of agmatine on BBB stabilization in a rat model of transient cerebral ischemia by using permeability dynamic contrast-enhanced MR imaging at early stages and subsequently to demonstrate the feasibility of dynamic contrast-enhanced MR imaging for the investigation of new therapies. Thirty-four male Sprague-Dawley rats were subjected to transient MCA occlusion for 90 minutes. Immediately after reperfusion, agmatine (100 mg/kg) or normal saline was injected intraperitoneally into the agmatine-treated group (n = 17) or the control group, respectively. MR imaging was performed after reperfusion. For quantitative analysis, regions of interest were defined within the infarct area, and values for volume transfer constant, rate transfer coefficient, volume fraction of extravascular extracellular space, and volume fraction of blood plasma were obtained. Infarct volume, infarct growth, quantitative imaging parameters, and numbers of factor VIII-positive cells after immunohistochemical staining were compared between control and agmatine-treated groups. Among the permeability parameters, volume transfer constant and volume fraction of extravascular extracellular space were significantly lower in the agmatine-treated group compared with the control group (0.05 ± 0.02 minutes(-1) versus 0.08 ± 0.03 minute(-1), P = .012, for volume transfer constant and 0.12 ± 0.06 versus 0.22 ± 0.15, P = .02 for volume fraction of extravascular extracellular space). Other permeability parameters were not significantly different between the groups. The number of factor VIII-positive cells was less in the agmatine-treated group than in the control group (3-fold versus 4-fold, P = .037). In ischemic stroke, agmatine protects the BBB, which can be monitored in vivo by quantification of permeability by using dynamic contrast-enhanced MR imaging. Therefore, dynamic contrast-enhanced MR imaging may serve as a potential imaging biomarker for assessing the BBB stabilization properties of pharmacologic agents. © 2015 by American Journal of Neuroradiology.
Birch, Sharla M.; Lenox, Mark W.; Kornegay, Joe N.; Shen, Li; Ai, Huisi; Ren, Xiaowei; Goodlett, Charles R.; Cudd, Tim A.; Washburn, Shannon E.
2015-01-01
Identification of facial dysmorphology is essential for the diagnosis of fetal alcohol syndrome (FAS); however, most children with fetal alcohol spectrum disorders (FASD) do not meet the dysmorphology criterion. Additional objective indicators are needed to help identify the broader spectrum of children affected by prenatal alcohol exposure. Computed tomography (CT) was used in a sheep model of prenatal binge alcohol exposure to test the hypothesis that quantitative measures of craniofacial bone volumes and linear distances could identify alcohol-exposed lambs. Pregnant sheep were randomly assigned to four groups: heavy binge alcohol, 2.5 g/kg/day (HBA); binge alcohol, 1.75 g/kg/day (BA); saline control (SC); and normal control (NC). Intravenous alcohol (BA; HBA) or saline (SC) infusions were given three consecutive days per week from gestation day 4–41, and a CT scan was performed on postnatal day 182. The volumes of eight skull bones, cranial circumference, and 19 linear measures of the face and skull were compared among treatment groups. Lambs from both alcohol groups showed significant reduction in seven of the eight skull bones and total skull bone volume, as well as cranial circumference. Alcohol exposure also decreased four of the 19 craniofacial measures. Discriminant analysis showed that alcohol-exposed and control lambs could be classified with high accuracy based on total skull bone volume, frontal, parietal, or mandibular bone volumes, cranial circumference, or interorbital distance. Total skull volume was significantly more sensitive than cranial circumference in identifying the alcohol-exposed lambs when alcohol-exposed lambs were classified using the typical FAS diagnostic cutoff of ≤10th percentile. This first demonstration of the usefulness of CT-derived craniofacial measures in a sheep model of FASD following binge-like alcohol exposure during the first trimester suggests that volumetric measurement of cranial bones may be a novel biomarker for binge alcohol exposure during the first trimester to help identify non-dysmorphic children with FASD. PMID:26496796
Haque, Ayesha; Khan, Muhammad Yunus
2017-09-01
To assess the total volume change in a retinoic acid-induced, hypoplastic model of a chick thymus using Image-J. This experimental study was carried out at the anatomy department of College of Physicians and Surgeons, Islamabad, Pakistan, from February 2009 to February 2010, and comprised fertilised chicken eggs. The eggs were divided into experimental group A and control group C. Group A was injected with 0.3µg of retinoic acid via yolk sac to induce a defective model of a thymus with hypoplasia. The chicks were sacrificed on embryonic day 15 and at hatching. The thymus of each animal was processed, serially sectioned and stained. The total area of each section of thymus was calculated using Image-J. This total area was summed and multiplied with the thickness of each section to obtain volume. Of the 120 eggs, there were 60(50%) in each group. Image analysis revealed a highly significant decrease in the volume of the chick thymus in the experimental group A than its matched control at the time of hatching (p=0.001). Moreover, volumetric depletion progressed with time, being substantially pronounced at hatching compared to the embryonic stage. The volume changes were significant and were effectively quantified using Image-J.
Preliminary results from a four-working space, double-acting piston, Stirling engine controls model
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Lorenzo, C. F.
1980-01-01
A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.
NASA Technical Reports Server (NTRS)
Chenault, V. Michelle; Lynch, Colleen D.; Morris, Mariana; Clodfelter, Jill; Hutchins, Phillip M.
1990-01-01
It was demonstrated that up to 8ml of blood can be drawn from donar rats without significantly increasing volume and stress sensitive hormones, and thus can be used for volume expansion studies. Infusion of whole blood allows more physiological changes that can be seen with volume expansion by saline or other ionic solutions. The infusion of whole blood to induce hypervolemia may provide an improved model to study the fluid balance and control mechanisms operative in weightlessness. Blood samples were drawn as quickly as possible from femoral artery catheters chronically implanted in Sprague Dawley rats and analyzed for hematocrit, plasma sodium, potassium, osmolality, corticosterone, epinepherine, norepinephrine, and vasopressin. The levels were found to be comparable to those of normal rats.
Raffield, Laura M; Cox, Amanda J; Freedman, Barry I; Hugenschmidt, Christina E; Hsu, Fang-Chi; Wagner, Benjamin C; Xu, Jianzhao; Maldjian, Joseph A; Bowden, Donald W
2016-06-01
To examine the relationships between type 2 diabetes (T2D) status, glycemic control, and T2D duration with magnetic resonance imaging (MRI)-derived neuroimaging measures in European Americans from the Diabetes Heart Study (DHS) Mind cohort. Relationships were examined using marginal models with generalized estimating equations in 784 participants from 514 DHS Mind families. Fasting plasma glucose, glycated hemoglobin, and diabetes duration were analyzed in 682 participants with T2D. Models were adjusted for potential confounders, including age, sex, history of cardiovascular disease, smoking, educational attainment, and use of statins or blood pressure medications. Association was tested with gray and white matter volume, white matter lesion volume, gray matter cerebral blood flow, and white and gray matter fractional anisotropy and mean diffusivity. Adjusting for multiple comparisons, T2D status was associated with reduced white matter volume (p = 2.48 × 10(-6)) and reduced gray and white matter fractional anisotropy (p ≤ 0.001) in fully adjusted models, with a trend toward increased white matter lesion volume (p = 0.008) and increased gray and white matter mean diffusivity (p ≤ 0.031). Among T2D-affected participants, neither fasting glucose, glycated hemoglobin, nor diabetes duration were associated with the neuroimaging measures assessed (p > 0.05). While T2D was significantly associated with MRI-derived neuroimaging measures, differences in glycemic control in T2D-affected individuals in the DHS Mind study do not appear to significantly contribute to variation in these measures. This supports the idea that the presence or absence of T2D, not fine gradations of glycemic control, may be more significantly associated with age-related changes in the brain.
Locomotive crashworthiness research : volume 5 : cab car crashworthiness report
DOT National Transportation Integrated Search
1996-03-01
Models used to analyze locomotive crashworthiness are modified for application to control cab cars of the types used for intercity and commuter rail passenger service. An existing control cab car is analyzed for crashworthiness based on scenarios dev...
Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas
2017-09-01
Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.
FABRIC FILTER MODEL FORMAT CHANGE; VOLUME 1. DETAILED TECHNICAL REPORT
The report describes an improved mathematical model for use by control personnel to determine the adequacy of existing or proposed filter systems designed to minimize coal fly ash emissions. Several time-saving steps have been introduced to facilitate model application by Agency ...
Development of a multicomponent force and moment balance for water tunnel applications, volume 1
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Malcolm, Gerald N.; Kramer, Brian R.; Smith, Brooke C.; Ayers, Bert F.
1994-01-01
The principal objective of this research effort was to develop a multicomponent strain gauge balance to measure forces and moments on models tested in flow visualization water tunnels. An internal balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The five-components to applied loads, low interactions between the sections and no hysteresis. Static experiments (which are discussed in this Volume) were conducted in the Eidetics water tunnel with delta wings and a model of the F/A-18. Experiments with the F/A-18 model included a thorough baseline study and investigations of the effect of control surface deflections and of several Forebody Vortex Control (FVC) techniques. Results were compared to wind tunnel data and, in general, the agreement is very satisfactory. The results of the static tests provide confidence that loads can be measured accurately in the water tunnel with a relatively simple multicomponent internal balance. Dynamic experiments were also performed using the balance, and the results are discussed in detail in Volume 2 of this report.
Image registration with auto-mapped control volumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreibmann, Eduard; Xing Lei
2006-04-15
Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction,more » in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of inhale and exhale phases of a lung 4D CT. Algorithm convergence was confirmed by starting the registration calculations from a large number of initial transformation parameters. An accuracy of {approx}2 mm was achieved for both deformable and rigid registration. The proposed image registration method greatly reduces the complexity involved in the determination of homologous control points and allows us to minimize the subjectivity and uncertainty associated with the current manual interactive approach. Patient studies have indicated that the two-step registration technique is fast, reliable, and provides a valuable tool to facilitate both rigid and nonrigid image registrations.« less
Transaction-based building controls framework, Volume 2: Platform descriptive model and requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akyol, Bora A.; Haack, Jereme N.; Carpenter, Brandon J.
Transaction-based Building Controls (TBC) offer a control systems platform that provides an agent execution environment that meets the growing requirements for security, resource utilization, and reliability. This report outlines the requirements for a platform to meet these needs and describes an illustrative/exemplary implementation.
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 3: PROGRAMMER'S MAINTENACE MANUAL
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 2: TECHNICAL DOCUMENTATION MANUAL
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
O’Dwyer, Laurence; Tanner, Colby; van Dongen, Eelco V.; Greven, Corina U.; Bralten, Janita; Zwiers, Marcel P.; Franke, Barbara; Heslenfeld, Dirk; Oosterlaan, Jaap; Hoekstra, Pieter J.; Hartman, Catharina A.; Groen, Wouter; Rommelse, Nanda; Buitelaar, Jan K.
2016-01-01
Autism spectrum disorder (ASD) symptoms frequently occur in individuals with attention-deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural brain correlates, knowledge of the structural brain profile of individuals with ADHD with raised ASD symptoms is limited. The presence of ASD-like symptoms was measured by the Children's Social Behavior Questionnaire (CSBQ) in a sample of typically developing controls (n = 154), participants with ADHD (n = 239), and their unaffected siblings (n = 144) between the ages of 8 and 29. Structural magnetic resonance imaging (MRI) correlates of ASD ratings were analysed by studying the relationship between ASD ratings and grey matter volumes using mixed effects models which controlled for ADHD symptom count and total brain volume. ASD ratings were significantly elevated in participants with ADHD relative to controls and unaffected siblings. For the entire group (participants with ADHD, unaffected siblings and TD controls), mixed effect models revealed that the left caudate nucleus volume was negatively correlated with ASD ratings (t = 2.83; P = 0.005). The current findings are consistent with the role of the caudate nucleus in executive function, including the selection of goals based on the evaluation of action outcomes and the use of social reward to update reward representations. There is a specific volumetric profile associated with subclinical ASD-like symptoms in participants with ADHD, unaffected siblings and controls with the caudate nucleus and globus pallidus being of critical importance in predicting the level of ASD-like symptoms in all three groups. PMID:27806078
O'Dwyer, Laurence; Tanner, Colby; van Dongen, Eelco V; Greven, Corina U; Bralten, Janita; Zwiers, Marcel P; Franke, Barbara; Heslenfeld, Dirk; Oosterlaan, Jaap; Hoekstra, Pieter J; Hartman, Catharina A; Groen, Wouter; Rommelse, Nanda; Buitelaar, Jan K
2016-01-01
Autism spectrum disorder (ASD) symptoms frequently occur in individuals with attention-deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural brain correlates, knowledge of the structural brain profile of individuals with ADHD with raised ASD symptoms is limited. The presence of ASD-like symptoms was measured by the Children's Social Behavior Questionnaire (CSBQ) in a sample of typically developing controls (n = 154), participants with ADHD (n = 239), and their unaffected siblings (n = 144) between the ages of 8 and 29. Structural magnetic resonance imaging (MRI) correlates of ASD ratings were analysed by studying the relationship between ASD ratings and grey matter volumes using mixed effects models which controlled for ADHD symptom count and total brain volume. ASD ratings were significantly elevated in participants with ADHD relative to controls and unaffected siblings. For the entire group (participants with ADHD, unaffected siblings and TD controls), mixed effect models revealed that the left caudate nucleus volume was negatively correlated with ASD ratings (t = 2.83; P = 0.005). The current findings are consistent with the role of the caudate nucleus in executive function, including the selection of goals based on the evaluation of action outcomes and the use of social reward to update reward representations. There is a specific volumetric profile associated with subclinical ASD-like symptoms in participants with ADHD, unaffected siblings and controls with the caudate nucleus and globus pallidus being of critical importance in predicting the level of ASD-like symptoms in all three groups.
DOT National Transportation Integrated Search
1978-05-01
The Facilities Maintenance Cost Model (FMCM) is an analytic model designed to calculate expected annual labor costs of maintenance within a given FAA maintenance sector. The model is programmed in FORTRAN IV and has been demonstrated on the CDC Krono...
Kelmendi-Doko, Arta; Rubin, J Peter; Klett, Katarina; Mahoney, Christopher; Wang, Sheri; Marra, Kacey G
2017-01-01
Current materials used for adipose tissue reconstruction have critical shortcomings such as suboptimal volume retention, donor-site morbidity, and poor biocompatibility. The aim of this study was to examine a controlled delivery system of dexamethasone to generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse model for 6 months. The hypothesis that the continued release of dexamethasone from polymeric microspheres would enhance both adipogenesis and angiogenesis more significantly when compared to the single-walled microsphere model, resulting in long-term adipose volume retention, was tested. Dexamethasone was encapsulated within single-walled poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and compared to dexamethasone encapsulated in a poly(lactic-co-glycolic acid) core surrounded by a shell of poly-l-lactide. The double-walled polymer microsphere system in the second model was developed to create a more sustainable drug delivery process. Dexamethasone-loaded poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and dexamethasone-loaded poly(lactic-co-glycolic acid)/poly-l-lactide double-walled microspheres (Dex DW MS) were prepared using single and double emulsion/solvent techniques. In vitro release kinetics were determined. Two doses of each type of microsphere were examined; 50 and 27 mg of Dex MS and Dex DW MS were mixed with 0.3 mL of human lipoaspirate. Additionally, 50 mg of empty MS and lipoaspirate-only controls were examined. Samples were analyzed grossly and histologically after 6 months in vivo. Mass and volume were measured; dexamethasone microsphere-containing samples demonstrated greater adipose tissue retention compared to the control group. Histological analysis, including hematoxylin and eosin and CD31 staining, indicated increased vascularization (p < 0.05) within the Dex MS-containing samples. Controlled delivery of adipogenic factors, such as dexamethasone via polymer microspheres, significantly affects adipose tissue retention by maintaining healthy tissue formation and vascularization. Dex DW MS provide an improved model to former Dex SW MS, resulting in notably longer release time and, consequently, larger volumes of adipose retained in vivo. The use of microspheres, specifically double-walled, as vehicles for controlled drug delivery of adipogenic factors therefore present a clinically relevant model of adipose retention that has the potential to greatly improve soft tissue repair. PMID:29051810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...
2015-09-16
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Tokamak experimental power reactor conceptual design. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-08-01
Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations. (MOW)
BMP MODELING CONCEPTS AND SIMULATION
In order to minimize impacts of urban nonpoint source pollution and associated costs of control (storage and treatment) associated with wet-weather flows (WWFs), stormwater runoff volumes and pollutant loads must be reduced. A number of control strategies and so-called “best man...
Analysis of Radio Frequency Surveillance Systems for Air Traffic Control : Volume 1. Text.
DOT National Transportation Integrated Search
1976-02-01
Performance criteria that afford quantitative evaluation of a variety of current and proposed configurations of the Air Traffic Control Radar Beacon System (ATCRBS) are described in detail. Two analytic system models are developed to allow applicatio...
The plant cytoskeleton controls regulatory volume increase.
Liu, Qiong; Qiao, Fei; Ismail, Ahmed; Chang, Xiaoli; Nick, Peter
2013-09-01
The ability to adjust cell volume is required for the adaptation to osmotic stress. Plant protoplasts can swell within seconds in response to hypoosmotic shock suggesting that membrane material is released from internal stores. Since the stability of plant membranes depends on submembraneous actin, we asked, whether this regulatory volume control depends on the cytoskeleton. As system we used two cell lines from grapevine which differ in their osmotic tolerance and observed that the cytoskeleton responded differently in these two cell lines. To quantify the ability for regulatory volume control, we used hydraulic conductivity (Lp) as readout and demonstrated a role of the cytoskeleton in protoplast swelling. Chelation of calcium, inhibition of calcium channels, or manipulation of membrane fluidity, did not significantly alter Lp, whereas direct manipulation of the cytoskeleton via specific chemical reagents, or indirectly, through the bacterial elicitor Harpin or activation of phospholipase D, was effective. By optochemical engineering of actin using a caged form of the phytohormone auxin we can break the symmetry of actin organisation resulting in a localised deformation of cell shape indicative of a locally increased Lp. We interpret our findings in terms of a model, where the submembraneous cytoskeleton controls the release of intracellular membrane stores during regulatory volume change. Copyright © 2013 Elsevier B.V. All rights reserved.
Study of helicopterroll control effectiveness criteria
NASA Technical Reports Server (NTRS)
Heffley, Robert K.; Bourne, Simon M.; Curtiss, Howard C., Jr.; Hindson, William S.; Hess, Ronald A.
1986-01-01
A study of helicopter roll control effectiveness based on closed-loop task performance measurement and modeling is presented. Roll control critieria are based on task margin, the excess of vehicle task performance capability over the pilot's task performance demand. Appropriate helicopter roll axis dynamic models are defined for use with analytic models for task performance. Both near-earth and up-and-away large-amplitude maneuvering phases are considered. The results of in-flight and moving-base simulation measurements are presented to support the roll control effectiveness criteria offered. This Volume contains the theoretical analysis, simulation results and criteria development.
Birch, Sharla M; Lenox, Mark W; Kornegay, Joe N; Paniagua, Beatriz; Styner, Martin A; Goodlett, Charles R; Cudd, Tim A; Washburn, Shannon E
2016-09-01
Fetal alcohol spectrum disorder (FASD) is a leading potentially preventable birth defect. Poor nutrition may contribute to adverse developmental outcomes of prenatal alcohol exposure, and supplementation of essential micronutrients such as choline has shown benefit in rodent models. The sheep model of first-trimester binge alcohol exposure was used in this study to model the dose of maternal choline supplementation used in an ongoing prospective clinical trial involving pregnancies at risk for FASD. Primary outcome measures including volumetrics of the whole brain, cerebellum, and pituitary derived from magnetic resonance imaging (MRI) in 6-month-old lambs, testing the hypothesis that alcohol-exposed lambs would have brain volume reductions that would be ameliorated by maternal choline supplementation. Pregnant sheep were randomly assigned to one of five groups - heavy binge alcohol (HBA; 2.5 g/kg/treatment ethanol), heavy binge alcohol plus choline supplementation (HBC; 2.5 g/kg/treatment ethanol and 10 mg/kg/day choline), saline control (SC), saline control plus choline supplementation (SCC; 10 mg/kg/day choline), and normal control (NC). Ewes were given intravenous alcohol (HBA, HBC; mean peak BACs of ∼280 mg/dL) or saline (SC, SCC) on three consecutive days per week from gestation day (GD) 4-41; choline was administered on GD 4-148. MRI scans of lamb brains were performed postnatally on day 182. Lambs from both alcohol groups (with or without choline) showed significant reductions in total brain volume; cerebellar and pituitary volumes were not significantly affected. This is the first report of MRI-derived volumetric brain reductions in a sheep model of FASD following binge-like alcohol exposure during the first trimester. These results also indicate that maternal choline supplementation comparable to doses in human studies fails to prevent brain volume reductions typically induced by first-trimester binge alcohol exposure. Future analyses will assess behavioral outcomes along with regional brain and neurohistological measures. Copyright © 2016 Elsevier Inc. All rights reserved.
Colacino, Francesco Maria; Moscato, Francesco; Piedimonte, Fabio; Danieli, Guido; Nicosia, Salvatore; Arabia, Maurizio
2008-01-01
This article describes an elastance-based mock ventricle able to reproduce the correct ventricular pressure-volume relationship and its correct interaction with the hydraulic circuit connected to it. A real-time control of the mock ventricle was obtained by a new left ventricular mathematical model including resistive and inductive terms added to the classical Suga-Sagawa elastance model throughout the whole cardiac cycle. A valved piston pump was used to mimic the left ventricle. The pressure measured into the pump chamber was fed back into the mathematical model and the calculated reference left ventricular volume was used to drive the piston. Results show that the classical model is very sensitive to pressure disturbances, especially during the filling phase, while the modified model is able to filter out the oscillations thus eliminating their detrimental effects. The presented model is thus suitable to control mock ventricles in real-time, where sudden pressure disturbances represent a key issue and are not negligible. This real-time controlled mock ventricle is able to reproduce the elastance mechanism of a natural ventricle by mimicking its preload (mean atrial pressure) and afterload (mean aortic pressure) sensitivity, i.e., the Starling law. Therefore, it can be used for designing and testing cardiovascular prostheses due to its capability to reproduce the correct ventricle-vascular system interaction.
Comerci, M; Elefante, A; Strianese, D; Senese, R; Bonavolontà, P; Alfano, B; Bonavolontà, B; Brunetti, A
2013-08-01
This study was designed to validate a novel semi-automated segmentation method to measure regional intra-orbital fat tissue volume in Graves' ophthalmopathy. Twenty-four orbits from 12 patients with Graves' ophthalmopathy, 24 orbits from 12 controls, ten orbits from five MRI study simulations and two orbits from a digital model were used. Following manual region of interest definition of the orbital volumes performed by two operators with different levels of expertise, an automated procedure calculated intra-orbital fat tissue volumes (global and regional, with automated definition of four quadrants). In patients with Graves' disease, clinical activity score and degree of exophthalmos were measured and correlated with intra-orbital fat volumes. Operator performance was evaluated and statistical analysis of the measurements was performed. Accurate intra-orbital fat volume measurements were obtained with coefficients of variation below 5%. The mean operator difference in total fat volume measurements was 0.56%. Patients had significantly higher intra-orbital fat volumes than controls (p<0.001 using Student's t test). Fat volumes and clinical score were significantly correlated (p<0.001). The semi-automated method described here can provide accurate, reproducible intra-orbital fat measurements with low inter-operator variation and good correlation with clinical data.
Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA
NASA Technical Reports Server (NTRS)
Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.
2001-01-01
Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
Decreased hypothalamus volumes in generalized anxiety disorder but not in panic disorder.
Terlevic, Robert; Isola, Miriam; Ragogna, Maria; Meduri, Martina; Canalaz, Francesca; Perini, Laura; Rambaldelli, Gianluca; Travan, Luciana; Crivellato, Enrico; Tognin, Stefania; Como, Giuseppe; Zuiani, Chiara; Bazzocchi, Massimo; Balestrieri, Matteo; Brambilla, Paolo
2013-04-25
The hypothalamus is a brain structure involved in the neuroendocrine aspect of stress and anxiety. Evidence suggests that generalized anxiety disorder (GAD) and panic disorder (PD) might be accompanied by dysfunction of the hypothalamus-pituitary-adrenal axis (HPA), but so far structural alterations were not studied. We investigated hypothalamic volumes in patients with either GAD or PD and in healthy controls. Twelve GAD patients, 11 PD patients and 21 healthy controls underwent a 1.5T MRI scan. Hypothalamus volumes were manually traced by a rater blind to subjects' identity. General linear model for repeated measures (GLM-RM) was used to compare groups on hypothalamic volumes, controlling for total intracranial volume, age and sex. The hypothalamus volume was significantly reduced (p=0.04) in GAD patients, with significant reductions in both the left (p=0.02) and right side (p=0.04). Patients with PD did not differ significantly (p=0.73). Anxiety scores were inversely correlated with hypothalamic volumes. The small sample size could reduce the generalizability of the results while the lack of stress hormone measurements renders functional assessment of the hypothalamus-pituitary-adrenal axis not feasible. The present study showed decreased hypothalamic volumes in GAD patients but not in those with PD. Future longitudinal studies should combine volumetric data with measurements of stress hormones to better elucidate the role of the HPA axis in GAD. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.
2015-06-01
The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.
Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1
NASA Technical Reports Server (NTRS)
Bernard, Douglas E. (Editor); Man, Guy K. (Editor)
1989-01-01
Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft.
An analysis of radio frequency surveillance systems for air traffic control volume II: appendixes
DOT National Transportation Integrated Search
1976-02-01
Performance criteria that afford quantitative evaluation of a variety of current and proposed configurations of the Air Traffic Control Radar Beacon System (ATCRBS) are described in detail. Two analytic system models are developed to allow applicatio...
Loganathan, Rajprasad; Bilgen, Mehmet; Al-Hafez, Baraa; Alenezy, Mohammed D; Smirnova, Irina V
2006-04-04
Diabetes is a major risk factor for cardiovascular disease. In particular, type 1 diabetes compromises the cardiac function of individuals at a relatively early age due to the protracted course of abnormal glucose homeostasis. The functional abnormalities of diabetic myocardium have been attributed to the pathological changes of diabetic cardiomyopathy. In this study, we used high field magnetic resonance imaging (MRI) to evaluate the left ventricular functional characteristics of streptozotocin treated diabetic Sprague-Dawley rats (8 weeks disease duration) in comparison with age/sex matched controls. Our analyses of EKG gated cardiac MRI scans of the left ventricle showed a 28% decrease in the end-diastolic volume and 10% increase in the end-systolic volume of diabetic hearts compared to controls. Mean stroke volume and ejection fraction in diabetic rats were decreased (48% and 28%, respectively) compared to controls. Further, dV/dt changes were suggestive of phase sensitive differences in left ventricular kinetics across the cardiac cycle between diabetic and control rats. Thus, the MRI analyses of diabetic left ventricle suggest impairment of diastolic and systolic hemodynamics in this rat model of diabetic cardiomyopathy. Our studies also show that in vivo MRI could be used in the evaluation of cardiac dysfunction in this rat model of type 1 diabetes.
A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation
NASA Technical Reports Server (NTRS)
Majumdar, Alok
1998-01-01
An unstructured finite volume procedure has been developed for steady and transient thermo-fluid dynamic analysis of fluid systems and components. The procedure is applicable for a flow network consisting of pipes and various fittings where flow is assumed to be one dimensional. It can also be used to simulate flow in a component by modeling a multi-dimensional flow using the same numerical scheme. The flow domain is discretized into a number of interconnected control volumes located arbitrarily in space. The conservation equations for each control volume account for the transport of mass, momentum and entropy from the neighboring control volumes. In addition, they also include the sources of each conserved variable and time dependent terms. The source term of entropy equation contains entropy generation due to heat transfer and fluid friction. Thermodynamic properties are computed from the equation of state of a real fluid. The system of equations is solved by a hybrid numerical method which is a combination of simultaneous Newton-Raphson and successive substitution schemes. The paper also describes the application and verification of the procedure by comparing its predictions with the analytical and numerical solution of several benchmark problems.
Hippocampus shape analysis and late-life depression.
Zhao, Zheen; Taylor, Warren D; Styner, Martin; Steffens, David C; Krishnan, K Ranga R; MacFall, James R
2008-03-19
Major depression in the elderly is associated with brain structural changes and vascular lesions. Changes in the subcortical regions of the limbic system have also been noted. Studies examining hippocampus volumetric differences in depression have shown variable results, possibly due to any volume differences being secondary to local shape changes rather than differences in the overall volume. Shape analysis offers the potential to detect such changes. The present study applied spherical harmonic (SPHARM) shape analysis to the left and right hippocampi of 61 elderly subjects with major depression and 43 non-depressed elderly subjects. Statistical models controlling for age, sex, and total cerebral volume showed a significant reduction in depressed compared with control subjects in the left hippocampus (F(1,103) = 5.26; p = 0.0240) but not right hippocampus volume (F(1,103) = 0.41; p = 0.5213). Shape analysis showed significant differences in the mid-body of the left (but not the right) hippocampus between depressed and controls. When the depressed group was dichotomized into those whose depression was remitted at time of imaging and those who were unremitted, the shape comparison showed remitted subjects to be indistinguishable from controls (both sides) while the unremitted subjects differed in the midbody and the lateral side near the head. Hippocampal volume showed no difference between controls and remitted subjects but nonremitted subjects had significantly smaller left hippocampal volumes with no significant group differences in the right hippocampus. These findings may provide support to other reports of neurogenic effects of antidepressants and their relation to successful treatment for depressive symptoms.
Variability of Tidal Volume in Patient-Triggered Mechanical Ventilation in ARDS.
Perinel-Ragey, Sophie; Baboi, Loredana; Guérin, Claude
2017-11-01
Limiting tidal volume (V T ) in patients with ARDS may not be achieved once patient-triggered breaths occur. Furthermore, ICU ventilators offer numerous patient-triggered modes that work differently across brands. We systematically investigated, using a bench model, the effect of patient-triggered modes on the size and variability of V T at different breathing frequencies (f), patient effort, and ARDS severity. We used a V500 Infinity ICU ventilator connected to an ASL 5000 lung model whose compliance was mimicking mild, moderate, and severe ARDS. Thirteen patient-triggered modes were tested, falling into 3 categories, namely volume control ventilation with mandatory minute ventilation; pressure control ventilation, including airway pressure release ventilation (APRV); and pressure support ventilation. Two levels of f and effort were tested for each ARDS severity in each mode. Median (first-third quartiles) V T was compared across modes using non-parametric tests. The probability of V T > 6 mL/kg ideal body weight was assessed by binomial regression and expressed as the odds ratio (OR) with 95% CI. V T variability was measured from the coefficient of variation. V T distribution over all f, effort, and ARDS categories significantly differed across modes ( P < .001, Kruskal-Wallis test). V T was significantly greater with pressure support (OR 420 mL, 95% CI 332-527 mL) than with any other mode except for variable pressure support level. Risk for V T to be > 6 mL/kg was significantly increased with spontaneous breaths patient-triggered by pressure support (OR 19.36, 95% CI 12.37-30.65) and significantly reduced in APRV (OR 0.44, 95% CI 0.26-0.72) and pressure support with guaranteed volume mode. The risk increased with increasing effort and decreasing f. Coefficient of variation of V T was greater for low f and volume control-mandatory minute ventilation and pressure control modes. APRV had the greatest within-mode variability. Risk of V T > 6 mL/kg was significantly reduced in APRV and pressure support with guaranteed volume mode. APRV had the highest variability. Pressure support with guaranteed volume could be tested in patients with ARDS. Copyright © 2017 by Daedalus Enterprises.
High call volume at poison control centers: identification and implications for communication
CARAVATI, E. M.; LATIMER, S.; REBLIN, M.; BENNETT, H. K. W.; CUMMINS, M. R.; CROUCH, B. I.; ELLINGTON, L.
2016-01-01
Context High volume surges in health care are uncommon and unpredictable events. Their impact on health system performance and capacity is difficult to study. Objectives To identify time periods that exhibited very busy conditions at a poison control center and to determine whether cases and communication during high volume call periods are different from cases during low volume periods. Methods Call data from a US poison control center over twelve consecutive months was collected via a call logger and an electronic case database (Toxicall®). Variables evaluated for high call volume conditions were: (1) call duration; (2) number of cases; and (3) number of calls per staff member per 30 minute period. Statistical analyses identified peak periods as busier than 99% of all other 30 minute time periods and low volume periods as slower than 70% of all other 30 minute periods. Case and communication characteristics of high volume and low volume calls were compared using logistic regression. Results A total of 65,364 incoming calls occurred over 12 months. One hundred high call volume and 4885 low call volume 30 minute periods were identified. High volume periods were more common between 1500 and 2300 hours and during the winter months. Coded verbal communication data were evaluated for 42 high volume and 296 low volume calls. The mean (standard deviation) call length of these calls during high volume and low volume periods was 3 minutes 27 seconds (1 minute 46 seconds) and 3 minutes 57 seconds (2 minutes 11 seconds), respectively. Regression analyses revealed a trend for fewer overall verbal statements and fewer staff questions during peak periods, but no other significant differences for staff-caller communication behaviors were found. Conclusion Peak activity for poison center call volume can be identified by statistical modeling. Calls during high volume periods were similar to low volume calls. Communication was more concise yet staff was able to maintain a good rapport with callers during busy call periods. This approach allows evaluation of poison exposure call characteristics and communication during high volume periods. PMID:22889059
High call volume at poison control centers: identification and implications for communication.
Caravati, E M; Latimer, S; Reblin, M; Bennett, H K W; Cummins, M R; Crouch, B I; Ellington, L
2012-09-01
High volume surges in health care are uncommon and unpredictable events. Their impact on health system performance and capacity is difficult to study. To identify time periods that exhibited very busy conditions at a poison control center and to determine whether cases and communication during high volume call periods are different from cases during low volume periods. Call data from a US poison control center over twelve consecutive months was collected via a call logger and an electronic case database (Toxicall®).Variables evaluated for high call volume conditions were: (1) call duration; (2) number of cases; and (3) number of calls per staff member per 30 minute period. Statistical analyses identified peak periods as busier than 99% of all other 30 minute time periods and low volume periods as slower than 70% of all other 30 minute periods. Case and communication characteristics of high volume and low volume calls were compared using logistic regression. A total of 65,364 incoming calls occurred over 12 months. One hundred high call volume and 4885 low call volume 30 minute periods were identified. High volume periods were more common between 1500 and 2300 hours and during the winter months. Coded verbal communication data were evaluated for 42 high volume and 296 low volume calls. The mean (standard deviation) call length of these calls during high volume and low volume periods was 3 minutes 27 seconds (1 minute 46 seconds) and 3 minutes 57 seconds (2 minutes 11 seconds), respectively. Regression analyses revealed a trend for fewer overall verbal statements and fewer staff questions during peak periods, but no other significant differences for staff-caller communication behaviors were found. Peak activity for poison center call volume can be identified by statistical modeling. Calls during high volume periods were similar to low volume calls. Communication was more concise yet staff was able to maintain a good rapport with callers during busy call periods. This approach allows evaluation of poison exposure call characteristics and communication during high volume periods.
The Shock and Vibration Digest. Volume 18, Number 8
1986-08-01
the swash plate . This is an active that vibration can be reduced by separation of control system...element program model . ture-borne sound intensity has been tried earlier The agreement is shown to be very good. A on thin- plate constructions in ...predicting the response of two displacement controlled laboratory tests that were used for the determination of the model parameters. 86-1532
A model for prediction of STOVL ejector dynamics
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.
Sensitive periods of amygdala development: the role of maltreatment in preadolescence.
Pechtel, Pia; Lyons-Ruth, Karlen; Anderson, Carl M; Teicher, Martin H
2014-08-15
The amygdala is vulnerable to stress-dependent disruptions in neural development. Animal models have shown that stress increases dendritic arborization leading to larger amygdala volumes. Human studies of early stress and amygdala volume, however, remain inconclusive. This study compared amygdala volume in adults with childhood maltreatment to that in healthy controls. Eighteen participants from a longitudinal cohort and 33 cross-sectional controls (17 M/34 F, 25.5±3.1 years) completed a structural magnetic resonance imagining scan and the Maltreatment and Abuse Chronology of Exposure scale. Random forest regression with conditional trees was used to assess relative importance of exposure to adversity at each age on amygdala, thalamic or caudate volume. Severity of exposure to adversity across age accounted for 27% of the variance in right amygdala volume. Peak sensitivity occurred at 10-11 years of age, and importance of exposure at this time was highly significant based on permutation tests (p=0.003). The regression model showed that exposure during this sensitive period resulted in steep dose-response function with maximal response to even modest levels of exposure. Subjects in the highest exposure quartile (MACE-11, range=11-54) had a 9.1% greater right amygdala volume than subjects in the lowest exposure quartile (MACE-11, ≤3.5). No associations emerged between age of exposure and volume of the left amygdala or bilateral caudate or thalamus. Severity of adversity experienced at age 10-11 contributed to larger right but not left amygdala volume in adulthood. Results provide preliminary evidence that the amygdala may have a developmental sensitive period in preadolescence. Copyright © 2014 Elsevier Inc. All rights reserved.
Hurricane Forecasting with the High-resolution NASA Finite-volume General Circulation Model
NASA Technical Reports Server (NTRS)
Atlas, R.; Reale, O.; Shen, B.-W.; Lin, S.-J.; Chern, J.-D.; Putman, W.; Lee, T.; Yeh, K.-S.; Bosilovich, M.; Radakovich, J.
2004-01-01
A high-resolution finite-volume General Circulation Model (fvGCM), resulting from a development effort of more than ten years, is now being run operationally at the NASA Goddard Space Flight Center and Ames Research Center. The model is based on a finite-volume dynamical core with terrain-following Lagrangian control-volume discretization and performs efficiently on massive parallel architectures. The computational efficiency allows simulations at a resolution of a quarter of a degree, which is double the resolution currently adopted by most global models in operational weather centers. Such fine global resolution brings us closer to overcoming a fundamental barrier in global atmospheric modeling for both weather and climate, because tropical cyclones and even tropical convective clusters can be more realistically represented. In this work, preliminary results of the fvGCM are shown. Fifteen simulations of four Atlantic tropical cyclones in 2002 and 2004 are chosen because of strong and varied difficulties presented to numerical weather forecasting. It is shown that the fvGCM, run at the resolution of a quarter of a degree, can produce very good forecasts of these tropical systems, adequately resolving problems like erratic track, abrupt recurvature, intense extratropical transition, multiple landfall and reintensification, and interaction among vortices.
NASA Astrophysics Data System (ADS)
Zhang, Lucy; Yu, Feimi; Krane, Michael
2017-11-01
The control volume analysis of power flow during sustained phonation is performed using results of a fully-coupled aeroelastic-aeroacoustic simulation. The control volumes consist of the laryngeal region, and the larynx and the vocal tract. Two cases are considered: an effectively infinite length vocal tract, where sound produced in the larynx radiates away and is not reflected back, and a constant-area vocal tract of normal adult human dimensions, in which phonatory sound resonates before radiating from the mouth opening. In both cases the lungs are modeled to absorb all incident sound, while providing a constant volume flow toward the larynx. Control of the acoustic boundary conditions is accomplished using perfectly matched- layers, and flow from the lungs is provided by a source distribution near the entrance to the trachea region. For both cases the power flow for the larynx and larynx plus vocal tract control volumes are computed using the integral form of the mechanical energy equation, expanded to consider power exchanges between slightly compressible flow in the larynx and the acoustic fields in the vocal tract and trachea. The funding from NIH 2R01DC005642-10A1 is greatly acknowledged.
Wheel/Rail Noise and Vibration : Volume 2. Applications to Control of Wheel/Rail Noise.
DOT National Transportation Integrated Search
1975-05-01
The final reports are reported of a project to develop a basic understanding of urban transit wheel/rail noise control measures. Analytical models of impedance, response, radiation efficiency, and directivity of wheels and rails are presented and com...
Veijola, Juha; Guo, Joyce Y.; Moilanen, Jani S.; Jääskeläinen, Erika; Miettunen, Jouko; Kyllönen, Merja; Haapea, Marianne; Huhtaniska, Sanna; Alaräisänen, Antti; Mäki, Pirjo; Kiviniemi, Vesa; Nikkinen, Juha; Starck, Tuomo; Remes, Jukka J.; Tanskanen, Päivikki; Tervonen, Osmo; Wink, Alle-Meije; Kehagia, Angie; Suckling, John; Kobayashi, Hiroyuki; Barnett, Jennifer H.; Barnes, Anna; Koponen, Hannu J.; Jones, Peter B.; Isohanni, Matti; Murray, Graham K.
2014-01-01
Studies show evidence of longitudinal brain volume decreases in schizophrenia. We studied brain volume changes and their relation to symptom severity, level of function, cognition, and antipsychotic medication in participants with schizophrenia and control participants from a general population based birth cohort sample in a relatively long follow-up period of almost a decade. All members of the Northern Finland Birth Cohort 1966 with any psychotic disorder and a random sample not having psychosis were invited for a MRI brain scan, and clinical and cognitive assessment during 1999–2001 at the age of 33–35 years. A follow-up was conducted 9 years later during 2008–2010. Brain scans at both time points were obtained from 33 participants with schizophrenia and 71 control participants. Regression models were used to examine whether brain volume changes predicted clinical and cognitive changes over time, and whether antipsychotic medication predicted brain volume changes. The mean annual whole brain volume reduction was 0.69% in schizophrenia, and 0.49% in controls (p = 0.003, adjusted for gender, educational level, alcohol use and weight gain). The brain volume reduction in schizophrenia patients was found especially in the temporal lobe and periventricular area. Symptom severity, functioning level, and decline in cognition were not associated with brain volume reduction in schizophrenia. The amount of antipsychotic medication (dose years of equivalent to 100 mg daily chlorpromazine) over the follow-up period predicted brain volume loss (p = 0.003 adjusted for symptom level, alcohol use and weight gain). In this population based sample, brain volume reduction continues in schizophrenia patients after the onset of illness, and antipsychotic medications may contribute to these reductions. PMID:25036617
Modeling the Hydrologic Processes of a Permeable Pavement System
A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...
Ezerarslan, Hande; Beriat, Güçlü Kaan; Nurhat, Raziye Handan; Kazancı, Burak; Çelikkan, Ferda Topal; Sabuncuoğlu, Bizden; Sabuncuoğlu, Hakan
2016-08-01
We aimed to find out the effects of short term and long term hydrocephalus and intracranial ventricular volume changes on cochlear functions by using distortion product otoacoustic emission (DPOAE) in experimental hydrocephalus rat models for the first time in literature. This study was performed with 48 healthy, adult (8 weeks old), Sprague-Dawley rats which weighed between 200 and 240g. Six groups were formed in this study: short term control, short term sham, short term hydrocephalus, long term control, long term sham and long term hydrocephalus groups. Each group contained eight rats. Short term period was 4 weeks and long term period was 8 weeks after the study started. At the end of these periods, DPOAE measurements were performed and then rats were sacrificed to determine ventricular volumes. DPOAE values at all frequencies were significantly decreased in the short term hydrocephalus group when compared to the short term control and short term sham groups. DPOAE values at all frequencies were significantly decreased in the long term hydrocephalus group when compared to the long term control and long term sham groups. Besides, long term sham group which had higher ventricular volumes than long term control group also had lower DPOAE measurements. Significant associations were present between DPOAE measurements and ventricular volumes in hydrocephalus models. The functional disturbances in cochlear functions due to hydrocephalus have been demonstrated with DPOAE measurements in this study. DPOAE measurements may be thought as an easily applicable non-invasive method in detection and follow-up of patients with hydrocephalus. Our findings should be supported with clinical studies in humans. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Controlling sign problems in spin models using tensor renormalization
NASA Astrophysics Data System (ADS)
Denbleyker, Alan; Liu, Yuzhi; Meurice, Y.; Qin, M. P.; Xiang, T.; Xie, Z. Y.; Yu, J. F.; Zou, Haiyuan
2014-01-01
We consider the sign problem for classical spin models at complex β =1/g02 on L ×L lattices. We show that the tensor renormalization group method allows reliable calculations for larger Imβ than the reweighting Monte Carlo method. For the Ising model with complex β we compare our results with the exact Onsager-Kaufman solution at finite volume. The Fisher zeros can be determined precisely with the tensor renormalization group method. We check the convergence of the tensor renormalization group method for the O(2) model on L×L lattices when the number of states Ds increases. We show that the finite size scaling of the calculated Fisher zeros agrees very well with the Kosterlitz-Thouless transition assumption and predict the locations for larger volume. The location of these zeros agree with Monte Carlo reweighting calculation for small volume. The application of the method for the O(2) model with a chemical potential is briefly discussed.
Predicting Upscaled Behavior of Aqueous Reactants in Heterogeneous Porous Media
NASA Astrophysics Data System (ADS)
Wright, E. E.; Hansen, S. K.; Bolster, D.; Richter, D. H.; Vesselinov, V. V.
2017-12-01
When modeling reactive transport, reaction rates are often overestimated due to the improper assumption of perfect mixing at the support scale of the transport model. In reality, fronts tend to form between participants in thermodynamically favorable reactions, leading to segregation of reactants into islands or fingers. When such a configuration arises, reactions are limited to the interface between the reactive solutes. Closure methods for estimating control-volume-effective reaction rates in terms of quantities defined at the control volume scale do not presently exist, but their development is crucial for effective field-scale modeling. We attack this problem through a combination of analytical and numerical means. Specifically, we numerically study reactive transport through an ensemble of realizations of two-dimensional heterogeneous porous media. We then employ regression analysis to calibrate an analytically-derived relationship between reaction rate and various dimensionless quantities representing conductivity-field heterogeneity and the respective strengths of diffusion, reaction and advection.
A Study of Green's Function Methods Applied to Space Radiation Protection
NASA Technical Reports Server (NTRS)
Heinbockel, John H.
2001-01-01
The purpose of this research was to study the propagation of galactic ions through various materials. Galactic light ions result from the break up of heavy ion particles and their propagation through materials is modeled using the one-dimensional Boltzmann equation. When ions enter materials there can occur (i) the interaction of ions with orbital electrons which causes ionization within the material and (ii) ions collide with atoms causing production of secondary particles which penetrate deeper within the material. These processes are modeled by a continuum model. The basic idea is to place a control volume within the material and examine the change in ion flux across this control volume. In this way on can derive the basic equations for the transport of light and heavy ions in matter. Green's function perturbation methods can then be employed to solve the resulting equations using energy dependent nuclear cross sections.
GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows
NASA Technical Reports Server (NTRS)
2003-01-01
With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.
Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer
Sato, Kazuhide; Hanaoka, Hirofumi; Watanabe, Rira; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka
2014-01-01
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of disseminated peritoneal ovarian cancer. In vitro and in vivo experiments were conducted with a HER2-expressing, luciferase expressing, ovarian cancer cell line (SKOV-luc). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized (tra-IR700) and cells or tumors were exposed to near infrared (NIR) light. In vitro PIT cytotoxicity was assessed with dead staining and luciferase activity in freely growing cells and in a 3D spheroid model. In vivo NIR-PIT was performed in mice with tumors implanted in the peritoneum and in the flank and these assessed by tumor volume and/or bioluminescence. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. Repeated light exposures induced complete tumor cell killing in the 3D spheroid model. In vivo the anti-tumor effects of NIR-PIT were confirmed by significant reductions in both tumor volume and luciferase activity in the flank model (NIR-PIT vs control in tumor volume changes at day 10; p=0.0001, NIR-PIT vs control in luciferase activity at day 4; p=0.0237), and the peritoneal model (NIR-PIT vs control in luciferase activity at day 7; p=0.0037). NIR-PIT provided effective cell killing in this HER2 positive model of disseminated peritoneal ovarian cancer. Thus, NIR-PIT is a promising new therapy for the treatment of disseminated peritoneal tumors. PMID:25416790
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, D. A.; Park, C. A.
1975-01-01
A theoretical development and associated digital computer program system is presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system may be used to investigate total system dynamic characteristics including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. Additionally, the program system may be used for design of attitude control systems and for evaluation of total dynamic system performance including time domain response and frequency domain stability analyses. Volume 1 presents the theoretical developments including a description of the physical system, the equations of dynamic equilibrium, discussion of kinematics and system topology, a complete treatment of momentum wheel coupling, and a discussion of gravity gradient and environmental effects. Volume 2, is a program users' guide and includes a description of the overall digital program code, individual subroutines and a description of required program input and generated program output. Volume 3 presents the results of selected demonstration problems that illustrate all program system capabilities.
New Diagnostic, Launch and Model Control Techniques in the NASA Ames HFFAF Ballistic Range
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.
2012-01-01
This report presents new diagnostic, launch and model control techniques used in the NASA Ames HFFAF ballistic range. High speed movies were used to view the sabot separation process and the passage of the model through the model splap paper. Cavities in the rear of the sabot, to catch the muzzle blast of the gun, were used to control sabot finger separation angles and distances. Inserts were installed in the powder chamber to greatly reduce the ullage volume (empty space) in the chamber. This resulted in much more complete and repeatable combustion of the powder and hence, in much more repeatable muzzle velocities. Sheets of paper or cardstock, impacting one half of the model, were used to control the amplitudes of the model pitch oscillations.
Failure-probability driven dose painting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.
Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). Themore » total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.« less
Deformations of amygdala morphology in familial pediatric bipolar disorder.
Kelley, Ryan; Chang, Kiki D; Garrett, Amy; Alegría, Dylan; Thompson, Paul; Howe, Meghan; L Reiss, Allan
2013-11-01
Smaller amygdalar volumes have been consistently observed in pediatric bipolar disorder subjects compared to healthy control subjects. Whether smaller amygdalar volume is a consequence or antecedent of the first episode of mania is not known. Additionally, smaller volume has not been localized to specific amygdala subregions. We compared surface contour maps of the amygdala between 22 youths at high risk for bipolar disorder, 26 youths meeting full diagnostic criteria for pediatric familial bipolar disorder, and 24 healthy control subjects matched for age, gender, and intelligence quotient. Amygdalae were manually delineated on three-dimensional spoiled gradient echo images by a blinded rater using established tracing protocols. Statistical surface mesh modeling algorithms supported by permutation statistics were used to identify regional surface differences between the groups. When compared to high-risk subjects and controls, youth with bipolar disorder showed surface deformations in specific amygdalar subregions, suggesting smaller volume of the basolateral nuclei. The high-risk subjects did not differ from controls in any subregion. These findings support previous reports of smaller amygdala volume in pediatric bipolar disorder and map the location of abnormality to specific amygdala subregions. These subregions have been associated with fear conditioning and emotion-enhanced memory. The absence of amygdala size abnormalities in youth at high risk for bipolar disorder suggests that reductions might occur after the onset of mania. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A motor-driven syringe-type gradient maker for forming immobilized pH gradient gels.
Fawcett, J S; Sullivan, J V; Chidakel, B E; Chrambach, A
1988-05-01
A motor driven gradient maker based on the commercial model (Jule Inc., Trumbull, CT) was designed for immobilized pH gradient gels to provide small volumes, rapid stirring and delivery, strict volume and temperature control and air exclusion. The device was constructed and by a convenient procedure yields highly reproducible gradients either in solution or on polyacrylamide gels.
Birch, Sharla M; Lenox, Mark W; Kornegay, Joe N; Shen, Li; Ai, Huisi; Ren, Xiaowei; Goodlett, Charles R; Cudd, Tim A; Washburn, Shannon E
2015-11-01
Identification of facial dysmorphology is essential for the diagnosis of fetal alcohol syndrome (FAS); however, most children with fetal alcohol spectrum disorders (FASD) do not meet the dysmorphology criterion. Additional objective indicators are needed to help identify the broader spectrum of children affected by prenatal alcohol exposure. Computed tomography (CT) was used in a sheep model of prenatal binge alcohol exposure to test the hypothesis that quantitative measures of craniofacial bone volumes and linear distances could identify alcohol-exposed lambs. Pregnant sheep were randomly assigned to four groups: heavy binge alcohol, 2.5 g/kg/day (HBA); binge alcohol, 1.75 g/kg/day (BA); saline control (SC); and normal control (NC). Intravenous alcohol (BA; HBA) or saline (SC) infusions were given three consecutive days per week from gestation day 4-41, and a CT scan was performed on postnatal day 182. The volumes of eight skull bones, cranial circumference, and 19 linear measures of the face and skull were compared among treatment groups. Lambs from both alcohol groups showed significant reduction in seven of the eight skull bones and total skull bone volume, as well as cranial circumference. Alcohol exposure also decreased four of the 19 craniofacial measures. Discriminant analysis showed that alcohol-exposed and control lambs could be classified with high accuracy based on total skull bone volume, frontal, parietal, or mandibular bone volumes, cranial circumference, or interorbital distance. Total skull volume was significantly more sensitive than cranial circumference in identifying the alcohol-exposed lambs when alcohol-exposed lambs were classified using the typical FAS diagnostic cutoff of ≤10th percentile. This first demonstration of the usefulness of CT-derived craniofacial measures in a sheep model of FASD following binge-like alcohol exposure during the first trimester suggests that volumetric measurement of cranial bones may be a novel biomarker for binge alcohol exposure during the first trimester to help identify non-dysmorphic children with FASD. Copyright © 2015 Elsevier Inc. All rights reserved.
Winter Simulation Conference, Miami Beach, Fla., December 4-6, 1978, Proceedings. Volumes 1 & 2
NASA Technical Reports Server (NTRS)
Highland, H. J. (Editor); Nielsen, N. R.; Hull, L. G.
1978-01-01
The papers report on the various aspects of simulation such as random variate generation, simulation optimization, ranking and selection of alternatives, model management, documentation, data bases, and instructional methods. Simulation studies in a wide variety of fields are described, including system design and scheduling, government and social systems, agriculture, computer systems, the military, transportation, corporate planning, ecosystems, health care, manufacturing and industrial systems, computer networks, education, energy, production planning and control, financial models, behavioral models, information systems, and inventory control.
Volumetric MRI study of the intrauterine growth restriction fetal brain.
Polat, A; Barlow, S; Ber, R; Achiron, R; Katorza, E
2017-05-01
Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions-supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum-were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P < 0.05) for IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. • IUGR is a pathologic fetal condition affecting the brain • IUGR is associated with long-term neurodevelopmental abnormalities; fetal characterization is needed • This study aimed to evaluate regional brain volume differences in IUGR • Cerebellar to supratentorial volume ratios were smaller in IUGR fetuses • This finding may play a role in long-term development of IUGR fetuses.
Griffith, H Randall; Stewart, Christopher C; Stoeckel, Luke E; Okonkwo, Ozioma C; den Hollander, Jan A; Martin, Roy C; Belue, Katherine; Copeland, Jacquelynn N; Harrell, Lindy E; Brockington, John C; Clark, David G; Marson, Daniel C
2010-02-01
To better understand how brain atrophy in amnestic mild cognitive impairment (MCI) as measured using magnetic resonance imaging (MRI) volumetrics could affect instrumental activities of daily living (IADLs) such as financial abilities. Controlled, matched-sample, cross-sectional analysis regressing MRI volumetrics with financial performance measures. University medical and research center. Thirty-eight people with MCI and 28 older adult controls. MRI volumetric measurement of the hippocampi, angular gyri, precunei, and medial frontal lobes. Participants also completed neuropsychological tests and the Financial Capacity Instrument (FCI). Correlations were performed between FCI scores and MRI volumes in the group with MCI. People with MCI performed significantly below controls on the FCI and had significantly smaller hippocampi. Among people with MCI, performance on the FCI was moderately correlated with angular gyri and precunei volumes. Regression models demonstrated that angular gyrus volumes were predictive of FCI scores. Tests of mediation showed that measures of arithmetic and possibly attention partially mediated the relationship between angular gyrus volume and FCI score. Impaired financial abilities in amnestic MCI correspond with volume of the angular gyri as mediated by arithmetic knowledge. The findings suggest that early neuropathology within the lateral parietal region in MCI leads to a breakdown of cognitive abilities that affect everyday financial skills. The findings have implications for diagnosis and clinical care of people with MCI and AD.
Spider phobia is associated with decreased left amygdala volume: a cross-sectional study
2013-01-01
Background Evidence from animal and human studies imply the amygdala as the most critical structure involved in processing of fear-relevant stimuli. In phobias, the amygdala seems to play a crucial role in the pathogenesis and maintenance of the disorder. However, the neuropathology of specific phobias remains poorly understood. In the present study, we investigated whether patients with spider phobia show altered amygdala volumes as compared to healthy control subjects. Methods Twenty female patients with spider phobia and twenty age-matched healthy female controls underwent magnetic resonance imaging to investigate amygdala volumes. The amygdalae were segmented using an automatic, model-based segmentation tool (FSL FIRST). Differences in amygdala volume were investigated by multivariate analysis of covariance with group as between-subject factor and left and right amygdala as dependent factors. The relation between amygdala volume and clinical features such as symptom severity, disgust sensitivity, trait anxiety and duration of illness was investigated by Spearman correlation analysis. Results Spider phobic patients showed significantly smaller left amygdala volume than healthy controls. No significant difference in right amygdala volume was detected. Furthermore, the diminished amygdala size in patients was related to higher symptom severity, but not to higher disgust sensitivity or trait anxiety and was independent of age. Conclusions In summary, the results reveal a relation between higher symptom severity and smaller left amygdala volume in patients with spider phobia. This relation was independent of other potential confounders such as the disgust sensitivity or trait anxiety. The findings suggest that greater spider phobic fear is associated with smaller left amygdala. However, the smaller left amygdala volume may either stand for a higher vulnerability to develop a phobic disorder or emerge as a consequence of the disorder. PMID:23442196
Patscheider, Hannah; Lorbeer, Roberto; Auweter, Sigrid; Schafnitzel, Anina; Bayerl, Christian; Curta, Adrian; Rathmann, Wolfgang; Heier, Margit; Meisinger, Christa; Peters, Annette; Bamberg, Fabian; Hetterich, Holger
2018-07-01
The aim of this study was to assess subclinical changes in right ventricular volumes and function in subjects with prediabetes and diabetes and controls without a history of cardiovascular disease. Data from 400 participants in the KORA FF4 study without self-reported cardiovascular disease who underwent 3-T whole-body MRI were obtained. The right ventricle was evaluated using the short axis and a four-chamber view. Diabetes was defined according to WHO criteria. Associations between glucose tolerance and right ventricular parameters were assessed using multivariable adjusted linear regression models. Data from 337 participants were available for analysis. Of these, 43 (13%) had diabetes, 87 (26%) had prediabetes, and 207 (61%) were normoglycaemic controls. There was a stepwise decrease in right ventricular volumes in men with prediabetes and diabetes in comparison with controls, including right ventricular end-diastolic volume (β = -20.4 and β = -25.6, respectively; p ≤ 0.005), right ventricular end-systolic volume (β = -12.3 and β = -12.7, respectively; p ≤ 0.037) and right ventricular stroke volume (β = -8.1 and β = -13.1, respectively, p ≤ 0.016). We did not observe any association between prediabetes or diabetes and right ventricular volumes in women or between prediabetes or diabetes and right ventricular ejection fraction in men and women. This study points towards early subclinical changes in right ventricular volumes in men with diabetes and prediabetes. • MRI was used to detect subclinical changes in right ventricular parameters. • Diabetes mellitus is associated with right ventricular dysfunction. • Impairment of right ventricular volumes seems to occur predominantly in men.
Bessette-Kirton, Erin; Coe, Jeffrey A.; Zhou, Wendy
2018-01-01
The use of preevent and postevent digital elevation models (DEMs) to estimate the volume of rock avalanches on glaciers is complicated by ablation of ice before and after the rock avalanche, scour of material during rock avalanche emplacement, and postevent ablation and compaction of the rock avalanche deposit. We present a model to account for these processes in volume estimates of rock avalanches on glaciers. We applied our model by calculating the volume of the 28 June 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. We derived preevent and postevent 2‐m resolution DEMs from WorldView satellite stereo imagery. Using data from DEM differencing, we reconstructed the rock avalanche and adjacent surfaces at the time of occurrence by accounting for elevation changes due to ablation and scour of the ice surface, and postevent deposit changes. We accounted for uncertainties in our DEMs through precise coregistration and an assessment of relative elevation accuracy in bedrock control areas. The rock avalanche initially displaced 51.7 ± 1.5 Mm3 of intact rock and then scoured and entrained 13.2 ± 2.2 Mm3 of snow and ice during emplacement. We calculated the total deposit volume to be 69.9 ± 7.9 Mm3. Volume estimates that did not account for topographic changes due to ablation, scour, and compaction underestimated the deposit volume by 31.0–46.8 Mm3. Our model provides an improved framework for estimating uncertainties affecting rock avalanche volume measurements in glacial environments. These improvements can contribute to advances in the understanding of rock avalanche hazards and dynamics.
Proceedings of the NASA Conference on Space Telerobotics, volume 5
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center.
Seemann, M D; Gebicke, K; Luboldt, W; Albes, J M; Vollmar, J; Schäfer, J F; Beinert, T; Englmeier, K H; Bitzer, M; Claussen, C D
2001-07-01
The aim of this study was to demonstrate the possibilities of a hybrid rendering method, the combination of a color-coded surface and volume rendering method, with the feasibility of performing surface-based virtual endoscopy with different representation models in the operative and interventional therapy control of the chest. In 6 consecutive patients with partial lung resection (n = 2) and lung transplantation (n = 4) a thin-section spiral computed tomography of the chest was performed. The tracheobronchial system and the introduced metallic stents were visualized using a color-coded surface rendering method. The remaining thoracic structures were visualized using a volume rendering method. For virtual bronchoscopy, the tracheobronchial system was visualized using a triangle surface model, a shaded-surface model and a transparent shaded-surface model. The hybrid 3D visualization uses the advantages of both the color-coded surface and volume rendering methods and facilitates a clear representation of the tracheobronchial system and the complex topographical relationship of morphological and pathological changes without loss of diagnostic information. Performing virtual bronchoscopy with the transparent shaded-surface model facilitates a reasonable to optimal, simultaneous visualization and assessment of the surface structure of the tracheobronchial system and the surrounding mediastinal structures and lesions. Hybrid rendering relieve the morphological assessment of anatomical and pathological changes without the need for time-consuming detailed analysis and presentation of source images. Performing virtual bronchoscopy with a transparent shaded-surface model offers a promising alternative to flexible fiberoptic bronchoscopy.
Space station architectural elements model study
NASA Technical Reports Server (NTRS)
Taylor, T. C.; Spencer, J. S.; Rocha, C. J.; Kahn, E.; Cliffton, E.; Carr, C.
1987-01-01
The worksphere, a user controlled computer workstation enclosure, was expanded in scope to an engineering workstation suitable for use on the Space Station as a crewmember desk in orbit. The concept was also explored as a module control station capable of enclosing enough equipment to control the station from each module. The concept has commercial potential for the Space Station and surface workstation applications. The central triangular beam interior configuration was expanded and refined to seven different beam configurations. These included triangular on center, triangular off center, square, hexagonal small, hexagonal medium, hexagonal large and the H beam. Each was explored with some considerations as to the utilities and a suggested evaluation factor methodology was presented. Scale models of each concept were made. The models were helpful in researching the seven beam configurations and determining the negative residual (unused) volume of each configuration. A flexible hardware evaluation factor concept is proposed which could be helpful in evaluating interior space volumes from a human factors point of view. A magnetic version with all the graphics is available from the author or the technical monitor.
Aldred, Rachel; Goodman, Anna; Gulliver, John; Woodcock, James
2018-08-01
Cycling injury risk is an important topic, but few studies explore cycling risk in relation to exposure. This is largely because of a lack of exposure data, in other words how much cycling is done at different locations. This paper helps to fill this gap. It reports a case-control study of cycling injuries in London in 2013-2014, using modelled cyclist flow data alongside datasets covering some characteristics of the London route network. A multilevel binary logistic regression model is used to investigate factors associated with injury risk, comparing injury sites with control sites selected using the modelled flow data. Findings provide support for 'safety in numbers': for each increase of a natural logarithmic unit (2.71828) in cycling flows, an 18% decrease in injury odds was found. Conversely, increased motor traffic volume is associated with higher odds of cycling injury, with one logarithmic unit increase associated with a 31% increase in injury odds. Twenty-mile per hour compared with 30mph speed limits were associated with 21% lower injury odds. Residential streets were associated with reduced injury odds, and junctions with substantially higher injury odds. Bus lanes do not affect injury odds once other factors are controlled for. These data suggest that speed limits of 20 mph may reduce cycling injury risk, as may motor traffic reduction. Further, building cycle routes that generate new cycle trips should generate 'safety in numbers' benefits. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of the Joint NASA/NCAR General Circulation Model
NASA Technical Reports Server (NTRS)
Lin, S.-J.; Rood, R. B.
1999-01-01
The Data Assimilation Office at NASA/Goddard Space Flight Center is collaborating with NCAR/CGD in an ambitious proposal for the development of a unified climate, numerical weather prediction, and chemistry transport model which is suitable for global data assimilation of the physical and chemical state of the Earth's atmosphere. A prototype model based on the NCAR CCM3 physics and the NASA finite-volume dynamical core has been built. A unique feature of the NASA finite-volume dynamical core is its advanced tracer transport algorithm on the floating Lagrangian control-volume coordinate. The model currently has a highly idealized ozone production/loss chemistry derived from the observed 2D (latitude-height) climatology of the recent decades. Nevertheless, the simulated horizontal wave structure of the total ozone is in good qualitative agreement with the observed (TOMS). Long term climate simulations and NWP experiments have been carried out. Current up to date status and futur! e plan will be discussed in the conference.
Testing model parameters for wave-induced dune erosion using observations from Hurricane Sandy
NASA Astrophysics Data System (ADS)
Overbeck, J. R.; Long, J. W.; Stockdon, H. F.
2017-01-01
Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave-impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision-making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.
Testing model parameters for wave‐induced dune erosion using observations from Hurricane Sandy
Overbeck, Jacquelyn R.; Long, Joseph W.; Stockdon, Hilary F.
2017-01-01
Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave‐impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision‐making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.
Zaidi, Ali H; Kosovec, Juliann E; Matsui, Daisuke; Omstead, Ashten N; Raj, Moses; Rao, Rohit R; Biederman, Robert W W; Finley, Gene G; Landreneau, Rodney J; Kelly, Ronan J; Jobe, Blair A
2017-07-01
The purpose of the current study is to determine the efficacy of a PI3K/mTOR dual inhibitor, LY3023414, on established EAC in an in vivo model. Esophageal adenocarcinoma (EAC) is a highly lethal cancer with limited treatment options. The PI3K/mTOR pathway is upregulated in EAC and may be a target for novel therapies. Esophagojejunostomy was performed on Sprague-Dawley rats to induce carcinogenesis, and LY3023414 was cyclically administered intraperitoneally between 32 and 40 weeks postsurgery to treatment animals. Magnetic resonance imaging (MRI) and histology were used to determine clinical response. Immunohistochemistry, immunofluorescence, and Western blot were used to validate apoptosis by cleaved caspase-3, proliferation by Ki67, and pathway inhibition, respectively. Mean MRI tumor volume increased by 109.2% in controls (n = 32) and decreased by 56.8% in treatment animals (n=17) (P < 0.01). Treatment with LY3023414 demonstrated tumor volume increase in 0% (control = 46.4%) (P < 0.01), decrease in 58.8% (control = 7.1%) (P < 0.01), and stable volume in 41.2% (control = 46.4%) (P = 0.77). EAC prevalence in controls increased by 25%; whereas, prevalence in treatment animals decreased by 29.4% (P < 0.01). Approximately, 75% of treatment animals presenting with residual masses on MRI had a histological response >50%. Increased apoptosis by cleaved caspase-3 (P = 0.03) and decreased proliferation by Ki67 (P < 0.01) were demonstrated in the treatment arm, when compared with the control arm. On Western blot analysis of pathway checkpoints, p-mTOR (p=0.03) and PI3K-α (P = 0.04) were downregulated in treatment responsive residual tumors, when compared with controls. LY3023414 demonstrates efficacy against EAC in a preclinical model, establishing the rationale for clinical testing.
Diurnal fluctuations in brain volume: Statistical analyses of MRI from large populations.
Nakamura, Kunio; Brown, Robert A; Narayanan, Sridar; Collins, D Louis; Arnold, Douglas L
2015-09-01
We investigated fluctuations in brain volume throughout the day using statistical modeling of magnetic resonance imaging (MRI) from large populations. We applied fully automated image analysis software to measure the brain parenchymal fraction (BPF), defined as the ratio of the brain parenchymal volume and intracranial volume, thus accounting for variations in head size. The MRI data came from serial scans of multiple sclerosis (MS) patients in clinical trials (n=755, 3269 scans) and from subjects participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI, n=834, 6114 scans). The percent change in BPF was modeled with a linear mixed effect (LME) model, and the model was applied separately to the MS and ADNI datasets. The LME model for the MS datasets included random subject effects (intercept and slope over time) and fixed effects for the time-of-day, time from the baseline scan, and trial, which accounted for trial-related effects (for example, different inclusion criteria and imaging protocol). The model for ADNI additionally included the demographics (baseline age, sex, subject type [normal, mild cognitive impairment, or Alzheimer's disease], and interaction between subject type and time from baseline). There was a statistically significant effect of time-of-day on the BPF change in MS clinical trial datasets (-0.180 per day, that is, 0.180% of intracranial volume, p=0.019) as well as the ADNI dataset (-0.438 per day, that is, 0.438% of intracranial volume, p<0.0001), showing that the brain volume is greater in the morning. Linearly correcting the BPF values with the time-of-day reduced the required sample size to detect a 25% treatment effect (80% power and 0.05 significance level) on change in brain volume from 2 time-points over a period of 1year by 2.6%. Our results have significant implications for future brain volumetric studies, suggesting that there is a potential acquisition time bias that should be randomized or statistically controlled to account for the day-to-day brain volume fluctuations. Copyright © 2015 Elsevier Inc. All rights reserved.
Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C
2007-06-01
Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.
Evaluation of Morphological Plasticity in the Cerebella of Basketball Players with MRI
Park, In Sung; Han, Jong Woo; Lee, Kea Joo; Lee, Nam Joon; Lee, Won Teak; Park, Kyung Ah
2006-01-01
Cerebellum is a key structure involved in motor learning and coordination. In animal models, motor skill learning increased the volume of molecular layer and the number of synapses on Purkinje cells in the cerebellar cortex. The aim of this study is to investigate whether the analogous change of cerebellar volume occurs in human population who learn specialized motor skills and practice them intensively for a long time. Magnetic resonance image (MRI)-based cerebellar volumetry was performed in basketball players and matched controls with V-works image software. Total brain volume, absolute and relative cerebellar volumes were compared between two groups. There was no significant group difference in the total brain volume, the absolute and the relative cerebellar volume. Thus we could not detect structural change in the cerebellum of this athlete group in the macroscopic level. PMID:16614526
Ventricular distension and diastolic coronary blood flow in the anaesthetized dog.
Gattullo, D; Linden, R J; Losano, G; Pagliaro, P; Westerhof, N
1993-01-01
There appears to be no agreement as to whether or not an increase in diastolic left ventricular pressure and/or volume can cause a decrease in diastolic coronary blood flow. We investigated the problem in the anaesthetized dog using a flaccid freely distensible latex balloon inserted into the left ventricle with the animal on extracorporeal circulation and the coronary perfusion pressure constant at about 45 mm Hg. Maximal vasodilatation and suppression of autoregulation in coronary vasculature was obtained by the intracoronary infusion of dipyridamole (10-40 mg/h). Ventricular volume was changed in steps of 10 ml from 10 to 70 ml and back to 10 ml, whilst recording coronary blood flow and left ventricular pressure in the left circumflex coronary artery. Over a range of ventricular volumes from 20 to 50 ml and a concomitant rise in diastolic ventricular pressure to about 20 mm Hg there was no change in the diastolic coronary flow. Only when the ventricular volume was more than two times the control value (i.e. exceeded 50 ml) and left ventricular pressure was more than 20 mm Hg, was there a decrease in coronary flow. During the return of the volume to the control level there was a fall in diastolic flow and ventricular contractility with respect to the values obtained when the volume was increased; these two effects were transient lasting less than 10 min. It was not considered that any of the three models of the coronary circulation, waterfall, intramyocardial pump or varying elastance model could explain our results.(ABSTRACT TRUNCATED AT 250 WORDS)
D'Ambrosio, Alessandro; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo; Rocca, Maria A
2017-08-01
To investigate the role of cerebellar sub-regions on motor and cognitive performance in multiple sclerosis (MS) patients. Whole and sub-regional cerebellar volumes, brain volumes, T2 hyperintense lesion volumes (LV), and motor performance scores were obtained from 95 relapse-onset MS patients and 32 healthy controls (HC). MS patients also underwent an evaluation of working memory and processing speed functions. Cerebellar anterior and posterior lobes were segmented using the Spatially Unbiased Infratentorial Toolbox (SUIT) from Statistical Parametric Mapping (SPM12). Multivariate linear regression models assessed the relationship between magnetic resonance imaging (MRI) measures and motor/cognitive scores. Compared to HC, only secondary progressive multiple sclerosis (SPMS) patients had lower cerebellar volumes (total and posterior cerebellum). In MS patients, lower anterior cerebellar volume and brain T2 LV predicted worse motor performance, whereas lower posterior cerebellar volume and brain T2 LV predicted poor cognitive performance. Global measures of brain volume and infratentorial T2 LV were not selected by the final multivariate models. Cerebellar volumetric abnormalities are likely to play an important contribution to explain motor and cognitive performance in MS patients. Consistently with functional mapping studies, cerebellar posterior-inferior volume accounted for variance in cognitive measures, whereas anterior cerebellar volume accounted for variance in motor performance, supporting the assessment of cerebellar damage at sub-regional level.
Annular Momentum Control Device (AMCD). Volume 1: Laboratory model development
NASA Technical Reports Server (NTRS)
1975-01-01
The annular momentum control device (AMCD) a thin hoop-like wheel with neither shaft nor spokes is described. The wheel floats in a magnetic field and can be rotated by a segmented motor. Potential advantages of such a wheel are low weight, configuration flexibility, a wheel that stiffens with increased speed, vibration isolation, and increased reliability. The analysis, design, fabrication, and testing is described of the laboratory model of the AMCD.
Design of Linear-Quadratic-Regulator for a CSTR process
NASA Astrophysics Data System (ADS)
Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.
2017-11-01
This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.
Zakeri, Rosita; Moulay, Gilles; Chai, Qiang; Ogut, Ozgur; Hussain, Saad; Takahama, Hiroyuki; Lu, Tong; Wang, Xiao-Li; Linke, Wolfgang A.; Lee, Hon-Chi; Redfield, Margaret M.
2016-01-01
Background Left atrial (LA) compliance and contractility influence left ventricular (LV) stroke volume. We hypothesized that diminished LA compliance and contractile function occur early during development of heart failure with preserved ejection fraction (HFpEF) and impair overall cardiac performance. Method and Results Cardiac magnetic resonance imaging, echocardiography, LV and LA pressure-volume studies, and tissue analyses were performed in a model of early HFpEF (elderly dogs, renal wrap-induced hypertension, exogenous aldosterone; n=9) and young control dogs (sham surgery; n=13). Early HFpEF was associated with LA enlargement, cardiomyocyte hypertrophy and enhanced LA contractile function (median active emptying fraction 16% [95% CI 13–24] vs 12[10–14]%, p=0.008; end-systolic pressure-volume relationship slope 2.4[1.9–3.2]mmHg/mL HFpEF vs 1.5[1.2–2.2]mmHg/mL controls, p=0.01). However, atrioventricular coupling was impaired and the curvilinear LA end-reservoir pressure-volume relationship was shifted upward/leftward in HFpEF (LA stiffness constant, βLA, 0.16[0.11–0.18]mmHg/mL vs 0.06[0.04–0.10]mmHg/mL controls, p=0.002) indicating reduced LA compliance. Impaired atrioventricular coupling and lower LA compliance correlated with lower LV stroke volume. Total fibrosis and titin isoform composition were similar between groups, however titin was hyperphosphorylated in HFpEF and correlated with βLA. LA microvascular reactivity was diminished in HFpEF versus controls. LA microvascular density tended to be lower in HFpEF and inversely correlated with βLA. Conclusions In early-stage hypertensive HFpEF, LA cardiomyocyte hypertrophy, titin hyperphosphorylation and microvascular dysfunction occur in association with increased systolic and diastolic LA chamber stiffness, impaired atrioventricular coupling and decreased LV stroke volume. These data indicate that maladaptive LA remodeling occurs early during HFpEF development, supporting a concept of global myocardial remodeling. PMID:27758811
Berman, Deborah R; Liu, YiQing; Barks, John; Mozurkewich, Ellen
2010-01-01
Objective Docosahexaenoic acid (DHA) is a dietary fatty acid with neuroprotective properties. We hypothesized that DHA treatment after hypoxia-ischemia (HI) would improve function and reduce brain volume loss in a perinatal rat model. Study design Seven-day-old Wistar rat pups from 7 litters (N=84) underwent right carotid ligation, followed by 8% O2 for 90 minutes. Fifteen minutes after HI, pups were divided into 3 treatment groups (intraperitoneal injections of DHA 1, 2.5 or 5 mg/kg) and 2 control groups (25% albumin or saline). At 14 days, rats underwent vibrissae-stimulated forepaw placing testing, and bilateral regional volumes were calculated for cortex, striatum, hippocampus, and hemisphere. Results Post HI treatment with DHA significantly improved vibrissae forepaw placing (complete responses: 8.5±2 treatment vs. 7.4±2 controls; normal=10; p = 0.032, t-test). Post injury DHA treatment did not attenuate brain volume loss in any region. Conclusion Post-hypoxia-ischemia DHA treatment significantly improves functional outcome. PMID:20691409
Inoue, Sachiko; Kawashima, Motoko; Hisamura, Ryuji; Imada, Toshihiro; Izuta, Yusuke; Nakamura, Shigeru; Ito, Masataka; Tsubota, Kazuo
2017-01-01
Background Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. Methods and Findings We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20–60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. Conclusion Our results suggest that RJ improves tear volume in patients with dry eye. Trial Registration Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446) PMID:28060936
Inoue, Sachiko; Kawashima, Motoko; Hisamura, Ryuji; Imada, Toshihiro; Izuta, Yusuke; Nakamura, Shigeru; Ito, Masataka; Tsubota, Kazuo
2017-01-01
Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20-60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. Our results suggest that RJ improves tear volume in patients with dry eye. Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446).
Mathematical modeling of fluid-electrolyte alterations during weightlessness
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1984-01-01
Fluid electrolyte metabolism and renal endocrine control as it pertains to adaptation to weightlessness were studied. The mathematical models that have been particularly useful are discussed. However, the focus of the report is on the physiological meaning of the computer studies. A discussion of the major ground based analogs of weightlessness are included; for example, head down tilt, water immersion, and bed rest, and a comparison of findings. Several important zero g phenomena are described, including acute fluid volume regulation, blood volume regulation, circulatory changes, longer term fluid electrolyte adaptations, hormonal regulation, and body composition changes. Hypotheses are offered to explain the major findings in each area and these are integrated into a larger hypothesis of space flight adaptation. A conceptual foundation for fluid electrolyte metabolism, blood volume regulation, and cardiovascular regulation is reported.
Model Uncertainty and Test of a Segmented Mirror Telescope
2014-03-01
Optical Telescope project EOM: equation of motion FCA: fine control actuator FCD: Face-Centered Cubic Design FEA: finite element analysis FEM: finite...housed in a dark tent to isolate the telescope from stray light, air currents, or dust and other debris. However, the closed volume is prone to...is composed of six hexagonal segments that each have six coarse control actuators (CCA) for segment phasing control, three fine control actuators
Effect of topical ophthalmic epinastine and olopatadine on tear volume in mice.
Villareal, Arturo L; Farley, William; Pflugfelder, Stephen C
2006-12-01
To investigate the effects of topical epinastine and olopatadine on tear volume by using a mouse model. Eighty-five C57BL6 mice (170 eyes) were treated twice daily with topical ophthalmic epinastine 0.05%, olopatadine 0.1%, or atropine 1% or served as untreated controls. A thread-wetting assay was used to measure tear volume at baseline and 15, 45, 90, 120, and 240 minutes after the last instillation of the drug on days 2 and 4 of treatment. After 2 days of treatment, epinastine-treated mice showed greater mean tear volumes than olopatadine-treated mice did at 15, 45, 90, and 240 minutes, with statistical significance at 15 and 45 minutes (P<0.001). Olopatadine significantly reduced tear volume versus untreated controls at 15 and 45 minutes (P<0.001). After 4 days, tear volumes with epinastine treatment exceeded those with olopatadine treatment at all time points, with statistical significance at 45 minutes (P<0.05). Atropine rendered tears undetectable at 15, 45, and 90 minutes; tear volume returned to baseline levels at 240 minutes. Topical epinastine did not inhibit tear secretion, whereas olopatadine caused a significant decrease in tear volume. Because of its neutral impact on the lacrimal functional unit, epinastine may be an especially good choice for the treatment of allergic conjunctivitis in patients with dry eye disease or in those who are at risk for developing dry eye.
NASA Astrophysics Data System (ADS)
Yang, Yunpeng
Controlled ceramic processing is required to produce ceramic parts with few strength-limiting defects and the economic forming of near net shape components. Temperature induced forming (TIF) is a novel ceramic forming process that uses colloidal processing to form ceramic green bodies by physical gelation. The dissertation research shows that TIF alumina suspensions (>40vol%) can be successfully fabricated by using 0.4wt% of ammonium citrate powder and <0.1wt% poly (acrylic acid) (PAA). It is found that increasing the volume fraction of alumina or the molecular weight of polymer will increase the shear viscosity and shear modulus. Larger molecular weight PAA tends to decrease the volume fraction gelation threshold of the alumina suspensions. The author is the first in this field to utilize the continuous percolation theory to interpret the evolution of the storage modulus with temperature for the TIF alumina suspensions. A model that relates the storage modulus with temperature and the volume fraction of solids is proposed. Calculated results using this percolation model show that the storage modulus of the suspensions can be affected by the volume fraction of solids, temperature, volume fraction gelation threshold and the percolation nature. The parameters in this model have been derived from the experimental data. The calculated results fit the measured data well. For the PAA-free TIF alumina suspensions, it is found that the ionization reaction of the magnesium citrate, which is induced by the pH or temperature of the suspensions, controls the flocculation of the suspensions. The percolation theory model was successfully applied to this type of suspension. Compared with the PAA addition TIF suspensions, these suspensions reflect a higher degree of percolation nature, as indicated by a larger value of percolation exponent. These results show that the percolation model proposed in this dissertation can be used to predict the gelation degree of the TIF suspensions. Complex-shape engineering ceramic parts have been successfully fabricated by direct casting using the TIF alumina suspensions, which has a relative density of ˜65%. The sintered sample at 1550°C for 2h is translucent and has a uniform grain size.
Simulation of a G-tolerance curve using the pulsatile cardiovascular model
NASA Technical Reports Server (NTRS)
Solomon, M.; Srinivasan, R.
1985-01-01
A computer simulation study, performed to assess the ability of the cardiovascular model to reproduce the G tolerance curve (G level versus tolerance time) is reported. A composite strength duration curve derived from experimental data obtained in human centrifugation studies was used for comparison. The effects of abolishing automomic control and of blood volume loss on G tolerance were also simulated. The results provide additional validation of the model. The need for the presence of autonomic reflexes even at low levels of G is pointed out. The low margin of safety with a loss of blood volume indicated by the simulation results underscores the necessity for protective measures during Shuttle reentry.
Atalay, Hasan Anıl; Akarsu, Murat; Canat, Lutfi; Ülker, Volkan; Alkan, İlter; Ozkuvancı, Unsal
2017-09-01
To evaluate the impact of poor glycemic control of type 2 diabetes mellitus (T2DM) on serum prostate-specific antigen (PSA) concentrations in men. We performed a prospective analysis of 215 consecutive patients affected by erectile dysfunction (ED). ED was evaluated using the IIEF-5 questionnaire and the poor glycemic control (PGC) of T2DM was assessed according to the HbA1c criteria (International Diabetes Federation). Patients were divided into PGC group (HbA1c ≥ 7%) and control group (CG) (HbA1c < 6%). Correlations between serum HbA1c levels and various variables were evaluated and multivariate logistic regression analyses were carried out to identify variables for PGC. We compared 110 cases to 105 controls men ranging from 44 to 81 years of age, lower PSA concentrations were observed in men with PGC (PGC mean PSA: 0.9 ng/dl, CG mean PSA: 2.1 ng/dl, p < 0.001). Also mean prostate volume was 60% was smaller among men with PGC compared with men with CG (PGC mean prostate volume: 26 ml, CG prostate volume: 43 ml, p < 0.001). A strong negative correlation was found between serum HbA1c levels and serum PSA (p < 0.001 and r = -0.665) concentrations in men with PGC. We also found at the multivariate logistic regression model that PSA, prostate volume and peak systolic velocity were independent predictors of PGC. Our results suggest that there is significant impact of PGC on serum PSA levels in T2DM. Poor glycemic control of type 2 diabetes was associated with lower serum PSA levels and smaller prostate volumes.
Innovative Approach for Developing Spacecraft Interior Acoustic Requirement Allocation
NASA Technical Reports Server (NTRS)
Chu, S. Reynold; Dandaroy, Indranil; Allen, Christopher S.
2016-01-01
The Orion Multi-Purpose Crew Vehicle (MPCV) is an American spacecraft for carrying four astronauts during deep space missions. This paper describes an innovative application of Power Injection Method (PIM) for allocating Orion cabin continuous noise Sound Pressure Level (SPL) limits to the sound power level (PWL) limits of major noise sources in the Environmental Control and Life Support System (ECLSS) during all mission phases. PIM is simulated using both Statistical Energy Analysis (SEA) and Hybrid Statistical Energy Analysis-Finite Element (SEA-FE) models of the Orion MPCV to obtain the transfer matrix from the PWL of the noise sources to the acoustic energies of the receivers, i.e., the cavities associated with the cabin habitable volume. The goal of the allocation strategy is to control the total energy of cabin habitable volume for maintaining the required SPL limits. Simulations are used to demonstrate that applying the allocated PWLs to the noise sources in the models indeed reproduces the SPL limits in the habitable volume. The effects of Noise Control Treatment (NCT) on allocated noise source PWLs are investigated. The measurement of source PWLs of involved fan and pump development units are also discussed as it is related to some case-specific details of the allocation strategy discussed here.
Macroscopic balance model for wave rotors
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.
A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann
2003-01-01
A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.
Cell Size Regulation in Bacteria
NASA Astrophysics Data System (ADS)
Amir, Ariel
2014-05-01
Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.
Fernández-Novales, Juan; López, María-Isabel; González-Caballero, Virginia; Ramírez, Pilar; Sánchez, María-Teresa
2011-06-01
Volumic mass-a key component of must quality control tests during alcoholic fermentation-is of great interest to the winemaking industry. Transmitance near-infrared (NIR) spectra of 124 must samples over the range of 200-1,100-nm were obtained using a miniature spectrometer. The performance of this instrument to predict volumic mass was evaluated using partial least squares (PLS) regression and multiple linear regression (MLR). The validation statistics coefficient of determination (r(2)) and the standard error of prediction (SEP) were r(2) = 0.98, n = 31 and r(2) = 0.96, n = 31, and SEP = 5.85 and 7.49 g/dm(3) for PLS and MLR equations developed to fit reference data for volumic mass and spectral data. Comparison of results from MLR and PLS demonstrates that a MLR model with six significant wavelengths (P < 0.05) fit volumic mass data to transmittance (1/T) data slightly worse than a more sophisticated PLS model using the full scanning range. The results suggest that NIR spectroscopy is a suitable technique for predicting volumic mass during alcoholic fermentation, and that a low-cost NIR instrument can be used for this purpose.
Cerebellar development in childhood onset schizophrenia and non-psychotic siblings
Greenstein, Deanna; Lenroot, Rhoshel; Clausen, Liv; Gogtay, Nitin; Rapoport, Judith
2011-01-01
We explored regional and total volumetric cerebellar differences in probands and their unaffected full siblings relative to typically developing participants. Participants included 94 (51 males) patients diagnosed with childhood onset schizophrenia (COS), 80 related non-psychotic siblings (37 males) and 110 (64 males) typically developing participants scanned longitudinally. The sample mean age was 16.87(SD=4.7; range 6.5 to 29). We performed mixed model regressions to examine group differences in trajectory and volume. The COS group had smaller bilateral anterior lobes and anterior and total vermis volumes than controls. The COS group diverged from controls over time in total, left, right, and bilateral posterior inferior cerebellum. Siblings did not have any fixed volumetric differences relative to controls but differed from controls in developmental trajectories of total and right cerebellum, left inferior posterior, left superior posterior, and superior vermis. Results are consistent with previous COS findings and several reports of decreased cerebellar volume in adult onset schizophrenia. Sibling trajectories may represent a trait marker, although the effect size for volumetric differences in early adulthood may be small. PMID:21803550
1982-02-01
of i, nd to (! Lvel op an awareness of the T&E roles and responsioi Ii ties Viir~dte various Air Force organizations involved in the T&EC process... mathematical models to determine controller messages and issue controller messages using computer generated speech. AUTOMATED PERFORMANCE ALERTS: Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.
TEMPEST offers simulation capabilities over a wide range of hydrothermal problems that are definable by input instructions. These capabilities are summarized by categories as follows: modeling capabilities; program control; and I/O control. 10 refs., 22 figs., 2 tabs. (LSP)
[Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].
Terahara, A; Nakano, T; Tsujii, H
1998-01-01
Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.
Volumetric analysis of cerebellum in short-track speed skating players.
Park, In Sung; Lee, Nam Joon; Kim, Tae-Young; Park, Jin-Hoon; Won, Yu-Mi; Jung, Yong-Ju; Yoon, Jin-Hwan; Rhyu, Im Joo
2012-12-01
The cerebellum is associated with balance control and coordination, which might be important for gliding on smooth ice at high speeds. A number of case studies have shown that cerebellar damage induces impaired balance and coordination. As a positive model, therefore, we investigated whether plastic changes in the volumes of cerebellar subregions occur in short-track speed skating players who must have extraordinary abilities of balance and coordination, using three-dimensional magnetic resonance imaging volumetry. The manual tracing was performed and the volumes of cerebellar hemisphere and vermian lobules were compared between short-track speed skating players (n=16) and matched healthy controls (n=18). We found larger right cerebellar hemisphere volume and vermian lobules VI-VII (declive, folium, and tuber) in short-track speed skating players in comparison with the matched controls. The finding suggests that the specialized abilities of balance and coordination are associated with structural plasticity of the right hemisphere of cerebellum and vermian VI-VII and these regions play an essential role in balance and coordination.
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.
2007-01-01
The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.
Mazeron, Renaud; Castelnau-Marchand, Pauline; Escande, Alexandre; Rivin Del Campo, Eleonor; Maroun, Pierre; Lefkopoulos, Dimitri; Chargari, Cyrus; Haie-Meder, Christine
2016-01-01
Image-guided adaptive brachytherapy is a high precision technique that allows dose escalation and adaptation to tumor response. Two monocentric studies reported continuous dose-volume response relationships, however, burdened by large confidence intervals. The aim was to refine these estimations by performing a meta-regression analysis based on published series. Eligibility was limited to series reporting dosimetric parameters according to the Groupe Européen de Curiethérapie-European SocieTy for Radiation Oncology recommendations. The local control rates reported at 2-3 years were confronted to the mean D90 clinical target volume (CTV) in 2-Gy equivalent using the probit model. The impact of each series on the relationships was pondered according to the number of patients reported. An exhaustive literature search retrieved 13 series reporting on 1299 patients. D90 high-risk CTV ranged from 70.9 to 93.1 Gy. The probit model showed a significant correlation between the D90 and the probability of achieving local control (p < 0.0001). The D90 associated to a 90% probability of achieving local control was 81.4 Gy (78.3-83.8 Gy). The planning aim of 90 Gy corresponded to a 95.0% probability (92.8-96.3%). For the intermediate-risk CTV, less data were available, with 873 patients from eight institutions. Reported mean D90 intermediate-risk CTV ranged from 61.7 to 69.1 Gy. A significant dose-volume effect was observed (p = 0.009). The D90 of 60 Gy was associated to a 79.4% (60.2-86.0%) local control probability. Based on published data from a high number of patients, significant dose-volume effect relationships were confirmed and refined between the D90 of both CTV and the probability of achieving local control. Further studies based on individual data are required to develop nomograms including nondosimetric prognostic criteria. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Self-diffusion in compressively strained Ge
NASA Astrophysics Data System (ADS)
Kawamura, Yoko; Uematsu, Masashi; Hoshi, Yusuke; Sawano, Kentarou; Myronov, Maksym; Shiraki, Yasuhiro; Haller, Eugene E.; Itoh, Kohei M.
2011-08-01
Under a compressive biaxial strain of ˜ 0.71%, Ge self-diffusion has been measured using an isotopically controlled Ge single-crystal layer grown on a relaxed Si0.2Ge0.8 virtual substrate. The self-diffusivity is enhanced by the compressive strain and its behavior is fully consistent with a theoretical prediction of a generalized activation volume model of a simple vacancy mediated diffusion, reported by Aziz et al. [Phys. Rev. B 73, 054101 (2006)]. The activation volume of (-0.65±0.21) times the Ge atomic volume quantitatively describes the observed enhancement due to the compressive biaxial strain very well.
Impact of Volume Management on Volume Overload and Rehospitalization in CAPD Patients.
Xu, Yi; Yang, Shen-Min; Wang, Xiao-Hua; Wang, Hai-Fang; Niu, Mei-E; Yang, Yi-Qun; Lu, Guo-Yuan; Pang, Jian-Hong; Wang, Fei; Li, Lin
2018-05-01
Heart failure due to volume overload is a major reason for rehospitalization in continuous ambulatory peritoneal dialysis patients. Strict volume control provides better cardiac functions and blood pressure in this population. Volume management, which is a volume control strategy, may decrease volume overload and related complications. Using a quasi-experimental design, 66 continuous ambulatory peritoneal dialysis patients were randomly assigned to the intervention group ( n = 34) and control group ( n = 32). The patients were followed up for 6 months with scheduled clinic and/or telephone visits; the intervention group adopted volume management strategy, while the control group adopted conventional care. Volume overload and cardiac function were compared between the two groups at the baseline and at 6 months. At Month 6, the intervention group resulted in significant improvement in volume overloaded status, cardiac function, and volume-overload-related rehospitalization. Volume management strategy allows for better control of volume overload and is associated with fewer volume-related readmissions.
NASA Technical Reports Server (NTRS)
Demerdash, N. A. O.; Nehl, T. W.
1979-01-01
The development, fabrication and evaluation of a prototype electromechanical actuator (EMA) is discussed. Application of the EMA as a motor for control surfaces in aerospace flight is examined. A mathematical model of the EMA is developed for design optimization. Nonlinearities which complicate the mathematical model are discussed. The dynamics of the EMA from the underlying physical principles are determined and a discussion of similating the control logic by means of equivalent boolean expressions is presented.
NASA Astrophysics Data System (ADS)
Queloz, Pierre; Carraro, Luca; Benettin, Paolo; Botter, Gianluca; Rinaldo, Andrea; Bertuzzo, Enrico
2015-04-01
A theoretical analysis of transport in a controlled hydrologic volume, inclusive of two willow trees and forced by erratic water inputs, is carried out contrasting the experimental data described in a companion paper. The data refer to the hydrologic transport in a large lysimeter of different fluorobenzoic acids seen as tracers. Export of solute is modeled through a recently developed framework which accounts for nonstationary travel time distributions where we parameterize how output fluxes (namely, discharge and evapotranspiration) sample the available water ages in storage. The relevance of this work lies in the study of hydrologic drivers of the nonstationary character of residence and travel time distributions, whose definition and computation shape this theoretical transport study. Our results show that a large fraction of the different behaviors exhibited by the tracers may be charged to the variability of the hydrologic forcings experienced after the injection. Moreover, the results highlight the crucial, and often overlooked, role of evapotranspiration and plant uptake in determining the transport of water and solutes. This application also suggests that the ways evapotranspiration selects water with different ages in storage can be inferred through model calibration contrasting only tracer concentrations in the discharge. A view on upscaled transport volumes like hillslopes or catchments is maintained throughout the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, Nikolay A.; Shilnikov, Kirill E.
Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumormore » tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.« less
Sex differences in the correlation of emotional control and amygdala volumes in adolescents.
Blanton, Rebecca E; Chaplin, Tara M; Sinha, Rajita
2010-10-06
We examined male and female adolescents (8-18 years of age) that were scanned with structural brain MRI and looked for a correlation between volume of the right or the left amygdala and parent-reported ability of emotional control. A sex difference was found in the correlation between emotional control and the corrected volume of the left amygdala (that is the amygdala volume adjusted for total cranial volume). In girls, smaller left amygdala volumes were associated with better emotional control. In boys, larger left amygdala volumes were associated with better emotional control. These findings suggest that healthy girls and boys show a difference in the correlation between parental reports of emotional control and the left amygdala volume.
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R. S.; Myrick, E. E.; Blomkalns, A. L.; Charles, J. B.
1994-01-01
The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model capable of simulating a variety of experimental conditions. It has been modified for use at NASA to simulate head-down tilt, a frequently used analog of weightlessness. Weightlessness causes a headward shift of body fluids that is believed to expand central blood volume, triggering a series of physiologic responses resulting in large losses of body fluids. We used the modified Guyton model to test the hypothesis that preadaptation of the blood volume before weightless exposure could counteract the central volume expansion caused by fluid shifts, and thereby attenuate the circulatory and renal responses that result in body fluid losses. Simulation results show that circulatory preadaptation, by a procedure resembling blood donation immediately before head-down bedrest, is effective in damping the physiologic responses to fluid shifts and reducing body fluid losses. After 10 hours of head-down tilt, preadaptation also produces higher blood volume, extracellular volume, and total body water for 20 to 30 days of bedrest, compared with non-preadapted control. These results indicate that circulatory preadaptation before current Space Shuttle missions may be beneficial for the maintenance of reentry and postflight orthostatic tolerance in astronauts. This paper presents a comprehensive examination of the simulation results pertaining to changes in relevant physiologic variables produced by blood volume reduction before a prolonged head-down tilt. The objectives were to study and develop the countermeasure theoretically, to aid in planning experimental studies of the countermeasure, and to identify potentially disadvantageous physiologic responses that may be caused by the countermeasure.
Operative Mortality After Arthroplasty for Femoral Neck Fracture and Hospital Volume.
Maceroli, Michael A; Nikkel, Lucas E; Mahmood, Bilal; Elfar, John C
2015-12-01
The purpose of the present study is to use a statewide, population-based data set to identify mortality rates at 30-day and 1-year postoperatively following total hip arthroplasty (THA) and hemiarthroplasty (HA) for displaced femoral neck fractures. The secondary aim of the study is to determine whether arthroplasty volume confers a protective effect on the mortality rate following femoral neck fracture treatment. New York's Statewide Planning and Research Cooperative System was used to identify 45 749 patients older than 60 years of age with a discharge diagnosis of femoral neck fracture undergoing THA or HA from 2000 through 2010. Comorbidities were identified using the Charlson comorbidity index. Mortality risk was modeled using Cox proportional hazards models while controlling for demographic and comorbid characteristics. High-volume THA centers were defined as those in the top quartile of arthroplasty volume, while low-volume centers were defined as the bottom quartile. Patients undergoing THA for femoral neck fracture rather than HA were younger (79 vs 83 years, P < .001), more likely to have rheumatoid disease, and less likely to have heart disease, dementia, cancer, or diabetes (all P < .05). Thirty-day mortality after HA was higher (8.4% vs 5.7%; P < .001) as was 1-year mortality (25.9% vs 17.8%; P < .001). After controlling for age, gender, ethnicity, and comorbidities, risk of mortality following THA was 21% lower (hazard ratio [HR] 0.79; P = .003) at 30 days and 22% lower (HR 0.78; P < .001) at 1 year than HA. Patients undergoing THA at high-volume arthroplasty centers had improved 1-year mortality when compared to those undergoing THA at low-volume hospitals (HR 0.55; P = .008). Based on this large, population-based study, there is no basis to assume THA carries a greater mortality risk after hip fracture than does standard HA, even when accounting for institutional volume of hip arthroplasty.
Low Volume Resuscitation with Cell Impermeants
2016-04-01
to rise) and a fall in peripheral vascular resistance . In this model, hemorrhage and blood loss was controlled so any changes in hemoglobin...appealing. The increase in capillary filling together with reduced resistance to flow in these peripheral beds leads to increased blood flow and oxygen...delivery. The low resistance , compared to saline controls, likely represents a physical decompression of the capillary beds by controlling cell and
BDM-KAT; Report of Research Results
1990-03-31
relations, constraints TASK PRC>CESS MODEL TASK MICRO FOR SENSOR DATA Figure 4. Computer Network for the Intelligent Control of the HIP Process...prototyped and used in preliminary knowledge acquisition for an intelligent process controller for Hot Isostatic Pressing (HIP). Both the volume of...information collected and structured and Lhe value of that knowledge for the developing controller attest to the value of the concepts implemented in BDM
1987-06-01
non -propagating cracks should be considered and maximum principal strain amplitude Is the controlling parameter. FATIGUE DAMAGE MAPS The preceding...fatigue is strain- controlled and not stress- controlled . The small effect of R-ratio suggested by Figure 2 may simply reflect the high experimental ...present a model (and its experimental verification) describing non -damaging notches in fatigue. &FFECT OF GRAIN SIZE AND TEMPERATURE In this part we shall
Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J
2016-03-15
This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Jubiao; Krane, Michael; Zhang, Lucy
2013-11-01
Vocal fold vibrations and the glottal jet are successfully simulated using the modified Immersed Finite Element method (mIFEM), a fully coupled dynamics approach to model fluid-structure interactions. A self-sustained and steady vocal fold vibration is captured given a constant pressure input at the glottal entrance. The flow rates at different axial locations in the glottis are calculated, showing small variations among them due to the vocal fold motion and deformation. To further facilitate the understanding of the phonation process, two control volume analyses, specifically with Bernoulli's equation and Newton's 2nd law, are carried out for the glottal flow based on the simulation results. A generalized Bernoulli's equation is derived to interpret the correlations between the velocity and pressure temporally and spatially along the center line which is a streamline using a half-space model with symmetry boundary condition. A specialized Newton's 2nd law equation is developed and divided into terms to help understand the driving mechanism of the glottal flow.
Replicating the Ice-Volume Signal of the Early Pleistocene with a Complex Earth System Model
NASA Astrophysics Data System (ADS)
Tabor, C. R.; Poulsen, C. J.; Pollard, D.
2013-12-01
Milankovitch theory proposes high-latitude summer insolation intensity paces the ice ages by controlling perennial snow cover amounts (Milankovitch, 1941). According to theory, the ~21 kyr cycle of precession should dominate the ice-volume records since it has the greatest influence on high-latitude summer insolation. Modeling experiments frequently support Milankovitch theory by attributing the majority of Northern Hemisphere high-latitude summer snowmelt to changes in the cycle of precession (e.g. Jackson and Broccoli, 2003). However, ice-volume proxy records, especially those of the Early Pleistocene (2.6-0.8 Ma), display variability with a period of ~41 kyr (Raymo and Lisiecki, 2005), indicative of insolation forcing from obliquity, which has a much smaller influence on summer insolation intensity than precession. Several hypotheses attempt to explain the discrepancies between Milkankovitch theory and the proxy records by invoking phenomena such as insolation gradients (Raymo and Nisancioglu, 2003), hemispheric offset (Raymo et al., 2006; Lee and Poulsen, 2009), and integrated summer energy (Huybers, 2006); however, all of these hypotheses contain caveats (Ruddiman, 2006) and have yet to be supported by modeling studies that use a complex GCM. To explore potential solutions to this '41 kyr problem,' we use an Earth system model composed of the GENESIS GCM and Land Surface model, the BIOME4 vegetation model, and the Pennsylvania State ice-sheet model. Using an asynchronous coupling technique, we run four idealized transient combinations of obliquity and precession, representing the orbital extremes of the Pleistocene (Berger and Loutre, 1991). Each experiment is run through several complete orbital cycles with a dynamic ice domain spanning North America and Greenland, and fixed preindustrial greenhouse-gas concentrations. For all orbital configurations, model results produce greater ice-volume spectral power at the frequency of obliquity despite significantly greater summer insolation variability from the cycle of precession. We find obliquity enhances the climate sensitivity to direct insolation forcing through positive high-latitude surface feedbacks between vegetation, sea-ice, and mean-annual insolation while the seasonal dichotomy of precessional forcing leads to climate counterbalancing that dampens the annual ice-volume response. Longer cycle duration further amplifies the ice-volume response to obliquity. Our results help remedy the discrepancies between Milankovitch theory and the ice-volume proxy records. However, summer insolation intensity remains the most important factor for determining ice-volume rate-of-change in our experiments. Consequently, we still find a significant ice-volume response to precession, which is inconsistent with the Early Pleistocene records. The disconnect is likely attributable to climate phenomena not accounted for in the model or our choice of initial conditions, which are poorly constrained for the Early Pleistocene and ice-sheet modeling in general. Future work will examine the importance of initial climate conditions on ice-volume response.
NASA Technical Reports Server (NTRS)
Fortenbaugh, R. L.
1980-01-01
A mathematical model of a high performance airplane capable of vertical attitude takeoff and landing (VATOL) was developed. An off line digital simulation program incorporating this model was developed to provide trim conditions and dynamic check runs for the piloted simulation studies and support dynamic analyses of proposed VATOL configuration and flight control concepts. Development details for the various simulation component models and the application of the off line simulation program, Vertical Attitude Take-Off and Landing Simulation (VATLAS), to develop a baseline control system for the Vought SF-121 VATOL airplane concept are described.
Military Operations Research. Winter 1996. Volume 1, Number 4
1996-01-01
ANALYSIS DISTURBANCE INPUT OUTPUT PLANT SEMANTIC CONTROL SYSTEM CONTROL DESIGNER CONTROL I i LAW SYSTEM GOAL CONTROL IIDENTIFIER SELECTOR ADAPTER CONTRO...analysts for many years. It is designed to provide a quick reference for models that represent the effects of a conventional attack against ground...satellites offer this capability. This poses the additional challenge as to how many highways one can "see" per unit time. He did, however, design a
Theoretical and Numerical Investigation of the Cavity Evolution in Gypsum Rock
NASA Astrophysics Data System (ADS)
Li, Wei; Einstein, Herbert H.
2017-11-01
When water flows through a preexisting cylindrical tube in gypsum rock, the nonuniform dissolution alters the tube into an enlarged tapered tube. A 2-D analytical model is developed to study the transport-controlled dissolution in an enlarged tapered tube, with explicit consideration of the tapered geometry and induced radial flow. The analytical model shows that the Graetz solution can be extended to model dissolution in the tapered tube. An alternative form of the governing equations is proposed to take advantage of the invariant quantities in the Graetz solution to facilitate modeling cavity evolution in gypsum rock. A 2-D finite volume model was developed to validate the extended Graetz solution. The time evolution of the transport-controlled and the reaction-controlled dissolution models for a single tube with time-invariant flow rate are compared. This comparison shows that for time-invariant flow rate, the reaction-controlled dissolution model produces a positive feedback between the tube enlargement and dissolution, while the transport-controlled dissolution does not.
Gas permeability of ice-templated, unidirectional porous ceramics
NASA Astrophysics Data System (ADS)
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.
2016-01-01
We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.
Bivariate analysis of floods in climate impact assessments.
Brunner, Manuela Irene; Sikorska, Anna E; Seibert, Jan
2018-03-01
Climate impact studies regarding floods usually focus on peak discharges and a bivariate assessment of peak discharges and hydrograph volumes is not commonly included. A joint consideration of peak discharges and hydrograph volumes, however, is crucial when assessing flood risks for current and future climate conditions. Here, we present a methodology to develop synthetic design hydrographs for future climate conditions that jointly consider peak discharges and hydrograph volumes. First, change factors are derived based on a regional climate model and are applied to observed precipitation and temperature time series. Second, the modified time series are fed into a calibrated hydrological model to simulate runoff time series for future conditions. Third, these time series are used to construct synthetic design hydrographs. The bivariate flood frequency analysis used in the construction of synthetic design hydrographs takes into account the dependence between peak discharges and hydrograph volumes, and represents the shape of the hydrograph. The latter is modeled using a probability density function while the dependence between the design variables peak discharge and hydrograph volume is modeled using a copula. We applied this approach to a set of eight mountainous catchments in Switzerland to construct catchment-specific and season-specific design hydrographs for a control and three scenario climates. Our work demonstrates that projected climate changes have an impact not only on peak discharges but also on hydrograph volumes and on hydrograph shapes both at an annual and at a seasonal scale. These changes are not necessarily proportional which implies that climate impact assessments on future floods should consider more flood characteristics than just flood peaks. Copyright © 2017. Published by Elsevier B.V.
Mathematical Models in Educational Planning. Education and Development, Technical Reports.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
This volume contains papers, presented at a 1966 OECD meeting, on the possibilities of applying a number of related techniques such as mathematical model building, simulation, and systematic control theory to the problems of educational planning. The authors and their papers are (1) Richard Stone, "A View of the Conference," (2) Hector…
NASA Technical Reports Server (NTRS)
1985-01-01
Topics addressed include: assessment models; model predictions of ozone changes; ozone and temperature trends; trace gas effects on climate; kinetics and photchemical data base; spectroscopic data base (infrared to microwave); instrument intercomparisons and assessments; and monthly mean distribution of ozone and temperature.
Hippocampal harms, protection and recovery following regular cannabis use.
Yücel, M; Lorenzetti, V; Suo, C; Zalesky, A; Fornito, A; Takagi, M J; Lubman, D I; Solowij, N
2016-01-12
Shifting policies towards legalisation of cannabis for therapeutic and recreational use raise significant ethical issues for health-care providers seeking evidence-based recommendations. We investigated whether heavy cannabis use is associated with persistent harms to the hippocampus, if exposure to cannabidiol offers protection, and whether recovery occurs with abstinence. To do this, we assessed 111 participants: 74 long-term regular cannabis users (with an average of 15.4 years of use) and 37 non-user healthy controls. Cannabis users included subgroups of participants who were either exposed to Δ9-tetrahydrocannabinol (THC) but not to cannabidiol (CBD) or exposed to both, and former users with sustained abstinence. Participants underwent magnetic resonance imaging from which three measures of hippocampal integrity were assessed: (i) volume; (ii) fractional anisotropy; and (iii) N-acetylaspartate (NAA). Three curve-fitting models across the entire sample were tested for each measure to examine whether cannabis-related hippocampal harms are persistent, can be minimised (protected) by exposure to CBD or recovered through long-term abstinence. These analyses supported a protection and recovery model for hippocampal volume (P=0.003) and NAA (P=0.001). Further pairwise analyses showed that cannabis users had smaller hippocampal volumes relative to controls. Users not exposed to CBD had 11% reduced volumes and 15% lower NAA concentrations. Users exposed to CBD and former users did not differ from controls on any measure. Ongoing cannabis use is associated with harms to brain health, underpinned by chronic exposure to THC. However, such harms are minimised by CBD, and can be recovered with extended periods of abstinence.
Hippocampal harms, protection and recovery following regular cannabis use
Yücel, M; Lorenzetti, V; Suo, C; Zalesky, A; Fornito, A; Takagi, M J; Lubman, D I; Solowij, N
2016-01-01
Shifting policies towards legalisation of cannabis for therapeutic and recreational use raise significant ethical issues for health-care providers seeking evidence-based recommendations. We investigated whether heavy cannabis use is associated with persistent harms to the hippocampus, if exposure to cannabidiol offers protection, and whether recovery occurs with abstinence. To do this, we assessed 111 participants: 74 long-term regular cannabis users (with an average of 15.4 years of use) and 37 non-user healthy controls. Cannabis users included subgroups of participants who were either exposed to Δ9-tetrahydrocannabinol (THC) but not to cannabidiol (CBD) or exposed to both, and former users with sustained abstinence. Participants underwent magnetic resonance imaging from which three measures of hippocampal integrity were assessed: (i) volume; (ii) fractional anisotropy; and (iii) N-acetylaspartate (NAA). Three curve-fitting models across the entire sample were tested for each measure to examine whether cannabis-related hippocampal harms are persistent, can be minimised (protected) by exposure to CBD or recovered through long-term abstinence. These analyses supported a protection and recovery model for hippocampal volume (P=0.003) and NAA (P=0.001). Further pairwise analyses showed that cannabis users had smaller hippocampal volumes relative to controls. Users not exposed to CBD had 11% reduced volumes and 15% lower NAA concentrations. Users exposed to CBD and former users did not differ from controls on any measure. Ongoing cannabis use is associated with harms to brain health, underpinned by chronic exposure to THC. However, such harms are minimised by CBD, and can be recovered with extended periods of abstinence. PMID:26756903
NASA Technical Reports Server (NTRS)
Williams, F. E.; Lemon, R. S.
1974-01-01
The engineering equations and mathematical models developed for use in the space shuttle functional simulator (SSFS) are presented, and include extensive revisions and additions to earlier documentation. Definitions of coordinate systems used by the SSFS models and coordinate tranformations are given, along with documentation of the flexible body mathematical models. The models were incorporated in the SSFS and are in the checkout stage.
A prospective pilot study measuring muscle volumetric change in amyotrophic lateral sclerosis.
Jenkins, Thomas M; Burness, Christine; Connolly, Daniel J; Rao, D Ganesh; Hoggard, Nigel; Mawson, Susan; McDermott, Christopher J; Wilkinson, Iain D; Shaw, Pamela J
2013-09-01
Our objective was to investigate the potential of muscle volume, measured with magnetic resonance (MR), as a biomarker to quantify disease progression in patients with amyotrophic lateral sclerosis (ALS). In this longitudinal pilot study, we first sought to determine the stability of volumetric muscle MR measurements in 11 control subjects at two time-points. We assessed feasibility of detecting atrophy in four patients with ALS, followed at three-month intervals for 12 months. Muscle power and MR volume were measured in thenar eminence (TEm), first dorsal interosseous (1DIO), tibialis anterior (TA) and tongue. Changes over time were assessed using linear regression models and t-tests. Results demonstrated that, in controls, no volumetric MR changes were seen (mean volume variation in all muscles < 5%, p > 0.1). In patients, between-subject heterogeneity was identified. Trends for volume loss were found in TEm (mean, - 26.84%, p = 0.056) and TA (- 8.29%, p = 0.077), but not in 1DIO (- 18.47%, p = 0.121) or tongue (< 5%, p = 0.367). In conclusion, volumetric muscle MR appears a stable measure in controls, and progressive volume loss was demonstrable in individuals with ALS in whom clinical weakness progressed. In this small study, subclinical atrophy was not demonstrable using muscle MR. Clinico-radiological discordance between muscle weakness and MR atrophy could reflect a contribution of upper motor neuron pathology.
Thoma, Daniel S; Hämmerle, Christoph H F; Cochran, David L; Jones, Archie A; Görlach, Christoph; Uebersax, Lorenz; Mathes, Stephanie; Graf-Hausner, Ursula; Jung, Ronald E
2011-11-01
The aim was to test, whether or not soft tissue volume augmentation with a specifically designed collagen matrix (CM), leads to ridge width gain in chronic ridge defects similar to those obtained by an autogenous subepithelial connective tissue graft (SCTG). In six dogs, soft tissue volume augmentation was performed by randomly allocating three treatment modalities to chronic ridge defects [CM, SCTG and sham-operated control (Control)]. Dogs were sacrificed at 28 (n = 3) and 84 days (n = 3). Descriptive histology and histomorphometric measurements were performed on non-decalcified sections. SCTG and CM demonstrated favourable tissue integration, and subsequent re-modelling over 84 days. The overall mean amount of newly formed soft tissue (NMT) plus bone (NB) amounted to 3.8 ± 1.2 mm (Control), 6.4 ± 0.9 mm (CM) and 7.2 ± 1.2 mm (SCTG) at 28 days. At 84 days, the mean NMT plus NB reached 2.4 ± 0.9 mm (Control), 5.6 ± 1.5 mm (CM) and 6.0 ± 2.1 mm (SCTG). Statistically significant differences were observed between CM/SCTG and Control at both time-points (p < 0.05). Within the limits of this animal model, the CM performed similar to the SCTG, based on histomorphometric outcomes combining NB and NMT. © 2011 John Wiley & Sons A/S.
No effect of artificial gravity on lung function with exercise training during head-down bed rest
NASA Astrophysics Data System (ADS)
Su, Longxiang; Guo, Yinghua; Wang, Yajuan; Wang, Delong; Liu, Changting
2016-04-01
The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.
Regional grey matter volume abnormalities in bulimia nervosa and binge-eating disorder.
Schäfer, Axel; Vaitl, Dieter; Schienle, Anne
2010-04-01
This study investigated whether bulimia nervosa (BN) and binge-eating disorder (BED) are associated with structural brain abnormalities. Both disorders share the main symptom binge-eating, but are considered differential diagnoses. We attempted to identify alterations in grey matter volume (GMV) that are present in both psychopathologies as well as disorder-specific GMV characteristics. Such information can help to improve neurobiological models of eating disorders and their classification. A total of 50 participants (patients suffering from BN (purge type), BED, and normal-weight controls) underwent structural MRI scanning. GMV for specific brain regions involved in food/reinforcement processing was analyzed by means of voxel-based morphometry. Both patient groups were characterized by greater volumes of the medial orbitofrontal cortex (OFC) compared to healthy controls. In BN patients, who had increased ventral striatum volumes, body mass index and purging severity were correlated with striatal grey matter volume. Altogether, our data implicate a crucial role of the medial OFC in the studied eating disorders. The structural abnormality might be associated with dysfunctions in food reward processing and/or self-regulation. The bulimia-specific volume enlargement of the ventral striatum is discussed in the framework of negative reinforcement through purging and associated weight regulation. Copyright 2009 Elsevier Inc. All rights reserved.
Duan, Yan; Ma, Wei; Li, Dehua; Wang, Tongfei; Liu, Baolin
2017-01-01
The present study aimed to investigate whether bone marrow-derived mesenchymal stem cell (BMSC) sheets combined with titanium implants enhanced implant osseointegration in an ovariectomized (OVX) rat model of osteoporosis. Sprague-Dawley rats were randomly assigned into a test group and control group. Allogenic BMSCs were collected from the rats, cultured and stored via cryopreservation. At 6 months post-ovariectomy, establishment of the OVX model was confirmed by micro-computed tomography (CT) measurements. BMSC sheets were subsequently layered and wrapped over titanium implants for implantation. Unmodified implants served as the control. At 8 weeks post-implantation, samples were observed by micro-CT reconstruction and histomorphometric evaluation. Micro-CT reconstruction identified a marked improvement in the surrounding bone volume following treatment, with data analyses indicating a significant increase in bone volume in the BMSC-implant group compared with the control implant group (P<0.05). In addition, histological staining identified new bone formation and an increased rate of bone-implant contact surrounding the BMSC-implant constructs. These results indicate that the use of BMSC sheets as a novel tissue engineering approach improves the osseointegration of titanium implants in an osteoporosis model. This method may expand the operative indications in patients with osteoporosis and improve the success rate of clinical dental implant treatments. PMID:29250137
Modified model of VX2 tumor overexpressing vascular endothelial growth factor.
Pascale, Florentina; Ghegediban, Saida-Homayra; Bonneau, Michel; Bedouet, Laurent; Namur, Julien; Verret, Valentin; Schwartz-Cornil, Isabelle; Wassef, Michel; Laurent, Alexandre
2012-06-01
To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.
1991-01-01
Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-base and moving-base real-time piloted simulations; thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.
NASA Technical Reports Server (NTRS)
Montoya, R. J.; Jai, A. R.; Parker, C. D.
1979-01-01
A ground based, general purpose, real time, digital control system simulator (CSS) is specified, developed, and integrated with the existing instrumentation van of the testing facility. This CSS is built around a PDP-11/55, and its operational software was developed to meet the dual goal of providing the immediate capability to represent the F-18 drop model control laws and the flexibility for expansion to represent more complex control laws typical of control configured vehicles. Overviews of the two CSS's developed are reviewed as well as the overall system after their integration with the existing facility. Also the latest version of the F-18 drop model control laws (REV D) is described and the changes needed for its incorporation in the digital and analog CSS's are discussed.
Experience-based quality control of clinical intensity-modulated radiotherapy planning.
Moore, Kevin L; Brame, R Scott; Low, Daniel A; Mutic, Sasa
2011-10-01
To incorporate a quality control tool, according to previous planning experience and patient-specific anatomic information, into the intensity-modulated radiotherapy (IMRT) plan generation process and to determine whether the tool improved treatment plan quality. A retrospective study of 42 IMRT plans demonstrated a correlation between the fraction of organs at risk (OARs) overlapping the planning target volume and the mean dose. This yielded a model, predicted dose = prescription dose (0.2 + 0.8 [1 - exp(-3 overlapping planning target volume/volume of OAR)]), that predicted the achievable mean doses according to the planning target volume overlap/volume of OAR and the prescription dose. The model was incorporated into the planning process by way of a user-executable script that reported the predicted dose for any OAR. The script was introduced to clinicians engaged in IMRT planning and deployed thereafter. The script's effect was evaluated by tracking δ = (mean dose-predicted dose)/predicted dose, the fraction by which the mean dose exceeded the model. All OARs under investigation (rectum and bladder in prostate cancer; parotid glands, esophagus, and larynx in head-and-neck cancer) exhibited both smaller δ and reduced variability after script implementation. These effects were substantial for the parotid glands, for which the previous δ = 0.28 ± 0.24 was reduced to δ = 0.13 ± 0.10. The clinical relevance was most evident in the subset of cases in which the parotid glands were potentially salvageable (predicted dose <30 Gy). Before script implementation, an average of 30.1 Gy was delivered to the salvageable cases, with an average predicted dose of 20.3 Gy. After implementation, an average of 18.7 Gy was delivered to salvageable cases, with an average predicted dose of 17.2 Gy. In the prostate cases, the rectum model excess was reduced from δ = 0.28 ± 0.20 to δ = 0.07 ± 0.15. On surveying dosimetrists at the end of the study, most reported that the script both improved their IMRT planning (8 of 10) and increased their efficiency (6 of 10). This tool proved successful in increasing normal tissue sparing and reducing interclinician variability, providing effective quality control of the IMRT plan development process. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1979-01-01
The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.
McBride, Devin W; Matei, Nathanael; Câmara, Justin R; Louis, Jean-Sébastien; Oudin, Guillaume; Walker, Corentin; Adam, Loic; Liang, Xiping; Hu, Qin; Tang, Jiping; Zhang, John H
2016-01-01
Stroke disproportionally affects diabetic and hyperglycemic patients with increased incidence and is associated with higher morbidity and mortality due to brain swelling. In this study, the intraluminal suture middle cerebral artery occlusion (MCAO) model was used to examine the effects of blood glucose on brain swelling and infarct volume in acutely hyperglycemic rats and normo-glycemic controls. Fifty-four rats were distributed into normo-glycemic sham surgery, hyperglycemic sham surgery, normo-glycemic MCAO, and hyperglycemic MCAO. To induce hyperglycemia, 15 min before MCAO surgery, animals were injected with 50 % dextrose. Animals were subjected to 90 min of MCAO and sacrificed 24 h after reperfusion for hemispheric brain swelling and infarct volume calculations using standard equations. While normo-glycemic and hyperglycemic animals after MCAO presented with significantly higher brain swelling and larger infarcts than their respective controls, no statistical difference was observed for either brain swelling or infarct volume between normo-glycemic shams and hyperglycemic shams or normo-glycemic MCAO animals and hyperglycemic MCAO animals. The findings of this study suggest that blood glucose does not have any significant effect on hemispheric brain swelling or infarct volume after MCAO in rats.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer programmer's manual for a digital computer which will permit rapid and accurate parametric analysis of current and advanced attitude control propulsion systems is presented. The concept is for a cold helium pressurized, subcritical cryogen fluid supplied, bipropellant gas-fed attitude control propulsion system. The cryogen fluids are stored as liquids under low pressure and temperature conditions. The mathematical model provides a generalized form for the procedural technique employed in setting up the analysis program.
NASA Astrophysics Data System (ADS)
Bressan, Alberto; Lewicka, Marta
2018-03-01
We consider a free boundary problem for a system of PDEs, modeling the growth of a biological tissue. A morphogen, controlling volume growth, is produced by specific cells and then diffused and absorbed throughout the domain. The geometric shape of the growing tissue is determined by the instantaneous minimization of an elastic deformation energy, subject to a constraint on the volumetric growth. For an initial domain with C}^{2,α boundary, our main result establishes the local existence and uniqueness of a classical solution, up to a rigid motion.
Modeling Ullage Dynamics of Tank Pressure Control Experiment during Jet Mixing in Microgravity
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.
2016-01-01
A CFD model for simulating the fluid dynamics of the jet induced mixing process is utilized in this paper to model the pressure control portion of the Tank Pressure Control Experiment (TPCE) in microgravity1. The Volume of Fluid (VOF) method is used for modeling the dynamics of the interface during mixing. The simulations were performed at a range of jet Weber numbers from non-penetrating to fully penetrating. Two different initial ullage positions were considered. The computational results for the jet-ullage interaction are compared with still images from the video of the experiment. A qualitative comparison shows that the CFD model was able to capture the main features of the interfacial dynamics, as well as the jet penetration of the ullage.
NASA Astrophysics Data System (ADS)
El Naqa, I.; Suneja, G.; Lindsay, P. E.; Hope, A. J.; Alaly, J. R.; Vicic, M.; Bradley, J. D.; Apte, A.; Deasy, J. O.
2006-11-01
Radiotherapy treatment outcome models are a complicated function of treatment, clinical and biological factors. Our objective is to provide clinicians and scientists with an accurate, flexible and user-friendly software tool to explore radiotherapy outcomes data and build statistical tumour control or normal tissue complications models. The software tool, called the dose response explorer system (DREES), is based on Matlab, and uses a named-field structure array data type. DREES/Matlab in combination with another open-source tool (CERR) provides an environment for analysing treatment outcomes. DREES provides many radiotherapy outcome modelling features, including (1) fitting of analytical normal tissue complication probability (NTCP) and tumour control probability (TCP) models, (2) combined modelling of multiple dose-volume variables (e.g., mean dose, max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term regression modelling, (3) manual or automated selection of logistic or actuarial model variables using bootstrap statistical resampling, (4) estimation of uncertainty in model parameters, (5) performance assessment of univariate and multivariate analyses using Spearman's rank correlation and chi-square statistics, boxplots, nomograms, Kaplan-Meier survival plots, and receiver operating characteristics curves, and (6) graphical capabilities to visualize NTCP or TCP prediction versus selected variable models using various plots. DREES provides clinical researchers with a tool customized for radiotherapy outcome modelling. DREES is freely distributed. We expect to continue developing DREES based on user feedback.
Two-dimensional numerical simulation of flow around three-stranded rope
NASA Astrophysics Data System (ADS)
Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng
2016-08-01
Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.
A dynamical model on deposit and loan of banking: A bifurcation analysis
NASA Astrophysics Data System (ADS)
Sumarti, Novriana; Hasmi, Abrari Noor
2015-09-01
A dynamical model, which is one of sophisticated techniques using mathematical equations, can determine the observed state, for example bank profits, for all future times based on the current state. It will also show small changes in the state of the system create either small or big changes in the future depending on the model. In this research we develop a dynamical system of the form: d/D d t =f (D ,L ,rD,rL,r ), d/L d t =g (D ,L ,rD,rL,r ), Here D and rD are the volume of deposit and its rate, L and rL are the volume of loan and its rate, and r is the interbank market rate. There are parameters required in this model which give connections between two variables or between two derivative functions. In this paper we simulate the model for several parameters values. We do bifurcation analysis on the dynamics of the system in order to identify the appropriate parameters that control the stability behaviour of the system. The result shows that the system will have a limit cycle for small value of interest rate of loan, so the deposit and loan volumes are fluctuating and oscillating extremely. If the interest rate of loan is too high, the loan volume will be decreasing and vanish and the system will converge to its carrying capacity.
2006-11-26
with controlled micro and nanostructure for highly selective, high sensitivity assays. The process was modeled and a procedure for fabricating SERS...small volumes with controlled micro and nanostructure for highly selective, high sensitivity assays. We proved the feasibility of the technique and...films templated by colloidal crystals. The control over the film structure allowed optimizing their performance for potential sensor applications. The
ERDYM: Economic Recovery Dynamics Model. Volume 1. Modifications and Simulations.
1984-05-01
Pacific Northwest Laboratories AEAOKNTUSR P.O. Bx 999FEMA Work Unit 4342-D * Richland, Washington 99352 I. CONTROLLING OFFICE NAME AND ADDRESS 12...dleu.,m, hft Controlling Office) 15. SECURITY CLASS. (of thls report) Unclassified I 1a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION...rationinq and wage and price controls . 2.6.1 Economic Role of Government Revenues * The representation of government financinq in ERDYM is straiqhtfoward. 9
European Scientific Notes. Volume 35, Number 6.
1981-06-30
center where the operator can relationships are promoted in four ways: regulate the test conditions (air storage 211 +* , FSN 35-6 (1981) tanks, model ...tunnel models , for itself asymmetric aileron deflection and post- and its clients, using computer-controlled stall aerodynamics are in progress...those attending the Discussion nonaqueous solutions, (6) new theoretical was somewhat reduced by the fact that models , (7) Fermi-level concepts in solu
Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model
Sato, Kazuhide; Choyke, Peter L.; Kobayashi, Hisataka
2014-01-01
Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT. PMID:25401794
Renteria Marquez, I A; Bolborici, V
2017-05-01
This manuscript presents a method to model in detail the piezoelectric traveling wave rotary ultrasonic motor (PTRUSM) stator response under the action of DC and AC voltages. The stator is modeled with a discrete two dimensional system of equations using the finite volume method (FVM). In order to obtain accurate results, a model of the stator bridge is included into the stator model. The model of the stator under the action of DC voltage is presented first, and the results of the model are compared versus a similar model using the commercial finite element software COMSOL Multiphysics. One can observe that there is a difference of less than 5% between the displacements of the stator using the proposed model and the one with COMSOL Multiphysics. After that, the model of the stator under the action of AC voltages is presented. The time domain analysis shows the generation of the traveling wave in the stator surface. One can use this model to accurately calculate the stator surface velocities, elliptical motion of the stator surface and the amplitude and shape of the stator traveling wave. A system of equations discretized with the finite volume method can easily be transformed into electrical circuits, because of that, FVM may be a better choice to develop a model-based control strategy for the PTRUSM. Copyright © 2017 Elsevier B.V. All rights reserved.
D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; ...
2015-12-21
We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result,more » the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.« less
pH salivary analysis of subjects suffering from Sjögren's syndrome and laryngopharyngeal reflux.
Corvo, Marco Antonio Dos Anjos; Eckley, Claudia Alessandra; Liquidato, Bianca Maria; Castilho, Gustavo Leão; Arruda, Cibelle Nunes de
2012-02-01
Saliva is one of the components for the digestive homeostasis. Recent studies have shown that patients with laryngopharyngeal reflux (LPR) present a drop in salivary pH. Patients with Sjögren's syndrome (SS) are a potential clinical research model for xerostomia and its laryngeal and pharyngeal consequences. The aim was to evaluate the characteristics of saliva of patients with SS and LPR. 19 patients with SS plus LPR, and 12 healthy controls had their saliva studied prospectively for volume and pH. Two salivary samples were obtained from each participant: whole unstimulated saliva(WUS) and whole stimulated saliva(WSS) while chewing parafilm M®. All the participants were females. Mean age was 60 years (study group) and 44 years (control). LPR was diagnosed on all 19 subjects. The mean pH of WUS was 7.53 (SS) and 7.57 (controls), raising to 7.87 and 7.83 respectively after stimulation. The mean salivary volume of patients with SS was 1.27 mL (WUS) and 3.78 mL (WSS), whereas controls had a significantly higher salivary volume both before and after stimuli. A very high prevalence of LPR was found in patients with SS, which is probably caused by a uniform drop in salivary volume and all its contents, rather than a specific deficiency in its components, as shown previously in patients without SS.
Meier, Timothy B; Savitz, Jonathan; Singh, Rashmi; Teague, T Kent; Bellgowan, Patrick S F
2016-07-15
An imbalance in kynurenine pathway metabolism is hypothesized to be associated with dysregulated glutamatergic neurotransmission, which has been proposed as a mechanism underlying the hippocampal volume loss observed in a variety of neurological disorders. Pre-clinical models suggest that the CA2-3 and dentate gyrus hippocampal subfields are particularly susceptible to excitotoxicity after experimental traumatic brain injury. We tested the hypothesis that smaller hippocampal volumes in collegiate football athletes with (n = 25) and without (n = 24) a concussion history would be most evident in the dentate gyrus and CA2-3 subfields relative to nonfootball healthy controls (n = 27). Further, we investigated whether the concentration of peripheral levels of kynurenine metabolites are altered in football athletes. Football athletes with and without a self-reported concussion history had smaller dentate gyrus (p < 0.05, p < 0.10) and CA2-3 volumes (p's < 0.05) relative to healthy controls. Football athletes with and without a concussion history had a trend toward lower (p < 0.10) and significantly lower (p < 0.05) kynurenine levels compared with healthy controls, while athletes with a concussion history had greater levels of quinolinic acid compared with athletes without a concussion history (p < 0.05). Finally, plasma levels of 3-hydroxykynurenine inversely correlated with bilateral hippocampal volumes in football athletes with a concussion history (p < 0.01), and left hippocampal volume was correlated with the ratio of kynurenic acid to quinolinic acid in football athletes without a concussion history (p < 0.05). Our results raise the possibility that abnormalities of the kynurenine metabolic pathway constitute a mechanism for hippocampal volume differences in the context of sports-related brain injury.
Savitz, Jonathan; Singh, Rashmi; Teague, T. Kent; Bellgowan, Patrick S.F.
2016-01-01
Abstract An imbalance in kynurenine pathway metabolism is hypothesized to be associated with dysregulated glutamatergic neurotransmission, which has been proposed as a mechanism underlying the hippocampal volume loss observed in a variety of neurological disorders. Pre-clinical models suggest that the CA2-3 and dentate gyrus hippocampal subfields are particularly susceptible to excitotoxicity after experimental traumatic brain injury. We tested the hypothesis that smaller hippocampal volumes in collegiate football athletes with (n = 25) and without (n = 24) a concussion history would be most evident in the dentate gyrus and CA2-3 subfields relative to nonfootball healthy controls (n = 27). Further, we investigated whether the concentration of peripheral levels of kynurenine metabolites are altered in football athletes. Football athletes with and without a self-reported concussion history had smaller dentate gyrus (p < 0.05, p < 0.10) and CA2-3 volumes (p's < 0.05) relative to healthy controls. Football athletes with and without a concussion history had a trend toward lower (p < 0.10) and significantly lower (p < 0.05) kynurenine levels compared with healthy controls, while athletes with a concussion history had greater levels of quinolinic acid compared with athletes without a concussion history (p < 0.05). Finally, plasma levels of 3-hydroxykynurenine inversely correlated with bilateral hippocampal volumes in football athletes with a concussion history (p < 0.01), and left hippocampal volume was correlated with the ratio of kynurenic acid to quinolinic acid in football athletes without a concussion history (p < 0.05). Our results raise the possibility that abnormalities of the kynurenine metabolic pathway constitute a mechanism for hippocampal volume differences in the context of sports-related brain injury. PMID:26493952
Epitympanum volume and tympanic isthmus area in temporal bones with retraction pockets.
Monsanto, Rafael da Costa; Pauna, Henrique Furlan; Kaya, Serdar; Hızlı, Ömer; Kwon, Geeyoun; Paparella, Michael M; Cureoglu, Sebahattin
2016-11-01
To compare the volume of the epitympanic space, as well as the area of the tympanic isthmus, in human temporal bones with retraction pockets to those with chronic otitis media without retraction pockets and to those with neither condition. Comparative human temporal bone study. We generated a three-dimensional model of the bony epitympanum and measured the epitympanic space. We also compared the area of the tympanic isthmus. The mean total volume of the epitympanum was 40.55 ± 7.14 mm 3 in the retraction pocket group, 50.03 ± 8.49 mm 3 in the chronic otitis media group, and 48.03 ± 9.16 mm 3 in the neither condition group. The mean volume of the anterior, lateral, and medial compartments in temporal bones in the retraction pocket group was significantly smaller than in the two control groups (P < 0.05). Total epitympanic volume was also significantly smaller in the retraction pocket group than in both control groups (P < 0.05). The mean area of the tympanic isthmus was significantly smaller in the retraction pocket group (8.11 ± 2.44 mm 2 ) than in the chronic otitis media group (9.82 ± 2.06 mm 2 ) or the neither condition group (10.66 ± 1.78 mm 2 ) (P < 0.05). Our data indicate that temporal bones with retraction pockets have a smaller volume bony epitympanum and a smaller tympanic isthmus area as compared with temporal bones from both control groups. The smaller volume tympanic isthmus in the retraction pocket group may suggest that a blockage in the aeration pathways to the epitympanum could create dysventilation, resulting in negative pressure and ultimately in retraction pockets and cholesteatomas. NA Laryngoscope, 126:E369-E374, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Gu, Wan-Jie; Wang, Fei; Liu, Jing-Chen
2015-02-17
In anesthetized patients undergoing surgery, the role of lung-protective ventilation with lower tidal volumes is unclear. We performed a meta-analysis of randomized controlled trials (RCTs) to evaluate the effect of this ventilation strategy on postoperative outcomes. We searched electronic databases from inception through September 2014. We included RCTs that compared protective ventilation with lower tidal volumes and conventional ventilation with higher tidal volumes in anesthetized adults undergoing surgery. We pooled outcomes using a random-effects model. The primary outcome measures were lung injury and pulmonary infection. We included 19 trials (n=1348). Compared with patients in the control group, those who received lung-protective ventilation had a decreased risk of lung injury (risk ratio [RR] 0.36, 95% confidence interval [CI] 0.17 to 0.78; I2=0%) and pulmonary infection (RR 0.46, 95% CI 0.26 to 0.83; I2=8%), and higher levels of arterial partial pressure of carbon dioxide (standardized mean difference 0.47, 95% CI 0.18 to 0.75; I2=65%). No significant differences were observed between the patient groups in atelectasis, mortality, length of hospital stay, length of stay in the intensive care unit or the ratio of arterial partial pressure of oxygen to fraction of inspired oxygen. Anesthetized patients who received ventilation with lower tidal volumes during surgery had a lower risk of lung injury and pulmonary infection than those given conventional ventilation with higher tidal volumes. Implementation of a lung-protective ventilation strategy with lower tidal volumes may lower the incidence of these outcomes. © 2015 Canadian Medical Association or its licensors.
Computer simulated modeling of healthy and diseased right ventricular and pulmonary circulation.
Chou, Jody; Rinehart, Joseph B
2018-01-12
We have previously developed a simulated cardiovascular physiology model for in-silico testing and validation of novel closed-loop controllers. To date, a detailed model of the right heart and pulmonary circulation was not needed, as previous controllers were not intended for use in patients with cardiac or pulmonary pathology. With new development of controllers for vasopressors, and looking forward, for combined vasopressor-fluid controllers, modeling of right-sided and pulmonary pathology is now relevant to further in-silico validation, so we aimed to expand our existing simulation platform to include these elements. Our hypothesis was that the completed platform could be tuned and stabilized such that the distributions of a randomized sample of simulated patients' baseline characteristics would be similar to reported population values. Our secondary outcomes were to further test the system in representing acute right heart failure and pulmonary artery hypertension. After development and tuning of the right-sided circulation, the model was validated against clinical data from multiple previously published articles. The model was considered 'tuned' when 100% of generated randomized patients converged to stability (steady, physiologically-plausible compartmental volumes, flows, and pressures) and 'valid' when the means for the model data in each health condition were contained within the standard deviations for the published data for the condition. A fully described right heart and pulmonary circulation model including non-linear pressure/volume relationships and pressure dependent flows was created over a 6-month span. The model was successfully tuned such that 100% of simulated patients converged into a steady state within 30 s. Simulation results in the healthy state for central venous volume (3350 ± 132 ml) pulmonary blood volume (405 ± 39 ml), pulmonary artery pressures (systolic 20.8 ± 4.1 mmHg and diastolic 9.4 ± 1.8 mmHg), left atrial pressure (4.6 ± 0.8 mmHg), PVR (1.0 ± 0.2 wood units), and CI (3.8 ± 0.5 l/min/m 2 ) all met criteria for acceptance of the model, though the standard deviations of LAP and CI were somewhat narrower than published comparators. The simulation results for right ventricular infarction also fell within the published ranges: pulmonary blood volume (727 ± 102 ml), pulmonary arterial pressures (30 ± 4 mmHg systolic, 12 ± 2 mmHg diastolic), left atrial pressure (13 ± 2 mmHg), PVR (1.6 ± 0.3 wood units), and CI (2.0 ± 0.4 l/min/m 2 ) all fell within one standard deviation of the reported population values and vice-versa. In the pulmonary hypertension model, pulmonary blood volume of 615 ± 90 ml, pulmonary arterial pressures of 80 ± 14 mmHg systolic, 36 ± 7 mmHg diastolic, and the left atrial pressure of 11 ± 2 mmHg all met criteria for acceptance. For CI, the simulated value of 2.8 ± 0.4 l/min/m 2 once again had a narrower spread than most of the published data, but fell inside of the SD of all published data, and the PVR value of 7.5 ± 1.6 wood units fell in the middle of the four published studies. The right-ventricular and pulmonary circulation simulation appears to be a reasonable approximation of the right-sided circulation for healthy physiology as well as the pathologic conditions tested.
Tsujimura, Akira; Fukuhara, Shinichiro; Soda, Tetsuji; Takezawa, Kentaro; Kiuchi, Hiroshi; Takao, Tetsuya; Miyagawa, Yasushi; Nonomura, Norio; Adachi, Shigeki; Tokita, Yoriko; Nomura, Taisei
2015-01-01
To evaluate histologic change in human prostate samples treated with dutasteride and to elucidate direct effects of dutasteride on human prostate tissue, the present study was conducted by using a xenograft model with improved severe combined immunodeficient (super-SCID) mice, although it is well known that dutasteride reduces prostate volume. After establishment of a xenograft model of human benign prostatic hyperplasia in morphology and function, samples implanted into super-SCID mice with and without dutasteride were evaluated pathohistologically at 2 and 6 months after initiation of dutasteride administration. The proliferative index evaluated by Ki-67 staining was significantly lower in the dutasteride group than the control at 2 and 6 months after administration. Apoptotic index evaluated by the terminal transferase TdT-mediated dUTP-biotin nick end labeling staining was higher in the dutasteride group than the control at 2 and 6 months after administration. Quick scores in the dutasteride group for staining of both cyclooxygenase-2 (Cox-2) and Ras homolog gene family, member A (RhoA) were significantly lower than those in the control group at 2 and 6 months after administration. Dutasteride inhibits cell proliferation and induces apoptosis of prostatic cells, causing a reduced prostate volume. Furthermore, decreased expression of Cox-2 and RhoA within benign prostatic hyperplasia tissue by dutasteride may induce an early effect on improvement of lower urinary tract symptoms, probably by attenuating inflammation reaction of the prostate and decreasing intraurethral pressure, other than the mechanism of reduced prostate volume. Copyright © 2015 Elsevier Inc. All rights reserved.
Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D.; Evans, Alan C; Karama, Sherif
2011-01-01
Background The anterior cingulate cortex (ACC), orbito-frontal cortex (OFC) and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Methods Data from 193 representative 6–18 year-old healthy children were obtained from the NIH MRI Study of Normal Brain Development after a blinded quality control (1). Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist (CBCL). AGG scores were regressed against cortical thickness and basal ganglia volumes using first and second-order linear models while controlling for age, gender, scanner site and total brain volume. ‘Gender by AGG’ interactions were analyzed. Results There were positive associations between bilateral striatal volumes and AGG scores (right: r=0.238, p=0.001; left: r=0.188, p=0.01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p<0.05, corrected). High AGG scores were associated with a relatively thin right ACC cortex. An ‘AGG by gender’ interaction trend was found in bilateral OFC and ACC associations with AGG scores. Conclusion This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender specific patterns of association in OFC/ACC grey matter. These results may guide research on oppositional-defiant and conduct disorders. PMID:21531391
Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D; Evans, Alan C; Karama, Sherif
2011-08-01
The anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Data from 193 representative 6- to 18-year-old healthy children were obtained from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development after a blinded quality control. Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist. AGG scores were regressed against cortical thickness and basal ganglia volumes using first- and second-order linear models while controlling for age, gender, scanner site, and total brain volume. Gender by AGG interactions were analyzed. There were positive associations between bilateral striatal volumes and AGG scores (right: r = .238, p = .001; left: r = .188, p = .01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p < .05, corrected). High AGG scores were associated with a relatively thin right ACC cortex. An AGG by gender interaction trend was found in bilateral OFC and ACC associations with AGG scores. This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender-specific patterns of association in OFC/ACC gray matter. These results may guide research on oppositional-defiant and conduct disorders. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach
NASA Astrophysics Data System (ADS)
Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard
2013-04-01
The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.
NASA Astrophysics Data System (ADS)
Aravena, J.; Dussaillant, A. R.
2006-12-01
Source control is the fundamental principle behind sustainable management of stormwater. Rain gardens are an infiltration practice that provides volume and water quality control, recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment of these objectives requires understanding their behavior during events as well as long term, and tools for their design. We have developed a model based on Richards equation coupled to a surface water balance, solved with a 2D finite volume Fortran code which allows alternating upper boundary conditions, including ponding, which is not present in available 2D models. Also, it can simulate non homogeneous water input, heterogeneous soil (layered or more complex geometries), and surface irregularities -e.g. terracing-, so as to estimate infiltration and recharge. The algorithm is conservative; being an advantage compared to available finite difference and finite element methods. We will present performance comparisons to known models, to experimental data from a bioretention cell, which receives roof water to its surface depression planted with native species in an organic-rich root zone soil layer (underlain by a high conductivity lower layer that, while providing inter-event storage, percolates water readily), as well as long term simulations for different rain garden configurations. Recharge predictions for different climates show significant increases from natural recharge, and that the optimal area ratio (raingarden vs. contributing impervious area) reduces from 20% (humid) to 5% (dry).
O’Dwyer, Laurence; Tanner, Colby; van Dongen, Eelco V.; Greven, Corina U.; Bralten, Janita; Zwiers, Marcel P.; Franke, Barbara; Oosterlaan, Jaap; Heslenfeld, Dirk; Hoekstra, Pieter; Hartman, Catharina A.; Rommelse, Nanda; Buitelaar, Jan K.
2014-01-01
Autism spectrum disorder (ASD) symptoms frequently occur in subjects with attention deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural correlates, no study to date has investigated these structural correlates within a framework that robustly accounts for the phenotypic overlap between the two disorders. The presence of ASD symptoms was measured by the parent-reported Children’s Social and Behavioural Questionnaire (CSBQ) in ADHD subjects (n = 180), their unaffected siblings (n = 118) and healthy controls (n = 146). ADHD symptoms were assessed by a structured interview (K-SADS-PL) and the Conners’ ADHD questionnaires. Whole brain T1-weighted MPRAGE images were acquired and the structural MRI correlates of ASD symptom scores were analysed by modelling ASD symptom scores against white matter (WM) and grey matter (GM) volumes using mixed effects models which controlled for ADHD symptom levels. ASD symptoms were significantly elevated in ADHD subjects relative to both controls and unaffected siblings. ASD scores were predicted by the interaction between WM and GM volumes. Increasing ASD score was associated with greater GM volume. Equivocal results from previous structural studies in ADHD and ASD may be due to the fact that comorbidity has not been taken into account in studies to date. The current findings stress the need to account for issues of ASD comorbidity in ADHD. PMID:24979066
Reproducible MRI Measurement of Adipose Tissue Volumes in Genetic and Dietary Rodent Obesity Models
Johnson, David H.; Flask, Chris A.; Ernsberger, Paul R.; Wong, Wilbur C. K.; Wilson, David L.
2010-01-01
Purpose To develop ratio MRI [lipid/(lipid+water)] methods for assessing lipid depots and compare measurement variability to biological differences in lean controls (spontaneously hypertensive rats, SHRs), dietary obese (SHR-DO), and genetic/dietary obese (SHROBs) animals. Materials and Methods Images with and without CHESS water-suppression were processed using a semi-automatic method accounting for relaxometry, chemical shift, receive coil sensitivity, and partial volume. Results Partial volume correction improved results by 10–15%. Over six operators, volume variation was reduced to 1.9 ml from 30.6 ml for single-image-analysis with intensity inhomogeneity. For three acquisitions on the same animal, volume reproducibility was <1%. SHROBs had 6X visceral and 8X subcutaneous adipose tissue than SHRs. SHR-DOs had enlarged visceral depots (3X SHRs). SHROB had significantly more subcutaneous adipose tissue, indicating a strong genetic component to this fat depot. Liver ratios in SHR-DO and SHROB were higher than SHR, indicating elevated fat content. Among SHROBs, evidence suggested a phenotype SHROB* having elevated liver ratios and visceral adipose tissue volumes. Conclusion Effects of diet and genetics on obesity were significantly larger than variations due to image acquisition and analysis, indicating that these methods can be used to assess accumulation/depletion of lipid depots in animal models of obesity. PMID:18821617
On the debris-level origins of adhesive wear
NASA Astrophysics Data System (ADS)
Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-François
2017-07-01
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.
On the debris-level origins of adhesive wear.
Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-François
2017-07-25
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.
On the debris-level origins of adhesive wear
Warner, Derek H.; Molinari, Jean-François
2017-01-01
Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes. PMID:28696291
NASA Technical Reports Server (NTRS)
Horst, R. L.; Nordstrom, M. J.
1972-01-01
An operation manual is presented for the oligatomic mass memory feasibility model. It includes a brief description of the memory and exerciser units, a description of the controls and their functions, the operating procedures, the test points and adjustments, and the circuit diagram.
de Zeeuw, Patrick; van Belle, Janna; van Dijk, Sarai; Weusten, Juliette; Koeleman, Bobby; Janson, Esther; van Engeland, Herman; Durston, Sarah
2012-01-01
This study investigates the effects of XKR4, a recently identified candidate gene for Attention-Deficit/Hyperactivity Disorder (ADHD), birth weight, and their interaction on brain volume in ADHD. XKR4 is expressed in cerebellum and low birth weight has been associated both with changes in cerebellum and with ADHD, probably due to its relation with prenatal adversity. Anatomical MRI scans were acquired in 58 children with ADHD and 64 typically developing controls and processed to obtain volumes of cerebrum, cerebellum and gray and white matter in each structure. DNA was collected from saliva. Analyses including data on birth weight were conducted in a subset of 37 children with ADHD and 51 controls where these data were retrospectively collected using questionnaires. There was an interaction between genotype and birth weight for cerebellum gray matter volume (p = .020). The combination of homozygosity for the G-allele (the allele previously found to be overtransmitted in ADHD) and higher birth weight was associated with smaller volume. Furthermore, birth weight was positively associated with cerebellar white matter volume in controls, but not ADHD (interaction: p = .021). The interaction of genotype with birth weight affecting cerebellum gray matter is consistent with models that emphasize increased influence of genetic risk-factors in an otherwise favorable prenatal environment. The absence of an association between birth weight and cerebellum white matter volume in ADHD suggests that other genetic or environmental effects may be at play, unrelated to XKR4. These results underscore the importance of considering environmental effects in imaging genetics studies. PMID:24179763
Anzai, Jun; Nagayasu-Tanaka, Toshie; Terashima, Akio; Asano, Taiji; Yamada, Satoru; Nozaki, Takenori; Kitamura, Masahiro; Murakami, Shinya
2016-01-01
The long-term stability and qualitative characteristics of periodontium regenerated by FGF-2 treatment were compared with normal physiological healing tissue controls in a Beagle dog 2-wall periodontal defect model 13 months after treatment by assessing tissue histology and three-dimensional microstructure using micro-computed tomography (μCT). After FGF-2 (0.3%) or vehicle treatment at the defect sites, serial changes in the bone mineral content (BMC) were observed using periodic X-ray imaging. Tissues were harvested at 13 months, evaluated histomorphometrically, and the cortical bone volume and trabecular bone structure of the newly formed bone were analyzed using μCT. FGF-2 significantly increased the BMC of the defect area at 2 months compared with that of the control group, and this difference was unchanged through 13 months. The cortical bone volume was significantly increased by FGF-2, but there was no difference between the groups in trabecular bone structure. Bone maturation was occurring in both groups because of the lower cortical volume and denser trabecular bone than what is found in intact bone. FGF-2 also increased the area of newly formed bone as assessed histomorphometrically, but the ratios of trabecular bone in the defect area were similar between the control and FGF-2 groups. These results suggest that FGF-2 stimulates neogenesis of alveolar bone that is of similar quality to that of the control group. The lengths of the regenerated periodontal ligament and cementum, measured as the distance from the defect bottom to the apical end of the gingival epithelium, and height and area of the newly formed bone in the FGF-2 group were larger than those in the control group. The present study demonstrated that, within the limitation of artificial periodontal defect model, the periodontal tissue regenerated by FGF-2 was maintained for 13 months after treatment and was qualitatively equivalent to that generated through the physiological healing process. PMID:27391131
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R.; Charles, J. B.
1992-01-01
Fluid shifts in weightlessness may cause a central volume expansion, activating reflexes to reduce the blood volume. Computer simulation was used to test the hypothesis that preadaptation of the blood volume prior to exposure to weightlessness could counteract the central volume expansion due to fluid shifts and thereby attenuate the circulatory and renal responses resulting in large losses of fluid from body water compartments. The Guyton Model of Fluid, Electrolyte, and Circulatory Regulation was modified to simulate the six degree head down tilt that is frequently use as an experimental analog of weightlessness in bedrest studies. Simulation results show that preadaptation of the blood volume by a procedure resembling a blood donation immediately before head down bedrest is beneficial in damping the physiologic responses to fluid shifts and reducing body fluid losses. After ten hours of head down tilt, blood volume after preadaptation is higher than control for 20 to 30 days of bedrest. Preadaptation also produces potentially beneficial higher extracellular volume and total body water for 20 to 30 days of bedrest.
3D robust Chan-Vese model for industrial computed tomography volume data segmentation
NASA Astrophysics Data System (ADS)
Liu, Linghui; Zeng, Li; Luan, Xiao
2013-11-01
Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.
Park, Kyungnam; Lee, Jangyoung; Kim, Soo-Young; Kim, Jinwoo; Kim, Insoo; Choi, Seung Pill; Jeong, Sikyung; Hong, Sungyoup
2013-06-01
This study assessed the method of fluid infusion control using an IntraVenous Infusion Controller (IVIC). Four methods of infusion control (dial flow controller, IV set without correction, IV set with correction and IVIC correction) were used to measure the volume of each technique at two infusion rates. The infused fluid volume with a dial flow controller was significantly larger than other methods. The infused fluid volume was significantly smaller with an IV set without correction over time. Regarding the concordance correlation coefficient (CCC) of infused fluid volume in relation to a target volume, IVIC correction was shown to have the highest level of agreement. The flow rate measured in check mode showed a good agreement with the volume of collected fluid after passing through the IV system. Thus, an IVIC could assist in providing an accurate infusion control. © 2013 Wiley Publishing Asia Pty Ltd.
A model for plasma volume changes during short duration spaceflight
NASA Technical Reports Server (NTRS)
Davis, John E.
1989-01-01
It is well established that plasma volume decreases during spaceflight and simulated weightlessness (bedrest). The decrement in plasma volume is thought to contribute to the orthostatic intolerance that has been observed in some crew members following spaceflight. To date, no studies have evaluated the effectiveness of fluid countermeasures of varying osmolality in the restoration of plasma volume and orthostatic tolerance in a controlled study. The overall objectives of this project were to: (1) provide a model that would rapidly and safely produce a fluid loss comparable to that which occurs during short duration spaceflight; and (2) design a study that would determine the optimal drink solution to restore orthostatic tolerance and describe the mechanism(s) whereby orthostatic tolerance is restored. In summary, Lasix can be used as a way of simulating the plasma volume changes that occur during short duration spaceflight. The total loss of plasma is comparable to spaceflight. Lasix is fast acting, and has relatively few side effects. The present design for evaluating the optimal fluid countermeasures will have important implications in restoring orthostatic tolerance and function in the latter stages of spaceflight when it is essential for safe operation of the spacecraft.
NASA Technical Reports Server (NTRS)
Birr, Richard B.; Spencer, Roy; Murray, Jennifer; Lash, Andrew
2013-01-01
This report describes the analysis of communications between the Control Station and an Unmanned Aircraft (UA) flying in the National Airspace System (NAS). This work is based on the RTCA SC-203 Operational Services and Environment Description (OSED). The OSED document seeks to characterize the highly different attributes of all UAs navigating the airspace and define their relationship to airspace users, air traffic services, and operating environments of the NAS. One goal of this report is to lead to the development of Minimum Aviation System Performance Standards for Control and Communications. This report takes the nine scenarios found in the OSED and analyzes the communication links.
Enlargement of the supraglottal cavity and its relation to stop consonant voicing.
Westbury, J R
1983-04-01
Measurements were made of saggital plane movements of the larynx, soft palate, and portions of the tongue, from a high-speed cinefluorographic film of utterances produced by one adult male speaker of American English. These measures were then used to approximate the temporal variations in supraglottal cavity volume during the closures of voiced and voiceless stop consonants. All data were subsequently related to a synchronous acoustic recording of the utterances. Instances of /p,t,k/ were always accompanied by silent closures, and sometimes accompanied by decreases in supraglottal volume. In contrast, instances of /b,d,g/ were always accompanied both by significant intervals of vocal fold vibration during closure, and relatively large increases in supraglottal volume. However, the magnitudes of volume increments during the voiced stops, and the means by which those increments were achieved, differed considerably across place of articulation and phonetic environment. These results are discussed in the context of a well-known model of the breath-stream control mechanism, and their relevance for a general theory of speech motor control is considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garsa, Adam A.; Badiyan, Shahed N.; DeWees, Todd
2014-10-01
Purpose: To evaluate local control rates and predictors of individual tumor local control for brain metastases from non-small cell lung cancer (NSCLC) treated with stereotactic radiosurgery (SRS). Methods and Materials: Between June 1998 and May 2011, 401 brain metastases in 228 patients were treated with Gamma Knife single-fraction SRS. Local failure was defined as an increase in lesion size after SRS. Local control was estimated using the Kaplan-Meier method. The Cox proportional hazards model was used for univariate and multivariate analysis. Receiver operating characteristic analysis was used to identify an optimal cutpoint for conformality index relative to local control. Amore » P value <.05 was considered statistically significant. Results: Median age was 60 years (range, 27-84 years). There were 66 cerebellar metastases (16%) and 335 supratentorial metastases (84%). The median prescription dose was 20 Gy (range, 14-24 Gy). Median overall survival from time of SRS was 12.1 months. The estimated local control at 12 months was 74%. On multivariate analysis, cerebellar location (hazard ratio [HR] 1.94, P=.009), larger tumor volume (HR 1.09, P<.001), and lower conformality (HR 0.700, P=.044) were significant independent predictors of local failure. Conformality index cutpoints of 1.4-1.9 were predictive of local control, whereas a cutpoint of 1.75 was the most predictive (P=.001). The adjusted Kaplan-Meier 1-year local control for conformality index ≥1.75 was 84% versus 69% for conformality index <1.75, controlling for tumor volume and location. The 1-year adjusted local control for cerebellar lesions was 60%, compared with 77% for supratentorial lesions, controlling for tumor volume and conformality index. Conclusions: Cerebellar tumor location, lower conformality index, and larger tumor volume were significant independent predictors of local failure after SRS for brain metastases from NSCLC. These results warrant further investigation in a prospective setting.« less
Neuroimaging abnormalities in adults with sickle cell anemia
Insel, Philip; Truran, Diana; Vichinsky, Elliot P.; Neumayr, Lynne D.; Armstrong, F.D.; Gold, Jeffrey I.; Kesler, Karen; Brewer, Joseph; Weiner, Michael W.
2014-01-01
Objective: This study was conducted to determine the relationship of frontal lobe cortical thickness and basal ganglia volumes to measures of cognition in adults with sickle cell anemia (SCA). Methods: Participants included 120 adults with SCA with no history of neurologic dysfunction and 33 healthy controls (HCs). Participants were enrolled at 12 medical center sites, and raters were blinded to diagnostic group. We hypothesized that individuals with SCA would exhibit reductions in frontal lobe cortex thickness and reduced basal ganglia and thalamus volumes compared with HCs and that these structural brain abnormalities would be associated with measures of cognitive functioning (Wechsler Adult Intelligence Scale, 3rd edition). Results: After adjusting for age, sex, education level, and intracranial volume, participants with SCA exhibited thinner frontal lobe cortex (t = −2.99, p = 0.003) and reduced basal ganglia and thalamus volumes compared with HCs (t = −3.95, p < 0.001). Reduced volume of the basal ganglia and thalamus was significantly associated with lower Performance IQ (model estimate = 3.75, p = 0.004) as well as lower Perceptual Organization (model estimate = 1.44, p = 0.007) and Working Memory scores (model estimate = 1.37, p = 0.015). Frontal lobe cortex thickness was not significantly associated with any cognitive measures. Conclusions: Our findings suggest that basal ganglia and thalamus abnormalities may represent a particularly salient contributor to cognitive dysfunction in adults with SCA. PMID:24523480
Crystal, Howard A.; Holman, Susan; Lui, Yvonne W.; Baird, Alison E.; Yu, Hua; Klein, Ronald; Rojas-Soto, Diana Marcella; Gustafson, Deborah R.; Stebbins, Glenn T.
2016-01-01
Objective The fractal dimension of retinal arteries and veins is a measure of the complexity of the vascular tree. We hypothesized that retinal fractal dimension would be associated with brain volume and white matter integrity in HIV-infected women. Design Nested case-control within longitudinal cohort study. Methods Women were recruited from the Brooklyn site of the Women’s Interagency HIV study (WIHS); 34 HIV-infected and 21 HIV-uninfected women with analyzable MRIs and retinal photographs were included. Fractal dimension was determined using the SIVA software program on skeletonized retinal images. The relationship between predictors (retinal vascular measures) and outcomes (quantitative MRI measures) were analyzed with linear regression models. All models included age, intracranial volume, and both arterial and venous fractal dimension. Some models were adjusted for blood pressure, race/ethnicity, and HIV-infection. Results The women were 45.6 ± 7.3 years of age. Higher arterial dimension was associated with larger cortical volumes, but higher venous dimension was associated with smaller cortical volumes. In fully adjusted models, venous dimension was significantly associated with fractional anisotropy (standardized β = -0.41, p = 0.009) and total gray matter volume (β = -0.24, p = 0.03), and arterial dimension with mean diffusivity (β = -0.33,.p = 0.04) and fractional anisotropy (β = 0.34, p = 0.03). HIV-infection was not associated with any retinal or MRI measure. Conclusions Higher venous fractal dimension was associated with smaller cortical volumes and lower fractional anisotropy, whereas higher arterial fractal dimension was associated with the opposite patterns. Longitudinal studies are needed to validate this finding. PMID:27158911
Culp, William C.; Flores, Rene; Brown, Aliza T.; Lowery, John D.; Roberson, Paula K.; Hennings, Leah J.; Woods, Sean D.; Hatton, Jeff H.; Culp, Benjamin C.; Skinner, Robert D.; Borrelli, Michael J.
2011-01-01
Background Microbubbles (MB) combined with ultrasound (US) have been shown to lyse clots without tissue plasminogen activator (tPA) both in vitro and in vivo. We evaluated sonothrombolysis with three types of MB using a rabbit embolic stroke model. Methods New Zealand White rabbits (n=74) received internal carotid angiographic embolization of single 3 day-old cylindrical clots (0.6×4.0-mm). Groups included: 1) control (n=11) embolized without treatment, 2) tPA (n=20), 3) tPA+US (n=10), 4) Perflutren Lipid MB+US (n=16), 5) albumin 3µm MB+US (n=8), and 6) tagged albumin 3µm MB+US (n=9). Treatment began 1 hour post-embolization. Ultrasound was pulsed-wave (1 MHz; 0.8 W/cm2) for 1 hour; rabbits with tPA received intravenous tPA (0.9 mg/kg) over 1 hour. Lipid MB dose was intravenous (0.16 mg/kg) over 30 minutes. Dosage of 3µm MB was 5×109 MB intravenously alone or tagged with eptifibatide and fibrin antibody over 30 minutes. Rabbits were euthanized at 24 hours. Infarct volume was determined using vital stains on brain sections. Hemorrhage was evaluated on H&E sections. Results Infarct volume percent was lower for rabbits treated with Lipid MB+US (1.0%±0.6%; P=0.013), 3µm MB+US (0.7%±0.9%; P=0.018), and tagged 3µm MB+US (0.8%±0.8%; P=0.019) compared with controls (3.5%±0.8%). The three MB types collectively had lower infarct volumes (P=0.0043) than controls. Infarct volume averaged 2.2%±0.6% and 1.7%±0.8% for rabbits treated with tPA alone and tPA+US, respectively (P=NS). Conclusions Sonothrombolysis without tPA using these MB is effective in decreasing infarct volumes. Study of human application and further MB technique development are justified. PMID:21700942
Umeda, Yasuyuki; Ishida, Fujimaro; Tsuji, Masanori; Furukawa, Kazuhiro; Shiba, Masato; Yasuda, Ryuta; Toma, Naoki; Sakaida, Hiroshi; Suzuki, Hidenori
2017-01-01
This study aimed to predict recurrence after coil embolization of unruptured cerebral aneurysms with computational fluid dynamics (CFD) using porous media modeling (porous media CFD). A total of 37 unruptured cerebral aneurysms treated with coiling were analyzed using follow-up angiograms, simulated CFD prior to coiling (control CFD), and porous media CFD. Coiled aneurysms were classified into stable or recurrence groups according to follow-up angiogram findings. Morphological parameters, coil packing density, and hemodynamic variables were evaluated for their correlations with aneurysmal recurrence. We also calculated residual flow volumes (RFVs), a novel hemodynamic parameter used to quantify the residual aneurysm volume after simulated coiling, which has a mean fluid domain > 1.0 cm/s. Follow-up angiograms showed 24 aneurysms in the stable group and 13 in the recurrence group. Mann-Whitney U test demonstrated that maximum size, dome volume, neck width, neck area, and coil packing density were significantly different between the two groups (P < 0.05). Among the hemodynamic parameters, aneurysms in the recurrence group had significantly larger inflow and outflow areas in the control CFD and larger RFVs in the porous media CFD. Multivariate logistic regression analyses demonstrated that RFV was the only independently significant factor (odds ratio, 1.06; 95% confidence interval, 1.01-1.11; P = 0.016). The study findings suggest that RFV collected under porous media modeling predicts the recurrence of coiled aneurysms.
NASA Technical Reports Server (NTRS)
1982-01-01
Tests to verify the as-designed performance of all circuits within the thematic mapper electronics module unit are described. Specifically, the tests involved the evaluation of the scan line corrector driver, shutter drivers function, cal lamp controller function, post amplifier function, command decoder verification unit, and the temperature and actuator controllers function.
Barro, Christian; Benkert, Pascal; Disanto, Giulio; Tsagkas, Charidimos; Amann, Michael; Naegelin, Yvonne; Leppert, David; Gobbi, Claudio; Granziera, Cristina; Yaldizli, Özgür; Michalak, Zuzanna; Wuerfel, Jens; Kappos, Ludwig; Parmar, Katrin; Kuhle, Jens
2018-05-30
Neuro-axonal injury is a key factor in the development of permanent disability in multiple sclerosis. Neurofilament light chain in peripheral blood has recently emerged as a biofluid marker reflecting neuro-axonal damage in this disease. We aimed at comparing serum neurofilament light chain levels in multiple sclerosis and healthy controls, to determine their association with measures of disease activity and their ability to predict future clinical worsening as well as brain and spinal cord volume loss. Neurofilament light chain was measured by single molecule array assay in 2183 serum samples collected as part of an ongoing cohort study from 259 patients with multiple sclerosis (189 relapsing and 70 progressive) and 259 healthy control subjects. Clinical assessment, serum sampling and MRI were done annually; median follow-up time was 6.5 years. Brain volumes were quantified by structural image evaluation using normalization of atrophy, and structural image evaluation using normalization of atrophy, cross-sectional, cervical spinal cord volumes using spinal cord image analyser (cordial). Results were analysed using ordinary linear regression models and generalized estimating equation modelling. Serum neurofilament light chain was higher in patients with a clinically isolated syndrome or relapsing remitting multiple sclerosis as well as in patients with secondary or primary progressive multiple sclerosis than in healthy controls (age adjusted P < 0.001 for both). Serum neurofilament light chain above the 90th percentile of healthy controls values was an independent predictor of Expanded Disability Status Scale worsening in the subsequent year (P < 0.001). The probability of Expanded Disability Status Scale worsening gradually increased by higher serum neurofilament light chain percentile category. Contrast enhancing and new/enlarging lesions were independently associated with increased serum neurofilament light chain (17.8% and 4.9% increase per lesion respectively; P < 0.001). The higher the serum neurofilament light chain percentile level, the more pronounced was future brain and cervical spinal volume loss: serum neurofilament light chain above the 97.5th percentile was associated with an additional average loss in brain volume of 1.5% (P < 0.001) and spinal cord volume of 2.5% over 5 years (P = 0.009). Serum neurofilament light chain correlated with concurrent and future clinical and MRI measures of disease activity and severity. High serum neurofilament light chain levels were associated with both brain and spinal cord volume loss. Neurofilament light chain levels are a real-time, easy to measure marker of neuro-axonal injury that is conceptually more comprehensive than brain MRI.
Haghpanahan, Houra; Mackay, Daniel F.; Pell, Jill P.; Bell, David; Langley, Tessa
2017-01-01
Abstract Aims To estimate (1) the immediate impact; (2) the cumulative impact; and (3) the duration of impact of Scottish tobacco control TV mass media campaigns (MMCs) on smoking cessation activity, as measured by calls to Smokeline and the volume of prescribed nicotine replacement therapy (NRT). Design Multivariate time–series analysis using secondary data on population level measures of exposure to TV MMCs broadcast and smoking cessation activity between 2003 and 2012. Setting and participants Population of Scotland. Measurements Adult television viewer ratings (TVRs) as a measure of exposure to Scottish mass media campaigns in the adult population; monthly calls to NHS Smokeline; and the monthly volume of prescribed NRT as measured by gross ingredient costs (GIC). Findings Tobacco control TVRs were associated with an increase in calls to Smokeline but not an increase in the volume of prescribed NRT. A 1 standard deviation (SD) increase of 194 tobacco control TVRs led to an immediate and significant increase of 385.9 [95% confidence interval (CI) = 171.0, 600.7] calls to Smokeline (unadjusted model) within 1 month. When adjusted for seasonality the impact was reduced, but the increase in calls remained significant (226.3 calls, 95% CI = 37.3, 415.3). The cumulative impact on Smokeline calls remained significant for 6 months after broadcast in the unadjusted model and 18 months in the adjusted model. However, an increase in tobacco control TVRs of 194 failed to have a significant impact on the GIC of prescribed NRT in either the unadjusted (£1361.4, 95% CI = –£9138.0, £11860.9) or adjusted (£6297.1, 95% CI = –£2587.8, £15182.1) models. Conclusions Tobacco control television mass media campaigns broadcast in Scotland between 2003 and 2012 were effective in triggering calls to Smokeline, but did not increase significantly the use of prescribed nicotine replacement therapy by adult smokers. The impact on calls to Smokeline occurred immediately within 1 month of broadcast and was sustained for at least 6 months. PMID:28192615
NASA Technical Reports Server (NTRS)
Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)
1998-01-01
This report (Volume 1) is comprised of 5 sessions of the Air Transport Research Group (ATRG) Conference held in Antwerp, Belgium, July 1998. The sessions contain 3-4 papers (presentations) each. The session numbers and their respective headings are: (1) Airline alliances; (2) Airline Competition and Market Structure; (4) Liberalization, Open Skies, and Policy Issues; (5) Yield Management and Other Models; and (11) Air Traffic Control (ATC) and Air Navigational Systems (ANS).
QTCM Software Documentation. Volume 1. Programmers’s Manual
1990-11-01
technologies are implemented. Since the PSNs are comprised of private companies, the OMNCS has little direct control over how they operate and the... control equipment at each node to prevent any congestion at the switches. Therefore, all call blocking is modeled to occur at the trunks rather than at the...main program is linked with separately compiled subroutines that can be grouped intoI seven distinct functional areas as follows: Control code File
NASA Technical Reports Server (NTRS)
Covey, Steven J.
1993-01-01
Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.
Issues Related to Large Flight Hardware Acoustic Qualification Testing
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Perry, Douglas C.; Kern, Dennis L.
2011-01-01
The characteristics of acoustical testing volumes generated by reverberant chambers or a circle of loudspeakers with and without large flight hardware within the testing volume are significantly different. The parameters attributing to these differences are normally not accounted for through analysis or acoustic tests prior to the qualification testing without the test hardware present. In most cases the control microphones are kept at least 2-ft away from hardware surfaces, chamber walls, and speaker surfaces to minimize the impact of the hardware in controlling the sound field. However, the acoustic absorption and radiation of sound by hardware surfaces may significantly alter the sound pressure field controlled within the chamber/speaker volume to a given specification. These parameters often result in an acoustic field that may provide under/over testing scenarios for flight hardware. In this paper the acoustic absorption by hardware surfaces will be discussed in some detail. A simple model is provided to account for some of the observations made from Mars Science Laboratory spacecraft that recently underwent acoustic qualification tests in a reverberant chamber.
Using Agent-Based Modeling to Enhance System-Level Real-time Control of Urban Stormwater Systems
NASA Astrophysics Data System (ADS)
Rimer, S.; Mullapudi, A. M.; Kerkez, B.
2017-12-01
The ability to reduce combined-sewer overflow (CSO) events is an issue that challenges over 800 U.S. municipalities. When the volume of a combined sewer system or wastewater treatment plant is exceeded, untreated wastewater then overflows (a CSO event) into nearby streams, rivers, or other water bodies causing localized urban flooding and pollution. The likelihood and impact of CSO events has only exacerbated due to urbanization, population growth, climate change, aging infrastructure, and system complexity. Thus, there is an urgent need for urban areas to manage CSO events. Traditionally, mitigating CSO events has been carried out via time-intensive and expensive structural interventions such as retention basins or sewer separation, which are able to reduce CSO events, but are costly, arduous, and only provide a fixed solution to a dynamic problem. Real-time control (RTC) of urban drainage systems using sensor and actuator networks has served as an inexpensive and versatile alternative to traditional CSO intervention. In particular, retrofitting individual stormwater elements for sensing and automated active distributed control has been shown to significantly reduce the volume of discharge during CSO events, with some RTC models demonstrating a reduction upwards of 90% when compared to traditional passive systems. As more stormwater elements become retrofitted for RTC, system-level RTC across complete watersheds is an attainable possibility. However, when considering the diverse set of control needs of each of these individual stormwater elements, such system-level RTC becomes a far more complex problem. To address such diverse control needs, agent-based modeling is employed such that each individual stormwater element is treated as an autonomous agent with a diverse decision making capabilities. We present preliminary results and limitations of utilizing the agent-based modeling computational framework for the system-level control of diverse, interacting stormwater elements.
European Science Notes. Volume 41, Number 10,
1987-10-01
the following topics: laminar/turbulent transition in boundary layers; coherent structures in the modeling of turbulent boundary layers, wakes, and jets...of the labeling of a model protein, human immu- indicator. The amount of oxygen produced noglobulin (hIgG), with acridinium ester, can easily be...has concerned cations, and Computer Science. Research model reduction of large-scale systems in the controls area is conducted in the and state and
1991-01-01
EXPERIENCE IN DEVELOPING INTEGRATED OPTICAL DEVICES, NONLINEAR MAGNETIC-OPTIC MATERIALS, HIGH FREQUENCY MODULATORS, COMPUTER-AIDED MODELING AND SOPHISTICATED... HIGH -LEVEL PRESENTATION AND DISTRIBUTED CONTROL MODELS FOR INTEGRATING HETEROGENEOUS MECHANICAL ENGINEERING APPLICATIONS AND TOOLS. THE DESIGN IS FOCUSED...STATISTICALLY ACCURATE WORST CASE DEVICE MODELS FOR CIRCUIT SIMULATION. PRESENT METHODS OF WORST CASE DEVICE DESIGN ARE AD HOC AND DO NOT ALLOW THE
Guyot, Y; Papantoniou, I; Luyten, F P; Geris, L
2016-02-01
The main challenge in tissue engineering consists in understanding and controlling the growth process of in vitro cultured neotissues toward obtaining functional tissues. Computational models can provide crucial information on appropriate bioreactor and scaffold design but also on the bioprocess environment and culture conditions. In this study, the development of a 3D model using the level set method to capture the growth of a microporous neotissue domain in a dynamic culture environment (perfusion bioreactor) was pursued. In our model, neotissue growth velocity was influenced by scaffold geometry as well as by flow- induced shear stresses. The neotissue was modeled as a homogenous porous medium with a given permeability, and the Brinkman equation was used to calculate the flow profile in both neotissue and void space. Neotissue growth was modeled until the scaffold void volume was filled, thus capturing already established experimental observations, in particular the differences between scaffold filling under different flow regimes. This tool is envisaged as a scaffold shape and bioprocess optimization tool with predictive capacities. It will allow controlling fluid flow during long-term culture, whereby neotissue growth alters flow patterns, in order to provide shear stress profiles and magnitudes across the whole scaffold volume influencing, in turn, the neotissue growth.
Xu, Junzhong; Li, Ke; Smith, R. Adam; Waterton, John C.; Zhao, Ping; Ding, Zhaohua; Does, Mark D.; Manning, H. Charles; Gore, John C.
2016-01-01
Background Diffusion-weighted MRI (DWI) signal attenuation is often not mono-exponential (i.e. non-Gaussian diffusion) with stronger diffusion weighting. Several non-Gaussian diffusion models have been developed and may provide new information or higher sensitivity compared with the conventional apparent diffusion coefficient (ADC) method. However the relative merits of these models to detect tumor therapeutic response is not fully clear. Methods Conventional ADC, and three widely-used non-Gaussian models, (bi-exponential, stretched exponential, and statistical model), were implemented and compared for assessing SW620 human colon cancer xenografts responding to barasertib, an agent known to induce apoptosis via polyploidy. Bayesian Information Criterion (BIC) was used for model selection among all three non-Gaussian models. Results All of tumor volume, histology, conventional ADC, and three non-Gaussian DWI models could show significant differences between control and treatment groups after four days of treatment. However, only the non-Gaussian models detected significant changes after two days of treatment. For any treatment or control group, over 65.7% of tumor voxels indicate the bi-exponential model is strongly or very strongly preferred. Conclusion Non-Gaussian DWI model-derived biomarkers are capable of detecting tumor earlier chemotherapeutic response of tumors compared with conventional ADC and tumor volume. The bi-exponential model provides better fitting compared with statistical and stretched exponential models for the tumor and treatment models used in the current work. PMID:27919785
Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus
2017-08-31
Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H 2 O and a tidal volume of 6 ml x kg -1 . The control group (n = 10) had an end expiratory pressure of 5 cm H 2 O and a tidal volume of 10 ml x kg -1 . 10 11 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p < 0.05) in the lung tissue, and a lower wet-to-dry ratio (p < 0.01) than the control group. The control group deteriorated in arterial oxygen tension/inspired oxygen fraction, whereas the protective group was unchanged (p < 0.01). In early phase pneumonia, protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.
NASA Astrophysics Data System (ADS)
Karlstrom, L.; Ozimek, C.
2016-12-01
Magma chamber modeling has advanced to the stage where it is now possible to develop self-consistent, predictive models that consider mechanical, thermal, and compositional magma time evolution through multiple eruptive cycles. We have developed such a thermo-mechanical-chemical model for a laterally extensive sill-like chamber beneath free surface, to understand physical controls on eruptive products through time at long-lived magmatic centers. This model predicts the relative importance of recharge, eruption, assimilation and fractional crystallization (REAFC, Lee et al., 2013) on evolving chemical composition as a function of mechanical magma chamber stability regimes. We solve for the time evolution of chamber pressure, temperature, gas volume fraction, volume, elemental concentration in the melt and crustal temperature field that accounts for moving boundary conditions associated with chamber inflation (and the possibility of coupled chambers at different depths). The density, volume fractions of melt and crystals, crustal assimilation and the changing viscosity and crustal properties of the wall rock are also tracked, along with joint solubility of water and CO2. The eventual goal is to develop an efficient forward model to invert for eruptive records at long-lived eruptive centers, where multiple types of data for eruptions are available. As a first step, we apply this model to a new compilation of eruptive data from the Columbia River Flood Basalts (CRFB), which erupted 210,000 km3 from feeder dikes in Washington, Oregon and Idaho between 16.9-6Ma. Data include volumes, timing and geochemical composition of eruptive units, along with seismic surveys and clinopyroxene geobarometry that constrain depth of storage through time. We are in the process of performing a suite of simulations varying model input parameters such as mantle melt rate, emplacement depth, wall rock compositions and rheology, and volatile content to explain volume, eruption timescales, and chemical trace aspects of CRFB eruptions. We are particularly interested in whether the large volume eruptions of the main phase Grande Ronde basalts were made possible due to the development of shallow crustal storage.
Microstructure and rheology of thermoreversible nanoparticle gels.
Ramakrishnan, S; Zukoski, C F
2006-08-29
Naïve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the naïve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.
Phase-field simulations of coherent precipitate morphologies and coarsening kinetics
NASA Astrophysics Data System (ADS)
Vaithyanathan, Venugopalan
2002-09-01
The primary aim of this research is to enhance the fundamental understanding of coherent precipitation reactions in advanced metallic alloys. The emphasis is on a particular class of precipitation reactions which result in ordered intermetallic precipitates embedded in a disordered matrix. These precipitation reactions underlie the development of high-temperature Ni-base superalloys and ultra-light aluminum alloys. Phase-field approach, which has emerged as the method of choice for modeling microstructure evolution, is employed for this research with the focus on factors that control the precipitate morphologies and coarsening kinetics, such as precipitate volume fractions and lattice mismatch between precipitates and matrix. Two types of alloy systems are considered. The first involves L1 2 ordered precipitates in a disordered cubic matrix, in an attempt to model the gamma' precipitates in Ni-base superalloys and delta' precipitates in Al-Li alloys. The effect of volume fraction on coarsening kinetics of gamma' precipitates was investigated using two-dimensional (2D) computer simulations. With increase in volume fraction, larger fractions of precipitates were found to have smaller aspect ratios in the late stages of coarsening, and the precipitate size distributions became wider and more positively skewed. The most interesting result was associated with the effect of volume fraction on the coarsening rate constant. Coarsening rate constant as a function of volume fraction extracted from the cubic growth law of average half-edge length was found to exhibit three distinct regimes: anomalous behavior or decreasing rate constant with volume fraction at small volume fractions ( ≲ 20%), volume fraction independent or constant behavior for intermediate volume fractions (˜20--50%), and the normal behavior or increasing rate constant with volume fraction for large volume fractions ( ≳ 50%). The second alloy system considered was Al-Cu with the focus on understanding precipitation of metastable tetragonal theta'-Al 2Cu in a cubic Al solid solution matrix. In collaboration with Chris Wolverton at Ford Motor Company, a multiscale model, which involves a novel combination of first-principles atomistic calculations with a mesoscale phase-field microstructure model, was developed. Reliable energetics in the form of bulk free energy, interfacial energy and parameters for calculating the elastic energy were obtained using accurate first-principles calculations. (Abstract shortened by UMI.)
Control of a HexaPOD treatment couch for robot-assisted radiotherapy.
Hermann, Christian; Ma, Lei; Wilbert, Jürgen; Baier, Kurt; Schilling, Klaus
2012-10-01
Moving tumors, for example in the vicinity of the lungs, pose a challenging problem in radiotherapy, as healthy tissue should not be irradiated. Apart from gating approaches, one standard method is to irradiate the complete volume within which a tumor moves plus a safety margin containing a considerable volume of healthy tissue. This work deals with a system for tumor motion compensation using the HexaPOD® robotic treatment couch (Medical Intelligence GmbH, Schwabmünchen, Germany). The HexaPOD, carrying the patient during treatment, is instructed to perform translational movements such that the tumor motion, from the beams-eye view of the linear accelerator, is eliminated. The dynamics of the HexaPOD are characterized by time delays, saturations, and other non-linearities that make the design of control a challenging task. The focus of this work lies on two control methods for the HexaPOD that can be used for reference tracking. The first method uses a model predictive controller based on a model gained through system identification methods, and the second method uses a position control scheme useful for reference tracking. We compared the tracking performance of both methods in various experiments with real hardware using ideal reference trajectories, prerecorded patient trajectories, and human volunteers whose breathing motion was compensated by the system.
Lunar crater volumes - Interpretation by models of impact cratering and upper crustal structure
NASA Technical Reports Server (NTRS)
Croft, S. K.
1978-01-01
Lunar crater volumes can be divided by size into two general classes with distinctly different functional dependence on diameter. Craters smaller than approximately 12 km in diameter are morphologically simple and increase in volume as the cube of the diameter, while craters larger than about 20 km are complex and increase in volume at a significantly lower rate implying shallowing. Ejecta and interior volumes are not identical and their ratio, Schroeters Ratio (SR), increases from about 0.5 for simple craters to about 1.5 for complex craters. The excess of ejecta volume causing the increase, can be accounted for by a discontinuity in lunar crust porosity at 1.5-2 km depth. The diameter range of significant increase in SR corresponds with the diameter range of transition from simple to complex crater morphology. This observation, combined with theoretical rebound calculation, indicates control of the transition diameter by the porosity structure of the upper crust.
Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons
Senatorov, Vladimir V.; Damadzic, Ruslan; Mann, Claire L.; Schwandt, Melanie L.; George, David T.; Hommer, Daniel W.; Heilig, Markus
2015-01-01
The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22–56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes. Volumetric measurements of the amygdala were obtained using a model-based segmentation/registration tool. In alcohol-dependent patients, anterior insula volumes were bilaterally reduced compared to healthy volunteers (left by 10%, right by 11%, normalized to total brain volumes). Furthermore, alcohol-dependent patients, compared with healthy volunteers, had bilaterally increased amygdala volumes. The left amygdala was increased by 28% and the right by 29%, normalized to total brain volumes. Post-mortem studies of the anterior insula showed that the reduced anterior insular volume may be associated with a population of von Economo neurons, which were 60% diminished in subjects with a history of alcoholism (n = 6) as compared to subjects without a history of alcoholism (n = 6) (aged 32–56 years, all males). The pattern of neuroanatomical change observed in our alcohol-dependent patients might result in a loss of top-down control of amygdala function, potentially contributing to impaired social cognition as well as an inability to control negatively reinforced alcohol seeking and use. PMID:25367022
1981-11-01
OPERATIONS MANAGEMENT S. TYPE OF REPORT A PERIOD COVERED TEST OF THE USE OF THE WHITE AMUR FOR CONTROL OF Report 2 of a series PROBLEM AQUATIC PLANTS...111. 1981. "Large-Scale Operations Management Test of the Use of the White Amur for Control of Problem Aquatic Plants; Report 2, First Year Poststock...Al 3 LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR CONTROL OF PROBLEM AQUATIC PLANTS A MODEL FOR EVALUATION OF
Brickman, Adam M.; Provenzano, Frank A.; Muraskin, Jordan; Manly, Jennifer J.; Blum, Sonja; Apa, Zoltan; Stern, Yaakov; Brown, Truman R.; Luchsinger, José A.; Mayeux, Richard
2013-01-01
Background New onset Alzheimer’s disease (AD) is often attributed to degenerative changes in the hippocampus. However, the contribution of regionally distributed small vessel cerebrovascular disease, visualized as white matter hyperintensities (WMH) on MRI, remains unclear. Objective To determine whether regional WMH and hippocampal volume predict incident AD in an epidemiological study. Design A longitudinal community-based epidemiological study of older adults from northern Manhattan. Setting The Washington Heights/Inwood Columbia Aging Project Participants Between 2005 and 2007, 717 non-demented participants received MRI scans. An average of 40.28 (SD=9.77) months later, 503 returned for follow-up clinical examination and 46 met criteria for incident dementia (45 with AD). Regional WMH and relative hippocampal volumes were derived. Three Cox proportional hazards models were run to predict incident dementia, controlling for relevant variables. The first included all WMH measurements; the second included relative hippocampal volume; and the third combined the two measurements. Main outcome measures Incident Alzheimer’s disease. Results White matter hyperintensity volume in the parietal lobe predicted time to incident dementia (HR=1.194, p=0.031). Relative hippocampal volume did not predict incident dementia when considered alone (HR=0.419, p=0.768) or with the WMH measures included in the model (HR=0.302, p=0.701). Including hippocampal volume in the model did not notably alter the predictive utility of parietal lobe WMH (HR=1.197, p=0.049). Conclusion The findings highlight the regional specificity of the association of WMH with AD. It is not clear whether parietal WMH solely represent a marker for cerebrovascular burden or point to distinct injury compared to other regions. Future work should elucidate pathogenic mechanisms linking WMH and AD pathology. PMID:22945686
Müller, Hans-Peter; Niessen, Heiko G; Kaulisch, Thomas; Ludolph, Albert C; Kassubek, Jan; Stiller, Detlef
2013-09-01
Body fat distribution changes are associated with multiple alterations in metabolism. Therefore, the assessment of body fat compartments by MRI in animal models is a promising approach to obesity research. Standard T1-weighted (T1w) whole body MRI was used here to quantify different effects in the subcutaneous and visceral fat compartments in rats under treatment with an anorexiant. Twenty rats on a high caloric diet were investigated by the identical MRI protocol at baseline and after seven weeks. Ten rats received a treatment with sibutramine, 10 rats served as vehicle control group. To longitudinally assess body fat components, MRI analysis was used with two approaches: 2D slicewise graphic analysis (SGA) was compared with an automated 3D analysis algorithm (3DA). At the group level, fat volume differences showed a longitudinal increase of subcutaneous and visceral fat volumes for the control group, whereas the sibutramine group showed stable subcutaneous fat volumes and decrease in visceral fat volumes. SGA and 3DA volume determination showed significant correlations for subcutaneous fat volume (C=0.85, p<0.001), visceral fat volume (C=0.87, p<0.001), and total fat volume (C=0.90, p<0.001). It could be demonstrated that computer-based analysis of T1w MRI could be used to longitudinally assess changes in body fat compartments in rats at the group level. In detail, it was possible to investigate the effect of sibutramine separate on the fat compartments in rats. Copyright © 2013 Elsevier Inc. All rights reserved.
Joshi, R.N.; Safadi, F.F.; Barbe, M.F.; Carpio-Cano, Fe Del; Popoff, S.N.; Yingling, V.R.
2013-01-01
Hypothalamic amenorrhea and energy restriction during puberty affect peak bone mass accrual. One hypothesis suggests energy restriction alters hypothalamic function resulting in suppressed estradiol levels leading to bone loss. However, both positive and negative results have been reported regarding energy restriction and bone strength. Therefore, the purpose of this study was to investigate energy restriction and hypothalamic suppression during pubertal onset on bone mechanical strength and the osteogenic capacity of bone marrow-derived cells in two models: female rats treated with gonadotropin releasing hormone antagonists (GnRH-a) or 30% energy restriction. At 23 days of age, female Sprague Dawley rats were assigned to three groups: control group (C, n=10), GnRH-a group (n=10), and Energy Restriction (ER, n=12) group. GnRH-a animals received daily injections for 27 days. The animals in the ER group received 70% of the control animals’ intake. After sacrifice (50 days of age), body weight, uterine and muscle weights were measured. Bone marrow-derived stromal cells were cultured and assayed for proliferation and differentiation into osteoblasts. Outcome measures included bone strength, bone histomorphometry and architecture, serum IGF-1 and osteocalcin. GnRH-a suppressed uterine weight, decreased osteoblast proliferation, bone strength, trabecular bone volume and architecture compared to control. Elevated serum IGF-1 and osteocalcin levels and body weight were found. The ER model had an increase in osteoblast proliferation compared to the GnRH-a group, similar bone strength relative to body weight and increased trabecular bone volume in the lumbar spine compared to control. The ER animals were smaller but had developed bone strength sufficient for their size. In contrast, suppressed estradiol via hypothalamic suppression resulted in bone strength deficits and trabecular bone volume loss. In summary, our results support the hypothesis that during periods of nutritional stress the increased vertebral bone volume may be an adaptive mechanism to store mineral which differs from suppressed estradiol resulting from hypothalamic suppression. PMID:21807131
Kang, David W; Jadin, Laurence; Nekoroski, Tara; Drake, Fred H; Zepeda, Monica L
2012-08-01
Many patients with primary immunodeficiency disease (PIDD) require lifelong immunoglobulin (Ig) replacement therapy. Home-based subcutaneous (SC) infusion provides advantages to patients with PIDD compared to hospital-based intravenous infusion. One limitation of current practice with SCIg infusion is the need for small-volume infusions at multiple injection sites on a frequent basis. A method was developed for large-volume SC infusion that uses preinfusion of recombinant human hyaluronidase (rHuPH20) to facilitate fluid dispersion. Miniature swine was used as a preclinical model to assess the effects of rHuPH20-facilitated infusions, of a single monthly dose, on fluid dispersion, infusion-related pressure, swelling, induration, and tissue damage. Preinfusion of vehicle (control) or rHuPH20 (75 U/g Ig) was performed simultaneously on contralateral abdominal sites on each animal, followed by infusion of 300 mL 10 % Ig (30 g) at each site. Compared to control infusions, rHuPH20 significantly reduced infusion pressure and induration (p < 0.05) and accelerated postinfusion Ig dispersion. Histological evaluation of infusion site tissue showed moderate to severe swelling for the control. Swelling after rHuPH20-facilitated infusion was mild on day 1 and had completely resolved shortly thereafter. Laser Doppler imaging of control infusion sites revealed local cutaneous hypoperfusion during Ig infusion, which was reduced almost 7-fold (p < 0.05) with the use of rHuPH20. These results demonstrate that rHuPH20-facilitated Ig infusion is associated with improved dispersion of Ig, resulting in reduced tissue pressure, induration, and reduced risk of tissue damage from mechanical trauma or local ischemia, thus enabling SC administration of large volumes of Ig at a single site.
Chai, C; Wong, Y D
2014-02-01
At intersection, vehicles coming from different directions conflict with each other. Improper geometric design and signal settings at signalized intersection will increase occurrence of conflicts between road users and results in a reduction of the safety level. This study established a cellular automata (CA) model to simulate vehicular interactions involving right-turn vehicles (as similar to left-turn vehicles in US). Through various simulation scenarios for four case cross-intersections, the relationships between conflict occurrences involving right-turn vehicles with traffic volume and right-turn movement control strategies are analyzed. Impacts of traffic volume, permissive right-turn compared to red-amber-green (RAG) arrow, shared straight-through and right-turn lane as well as signal setting are estimated from simulation results. The simulation model is found to be able to provide reasonable assessment of conflicts through comparison of existed simulation approach and observed accidents. Through the proposed approach, prediction models for occurrences and severity of vehicle conflicts can be developed for various geometric layouts and traffic control strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rahmati, Nazanin Fatemeh; Mazaheri Tehrani, Mostafa
2014-09-01
Emulsifiers of different structures and functionalities are important ingredients usually used in baking cakes with satisfactory properties. In this study, three emulsifiers including distilled glycerol mono stearate (DGMS), lecithin and sorbitan mono stearate (SMS) were used to bake seven eggless cakes containing soy milk and optimization was performed by using mixture experimental design to produce an eggless cake sample with optimized properties. Physical properties of cake batters (viscosity, specific gravity and stability), cake quality parameters (moisture loss, density, specific volume, volume index, contour, symmetry, color and texture) and sensory attributes of eggless cakes were analyzed to investigate functional potential of the emulsifiers and results were compared with those of control cake containing egg. Almost in all cases emulsifiers, compared to the control cake, changed properties of eggless cakes significantly. Regarding models of different response variables (except for some properties) and their high R(2) (99.51-100), it could be concluded that models obtained by mixture design were significantly fitted for the studied responses.
Using price-volume agreements to manage pharmaceutical leakage and off-label promotion.
Zhang, Hui; Zaric, Gregory S
2015-09-01
Unapproved or "off-label" uses of prescription drugs are quite common. The extent of this use may be influenced by the promotional efforts of manufacturers. This paper investigates how a manufacturer makes promotional decisions in the presence of a price-volume agreement. We developed an optimization model in which the manufacturer maximizes its expected profit by choosing the level of marketing effort to promote uses for different indications. We considered several ways a volume threshold is determined. We also compared models in which off-label uses are reimbursed and those in which they are forbidden to illustrate the impact of off-label promotion on the optimal decisions and on the decision maker's performance. We found that the payer chooses a threshold which may be the same as the manufacturer's optimal decision. We also found that the manufacturer not only considers the promotional cost in promoting off-label uses but also considers the health benefit of off-label uses. In some situations, using a price-volume agreement to control leakage may be a better idea than simply preventing leakage without using the agreement, from a social welfare perspective.
Optimal strategy analysis based on robust predictive control for inventory system with random demand
NASA Astrophysics Data System (ADS)
Saputra, Aditya; Widowati, Sutrisno
2017-12-01
In this paper, the optimal strategy for a single product single supplier inventory system with random demand is analyzed by using robust predictive control with additive random parameter. We formulate the dynamical system of this system as a linear state space with additive random parameter. To determine and analyze the optimal strategy for the given inventory system, we use robust predictive control approach which gives the optimal strategy i.e. the optimal product volume that should be purchased from the supplier for each time period so that the expected cost is minimal. A numerical simulation is performed with some generated random inventory data. We simulate in MATLAB software where the inventory level must be controlled as close as possible to a set point decided by us. From the results, robust predictive control model provides the optimal strategy i.e. the optimal product volume that should be purchased and the inventory level was followed the given set point.
Nilsson, Peter; Hansson, Per
2005-12-22
The kinetics of deswelling of sodium polyacrylate microgels (radius 30-140 microm) in aqueous solutions of dodecyltrimethylammonium bromide is investigated by means of micropipet-assisted light microscopy. The purpose of the study is to test a recent model (J. Phys. Chem. B 2003, 107, 9203) proposing that the rate of the volume change is controlled by the transport of surfactant from the solution to the gel core (ion exchange) via the surfactant-rich surface phase appearing in the gel during the volume transition. Equilibrium swelling characteristics of the gel network in surfactant-free solutions and with various amounts of surfactant present are presented and discussed with reference to related systems. A relationship between gel volume and degree of surfactant binding is determined and used in theoretical predictions of the deswelling kinetics. Experimental data for single gel beads observed during deswelling under conditions of forced convection are presented and compared with model calculations. It is demonstrated that the dependences of the kinetics on initial gel size, the surfactant concentration in the solution, and the liquid flow rate are well accounted for by the model. It is concluded that the deswelling rates of the studied gels are strongly influenced by the mass transport of surfactant between gel and solution (stagnant layer diffusion), but only to a minor extent by the transport through the surface phase. The results indicate that, during the volume transition, swelling equilibrium (network relaxation/transport of water) is established on a relatively short time scale and, therefore, can be treated as independent of the ion-exchange kinetics. Theoretical aspects of the kinetics and mechanisms of surfactant transport through the surface phase are discussed.
Stenz, R I; Grenier, B; Thompson, J E; Arnold, J H
1998-08-01
To examine the utility of single-breath CO2 analysis as a measure of lung volume. A prospective, animal cohort study comparing 21 parameters derived from single-breath CO2 analysis with lung volume measurements determined by nitrogen washout in animals during controlled ventilation. An animal laboratory in a university-affiliated medical center. Seven healthy lambs. The single-breath CO2 analysis station consists of a mainstream capnometer, a variable orifice pneumotachometer, a signal processor and computer software with capability for both on- and off-line data analysis. Twenty-one derived components of the CO2 expirogram were evaluated as predictors of lung volume. Lung volume was manipulated by 3 cm H2O incremental increases in positive end-expiratory pressure from 0 to 21 cm H2O, and ranged between 147 and 942 mL. Fifty-five measurements of lung volume were available for comparison with derived variables from the CO2 expirogam. Stepwise linear regression identified four variables that were most predictive of lung volume: a) dynamic lung compliance; b) the slope of phase 3; c) the slope of phase 2 divided by the mixed expired CO2 tension; and d) airway deadspace. The multivariate equation was highly statistically significant and explained 94% of the variance (adjusted r2 =.94, p < .0001). The bias and precision of the calculated lung volume was .00 and 51, respectively. The mean percent difference for the lung volume estimate derived from the single-breath CO2 analysis station was 0.79%. Our data indicate that analysis of the CO2 expirogram can yield accurate information about lung volume. Specifically, four variables derived from a plot of expired CO2 concentration vs. expired volume predict changes in lung volume in healthy lambs with an adjusted coefficient of determination of .94. Prospective application of this technology in the setting of lung injury and rapidly changing physiology is essential in determining the clinical usefulness of the technique.
SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Y; Yu, J; Xiao, Y
Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematicalmore » model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.« less
NASA Astrophysics Data System (ADS)
Cardarelli, Gene A.
The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.
NASA Astrophysics Data System (ADS)
Reynolds, Steven; Bucur, Adriana; Port, Michael; Alizadeh, Tooba; Kazan, Samira M.; Tozer, Gillian M.; Paley, Martyn N. J.
2014-02-01
Over recent years hyperpolarization by dissolution dynamic nuclear polarization has become an established technique for studying metabolism in vivo in animal models. Temporal signal plots obtained from the injected metabolite and daughter products, e.g. pyruvate and lactate, can be fitted to compartmental models to estimate kinetic rate constants. Modeling and physiological parameter estimation can be made more robust by consistent and reproducible injections through automation. An injection system previously developed by us was limited in the injectable volume to between 0.6 and 2.4 ml and injection was delayed due to a required syringe filling step. An improved MR-compatible injector system has been developed that measures the pH of injected substrate, uses flow control to reduce dead volume within the injection cannula and can be operated over a larger volume range. The delay time to injection has been minimized by removing the syringe filling step by use of a peristaltic pump. For 100 μl to 10.000 ml, the volume range typically used for mice to rabbits, the average delivered volume was 97.8% of the demand volume. The standard deviation of delivered volumes was 7 μl for 100 μl and 20 μl for 10.000 ml demand volumes (mean S.D. was 9 ul in this range). In three repeat injections through a fixed 0.96 mm O.D. tube the coefficient of variation for the area under the curve was 2%. For in vivo injections of hyperpolarized pyruvate in tumor-bearing rats, signal was first detected in the input femoral vein cannula at 3-4 s post-injection trigger signal and at 9-12 s in tumor tissue. The pH of the injected pyruvate was 7.1 ± 0.3 (mean ± S.D., n = 10). For small injection volumes, e.g. less than 100 μl, the internal diameter of the tubing contained within the peristaltic pump could be reduced to improve accuracy. Larger injection volumes are limited only by the size of the receiving vessel connected to the pump.
Chambers, Brian; Chambers, Jayne; Churilov, Leonid; Cameron, Heather; Macdonell, Richard
2014-09-01
We evaluated internal jugular vein and vertebral vein volume flow using ultrasound, in patients with clinically isolated syndrome or mild multiple sclerosis and controls, to determine whether volume flow was different between the two groups. In patients and controls, internal jugular vein volume flow increased from superior to inferior segments, consistent with recruitment from collateral veins. Internal jugular vein and vertebral vein volume flow were greater on the right in supine and sitting positions. Internal jugular vein volume flow was higher in the supine posture. Vertebral vein volume flow was higher in the sitting posture. Regression analyses of cube root transformed volume flow data, adjusted for supine/sitting, right/left and internal jugular vein/vertebral vein, revealed no significant difference in volume flow in patients compared to controls. Our findings further refute the concept of venous obstruction as a causal factor in the pathogenesis of multiple sclerosis. Control volume flow data may provide useful normative reference values. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, F.; Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9; Svenningsen, S.
Purpose: Pulmonary magnetic-resonance-imaging (MRI) and x-ray computed-tomography have provided strong evidence of spatially and temporally persistent lung structure-function abnormalities in asthmatics. This has generated a shift in their understanding of lung disease and supports the use of imaging biomarkers as intermediate endpoints of asthma severity and control. In particular, pulmonary {sup 1}H MRI can be used to provide quantitative lung structure-function measurements longitudinally and in response to treatment. However, to translate such biomarkers of asthma, robust methods are required to segment the lung from pulmonary {sup 1}H MRI. Therefore, their objective was to develop a pulmonary {sup 1}H MRI segmentationmore » algorithm to provide regional measurements with the precision and speed required to support clinical studies. Methods: The authors developed a method to segment the left and right lung from {sup 1}H MRI acquired in 20 asthmatics including five well-controlled and 15 severe poorly controlled participants who provided written informed consent to a study protocol approved by Health Canada. Same-day spirometry and plethysmography measurements of lung function and volume were acquired as well as {sup 1}H MRI using a whole-body radiofrequency coil and fast spoiled gradient-recalled echo sequence at a fixed lung volume (functional residual capacity + 1 l). We incorporated the left-to-right lung volume proportion prior based on the Potts model and derived a volume-proportion preserved Potts model, which was approximated through convex relaxation and further represented by a dual volume-proportion preserved max-flow model. The max-flow model led to a linear problem with convex and linear equality constraints that implicitly encoded the proportion prior. To implement the algorithm, {sup 1}H MRI was resampled into ∼3 × 3 × 3 mm{sup 3} isotropic voxel space. Two observers placed seeds on each lung and on the background of 20 pulmonary {sup 1}H MR images in a randomized dataset, on five occasions, five consecutive days in a row. Segmentation accuracy was evaluated using the Dice-similarity-coefficient (DSC) of the segmented thoracic cavity with comparison to five-rounds of manual segmentation by an expert observer. The authors also evaluated the root-mean-squared-error (RMSE) of the Euclidean distance between lung surfaces, the absolute, and percent volume error. Reproducibility was measured using the coefficient of variation (CoV) and intraclass correlation coefficient (ICC) for two observers who repeated segmentation measurements five-times. Results: For five well-controlled asthmatics, forced expiratory volume in 1 s (FEV{sub 1})/forced vital capacity (FVC) was 83% ± 7% and FEV{sub 1} was 86 ± 9%{sub pred}. For 15 severe, poorly controlled asthmatics, FEV{sub 1}/FV C = 66% ± 17% and FEV{sub 1} = 72 ± 27%{sub pred}. The DSC for algorithm and manual segmentation was 91% ± 3%, 92% ± 2% and 91% ± 2% for the left, right, and whole lung, respectively. RMSE was 4.0 ± 1.0 mm for each of the left, right, and whole lung. The absolute (percent) volume errors were 0.1 l (∼6%) for each of right and left lung and ∼0.2 l (∼6%) for whole lung. Intra- and inter-CoV (ICC) were <0.5% (>0.91%) for DSC and <4.5% (>0.93%) for RMSE. While segmentation required 10 s including ∼6 s for user interaction, the smallest detectable difference was 0.24 l for algorithm measurements which was similar to manual measurements. Conclusions: This lung segmentation approach provided the necessary and sufficient precision and accuracy required for research and clinical studies.« less
Hoogman, Martine; Bralten, Janita; Hibar, Derrek P.; Mennes, Maarten; Zwiers, Marcel P.; Schweren, Lizanne; van Hulzen, Kimm J.E.; Medland, Sarah E.; Shumskaya, Elena; Jahanshad, Neda; de Zeeuw, Patrick; Szekely, Eszter; Sudre, Gustavo; Wolfers, Thomas; Onnink, Alberdingk M.H.; Dammers, Janneke T.; Mostert, Jeanette C.; Vives-Gilabert, Yolanda; Kohls, Gregor; Oberwelland, Eileen; Seitz, Jochen; Schulte-Rüther, Martin; di Bruttopilo, Sara Ambrosino; Doyle, Alysa E.; Høvik, Marie F.; Dramsdahl, Margaretha; Tamm, Leanne; van Erp, Theo G.M.; Dale, Anders; Schork, Andrew; Conzelmann, Annette; Zierhut, Kathrin; Baur, Ramona; McCarthy, Hazel; Yoncheva, Yuliya N.; Cubillo, Ana; Chantiluke, Kaylita; Mehta, Mitul A.; Paloyelis, Yannis; Hohmann, Sarah; Baumeister, Sarah; Bramati, Ivanei; Mattos, Paulo; Tovar-Moll, Fernanda; Douglas, Pamela; Banaschewski, Tobias; Brandeis, Daniel; Kuntsi, Jonna; Asherson, Phil; Rubia, Katya; Kelly, Clare; Di Martino, Adriana; Milham, Michael P.; Castellanos, Francisco X.; Frodl, Thomas; Zentis, Mariam; Lesch, Klaus-Peter; Reif, Andreas; Pauli, Paul; Jernigan, Terry; Haavik, Jan; Plessen, Kerstin J.; Lundervold, Astri J.; Hugdahl, Kenneth; Seidman, Larry J.; Biederman, Joseph; Rommelse, Nanda; Heslenfeld, Dirk J.; Hartman, Catharina; Hoekstra, Pieter J.; Oosterlaan, Jaap; von Polier, Georg; Konrad, Kerstin; Vilarroya, Oscar; Ramos-Quiroga, Josep-Antoni; Soliva, Joan Carles; Durston, Sarah; Buitelaar, Jan K.; Faraone, Stephen V.; Shaw, Philip; Thompson, Paul; Franke, Barbara
2017-01-01
BACKGROUND Neuroimaging studies show structural alterations in several brain regions in children and adults with attention-deficit/hyperactivity disorder (ADHD). Through the formation of the worldwide ENIGMA ADHD Working Group, we addressed weaknesses of prior imaging studies and meta-analyses in sample size and methodological heterogeneity. METHODS Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites (age range: 4–63 years; 66% males). Individual sites analyzed magnetic resonance imaging brain scans with harmonized protocols. Case-control differences in subcortical structures and intracranial volume (ICV) were assessed through mega-and meta-analysis. FINDINGS The volumes of the accumbens (Cohen’s d=−0.15), amygdala (d=−0.19), caudate (d=−0.11), hippocampus (d=−0.11), putamen (d=−0.14), and ICV (d=−0.10) were found to be smaller in cases relative to controls. Effect sizes were highest in children, case-control differences were not present in adults. Explorative lifespan modeling suggested a delay of maturation and a delay of degeneration. Psychostimulant medication use or presence of comorbid psychiatric disorders did not influence results, nor did symptom scores correlate with brain volume. INTERPRETATION Using the largest data set to date, we extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. We add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD, and provide unprecedented precision in effect size estimates. Lifespan analyses suggest that, in the absence of well-powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of life provides a means to generate hypotheses about lifespan trajectories in brain phenotypes. FUNDING National Institutes of Health PMID:28219628
MAC/GMC 4.0 User's Manual: Keywords Manual. Volume 2
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2002-01-01
This document is the second volume in the three volume set of User's Manuals for the Micromechanics Analysis Code with Generalized Method of Cells Version 4.0 (MAC/GMC 4.0). Volume 1 is the Theory Manual, this document is the Keywords Manual, and Volume 3 is the Example Problem Manual. MAC/GMC 4.0 is a composite material and laminate analysis software program developed at the NASA Glenn Research Center. It is based on the generalized method of cells (GMC) micromechanics theory, which provides access to the local stress and strain fields in the composite material. This access grants GMC the ability to accommodate arbitrary local models for inelastic material behavior and various types of damage and failure analysis. MAC/GMC 4.0 has been built around GMC to provide the theory with a user-friendly framework, along with a library of local inelastic, damage, and failure models. Further, applications of simulated thermo-mechanical loading, generation of output results, and selection of architectures to represent the composite material have been automated in MAC/GMC 4.0. Finally, classical lamination theory has been implemented within MAC/GMC 4.0 wherein GMC is used to model the composite material response of each ply. Consequently, the full range of GMC composite material capabilities is available for analysis of arbitrary laminate configurations as well. This volume describes the basic information required to use the MAC/GMC 4.0 software, including a 'Getting Started' section, and an in-depth description of each of the 22 keywords used in the input file to control the execution of the code.
NASA Astrophysics Data System (ADS)
Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto
2011-03-01
Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.
NASA Astrophysics Data System (ADS)
Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.
2013-04-01
A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.
Thermodynamic Models for Aqueous Alteration Coupled with Volume and Pressure Changes in Asteroids
NASA Technical Reports Server (NTRS)
Mironenko, M. V.; Zolotov, M. Y.
2005-01-01
All major classes of chondrites show signs of alteration on their parent bodies (asteroids). The prevalence of oxidation and hydration in alteration pathways implies that water was the major reactant. Sublimation and melting of water ice, generation of gases, formation of aqueous solutions, alteration of primary minerals and glasses and formation of secondary solids in interior parts of asteroids was likely to be driven by heat from the radioactive decay of short-lived radionuclides. Progress of alteration reactions should have affected masses and volumes of solids, and aqueous and gas phases. In turn, pressure evolution should have been controlled by changes in volumes and temperatures, escape processes, and production/ consumption of gases.
NASA Technical Reports Server (NTRS)
Burgin, G. H.; Fogel, L. J.; Phelps, J. P.
1975-01-01
A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.
Wheel/Rail Noise and Vibration : Volume 1. Mechanics of Wheel Rail Noise Generation.
DOT National Transportation Integrated Search
1975-05-01
The final reports are reported of a project to develop a basic understanding of urban transit wheel/rail noise control measures. Analytical models of impedance, response, radiation efficiency, and directivity of wheels and rails are presented and com...
Quantification of the cerebrospinal fluid from a new whole body MRI sequence
NASA Astrophysics Data System (ADS)
Lebret, Alain; Petit, Eric; Durning, Bruno; Hodel, Jérôme; Rahmouni, Alain; Decq, Philippe
2012-03-01
Our work aims to develop a biomechanical model of hydrocephalus both intended to perform clinical research and to assist the neurosurgeon in diagnosis decisions. Recently, we have defined a new MR imaging sequence based on SPACE (Sampling Perfection with Application optimized Contrast using different flip-angle Evolution). On these images, the cerebrospinal fluid (CSF) appears as a homogeneous hypersignal. Therefore such images are suitable for segmentation and for volume assessment of the CSF. In this paper we present a fully automatic 3D segmentation of such SPACE MRI sequences. We choose a topological approach considering that CSF can be modeled as a simply connected object (i.e. a filled sphere). First an initial object which must be strictly included in the CSF and homotopic to a filled sphere, is determined by using a moment-preserving thresholding. Then a priority function based on an Euclidean distance map is computed in order to control the thickening process that adds "simple points" to the initial thresholded object. A point is called simple if its addition or its suppression does not result in change of topology neither for the object, nor for the background. The method is validated by measuring fluid volume of brain phantoms and by comparing our volume assessments on clinical data to those derived from a segmentation controlled by expert physicians. Then we show that a distinction between pathological cases and healthy adult people can be achieved by a linear discriminant analysis on volumes of the ventricular and intracranial subarachnoid spaces.
Root induced changes of effective 1D hydraulic properties in a soil column.
Scholl, P; Leitner, D; Kammerer, G; Loiskandl, W; Kaul, H-P; Bodner, G
Roots are essential drivers of soil structure and pore formation. This study aimed at quantifying root induced changes of the pore size distribution (PSD). The focus was on the extent of clogging vs. formation of pores during active root growth. Parameters of Kosugi's lognormal PSD model were determined by inverse estimation in a column experiment with two cover crops (mustard, rye) and an unplanted control. Pore dynamics were described using a convection-dispersion like pore evolution model. Rooted treatments showed a wider range of pore radii with increasing volumes of large macropores >500 μm and micropores <2.5 μm, while fine macropores, mesopores and larger micropores decreased. The non-rooted control showed narrowing of the PSD and reduced porosity over all radius classes. The pore evolution model accurately described root induced changes, while structure degradation in the non-rooted control was not captured properly. Our study demonstrated significant short term root effects with heterogenization of the pore system as dominant process of root induced structure formation. Pore clogging is suggested as a partial cause for reduced pore volume. The important change in micro- and large macropores however indicates that multiple mechanic and biochemical processes are involved in root-pore interactions.
1982-09-30
agencies, and airports, conducting aviation safety related- research and development, and managing and operating the national air space system. At the end of...1978 there were almost 800,000 active FAA certificated , t including slightly over 200,000 student pilots.2 Mechanics, control tower operators, and...U.S., and 107 overseas. The FAA operates and maintains 25 air route traffic control centers, 428 airport traffic control centers, 21 ccmbined stations
Universal Infantry Weapons Trainer (UIWT). Volume 1. M-16 Rifle Model.
1980-07-01
id entityb bloc moo") The Universal Infantry Weapons Trainer (UIWT) is an electro-optic based , micro- computer controlled, training device that...CLASIIClATSON OF THIS PAOt(la., Diat Eaeied) t SUMMARY The Universal Infantry Weapon Trainer (UIWT), is an electro-optic based , microcomputer controlled...Routine Flowchart .... ................ .. 52 111-36 Fixed Base FIFO Operation ...... ................. 54 111-37 Moving Base FIFO Operation
Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Ramachandran, Narayanan
1998-01-01
The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.
United States Air Force Research Initiation Program for 1988. Volume 2
1990-04-01
Specialty: Modeling and Simulation ENGINEERING AND SERVICES CENTER (Tyndall Air Force Base) Dr. Wayne A. Charlie Dr. Peter Jeffers (1987) Colorado State...Michael Sydor University of New Hampshire University of Minnesota Specialty: Systems Modeling & Controls Specialty: Optics, Material Science Dr. John...9MG-025 4 Modeling and Simulation on Micro- Dr. Joseph J. Feeley (1987) computers, 1989 760-7MG-070 5 Two Dimensional MHD Simulation of Dr. Manuel A
1982-11-01
model but uses the Hilbert transform to model intermittency as well as Gaussian structure patchiness. Includes University of Washington model features...Requirements for Satisfactory Elevator Control Characteristics, NACA TN 1060, June 1946. 852 - - - - 137. Jones, R. T., and H. Greenberg , Effect of Hinge...Moment Parameters on Elevator Stick Forces in Rapid Maneuvers NACA Report 798, Nov. 1944. 138. Greenberg , H., and L. Sternfield, A Theoretical
Phylogenetic signal, feeding behaviour and brain volume in Neotropical bats.
Rojas, D; Mancina, C A; Flores-Martínez, J J; Navarro, L
2013-09-01
Comparative correlational studies of brain size and ecological traits (e.g. feeding habits and habitat complexity) have increased our knowledge about the selective pressures on brain evolution. Studies conducted in bats as a model system assume that shared evolutionary history has a maximum effect on the traits. However, this effect has not been quantified. In addition, the effect of levels of diet specialization on brain size remains unclear. We examined the role of diet on the evolution of brain size in Mormoopidae and Phyllostomidae using two comparative methods. Body mass explained 89% of the variance in brain volume. The effect of feeding behaviour (either characterized as feeding habits, as levels of specialization on a type of item or as handling behaviour) on brain volume was also significant albeit not consistent after controlling for body mass and the strength of the phylogenetic signal (λ). Although the strength of the phylogenetic signal of brain volume and body mass was high when tested individually, λ values in phylogenetic generalized least squares models were significantly different from 1. This suggests that phylogenetic independent contrasts models are not always the best approach for the study of ecological correlates of brain size in New World bats. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Glomerular loss after arteriovenous and arterial clamping for renal warm ischemia in a swine model.
Bechara, Gustavo Ruschi; Damasceno-Ferreira, José Aurelino; Abreu, Leonardo Albuquerque Dos Santos; Costa, Waldemar Silva; Sampaio, Francisco José Barcellos; Pereira-Sampaio, Marco Aurélio; Souza, Diogo Benchimol De
2016-11-01
To evaluate the glomerular loss after arteriovenous or arterial warm ischemia in a swine model. Twenty four pigs were divided into Group Sham (submitted to all surgical steps except the renal ischemia), Group AV (submitted to 30 minutes of warm ischemia by arteriovenous clamping of left kidney vessels), and Group A (submitted to 30 minutes of ischemia by arterial clamping). Right kidneys were used as controls. Weigh, volume, cortical volume, glomerular volumetric density (Vv[Glom]), volume-weighted glomerular volume (VWGV), and the total number of glomeruli were measured for each organ. Group AV showed a 24.5% reduction in its left kidney Vv[Glom] and a 25.4% reduction in the VWGV, when compared to the right kidney. Reductions were also observed when compared to kidneys of sham group. There was a reduction of 19.2% in the total number of glomeruli in AV kidneys. No difference was observed in any parameters analyzed on the left kidneys from group A. Renal warm ischemia of 30 minutes by arterial clamping did not caused significant glomerular damage, but arteriovenous clamping caused significant glomerular loss in a swine model. Clamping only the renal artery should be considered to minimize renal injury after partial nephrectomies.
Seidman, Larry J.; Biederman, Joseph; Liang, Lichen; Valera, Eve M.; Monuteaux, Michael C.; Brown, Ariel; Kaiser, Jonathan; Spencer, Thomas; Faraone, Stephen V.; Makris, Nikos
2014-01-01
Background Gray and white matter volume deficits have been reported in many structural magnetic resonance imaging (MRI) studies of children with attention-deficit/hyperactivity disorder (ADHD); however, there is a paucity of structural MRI studies of adults with ADHD. This study used voxel based morphometry and applied an a priori region of interest approach based on our previous work, as well as from well-developed neuroanatomical theories of ADHD. Methods Seventy-four adults with DSM-IV ADHD and 54 healthy control subjects comparable on age, sex, race, handedness, IQ, reading achievement, frequency of learning disabilities, and whole brain volume had an MRI on a 1.5T Siemens scanner. A priori region of interest hypotheses focused on reduced volumes in ADHD in dorsolateral prefrontal cortex, anterior cingulate cortex, caudate, putamen, inferior parietal lobule, and cerebellum. Analyses were carried out by FSL-VBM 1.1. Results Relative to control subjects, ADHD adults had significantly smaller gray matter volumes in parts of six of these regions at p ≤ .01, whereas parts of the dorsolateral prefrontal cortex and inferior parietal lobule were significantly larger in ADHD at this threshold. However, a number of other regions were smaller and larger in ADHD (especially fronto-orbital cortex) at this threshold. Only the caudate remained significantly smaller at the family-wise error rate. Conclusions Adults with ADHD have subtle volume reductions in the caudate and possibly other brain regions involved in attention and executive control supporting frontostriatal models of ADHD. Modest group brain volume differences are discussed in the context of the nature of the samples studied and voxel based morphometry methodology. PMID:21183160
Anaerobic soil volume as a major controlling factor for soil denitrification and respiration
NASA Astrophysics Data System (ADS)
Reent Köster, Jan; Tong, Bingxin; Grosz, Balázs; Burkart, Stefan; Ruoss, Nicolas; Well, Reinhard
2017-04-01
Gas diffusion in soil is a key variable to control denitrification and its N2O to N2 product ratio since it affects two major proximal denitrification factors, i.e. the concentrations of O2 and of N2O. Gas diffusivity is governed by the structure and the state of water saturation of the pore system. At a given O2 consumption rate decreasing diffusivity causes an enhanced anaerobic soil volume where denitrification can occur. Gas diffusivity is generally quantified as bulk diffusion coefficients that represent the lineal diffusive gas flux through the soil matrix. However, the spatial distribution of respiratory O2 consumption and denitrification - and hence the local concentration of O2 and N2O - is highly non-homogeneous. Knowledge of the anaerobic soil volume fraction (ansvf) has been proposed as a key control on denitrification, and has subsequently been used in many denitrification models. The ansvf has previously been quantified by direct measurement of O2 distribution in individual soil aggregates using microsensors. The measured ansvf corresponded to modelled values based on measured aggregate diffusivity and respiration, but was not yet correlated with measured denitrification rates. In the present ongoing study, we are incubating soil cores amended with nitrate and organic litter in an automated mesocosm system under aerobic as well as anaerobic conditions. An N2 depleted incubation atmosphere and the 15N labeled soil nitrate pool facilitate quantification of the N2 production in the soil by IRMS, and fluxes of N2O and CO2 are monitored via gas chromatography. The ansvf and the measured denitrification and respiration rates will then be used for model validation. During the session we will present first results of this study.
When Spreadsheets Become Software - Quality Control Challenges and Approaches - 13360
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fountain, Stefanie A.; Chen, Emmie G.; Beech, John F.
2013-07-01
As part of a preliminary waste acceptance criteria (PWAC) development, several commercial models were employed, including the Hydrologic Evaluation of Landfill Performance model (HELP) [1], the Disposal Unit Source Term - Multiple Species model (DUSTMS) [2], and the Analytical Transient One, Two, and Three-Dimensional model (AT123D) [3]. The results of these models were post-processed in MS Excel spreadsheets to convert the model results to alternate units, compare the groundwater concentrations to the groundwater concentration thresholds, and then to adjust the waste contaminant masses (based on average concentration over the waste volume) as needed in an attempt to achieve groundwater concentrationsmore » at the limiting point of assessment that would meet the compliance concentrations while maximizing the potential use of the landfill (i.e., maximizing the volume of projected waste being generated that could be placed in the landfill). During the course of the PWAC calculation development, one of the Microsoft (MS) Excel spreadsheets used to post-process the results of the commercial model packages grew to include more than 575,000 formulas across 18 worksheets. This spreadsheet was used to assess six base scenarios as well as nine uncertainty/sensitivity scenarios. The complexity of the spreadsheet resulted in the need for a rigorous quality control (QC) procedure to verify data entry and confirm the accuracy of formulas. (authors)« less
Balderson, Michael J; Kirkby, Charles
2015-01-01
In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of EUD and TCP, the bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV varies. The results suggest, at least in a limiting sense, the potential for allowing some degree of dose heterogeneity within a CTV, although further investigation of the assumptions of the bystander model are warranted.
Magdoom, Kulam Najmudeen; Pishko, Gregory L.; Rice, Lori; Pampo, Chris; Siemann, Dietmar W.; Sarntinoranont, Malisa
2014-01-01
Systemic drug delivery to solid tumors involving macromolecular therapeutic agents is challenging for many reasons. Amongst them is their chaotic microvasculature which often leads to inadequate and uneven uptake of the drug. Localized drug delivery can circumvent such obstacles and convection-enhanced delivery (CED) - controlled infusion of the drug directly into the tissue - has emerged as a promising delivery method for distributing macromolecules over larger tissue volumes. In this study, a three-dimensional MR image-based computational porous media transport model accounting for realistic anatomical geometry and tumor leakiness was developed for predicting the interstitial flow field and distribution of albumin tracer following CED into the hind-limb tumor (KHT sarcoma) in a mouse. Sensitivity of the model to changes in infusion flow rate, catheter placement and tissue hydraulic conductivity were investigated. The model predictions suggest that 1) tracer distribution is asymmetric due to heterogeneous porosity; 2) tracer distribution volume varies linearly with infusion volume within the whole leg, and exponentially within the tumor reaching a maximum steady-state value; 3) infusion at the center of the tumor with high flow rates leads to maximum tracer coverage in the tumor with minimal leakage outside; and 4) increasing the tissue hydraulic conductivity lowers the tumor interstitial fluid pressure and decreases the tracer distribution volume within the whole leg and tumor. The model thus predicts that the interstitial fluid flow and drug transport is sensitive to porosity and changes in extracellular space. This image-based model thus serves as a potential tool for exploring the effects of transport heterogeneity in tumors. PMID:24619021
Chen, Bihong T; Sethi, Sean K; Jin, Taihao; Patel, Sunita K; Ye, Ningrong; Sun, Can-Lan; Rockne, Russell C; Haacke, E Mark; Root, James C; Saykin, Andrew J; Ahles, Tim A; Holodny, Andrei I; Prakash, Neal; Mortimer, Joanne; Waisman, James; Yuan, Yuan; Somlo, George; Li, Daneng; Yang, Richard; Tan, Heidi; Katheria, Vani; Morrison, Rachel; Hurria, Arti
2018-05-02
Cognitive decline is among the most feared treatment-related outcomes of older adults with cancer. The majority of older patients with breast cancer self-report cognitive problems during and after chemotherapy. Prior neuroimaging research has been performed mostly in younger patients with cancer. The purpose of this study was to evaluate longitudinal changes in brain volumes and cognition in older women with breast cancer receiving adjuvant chemotherapy. Women aged ≥ 60 years with stage I-III breast cancer receiving adjuvant chemotherapy and age-matched and sex-matched healthy controls were enrolled. All participants underwent neuropsychological testing with the US National Institutes of Health (NIH) Toolbox for Cognition and brain magnetic resonance imaging (MRI) prior to chemotherapy, and again around one month after the last infusion of chemotherapy. Brain volumes were measured using Neuroreader™ software. Longitudinal changes in brain volumes and neuropsychological scores were analyzed utilizing linear mixed models. A total of 16 patients with breast cancer (mean age 67.0, SD 5.39 years) and 14 age-matched and sex-matched healthy controls (mean age 67.8, SD 5.24 years) were included: 7 patients received docetaxel and cyclophosphamide (TC) and 9 received chemotherapy regimens other than TC (non-TC). There were no significant differences in segmented brain volumes between the healthy control group and the chemotherapy group pre-chemotherapy (p > 0.05). Exploratory hypothesis generating analyses focusing on the effect of the chemotherapy regimen demonstrated that the TC group had greater volume reduction in the temporal lobe (change = - 0.26) compared to the non-TC group (change = 0.04, p for interaction = 0.02) and healthy controls (change = 0.08, p for interaction = 0.004). Similarly, the TC group had a decrease in oral reading recognition scores (change = - 6.94) compared to the non-TC group (change = - 1.21, p for interaction = 0.07) and healthy controls (change = 0.09, p for interaction = 0.02). There were no significant differences in segmented brain volumes between the healthy control group and the chemotherapy group; however, exploratory analyses demonstrated a reduction in both temporal lobe volume and oral reading recognition scores among patients on the TC regimen. These results suggest that different chemotherapy regimens may have differential effects on brain volume and cognition. Future, larger studies focusing on older adults with cancer on different treatment regimens are needed to confirm these findings. ClinicalTrials.gov, NCT01992432 . Registered on 25 November 2013. Retrospectively registered.
Yield Stress Model for Molten Composition B-3
NASA Astrophysics Data System (ADS)
Davis, Stephen; Zerkle, David
2017-06-01
Composition B-3 (Comp B-3) is a melt-castable explosive composed of 60/40 wt% RDX/TNT (hexahydro-1,3,5-trinitro-1,3,5-triazine/2,4,6-trinitrotoluene). During casting operations thermal conditions are controlled which along with the low melting point of TNT and the insensitivity of the mixture to external stimuli leading to safe use. Outside these standard operating conditions a more rigorous model of Comp B-3 rheological properties is necessary to model thermal transport as Comp B-3 evolves from quiescent solid through vaporization/decomposition upon heating. One particular rheological phenomena of interest is Bingham plasticity, where a material behaves as a quiescent solid unless a sufficient load is applied, resulting in fluid flow. In this study falling ball viscometer data is used to model the change in Bingham plastic yield stresses as a function of RDX particle volume fraction; a function of temperature. Results show the yield stress of Comp B-3 (τy) follows the expression τy = B
Local structure controls the nonaffine shear and bulk moduli of disordered solids
NASA Astrophysics Data System (ADS)
Schlegel, M.; Brujic, J.; Terentjev, E. M.; Zaccone, A.
2016-01-01
Paradigmatic model systems, which are used to study the mechanical response of matter, are random networks of point-atoms, random sphere packings, or simple crystal lattices; all of these models assume central-force interactions between particles/atoms. Each of these models differs in the spatial arrangement and the correlations among particles. In turn, this is reflected in the widely different behaviours of the shear (G) and compression (K) elastic moduli. The relation between the macroscopic elasticity as encoded in G, K and their ratio, and the microscopic lattice structure/order, is not understood. We provide a quantitative analytical connection between the local orientational order and the elasticity in model amorphous solids with different internal microstructure, focusing on the two opposite limits of packings (strong excluded-volume) and networks (no excluded-volume). The theory predicts that, in packings, the local orientational order due to excluded-volume causes less nonaffinity (less softness or larger stiffness) under compression than under shear. This leads to lower values of G/K, a well-documented phenomenon which was lacking a microscopic explanation. The theory also provides an excellent one-parameter description of the elasticity of compressed emulsions in comparison with experimental data over a broad range of packing fractions.
Nam, Kijun; Lee, Woo-Kyun; Kim, Moonil; Kwak, Doo-Ahn; Byun, Woo-Hyuk; Yu, Hangnan; Kwak, Hanbin; Kwon, Taesung; Sung, Joohan; Chung, Dong-Jun; Lee, Seung-Ho
2015-07-01
This study analyzes change in carbon storage by applying forest growth models and final cutting age to actual and potential forest cover for six major tree species in South Korea. Using National Forest Inventory data, the growth models were developed to estimate mean diameter at breast height, tree height, and number of trees for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi, Castanea crenata and Quercus spp. stands. We assumed that actual forest cover in a forest type map will change into potential forest covers according to the Hydrological and Thermal Analogy Groups model. When actual forest cover reaches the final cutting age, forest volume and carbon storage are estimated by changed forest cover and its growth model. Forest volume between 2010 and 2110 would increase from 126.73 to 157.33 m(3) hm(-2). Our results also show that forest cover, volume, and carbon storage could abruptly change by 2060. This is attributed to the fact that most forests are presumed to reach final cutting age. To avoid such dramatic change, a regeneration and yield control scheme should be prepared and implemented in a way that ensures balance in forest practice and yield.
Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene
2014-01-01
Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that these are not significantly correlated to the frequency of SRS. PMID:25071699
Pastore Carbone, Maria Giovanna; Musto, Pellegrino; Pannico, Marianna; Braeuer, Andreas; Scherillo, Giuseppe; Mensitieri, Giuseppe; Di Maio, Ernesto
2016-09-01
In the present study, a Raman line-imaging setup was employed to monitor in situ the CO2 sorption at elevated pressures (from 0.62 to 7.10 MPa) in molten PCL. The method allowed the quantitative measurement of gas concentration in both the time-resolved and the space-resolved modes. The combined experimental and theoretical approach allowed a molecular level characterization of the system. The dissolved CO2 was found to occupy a volume essentially coincident with its van der Waals volume and the estimated partial molar volume of the probe did not change with pressure. Lewis acid-Lewis base interactions with the PCL carbonyls was confirmed to be the main interaction mechanism. The geometry of the supramolecular complex and the preferential interaction site were controlled more by steric than electronic effects. On the basis of the indications emerging from Raman spectroscopy, an equation of state thermodynamic model for the PCL-CO2 system, based upon a compressible lattice fluid theory endowed with specific interactions, has been tailored to account for the interaction types detected spectroscopically. The predictions of the thermodynamic model in terms of molar volume of solution have been compared with available volumetric measurements while predictions for CO2 partial molar volume have been compared with the values estimated on the basis of Raman spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Gridded Model Information Support System (GMISS) is a data base management system for selected Regional Oxidant Model (ROM) input data and species concentrations produced by gridded photochemical air pollution models. The Model Concentration Data Retrieval Subsystem allows State and local air pollution control agencies to retrieve these hourly data for use in support of their regulatory programs. These hourly data may be used to calculate initial and boundary conditions for the Empirical Kinetics Modeling Approach (EKMA). They may be used for other modeling application needs as well as to support evaluation of regional emission controls strategies. Both temporal andmore » spatial subsets of the data may be retrieved. The document describes how to invoke and execute the Model Concentration Data Retrieval Subsystem using the full screen menus.« less
NASA Technical Reports Server (NTRS)
Marr, R. L.; Sambell, K. W.; Neal, G. T.
1973-01-01
Stability and control tests of a scale model of a tilt rotor research aircraft were conducted. The characteristics of the model for hover, low speed, and conversion flight were analyzed. Hover tests were conducted in a rotor whirl cage. Helicopter and conversion tests were conducted in a low speed wind tunnel. Data obtained from the tests are presented as tables and graphs. Diagrams and illustrations of the test equipment are provided.
Lattice model for water-solute mixtures.
Furlan, A P; Almarza, N G; Barbosa, M C
2016-10-14
A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.
Simon, T-P; Schuerholz, T; Haugvik, S P; Forberger, C; Burmeister, M-A; Marx, G
2013-01-01
There is evidence that suggests that early fluid resuscitation is beneficial in the treatment of sepsis. We previously demonstrated that hydroxyethyl starch (HES) 130/0.42 attenuated capillary leakage better than HES 200/0.5. Using a similar porcine fecal sepsis model, we tested the effects of two new synthetic high molecular weight (700 kDa) hydroxyethyl starches with the same molar substitution of 0.42 but with a different C2/C6 ratio compared to 6% HES 130/0.42 on plasma volume (PV), systemic and tissue oxygenation. This was a prospective, randomized, controlled animal study. Twenty-five anesthetized and mechanically ventilated pigs (28.4±2.3 kg) were observed over 8 h. Septic shock was induced with fecal peritonitis. Animals were randomized for volume-replacement therapy with HES 700/0.42 C2/C6/2.5:1 (N.=5), HES 700/0.42 C2/C6/6:1 (N.=5), HES 130/0.42 C2/C6/5:1 (N.=5) or Ringer’s Solution (RS, N.=5), and compared to non-septic controls receiving RS (N.=5). The albumin escape rate (AER) was calculated and plasma volume was determined at the end of the study. Tissue Oxygen Saturation was measured with the InSpectra™ Device (InSpectra Tissue Spectrometer, Hutchinson Technology Inc., Hutchinson, MN, USA). The AER increased in all groups compared to control. All colloids (HES 700/6:1 68±15; HES 130 67±4; HES 700/2.5:1 71±12; P<0.05) but not RS (44±7) stabilized PV (mL/kg BW) after eight hours of sepsis. Systemic oxygenation was significantly lower in the RS group (44±17%; P<0.05) compared to all other groups at study end (P<0.05). In this porcine fecal peritonitis model, the high molecular weight artificial colloids HES 700/2.5:1 and HES 700/6:1 were not more effective in maintaining plasma volume and systemic and tissue oxygenation than HES 130. In comparison to crystalloid RS, all HES solutions were more effective at maintaining plasma volume, mean arterial pressure (MAP), and systemic and tissue oxygenation.
Nagel, O G; Molina, M P; Basílico, J C; Zapata, M L; Althaus, R L
2009-06-01
To use experimental design techniques and a multiple logistic regression model to optimize a microbiological inhibition test with dichotomous response for the detection of Penicillin G in milk. A 2(3) x 2(2) robust experimental design with two replications was used. The effects of three control factors (V: culture medium volume, S: spore concentration of Geobacillus stearothermophilus, I: indicator concentration), two noise factors (Dt: diffusion time, Ip: incubation period) and their interactions were studied. The V, S, Dt, Ip factors and V x S, V x Ip, S x Ip interactions showed significant effects. The use of 100 microl culture medium volume, 2 x 10(5) spores ml(-1), 60 min diffusion time and 3 h incubation period is recommended. In these elaboration conditions, the penicillin detection limit was of 3.9 microg l(-1), similar to the maximum residue limit (MRL). Of the two noise factors studied, the incubation period can be controlled by means of the culture medium volume and spore concentration. We were able to optimize bioassays of dichotomous response using an experimental design and logistic regression model for the detection of residues at the level of MRL, aiding in the avoidance of health problems in the consumer.
N-flation with hierarchically light axions in string compactifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicoli, Michele; Dutta, Koushik; Maharana, Anshuman, E-mail: mcicoli@ictp.it, E-mail: koushik.dutta@saha.ac.in, E-mail: anshumanmaharana@hri.res.in
2014-08-01
We propose a possible embedding of axionic N-flation in type IIB string compactifications where most of the Kähler moduli are stabilised by perturbative effects, and so are hierarchically heavier than the corresponding N>> 1 axions whose collective dynamics drives inflation. This is achieved in the framework of the LARGE Volume Scenario for moduli stabilisation. Our set-up can be used to realise a model of either large field inflation or quintessence, just by varying the volume of the internal space which controls the scale of the axionic potential. Both cases predict a very high scale of supersymmetry breaking. A fully explicit stringymore » embedding of N-flation would require control over dangerous back-reaction effects due to a large number of species. A viable reheating of the Standard Model degrees of freedom can be achieved after the end of inflation due to the perturbative decay of the N light axions which drive inflation.« less
Simulation of three lanes one-way freeway in low visibility weather by possible traffic accidents
NASA Astrophysics Data System (ADS)
Pang, Ming-bao; Zheng, Sha-sha; Cai, Zhang-hui
2015-09-01
The aim of this work is to investigate the traffic impact of low visibility weather on a freeway including the fraction of real vehicle rear-end accidents and road traffic capacity. Based on symmetric two-lane Nagel-Schreckenberg (STNS) model, a cellular automaton model of three-lane freeway mainline with the real occurrence of rear-end accidents in low visibility weather, which considers delayed reaction time and deceleration restriction, was established with access to real-time traffic information of intelligent transportation system (ITS). The characteristics of traffic flow in different visibility weather were discussed via the simulation experiments. The results indicate that incoming flow control (decreasing upstream traffic volume) and inputting variable speed limits (VSL) signal are effective in accident reducing and road actual traffic volume's enhancing. According to different visibility and traffic demand the appropriate control strategies should be adopted in order to not only decrease the probability of vehicle accidents but also avoid congestion.
3D numerical simulations of oblique droplet impact onto a deep liquid pool
NASA Astrophysics Data System (ADS)
Gelderblom, Hanneke; Reijers, Sten A.; Gielen, Marise; Sleutel, Pascal; Lohse, Detlef; Xie, Zhihua; Pain, Christopher C.; Matar, Omar K.
2017-11-01
We study the fluid dynamics of three-dimensional oblique droplet impact, which results in phenomena that include splashing and cavity formation. An adaptive, unstructured mesh modelling framework is employed here, which can modify and adapt unstructured meshes to better represent the underlying physics of droplet dynamics, and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a volume-of-fluid-type method for the interface-capturing based on a compressive control-volume advection method. The framework also features second-order finite-element methods, and a force-balanced algorithm for the surface tension implementation, minimising the spurious velocities often found in many simulations involving capillary-driven flows. The numerical results generated using this framework are compared with high-speed images of the interfacial shapes of the deformed droplet, and the cavity formed upon impact, yielding good agreement. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
NASA Astrophysics Data System (ADS)
Eichenbaum-Pikser, J. M.; Spiegelman, M. W.; Kelemen, P. B.; Wilson, C. R.
2013-12-01
Reactive fluid flow plays an important role in a wide range of geodynamic processes, such as melt migration, formation of hydrous minerals on fault surfaces, and chemical weathering. These processes are governed by the complex coupling between fluid transport, reaction, and solid deformation. Reaction-driven cracking is a potentially critical feedback mechanism, by which volume change associated with chemical reaction drives fracture in the surrounding rock. It has been proposed to play a role in both serpentinization and carbonation of peridotite, motivating consideration of its application to mineral carbon sequestration. Previous studies of reactive cracking have focused on the increase in solid volume, and as such, have considered failure in compression. However, if the consumption of fluid is considered in the overall volume budget, the reaction can be net volume reducing, potentially leading to failure in tension. To explore these problems, we have formulated and solved a 2-D model of coupled porous flow, reaction kinetics, and elastic deformation using the finite element model assembler TerraFERMA (Wilson et al, G3 2013 submitted). The model is applied to the serpentinization of peridotite, which can be reasonably approximated as the transfer of a single reactive component (H2O) between fluid and solid phases, making it a simple test case to explore the process. The behavior of the system is controlled by the competition between the rate of volume consumption by the reaction, and the rate of volume replacement by fluid transport, as characterized by a nondimensional parameter χ, which depends on permeability, reaction rate, and the bulk modulus of the solid. Large values of χ correspond to fast fluid transport relative to reaction rate, resulting in a low stress, volume replacing regime. At smaller values of χ, fluid transport cannot keep up with the reaction, resulting in pore fluid under-pressure and tensile solid stresses. For the range of χ relevant to the serpentinization of peridotite, these stresses can reach hundreds of MPa, exceeding the tensile strength of peridotite.
Effects of Quercetin in a Mouse Model of Experimental Dry Eye.
Oh, Ha Na; Kim, Chae Eun; Lee, Ji Hyun; Yang, Jae Wook
2015-09-01
To evaluate the effect of treatment with quercetin in a mouse model of dry eye. 0.5% quercetin eye drops were prepared and an experimental dry eye model was induced in NOD.B10.H2(b) mice through desiccation stress. The mice were divided into 3 groups according to the treatment regimen: the DS 10D group (desiccation stress for 10 days), the phosphate buffered saline (PBS) group, and the quercetin group. Tear volumes and corneal irregularity scores were measured at 3, 5, 7, and 10 days after treatment. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemistry were performed at the end of the experiment. The quercetin group had increased tear volumes (0.2 ± 0.03 μm, P < 0.05) and decreased corneal irregularity scores (0.7 ± 0.6, P < 0.05) compared with those of the PBS group. On histological examination, the quercetin group exhibited restored smooth corneal surfaces without detaching corneal epithelial cells and had significantly increased goblet cell density (13.8 ± 0.8 cells/0.1 mm², P < 0.05) compared with the PBS group. The quercetin group also exhibited significant declines of MMP-2 (5.1-fold of control, P < 0.01), MMP-9 (2.5-fold of control, P < 0.01), ICAM-1 (2.2-fold of control, P < 0.01), and VCAM-1 (2.3-fold of control, P < 0.01) levels in the lacrimal gland than did the PBS group. Topical application of quercetin can help to improve ocular surface disorders of dry eye not only by decreasing the corneal surface irregularity but also by increasing the tear volume and goblet cell density. Moreover, quercetin has the potential for use in eye drops as a treatment for dry eye disease with antiinflammatory effects on the lacrimal functional unit.
Park, William Keun Chan; Maxwell, Aaron Wilhelm Palmer; Frank, Victoria Elizabeth; Primmer, Michael Patrick; Paul, Jarod Brian; Collins, Scott Andrew; Lombardo, Kara Anne; Lu, Shaolei; Borjeson, Tiffany Marie; Baird, Grayson Luderman; Dupuy, Damian Edward
2018-02-01
To investigate the effects of a novel caesium-based thermal accelerant (TA) agent on ablation zone volumes following in vivo microwave ablation of porcine liver and skeletal muscle, and to correlate the effects of TA with target organ perfusion. This prospective study was performed following institutional animal care and use committee approval. Microwave ablation was performed in liver and resting skeletal muscle in eight Sus scrofa domesticus swine following administration of TA at concentrations of 0 mg/mL (control), 100 mg/mL and 250 mg/mL. Treated tissues were explanted and stained with triphenyltetrazolium chloride (TTC) for quantification of ablation zone volumes, which were compared between TA and control conditions. Hematoxylin and eosin (H&E) staining was also performed for histologic analysis. General mixed modelling with a log-normal distribution was used for all quantitative comparisons (p = 0.05). A total of 28 ablations were performed in the liver and 18 in the skeletal muscle. The use of TA significantly increased ablation zone volumes in a dose-dependent manner in both the porcine muscle and liver (p < 0.01). Both the absolute mean ablation zone volume and percentage increase in ablation zone volume were greater in the resting skeletal muscle than in the liver. In one swine, a qualitative mitigation of heat sink effects was observed by TTC and H&E staining. Non-lethal polymorphic ventricular tachycardia was identified in one swine, treated with intravenous amiodarone. The use of a novel TA agent significantly increased mean ablation zone volumes following microwave ablation using a porcine model. The relationship between TA administration and ablation size was dose-dependent and inversely proportional to the degree of target organ perfusion, and a qualitative reduction in heat-sink effects was observed.
Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles
2016-01-01
The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Guard cells elongate: relationship of volume and surface area during stomatal movement.
Meckel, Tobias; Gall, Lars; Semrau, Stefan; Homann, Ulrike; Thiel, Gerhard
2007-02-01
Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodin, N. Patrik, E-mail: nils.patrik.brodin@rh.dk; Niels Bohr Institute, University of Copenhagen, Copenhagen; Vogelius, Ivan R.
2013-10-01
Purpose: As pediatric medulloblastoma (MB) is a relatively rare disease, it is important to extract the maximum information from trials and cohort studies. Here, a framework was developed for modeling tumor control with multiple modes of failure and time-to-progression for standard-risk MB, using published pattern of failure data. Methods and Materials: Outcome data for standard-risk MB published after 1990 with pattern of relapse information were used to fit a tumor control dose-response model addressing failures in both the high-dose boost volume and the elective craniospinal volume. Estimates of 5-year event-free survival from 2 large randomized MB trials were used tomore » model the time-to-progression distribution. Uncertainty in freedom from progression (FFP) was estimated by Monte Carlo sampling over the statistical uncertainty in input data. Results: The estimated 5-year FFP (95% confidence intervals [CI]) for craniospinal doses of 15, 18, 24, and 36 Gy while maintaining 54 Gy to the posterior fossa was 77% (95% CI, 70%-81%), 78% (95% CI, 73%-81%), 79% (95% CI, 76%-82%), and 80% (95% CI, 77%-84%) respectively. The uncertainty in FFP was considerably larger for craniospinal doses below 18 Gy, reflecting the lack of data in the lower dose range. Conclusions: Estimates of tumor control and time-to-progression for standard-risk MB provides a data-driven setting for hypothesis generation or power calculations for prospective trials, taking the uncertainties into account. The presented methods can also be applied to incorporate further risk-stratification for example based on molecular biomarkers, when the necessary data become available.« less
Predictive analysis of optical ablation in several dermatological tumoral tissues
NASA Astrophysics Data System (ADS)
Fanjul-Vélez, F.; Blanco-Gutiérrez, A.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.
2013-06-01
Optical techniques for treatment and characterization of biological tissues are revolutionizing several branches of medical praxis, for example in ophthalmology or dermatology. The non-invasive, non-contact and non-ionizing character of optical radiation makes it specially suitable for these applications. Optical radiation can be employed in medical ablation applications, either for tissue resection or surgery. Optical ablation may provide a controlled and clean cut on a biological tissue. This is particularly relevant in tumoral tissue resection, where a small amount of cancerous cells could make the tumor appear again. A very important aspect of tissue optical ablation is then the estimation of the affected volume. In this work we propose a complete predictive model of tissue ablation that provides an estimation of the resected volume. The model is based on a Monte Carlo approach for the optical propagation of radiation inside the tissue, and a blow-off model for tissue ablation. This model is applied to several types of dermatological tumoral tissues, specifically squamous cells, basocellular and infiltrative carcinomas. The parameters of the optical source are varied and the estimated resected volume is calculated. The results for the different tumor types are presented and compared. This model can be used for surgical planning, in order to assure the complete resection of the tumoral tissue.
NASA Technical Reports Server (NTRS)
Jackson, C. E., Jr.
1977-01-01
A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.
A Thermo-Optic Propagation Modeling Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrader, Karl; Akau, Ron
2014-10-01
A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developedmore » for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.« less
Carroll, A B; Pallardy, S G; Galen, C
2001-03-01
In a controlled environment, we artificially induced drought during flowering of Epilobium angustifolium, an animal-pollinated plant. Leaf water potential (ψ(l)) and floral traits were monitored over a 12-d period of soil moisture depletion. Soil moisture depletion induced drought stress over time, as revealed by significant treatment × day interactions for predawn and midday ψ(l). Nectar volume and flower size showed significant negative responses to drought stress, but nectar sugar concentration did not vary between treatments. Floral traits were more buffered from drought than leaf water potentials. We used path analysis to examine direct and indirect effects of ψ(l) on floral traits for plants in well-watered (control) vs. drought treatments. According to the best-fit path models, midday ψ(l) has significant positive effects on flower size and nectar volume in both environments. However, for controls midday ψ(l) also had a significant negative effect on nectar sugar concentration. Results indicate that traits influencing floral attractiveness to pollinators in E. angustifolium vary with plant water status, such that pollinator-mediated selection could indirectly target physiological or biochemical controls on ψ(l). Moreover, under mesic conditions selection for greater nectar sugar reward may be constrained by the antagonistic effects of plant water status on nectar volume and sugar concentration.
Ishida, Fujimaro; Tsuji, Masanori; Furukawa, Kazuhiro; Shiba, Masato; Yasuda, Ryuta; Toma, Naoki; Sakaida, Hiroshi; Suzuki, Hidenori
2017-01-01
Objective This study aimed to predict recurrence after coil embolization of unruptured cerebral aneurysms with computational fluid dynamics (CFD) using porous media modeling (porous media CFD). Method A total of 37 unruptured cerebral aneurysms treated with coiling were analyzed using follow-up angiograms, simulated CFD prior to coiling (control CFD), and porous media CFD. Coiled aneurysms were classified into stable or recurrence groups according to follow-up angiogram findings. Morphological parameters, coil packing density, and hemodynamic variables were evaluated for their correlations with aneurysmal recurrence. We also calculated residual flow volumes (RFVs), a novel hemodynamic parameter used to quantify the residual aneurysm volume after simulated coiling, which has a mean fluid domain > 1.0 cm/s. Result Follow-up angiograms showed 24 aneurysms in the stable group and 13 in the recurrence group. Mann-Whitney U test demonstrated that maximum size, dome volume, neck width, neck area, and coil packing density were significantly different between the two groups (P < 0.05). Among the hemodynamic parameters, aneurysms in the recurrence group had significantly larger inflow and outflow areas in the control CFD and larger RFVs in the porous media CFD. Multivariate logistic regression analyses demonstrated that RFV was the only independently significant factor (odds ratio, 1.06; 95% confidence interval, 1.01–1.11; P = 0.016). Conclusion The study findings suggest that RFV collected under porous media modeling predicts the recurrence of coiled aneurysms. PMID:29284057
Soylu Karapinar, Oya; Pinar, Neslihan; Özgür, Tümay; Özcan, Oğuzhan; Bayraktar, H Suphi; Kurt, Raziye Keskin; Nural, Orhan
2017-02-01
Dexpanthenol (Dxp), antioxidant and anti-inflammatory agent, plays an important role in the repair systems against oxidative stress and inflammatory response. The objective of this study is to determine the effect of Dxp on experimental endometriosis model. A prospective experimental study was conducted in Experimental Animal Laboratory of Mustafa Kemal University, Hatay. Twenty nonpregnant female Wistar albino rats, in which experimental model of endometriosis was surgically induced, were randomly divided into 2 groups. Group 1 was administered 500 mg/kg/d Dxp intraperitoneally for 14 days, and group 2 was given the same amount of saline solution. After 2 weeks of medication, the rats were killed and implant volumes, histopathologic scores; and levels of serum total antioxidant status, total oxidant status (TOS), and oxidative stress index (OSI) were evaluated. Plasma and peritoneal fluid levels of tumor necrosis factor α (TNF-α) were analyzed. The endometriotic implant volumes, histopathologic scores, and serum TOS and OSI values were significantly decreased ( P < .05) in the Dxp group compared to the control group. Plasma and peritoneal fluid TNF-α levels were significantly decreased ( P < .05) in the Dxp group compared to the control group. Dexpanthenol has free radical scavenger effects, and antioxidant properties has significantly regressed endometriotic implant volumes, histopathologic scores, and serum TOS and OSI values. Serum and peritoneal fluid TNF-α levels were significantly decreased in the Dxp group. So Dxp decreased oxidative stress.
1995-06-27
Terminal Board............ $55.00 CONTROLS E-53-29 ( Non -etock: 2 weeks) Ebony Terminal Board with Screws ..........$70.00 NOTE: All control orders...in XL and TF models after 198 1. Non -asbe stos listed prices. mstedial is used.II Honeywell UDC 3000 Single Set Point Control $550.00 Small Roind...Honeywell. Leeds and Northrup, NOTE- This looks like a mushroom wit a. 314? hole in the Research Inc. and many other controls are available by center
Neonatal Hypoxia, Hippocampal Atrophy, and Memory Impairment: Evidence of a Causal Sequence
Cooper, Janine M.; Gadian, David G.; Jentschke, Sebastian; Goldman, Allan; Munoz, Monica; Pitts, Georgia; Banks, Tina; Chong, W. Kling; Hoskote, Aparna; Deanfield, John; Baldeweg, Torsten; de Haan, Michelle; Mishkin, Mortimer; Vargha-Khadem, Faraneh
2015-01-01
Neonates treated for acute respiratory failure experience episodes of hypoxia. The hippocampus, a structure essential for memory, is particularly vulnerable to such insults. Hence, some neonates undergoing treatment for acute respiratory failure might sustain bilateral hippocampal pathology early in life and memory problems later in childhood. We investigated this possibility in a cohort of 40 children who had been treated neonatally for acute respiratory failure but were free of overt neurological impairment. The cohort had mean hippocampal volumes (HVs) significantly below normal control values, memory scores significantly below the standard population means, and memory quotients significantly below those predicted by their full scale IQs. Brain white matter volume also fell below the volume of the controls, but brain gray matter volumes and scores on nonmnemonic neuropsychological tests were within the normal range. Stepwise linear regression models revealed that the cohort's HVs were predictive of degree of memory impairment, and gestational age at treatment was predictive of HVs: the younger the age, the greater the atrophy. We conclude that many neonates treated for acute respiratory failure sustain significant hippocampal atrophy as a result of the associated hypoxia and, consequently, show deficient memory later in life. PMID:24343890
Neonatal hypoxia, hippocampal atrophy, and memory impairment: evidence of a causal sequence.
Cooper, Janine M; Gadian, David G; Jentschke, Sebastian; Goldman, Allan; Munoz, Monica; Pitts, Georgia; Banks, Tina; Chong, W Kling; Hoskote, Aparna; Deanfield, John; Baldeweg, Torsten; de Haan, Michelle; Mishkin, Mortimer; Vargha-Khadem, Faraneh
2015-06-01
Neonates treated for acute respiratory failure experience episodes of hypoxia. The hippocampus, a structure essential for memory, is particularly vulnerable to such insults. Hence, some neonates undergoing treatment for acute respiratory failure might sustain bilateral hippocampal pathology early in life and memory problems later in childhood. We investigated this possibility in a cohort of 40 children who had been treated neonatally for acute respiratory failure but were free of overt neurological impairment. The cohort had mean hippocampal volumes (HVs) significantly below normal control values, memory scores significantly below the standard population means, and memory quotients significantly below those predicted by their full scale IQs. Brain white matter volume also fell below the volume of the controls, but brain gray matter volumes and scores on nonmnemonic neuropsychological tests were within the normal range. Stepwise linear regression models revealed that the cohort's HVs were predictive of degree of memory impairment, and gestational age at treatment was predictive of HVs: the younger the age, the greater the atrophy. We conclude that many neonates treated for acute respiratory failure sustain significant hippocampal atrophy as a result of the associated hypoxia and, consequently, show deficient memory later in life. © The Author 2013. Published by Oxford University Press.
Cardiovascular and fluid volume control in humans in space.
Norsk, Peter
2005-08-01
The human cardiovascular system and regulation of fluid volume are heavily influenced by gravity. When decreasing the effects of gravity in humans such as by anti-orthostatic posture changes or immersion into water, venous return is increased by some 25%. This leads to central blood volume expansion, which is accompanied by an increase in renal excretion rates of water and sodium. The mechanisms for the changes in renal excretory rates include a complex interaction of cardiovascular reflexes, neuroendocrine variables, and physical factors. Weightlessness is unique to obtain more information on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control is of importance for understanding pathophysiology of heart failure, where gravity plays a strong role in fluid and sodium retention.
DIVWAG Model Documentation. Volume II. Programmer/Analyst Manual. Part 3. Chapter 9 Through 12.
1976-07-01
entered through a routine, NAM2, that calls the segment controlling routine NBARAS. (4) Segment 3, controlled by the routine NFIRE , simulates round...nuclear fire, NAM calls in sequence the routines NFIRE (segment 3), ASUNIT (segment 2), SASSMT (segment 4), and NFIRE (segment 3). These calls simulate...this is a call to NFIRE (ISEG equals one or two), control goes to block L2. (2) Block 2. If this is to assess a unit passing through a nuclear barrier
1994-05-18
1801 Control System Architecture: The Standard and Non -Standard Models (Invited Paper) - M. E. Thuot, L. R. Dalesio, LANL...extracted beam intensity and feedback on lbe in lbe AGS, lbe non -linear space charge force can blow up lbe strength of lbe sextupole field to control lb...cromsings at the two experimental areas BO and DO, and bling the mas rnge accessible for discovery, a menu bar. In the menu bar there are controls to inject
Hippocampus and amygdala volumes in patients with vaginismus.
Atmaca, Murad; Baykara, Sema; Ozer, Omer; Korkmaz, Sevda; Akaslan, Unsal; Yildirim, Hanefi
2016-06-22
To compare hippocampus and amygdala volumes of patients with vaginismus with those of healthy control subjects. Magnetic resonance imaging was performed on ten patients with vaginismus and ten control subjects matched for age and gender. Volumes of the hippocampus and amygdala were blindly measured. We found that the mean right amygdala volume of patients with vaginismus were smaller than that of the healthy controls. With regard to hippocampus volumes, the mean left and right hippocampus volumes were smaller than those of the healthy controls. Our present findings suggest that there have been hippocampus and amygdala structural abnormalities in patients with vaginismus. These changes provide the notion that vaginismus may be a fear-related condition.
Redwine, Jeffrey M.; Kosofsky, Barry; Jacobs, Russell E.; Games, Dora; Reilly, John F.; Morrison, John H.; Young, Warren G.; Bloom, Floyd E.
2003-01-01
High-resolution magnetic resonance microscopy (MRM) was used to determine regional brain volumetric changes in a mouse model of Alzheimer's disease. These transgenic (Tg) mice overexpress human mutant amyloid precursor protein (APP) V717F under control of platelet-derived growth factor promoter (PDAPP mice), and cortical and hippocampal β-amyloid (Aβ) deposits accumulate in heterozygotes after 8–10 mos. We used MRM to obtain 3D volumetric data on mouse brains imaged in their skulls to define genotype- and age-related changes. Hippocampal, cerebellar, and brain volumes and corpus callosum length were quantified in 40-, 100-, 365-, and 630-day-old mice. Measurements taken at age 100 days, before Aβ deposition, revealed a 12.3% reduction of hippocampus volume in Tg mice compared with WT controls. This reduction persisted without progression to age 21 mos. A significant 18% increase in hippocampal volume occurred between 40 and 630 days in WT mice, and no corresponding significant increase occurred in Tg mice. Cavalieri volume estimates of hippocampal subfields from 100-day-old Tg mice further localized a 28% volume deficit in the dentate gyrus. In addition, corpus callosum length was reduced by ≈25% in Tg mice at all ages analyzed. In summary, reduced hippocampal volume and corpus callosum length can be detected by MRM before Aβ deposition. We conclude that overexpression of APP and amyloid may initiate pathologic changes before the appearance of plaques, suggesting novel targets for the treatment of Alzheimer's disease and further reinforcing the need for early diagnosis and treatment. PMID:12552120
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Carsten, E-mail: carsten.brink@rsyd.dk; Laboratory of Radiation Physics, Odense University Hospital; Bernchou, Uffe
2014-07-15
Purpose: Large interindividual variations in volume regression of non-small cell lung cancer (NSCLC) are observable on standard cone beam computed tomography (CBCT) during fractionated radiation therapy. Here, a method for automated assessment of tumor volume regression is presented and its potential use in response adapted personalized radiation therapy is evaluated empirically. Methods and Materials: Automated deformable registration with calculation of the Jacobian determinant was applied to serial CBCT scans in a series of 99 patients with NSCLC. Tumor volume at the end of treatment was estimated on the basis of the first one third and two thirds of the scans.more » The concordance between estimated and actual relative volume at the end of radiation therapy was quantified by Pearson's correlation coefficient. On the basis of the estimated relative volume, the patients were stratified into 2 groups having volume regressions below or above the population median value. Kaplan-Meier plots of locoregional disease-free rate and overall survival in the 2 groups were used to evaluate the predictive value of tumor regression during treatment. Cox proportional hazards model was used to adjust for other clinical characteristics. Results: Automatic measurement of the tumor regression from standard CBCT images was feasible. Pearson's correlation coefficient between manual and automatic measurement was 0.86 in a sample of 9 patients. Most patients experienced tumor volume regression, and this could be quantified early into the treatment course. Interestingly, patients with pronounced volume regression had worse locoregional tumor control and overall survival. This was significant on patient with non-adenocarcinoma histology. Conclusions: Evaluation of routinely acquired CBCT images during radiation therapy provides biological information on the specific tumor. This could potentially form the basis for personalized response adaptive therapy.« less
Cardiovascular simulator improvement: pressure versus volume loop assessment.
Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Leme, Juliana; Legendre, Daniel; Bock, Eduardo; Lucchi, Julio Cesar
2011-05-01
This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Greiner, Joachim; Sankarankutty, Aparna C; Seemann, Gunnar; Seidel, Thomas; Sachse, Frank B
2018-01-01
Computational modeling is an important tool to advance our knowledge on cardiac diseases and their underlying mechanisms. Computational models of conduction in cardiac tissues require identification of parameters. Our knowledge on these parameters is limited, especially for diseased tissues. Here, we assessed and quantified parameters for computational modeling of conduction in cardiac tissues. We used a rabbit model of myocardial infarction (MI) and an imaging-based approach to derive the parameters. Left ventricular tissue samples were obtained from fixed control hearts (animals: 5) and infarcted hearts (animals: 6) within 200 μm (region 1), 250-750 μm (region 2) and 1,000-1,250 μm (region 3) of the MI border. We assessed extracellular space, fibroblasts, smooth muscle cells, nuclei and gap junctions by a multi-label staining protocol. With confocal microscopy we acquired three-dimensional (3D) image stacks with a voxel size of 200 × 200 × 200 nm. Image segmentation yielded 3D reconstructions of tissue microstructure, which were used to numerically derive extracellular conductivity tensors. Volume fractions of myocyte, extracellular, interlaminar cleft, vessel and fibroblast domains in control were (in %) 65.03 ± 3.60, 24.68 ± 3.05, 3.95 ± 4.84, 7.71 ± 2.15, and 2.48 ± 1.11, respectively. Volume fractions in regions 1 and 2 were different for myocyte, myofibroblast, vessel, and extracellular domains. Fibrosis, defined as increase in fibrotic tissue constituents, was (in %) 21.21 ± 1.73, 16.90 ± 9.86, and 3.58 ± 8.64 in MI regions 1, 2, and 3, respectively. For control tissues, image-based computation of longitudinal, transverse and normal extracellular conductivity yielded (in S/m) 0.36 ± 0.11, 0.17 ± 0.07, and 0.1 ± 0.06, respectively. Conductivities were markedly increased in regions 1 ( + 75 , + 171, and + 100%), 2 ( + 53 , + 165, and + 80%), and 3 ( + 42 , + 141, and + 60%) . Volume fractions of the extracellular space including interlaminar clefts strongly correlated with conductivities in control and MI hearts. Our study provides novel quantitative data for computational modeling of conduction in normal and MI hearts. Notably, our study introduces comprehensive statistical information on tissue composition and extracellular conductivities on a microscopic scale in the MI border zone. We suggest that the presented data fill a significant gap in modeling parameters and extend our foundation for computational modeling of cardiac conduction.
Modeling and Simulation of U-tube Steam Generator
NASA Astrophysics Data System (ADS)
Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei
2018-03-01
The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.
Garteiser, Philippe; Doblas, Sabrina; Towner, Rheal A; Griffin, Timothy M
2013-11-01
To use an automated water-suppressed magnetic resonance imaging (MRI) method to objectively assess adipose tissue (AT) volumes in whole body and specific regional body components (subcutaneous, thoracic and peritoneal) of obese and lean mice. Water-suppressed MR images were obtained on a 7T, horizontal-bore MRI system in whole bodies (excluding head) of 26 week old male C57BL6J mice fed a control (10% kcal fat) or high-fat diet (60% kcal fat) for 20 weeks. Manual (outlined regions) versus automated (Gaussian fitting applied to threshold-weighted images) segmentation procedures were compared for whole body AT and regional AT volumes (i.e., subcutaneous, thoracic, and peritoneal). The AT automated segmentation method was compared to dual-energy X-ray (DXA) analysis. The average AT volumes for whole body and individual compartments correlated well between the manual outlining and the automated methods (R2>0.77, p<0.05). Subcutaneous, peritoneal, and total body AT volumes were increased 2-3 fold and thoracic AT volume increased more than 5-fold in diet-induced obese mice versus controls (p<0.05). MRI and DXA-based method comparisons were highly correlative (R2=0.94, p<0.0001). Automated AT segmentation of water-suppressed MRI data using a global Gaussian filtering algorithm resulted in a fairly accurate assessment of total and regional AT volumes in a pre-clinical mouse model of obesity. © 2013 Elsevier Inc. All rights reserved.
Modeling ozone episodes in the Baltimore-Washington region
NASA Technical Reports Server (NTRS)
Ryan, William F.
1994-01-01
Surface ozone (O3) concentrations in excess of the National Ambient Air Quality Standard (NAAQS) continue to occur in metropolitan areas in the United States despite efforts to control emissions of O3 precursors. Future O3 control strategies will be based on results from modeling efforts that have just begun in many areas. Two initial questions that arise are model sensitivity to domain-specific conditions and the selection of episodes for model evaluation and control strategy development. For the Baltimore-Washington region (B-W), the presence of the Chesapeake Bay introduces a number of issues relevant to model sensitivity. In this paper, the specific questions of the determination of model volume (mixing height) for the Urban Airshed Model (UAM) is discussed and various alternative methods compared. For the latter question, several analytic approaches, Cluster Analysis and classification and Regression Tree (CART) analysis are undertaken to determine meteorological conditions associated with severe O3 events in the B-W domain.
DOT National Transportation Integrated Search
1976-03-01
The spectral characteristics of the urban center -- at the level of the family, the functional organized units of society, and the essential compartment balances of the urban center -- are spelled out in greater detail. These compartments are food, m...
This planning document describes the quality assurance/quality control activities and technical requirements that will be used during the research study. The goal of this project is to evaluate the potential impacts of large volume water withdrawals.
CD volume design and verification
NASA Technical Reports Server (NTRS)
Li, Y. P.; Hughes, J. S.
1993-01-01
In this paper, we describe a prototype for CD-ROM volume design and verification. This prototype allows users to create their own model of CD volumes by modifying a prototypical model. Rule-based verification of the test volumes can then be performed later on against the volume definition. This working prototype has proven the concept of model-driven rule-based design and verification for large quantity of data. The model defined for the CD-ROM volumes becomes a data model as well as an executable specification.
Niederdeppe, Jeff; Avery, Rosemary; Miller, Emily N
2017-06-01
Widespread concern regarding the detrimental effects of excessive alcohol consumption (especially by minors) and associated social problems (particularly drunk driving) continues to exist among policymakers, law enforcement officers, and the general public. Alcohol consumption is a leading contributor to death from injuries, which itself is one of the main causes of death for people under 21years of age in the United States. This study examines the relationship between the volume and timing of alcohol-control public service announcements (PSAs) and rates of drunk-driving fatal accidents in the U.S. We estimate ordinary least squares (OLS) regression models to predict rates of drunk-driving fatal accidents by state and month as a function of the volume of alcohol-control PSAs aired during the previous 8months. Models include controls for state anti-drunk-driving laws and regulations, state demographic characteristics, state taxes on alcohol, calendar year, and seasonality. Results indicate that higher volumes of anti-drunk driving PSAs airing in the preceding 2 to 3months are associated, albeit modest in magnitude, with reduced rates of drunk-driving fatal accidents. The regression coefficients are largest for adults (relative to underage drunk drivers) and when the PSAs air during prime time (relative to daytime or nighttime). We conclude that PSAs could play an important contributing role in reducing drunk-driving fatal accidents, although levels of exposure and potential effects likely remain modest due to reliance on donated air time. Well-funded anti-drunk driving campaigns could achieve higher levels of exposure and have a larger impact. Copyright © 2017 Elsevier Inc. All rights reserved.
De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P
2014-01-01
Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.
Kern, Kyle C; Wright, Clinton B; Bergfield, Kaitlin L; Fitzhugh, Megan C; Chen, Kewei; Moeller, James R; Nabizadeh, Nooshin; Elkind, Mitchell S V; Sacco, Ralph L; Stern, Yaakov; DeCarli, Charles S; Alexander, Gene E
2017-01-01
Cerebral small-vessel damage manifests as white matter hyperintensities and cerebral atrophy on brain MRI and is associated with aging, cognitive decline and dementia. We sought to examine the interrelationship of these imaging biomarkers and the influence of hypertension in older individuals. We used a multivariate spatial covariance neuroimaging technique to localize the effects of white matter lesion load on regional gray matter volume and assessed the role of blood pressure control, age and education on this relationship. Using a case-control design matching for age, gender, and educational attainment we selected 64 participants with normal blood pressure, controlled hypertension or uncontrolled hypertension from the Northern Manhattan Study cohort. We applied gray matter voxel-based morphometry with the scaled subprofile model to (1) identify regional covariance patterns of gray matter volume differences associated with white matter lesion load, (2) compare this relationship across blood pressure groups, and (3) relate it to cognitive performance. In this group of participants aged 60-86 years, we identified a pattern of reduced gray matter volume associated with white matter lesion load in bilateral temporal-parietal regions with relative preservation of volume in the basal forebrain, thalami and cingulate cortex. This pattern was expressed most in the uncontrolled hypertension group and least in the normotensives, but was also more evident in older and more educated individuals. Expression of this pattern was associated with worse performance in executive function and memory. In summary, white matter lesions from small-vessel disease are associated with a regional pattern of gray matter atrophy that is mitigated by blood pressure control, exacerbated by aging, and associated with cognitive performance.
Dolfing, Jacoba G; Stassen, Chrit M; van Haard, Paul M M; Wolffenbuttel, Bruce H R; Schweitzer, Dave H
2011-06-01
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous disorder. However, PCOS has a strong resemblance to the metabolic syndrome, including preponderance of visceral fat deposition. The aim of this study is to compare fat distribution between lean women with PCOS and controls matched for body composition but with regular menstrual cycles and proven fertility. METHODS In this prospective cross-sectional study in a fertility outpatient clinic, 10 Caucasian women with PCOS and 10 controls, all with a BMI between 19 and 25 kg/m(2), were included. Fasting glucose, insulin and C-peptide concentrations, homeostasis model assessment (HOMA), hormonal levels and bioelectrical impedance analysis (BIA) variables were assessed and fat content and ovarian volume determinations were obtained with magnetic resonance imaging (MRI). Multiple axial cross-sections were calculated. RESULTS The age of the PCOS and control groups were [mean (SD)] 28.2 years (2.6) versus 33.7 years (2.3) P < 0.0001, respectively, and both groups were matched for BMI: 21.6 kg/m(2) (1.1) versus 21.8 kg/m(2) (2.1) (ns), fasting glucose, insulin, C-peptide, HOMA-insulin resistance (IR) levels and BIA parameters. PCOS cases had higher ovarian volumes and less visceral fat compared with controls. CONCLUSIONS Lean women with PCOS have higher MRI-determined ovarian volumes and less visceral fat content when compared with control women.
Onset of multiple sclerosis before adulthood leads to failure of age-expected brain growth
Aubert-Broche, Bérengère; Fonov, Vladimir; Narayanan, Sridar; Arnold, Douglas L.; Araujo, David; Fetco, Dumitru; Till, Christine; Sled, John G.; Collins, D. Louis
2014-01-01
Objective: To determine the impact of pediatric-onset multiple sclerosis (MS) on age-expected brain growth. Methods: Whole brain and regional volumes of 36 patients with relapsing-remitting MS onset prior to 18 years of age were segmented in 185 longitudinal MRI scans (2–11 scans per participant, 3-month to 2-year scan intervals). MRI scans of 25 age- and sex-matched healthy normal controls (NC) were also acquired at baseline and 2 years later on the same scanner as the MS group. A total of 874 scans from 339 participants from the NIH-funded MRI study of normal brain development acquired at 2-year intervals were used as an age-expected healthy growth reference. All data were analyzed with an automatic image processing pipeline to estimate the volume of brain and brain substructures. Mixed-effect models were built using age, sex, and group as fixed effects. Results: Significant group and age interactions were found with the adjusted models fitting brain volumes and normalized thalamus volumes (p < 10−4). These findings indicate a failure of age-normative brain growth for the MS group, and an even greater failure of thalamic growth. In patients with MS, T2 lesion volume correlated with a greater reduction in age-expected thalamic volume. To exclude any scanner-related influence on our data, we confirmed no significant interaction of group in the adjusted models between the NC and NIH MRI Study of Normal Brain Development groups. Conclusions: Our results provide evidence that the onset of MS during childhood and adolescence limits age-expected primary brain growth and leads to subsequent brain atrophy, implicating an early onset of the neurodegenerative aspect of MS. PMID:25378667
Şenay, Hasan; Sıvacı, Remziye; Kokulu, Serdar; Koca, Buğra; Bakı, Elif Doğan; Ela, Yüksel
2016-08-01
The aim of this present study is to compare the effect of pressure-controlled ventilation and volume-controlled ventilation on pulmonary mechanics and inflammatory markers in prone position. The study included 41 patients undergoing to vertebrae surgery. The patients were randomized into two groups: Group 1 received volume-controlled ventilation, while group 2 received pressure-controlled ventilation. The demographic data, pulmonary mechanics, the inflammatory marker levels just after the induction of anesthetics, at the 6th and 12th hours, and gas analysis from arterial blood samples taken at the beginning and the 30th minute were recorded. The inflammatory marker levels increased in both groups, without any significant difference among groups. Peak inspiratory pressure level was higher in the volume-controlled ventilation group. This study revealed that there is no difference regarding inflammatory marker levels between volume- and pressure-controlled ventilation.
Sex Moderates the Impact of Diagnosis and Amyloid PET Positivity on Hippocampal Subfield Volume.
Caldwell, Jessica Z K; Berg, Jody-Lynn; Shan, Guogen; Cummings, Jeffrey L; Banks, Sarah J
2018-01-01
We examined moderation effects of sex and diagnosis on the effect of positive florbetapir positron emission tomography (PET) amyloid-β (Aβ) scan (A+) on hippocampus subfield volumes in 526 normal control (NC) and early mild cognitive impairment (eMCI) participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI2; ADNI-GO). Regression moderation models showed that women- but not men- with NC designation did not show reduced subiculum volumes despite A+. At the eMCI stage, A+ was detrimental across sexes. Findings were significant while accounting for the effects of age, cognition at screening, education, and APOE4 carrier status. These findings suggest that women with A+ have early neural resistance to Alzheimer's disease-related amyloid burden.
Alter, P; Rupp, H; Rominger, M B; Klose, K J; Maisch, B
2008-01-01
In experimental animals, cardiac work is derived from pressure-volume area and analyzed further using stress-length relations. Lack of methods for determining accurately myocardial mass has until now prevented the use of stress-length relations in patients. We hypothesized, therefore, that not only pressure-volume loops but also stress-length diagrams can be derived from cardiac volume and cardiac mass as assessed by cardiac magnetic resonance imaging (CMR) and invasively measured pressure. Left ventricular (LV) volume and myocardial mass were assessed in seven patients with aortic valve stenosis (AS), eight with dilated cardiomyopathy (DCM), and eight controls using electrocardiogram (ECG)-gated CMR. LV pressure was measured invasively. Pressure-volume curves were calculated based on ECG triggering. Stroke work was assessed as area within the pressure-volume loop. LV wall stress was calculated using a thick-wall sphere model. Similarly, stress-length loops were calculated to quantify stress-length-based work. Taking the LV geometry into account, the normalization with regard to ventricular circumference resulted in "myocardial work." Patients with AS (valve area 0.73+/-0.18 cm(2)) exhibited an increased LV myocardial mass when compared with controls (P<0.05). LV wall stress was increased in DCM but not in AS. Stroke work of AS was unchanged when compared with controls (0.539+/-0.272 vs 0.621+/-0.138 Nm, not significant), whereas DCM exhibited a significant depression (0.367+/-0.157 Nm, P<0.05). Myocardial work was significantly reduced in both AS and DCM when compared with controls (129.8+/-69.6, 200.6+/-80.1, 332.2+/-89.6 Nm/m(2), P<0.05), also after normalization (7.40+/-5.07, 6.27+/-3.20, 14.6+/-4.07 Nm/m(2), P<0.001). It is feasible to obtain LV pressure-volume and stress-length diagrams in patients based on the present novel methodological approach of using CMR and invasive pressure measurement. Myocardial work was reduced in patients with DCM and noteworthy also in AS, while stroke work was reduced in DCM only. Most likely, deterioration of myocardial work is crucial for the prognosis. It is suggested to include these basic physiological procedures in the clinical assessment of the pump function of the heart.
Squeeze strengthening of magnetorheological fluids using mixed mode operation
NASA Astrophysics Data System (ADS)
Becnel, A. C.; Sherman, S. G.; Hu, W.; Wereley, N. M.
2015-05-01
This research details a novel method of increasing the shear yield stress of magnetorheological fluids by combining shear and squeeze modes of operation to manipulate particle chain structures, so-called squeeze strengthening. Using a custom built Searle cell magnetorheometer, which is a model device emulating a rotary magnetorheological energy absorber (MREA), the contribution of squeeze strengthening to the total controllable yield force is experimentally investigated. Using an eccentric rotating inner cylinder, characterization data from large (1 mm) and small (0.25 mm) nominal gap geometries are compared to investigate the squeeze strengthening effect. Details of the experimental setup and method are presented, and a hybrid model is used to explain experimental trends. This study demonstrates that it is feasible, utilizing squeeze strengthening to increase yield stress, to either (1) design a rotary MREA of a given volume to achieve higher energy absorption density (energy absorbed normalized by active fluid volume), or (2) reduce the volume of a given rotary MREA to achieve the same energy absorption density.
Dose-volume effects in pathologic lymph nodes in locally advanced cervical cancer.
Bacorro, Warren; Dumas, Isabelle; Escande, Alexandre; Gouy, Sebastien; Bentivegna, Enrica; Morice, Philippe; Haie-Meder, Christine; Chargari, Cyrus
2018-03-01
In cervical cancer patients, dose-volume relationships have been demonstrated for tumor and organs-at-risk, but not for pathologic nodes. The nodal control probability (NCP) according to dose/volume parameters was investigated. Patients with node-positive cervical cancer treated curatively with external beam radiotherapy (EBRT) and image-guided brachytherapy (IGABT) were identified. Nodal doses during EBRT, IGABT and boost were converted to 2-Gy equivalent (α/β = 10 Gy) and summed. Pathologic nodes were followed individually from diagnosis to relapse. Statistical analyses comprised log-rank tests (univariate analyses), Cox proportional model (factors with p ≤ 0.1 in univariate) and Probit analyses. A total of 108 patients with 254 unresected pathological nodes were identified. The mean nodal volume at diagnosis was 3.4 ± 5.8 cm 3 . The mean total nodal EQD2 doses were 55.3 ± 5.6 Gy. Concurrent chemotherapy was given in 96%. With a median follow-up of 33.5 months, 20 patients (18.5%) experienced relapse in nodes considered pathologic at diagnosis. Overall nodal recurrence rate was 9.1% (23/254). On univariate analyses, nodal volume (threshold: 3 cm 3 , p < .0001) and lymph node dose (≥57.5 Gy α/β10 , p = .039) were significant for nodal control. The use of simultaneous boost was borderline for significance (p = .07). On multivariate analysis, volume (HR = 8.2, 4.0-16.6, p < .0001) and dose (HR = 2, 1.05-3.9, p = .034) remained independent factors. Probit analysis combining dose and volume showed significant relationships with NCP, with increasing gap between the curves with higher nodal volumes. A nodal dose-volume effect on NCP is demonstrated for the first time, with increasing NCP benefit of additional doses to higher-volume nodes. Copyright © 2018 Elsevier Inc. All rights reserved.
Mathematical modelling of fluid transport and its regulation at multiple scales.
Chara, Osvaldo; Brusch, Lutz
2015-04-01
Living matter equals water, to a first approximation, and water transport across barriers such as membranes and epithelia is vital. Water serves two competing functions. On the one hand, it is the fundamental solvent enabling random mobility of solutes and therefore biochemical reactions and intracellular signal propagation. Homeostasis of the intracellular water volume is required such that messenger concentration encodes the stimulus and not inverse volume fluctuations. On the other hand, water flow is needed for transport of solutes to and away from cells in a directed manner, threatening volume homeostasis and signal transduction fidelity of cells. Feedback regulation of fluid transport reconciles these competing objectives. The regulatory mechanisms often span across multiple spatial scales from cellular interactions up to the architecture of organs. Open questions relate to the dependency of water fluxes and steady state volumes on control parameters and stimuli. We here review selected mathematical models of feedback regulation of fluid transport at the cell scale and identify a general "core-shell" structure of such models. We propose that fluid transport models at other spatial scales can be constructed in a generalised core-shell framework, in which the core accounts for the biophysical effects of fluid transport whilst the shell reflects the regulatory mechanisms. We demonstrate the applicability of this framework for tissue lumen growth and suggest future experiments in zebrafish to test lumen size regulation mechanisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Multi-muscle FES force control of the human arm for arbitrary goals.
Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M
2014-05-01
We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.
Vurdem, Ümit Erkan; Acer, Niyazi; Ertekin, Tolga; Savranlar, Ahmet; İnci, Mehmet Fatih
2012-01-01
Objective. The aim of this study was to determine the posterior cranial fossa volume, cerebellar volume, and herniated tonsillar volume in patients with chiari type I malformation and control subjects using stereological methods. Material and Methods. These volumes were estimated retrospectively using the Cavalieri principle as a point-counting technique. We used magnetic resonance images taken from 25 control subjects and 30 patients with chiari type I malformation. Results. The posterior cranial fossa volume in patients with chiari type I malformation was significantly smaller than the volume in the control subjects (P < 0.05). In the chiari type I malformation group, the cerebellar volume was smaller than the control group, but this difference was not statistically significant (P > 0.05). In the chiari type I malformation group, the ratio of cerebellar volume to posterior cranial fossa volume was higher than in the control group. We also found a positive correlation between the posterior cranial fossa volume and cerebellar volume for each of the groups (r = 0.865, P < 0.001). The mean (±SD) herniated tonsillar volume and length were 0.89 ± 0.50 cm3 and 9.63 ± 3.37 mm in the chiari type I malformation group, respectively. Conclusion. This study has shown that posterior cranial fossa and cerebellum volumes can be measured by stereological methods, and the ratio of these measurements can contribute to the evaluation of chiari type I malformation cases. PMID:22629166
Roller, Lauren A; Bruce, Beau B; Saindane, Amit M
2015-04-01
Measurement of posterior fossa volume has been proposed to have diagnostic utility and physiologic significance in the Chiari malformation type 1. This study evaluated the effects of demographics on posterior fossa volume and total intracranial volume in adult control subjects, adult patients with Chiari malformation type 1, and adult patients with idiopathic intracranial hypertension, who may share some imaging features of patients with Chiari malformation type 1. Twenty-eight patients with Chiari malformation type 1, 21 patients with idiopathic intracranial hypertension, and 113 control subjects underwent brain MRI including contrast-enhanced 3D gradient-recalled echo (GRE) T1-weighted imaging. Linear measurements of the posterior fossa and intracranial space were obtained. Manual segmentation of the posterior fossa and intracranial space was performed to yield posterior fossa volume and total intracranial volume. Age, sex, race, and body mass index (weight in kilograms divided by the square of height in meters; BMI) were controlled for when comparing cohorts. Three of the 12 linear measurements significantly predicted total intracranial volume (accounting for 74% of variance), and four predicted posterior fossa volume (54% of variance). Age, race, sex, and BMI each statistically significantly influenced posterior fossa volume and total intracranial volume. No statistically significant differences in posterior fossa volume, total intracranial volume, or ratio of posterior fossa volume to total intracranial volume were seen between the Chiari malformation type 1 group and control group after controlling for demographics. Patients with idiopathic intracranial hypertension were more likely than control subjects to have smaller posterior fossa volumes (odds ratio [OR]=1.81; p=0.01) and larger total intracranial volumes (OR=1.24; p=0.06). Linear measurements of the posterior fossa are not strong predictors of posterior fossa volume. Age, race, sex, and BMI have statistically significant effects on intracranial measurements that must be considered, particularly with respect to posterior fossa volume in Chiari malformation type 1. Even when these demographic variables are appropriately accounted for, other similarly presenting diseases may show small posterior fossa volumes.
Formulation analysis and computation of an optimization-based local-to-nonlocal coupling method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Elia, Marta; Bochev, Pavel Blagoveston
2017-01-01
In this paper, we present an optimization-based coupling method for local and nonlocal continuum models. Our approach couches the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual controls are the nonlocal volume constraint and the local boundary condition. We present the method in the context of Local-to-Nonlocal di usion coupling. Numerical examples illustrate the theoretical properties of the approach.
Xu, Huijuan; Li, Shiyue; Lin, Yunen; Liu, Rong; Gu, Yingying; Liao, Dongjiang
2011-08-01
To study the treatment effects of cultured Cordyceps sinensis combined with glucocorticosteroid on experimental pulmonary fibrosis in rats induced by bleomycin. Fifty rats were randomly divided into five groups, including control group, model group, cultured C. sinensis groups, prednisone group, cultured C. sinensis combined with prednisone group. On experimental day 0, the rats were respectively intratracheally instilled with bleomycin, and rats in the control group and model group with the same volume of normal saline. One day after the injection, cultured C. sinensis and glucocorticosteroid was respectively given to rats daily by gastric gavage, while the same volume of normal saline was given to those in the control group and model group. On 28th d, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. Histological changes of the lungs were evaluated by HE stain, Masson's trichrome stain. Collagen content of the lung tissue was assessed by hydroxyprolin concentration. Lung expression of CTGF protein was assessed by immunohistochemistry. The level of TGF-beta1 protein was measured by ELISA. Compared to model group, pulmonary fibrosis were alleviated in cultured C. sinensis and prednisone group, and CTGF expression, Hydroxyproline concentrations and protein TGF-beta1 were decreased. The combination effect of C. sinensis and prednisone group is augmented compared with using C. sinensis or prednisone group alone. The cultured C. sinensis and prednisone alleviates pulmonary fibrosis, and the combination use of both drugs has synergia effects in anti-fibrous degeneration.
Hippocampus and amygdala volumes in patients with vaginismus
Atmaca, Murad; Baykara, Sema; Ozer, Omer; Korkmaz, Sevda; Akaslan, Unsal; Yildirim, Hanefi
2016-01-01
AIM: To compare hippocampus and amygdala volumes of patients with vaginismus with those of healthy control subjects. METHODS: Magnetic resonance imaging was performed on ten patients with vaginismus and ten control subjects matched for age and gender. Volumes of the hippocampus and amygdala were blindly measured. RESULTS: We found that the mean right amygdala volume of patients with vaginismus were smaller than that of the healthy controls. With regard to hippocampus volumes, the mean left and right hippocampus volumes were smaller than those of the healthy controls. CONCLUSION: Our present findings suggest that there have been hippocampus and amygdala structural abnormalities in patients with vaginismus. These changes provide the notion that vaginismus may be a fear-related condition. PMID:27354964
Switching moving boundary models for two-phase flow evaporators and condensers
NASA Astrophysics Data System (ADS)
Bonilla, Javier; Dormido, Sebastián; Cellier, François E.
2015-03-01
The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.
Cortical bone thickening in Type A posterior atlas arch defects: experimental report.
Sanchis-Gimeno, Juan A; Llido, Susanna; Guede, David; Martinez-Soriano, Francisco; Ramon Caeiro, Jose; Blanco-Perez, Esther
2017-03-01
To date, no information about the cortical bone microstructural properties in atlas vertebrae with posterior arch defects has been reported. To test if there is an increased cortical bone thickening in atlases with Type A posterior atlas arch defects in an experimental model. Micro-computed tomography (CT) study on cadaveric atlas vertebrae. We analyzed the cortical bone thickness, the cortical volume, and the medullary volume (SkyScan 1172 Bruker micro-CT NV, Kontich, Belgium) in cadaveric dry vertebrae with a Type A atlas arch defect and normal control vertebrae. The micro-CT study revealed significant differences in cortical bone thickness (p=.005), cortical volume (p=.003), and medullary volume (p=.009) values between the normal and the Type A vertebrae. Type A congenital atlas arch defects present a cortical bone thickening that may play a protective role against atlas fractures. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichner, R.P.; Weber, C.F.; Wright, A.L.
1983-09-01
This is the second volume of a two-part study regarding the response of Browns Ferry Unit 1 to a postulated break in the scram discharge volume of the control rod drive hydraulic system immediately following a scram. The material in this second volume pertains to the second aspect of the study, the resultant transport of fission products from their original locations in the fuel to a series of repositories within the primary system, the primary and secondary containment structures, and ultimately the release of a small portion to the environment. Transport models are developed for the noble gases krypton andmore » xenon and for iodine and cesium to describe the release of these fission products from the overheated fuel and their subsequent movement under the conditions predicted to exist in the various repositories during the course of the accident.« less
Loavenbruck, Adam; Wendelschaefer-Crabbe, Gwen; Sandroni, Paola; Kennedy, William R
2014-10-01
No study has correlated thermoregulatory sweat testing (TST) with histopathologic study of sweat glands (SGs) and SG nerve fibers (SGNFs). We studied 10 neuropathy patients in whom anhidrosis was found by TST and 10 matched controls. Skin biopsies were taken from both anhidrotic and sweating skin and immunohistochemical staining was done for nerves and basement membrane. For each biopsy, total tissue volume, total SG volume, and total SGNF length were measured. SGNF length per biopsy volume, SG volume per biopsy volume (SG%), and SGNF length per SG volume were calculated. SGNF length per biopsy volume was reduced in anhidrotic site biopsies of patients compared with controls. SG% was decreased and SGNF length per SG volume increased in patients compared with controls. The results suggest a concomitant loss of SG volume and SGNF length in neuropathy, with greater loss of SGNFs in anhidrotic skin, possibly exceeding collateral reinnervation. Copyright © 2014 Wiley Periodicals, Inc.
Water quality management library. 2. edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckenfelder, W.W.; Malina, J.F.; Patterson, J.W.
1998-12-31
A series of ten books offered in conjunction with Water Quality International, the Biennial Conference and Exposition of the International Association on Water Pollution Research and Control (IAWPRC). Volume 1, Activated Sludge Process, Design and Control, 2nd edition, 1998: Volume 2, Upgrading Wastewater Treatment Plants, 2nd edition, 1998: Volume 3, Toxicity Reduction, 2nd edition, 1998: Volume 4, Municipal Sewage Sludge Management, 2nd edition, 1998: Volume 5, Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, 1st edition, 1992: Volume 6, Dynamics and Control of the Activated Sludge Process, 2nd edition, 1998: Volume 7: Design of Anaerobic Processes formore » the Treatment of Industrial and Municipal Wastes, 1st edition, 1992: Volume 8, Groundwater Remediation, 1st edition, 1992: Volume 9, Nonpoint Pollution and Urban Stormwater Management, 1st edition, 1995: Volume 10, Wastewater Reclamation and Reuse, 1st edition, 1998.« less
Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando
2018-05-01
Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.
Gas permeability of ice-templated, unidirectional porous ceramics.
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J
2016-01-01
We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 [Formula: see text]m and 19.1 [Formula: see text]m. The maximum permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) was measured in samples with the highest total pore volume (72%) and pore size (19.1 [Formula: see text]m). However, we demonstrate that it is possible to achieve a similar permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity ([Formula: see text]) is mainly controlled by pore size, unlike in isotropic porous structures where [Formula: see text] is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.
Choi, Soyoung; Bush, Adam M; Borzage, Matthew T; Joshi, Anand A; Mack, William J; Coates, Thomas D; Leahy, Richard M; Wood, John C
2017-01-01
Sickle cell disease (SCD) is a life-threatening genetic condition. Patients suffer from chronic systemic and cerebral vascular disease that leads to early and cumulative neurological damage. Few studies have quantified the effects of this disease on brain morphometry and even fewer efforts have been devoted to older patients despite the progressive nature of the disease. This study quantifies global and regional brain volumes in adolescent and young adult patients with SCD and racially matched controls with the aim of distinguishing between age related changes associated with normal brain maturation and damage from sickle cell disease. T1 weighted images were acquired on 33 clinically asymptomatic SCD patients (age = 21.3 ± 7.8; F = 18, M = 15) and 32 racially matched control subjects (age = 24.4 ± 7.5; F = 22, M = 10). Exclusion criteria included pregnancy, previous overt stroke, acute chest, or pain crisis hospitalization within one month. All brain volume comparisons were corrected for age and sex. Globally, grey matter volume was not different but white matter volume was 8.1% lower (p = 0.0056) in the right hemisphere and 6.8% (p = 0.0068) in the left hemisphere in SCD patients compared with controls. Multivariate analysis retained hemoglobin (β = 0.33; p = 0.0036), sex (β = 0.35; p = 0.0017) and mean platelet volume (β = 0.27; p = 0.016) as significant factors in the final prediction model for white matter volume for a combined r 2 of 0.37 (p < 0.0001). Lower white matter volume was confined to phylogenetically younger brain regions in the anterior and middle cerebral artery distributions. Our findings suggest that there are diffuse white matter abnormalities in SCD patients, especially in the frontal, parietal and temporal lobes, that are associated with low hemoglobin levels and mean platelet volume. The pattern of brain loss suggests chronic microvascular insufficiency and tissue hypoxia as the causal mechanism. However, longitudinal studies of global and regional brain morphometry can help us give further insights on the pathophysiology of SCD in the brain.
Evidence that breast tissue stiffness is associated with risk of breast cancer.
Boyd, Norman F; Li, Qing; Melnichouk, Olga; Huszti, Ella; Martin, Lisa J; Gunasekara, Anoma; Mawdsley, Gord; Yaffe, Martin J; Minkin, Salomon
2014-01-01
Evidence from animal models shows that tissue stiffness increases the invasion and progression of cancers, including mammary cancer. We here use measurements of the volume and the projected area of the compressed breast during mammography to derive estimates of breast tissue stiffness and examine the relationship of stiffness to risk of breast cancer. Mammograms were used to measure the volume and projected areas of total and radiologically dense breast tissue in the unaffected breasts of 362 women with newly diagnosed breast cancer (cases) and 656 women of the same age who did not have breast cancer (controls). Measures of breast tissue volume and the projected area of the compressed breast during mammography were used to calculate the deformation of the breast during compression and, with the recorded compression force, to estimate the stiffness of breast tissue. Stiffness was compared in cases and controls, and associations with breast cancer risk examined after adjustment for other risk factors. After adjustment for percent mammographic density by area measurements, and other risk factors, our estimate of breast tissue stiffness was significantly associated with breast cancer (odds ratio = 1.21, 95% confidence interval = 1.03, 1.43, p = 0.02) and improved breast cancer risk prediction in models with percent mammographic density, by both area and volume measurements. An estimate of breast tissue stiffness was associated with breast cancer risk and improved risk prediction based on mammographic measures and other risk factors. Stiffness may provide an additional mechanism by which breast tissue composition is associated with risk of breast cancer and merits examination using more direct methods of measurement.
Spatio-temporal effects of low impact development practices
NASA Astrophysics Data System (ADS)
Gilroy, Kristin L.; McCuen, Richard H.
2009-04-01
SummaryThe increase in land development and urbanization experienced in the US and worldwide is causing environmental degradation. Traditional off-site stormwater management does not protect small streams. To mitigate the negative effects of land development, best management practices (BMPs) are being implemented into stormwater management policies for the purposes of controlling minor flooding and improving water quality. Unfortunately, the effectiveness of BMPs has not been extensively studied. The purpose of this research was to analyze the effects of both location and quantity of two types of BMPs: cisterns and bioretention pits. A spatio-temporal model of a microwatershed was developed to determine the effects of BMPs on single-family, townhome, and commercial lots. The effects of development and the BMPs on peak runoff rates and volumes were compared to pre-development conditions. The results show that cisterns alone are capable of controlling rooftop runoff for small storms. Both the spatial location and the volume of BMP storage on a microwatershed influences the effectiveness of BMPs. The volume of BMP storage is positively correlated to the percent reduction in the peak discharge rate and total runoff volume; however, location is a factor in the peak reduction and a maximum volume of effective storage for both hydrologic metrics does exist. These results provide guidelines for developing stormwater management policies that can potentially reduce pollution of first-order streams, lower the cost and maintenance requirements, enhance aesthetics, and increase safety.
Westman, Eric; Aguilar, Carlos; Muehlboeck, J-Sebastian; Simmons, Andrew
2013-01-01
Automated structural magnetic resonance imaging (MRI) processing pipelines are gaining popularity for Alzheimer's disease (AD) research. They generate regional volumes, cortical thickness measures and other measures, which can be used as input for multivariate analysis. It is not clear which combination of measures and normalization approach are most useful for AD classification and to predict mild cognitive impairment (MCI) conversion. The current study includes MRI scans from 699 subjects [AD, MCI and controls (CTL)] from the Alzheimer's disease Neuroimaging Initiative (ADNI). The Freesurfer pipeline was used to generate regional volume, cortical thickness, gray matter volume, surface area, mean curvature, gaussian curvature, folding index and curvature index measures. 259 variables were used for orthogonal partial least square to latent structures (OPLS) multivariate analysis. Normalisation approaches were explored and the optimal combination of measures determined. Results indicate that cortical thickness measures should not be normalized, while volumes should probably be normalized by intracranial volume (ICV). Combining regional cortical thickness measures (not normalized) with cortical and subcortical volumes (normalized with ICV) using OPLS gave a prediction accuracy of 91.5 % when distinguishing AD versus CTL. This model prospectively predicted future decline from MCI to AD with 75.9 % of converters correctly classified. Normalization strategy did not have a significant effect on the accuracies of multivariate models containing multiple MRI measures for this large dataset. The appropriate choice of input for multivariate analysis in AD and MCI is of great importance. The results support the use of un-normalised cortical thickness measures and volumes normalised by ICV.
Modeling of energy release systems from OTEC plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denno, K.
1983-12-01
This paper presents analytical scope for the controlling functions of OTEC operation for the ultimate production of sizable bulk ..delta..T as well as H/sub 2/, N/sub 2/ and NH/sub 3/. The controlling parametric functions include the oceanic and ammonia Reynolds numbers which depend implicitly and explicitly on the ocean water velocity, mass-volume, duration of ..delta..T extraction, and the inlet and outlet water temperatures internally and externally. Solutions for the oceanic and amonia Reynolds numbers have been established setting the deciding constraints on water velocity, boundary temperatures, mass-volume as well as other plant parameters. Linkage between OTEC plant and other conventionalmore » as well as advanced energy systems has been expressed in terms of a set of balance and coordinating energy equations.« less
NASA Astrophysics Data System (ADS)
Rashidi Moghaddam, M.; Ayatollahi, M. R.; Berto, F.
2018-01-01
The values of mode II fracture toughness reported in the literature for several rocks are studied theoretically by using a modified criterion based on strain energy density averaged over a control volume around the crack tip. The modified criterion takes into account the effect of T-stress in addition to the singular terms of stresses/strains. The experimental results are related to mode II fracture tests performed on the semicircular bend and Brazilian disk specimens. There are good agreements between theoretical predictions using the generalized averaged strain energy density criterion and the experimental results. The theoretical results reveal that the value of mode II fracture toughness is affected by the size of control volume around the crack tip and also the magnitude and sign of T-stress.
Nuruddin, Syed; Bruchhage, Muriel; Ropstad, Erik; Krogenæs, Anette; Evans, Neil P; Robinson, Jane E; Endestad, Tor; Westlye, Lars T; Madison, Cindee; Haraldsen, Ira Ronit Hebold
2013-10-01
In many species sexual dimorphisms in brain structures and functions have been documented. In ovine model, we have previously demonstrated that peri-pubertal pharmacological blockade of gonadotropin releasing hormone (GnRH) action increased sex-differences of executive emotional behavior. The structural substrate of this behavioral alteration however is unknown. In this magnetic resonance image (MRI) study on the same animals, we investigated the effects of GnRH agonist (GnRHa) treatment on the volume of total brain, hippocampus and amygdala. In total 41 brains (17 treated; 10 females and 7 males, and 24 controls; 11 females and 13 males) were included in the MRI study. Image acquisition was performed with 3-T MRI scanner. Segmentation of the amygdala and the hippocampus was done by manual tracing and total gray and white matter volumes were estimated by means of automated brain volume segmentation of the individual T2-weighted MRI volumes. Statistical comparisons were performed with general linear models. Highly significant GnRHa treatment effects were found on the volume of left and right amygdala, indicating larger amygdalae in treated animals. Significant sex differences were found for total gray matter and right amygdala, indicating larger volumes in male compared to female animals. Additionally, we observed a significant interaction between sex and treatment on left amygdala volume, indicating stronger effects of treatment in female compared to male animals. The effects of GnRHa treatment on amygdala volumes indicate that increasing GnRH concentration during puberty may have an important impact on normal brain development in mammals. These novel findings substantiate the need for further studies investigating potential neurobiological side effects of GnRHa treatment on the brains of young animals and humans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia.
Brans, Rachel G H; van Haren, Neeltje E M; van Baal, G Caroline M; Schnack, Hugo G; Kahn, René S; Hulshoff Pol, Hilleke E
2008-11-01
Structural brain abnormalities have consistently been found in schizophrenia, with increased familial risk for the disease associated with these abnormalities. Some brain volume changes are progressive over the course of the illness. Whether these progressive brain volume changes are mediated by genetic or disease-related factors is unknown. To investigate whether genetic and/or environmental factors are associated with progressive brain volume changes in schizophrenia. Longitudinal 5-year follow-up in monozygotic (MZ) and dizygotic (DZ) twin pairs discordant for schizophrenia and healthy comparison twin pairs using brain magnetic resonance imaging. Participants were recruited from the twin pair cohort at the University Medical Center Utrecht. A total of 92 participants completed the study: 9 MZ and 10 DZ twin pairs discordant for schizophrenia and 14 MZ and 13 DZ healthy twin pairs. Percentage volume changes of the whole brain; cerebral gray and white matter of the frontal, temporal, parietal, and occipital lobes; cerebellum; and lateral and third ventricles over time between and within twin pairs were compared using repeated measures analysis of covariance. Structural equation modeling was applied to estimate contributions of additive genetic and common and unique environmental factors. Significant decreases over time in whole brain and frontal and temporal lobe volumes were found in patients with schizophrenia and their unaffected co-twins compared with control twins. Bivariate structural equation modeling using cross-trait/cross-twin correlations revealed significant additive genetic influences on the correlations between schizophrenia liability and progressive whole brain (66%; 95% confidence interval [CI], 51%-100%), frontal lobe (76%; 95% CI, 54%-100%), and temporal lobe (79%; CI, 56%-100%) volume change. The progressive brain volume loss found in patients with schizophrenia and their unaffected co-twins is at least partly attributable to genetic factors related to the illness.
Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wannamaker, Philip E.
The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T andmore » TOUGHREACT software.« less
Some Applications of Piece-Wise Smooth Dynamical Systems
NASA Astrophysics Data System (ADS)
Janovská, Drahoslava; Hanus, Tomáš; Biák, Martin
2010-09-01
The Filippov systems theory is applied to selected problems from biology and chemical engineering, namely we explore and simulate Bazykin's ecological model, an ideal closed gas-liquid system including its dimensionless formulation. The last investigated system is a CSTR with an outfall and the CSTR with a reactor volume control.
ERIC Educational Resources Information Center
Bailey, Tandy, Ed.
1992-01-01
Articles on various aspects of second language teaching include: "Global Education Language Teaching Activities" (Kip A. Cates); "Classroom Management in Japanese Colleges and Universities: Some Practical Approaches" (Paul Wadden, Sean McGovern); "Control: An Independent Learning Model" (Don Maybin, Lynn…
NASA Astrophysics Data System (ADS)
Stoecklin, A.; Friedli, B.; Puzrin, A. M.
2017-11-01
The volume of submarine landslides is a key controlling factor for their damage potential. Particularly large landslides are found in active sedimentary regions. However, the mechanism controlling their volume, and in particular their thickness, remains unclear. Here we present a mechanism that explains how rapid sedimentation can lead to localized slope failure at a preferential depth and set the conditions for the emergence of large-scale slope-parallel landslides. We account for the contractive shearing behavior of the sediments, which locally accelerates the development of overpressures in the pore fluid, even on very mild slopes. When applied to the Santa Barbara basin, the mechanism offers an explanation for the regional variation in landslide thickness and their sedimentation-controlled recurrence. Although earthquakes are the most likely trigger for these mass movements, our results suggest that the sedimentation process controls the geometry of their source region. The mechanism introduced here is generally applicable and can provide initial conditions for subsequent landslide triggering, runout, and tsunami-source analyses in sedimentary regions.
Urban development control based on transportation carrying capacity
NASA Astrophysics Data System (ADS)
Miharja, M.; Sjafruddin, A. H.
2017-06-01
Severe transportation problems in Indonesian urban areas are stimulated by one fundamental factor, namely lack of awareness on transportation carrying capacity in these areas development control. Urban land use development towards more physical coverage is typically not related with the capability of transportation system to accommodate additional trips volume. Lack of clear connection between development permit with its implication on the transportation side has led to a phenomenon of exceeding transport demand over supply capacity. This paper discusses the concept of urban land use development control which will be related with transport carrying capacity. The discussion would cover both supply and demand sides of transportation. From supply side, the analysis regarding the capacity of transport system would take both existing as well as potential road network capacity could be developed. From demand side, the analysis would be through the control of a maximum floor area and public transport provision. Allowed maximum floor area for development would be at the level of generating traffic at reasonable volume. Ultimately, the objective of this paper is to introduce model to incorporate transport carrying capacity in Indonesian urban land use development control.
Kim, Jin Ah; Blumenfeld, Jon D; Chhabra, Shalini; Dutruel, Silvina P; Thimmappa, Nanda Deepa; Bobb, Warren O; Donahue, Stephanie; Rennert, Hanna E; Tan, Adrian Y; Giambrone, Ashley E; Prince, Martin R
2016-09-01
Purpose To define the magnetic resonance (MR) imaging prevalence of pancreatic cysts in a cohort of patients with autosomal dominant polycystic kidney disease (ADPKD) compared with a control group without ADPKD that was matched for age, sex, and renal function. Materials and Methods In this HIPAA-compliant, institutional review board-approved study, all patients with ADPKD provided informed consent; for control subjects, informed consent was waived. Patients with ADPKD (n = 110) with mutations identified in PKD1 or PKD2 and control subjects without ADPKD or known pancreatic disease (n = 110) who were matched for age, sex, estimated glomerular filtration rate, and date of MR imaging examination were evaluated for pancreatic cysts by using axial and coronal single-shot fast spin-echo T2-weighted images obtained at 1.5 T. Total kidney volume and liver volume were measured. Univariate and multivariable logistic regression analyses were conducted to evaluate potential associations between collected variables and presence of pancreatic cysts among patients with ADPKD. The number, size, location, and imaging characteristics of the cysts were recorded. Results Patients with ADPKD were significantly more likely than control subjects to have at least one pancreatic cyst (40 of 110 patients [36%] vs 25 of 110 control subjects [23%]; P = .027). In a univariate analysis, pancreatic cysts were more prevalent in patients with ADPKD with mutations in PKD2 than in PKD1 (21 of 34 patients [62%] vs 19 of 76 patients [25%]; P = .0002). In a multivariable logistic regression model, PKD2 mutation locus was significantly associated with the presence of pancreatic cysts (P = .0004) and with liver volume (P = .038). Patients with ADPKD and a pancreatic cyst were 5.9 times more likely to have a PKD2 mutation than a PKD1 mutation after adjusting for age, race, sex, estimated glomerular filtration rate, liver volume, and total kidney volume. Conclusion Pancreatic cysts were more prevalent in patients with ADPKD with PKD2 mutation than in control subjects or patients with PKD1 mutation. (©) RSNA, 2016 Online supplemental material is available for this article.
Scan-based volume animation driven by locally adaptive articulated registrations.
Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S
2011-03-01
This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries. © 2011 IEEE
NASA Technical Reports Server (NTRS)
Keating, G. M. (Editor)
1989-01-01
A set of preliminary reference atmosphere models of significant trace species which play important roles in controlling the chemistry, radiation budget, and circulation patterns of the atmosphere were produced. These models of trace species distributions are considered to be reference models rather than standard models; thus, it was not crucial that they be correct in an absolute sense. These reference models can serve as a means of comparison between individual observations, as a first guess in inversion algorithms, and as an approximate representation of observations for comparison to theoretical calculations.
Sun, Jirun; Eidelman, Naomi; Lin-Gibson, Sheng
2009-03-01
The objectives of this study were to (1) demonstrate X-ray micro-computed tomography (microCT) as a viable method for determining the polymerization shrinkage and microleakage on the same sample accurately and non-destructively, and (2) investigate the effect of sample geometry (e.g., C-factor and volume) on polymerization shrinkage and microleakage. Composites placed in a series of model cavities of controlled C-factors and volumes were imaged using microCT to determine their precise location and volume before and after photopolymerization. Shrinkage was calculated by comparing the volume of composites before and after polymerization and leakage was predicted based on gap formation between composites and cavity walls as a function of position. Dye penetration experiments were used to validate microCT results. The degree of conversion (DC) of composites measured using FTIR microspectroscopy in reflectance mode was nearly identical for composites filled in all model cavity geometries. The shrinkage of composites calculated based on microCT results was statistically identical regardless of sample geometry. Microleakage, on the other hand, was highly dependent on the C-factor as well as the composite volume, with higher C-factors and larger volumes leading to a greater probability of microleakage. Spatial distribution of microleakage determined by microCT agreed well with results determined by dye penetration. microCT has proven to be a powerful technique in quantifying polymerization shrinkage and corresponding microleakage for clinically relevant cavity geometries.
The Significance of Splenectomy in Experimental Swine Models of Controlled Hemorrhagic Shock
2013-11-01
carefully eval uated in other experimental models of hem orrhage (e.g., uncontrolled hemorrhage, models with concomitant blunt or orthopedic trauma , and...hemorrhagic shock. J Trauma . 2006;61(1):75 81. 3. Pottecher J, Chemla D, Xavier L, et al. The pulse pressure/heart rate ratio as a marker of stroke volume...changes during hemorrhagic shock and resuscitation in anesthetized swine. J Trauma Acute Care Surg. 2013;74(6):1438 1445. 4.Devlin JJ, Kircher SJ
1994-06-09
Competitive Neural Nets Speed Complex Fluid Flow Calculations 1-366 T. Long, E. Hanzevack Neural Networks for Steam Boiler MIMO Modeling and Advisory Control...Gallinr The Cochlear Nucleus and Primary Cortex as a Sequence of Distributed Neural Filters in Phoneme IV-607 Perception J. Antrobus, C. Tarshish, S...propulsion linear model, a fuel flow actuator modelled as a linear second order system with position and rate limits, and a thrust vectoring actuator
Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort.
Wade, Benjamin S C; Valcour, Victor G; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H; Gutman, Boris A; Thompson, Paul M
2015-01-01
Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%.
47 CFR 68.6 - Telephones with volume control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 3 2011-10-01 2011-10-01 false Telephones with volume control. 68.6 Section 68.6 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK General § 68.6 Telephones with volume control. As...
47 CFR 68.6 - Telephones with volume control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Telephones with volume control. 68.6 Section 68.6 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) CONNECTION OF TERMINAL EQUIPMENT TO THE TELEPHONE NETWORK General § 68.6 Telephones with volume control. As...
[Assessment of local and systemic inflammatory parameters of peripheral burn in an animal model].
Torres, Wilmary; Mendoza, Liseth; Vicci, Hember; Eblen-Zajjur, Antonio; Navarro, María
2016-01-01
To evaluate the edema volume and leukocyte, platelet, and fibrinogen count of peripheral burn in an animal model. The back left leg of Rattus norvegicus (experimental group) was placed in water at 60 °C for 60 seconds or at room temperature (control group). An analysis was carried out before and after the induced burn (at 4, 8, 12, and 24 h). The edema volume was determined by an orthogonal photo, the leukocyte and platelet counts were determined using automated equipment, and the fibrinogen count was determined using the gravimetric method. The maximum value of the edema was recorded at 4 h and leukocytes at 24 h. The platelet count did not vary at different post-edema time intervals. The fibrinogen level increased at 4 h and 24 h. In this animal model we induced systemic inflammation characterized by leukocytosis and elevated fibrinogen levels, combined with edema located at the induction area.
Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC
NASA Astrophysics Data System (ADS)
Hwang, J. J.; Chen, C. K.; Lai, D. Y.
A multi-physics model coupling electrochemical kinetics with fluid dynamics has been developed to simulate the transport phenomena in mono-block-layer built (MOLB) solid oxide fuel cells (SOFC). A typical MOLB module is composed of trapezoidal flow channels, corrugated positive electrode-electrolyte-negative electrode (PEN) plates, and planar inter-connecters. The control volume-based finite difference method is employed for calculation, which is based on the conservation of mass, momentum, energy, species, and electric charge. In the porous electrodes, the flow momentum is governed by a Darcy model with constant porosity and permeability. The diffusion of reactants follows the Bruggman model. The chemistry within the plates is described via surface reactions with a fixed surface-to-volume ratio, tortuosity and average pore size. Species transports as well as the local variations of electrochemical characteristics, such as overpotential and current density distributions in the electrodes of an MOLB SOFC, are discussed in detail.
Simulating vasogenic brain edema using chronic VEGF infusion
Piazza, Martin; Munasinghe, Jeeva; Murayi, Roger; Edwards, Nancy; Montgomery, Blake; Walbridge, Stuart; Merrill, Marsha; Chittiboina, Prashant
2017-01-01
OBJECTIVE To study peritumoral brain edema (PTBE), it is necessary to create a model that accurately simulates vasogenic brain edema (VBE) without introducing a complicated tumor environment. PTBE associated with brain tumors is predominantly a result of vascular endothelial growth factor (VEGF) secreted by brain tumors, and VEGF infusion alone can lead to histological blood-brain barrier (BBB) breakdown in the absence of tumor. VBE is intimately linked to BBB breakdown. The authors sought to establish a model for VBE with chronic infusion of VEGF that can be validated by serial in-vivo MRI and histological findings. METHODS Male Fischer rats (n = 182) underwent stereotactic striatal implantation of MRI-safe brain cannulas for chronic infusion of VEGF (2–20 μg/ml). Following a preinfusion phase (4–6 days), the rats were exposed to VEGF or control rat serum albumin (1.5 μl/hr) for as long as 144 hours. Serial MRI was performed during infusion on a high-field (9.4-T) machine at 12–24, 24–36, 48–72, and 120–144 hours. Rat brains were then collected and histological analysis was performed. RESULTS Control animals and animals infused with 2 μg/ml of VEGF experienced no neurological deficits, seizure activity, or abnormal behavior. Animals treated with VEGF demonstrated a significantly larger volume (42.90 ± 3.842 mm3) of T2 hyper-attenuation at 144 hours when compared with the volume (8.585 ± 1.664 mm3) in control animals (mean difference 34.31 ± 4.187 mm3, p < 0.0001, 95% CI 25.74–42.89 mm3). Postcontrast T1 enhancement in the juxtacanalicular region indicating BBB breakdown was observed in rats undergoing infusion with VEGF. At the later time periods (120–144 hrs) the volume of T1 enhancement (34.97 ± 8.99 mm3) was significantly less compared with the region of edema (p < 0.0001). Histologically, no evidence of necrosis or inflammation was observed with VEGF or control infusion. Immunohistochemical analysis demonstrated astrocyte activation, vascular remodeling, and increased claudin-5 expression in juxtacanalicular regions. Aquaporin-4 expression was increased in both control and VEGF animals in the juxtacanalicular regions. CONCLUSIONS The results of this study show that chronic brain infusion of VEGF creates a reliable model of VBE. This model lacks necrosis and inflammation that are characteristic of previous models of VBE. The model allows for a precise investigation into the mechanism of VBE formation. The authors also anticipate that this model will allow for investigation into the mechanism of glucocorticoid action in abrogating VBE, and to test novel therapeutic strategies targeting PTBE. PMID:28059647
Development of control systems for space shuttle vehicles. Volume 2: Appendixes
NASA Technical Reports Server (NTRS)
Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Ward, M. D.
1971-01-01
A launch phase random normal wind model is presented for delta wing, two-stage, space shuttle control system studies. Equations, data, and simulations for conventional launch studies are given as well as pitch and lateral equations and data for covariance analyses of the launch phase of MSFC vehicle B. Lateral equations and data for North American 130G and 134D are also included along with a high-altitude abort simulation.
NASA Technical Reports Server (NTRS)
Kawamura, K.; Beale, G. O.; Schaffer, J. D.; Hsieh, B. J.; Padalkar, S.; Rodriguez-Moscoso, J. J.
1985-01-01
A reference manual is provided for NESS, a simulation expert system. This manual gives user information regarding starting and operating NASA expert simulation system (NESS). This expert system provides an intelligent interface to a generic simulation program for spacecraft attitude control problems. A menu of the functions the system can perform is provided. Control repeated returns to this menu after executing each user request.
2007-01-01
Combat Critical Care Engineering: Evaluation of Closed Loop Control of Ventilation and Oxygen Flow During Resuscitation in the Compensatory and...Decompensatory Phases of Hemorrhagic Shock: This effort evaluated closed loop control of ventilation and oxygen flow during resuscitation in the...Cerebral Injury Volume, Cerebral Edema, Cerebral Blood Flow and Reactivity, and Histopathology in a Rat Model of Traumatic Brain Injury and Hemorrhagic
Pituitary volumes are changed in patients with conversion disorder.
Atmaca, Murad; Baykara, Sema; Mermi, Osman; Yildirim, Hanefi; Akaslan, Unsal
2016-03-01
Our study group previously measured pituitary volumes and found a relationship between somatoform disoders and pituitary volumes. Therefore, in conversion disorder, another somatoform disorder, we hypothesized that pituitary gland volumes would be reduced. Twenty female patients and healthy controls were recruited to the present investigation. The volumes of the pituitary gland were determined by using a 1.5 Tesla magnetic resonance scanner. We found that the pituitary gland volumes of the patients with conversion disorder were significantly smaller than those of healthy control subjects. In the patients with conversion disorder but not in the healthy control group, a significant negative correlation between the duration of illness and pituitary gland volume was determined. In summary, in the present study, we suggest that the patients with conversion disorder have smaller pituitary volumes compared to those of healthy control subjects. Further studies should confirm our data and ascertain whether volumetric alterations determined in the patients with conversion disorder can be changed with treatment or if they change over time.
NASA Astrophysics Data System (ADS)
Taisne, B.; Pansino, S.; Manta, F.; Tay Wen Jing, C.
2017-12-01
Have you ever dreamed about continuous, high resolution InSAR data? Have you ever dreamed about a transparent earth allowing you to see what is actually going on under a volcano? Well, you likely dreamed about an analogue facility that allows you to scale down the natural system to fit into a room, with a controlled environment and complex visualisation system. Analogue modeling has been widely used to understand magmatic processes and thanks to a transparent analogue for the elastic Earth's crust, we can see, as it evolves with time, the migration of a dyke, the volume change of a chamber or the rise of a bubble in a conduit. All those phenomena are modeled theoretically or numerically, with their own simplifications. Therefore, how well are we really constraining the physical parameters describing the evolution of a dyke or a chamber? Getting access to those parameters, in real time and with high level of confidence is of paramount importance while dealing with unrest at volcanoes. The aim of this research is to estimate the uncertainties of the widely used Okada and Mogi models. To do so, we design a set of analogue experiments allowing us to explore different elastic properties of the medium, the characteristic of the fluid injected into the medium as well as the depth, size and volume change of a reservoir. The associated surface deformation is extracted using an array of synchronised cameras and using digital image correlation and structure from motion for horizontal and vertical deformation respectively. The surface deformation are then inverted to retrieve the controlling parameters (e.g. location and volume change of a chamber, or orientation, position, length, breadth and opening of a dyke). By comparing those results with the known parameters, that we can see and measure independently, we estimate the uncertainties of the models themself, and the associated level of confidence for each of the inverted parameters.
The sudden coalescene model of the boiling crisis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrica, P.M.; Clausse, A.
1995-09-01
A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.
NASA Technical Reports Server (NTRS)
Callender, E. David; Steinbacher, Jody
1989-01-01
This is the fifth of five volumes on Information System Life-Cycle and Documentation Standards. This volume provides a well organized, easily used standard for management control and status reports used in monitoring and controlling the management, development, and assurance of informations systems and software, hardware, and operational procedures components, and related processes.
Design and Dynamic Model of a Frog-inspired Swimming Robot Powered by Pneumatic Muscles
NASA Astrophysics Data System (ADS)
Fan, Ji-Zhuang; Zhang, Wei; Kong, Peng-Cheng; Cai, He-Gao; Liu, Gang-Feng
2017-09-01
Pneumatic muscles with similar characteristics to biological muscles have been widely used in robots, and thus are promising drivers for frog inspired robots. However, the application and nonlinearity of the pneumatic system limit the advance. On the basis of the swimming mechanism of the frog, a frog-inspired robot based on pneumatic muscles is developed. To realize the independent tasks by the robot, a pneumatic system with internal chambers, micro air pump, and valves is implemented. The micro pump is used to maintain the pressure difference between the source and exhaust chambers. The pneumatic muscles are controlled by high-speed switch valves which can reduce the robot cost, volume, and mass. A dynamic model of the pneumatic system is established for the simulation to estimate the system, including the chamber, muscle, and pneumatic circuit models. The robot design is verified by the robot swimming experiments and the dynamic model is verified through the experiments and simulations of the pneumatic system. The simulation results are compared to analyze the functions of the source pressure, internal volume of the muscle, and circuit flow rate which is proved the main factor that limits the response of muscle pressure. The proposed research provides the application of the pneumatic muscles in the frog inspired robot and the pneumatic model to study muscle controller.
Mills, Kathryn L; Goddings, Anne-Lise; Herting, Megan M; Meuwese, Rosa; Blakemore, Sarah-Jayne; Crone, Eveline A; Dahl, Ronald E; Güroğlu, Berna; Raznahan, Armin; Sowell, Elizabeth R; Tamnes, Christian K
2016-11-01
Longitudinal studies including brain measures acquired through magnetic resonance imaging (MRI) have enabled population models of human brain development, crucial for our understanding of typical development as well as neurodevelopmental disorders. Brain development in the first two decades generally involves early cortical grey matter volume (CGMV) increases followed by decreases, and monotonic increases in cerebral white matter volume (CWMV). However, inconsistencies regarding the precise developmental trajectories call into question the comparability of samples. This issue can be addressed by conducting a comprehensive study across multiple datasets from diverse populations. Here, we present replicable models for gross structural brain development between childhood and adulthood (ages 8-30years) by repeating analyses in four separate longitudinal samples (391 participants; 852 scans). In addition, we address how accounting for global measures of cranial/brain size affect these developmental trajectories. First, we found evidence for continued development of both intracranial volume (ICV) and whole brain volume (WBV) through adolescence, albeit following distinct trajectories. Second, our results indicate that CGMV is at its highest in childhood, decreasing steadily through the second decade with deceleration in the third decade, while CWMV increases until mid-to-late adolescence before decelerating. Importantly, we show that accounting for cranial/brain size affects models of regional brain development, particularly with respect to sex differences. Our results increase confidence in our knowledge of the pattern of brain changes during adolescence, reduce concerns about discrepancies across samples, and suggest some best practices for statistical control of cranial volume and brain size in future studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.
2015-11-01
This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.
Joossen, Cedric; Lanckacker, Ellen; Zakaria, Nadia; Koppen, Carina; Joossens, Jurgen; Cools, Nathalie; De Meester, Ingrid; Lambeir, Anne-Marie; Delputte, Peter; Maes, Louis; Cos, Paul
2016-05-01
The aim of this research was to optimize and validate an animal model for dry eye, adopting clinically relevant evaluation parameters. Dry eye was induced in female Wistar rats by surgical removal of the exorbital lacrimal gland. The clinical manifestations of dry eye were evaluated by tear volume measurements, corneal fluorescein staining, cytokine measurements in tear fluid, MMP-9 mRNA expression and CD3(+) cell infiltration in the conjunctiva. The animal model was validated by treatment with Restasis(®) (4 weeks) and commercial dexamethasone eye drops (2 weeks). Removal of the exorbital lacrimal gland resulted in 50% decrease in tear volume and a gradual increase in corneal fluorescein staining. Elevated levels of TNF-α and IL-1α have been registered in tear fluid together with an increase in CD3(+) cells in the palpebral conjunctiva when compared to control animals. Additionally, an increase in MMP-9 mRNA expression was recorded in conjunctival tissue. Reference treatment with Restasis(®) and dexamethasone eye drops had a positive effect on all evaluation parameters, except on tear volume. This rat dry eye model was validated extensively and judged appropriate for the evaluation of novel compounds and therapeutic preparations for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modelling the behaviour of steel fibre reinforced precast beam-to-column connection
NASA Astrophysics Data System (ADS)
Chai, C. E.; Sarbini, NN; Ibrahim, I. S.; Ma, C. K.; Tajol Anuar, M. Z.
2017-11-01
The numerical behaviour of steel fibre reinforced concrete (SFRC) corbels reinforced with different fibre volume ratio subjected to vertical incremental load is presented in this paper. Precast concrete structures had become popular in the construction field, which offer a faster, neater, safer, easier and cheaper construction work. The construction components are prefabricated in controlled environment under strict supervision before being erected on site. However, precast beam-column connections are prone to failure due to the brittle properties of concrete. Finite element analysis (FEA) is adopted due to the nonlinear behaviour of concrete and SFRC. The key objective of this research is to develop a reliable nonlinear FEA model to represent the behaviour of reinforced concrete corbel. The developed model is validated with experimental data from previous researches. Then, the validated FEA model is used to predict the behaviour of SFRC corbel reinforced with different fibre volume ratio by changing the material parameters. The results show that the addition of steel fibre (SF) increases the load carrying capacity, ductility, stiffness, and changed the failure mode of corbel from brittle bending-shear to flexural ductile. On the other hand, the increasing of SF volume ratio also leads to increased load carrying capacity, ductility, and stiffness of corbel.
A compressible Navier-Stokes solver with two-equation and Reynolds stress turbulence closure models
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
1992-01-01
This report outlines the development of a general purpose aerodynamic solver for compressible turbulent flows. Turbulent closure is achieved using either two equation or Reynolds stress transportation equations. The applicable equation set consists of Favre-averaged conservation equations for the mass, momentum and total energy, and transport equations for the turbulent stresses and turbulent dissipation rate. In order to develop a scheme with good shock capturing capabilities, good accuracy and general geometric capabilities, a multi-block cell centered finite volume approach is used. Viscous fluxes are discretized using a finite volume representation of a central difference operator and the source terms are treated as an integral over the control volume. The methodology is validated by testing the algorithm on both two and three dimensional flows. Both the two equation and Reynolds stress models are used on a two dimensional 10 degree compression ramp at Mach 3, and the two equation model is used on the three dimensional flow over a cone at angle of attack at Mach 3.5. With the development of this algorithm, it is now possible to compute complex, compressible high speed flow fields using both two equation and Reynolds stress turbulent closure models, with the capability of eventually evaluating their predictive performance.
NASA Astrophysics Data System (ADS)
Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Agustín-Flores, Javier; Smith, Ian E. M.; Lindsay, Jan
2013-10-01
Monogenetic basaltic volcanism is characterised by a complex array of behaviours in the spatial distribution of magma output and also temporal variability in magma flux and eruptive frequency. Investigating this in detail is hindered by the difficulty in evaluating ages of volcanic events as well as volumes erupted in each volcano. Eruptive volumes are an important input parameter for volcanic hazard assessment and may control eruptive scenarios, especially transitions between explosive and effusive behaviour and the length of eruptions. Erosion, superposition and lack of exposure limit the accuracy of volume determination, even for very young volcanoes. In this study, a systematic volume estimation model is developed and applied to the Auckland Volcanic Field in New Zealand. In this model, a basaltic monogenetic volcano is categorised in six parts. Subsurface portions of volcanoes, such as diatremes beneath phreatomagmatic volcanoes, or crater infills, are approximated by geometrical considerations, based on exposed analogue volcanoes. Positive volcanic landforms, such as scoria/spatter cones, tephras rings and lava flow, were defined by using a Light Detection and Ranging (LiDAR) survey-based Digital Surface Model (DSM). Finally, the distal tephra associated with explosive eruptions was approximated using published relationships that relate original crater size to ejecta volumes. Considering only those parts with high reliability, the overall magma output (converted to Dense Rock Equivalent) for the post-250 ka active Auckland Volcanic Field in New Zealand is a minimum of 1.704 km3. This is made up of 1.329 km3 in lava flows, 0.067 km3 in phreatomagmatic crater lava infills, 0.090 km3 within tephra/tuff rings, 0.112 km3 inside crater lava infills, and 0.104 km3 within scoria cones. Using the minimum eruptive volumes, the spatial and temporal magma fluxes are estimated at 0.005 km3/km2 and 0.007 km3/ka. The temporal-volumetric evolution of Auckland is characterised by an increasing magma flux in the last 40 ky, which is inferred to be triggered by plate tectonics processes (e.g. increased asthenospheric shearing and backarc spreading of underneath the Auckland region).
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Technical Reports Server (NTRS)
Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)
1991-01-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Astrophysics Data System (ADS)
Wada, Ben K.; Fanson, James L.; Miura, Koryo
1991-11-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Yock, Adam D; Rao, Arvind; Dong, Lei; Beadle, Beth M; Garden, Adam S; Kudchadker, Rajat J; Court, Laurence E
2014-05-01
The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: -11.6%-23.8%) and 14.6% (range: -7.3%-27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: -6.8%-40.3%) and 13.1% (range: -1.5%-52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: -11.1%-20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.
NASA Astrophysics Data System (ADS)
Hosseini, B.; Fauria, K.; Manga, M.; Carey, R.; Soule, S. A.
2016-12-01
During the 2015 MESH (Mapping, Exploration, and Sampling at Havre) expedition to the submarine Havre caldera volcano, we collected pumice from the 2012 eruption. Here, we report pumice volume, porosity, and floatation time from measurements on 32 clasts (0.2-16 g) that provide insight into the eruption dynamics and mechanisms that deposited these clasts on the seafloor. We measured pumice volume using photogrammetry, capturing 100-180 images per sample. We used a series of open-source software—VisualSFM and MeshLab—to process the images and construct volume models. Combined with measurements of mass, we can determine pumice porosity. We calculated a mean porosity of 0.86+/-0.03 for the 32 samples. The lowest measured porosity of 0.78 was from a fragment of a giant 1.5-m diameter pumice clast. In addition to quantifying pumice volume and porosity, we conducted floatation experiments in which we cleaned, dried, and set the 32 samples on water and measured the time required for each clast to sink. Pumice floatation times varied from 0.8-226 days. We found that pumice floatation time scales with both pumice volume and porosity. These trends are consistent with a gas trapping mechanism for cold pumice floatation and suggest that pumice porosity, in addition to pumice volume, exerts an important control on the floatation time and fate of floating pumice. Despite the wide range of floatation times for these clasts, the proximal to vent collection suggests that these pumice (with the possible exception of the giant pumice fragment) were deposited on the seafloor soon after the 2012 eruption and never reached the ocean surface.
Small-volume resuscitation from hemorrhagic shock with polymerized human serum albumin.
Messmer, Catalina; Yalcin, Ozlem; Palmer, Andre F; Cabrales, Pedro
2012-10-01
Human serum albumin (HSA) is used as a plasma expander; however, albumin is readily eliminated from the intravascular space. The objective of this study was to establish the effects of various-sized polymerized HSAs (PolyHSAs) during small-volume resuscitation from hemorrhagic shock on systemic parameters, microvascular hemodynamics, and functional capillary density in the hamster window chamber model. Polymerized HSA size was controlled by varying the cross-link density (ie, molar ratio of glutaraldehyde to HSA). Hemorrhage was induced by controlled arterial bleeding of 50% of the animal's blood volume (BV), and hypovolemic shock was maintained for 1 hour. Resuscitation was implemented in 2 phases, first, by infusion of 3.5% of the BV of hypertonic saline (7.5% NaCl) then followed by infusion of 10% of the BV of each PolyHSA. Resuscitation provided rapid recovery of blood pressure, blood gas parameters, and microvascular perfusion. Polymerized HSA at a glutaraldehyde-to-HSA molar ratio of 60:1 (PolyHSA(60:1)) provided superior recovery of blood pressure, microvascular blood flow, and functional capillary density, and acid-base balance, with sustained volume expansion in relation to the volume infused. The high molecular weight of PolyHSA(60:1) increased the hydrodynamic radius and solution viscosity. Pharmacokinetic analysis of PolyHSA(60:1) indicates reduced clearance and increased circulatory half-life compared with monomeric HSA and other PolyHSA formulations. In conclusion, HSA molecular size and solution viscosity affect central hemodynamics, microvascular blood flow, volume expansion, and circulation persistence during small-volume resuscitation from hemorrhagic shock. In addition, PolyHSA can be an alternative to HSA in pathophysiological situations with compromised vascular permeability. Copyright © 2012 Elsevier Inc. All rights reserved.
Senatorov, Vladimir V; Damadzic, Ruslan; Mann, Claire L; Schwandt, Melanie L; George, David T; Hommer, Daniel W; Heilig, Markus; Momenan, Reza
2015-01-01
The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22-56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes. Volumetric measurements of the amygdala were obtained using a model-based segmentation/registration tool. In alcohol-dependent patients, anterior insula volumes were bilaterally reduced compared to healthy volunteers (left by 10%, right by 11%, normalized to total brain volumes). Furthermore, alcohol-dependent patients, compared with healthy volunteers, had bilaterally increased amygdala volumes. The left amygdala was increased by 28% and the right by 29%, normalized to total brain volumes. Post-mortem studies of the anterior insula showed that the reduced anterior insular volume may be associated with a population of von Economo neurons, which were 60% diminished in subjects with a history of alcoholism (n = 6) as compared to subjects without a history of alcoholism (n = 6) (aged 32-56 years, all males). The pattern of neuroanatomical change observed in our alcohol-dependent patients might result in a loss of top-down control of amygdala function, potentially contributing to impaired social cognition as well as an inability to control negatively reinforced alcohol seeking and use. Published by Oxford University Press on behalf of the Guarantors of Brain 2014. This work is written by US Government employees and is in the public domain in the US.
Hippocampal volume is decreased in adults with hypothyroidism.
Cooke, Gillian E; Mullally, Sinead; Correia, Neuman; O'Mara, Shane M; Gibney, James
2014-03-01
Thyroid hormones are important for the adult brain, particularly regions of the hippocampus including the dentate gyrus and CA1 and CA3 regions. The hippocampus is a thyroid hormone receptor-rich region of the brain involved in learning and memory. Consequently, alterations in thyroid hormone levels have been reported to impair hippocampal-associated learning and memory, synaptic plasticity, and neurogenesis. While these effects have been shown primarily in developing rats, as well as in adult rats, little is known about the effects in adult humans. There are currently no data regarding structural changes in the hippocampus as a result of adult-onset hypothyroidism. We aimed to establish whether hippocampal volume was reduced in patients with untreated adult-onset hypothyroidism compared to age-matched healthy controls. High-resolution magnetization-prepared rapid acquisition with gradient echo (MPRAGE) scans were performed on 11 untreated hypothyroid adults and 9 age-matched control subjects. Hypothyroidism was diagnosed based on increased levels of thyrotropin (TSH) and reduced levels of free thyroxine (fT4). Volumetric analysis of the right and left hippocampal regions, using functional magnetic resonance imaging of the brain (FMRIB) integrated registration and segmentation tool (FIRST), demonstrated significant volume reduction in the right hippocampus in the hypothyroid patients relative to the control group. These findings provide preliminary evidence that hypothyroidism results in structural deficits in the adult human brain. Decreases in volume in the right hippocampus were evident in patients with adult-onset overt hypothyroidism, supporting some of the findings in animal models.
Saxbe, Darby; Khoddam, Hannah; Piero, Larissa Del; Stoycos, Sarah A; Gimbel, Sarah I; Margolin, Gayla; Kaplan, Jonas T
2018-06-11
Community violence exposure is a common stressor, known to compromise youth cognitive and emotional development. In a diverse, urban sample of 22 adolescents, participants reported on community violence exposure (witnessing a beating or illegal drug use, hearing gun shots, or other forms of community violence) in early adolescence (average age 12.99), and underwent a neuroimaging scan 3-5 years later (average age 16.92). Community violence exposure in early adolescence predicted smaller manually traced left and right hippocampal and amygdala volumes in a model controlling for age, gender, and concurrent community violence exposure, measured in late adolescence. Community violence continued to predict hippocampus (but not amygdala) volumes after we also controlled for family aggression exposure in early adolescence. Community violence exposure was also associated with stronger resting state connectivity between the right hippocampus (using the manually traced structure as a seed region) and bilateral frontotemporal regions including the superior temporal gyrus and insula. These resting state connectivity results held after controlling for concurrent community violence exposure, SES, and family aggression. Although this is the first study focusing on community violence in conjunction with brain structure and function, these results dovetail with other research linking childhood adversity with smaller subcortical volumes in adolescence and adulthood, and with altered frontolimbic resting state connectivity. Our findings suggest that even community-level exposure to neighborhood violence can have detectable neural correlates in adolescents. © 2018 John Wiley & Sons Ltd.
Yue, Yong; Yao, Yong-jie; Xie, Xiao-ping; Wang, Bing; Zhu, Qing-sheng; Wu, Xing-yu
2002-12-01
Objective. To observe the changes of pressure-volume relationships of rabbit femoral veins and their structural changes caused by simulated weightlessness. Method. Head-Down Tilt (HDT) -20 degrees rabbit model was used to simulate weightlessness. Twenty four healthy male New Zealand Rabbits were randomly divided into 21 d HDT group,10 d HDT group and control group, (8 in each group). Pressure-volume (P-V) relationship of rabbits femoral veins was measured and the microstructure of the veins was observed. Result. The femoral vein P-V relationship curves of HDT groups showed a larger volume change ratio than that of control group. This change was that 21 d HDT group was even more obvious than that of HDT-10 d group. B1 and B2 in quadratic equations of 21 d HDT group were significantly higher than the values of both 10 d HDT group and control group during expansion (inflow) and collapse (outflow) (P<0.01). The result of histological examination showed that the contents and structure of femoral vein wall of HDT-rabbits changed significantly. Endothelial cells of femoral vein became short and columnar or cubic, some of which fell off. Smooth muscle layer became thinner. Conclusion. Femoral venous compliance increased after weightlessness-simulation and the femoral venous compliance in 21 d-HDT rabbits increased more obviously than that in 10 d-HDT rabbits. The structure of femoral vein wall had changed obviously.
Hurwitz, Barry E; Coryell, Virginia T; Parker, Meela; Martin, Pedro; Laperriere, Arthur; Klimas, Nancy G; Sfakianakis, George N; Bilsker, Martin S
2009-10-19
The study examined whether deficits in cardiac output and blood volume in a CFS (chronic fatigue syndrome) cohort were present and linked to illness severity and sedentary lifestyle. Follow-up analyses assessed whether differences in cardiac output levels between CFS and control groups were corrected by controlling for cardiac contractility and TBV (total blood volume). The 146 participants were subdivided into two CFS groups based on symptom severity data, severe (n=30) and non-severe (n=26), and two healthy non-CFS control groups based on physical activity, sedentary (n=58) and non-sedentary (n=32). Controls were matched to CFS participants using age, gender, ethnicity and body mass. Echocardiographic measures indicated that the severe CFS participants had 10.2% lower cardiac volume (i.e. stroke index and end-diastolic volume) and 25.1% lower contractility (velocity of circumferential shortening corrected by heart rate) than the control groups. Dual tag blood volume assessments indicated that the CFS groups had lower TBV, PV (plasma volume) and RBCV (red blood cell volume) than control groups. Of the CFS subjects with a TBV deficit (i.e. > or = 8% below ideal levels), the mean+/-S.D. percentage deficit in TBV, PV and RBCV were -15.4+/-4.0, -13.2+/-5.0 and -19.1+/-6.3% respectively. Lower cardiac volume levels in CFS were substantially corrected by controlling for prevailing TBV deficits, but were not affected by controlling for cardiac contractility levels. Analyses indicated that the TBV deficit explained 91-94% of the group differences in cardiac volume indices. Group differences in cardiac structure were offsetting and, hence, no differences emerged for left ventricular mass index. Therefore the findings indicate that lower cardiac volume levels, displayed primarily by subjects with severe CFS, were not linked to diminished cardiac contractility levels, but were probably a consequence of a co-morbid hypovolaemic condition. Further study is needed to address the extent to which the cardiac and blood volume alterations in CFS have physiological and clinical significance.
NASA Technical Reports Server (NTRS)
Kawamura, K.; Beale, G. O.; Schaffer, J. D.; Hsieh, B. J.; Padalkar, S.; Rodriguez-Moscoso, J. J.
1985-01-01
The results of the first phase of Research on an Expert System for Database Operation of Simulation/Emulation Math Models, is described. Techniques from artificial intelligence (AI) were to bear on task domains of interest to NASA Marshall Space Flight Center. One such domain is simulation of spacecraft attitude control systems. Two related software systems were developed to and delivered to NASA. One was a generic simulation model for spacecraft attitude control, written in FORTRAN. The second was an expert system which understands the usage of a class of spacecraft attitude control simulation software and can assist the user in running the software. This NASA Expert Simulation System (NESS), written in LISP, contains general knowledge about digital simulation, specific knowledge about the simulation software, and self knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, B.; Robinson, B.; Mosher, T.
From 1982 through 1986, Philadelphia Electric Company (PECo) hosted the test of a communication system proposed for distribution automation and load management. The system included a utility control center (UCC), a broadcast interface unit in the AM station transmitter, and receiving units. To implement two-way communications, transmitters operating in the VHF spectrum at 154.463750 MHz were coupled with AM receivers. The VHF signal was received by four central receivers installed in the PECo service territory, and communicated to the UCC by either microwave or telephone links. The AM carrier signal provided communications and a synchronous time reference for the communicationmore » system. Station WCAU, 1210 kHz, was the broadcaster for the test. The test results confirmed the effectiveness of the AM broadcast link. However, in this particular implementation, the VHF link fell short of both expectation and acceptablity for return-path communications. The data is summarized and discussed in Volume I, and presented with additional detail in Volume II. A communications system consultant developed analytical models for the AM and VHF signal paths, and analyzed the data with respect to the models. Volume I of the two-volume report describes the communications system in general, presents the major data interpretations and conclusions, and describes the chronology and background for the project. It must be read and understood as a prerequisite for studying the information in Volume II. 14 figs., 1 tab.« less
A flatness-based control approach to drug infusion for cardiac function regulation
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Zervos, Nikolaos; Melkikh, Alexey
2016-12-01
A new control method based on differential flatness theory is developed in this article, aiming at solving the problem of regulation of haemodynamic parameters, Actually control of the cardiac output (volume of blood pumped out by heart per unit of time) and of the arterial blood pressure is achieved through the administered infusion of cardiovascular drugs, such as dopamine and sodium nitroprusside. Time delays between the control inputs and the system's outputs are taken into account. Using the principle of dynamic extension, which means that by considering certain control inputs and their derivatives as additional state variables, a state-space description for the heart's function is obtained. It is proven that the dynamic model of the heart is a differentially flat one. This enables its transformation into a linear canonical and decoupled form, for which the design of a stabilizing feedback controller becomes possible. The proposed feedback controller is of proven stability and assures fast and accurate tracking of the reference setpoints by the outputs of the heart's dynamic model. Moreover, by using a Kalman Filter-based disturbances' estimator, it becomes possible to estimate in real-time and compensate for the model uncertainty and external perturbation inputs that affect the heart's model.
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 2
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
The results of a workshop on identification and control of flexible space structures held in San Diego, CA, July 4 to 6, 1984 are discussed. The main objectives of the workshop were to provide a forum to exchange ideas in exploring the most advanced modeling, estimation, identification and control methodologies to flexible space structures. The workshop responded to the rapidly growing interest within NASA in large space systems (space station, platforms, antennas, flight experiments) currently under design. Dynamic structural analysis, control theory, structural vibration and stability, and distributed parameter systems are discussed.
NASA Astrophysics Data System (ADS)
Sheikholeslami, M.; Li, Zhixiong; Shamlooei, M.
2018-06-01
Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.
Neuroprotective effects of Lepidium meyenii (Maca).
Pino-Figueroa, Alejandro; Nguyen, Diane; Maher, Timothy J
2010-06-01
The neuroprotective activity of the plant Lepidium meyenii (Maca) was studied in two experimental models: in vitro and in vivo. Crayfish neurons were pretreated with vehicle or the pentane extract from Maca, subjected to H(2)O(2), and their viability determined microscopically and chemically. A significant concentration-neuroprotective effect relationship was demonstrated. The pentane extract was then administered intravenously to rats prior to and following middle cerebral artery occlusion. While infarct volumes were decreased for the lower dose, higher doses increased infarct volumes compared to controls. These results suggest a potential application of Maca as a neuroprotectant.
An object-oriented framework for medical image registration, fusion, and visualization.
Zhu, Yang-Ming; Cochoff, Steven M
2006-06-01
An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.
Enrichment and Training Improve Cognition in Rats with Cortical Malformations
Jenks, Kyle R.; Lucas, Marcella M.; Duffy, Ben A.; Robbins, Ashlee A.; Gimi, Barjor; Barry, Jeremy M.; Scott, Rod C.
2013-01-01
Children with malformations of cortical development (MCD) frequently have associated cognitive impairments which reduce quality of life. We hypothesized that cognitive deficits associated with MCD can be improved with environmental manipulation or additional training. The E17 methylazoxymethanol acetate (MAM) exposure model bears many anatomical hallmarks seen in human MCDs as well as similar behavioral and cognitive deficits. We divided control and MAM exposed Sprague-Dawley rats into enriched and non-enriched groups and tested performance in the Morris water maze. Another group similarly divided underwent sociability testing and also underwent Magnetic Resonance Imaging (MRI) scans pre and post enrichment. A third group of control and MAM rats without enrichment were trained until they reached criterion on the place avoidance task. MAM rats had impaired performance on spatial tasks and enrichment improved performance of both control and MAM animals. Although MAM rats did not have a deficit in sociability they showed similar improvement with enrichment as controls. MRI revealed a whole brain volume decrease with MAM exposure, and an increase in both MAM and control enriched volumes in comparison to non-enriched animals. In the place avoidance task, MAM rats required approximately 3 times as long to reach criterion as control animals, but with additional training were able to reach control performance. Environmental manipulation and additional training can improve cognition in a rodent MCD model. We therefore suggest that patients with MCD may benefit from appropriate alterations in educational strategies, social interaction and environment. These factors should be considered in therapeutic strategies. PMID:24358362
Lesion symptom map of cognitive-postural interference in multiple sclerosis.
Ruggieri, Serena; Fanelli, Fulvia; Castelli, Letizia; Petsas, Nikolaos; De Giglio, Laura; Prosperini, Luca
2018-04-01
To investigate the disease-altered structure-function relationship underlying the cognitive-postural interference (CPI) phenomenon in multiple sclerosis (MS). We measured postural sway of 96 patients and 48 sex-/age-matched healthy controls by force platform in quiet standing (single-task (ST)) while performing the Stroop test (dual-task (DT)) to estimate the dual-task cost (DTC) of balance. In patient group, binary T2 and T1 lesion masks and their corresponding lesion volumes were obtained from magnetic resonance imaging (MRI) of brain. Normalized brain volume (NBV) was also estimated by SIENAX. Correlations between DTC and lesion location were determined by voxel-based lesion symptom mapping (VLSM) analyses. Patients had greater DTC than controls ( p < 0.001). Among whole brain MRI metrics, only T1 lesion volume correlated with DTC ( r = -0.27; p < 0.01). However, VLSM analysis did not reveal any association with DTC using T1 lesion masks. By contrast, we found clusters of T2 lesions in distinct anatomical regions (anterior and superior corona radiata, bilaterally) to be correlated with DTC ( p < 0.01 false discovery rate (FDR)-corrected). A multivariable stepwise regression model confirmed findings from VLSM analysis. NBV did not contribute to fit the model. Our findings suggest that the CPI phenomenon in MS can be explained by disconnection along specific areas implicated in task-switching abilities and divided attention.
Wang, Shaoyi; Zhang, Zhiyuan; Xia, Lunguo; Zhao, Jun; Sun, Xiaojuan; Zhang, Xiuli; Ye, Dongxia; Uludağ, Hasan; Jiang, Xinquan
2010-01-01
The objective of this study is to systematically evaluate the effects of a tissue-engineered bone complex for maxillary sinus augmentation in a canine model. Twelve sinus floor augmentation surgeries in 6 animals were performed bilaterally and randomly repaired with the following 3 groups of grafts: group A consisted of tissue-engineered osteoblasts/beta-TCP complex (n=4); group B consisted of beta-TCP alone (n=4); group C consisted of autogenous bone obtained from iliac crest as a positive control (n=4). All dogs had uneventful healings following the surgery. Sequential polychrome fluorescent labeling, maxillofacial CT, microhardness tests, as well as histological and histomorphometric analyses indicated that the tissue-engineered osteoblasts/beta-TCP complex dramatically promoted bone formation and mineralization and maximally maintained the height and volume of elevated maxillary sinus. By comparison, both control groups of beta-TCP or autologous iliac bone showed considerable resorption and replacement by fibrous or fatty tissue. We thus conclude that beta-TCP alone could barely maintain the height and volume of the elevated sinus floor, and that the transplantation of autogenous osteoblasts on beta-TCP could promote earlier bone formation and mineralization, maximally maintain height, volume and increase the compressive strength of augmented maxillary sinus. This tissue engineered bone complex might be a better alternative to autologous bone for the clinical edentulous maxillary sinus augmentation. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Kuruoglu, Enis; Onger, Mehmet Emin; Marangoz, Abdullah Hilmi; Kocacan, Suleyman Emre; Cokluk, Cengiz; Kaplan, Suleyman
2017-01-01
A quantitative model of postlaminectomy was designed in rats. The effects of Momordica Charantia (MC) and Ankaferd blood stopper (ABS) on the bone and scar formation after laminectomy were concurrently evaluated. Eighteen adult Wistar albino rats underwent lumbar laminectomy at L2-L3 vertebral levels, and were randomly assigned to one of three groups of six rats each. The Treatment group received MC and ABS treatment and the Control group was left untreated. Rats were sacrificed 4 weeks after treatment. Then; the lumbar spine was excised en-block, fixed and decalcified. Sections were stained with hematoxylin and eosin (H&E) and Masson"s trichrome, and evaluated for peridural fibrosis (PF), new bone formation, and vascular proliferation. Total volume of new bone in the MC group was significantly increased in comparison to the Control group (p < 0.05). Also; there was highly significant increase in terms of the total volume of fibrous tissue in the MC and ABS groups when compared with the Control group (p < 0.01). Besides; there was a highly significant difference between the MC and the Control groups (p < 0.01) in point of total volume of vessel. Both MC and ABS are not convenient to prevent the PF formation and MC may promote new bone formation and angiogenesis after lumbar laminectomy in rats.
NASA Astrophysics Data System (ADS)
Gjetvaj, Filip; Russian, Anna; Gouze, Philippe; Dentz, Marco
2015-10-01
Both flow field heterogeneity and mass transfer between mobile and immobile domains have been studied separately for explaining observed anomalous transport. Here we investigate non-Fickian transport using high-resolution 3-D X-ray microtomographic images of Berea sandstone containing microporous cement with pore size below the setup resolution. Transport is computed for a set of representative elementary volumes and results from advection and diffusion in the resolved macroporosity (mobile domain) and diffusion in the microporous phase (immobile domain) where the effective diffusion coefficient is calculated from the measured local porosity using a phenomenological model that includes a porosity threshold (ϕθ) below which diffusion is null and the exponent n that characterizes tortuosity-porosity power-law relationship. We show that both flow field heterogeneity and microporosity trigger anomalous transport. Breakthrough curve (BTC) tailing is positively correlated to microporosity volume and mobile-immobile interface area. The sensitivity analysis showed that the BTC tailing increases with the value of ϕθ, due to the increase of the diffusion path tortuosity until the volume of the microporosity becomes negligible. Furthermore, increasing the value of n leads to an increase in the standard deviation of the distribution of effective diffusion coefficients, which in turn results in an increase of the BTC tailing. Finally, we propose a continuous time random walk upscaled model where the transition time is the sum of independently distributed random variables characterized by specific distributions. It allows modeling a 1-D equivalent macroscopic transport honoring both the control of the flow field heterogeneity and the multirate mass transfer between mobile and immobile domains.
Zeevi, Tal; Levy, Ayelet; Brauner, Neima; Gefen, Amit
2018-06-01
Scientific evidence regarding microclimate and its effects on the risk of pressure ulcers (PU) remains sparse. It is known that elevated skin temperatures and moisture may affect metabolic demand as well as the mechanical behaviour of the tissue. In this study, we incorporated these microclimate factors into a novel, 3-dimensional multi-physics coupled model of the human buttocks, which simultaneously determines the biothermal and biomechanical behaviours of the buttocks in supine lying on different support surfaces. We compared 3 simulated thermally controlled mattresses with 2 reference foam mattresses. A tissue damage score was numerically calculated in a relevant volume of the model, and the cooling effect of each 1°C decrease of tissue temperature was deduced. Damage scores of tissues were substantially lower for the non-foam mattresses compared with the foams. The percentage tissue volume at risk within the volume of interest was found to grow exponentially as the average tissue temperature increased. The resultant average sacral skin temperature was concluded to be a good predictor for an increased risk of PU/injuries. Each 1°C increase contributes approximately 14 times as much to the risk with respect to an increase of 1 mmHg of pressure. These findings highlight the advantages of using thermally controlled support surfaces as well as the need to further assess the potential damage that may be caused by uncontrolled microclimate conditions on inadequate support surfaces in at-risk patients. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Abnormal hippocampal shape in offenders with psychopathy.
Boccardi, Marina; Ganzola, Rossana; Rossi, Roberta; Sabattoli, Francesca; Laakso, Mikko P; Repo-Tiihonen, Eila; Vaurio, Olli; Könönen, Mervi; Aronen, Hannu J; Thompson, Paul M; Frisoni, Giovanni B; Tiihonen, Jari
2010-03-01
Posterior hippocampal volumes correlate negatively with the severity of psychopathy, but local morphological features are unknown. The aim of this study was to investigate hippocampal morphology in habitually violent offenders having psychopathy. Manual tracings of hippocampi from magnetic resonance images of 26 offenders (age: 32.5 +/- 8.4), with different degrees of psychopathy (12 high, 14 medium psychopathy based on the Psychopathy Checklist Revised), and 25 healthy controls (age: 34.6 +/- 10.8) were used for statistical modelling of local changes with a surface-based radial distance mapping method. Both offenders and controls had similar hippocampal volume and asymmetry ratios. Local analysis showed that the high psychopathy group had a significant depression along the longitudinal hippocampal axis, on both the dorsal and ventral aspects, when compared with the healthy controls and the medium psychopathy group. The opposite comparison revealed abnormal enlargement of the lateral borders in both the right and left hippocampi of both high and medium psychopathy groups versus controls, throughout CA1, CA2-3 and the subicular regions. These enlargement and reduction effects survived statistical correction for multiple comparisons in the main contrast (26 offenders vs. 25 controls) and in most subgroup comparisons. A statistical check excluded a possible confounding effect from amphetamine and polysubstance abuse. These results indicate that habitually violent offenders exhibit a specific abnormal hippocampal morphology, in the absence of total gray matter volume changes, that may relate to different autonomic modulation and abnormal fear-conditioning. 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Oliveira, Amir Antonio Martins
The existence of large gradients within particles and fast temporal variations in the temperature and species concentration prevents the use of asymptotic approximations for the closure of the volume-averaged, specimen-level formulations. In this case a solution of the particle-level transport problem is needed to complement the specimen-level volume-averaged equations. Here, the use of combined specimen-level and particle-level models for transport in reactive porous media is demonstrated with two examples. For the gasless compacted-powder combustion synthesis, a three-scale model is developed. The specimen-level model is based on the volume-averaged equations for species and temperature. Local thermal equilibrium is assumed and the macroscopic mass diffusion and convection fluxes are neglected. The particle-level model accounts for the interparticle diffusion (i.e., the liquid migration from liquid-rich to liquid-lean regions) and the intraparticle diffusion (i.e., the species mass diffusion within the product layer formed at the surface of the high melting temperature component). It is found that the interparticle diffusion controls the extent of conversion to the final product, the maximum temperature, and to a smaller degree the propagation velocity. The intraparticle diffusion controls the propagation velocity and to a smaller degree the maximum temperature. The initial stages of thermal degradation of EVA from molded specimens is modeled using volume-averaged equations for the species and empirical models for the kinetics of the thermal degradation, the vapor-liquid equilibrium, and the diffusion coefficient of acetic acid in the molten polymer. It is assumed that a bubble forms when the partial pressure of acetic acid exceeds the external ambient pressure. It is found that the removal of acetic acid is characterized by two regimes, a pre-charge dominated regime and a generation dominated regime. For the development of an optimum debinding schedule, the heating rate is modulated to avoid bubbling, while the concentration and temperature follow the bubble-point line for the mixture. The results show a strong dependence on the presence of a pre-charge. It is shown that isolation of the pre-charge effect by using temporary lower heating rates results in an optimum schedule for which the process time is reduced by over 70% when compared to a constant heating rate schedule.
1978-06-01
and Sound Levels. Tank sound characteris- tics can be categorized by four areas of tank operation. These are: engine starting and running, mobility or...the use of the ballistic computer system. The indirect sighting and fire control system consists of the elevation quadrant M13A3, a control light source...in low ambient 2-22 temperatures. No controls or indicators are provided for the engine air intake system. The exhaust system has four engine
Mission definition study for Stanford relativity satellite. Volume 3: Appendices
NASA Technical Reports Server (NTRS)
1971-01-01
An analysis is presented for the cost of the mission as a function of the following variables: amount of redundancy in the spacecraft, amount of care taken in building the spacecraft (functional and environmental tests, screening of components, quality control, etc), and the number of flights necessary to accomplish the mission. Thermal analysis and mathematical models for the experimental components are presented. The results of computer structural and stress analyses for support and cylinders are discussed. Reliability, quality control, and control system simulation by computer are also considered.
Addressing Production System Failures Using Multi-agent Control
NASA Astrophysics Data System (ADS)
Gautam, Rajesh; Miyashita, Kazuo
Output in high-volume production facilities is limited by bottleneck machines. We propose a control mechanism by modeling workstations as agents that pull jobs from other agents based on their current WIP level and requirements. During failures, when flows of some jobs are disrupted, the agents pull alternative jobs to maintain utilization of their capacity at a high level. In this paper, we empirically demonstrate that the proposed mechanism can react to failures more appropriately than other control mechanisms using a benchmark problem of a semiconductor manufacturing process.
NASA Astrophysics Data System (ADS)
Convers-Gomez, Carlos E.
The Vaca Muerta Formation in the Neuquen Basin has recently received a lot of attention from oil companies interested in developing its shale resources. Early identification of potential zones with possible good production is extremely important to optimize the return on capital investment. Developing a work flow in shale plays that associates an effective hydraulic fracture response with the presence of hydrocarbons is crucial for economic success. The vertical and lateral heterogeneity of rock properties are critical factors that impact production. The integration of 3D seismic and well data is necessary for prediction of rock properties and identifies their distribution in the rock, which can also be integrated with geomechanical properties to model the rock response favorable to hydraulic stimulation. This study includes a 3D seismic survey and six vertical wells with full log suites in each well. The well logs allowed for the computation of a pre-stack model-based inversion which uses seismic data to estimate rock property volumes. An inverse relationship between P-impedance and Total Organic Content (TOC) was observed and quantified. Likewise, a direct relationship between P-impedance and volume of carbonate was observed. The volume of kerogen, type of clay, type of carbonate and fluid pressure all control the geomechanical properties of the formation when subject to hydraulic fracturing. Probabilistic Neural Networks were then used to predict the lateral and vertical heterogeneity of rock properties. TOC and volume of kerogen behaved as adequate indicators of possible zones with high presence of hydrocarbons. Meanwhile, the volume of carbonate was a valid indicator of brittle-ductile rock. The predicted density volume was used to estimate geomechanical properties (Young's Modulus and Poisson's Ratio) and to identify the zones that have a better response to hydraulic stimulation. During the analysis of geomechanical properties, Young's Modulus was observed to have a direct relationship with volume of carbonate and an inverse relationship with TOC, enabling the identification of brittle and ductile rocks zones. The analysis detected zones that had a good presence of hydrocarbons and brittle rock. The information was integrated with the analysis of geomechanical properties generating a model with the most possible zones of good production. This model will aid in the future exploration and development of the Vaca Muerta Formation.
LOGAM (Logistic Analysis Model). Volume 3. Technical/Programmer Manual.
1982-08-01
ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASS IF I ED IS. DECL ASSI FICATI ON/ DOWNGRADING SCHEDULE 16...It different from Report) S0. SUPPLEMENTARY NOTES It. KEY WOROS (Continue an rvereoe side It necesary end identify by block numiber) Logistics... different even though the concepts developed have the same support levels. For example, lets assume one wants to model a typical 4 level maintenance concept
SU-F-R-44: Modeling Lung SBRT Tumor Response Using Bayesian Network Averaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamant, A; Ybarra, N; Seuntjens, J
2016-06-15
Purpose: The prediction of tumor control after a patient receives lung SBRT (stereotactic body radiation therapy) has proven to be challenging, due to the complex interactions between an individual’s biology and dose-volume metrics. Many of these variables have predictive power when combined, a feature that we exploit using a graph modeling approach based on Bayesian networks. This provides a probabilistic framework that allows for accurate and visually intuitive predictive modeling. The aim of this study is to uncover possible interactions between an individual patient’s characteristics and generate a robust model capable of predicting said patient’s treatment outcome. Methods: We investigatedmore » a cohort of 32 prospective patients from multiple institutions whom had received curative SBRT to the lung. The number of patients exhibiting tumor failure was observed to be 7 (event rate of 22%). The serum concentration of 5 biomarkers previously associated with NSCLC (non-small cell lung cancer) was measured pre-treatment. A total of 21 variables were analyzed including: dose-volume metrics with BED (biologically effective dose) correction and clinical variables. A Markov Chain Monte Carlo technique estimated the posterior probability distribution of the potential graphical structures. The probability of tumor failure was then estimated by averaging the top 100 graphs and applying Baye’s rule. Results: The optimal Bayesian model generated throughout this study incorporated the PTV volume, the serum concentration of the biomarker EGFR (epidermal growth factor receptor) and prescription BED. This predictive model recorded an area under the receiver operating characteristic curve of 0.94(1), providing better performance compared to competing methods in other literature. Conclusion: The use of biomarkers in conjunction with dose-volume metrics allows for the generation of a robust predictive model. The preliminary results of this report demonstrate that it is possible to accurately model the prognosis of an individual lung SBRT patient’s treatment.« less
NASA Astrophysics Data System (ADS)
Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.
2014-12-01
Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadge, G.
Some volcanoes erupt magma at average rates which are constant over periods of many years, even through this magma may appear in a complex series of eruptions. This constancy of output is tested by construction of a curve of cumulative volume of erupted magma, which is linear for steady state volcanism, and whose gradient defines the steady state rate Q/sub s/s. The assumption is made that Q/sub s/s is the rate at which magma is supplied to these polygenetic volcanoes. Five general types of eruptive behavior can be distinguished from the cumulative volume studied. These types are interpreted in termsmore » of a simple model of batches of magma rising buoyantly through the crust and interacting with a small-capacity subvolcanic magma reservoir. Recognition of previous steady state behavior at a volcano may enable the cumulative volume curve to be used empirically as a constraint on the timing and volume of the next eruption. The steady state model thus has a limited predictive capability. With the exception of Kilauea (O/sub s/s = 4m/sup 3/ s/sup -1/) all the identified steady state volcanoes have values of Q/sub s/s of a few tenths of one cubic meter per second. These rates are consistent with the minimum flux rates required by theoretical cooling models of batches of magma traversing the crust. The similarity of these Q/sub s/s values of volcanoes (producing basalt, andesite, and dacite magmas) in very different tectonic settings suggests that the common factors of crustal buoyancy forces and the geotherm-controlled cooling rates control the dynamics of magma supply through the crust. Long-term dormancy at active volcanoes may be a manifestation of the steady accumulation of magma in large crustal reservoirs, a process that complements the intermittent periods of steady state output at the surface. This possibility has several implications, the most important of which is that it provides a constraint on the supply rate of new magma to the bases of plutons.« less
Cortical and subcortical atrophy in Alzheimer disease: parallel atrophy of thalamus and hippocampus.
Štěpán-Buksakowska, Irena; Szabó, Nikoletta; Hořínek, Daniel; Tóth, Eszter; Hort, Jakub; Warner, Joshua; Charvát, František; Vécsei, László; Roček, Miloslav; Kincses, Zsigmond T
2014-01-01
Brain atrophy is a key imaging hallmark of Alzheimer disease (AD). In this study, we carried out an integrative evaluation of AD-related atrophy. Twelve patients with AD and 13 healthy controls were enrolled. We conducted a cross-sectional analysis of total brain tissue volumes with SIENAX. Localized gray matter atrophy was identified with optimized voxel-wise morphometry (FSL-VBM), and subcortical atrophy was evaluated by active shape model implemented in FMRIB's Integrated Registration Segmentation Toolkit. SIENAX analysis demonstrated total brain atrophy in AD patients; voxel-based morphometry analysis showed atrophy in the bilateral mediotemporal regions and in the posterior brain regions. In addition, regarding the diminished volumes of thalami and hippocampi in AD patients, subsequent vertex analysis of the segmented structures indicated shrinkage of the bilateral anterior thalami and the left medial hippocampus. Interestingly, the volume of the thalami and hippocampi were highly correlated with the volume of the thalami and amygdalae on both sides in AD patients, but not in healthy controls. This complex structural information proved useful in the detailed interpretation of AD-related neurodegenerative process, as the multilevel approach showed both global and local atrophy on cortical and subcortical levels. Most importantly, our results raise the possibility that subcortical structure atrophy is not independent in AD patients.
Torres, Leticia; Liu, Yue; Guitreau, Amy; Yang, Huiping; Tiersch, Terrence R
2017-12-01
Quality control (QC) is essential for reproducible and efficient functioning of germplasm repositories. However, many biomedical fish models present significant QC challenges due to small body sizes (<5 cm) and miniscule sperm volumes (<5 μL). Using minimal volumes of sperm, we used Zebrafish to evaluate common QC endpoints as surrogates for fertilization success along sequential steps of cryopreservation. First, concentrations of calibration bead suspensions were evaluated with a Makler ® counting chamber by using different sample volumes and mixing methods. For sperm analysis, samples were initially diluted at a 1:30 ratio with Hanks' balanced salt solution (HBSS). Motility was evaluated by using different ratios of sperm and activation medium, and membrane integrity was analyzed with flow cytometry at different concentrations. Concentration and sperm motility could be confidently estimated by using volumes as small as 1 μL, whereas membrane integrity required a minimum of 2 μL (at 1 × 10 6 cells/mL). Thus, <5 μL of sperm suspension (after dilution to 30-150 μL with HBSS) was required to evaluate sperm quality by using three endpoints. Sperm quality assessment using a combination of complementary endpoints enhances QC efforts during cryopreservation, increasing reliability and reproducibility, and reducing waste of time and resources.
Mechanisms of fluid production in smooth adhesive pads of insects
Dirks, Jan-Henning; Federle, Walter
2011-01-01
Insect adhesion is mediated by thin fluid films secreted into the contact zone. As the amount of fluid affects adhesive forces, a control of secretion appears probable. Here, we quantify for the first time the rate of fluid secretion in adhesive pads of cockroaches and stick insects. The volume of footprints deposited during consecutive press-downs decreased exponentially and approached a non-zero steady state, demonstrating the presence of a storage volume. We estimated its size and the influx rate into it from a simple compartmental model. Influx was independent of step frequency. Fluid-depleted pads recovered maximal footprint volumes within 15 min. Pads in stationary contact accumulated fluid along the perimeter of the contact zone. The initial fluid build-up slowed down, suggesting that flow is driven by negative Laplace pressure. Freely climbing stick insects left hardly any traceable footprints, suggesting that they save secretion by minimizing contact area or by recovering fluid during detachment. However, even the highest fluid production rates observed incur only small biosynthesis costs, representing less than 1 per cent of the resting metabolic rate. Our results show that fluid secretion in insect wet adhesive systems relies on simple physical principles, allowing for passive control of fluid volume within the contact zone. PMID:21208970
Verbrugge, S J; Vazquez de Anda, G; Gommers, D; Neggers, S J; Sorm, V; Böhm, S H; Lachmann, B
1998-08-01
Changes in pulmonary edema infiltration and surfactant after intermittent positive pressure ventilation with high peak inspiratory lung volumes have been well described. To further elucidate the role of surfactant changes, the authors tested the effect of different doses of exogenous surfactant preceding high peak inspiratory lung volumes on lung function and lung permeability. Five groups of Sprague-Dawley rats (n = 6 per group) were subjected to 20 min of high peak inspiratory lung volumes. Before high peak inspiratory lung volumes, four of these groups received intratracheal administration of saline or 50, 100, or 200 mg/kg body weight surfactant; one group received no intratracheal administration. Gas exchange was measured during mechanical ventilation. A sixth group served as nontreated, nonventilated controls. After death, all lungs were excised, and static pressure-volume curves and total lung volume at a transpulmonary pressure of 5 cm H2O were recorded. The Gruenwald index and the steepest part of the compliance curve (Cmax) were calculated. A bronchoalveolar lavage was performed; surfactant small and large aggregate total phosphorus and minimal surface tension were measured. In a second experiment in five groups of rats (n = 6 per group), lung permeability for Evans blue dye was measured. Before 20 min of high peak inspiratory lung volumes, three groups received intratracheal administration of 100, 200, or 400 mg/ kg body weight surfactant; one group received no intratracheal administration. A fifth group served as nontreated, nonventilated controls. Exogenous surfactant at a dose of 200 mg/kg preserved total lung volume at a pressure of 5 cm H2O, maximum compliance, the Gruenwald Index, and oxygenation after 20 min of mechanical ventilation. The most active surfactant was recovered in the group that received 200 mg/kg surfactant, and this dose reduced minimal surface tension of bronchoalveolar lavage to control values. Alveolar influx of Evans blue dye was reduced in the groups that received 200 and 400 mg/kg exogenous surfactant. Exogenous surfactant preceding high peak inspiratory lung volumes prevents impairment of oxygenation, lung mechanics, and minimal surface tension of bronchoalveolar lavage fluid and reduces alveolar influx of Evans blue dye. These data indicate that surfactant has a beneficial effect on ventilation-induced lung injury.
Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.
Yekutieli, Yoram; Sagiv-Zohar, Roni; Aharonov, Ranit; Engel, Yaakov; Hochner, Binyamin; Flash, Tamar
2005-08-01
The octopus arm requires special motor control schemes because it consists almost entirely of muscles and lacks a rigid skeletal support. Here we present a 2D dynamic model of the octopus arm to explore possible strategies of movement control in this muscular hydrostat. The arm is modeled as a multisegment structure, each segment containing longitudinal and transverse muscles and maintaining a constant volume, a prominent feature of muscular hydrostats. The input to the model is the degree of activation of each of its muscles. The model includes the external forces of gravity, buoyancy, and water drag forces (experimentally estimated here). It also includes the internal forces generated by the arm muscles and the forces responsible for maintaining a constant volume. Using this dynamic model to investigate the octopus reaching movement and to explore the mechanisms of bend propagation that characterize this movement, we found the following. 1) A simple command producing a wave of muscle activation moving at a constant velocity is sufficient to replicate the natural reaching movements with similar kinematic features. 2) The biomechanical mechanism that produces the reaching movement is a stiffening wave of muscle contraction that pushes a bend forward along the arm. 3) The perpendicular drag coefficient for an octopus arm is nearly 50 times larger than the tangential drag coefficient. During a reaching movement, only a small portion of the arm is oriented perpendicular to the direction of movement, thus minimizing the drag force.
Walker, Wade T.; Callan, Robert J.; Hill, Ashley E.; Tisher, Kelly B.
2014-01-01
This study evaluated the effects of administering oral powder electrolytes on packed cell volume (PCV), plasma chemistry parameters, and incidence of colic in horses participating on a 6-day 162-km trail ride in which water was not offered ad libitum. Twenty-three horses received grain with powder electrolytes daily while 19 control horses received grain only. Horses were ridden approximately 32 km a day at a walk or trot. Packed cell volume and plasma chemistry parameters were analyzed daily. Episodes of colic were diagnosed and treated by a veterinarian unaware of treatment group allocation. Blood parameters and incidence of colic were compared between treatment groups. Electrolyte administration did not alter PCV or plasma chemistry parameters compared to controls. The incidence of colic was significantly higher in treated horses (P = 0.05). Oral powder electrolytes did not enhance hydration status or electrolyte homeostasis and may be associated with colic in horses participating on long distance trail rides similar to this model. PMID:25082992
Walker, Wade T; Callan, Robert J; Hill, Ashley E; Tisher, Kelly B
2014-08-01
This study evaluated the effects of administering oral powder electrolytes on packed cell volume (PCV), plasma chemistry parameters, and incidence of colic in horses participating on a 6-day 162-km trail ride in which water was not offered ad libitum. Twenty-three horses received grain with powder electrolytes daily while 19 control horses received grain only. Horses were ridden approximately 32 km a day at a walk or trot. Packed cell volume and plasma chemistry parameters were analyzed daily. Episodes of colic were diagnosed and treated by a veterinarian unaware of treatment group allocation. Blood parameters and incidence of colic were compared between treatment groups. Electrolyte administration did not alter PCV or plasma chemistry parameters compared to controls. The incidence of colic was significantly higher in treated horses (P = 0.05). Oral powder electrolytes did not enhance hydration status or electrolyte homeostasis and may be associated with colic in horses participating on long distance trail rides similar to this model.
Macann, A; Fauzi, F; Simpson, J; Sasso, G; Krawitz, H; Fraser-Browne, C; Manitz, J; Raith, A
2017-12-01
To model in a subset of patients from TROG 07.03 managed at a single site the association between domiciliary based humidification use and mucositis symptom burden during radiotherapy (RT) for head and neck cancer (HNC) when factoring in volumetric radiotherapy parameters derived from tumour and normal tissue regions of interest. From June 2008 through June 2011, 210 patients with HNC receiving RT were randomised to either a control arm or humidification using the Fisher & Paykel Healthcare MR880 humidifier. This subset analysis involves patients recruited from Auckland City Hospital treated with a prescribed dose of ≥70 Gy. Regression models included control variables for Planning Target Volume 70 GY (PTV70Gy); Equivalent Uniform Dose (EUD) MOIST and TSV (surrogates of total mucosal and total swallowing volumes respectively). The analysis included 39 patients (humidification 20, control 19). There was a significant odds reduction in CTCAE v3.0 functional mucositis score of 0.29 associated with the use of humidification (p<.001). Within the parameters of the model therefore, the risk of a humidification patient being scored as experiencing a one-step increase in functional mucositis was 3.45 times lower (1/0.29) than for control patients. A control patient was 4.17 times more likely to receive an unfavourable nutritional mode score (p<.001). The risk of being admitted to hospital decreased by a factor of 11.11 for humidification patients (p=.013). The results support the hypothesis that humidification can help mitigate mucositis symptom burden. Radiotherapy dosimetric parameters assist in the evaluation of toxicity interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Meyers, A. P.; Davidson, W. A.; Gortowski, R. C.
1973-01-01
Detailed drawings of the five year tape transport are presented. Analytical tools used in the various analyses are described. These analyses include: tape guidance, tape stress over crowned rollers, tape pack stress program, response (computer) program, and control system electronics description.
NASA Technical Reports Server (NTRS)
Allen, E. C., Jr.; Eder, F. W.
1972-01-01
Test results of booster and orbiter models of various component buildup configurations are reported. Dataset Collation Sheets, which give a complete summary of the configurations, are presented along with a description of the test facility. Data reduction procedures are described.
DOT National Transportation Integrated Search
1973-12-01
Various forms of Dual Mode Transportation were analyzed in order to assess the economic viability of the Dual Mode concept. A Dual Mode vehicle is one which operates under manual control on a streee network for some portionof its trip, and operates u...
NASA Astrophysics Data System (ADS)
Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.
2003-10-01
Control and reduction of neutral radical flux/ion flux ratio and electron temperature Te is required for next generation etching in the microelectronics industry. We investigate time-modulated power for these purposes using a volume-averaged (global) oxygen discharge model, We consider pressures of 10-50 mTorr and plasma densities of 10^10-10^11 cm-3. In this regime, the discharge is found to be weakly electronegative. The modulation period and the duty ratio (on-time/period) are varied to determine the optimum conditions for reduction of FR= O-atom flux/ion flux and T_e. Two chambers with different height/diameter ratios (<< 1, and unity) are examined to determine the influence of the surface-area/volume ratio. At a fixed duty ratio, both FR and Te are found to have minimum values as the pulse period is varied, with the minimum value decreasing as the duty ratio decreases. Significant reductions in FR and Te are found. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.
NASA Technical Reports Server (NTRS)
1972-01-01
Laboratory simulations of three concepts, based on maximum use of available off-the-shelf hardware elements, are described. The concepts are a stereo-foveal-peripheral TV system with symmetric steroscopic split-image registration and 90 deg counter rotation; a computer assisted model control system termed the trajectory following control system; and active manipulator damping. It is concluded that the feasibility of these concepts is established.
1993-01-22
AUGLPITCHROLLCONTROLa ttitude .-ontrol_roll_command, MAX..STABAUG3_PITCH-.ROLL..CONTROL); return ( attitude -.control-roll-commuand); static REAL set...pitch...if any). V V RETURNS: TRUE if successful, FALSE if not. V * PURPOSE: This routine performs the functions V V specifically related to the firing of a...specifically related to the flying a ADAT * missile. * void missile _adaLfly (aptr, sightiocation, locqsightto.world, tube, veh_list) ADATMISSILE
30 CFR 250.514 - Well-control fluids, equipment, and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uppermost BOP; (2) A well-control, fluid-volume measuring device for determining fluid volumes when filling the hole on trips; and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and... the hole with drill pipe, the annulus shall be filled with well-control fluid before the change in...
Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu
2010-05-01
The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.
NASA Technical Reports Server (NTRS)
Harrison, Keith P.; Grimm, Robert E.
2002-01-01
Models of hydrothermal groundwater circulation can quantify limits to the role of hydrothermal activity in Martian crustal processes. We present here the results of numerical simulations of convection in a porous medium due to the presence of a hot intruded magma chamber. The parameter space includes magma chamber depth, volume, aspect ratio, and host rock permeability and porosity. A primary goal of the models is the computation of surface discharge. Discharge increases approximately linearly with chamber volume, decreases weakly with depth (at low geothermal gradients), and is maximized for equant-shaped chambers. Discharge increases linearly with permeability until limited by the energy available from the intrusion. Changes in the average porosity are balanced by changes in flow velocity and therefore have little effect. Water/rock ratios of approximately 0.1, obtained by other workers from models based on the mineralogy of the Shergotty meteorite, imply minimum permeabilities of 10(exp -16) sq m2 during hydrothermal alteration. If substantial vapor volumes are required for soil alteration, the permeability must exceed 10(exp -15) sq m. The principal application of our model is to test the viability of hydrothermal circulation as the primary process responsible for the broad spatial correlation of Martian valley networks with magnetic anomalies. For host rock permeabilities as low as 10(exp -17) sq m and intrusion volumes as low as 50 cu km, the total discharge due to intrusions building that part of the southern highlands crust associated with magnetic anomalies spans a comparable range as the inferred discharge from the overlying valley networks.
Offerman, Steven R; Barry, J David; Richardson, William H; Tong, Tri; Tanen, Dave; Bush, Sean P; Clark, Richard F
2009-01-01
This study was designed to investigate whether the local, subcutaneous injection of Crotaline Fab antivenom (CroFab) at the rattlesnake envenomation site would result in less extremity edema when compared to intravenous (i.v.) antivenom infusion alone. This is a randomized, three-arm laboratory experiment using a porcine model. Each animal was anesthetized, intubated, and maintained on mechanical ventilation. About 6 mg/kg of Crotalus atrox venom was injected subcutaneously at the hock of the right hind leg. Animals were then randomized to immediately receive subcutaneous and i.v. antivenom (SC/IV), i.v. antivenom only, or saline control. SC/IV animals received two vials of CroFab subcutaneously at the envenomation site and two vials intravenously. IV animals received four vials of CroFab intravenously. Limb edema was tracked by serial circumference and volumetric measurements over an 8-h period. Limb circumference was measured at four pre-determined locations hourly. Limb volume was measured by a water displacement method at baseline, 4, and 8 h. Twenty-six animals were randomized to the three treatment groups. The SC/IV and IV arms included nine animals each. Two animals in the SC/IV group died suddenly during the study, leaving seven animals for data analysis. There were eight controls. Increasing limb edema was observed in all groups. No differences were detected in limb circumferences or limb volumes between control and either treatment arms. In this porcine model of crotaline envenomation, no differences in limb edema were found between animals treated with SC/IV or IV CroFab when compared to saline controls.
Homer, L; Launay, E; Joram, N; Jacqueline, C; Jarreau, P-H; Caillon, J; Moyon, T; Branger, B; Potel, G; Roze, J C; Méhats, C; Gras-Leguen, C
2012-03-01
Chorioamnionitis is implicated in the pathophysiology of bronchopulmonary disease, and the associated inflammatory response is responsible for adverse effects on alveolar development. The aim of this work was to analyze the effects of a phosphodiesterase 4 (PDE4)-selective inhibitor, rolipram (a modulator of the inflammatory response), in an experimental model of chorioamnionitis on pulmonary development and on the processes of infection and inflammation. Rabbit mothers were assigned to four groups: 1) saline serum inoculation (controls); 2) Escherichia coli intrauterine inoculation (C+); 3) rolipram infusion (R+); and 4) E. coli inoculation + rolipram infusion (C+R+). High rates of morbility and mortality were noticed in mothers and pups (5 of 13 pregnant rabbits in groups with rolipram). Alveolar development, inflammation, and infection were analyzed in pups at day 0 and day 5. At day 0, in the context of chorioamnionitis, rolipram significantly decreased birth weight (p < 0.01) relative to that of controls (p < 0.05). At day 5, weight normalized in group C+R+ but not in group C+ relative to controls (p < 0.001); moreover, alveolar airspace volume was preserved in group C+R+ but not in group C+ (p < 0.05). Interstitial volume decreased in group C+ versus controls (p < 0.05) but was preserved in group C+R+. Specific alveolar area was not significantly modified by rolipram. No significant difference was found concerning bronchoalveolar lavage cellularity, and all blood cultures remained sterile. In this model of impaired alveologenesis, rolipram significantly preserved specific alveolar density. However, PDE4 inhibition induced antenatal fetal demise and growth retardation.
Imaging Correlates of Memory and Concussion History in Retired National Football League Athletes.
Strain, Jeremy F; Womack, Kyle B; Didehbani, Nyaz; Spence, Jeffrey S; Conover, Heather; Hart, John; Kraut, Michael A; Cullum, C Munro
2015-07-01
To our knowledge, this is the first study to show an association between concussion, cognition, and anatomical structural brain changes across the age spectrum in former National Football League athletes. To assess the relationship of hippocampal volume, memory performance, and the influence of concussion history in retired National Football League athletes with and without mild cognitive impairment (MCI). This retrospective cohort study assessed differences between groups, mean hippocampal volumes, and memory performance by computing age quintiles based on group-specific linear regression models corrected for multiple comparisons for both athletes and control participants. The study was conducted starting in November 2010 and is ongoing at a research center in the northern region of Texas. This current analysis was conducted from October 9, 2013, to August 21, 2014. Participants included 28 retired National Football League athletes, 8 of whom had MCI and a history of concussion, 21 cognitively healthy control participants, and 6 control participants with MCI without concussion. Hippocampal volume, age, California Verbal Learning Test scores, and the number of grade 3 (G3) concussions. In addition, the number of games played was examined as an objective variable pertaining to football history. The mean (SD) age was 58.1 (13) years for the 28 former athletes and 59.0 (12) years for the 27 control participants. Retired athletes with concussion history but without cognitive impairment had normal but significantly lower California Verbal Learning Test scores compared with control participants (mean [SD], 52.5 [8] vs 60.24 [7]; P = .002); those with a concussion history and MCI performed worse (mean [SD], 37 [8.62]) compared with both control participants (P < .001) and athletes without memory impairment (P < .001). Among the athletes, 17 had a G3 concussion and 11 did not. Older retired athletes with at least 1 G3 concussion had significantly smaller bilateral hippocampal volumes compared with control participants at the 40th age percentile (left, P = .04; right, P = .03), 60th percentile (left, P = .009; right, P = .01), and 80th percentile (left, P = .001; right, P = .002) and a smaller right hippocampal volume compared with athletes without a G3 concussion at the 40th percentile (P = .03), 60th percentile (P = .02), and 80th percentile (P = .02). Athletes with a history of G3 concussion were more likely to have MCI (7 of 7) compared with retired athletes without a history of G3 concussion (1 of 5) older than 63 years (P = .01). In addition, the left hippocampal volume in retired athletes with MCI and concussion was significantly smaller compared with control participants with MCI (P = .03). Prior concussion that results in loss of consciousness is a risk factor for increased hippocampal atrophy and the development of MCI. In individuals with MCI, hippocampal volume loss appears greater among those with a history of concussion.
Spilling, Catherine A; Jones, Paul W; Dodd, James W; Barrick, Thomas R
2017-06-19
Brain pathology is relatively unexplored in chronic obstructive pulmonary disease (COPD). This study is a comprehensive investigation of grey matter (GM) and white matter (WM) changes and how these relate to disease severity and cognitive function. T1-weighted and fluid-attenuated inversion recovery images were acquired for 31 stable COPD patients (FEV 1 52.1% pred., PaO 2 10.1 kPa) and 24 age, gender-matched controls. T1-weighted images were segmented into GM, WM and cerebrospinal fluid (CSF) tissue classes using a semi-automated procedure optimised for use with this cohort. This procedure allows, cohort-specific anatomical features to be captured, white matter lesions (WMLs) to be identified and includes a tissue repair step to correct for misclassification caused by WMLs. Tissue volumes and cortical thickness were calculated from the resulting segmentations. Additionally, a fully-automated pipeline was used to calculate localised cortical surface and gyrification. WM and GM tissue volumes, the tissue volume ratio (indicator of atrophy), average cortical thickness, and the number, size, and volume of white matter lesions (WMLs) were analysed across the whole-brain and regionally - for each anatomical lobe and the deep-GM. The hippocampus was investigated as a region-of-interest. Localised (voxel-wise and vertex-wise) variations in cortical gyrification, GM density and cortical thickness, were also investigated. Statistical models controlling for age and gender were used to test for between-group differences and within-group correlations. Robust statistical approaches ensured the family-wise error rate was controlled in regional and local analyses. There were no significant differences in global, regional, or local measures of GM between patients and controls, however, patients had an increased volume (p = 0.02) and size (p = 0.04) of WMLs. In patients, greater normalised hippocampal volume positively correlated with exacerbation frequency (p = 0.04), and greater WML volume was associated with worse episodic memory (p = 0.05). A negative relationship between WML and FEV 1 % pred. approached significance (p = 0.06). There was no evidence of cerebral atrophy within this cohort of stable COPD patients, with moderate airflow obstruction. However, there were indications of WM damage consistent with an ischaemic pathology. It cannot be concluded whether this represents a specific COPD, or smoking-related, effect.
Code of Federal Regulations, 2012 CFR
2012-07-01
... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... small volume manufacturers and small volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...
Code of Federal Regulations, 2013 CFR
2013-07-01
... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... small volume manufacturers and small volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...
Code of Federal Regulations, 2011 CFR
2011-07-01
... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... small volume manufacturers and small volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...
Code of Federal Regulations, 2010 CFR
2010-07-01
... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... small volume manufacturers and small volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...