Sample records for controlled electrical stimulation

  1. Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.

    PubMed

    Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L

    2017-11-01

    Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.

  2. Microprocessor controlled movement of liquid gastric content using sequential neural electrical stimulation

    PubMed Central

    Mintchev, M; Sanmiguel, C; Otto, S; Bowes, K

    1998-01-01

    Background—Gastric electrical stimulation has been attempted for several years with little success. 
Aims—To determine whether movement of liquid gastric content could be achieved using microprocessor controlled sequential electrical stimulation. 
Methods—Eight anaesthetised dogs underwent laparotomy and implantation of four sets of bipolar stainless steel wire electrodes. Each set consisted of two to six electrodes (10×0.25 mm, 3 cm apart) implanted circumferentially. The stomach was filled with water and the process of gastric emptying was monitored. Artificial contractions were produced using microprocessor controlled phase locked bipolar four second trains of 50 Hz, 14 V (peak to peak) rectangular voltage. In four of the dogs four force transducers were implanted close to each circumferential electrode set. In one gastroparetic patient the effect of direct electrical stimulation was determined at laparotomy. 
Results—Using the above stimulating parameters circumferential gastric contractions were produced which were artificially propagated distally by phase locking the stimulating voltage. Averaged stimulated gastric emptying times were significantly shorter than spontaneus emptying times (t1/2 6.7 (3.0) versus 25.3 (12.9) minutes, p<0.01). Gastric electrical stimulation of the gastroparetic patient at operation produced circumferential contractions. 
Conclusions—Microprocessor controlled electrical stimulation produced artificial peristalsis and notably accelerated the movement of liquid gastric content. 

 Keywords: gastric electrical stimulation; gastric motility PMID:9824339

  3. Cisplatin-induced gastric dysrhythmia and emesis in dogs and possible role of gastric electrical stimulation.

    PubMed

    Yu, Xiaoyun; Yang, Jie; Hou, Xiaohua; Zhang, Kan; Qian, Wei; Chen, J D Z

    2009-05-01

    The aim of this study was to investigate the effect of cisplatin on gastric myoelectrical activity and the role of gastric electrical stimulation in the treatment of cisplatin-induced emesis in dogs. Seven dogs implanted with electrodes on the gastric serosa were used in a two-session study. Cisplatin was infused in both the control session and the gastric electrical stimulation session, and gastric electrical stimulation was applied in the gastric electrical stimulation session. Gastric slow waves and emesis, as well as behaviors suggestive of nausea, were recorded during each session. The results were as follows: (1) cisplatin induced vomiting and other symptoms and induced gastric dysrhythmia. The percentage of normal slow waves decreased significantly during the 2.5 h before vomiting (P=0.01) and the period of vomiting (P<0.001). (2) Gastric electrical stimulation reduced emesis and the symptoms score. The total score in the control session was higher than that in the gastric electrical stimulation session (P=0.02). However, gastric electrical stimulation had no effects on gastric dysrhythmia. It is concluded that cisplatin induces emesis and gastric dysrhythmia. Gastric electrical stimulation may play a role in relieving chemotherapy-induced emetic responses and deserves further investigation.

  4. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  5. Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients.

    PubMed

    Groehs, Raphaela V; Antunes-Correa, Ligia M; Nobre, Thais S; Alves, Maria-Janieire Nn; Rondon, Maria Urbana Pb; Barreto, Antônio Carlos Pereira; Negrão, Carlos E

    2016-10-01

    We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with decompensated chronic heart failure. © The European Society of Cardiology 2016.

  6. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    PubMed

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  7. Enhanced insulin sensitivity and acute regulation of metabolic genes and signaling pathways after a single electrical or manual acupuncture session in female insulin-resistant rats.

    PubMed

    Benrick, Anna; Maliqueo, Manuel; Johansson, Julia; Sun, Miao; Wu, Xiaoke; Mannerås-Holm, Louise; Stener-Victorin, Elisabet

    2014-12-01

    To compare the effect of a single session of acupuncture with either low-frequency electrical or manual stimulation on insulin sensitivity and molecular pathways in the insulin-resistant dihydrotestosterone-induced rat polycystic ovary syndrome (PCOS) model. Both stimulations cause activation of afferent nerve fibers. In addition, electrical stimulation causes muscle contractions, enabling us to differentiate changes induced by activation of sensory afferents from contraction-induced changes. Control and PCOS rats were divided into no-stimulation, manual-, and electrical stimulation groups and insulin sensitivity was measured by euglycemic hyperinsulinemic clamp. Manually stimulated needles were rotated 180° ten times every 5 min, or low-frequency electrical stimulation was applied to evoke muscle twitches for 45 min. Gene and protein expression were analyzed by real-time PCR and Western blot. The glucose infusion rate (GIR) was lower in PCOS rats than in controls. Electrical stimulation was superior to manual stimulation during treatment but both methods increased GIR to the same extent in the post-stimulation period. Electrical stimulation decreased mRNA expression of Adipor2, Adrb1, Fndc5, Erk2, and Tfam in soleus muscle and increased ovarian Adrb2 and Pdf. Manual stimulation decreased ovarian mRNA expression of Erk2 and Sdnd. Electrical stimulation increased phosphorylated ERK levels in soleus muscle. One acupuncture session with electrical stimulation improves insulin sensitivity and modulates skeletal muscle gene and protein expression more than manual stimulation. Although electrical stimulation is superior to manual in enhancing insulin sensitivity during stimulation, they are equally effective after stimulation indicating that it is activation of sensory afferents rather than muscle contraction per se leading to the observed changes.

  8. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.

    PubMed

    2017-01-01

    Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers reported that pressure injuries were burdensome and reduced their quality of life. Patients and caregivers also noted that electrical stimulation seemed to reduce the time it took the wounds to heal. While electrical stimulation is safe to use (GRADE quality of evidence: high) there is uncertainty about whether it improves wound healing (GRADE quality of evidence: low). In Ontario, publicly funding electrical stimulation for pressure injuries could result in extra costs of $0.77 to $3.85 million yearly for the next 5 years.

  9. Contralaterally Controlled Functional Electrical Stimulation for Stroke Rehabilitation

    PubMed Central

    Knutson, Jayme S.; Harley, Mary Y.; Hisel, Terri Z.; Makowski, Nathaniel S.; Fu, Michael J.; Chae, John

    2012-01-01

    Contralaterally controlled functional electrical stimulation (CCFES) is an innovative method of delivering neuromuscular electrical stimulation for rehabilitation of paretic limbs after stroke. It is being studied to evaluate its efficacy in improving recovery of arm and hand function and ankle dorsiflexion in chronic and subacute stroke patients. The initial studies provide preliminary evidence supporting the efficacy of CCFES. PMID:23365893

  10. Neurite Outgrowth On Electrospun PLLA Fibers Is Enhanced By Exogenous Electrical Stimulation

    PubMed Central

    Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.

    2014-01-01

    Objective Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from DRG neurons than the presence of electrical stimulation or aligned topography alone. Approach To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide (PLLA) films or electrospun fibers (2 μm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Results Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurite, indicating topographical cues are responsible to guide neurite extension. Significance Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury. PMID:24891494

  11. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.

    PubMed

    Koppes, A N; Zaccor, N W; Rivet, C J; Williams, L A; Piselli, J M; Gilbert, R J; Thompson, D M

    2014-08-01

    Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.

  12. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    PubMed

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  13. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment

    PubMed Central

    Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years. Patients and caregivers reported that pressure injuries were burdensome and reduced their quality of life. Patients and caregivers also noted that electrical stimulation seemed to reduce the time it took the wounds to heal. Conclusions While electrical stimulation is safe to use (GRADE quality of evidence: high) there is uncertainty about whether it improves wound healing (GRADE quality of evidence: low). In Ontario, publicly funding electrical stimulation for pressure injuries could result in extra costs of $0.77 to $3.85 million yearly for the next 5 years. PMID:29201261

  14. Toward rational design of electrical stimulation strategies for epilepsy control

    PubMed Central

    Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom

    2009-01-01

    Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525

  15. A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.

    PubMed

    Chang, Gwo-Ching

    2013-01-01

    Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.

  16. Evoked Electromyographically Controlled Electrical Stimulation

    PubMed Central

    Hayashibe, Mitsuhiro

    2016-01-01

    Time-variant muscle responses under electrical stimulation (ES) are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications. Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES) are also well known source of time-varying characteristics coming from muscle response under ES. Therefore, it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favor of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG) signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm. PMID:27471448

  17. Literature Review and Meta-Analysis of Transcutaneous Electrical Nerve Stimulation in Treating Chronic Back Pain

    PubMed Central

    Wu, Lien-Chen; Weng, Pei-Wei; Chen, Chia-Hsien; Huang, Yi-You; Tsuang, Yang-Hwei; Chiang, Chang-Jung

    2018-01-01

    Background and Objectives This study is a meta-analysis of randomized controlled trials comparing the efficacy of transcutaneous electrical nerve stimulation (TENS) to a control and to other nerve stimulation therapies (NSTs) for the treatment of chronic back pain. Methods Citations were identified in MEDLINE, the Cochrane Library, Google Scholar, and ClinicalTrials.gov through June 2014 using the following keywords: nerve stimulation therapy, transcutaneous electrical nerve stimulation, back pain, chronic pain. Control treatments included sham, placebo, or medication only. Other NSTs included electroacupuncture, percutaneous electrical nerve stimulation, and percutaneous neuromodulation therapy. Results Twelve randomized controlled trials including 700 patients were included in the analysis. The efficacy of TENS was similar to that of control treatment for providing pain relief (standardized difference in means [SDM] = −0.20; 95% confidence interval [CI], −0.58 to 0.18; P = 0.293). Other types of NSTs were more effective than TENS in providing pain relief (SDM = 0.86; 95% CI, 0.15–1.57; P = 0.017). Transcutaneous electrical nerve stimulation was more effective than control treatment in improving functional disability only in patients with follow-up of less than 6 weeks (SDM = −1.24; 95% CI, −1.83 to −0.65; P < 0.001). There was no difference in functional disability outcomes between TENS and other NSTs. Conclusions These results suggest that TENS does not improve symptoms of lower back pain, but may offer short-term improvement of functional disability. PMID:29394211

  18. [Effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage].

    PubMed

    Li, Xiao-Li; Jia, Tian-Ming; Luan, Bin; Liu, Tao; Yuan, Yan

    2011-04-01

    To study the effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible mechanism. One hundred and eighty 7-day-old neonatal Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group) and HIBD with and without electric stimulation (n=60 each). The HIBD model of neonatal rats was prepared by the Rice-Vennucci method. Electric stimulation at the cerebellar fastigial nucleus was given 24 hrs after the operation in the electric stimulation group once daily and lasted for 30 minutes each time. The other two groups were not subjected to electric stimulation but captured to fix in corresponding periods. Rats were sacrificed 3, 7, 14 and 21 days after stimulations to observe the glial fibrillary acidic protein (GFAP) expression by immunohistochemisty and the ultrastructural changes of astrocytes in the hippocampus under an electron microscope. Immunohistochemical analysis showed the expression of GFAP in the HIBD groups with and without electric stimulation increased significantly compared with the control group on day 3, reached the peak on day 7, and the increased expression remained till to day 21. The GFAP expression in the electric stimulation group was significantly lower than that in the untreated HIBD group at all time points. Under the electron microscope, the astrocytes in the untreated HIBD group were swollen and the amount of organelles was reduced, while the swelling of astrocytes was alleviated and the organelles remained in integrity in the electric stimulation group. The electric stimulation at the cerebellar fastigial nucleus can inhibit the excessive proliferation of astrocytes and relieve the structural damage of astrocytes in neonatal rats following HIBD.

  19. Effect of transcutaneous electrical nerve stimulation for pain control after total knee arthroplasty: A systematic review and meta-analysis.

    PubMed

    Zhu, Yongjun; Feng, Yuxing; Peng, Lihua

    2017-11-21

    Transcutaneous electrical nerve stimulation is a possible adjunctive therapy to pharmacological treatment for controlling pain after total knee arthroplasty. However, the results are controversial. A systematic review and meta-analysis was conducted to explore the effect of transcutaneous electrical nerve stimulation on patients with total knee arthroplasty. PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation on patients with total knee arthroplasty were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. Primary outcome was visual analogue scale (VAS) score over a period of 24 h. Meta-analysis was performed using a random-effect model. Six randomized controlled trials involving 529 patients were included in the meta-analysis. Overall, compared with control intervention, transcutaneous electrical nerve stimulation supplementation intervention was found to significantly reduce VAS scores and total postoperative morphine dose over a period of 24 h, and to improve active range of knee motion (standard mean difference (SMD) = 0.37; 95% confidence interval (95% CI) = 0.06-0.68; p = 0.02), but had no effect on VAS scores at 2 weeks (SMD = 0.20; 95% CI = -0.07 to 0.48; p = 0.15). Compared with control intervention, transcutaneous electrical nerve stimulation supplementation intervention was found to significantly reduce pain and morphine requirement over a period of 24 h and to promote functional recovery in patients who have undergone total knee arthroplasty.

  20. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I: A Pilot Controlled Study.

    PubMed

    Cudia, Paola; Weis, Luca; Baba, Alfonc; Kiper, Pawel; Marcante, Andrea; Rossi, Simonetta; Angelini, Corrado; Piccione, Francesco

    2016-11-01

    Functional electrical stimulation (FES) is a new rehabilitative approach that combines electrical stimulation with a functional task. This pilot study evaluated the safety and effectiveness of FES lower extremity training in myotonic dystrophy type 1. This is a controlled pilot study that enrolled 20 patients with myotonic dystrophy type 1 over 2 years. Eight patients (age, 39-67 years) fulfilled the inclusion criteria. Four participants performed FES cycling training for 15 days (one daily session of 30 minutes for 5 days a week). A control group, matched for clinical and genetic variables, who had contraindications to electrical stimulation, performed 6 weeks of conventional resistance and aerobic training. The modified Medical Research Council Scale and functional assessments were performed before and after treatment. Cohen d effect size was used for statistical analysis. Functional electrical stimulation induced lower extremity training was well tolerated and resulted in a greater improvement of tibialis anterior muscle strength (d = 1,583), overall muscle strength (d = 1,723), and endurance (d = 0,626) than conventional training. Functional electrical stimulation might be considered a safe and valid tool to improve muscle function, also in muscles severely compromised in which no other restorative options are available. Confirmation of FES efficacy through further clinical trials is strongly advised.

  1. [A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens].

    PubMed

    Ni, D

    1992-12-01

    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.

  2. Neuromuscular electrical stimulation improves exercise tolerance in patients with advanced heart failure on continuous intravenous inotropic support use-randomized controlled trial.

    PubMed

    Forestieri, Patrícia; Bolzan, Douglas W; Santos, Vinícius B; Moreira, Rita Simone Lopes; de Almeida, Dirceu Rodrigues; Trimer, Renata; de Souza Brito, Flávio; Borghi-Silva, Audrey; de Camargo Carvalho, Antonio Carlos; Arena, Ross; Gomes, Walter J; Guizilini, Solange

    2018-01-01

    To evaluate the impact of a short-term neuromuscular electrical stimulation program on exercise tolerance in hospitalized patients with advanced heart failure who have suffered an acute decompensation and are under continuous intravenous inotropic support. A randomized controlled study. Initially, 195 patients hospitalized for decompensated heart failure were recruited, but 70 were randomized. Patients were randomized into two groups: control group subject to the usual care ( n = 35); neuromuscular electrical stimulation group ( n = 35) received daily training sessions to both lower extremities for around two weeks. The baseline 6-minute walk test to determine functional capacity was performed 24 hours after hospital admission, and intravenous inotropic support dose was daily checked in all patients. The outcomes were measured in two weeks or at the discharge if the patients were sent back home earlier than two weeks. After losses of follow-up, a total of 49 patients were included and considered for final analysis (control group, n = 25 and neuromuscular electrical stimulation group, n = 24). The neuromuscular electrical stimulation group presented with a higher 6-minute walk test distance compared to the control group after the study protocol (293 ± 34.78 m vs. 265.8 ± 48.53 m, P < 0.001, respectively). Neuromuscular electrical stimulation group also demonstrated a significantly higher dose reduction of dobutamine compared to control group after the study protocol (2.72 ± 1.72 µg/kg/min vs. 3.86 ± 1.61 µg/kg/min, P = 0.001, respectively). A short-term inpatient neuromuscular electrical stimulation rehabilitation protocol improved exercise tolerance and reduced intravenous inotropic support necessity in patients with advanced heart failure suffering a decompensation episode.

  3. The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke.

    PubMed

    Gandolla, Marta; Ward, Nick S; Molteni, Franco; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership-the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place.

  4. A functional electrical stimulation system for human walking inspired by reflexive control principles.

    PubMed

    Meng, Lin; Porr, Bernd; Macleod, Catherine A; Gollee, Henrik

    2017-04-01

    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation-assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking.

  5. One-shot percutaneous electrical nerve stimulation vs. transcutaneous electrical nerve stimulation for low back pain: comparison of therapeutic effects.

    PubMed

    Hsieh, Ru-Lan; Lee, Wen-Chung

    2002-11-01

    To investigate the therapeutic effects of one shot of low-frequency percutaneous electrical nerve stimulation one shot of transcutaneous electrical nerve stimulation in patients with low back pain. In total, 133 low back pain patients were recruited for this randomized, control study. Group 1 patients received medication only. Group 2 patients received medication plus one shot of percutaneous electrical nerve stimulation. Group 3 patients received medication plus one shot of transcutaneous electrical nerve stimulation. Therapeutic effects were measured using a visual analog scale, body surface score, pain pressure threshold, and the Quebec Back Pain Disability Scale. Immediately after one-shot treatment, the visual analog scale improved 1.53 units and the body surface score improved 3.06 units in the percutaneous electrical nerve stimulation group. In the transcutaneous electrical nerve stimulation group, the visual analog scale improved 1.50 units and the body surface score improved 3.98 units. The improvements did not differ between the two groups. There were no differences in improvement at 3 days or 1 wk after the treatment among the three groups. Simple one-shot treatment with percutaneous electrical nerve stimulation or transcutaneous electrical nerve stimulation provided immediate pain relief for low back pain patients. One-shot transcutaneous electrical nerve stimulation treatment is recommended due to the rarity of side effects and its convenient application.

  6. Comparison of treatment effect of neuromuscular electrical stimulation and thermal-tactile stimulation on patients with sub-acute dysphagia caused by stroke.

    PubMed

    Byeon, Haewon; Koh, Hyeung Woo

    2016-06-01

    [Purpose] The effectiveness of neuromuscular electrical stimulation in the rehabilitation of swallowing remains controversial. This study compared the effectiveness of neuromuscular electrical stimulation and thermal tactile oral stimulation, a traditional swallowing recovery treatment, in patients with sub-acute dysphagia caused by stroke. [Subjects and Methods] Subjects of the present study were 55 patients diagnosed with dysphagia caused by stroke. This study had a nonequivalent control group pretest-posttest design. [Results] Analysis of pre-post values of videofluoroscopic studies of the neuromuscular electrical stimulation and thermal tactile oral stimulation groups using a paired t-test showed no significant difference between the two groups despite both having decreased mean values of the videofluoroscopic studies after treatment. [Conclusion] This study's findings show that both neuromuscular electrical stimulation and thermal tactile oral stimulation significantly enhanced the swallowing function of patients with sub-acute dysphagia.

  7. Comparison of treatment effect of neuromuscular electrical stimulation and thermal-tactile stimulation on patients with sub-acute dysphagia caused by stroke

    PubMed Central

    Byeon, Haewon; Koh, Hyeung Woo

    2016-01-01

    [Purpose] The effectiveness of neuromuscular electrical stimulation in the rehabilitation of swallowing remains controversial. This study compared the effectiveness of neuromuscular electrical stimulation and thermal tactile oral stimulation, a traditional swallowing recovery treatment, in patients with sub-acute dysphagia caused by stroke. [Subjects and Methods] Subjects of the present study were 55 patients diagnosed with dysphagia caused by stroke. This study had a nonequivalent control group pretest-posttest design. [Results] Analysis of pre-post values of videofluoroscopic studies of the neuromuscular electrical stimulation and thermal tactile oral stimulation groups using a paired t-test showed no significant difference between the two groups despite both having decreased mean values of the videofluoroscopic studies after treatment. [Conclusion] This study’s findings show that both neuromuscular electrical stimulation and thermal tactile oral stimulation significantly enhanced the swallowing function of patients with sub-acute dysphagia. PMID:27390421

  8. Electrical stimulation of anal sphincter or pudendal nerve improves anal sphincter pressure.

    PubMed

    Damaser, Margot S; Salcedo, Levilester; Wang, Guangjian; Zaszczurynski, Paul; Cruz, Michelle A; Butler, Robert S; Jiang, Hai-Hong; Zutshi, Massarat

    2012-12-01

    Stimulation of the pudendal nerve or the anal sphincter could provide therapeutic options for fecal incontinence with little involvement of other organs. The goal of this project was to assess the effects of pudendal nerve and anal sphincter stimulation on bladder and anal pressures. Ten virgin female Sprague Dawley rats were randomly allocated to control (n = 2), perianal stimulation (n = 4), and pudendal nerve stimulation (n = 4) groups. A monopolar electrode was hooked to the pudendal nerve or placed on the anal sphincter. Aballoon catheter was inserted into the anus to measure anal pressure, and a catheter was inserted into the bladder via the urethra to measure bladder pressure. Bladder and anal pressures were measured with different electrical stimulation parameters and different timing of electrical stimulation relative to spontaneous anal sphincter contractions. Increasing stimulation current had the most dramatic effect on both anal and bladder pressures. An immediate increase in anal pressure was observed when stimulating either the anal sphincter or the pudendal nerve at stimulation values of 1 mA or 2 mA. No increase in anal pressure was observed for lower current values. Bladder pressure increased at high current during anal sphincter stimulation, but not as much as during pudendal nerve stimulation. Increased bladder pressure during anal sphincter stimulation was due to contraction of the abdominal muscles. Electrical stimulation caused an increase in anal pressures with bladder involvement only at high current. These initial results suggest that electrical stimulation can increase anal sphincter pressure, enhancing continence control.

  9. The influence of postmortem electrical stimulation on rigor mortis development, calpastatin activity, and tenderness in broiler and duck pectoralis.

    PubMed

    Alvarado, C Z; Sams, A R

    2000-09-01

    This study was conducted to evaluate the effects of electrical stimulation (ES) on rigor mortis development, calpastatin activity, and tenderness in anatomically similar avian muscles composed primarily of either red or white muscle fibers. A total of 72 broilers and 72 White Pekin ducks were either treated with postmortem (PM) ES (450 mA) at the neck in a 1% NaCl solution for 2 s on and 1 s off for a total of 15 s or were used as nonstimulated controls. Both pectoralis muscles were harvested from the carcasses after 0.25, 1.25, and 24 h PM and analyzed for pH, inosine:adenosine ratio (R-value), sarcomere length, gravimetric fragmentation index, calpastatin activity, shear value, and cook loss. All data were analyzed within species for the effects of ES. Electrically stimulated ducks had a lower muscle pH at 0.25 and 1.25 h PM and higher R-values at 0.25 h PM compared with controls. Electrically stimulated broilers had a lower muscle pH at 1.25 h and higher R-values at 0.25 and 1.25 h PM compared with controls. Muscles of electrically stimulated broilers exhibited increased myofibrillar fragmentation at 0.25 and 1.25 h PM, whereas there was no such difference over PM time in the duck muscle. Electrical stimulation did not affect calpastatin activity in either broilers or ducks; however, the calpastatin activity of the broilers did decrease over the aging time period, whereas that of the ducks did not. Electrical stimulation decreased shear values in broilers at 1.25 h PM compared with controls; however, there was no difference in shear values of duck muscle due to ES at any sampling time. Cook loss was lower for electrically stimulated broilers at 0.25 and 1.25 h PM compared with the controls, but had no effect in the ducks. These results suggest that the red fibers of the duck pectoralis have less potential for rigor mortis acceleration and tenderization due to ES than do the white fibers of the broiler pectoralis.

  10. Effects of mirror therapy combined with neuromuscular electrical stimulation on motor recovery of lower limbs and walking ability of patients with stroke: a randomized controlled study.

    PubMed

    Xu, Qun; Guo, Feng; Salem, Hassan M Abo; Chen, Hong; Huang, Xiaolin

    2017-12-01

    To investigate the effectiveness of mirror therapy combined with neuromuscular electrical stimulation in promoting motor recovery of the lower limbs and walking ability in patients suffering from foot drop after stroke. Randomized controlled study. Inpatient rehabilitation center of a teaching hospital. Sixty-nine patients with foot drop. Patients were randomly divided into three groups: control, mirror therapy, and mirror therapy + neuromuscular electrical stimulation. All groups received interventions for 0.5 hours/day and five days/week for four weeks. 10-Meter walk test, Brunnstrom stage of motor recovery of the lower limbs, Modified Ashworth Scale score of plantar flexor spasticity, and passive ankle joint dorsiflexion range of motion were assessed before and after the four-week period. After four weeks of intervention, Brunnstrom stage ( P = 0.04), 10-meter walk test ( P < 0.05), and passive range of motion ( P < 0.05) showed obvious improvements between patients in the mirror therapy and control groups. Patients in the mirror therapy + neuromuscular electrical stimulation group showed better results than those in the mirror therapy group in the 10-meter walk test ( P < 0.05). There was no significant difference in spasticity between patients in the two intervention groups. However, compared with patients in the control group, patients in the mirror therapy + neuromuscular electrical stimulation group showed a significant decrease in spasticity ( P < 0.001). Therapy combining mirror therapy and neuromuscular electrical stimulation may help improve walking ability and reduce spasticity in stroke patients with foot drop.

  11. The effects of Transcutaneous Electrical Nerve Stimulation on postural control in patients with chronic low back pain.

    PubMed

    Rojhani-Shirazi, Z; Rezaeian, T

    2015-01-01

    Objective: The effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with low back pain which is not well known. This study aimed to evaluate the effects of TENS on postural control in chronic low back pain. Methods: This study was an experimental research design. Twenty-eight patients with chronic LBP (25-45 Y/ O) participated and by using a random allocation, were divided to samples who participated in this study. The mean center of pressure (COP) velocity and displacement were measured before, immediately and 30 min after the intervention. The tests were done with eyes open and closed on a force platform. Sensory electrical stimulation was applied through the TENS device. The descriptive statistics, independent sample T-test and ANOVA with repeated measurement on time were used for data analysis. Results: The results of the present study demonstrated that the application of the sensory electrical stimulation in chronic LBP patients showed a statistically significant improvement in postural control in Medio-lateral direction with no corresponding effect on the anterior-posterior direction immediately following the TENS application and 30 minutes after it in closed eyes conditions as compared to baseline. The application of TENS decreased the displacement and velocity of COP (p≤0.05), 30 minutes after the application of sensory electrical stimulation. The results showed that the mean displacement and velocity of COP decreased in eyes open position (p≤0.05). Also, immediately and 30 minutes after the application of sensory electrical stimulation, COP displacement and velocity in ML direction with eyes closed significantly decreased in the intervention group in comparison with control group (p≤0.05). Conclusion: The application of TENS in patients with chronic low back pain could improve postural control in these patients.

  12. The effects of Transcutaneous Electrical Nerve Stimulation on postural control in patients with chronic low back pain

    PubMed Central

    Rojhani-Shirazi, Z; Rezaeian, T

    2015-01-01

    Objective: The effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with low back pain which is not well known. This study aimed to evaluate the effects of TENS on postural control in chronic low back pain. Methods: This study was an experimental research design. Twenty-eight patients with chronic LBP (25-45 Y/ O) participated and by using a random allocation, were divided to samples who participated in this study. The mean center of pressure (COP) velocity and displacement were measured before, immediately and 30 min after the intervention. The tests were done with eyes open and closed on a force platform. Sensory electrical stimulation was applied through the TENS device. The descriptive statistics, independent sample T-test and ANOVA with repeated measurement on time were used for data analysis. Results: The results of the present study demonstrated that the application of the sensory electrical stimulation in chronic LBP patients showed a statistically significant improvement in postural control in Medio-lateral direction with no corresponding effect on the anterior-posterior direction immediately following the TENS application and 30 minutes after it in closed eyes conditions as compared to baseline. The application of TENS decreased the displacement and velocity of COP (p≤0.05), 30 minutes after the application of sensory electrical stimulation. The results showed that the mean displacement and velocity of COP decreased in eyes open position (p≤0.05). Also, immediately and 30 minutes after the application of sensory electrical stimulation, COP displacement and velocity in ML direction with eyes closed significantly decreased in the intervention group in comparison with control group (p≤0.05). Conclusion: The application of TENS in patients with chronic low back pain could improve postural control in these patients. PMID:28255392

  13. Improved Walking Claudication Distance with Transcutaneous Electrical Nerve Stimulation: An Old Treatment with a New Indication in Patients with Peripheral Artery Disease.

    PubMed

    Labrunée, Marc; Boned, Anne; Granger, Richard; Bousquet, Marc; Jordan, Christian; Richard, Lisa; Garrigues, Damien; Gremeaux, Vincent; Sénard, Jean-Michel; Pathak, Atul; Guiraud, Thibaut

    2015-11-01

    The aim of this study was to determine whether 45 mins of transcutaneous electrical nerve stimulation before exercise could delay pain onset and increase walking distance in peripheral artery disease patients. After a baseline assessment of the walking velocity that led to pain after 300 m, 15 peripheral artery disease patients underwent four exercise sessions in a random order. The patients had a 45-min transcutaneous electrical nerve stimulation session with different experimental conditions: 80 Hz, 10 Hz, sham (presence of electrodes without stimulation), or control with no electrodes, immediately followed by five walking bouts on a treadmill until pain occurred. The patients were allowed to rest for 10 mins between each bout and had no feedback concerning the walking distance achieved. Total walking distance was significantly different between T10, T80, sham, and control (P < 0.0003). No difference was observed between T10 and T80, but T10 was different from sham and control. Sham, T10, and T80 were all different from control (P < 0.001). There was no difference between each condition for heart rate and blood pressure. Transcutaneous electrical nerve stimulation immediately before walking can delay pain onset and increase walking distance in patients with class II peripheral artery disease, with transcutaneous electrical nerve stimulation of 10 Hz being the most effective.

  14. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.

    PubMed

    Carmel, Jason B; Kimura, Hiroki; Martin, John H

    2014-01-08

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.

  15. The effect of intra-operative transcutaneous electrical nerve stimulation on posterior neck pain following thyroidectomy.

    PubMed

    Park, C; Choi, J B; Lee, Y-S; Chang, H-S; Shin, C S; Kim, S; Han, D W

    2015-04-01

    Posterior neck pain following thyroidectomy is common because full neck extension is required during the procedure. We evaluated the effect of intra-operative transcutaneous electrical nerve stimulation on postoperative neck pain in patients undergoing total thyroidectomy under general anaesthesia. One hundred patients were randomly assigned to one of two groups; 50 patients received transcutaneous electrical nerve stimulation applied to the trapezius muscle and 50 patients acted as controls. Postoperative posterior neck pain and anterior wound pain were evaluated using an 11-point numerical rating scale at 30 min, 6 h, 24 h and 48 h following surgery. The numerical rating scale for posterior neck pain was significantly lower in the transcutaneous electrical nerve stimulation group compared with the control group at all time points (p < 0.05). There were no significant differences in the numerical rating scale for anterior wound pain at any time point. No adverse effects related to transcutaneous electrical nerve stimulation were observed. We conclude that intra-operative transcutaneous electrical nerve stimulation applied to the trapezius muscle reduced posterior neck pain following thyroidectomy. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  16. Does preoperative electrical stimulation of the skin alter the healing process?

    PubMed

    Borba, Graziela C; Hochman, Bernardo; Liebano, Richard E; Enokihara, Milvia M S S; Ferreira, Lydia M

    2011-04-01

    In vitro studies have demonstrated that electrical current may affect fibroblast proliferation and synthesis of collagen fibers. In humans, the application of electrical current by positioning the positive electrode on skin wounds resulted in thinner hypertrophic scars. The aim of this study was to evaluate the effects of preoperative electrical stimulation on cutaneous wound healing in rats. Forty rats were divided into two groups of 20 animals each. In the control group, an incision was made on the back of the animals. In the stimulation group, a preoperative electrical stimulation was applied using a rectangular pulse current at a frequency of 7.7 Hz, and intensity of 8 mA, for 30 min, with the positive electrode placed on the back of the animal, and the negative electrode placed on the abdominal wall. Following, an incision was made on their back. Biopsy was carried out on postoperative day 7 and 14, and histologic analysis was performed. The number of newly formed vessels, fibroblasts, and type III collagen fibers in the stimulation group on postoperative day 7 were greater than those in the control group. Preoperative positive-polarity electrical stimulation positively affects angiogenesis and fibroblast proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  18. [Electrical acupoint stimulation increases athletes' rapid strength].

    PubMed

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  19. Robust Neurite Extension Following Exogenous Electrical Stimulation within Single Walled Carbon Nanotube-Composite Hydrogels

    PubMed Central

    Koppes, A. N.; Keating, K. W.; McGregor, A. L.; Koppes, R. A.; Kearns, K. R.; Ziemba, A. M.; McKay, C. A.; Zuidema, J. M.; Rivet, C. J.; Gilbert, R. J.; Thompson, D. M.

    2016-01-01

    The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: 1) nanofillers influence neurite extension and 2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10–100-μg/ml) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. PMID:27167609

  20. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    PubMed

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  1. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    PubMed

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).

  2. Efficacy of Percutaneous Electrical Nerve Stimulation and Therapeutic Exercise for Older Adults with Chronic Low Back Pain: A Randomized Controlled Trial

    PubMed Central

    Weiner, Debra K.; Perera, Subashan; Rudy, Thomas E.; Glick, Ronald M.; Shenoy, Sonali; Delitto, Anthony

    2008-01-01

    Chronic low back pain (CLBP) in older adults may be disabling and therapeutically challenging, largely because of the inefficacy and/or morbidity associated with traditional pain treatment. We conducted a randomized controlled trial in 200 men and women ≥ age 65 with CLBP to evaluate the efficacy of percutaneous electrical nerve stimulation (PENS) with and without general conditioning and aerobic exercise (GCAE), for reducing pain and improving physical function. Participants were randomized to receive 1) PENS, 2) control-PENS (brief electrical stimulation to control for treatment expectancy), 3) PENS + GCAE, or 4) control-PENS + GCAE, twice a week for 6 weeks. All four groups experienced significantly reduced pain (range −2.3 to −4.1 on the McGill Pain Questionnaire short form), improved self-reported disability (range −2.1 to −3.0 on Roland scale) and improved gait velocity (0.04–0.07 m/sec), sustained at 6 months. The GCAE groups experienced significantly fewer fear avoidance beliefs immediately post-intervention and at 6 months than non-GCAE groups. There were no significant side effects. Since brief electrical stimulation (i.e., control-PENS) facilitated comparably reduced pain and improved function at 6 months as compared with PENS, the exact dose of electrical stimulation required for analgesia cannot be determined. GCAE was more effective than PENS alone in reducing fear avoidance beliefs, but not in reducing pain or improving physical function. PMID:18930352

  3. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    NASA Astrophysics Data System (ADS)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  4. Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: a randomized controlled study.

    PubMed

    Wang, Yong-Hui; Meng, Fei; Zhang, Yang; Xu, Mao-Yu; Yue, Shou-Wei

    2016-06-01

    To investigate whether full-movement neuromuscular electrical stimulation, which can generate full range of movement, reduces spasticity and/or improves motor function more effectively than control, sensory threshold-neuromuscular electrical stimulation, and motor threshold-neuromuscular electrical stimulation in sub-acute stroke patients. A randomized, single-blind, controlled study. Physical therapy room and functional assessment room. A total of 72 adult patients with sub-acute post-stroke hemiplegia and plantar flexor spasticity. Patients received 30-minute sessions of neuromuscular electrical stimulation on the motor points of the extensor hallucis and digitorum longus twice a day, five days per week for four weeks. Composite Spasticity Scale, Ankle Active Dorsiflexion Score, and walking time in the Timed Up and Go Test were assessed at pretreatment, posttreatment, and at two-week follow-up. After four weeks of treatment, when comparing interclass pretreatment and posttreatment, only the full-movement neuromuscular electrical stimulation group had a significant reduction in the Composite Spasticity Scale (mean % reduction = 19.91(4.96)%, F = 3.878, p < 0.05) and improvement in the Ankle Active Dorsiflexion Score (mean scores = 3.29(0.91), F = 3.140, p < 0.05). Furthermore, these improvements were maintained two weeks after the treatment ended. However, there were no significant differences in the walking time after four weeks of treatment among the four groups (F = 1.861, p > 0.05). Full-movement neuromuscular electrical stimulation with a stimulus intensity capable of generating full movement can significantly reduce plantar flexor spasticity and improve ankle active dorsiflexion, but cannot decrease walking time in the Timed Up and Go Test in sub-acute stroke patients. © The Author(s) 2015.

  5. A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients

    PubMed Central

    Huang, Zonghao; Wang, Zhigong; Lv, Xiaoying; Zhou, Yuxuan; Wang, Haipeng; Zong, Sihao

    2014-01-01

    Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. PMID:25657728

  6. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.

    PubMed

    Tillein, J; Hartmann, R; Kral, A

    2015-04-01

    The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Microprocessor controlled movement of solid colonic content using sequential neural electrical stimulation

    PubMed Central

    Amaris, M A; Rashev, P Z; Mintchev, M P; Bowes, K L

    2002-01-01

    Background and aims: Invoked peristaltic contractions and movement of solid content have not been attempted in normal canine colon. The purpose of this study was to determine if movement of solid content through the colon could be produced by microprocessor controlled sequential stimulation. Methods: The study was performed on six anaesthetised dogs. At laparotomy, a 15 cm segment of descending colon was selected, the proximal end closed with a purse string suture, and the distal end opened into a collecting container. Four sets of subserosal stimulating electrodes were implanted at 3 cm intervals. The segment of bowel was filled with a mixture of dog food and 50 plastic pellets before each of 2–5 random sessions of non-stimulated or stimulated emptying. Propagated contractions were generated using microprocessor controlled bipolar trains of 50 Hz rectangular voltage having 20 V (peak to peak) amplitude, 18 second stimulus duration, and a nine second phase lag between stimulation trains in sequential electrode sets. Results: Electrical stimulation using the above mentioned parameters resulted in powerful phasic contractions that closed the lumen. By phase locking the stimulation voltage between adjacent sets of electrodes, propagated contractions could be produced in an aboral or orad direction. The number of evacuated pellets during the stimulation sessions was significantly higher than during the non-stimulated sessions (p<0.01). Conclusions: Microprocessor controlled electrical stimulation accelerated movement of colonic content suggesting the possibility of future implantable colonic stimulators. PMID:11889065

  8. Neuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric field.

    PubMed

    Ye, Hui; Steiger, Amanda

    2015-08-12

    In laboratory research and clinical practice, externally-applied electric fields have been widely used to control neuronal activity. It is generally accepted that neuronal excitability is controlled by electric current that depolarizes or hyperpolarizes the excitable cell membrane. What determines the amount of polarization? Research on the mechanisms of electric stimulation focus on the optimal control of the field properties (frequency, amplitude, and direction of the electric currents) to improve stimulation outcomes. Emerging evidence from modeling and experimental studies support the existence of interactions between the targeted neurons and the externally-applied electric fields. With cell-field interaction, we suggest a two-way process. When a neuron is positioned inside an electric field, the electric field will induce a change in the resting membrane potential by superimposing an electrically-induced transmembrane potential (ITP). At the same time, the electric field can be perturbed and re-distributed by the cell. This cell-field interaction may play a significant role in the overall effects of stimulation. The redistributed field can cause secondary effects to neighboring cells by altering their geometrical pattern and amount of membrane polarization. Neurons excited by the externally-applied electric field can also affect neighboring cells by ephaptic interaction. Both aspects of the cell-field interaction depend on the biophysical properties of the neuronal tissue, including geometric (i.e., size, shape, orientation to the field) and electric (i.e., conductivity and dielectricity) attributes of the cells. The biophysical basis of the cell-field interaction can be explained by the electromagnetism theory. Further experimental and simulation studies on electric stimulation of neuronal tissue should consider the prospect of a cell-field interaction, and a better understanding of tissue inhomogeneity and anisotropy is needed to fully appreciate the neural basis of cell-field interaction as well as the biological effects of electric stimulation.

  9. The effects of electrical stimulation and exercise therapy in patients with limb girdle muscular dystrophy

    PubMed Central

    Kılınç, Muhammed; Yıldırım, Sibel A.; Tan, Ersin

    2015-01-01

    Objective: To evaluate and compare the effects of exercise therapy and electrical stimulation on muscle strength and functional activities in patients with limb-girdle muscular dystrophy (LGMD). Methods: This controlled clinical trial included 24 subjects who were diagnosed with LGMD by the Neurology Department of the Hacettepe University Hospital, Ankara, Turkey and were referred to the Physical Therapy Department between May 2013 and December 2014. Subjects were enrolled into an electrical stimulation (11 patients) group, or an exercise therapy (13 patients) group. Results: The mean age of patients was 31.62 years in the electrical stimulation group, and 30.14 years in the exercise therapy group. The most important results in this controlled clinical study were that the muscle strength in both groups was significantly decreased and post-treatment evaluation results indicated that muscle strength of the Deltoideus was higher in the electrical stimulation group, and the difference between the groups was maintained in the follow-up period (p<0.05). However, the muscle strength of quadriceps was similar in both groups, according to the post-treatment and follow-up evaluation results (p>0.05). Additionally, the electrical stimulation group presented more obvious overall improvements than the exercise therapy group according to muscle strength, endurance, and timed performance tests. Conclusions: Since no definitive treatments currently exist for patients with LGMD, these results provide important information on the role of exercise therapy and electrical stimulation for clinicians working in rehabilitation. PMID:26166595

  10. The effect of surface electrical stimulation on swallowing in dysphagic Parkinson patients.

    PubMed

    Baijens, Laura W J; Speyer, Renée; Passos, Valeria Lima; Pilz, Walmari; Roodenburg, Nel; Clavé, Père

    2012-12-01

    Surface electrical stimulation has been applied on a large scale to treat oropharyngeal dysphagia. Patients suffering from oropharyngeal dysphagia in the presence of Parkinson's disease have been treated with surface electrical stimulation. Because of controversial reports on this treatment, a pilot study was set up. This study describes the effects of a single session of surface electrical stimulation using different electrode positions in ten patients with idiopathic Parkinson's disease (median Hoehn and Yahr score: II) and oropharyngeal dysphagia compared to ten age- and gender-matched healthy control subjects during videofluoroscopy of swallowing. Three different electrode positions were applied in random order per subject. For each electrode position, the electrical current was respectively turned "on" and "off" in random order. Temporal, spatial, and visuoperceptual variables were scored by experienced raters who were blinded to the group, electrode position, and status (on/off) of the electrical current. Interrater and interrater reliabilities were calculated. Only a few significant effects of a single session of surface electrical stimulation using different electrode positions in dysphagic Parkinson patients could be observed in this study. Furthermore, significant results for temporal and spatial variables were found regardless of the status of the electrical current in both groups suggesting placebo effects. Following adjustment for electrical current status as well as electrode positions (both not significant, P > 0.05) in the statistical model, significant group differences between Parkinson patients and healthy control subjects emerged. Further studies are necessary to evaluate the potential therapeutic effect and mechanism of electrical stimulation in dysphagic patients with Parkinson's disease.

  11. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)

    PubMed Central

    Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander

    2017-01-01

    Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101

  12. Effects of electrical stimulation on House-Brackmann scores in early Bell's palsy.

    PubMed

    Alakram, Prisha; Puckree, Threethambal

    2010-04-22

    ABSTRACT Limited evidence may support the application of electrical stimulation in the subacute and chronic stages of facial palsy, yet some physiotherapists in South Africa have been applying this modality in the acute stage in the absence of published evidence of clinical efficacy. This preliminary study's aim was to determine the safety and potential efficacy of applying electrical stimulation to the facial muscles during the early phase of Bells palsy. A pretest posttest control vs. experimental groups design composed of 16 patients with Bell's palsy of less than 30 days' duration. Adult patients with clinical diagnosis of Bell's palsy were systematically (every second patient) allocated to the control and experimental groups. Each group (n = 8) was pretested and posttested using the House-Brackmann index. Both groups were treated with heat, massage, exercises, and a home program. The experimental group also received electrical stimulation. The House-Brackmann Scale of the control group improved between 17% and 50% with a mean of 30%. The scores of the experimental group ranged between 17% and 75% with a mean of 37%. The difference between the groups was not statistically significant (two-tailed p = 0.36). Electrical stimulation as used in this study during the acute phase of Bell's palsy is safe but may not have added value over spontaneous recovery and multimodal physiotherapy. A larger sample size or longer stimulation time or both should be investigated.

  13. Application of constant current, low voltage electrical stimulation systems to pig carcasses and its effects on pork quality.

    PubMed

    Channon, H A; Walker, P J; Kerr, M G; Baud, S R

    2003-12-01

    This study examined the effectiveness of a constant current, low voltage electrical stimulation system on improving pork quality when applied to pigs at 2 min post-exsanguination. A total of 48 female Duroc×Large White/Landrace pigs of 85-90 kg liveweight were randomly allocated immediately prior to slaughter to one of four constant current electrical stimulation treatments: control (no electrical stimulation), 50, 200 and 400 mA. Stimulation was applied to pig carcasses at 2 min post-exsanguination for 30 s. No differences (P>0.05) in WB shear force values, muscle lightness or PSE incidence of pork M. longissimus lumborum (LL) was found due to electrical stimulation treatment. Muscle pH of the LL muscle was lower (P<0.001) in carcasses in the 200 and 400 mA treatments compared to those from carcasses in both the 50 mA and control treatment groups, when measured at the various time points from 40 min to 8 h post-slaughter. Although carcasses stimulated with 200 and 400 mA had higher percentage drip loss (P<0.05) and purge (P<0.001), this was not found to impact WB shear force values, muscle lightness or PSE incidence.

  14. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    PubMed Central

    Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.

    2016-01-01

    Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064

  15. Comparison of the Effectiveness of Transcutaneous Electrical Nerve Stimulation and Interferential Therapy on the Upper Trapezius in Myofascial Pain Syndrome: A Randomized Controlled Study.

    PubMed

    Dissanayaka, Thusharika Dilrukshi; Pallegama, Ranjith Wasantha; Suraweera, Hilari Justus; Johnson, Mark I; Kariyawasam, Anula Padma

    2016-09-01

    The aim of this study was to compare the effectiveness of transcutaneous electrical nerve stimulation and interferential therapy (IFT) both in combination with hot pack, myofascial release, active range of motion exercise, and a home exercise program on myofascial pain syndrome patients with upper trapezius myofascial trigger point. A total of 105 patients with an upper trapezius myofascial trigger point were recruited to this single-blind randomized controlled trial. Following random allocation of patients to three groups, three therapeutic regimens-control-standard care (hot pack, active range of motion exercises, myofascial release, and a home exercise program with postural advice), transcutaneous electrical nerve stimulation-standard care and IFT-standard care-were administered eight times during 4 wks at regular intervals. Pain intensity and cervical range of motions (cervical extension, lateral flexion to the contralateral side, and rotation to the ipsilateral side) were measured at baseline, immediately after the first treatment, before the eighth treatment, and 1 wk after the eighth treatment. Immediate and short-term improvements were marked in the transcutaneous electrical nerve stimulation group (n = 35) compared with the IFT group (n = 35) and the control group (n = 35) with respect to pain intensity and cervical range of motions (P < 0.05). The IFT group showed significant improvement on these outcome measurements than the control group did (P < 0.05). Transcutaneous electrical nerve stimulation with standard care facilitates recovery better than IFT does in the same combination.

  16. Transcutaneous Electrical Nerve Stimulation Combined with Oxybutynin is Superior to Monotherapy in Children with Urge Incontinence: A Randomized, Placebo Controlled Study.

    PubMed

    Borch, Luise; Hagstroem, Soeren; Kamperis, Konstantinos; Siggaard, C V; Rittig, Soeren

    2017-08-01

    We evaluated whether combination therapy with transcutaneous electrical nerve stimulation and oxybutynin results in a superior treatment response compared to either therapy alone in children with urge incontinence. In this placebo controlled study 66 children with a mean ± SD age of 7.3 ± 1.6 years who were diagnosed with urge incontinence were randomized to 3 treatment groups. Group 1 consisted of 22 children undergoing transcutaneous electrical nerve stimulation plus active oxybutynin administration. Group 2 included 21 children undergoing active transcutaneous electrical nerve stimulation plus placebo oxybutynin administration. Group 3 consisted of 23 children undergoing active oxybutynin administration plus placebo transcutaneous electrical nerve stimulation. The children received active or placebo transcutaneous electrical nerve stimulation over the sacral S2 to S3 outflow for 2 hours daily in combination with 5 mg active or placebo oxybutynin twice daily. The intervention period was 10 weeks. Primary outcome was number of wet days weekly. Secondary outcomes were severity of incontinence, frequency, maximum voided volume over expected bladder capacity for age, average voided volume over expected bladder capacity for age and visual analogue scale score. Combination therapy was superior to oxybutynin monotherapy, with an 83% greater chance of treatment response (p = 0.05). Combination therapy was also significantly more effective than transcutaneous electrical nerve stimulation monotherapy regarding reduced number of wet days weekly (mean difference -2.28, CI -4.06 to -0.49), severity of incontinence (-3.11, CI -5.98 to -0.23) and daily voiding frequency (-2.82, CI -4.48 to -1.17). Transcutaneous electrical nerve stimulation in combination with oxybutynin for childhood urge incontinence was superior to monotherapy consisting of transcutaneous electrical nerve stimulation or oxybutynin, although the latter only reached borderline statistical significance. Furthermore, transcutaneous electrical nerve stimulation was associated with a decreased risk of oxybutynin induced post-void residual urine greater than 20 ml. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. RF-powered BIONs for stimulation and sensing.

    PubMed

    Loeb, G E; Richmond, F J R; Singh, J; Peck, R A; Tan, W; Zou, Q; Sachs, N

    2004-01-01

    Virtually all bodily functions are controlled by electrical signals in nerves and muscles. Electrical stimulation can restore missing signals but this has been difficult to achieve practically because of limitations in the bioelectric interfaces. Wireless, injectable microdevices are versatile, robust and relatively inexpensive to implant in a variety of sites and applications. Several variants are now in clinical use or under development to perform stimulation and/or sensing functions and to operate autonomously or with continuous coordination and feedback control.

  18. Electromyographic control of functional electrical stimulation in selected patients.

    PubMed

    Graupe, D; Kohn, K H; Basseas, S; Naccarato, E

    1984-07-01

    The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.

  19. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    PubMed Central

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  20. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    PubMed

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  1. "Bionic Man" Showcases Medical Research | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Wisconsin Implantable Sensors for Prosthesis Control Implantable myoelectric (electrical properties of muscle) sensors detect nerve signals above ... treatments reach the brain. Spinal Stimulation for Paralysis Electrical stimulation of the spinal cord is being used ...

  2. Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury.

    PubMed

    Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan

    2018-06-25

    High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and NGF in accordance with the in vivo results. Immediate or late transcutaneous high-frequency electrical stimulation exhibited the potential to stimulate the motor nerve regeneration. However, immediate electrical stimulation had a predilection to develop neuropathic pain. A delay in TENS initiation appears to be a reasonable approach for nerve repair and provides the appropriate time profile for its clinical application.

  3. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue

    PubMed Central

    Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana

    2012-01-01

    Maintenance of normal myocardial function depends intimately on synchronous tissue contraction driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue, but due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation, and unconstrained (i.e., not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate in concert these three key factors. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modeling studies. We then culture cardiac cells obtained from neonatal rats in porous, channeled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After eight days of culture, constructs grown with the simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23±0.10% vs. 0.14±0.05, 0.13±0.08, or 0.09±0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization than either control group. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. PMID:22170772

  4. Low-frequency electric muscle stimulation combined with physical therapy after total hip arthroplasty for hip osteoarthritis in elderly patients: a randomized controlled trial.

    PubMed

    Gremeaux, Vincent; Renault, Julien; Pardon, Laurent; Deley, Gaelle; Lepers, Romuald; Casillas, Jean-Marie

    2008-12-01

    To assess the effects of low-frequency electric muscle stimulation associated with usual physiotherapy on functional outcome after total hip arthroplasty (THA) for hip osteoarthritis (OA) in elderly subjects. Randomized controlled trial; pre- and posttreatment measurements. Hospital rehabilitation department. Subjects (N=29) referred to the rehabilitation department after THA for hip OA. The intervention group (n=16; 78+/-8 y) received simultaneous low-frequency electric muscle stimulation of bilateral quadriceps and calf muscles (highest tolerated intensity, 1h session, 5 d/wk, for 5 weeks) associated with conventional physical therapy including resistance training. The control group (n=13; 76+/-10 y) received conventional physical therapy alone (25 sessions). Maximal isometric strength of knee extensors, FIM instrument, before and after; a six-minute walk test and a 200 m fast walk test, after; length of stay (LOS). Low-frequency electric muscle stimulation was well tolerated. It resulted in a greater improvement in strength of knee extensors on the operated side (77% vs 23%; P<.01), leading to a better balance of muscle strength between the operated and nonoperated limb. The low-frequency electric muscle stimulation group also showed a greater improvement in FIM scores, though improvements in the walk tests were similar for the 2 groups, as was LOS. Low-frequency electric muscle stimulation is a safe, well-tolerated therapy after THA for hip OA. It improves knee extensor strength, which is one of the factors leading to greater functional independence after THA.

  5. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Coupling Efficiency in Chicken and Rat Skeleton Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    1999-01-01

    Expression of the beta-adrenergic receptor (bAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the bAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the bAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. Thus, in chicken muscle cells an enhanced level of contraction reduced the coupling efficiency of bAR for cyclic AMP production by approximately 55% compared to controls. In contrast, the bAR population in rat muscle cells was increased by approximately 25% by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was also increased by almost two-fold. Thus, in rat muscle cells an enhanced level of contraction increased the coupling efficiency of bAR for cyclic AMP production by approximately 50% compared to controls. The basal levels of intracellular cyclic AMP in both rat muscle cells and chicken muscle cells were not affected by electrical stimulation.

  6. Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test.

    PubMed

    Rogel-Salazar, G; Luna-Munguía, H; Stevens, K E; Besio, W G

    2013-04-01

    Noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been under development as an alternative/complementary therapy for seizure control. Transcranial focal electrical stimulation has shown efficacy in attenuating penicillin-, pilocarpine-, and pentylenetetrazole-induced acute seizures in rat models. This study evaluated the effects of TFS via TCREs on the memory formation of healthy rats as a safety test of TFS. Short- and long-term memory formation was tested after the application of TFS using the novel object recognition (NOR) test. The following independent groups were used: naïve, control (without TFS), and TFS (treated). The naïve, control, and stimulated groups spent more time investigating the new object than the familiar one during the test phase. Transcranial focal electrical stimulation via TCREs given once does not modify the short- and long-term memory formation in rats in the NOR test. Results provide an important step towards a better understanding for the safe usage of TFS via TCREs. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: A systematic review and meta-analysis.

    PubMed

    Lin, Shuqin; Sun, Qi; Wang, Haifeng; Xie, Guomin

    2018-01-10

    To evaluate the influence of transcutaneous electrical nerve stimulation in patients with stroke through a systematic review and meta-analysis. PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation vs placebo transcutaneous electrical nerve stimulation on stroke were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was modified Ashworth scale (MAS). Meta-analysis was performed using the random-effect model. Seven randomized controlled trials were included in the meta-analysis. Compared with placebo transcutaneous electrical nerve stimulation, transcutaneous electrical nerve stimulation supplementation significantly reduced MAS (standard mean difference (SMD) = -0.71; 95% confidence interval (95% CI) = -1.11 to -0.30; p = 0.0006), improved static balance with open eyes (SMD = -1.26; 95% CI = -1.83 to -0.69; p<0.0001) and closed eyes (SMD = -1.74; 95% CI = -2.36 to -1.12; p < 0.00001), and increased walking speed (SMD = 0.44; 95% CI = 0.05 to 0.84; p = 0.03), but did not improve results on the Timed Up and Go Test (SMD = -0.60; 95% CI=-1.22 to 0.03; p = 0.06). Transcutaneous electrical nerve stimulation is associated with significantly reduced spasticity, increased static balance and walking speed, but has no influence on dynamic balance.

  8. The effect of subthreshold continuous electrical stimulation on the facial function of patients with Bell's palsy.

    PubMed

    Kim, Jin; Choi, Jae Young

    2016-01-01

    The drug regimen plus electrical stimulation was more effective in treating Bell's palsy than the conventional drug treatment alone. The effectiveness of such a sub-threshold, continuous, low frequency electrical stimulation suggests a new therapeutic approach to accelerate nerve regeneration and improve functional recovery after injury. The purpose of this study was to determine whether sub-threshold, continuous electrical stimulation at 20 Hz facilitates functional recovery of patients with Bell's palsy. The authors performed a prospective randomized study that included 60 patients with mild-to-moderate grade Bell's palsy (HB grade ≤4, SB grade ≥40), to evaluate the effect of developed electrical stimulation on the resolution of symptoms. Thirty patients were treated with prednisolone or/and acyclovir plus electrical stimulation within 7 days of the onset of symptoms. The other 30 patients were treated with only prednisolone or/and acyclovir as a control group. The overall rate of patient recovery among those treated with prednisolone or/and acyclovir plus electrical stimulation (96%) was significantly better (p < 0.05) than the rate among those treated with only prednisolone or/and acyclovir (88%).

  9. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    NASA Astrophysics Data System (ADS)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  10. [EFFECTS OF ELECTRICAL STIMULATION OF NUCLEUS RETICULARIS PONTIS ORALIS ON THE SLEEP-WAKING STATES IN KRUSHINSKII-MOLODKINA STRAIN RATS].

    PubMed

    Vataev, S I; Malgina, N A; Oganesyan, G A

    2015-07-01

    The effects of electrical stimulation of nucleus reticularis pontis oralis on the behavior and brain electrical activity during all phases of the sleep-waking cycle was studied in Krushinskii-Molodkina strain rats, which have an inherited predisposition to audiogenic seizures. Electrical stimulation with 7 Hz frequency in the deep stage of slow-wave sleep cause appearance the fast-wave sleep. Similar stimulation during fast-wave sleep periods did not effects on the electrographic patterns and EEG spectral characteristics of hippocampus, visual, auditory and somatocnen nrnrenc nf the cnrtey ThPe sfimul1stinns did nnt break a fast-wave sleenhut increased almost twice due the duration of these sleep episodes. After electrical stimulation by same frequency during the wakeftlness and superficial slow-wave sleep states, the patterns and spectral characteristics of brain electrical activity in rats showed no significant changes as compared with controls. The results of this study indicate that the state of the animals sleep-waking cycle at the time of stimulation is a critical variable that influences the responses which are induced by electrical stimulation of the nucleus reticularis pontis oralis.

  11. Effects of electrical stimulation on the histological properties of wounds in diabetic mice.

    PubMed

    Thawer, H A; Houghton, P E

    2001-01-01

    The purpose of this study was to identify mechanisms underlying electrically stimulated wound closure in diabetic mice. Adult male mice (n = 58) with full-thickness excisional wounds were treated five times using negative polarity over the wound site for 15 minutes each over a 16-day period with sham (0 Volts) or 5.0, 10.0, 12.5 Volts. In addition, animals (diabetic (n = 33) and nondiabetic (n = 22)) received treatments of electrical stimulation (12.5 V), or sham treatment (0 V) at wound sites which were then harvested and prepared for histological analysis at 2, 8, and 16 days postwounding. Using computerized image analysis of sections stained with a picro sirus red-fast green staining technique, we found that increasing doses of electrical stimulation reduced collagen/noncollagenous protein ratios measured in the superficial scar of nondiabetic animals, with no effect in diabetic animals. In the deep scar, lower doses of electrical stimulation (5.0 V) produced significantly (p < 0.01) increased collagen deposition in wounds of nondiabetic animals compared with sham controls. Higher doses of electrical stimulation (12.5 V) were required to produce changes in diabetic animals than were observed in nondiabetic animals. These results suggest that electrical stimulation altered collagen deposition in excisional wounds of diabetic and nondiabetic animals. Electrical stimulation had a differential effect on wound healing in diabetic compared with nondiabetic animals. These data speak to the need to study the effects of electrical stimulation on healing in disease-specific models.

  12. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.

    PubMed

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-04-21

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.

  13. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat

    PubMed Central

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  14. Semiparametric Identification of Human Arm Dynamics for Flexible Control of a Functional Electrical Stimulation Neuroprosthesis

    PubMed Central

    Schearer, Eric M.; Liao, Yu-Wei; Perreault, Eric J.; Tresch, Matthew C.; Memberg, William D.; Kirsch, Robert F.; Lynch, Kevin M.

    2016-01-01

    We present a method to identify the dynamics of a human arm controlled by an implanted functional electrical stimulation neuroprosthesis. The method uses Gaussian process regression to predict shoulder and elbow torques given the shoulder and elbow joint positions and velocities and the electrical stimulation inputs to muscles. We compare the accuracy of torque predictions of nonparametric, semiparametric, and parametric model types. The most accurate of the three model types is a semiparametric Gaussian process model that combines the flexibility of a black box function approximator with the generalization power of a parameterized model. The semiparametric model predicted torques during stimulation of multiple muscles with errors less than 20% of the total muscle torque and passive torque needed to drive the arm. The identified model allows us to define an arbitrary reaching trajectory and approximately determine the muscle stimulations required to drive the arm along that trajectory. PMID:26955041

  15. The effect of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease: randomised controlled trial.

    PubMed

    Öncü, Emine; Zincir, Handan

    2017-07-01

    The aim of the present study was to assess the efficacy of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease. In patients with stable chronic obstructive pulmonary disease, transcutaneous electrical nerve stimulation has been known to attain improvement in forced expiratory volume in 1 seconds, physical activity, and quality of life. However, information about the effects of transcutaneous electrical nerve stimulation on acute exacerbation of chronic obstructive pulmonary disease is quite limited. A single-blind, randomised controlled trial. Data were collected between August 2013-May 2014. Eighty-two patients who were hospitalised with a diagnosis of acute exacerbation of chronic obstructive pulmonary disease were randomly assigned to a transcutaneous electrical nerve stimulation group receiving transcutaneous electrical nerve stimulation treatment for 20 seance over the acupuncture points with pharmacotherapy or placebo group receiving the same treatment without electrical current output from the transcutaneous electrical nerve stimulation device. Pulmonary functional test, six-minute walking distance, dyspnoea and fatigue scale, and St. George's Respiratory Questionnaire scores were assessed pre- and postprogram. The program started at the hospital by the researcher was sustained in the patient's home by the caregiver. All patients were able to complete the program, despite the exacerbation. The 20 seance transcutaneous electrical nerve stimulation program provided clinically significant improvement in forced expiratory volume in 1 seconds 21 ml, 19·51% but when compared with the placebo group, the difference was insignificant (p > 0·05). The six-minute walking distance increased by 48·10 m more in the placebo group (p < 0·05). There were no significant differences between the two groups' St. George's Respiratory Questionnaire, dyspnoea and fatigue score (p > 0·05). Adding transcutaneous electrical nerve stimulation therapy to pharmacotherapy in patients with acute exacerbation of chronic obstructive pulmonary disease provided clinical improvement in forced expiratory volume in 1 seconds and add benefit in exercise capacity, but no significant effect on the other outcomes measured. Transcutaneous electrical nerve stimulation can be used as a non-invasive complementary therapy due to its beneficial effects on forced expiratory volume in 1 seconds and exercise capacity in patients with acute exacerbation of chronic obstructive pulmonary disease. © 2016 John Wiley & Sons Ltd.

  16. Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method

    PubMed Central

    Wang, Hai-peng; Bi, Zheng-yang; Zhou, Yang; Zhou, Yu-xuan; Wang, Zhi-gong; Lv, Xiao-ying

    2017-01-01

    Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training. PMID:28250759

  17. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study.

    PubMed

    Chipchase, Lucy S; Schabrun, Siobhan M; Hodges, Paul W

    2011-09-01

    To evaluate the effect of 6 electric stimulation paradigms on corticospinal excitability. Using a same subject pre-post test design, transcranial magnetic stimulation (TMS) was used to measure the responsiveness of corticomotor pathway to biceps and triceps brachii muscles before and after 30 minutes of electric stimulation over the biceps brachii. Six different electric stimulation paradigms were applied in random order, at least 3 days apart. Motor control research laboratory. Healthy subjects (N=10; 5 women, 5 men; mean age ± SD, 26 ± 3.6y). Six different electric stimulation paradigms with varied stimulus amplitude, frequency, and ramp settings. Amplitudes of TMS-induced motor evoked potentials at biceps and triceps brachii normalized to maximal M-wave amplitudes. Electric stimulation delivered at stimulus amplitude sufficient to evoke a sensory response at both 10 Hz and 100 Hz, and stimulus amplitude to create a noxious response at 10 Hz decreased corticomotor responsiveness (all P<0.01). Stimulation sufficient to induce a motor contraction (30 Hz) applied in a ramped pattern to mimic a voluntary activation increased corticomotor responsiveness (P=0.002), whereas constant low- and high-intensity motor stimulation at 10 Hz did not. Corticomotor excitability changes were similar for both the stimulated muscle and its antagonist. Stimulus amplitude (intensity) and the nature (muscle flicker vs contraction) of motor stimulation have a significant impact on changes in corticospinal excitability induced by electric stimulation. Here, we demonstrate that peripheral electric stimulation at stimulus amplitude to create a sensory response reduces corticomotor responsiveness. Conversely, stimulus amplitude to create a motor response increases corticomotor responsiveness, but only the parameters that create a motor response that mimics a voluntary muscle contraction. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Effect of Fixed Versus Adjusted Transcutaneous Electrical Nerve Stimulation Amplitude on Chronic Mechanical Low Back Pain.

    PubMed

    Elserty, Noha; Kattabei, Omaima; Elhafez, Hytham

    2016-07-01

    This study aimed to investigate the effect of adjusting pulse amplitude of transcutaneous electrical nerve stimulation versus fixed pulse amplitude in treatment of chronic mechanical low back pain. Randomized clinical trial. El-sahel Teaching Hospital, Egypt. Forty-five patients with chronic low back pain assigned to three equal groups. Their ages ranged from 20 to 50 years. The three groups received the same exercise program. Group A received transcutaneous electrical nerve stimulation with fixed pulse amplitude for 40 minutes. Group B received transcutaneous electrical nerve stimulation with adjusted pulse amplitude for 40 minutes, with the pulse amplitude adjusted every 5 minutes. Group C received exercises only. Treatment sessions were applied three times per week for 4 weeks for the three groups. A visual analogue scale was used to assess pain severity, the Oswestry Disability Index was used to assess functional level, and a dual inclinometer was used to measure lumbar range of motion. Evaluations were performed before and after treatment. Visual analogue scale, Oswestry Disability Index, and back range of motion significantly differed between the two groups that received transcutaneous electrical nerve stimulation and the control group and did not significantly differ between fixed and adjusted pulse amplitude of transcutaneous electrical nerve stimulation. Adjusting pulse amplitude of transcutaneous electrical nerve stimulation does not produce a difference in the effect of transcutaneous electrical nerve stimulation used to treat chronic low back pain.

  19. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Geng, Le; Wang, Zidun; Cui, Chang; Zhu, Yue; Shi, Jiaojiao; Wang, Jiaxian; Chen, Minglong

    2018-06-15

    Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Rapid electrical stimulation (RES) at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz) were set as no electrical stimulation (NES) control or low-frequency electrical stimulation (LES) control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI) staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and caused electrophysiological remodeling in a time-dependent manner. CaMKII played a central role in the damages induced by RES, pharmacological inhibition of CaMKII activity partly reversed the adverse effects of RES on both structural and electrophysiological properties of cells. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue

    NASA Astrophysics Data System (ADS)

    Jezernik, Sašo; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  1. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    PubMed

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  2. [Effects of Electric Stimulation and Biofeedback for Pelvic Floor Muscle Exercise in Women with Vaginal Rejuvenation Women].

    PubMed

    Lee, Jung Bok; Choi, So Young

    2015-10-01

    The purpose of this study was to investigate the effects of pelvic floor muscle exercise using electric stimulation and biofeedback on maximum pressure of vaginal contraction, vaginal contraction duration and sexual function in women who have had vaginal rejuvenation. The research design was a non-equivalent control group non-synchronized design study. Participants in this study were women who had vaginal rejuvenation at C obstetrics and gynecology hospital. The 15 participants in the experimental group were given pelvic floor muscle exercise using electric stimulation and biofeedback and the 15 participants in the control group received self pelvic floor muscle exercise. For maximum pressure of vaginal contraction, the experimental group showed a statistically significant increase compared to than the control group (t=5.96, p<.001). For vaginal contraction duration, the experimental group also showed a statistically significant increase compared to the control group (t=3.23, p=.003). For women's sexual function, the experimental group showed a significant increase when compared to the control group in total sexual function scores (t=3.41, p=.002). The results indicate that pelvic floor muscle exercise with electric stimulation and biofeedback after vaginal rejuvenation is effective in strengthening vaginal contraction pressure, vaginal contraction and that it also positively functions to increase women's sexual function.

  3. Design of a symmetry controller for cycling induced by electrical stimulation: preliminary results on post-acute stroke patients.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra

    2010-08-01

    This study deals with the design of a controller for cycling induced by functional electrical stimulation. The controller will be exploitable in the rehabilitation of hemiparetic patients who need to recover motor symmetry. It uses the pulse width as the control variable in the stimulation of the two legs in order to nullify the unbalance between the torques produced at the two crank arms. It was validated by means of isokinetic trials performed both by healthy subjects and stroke patients. The results showed that the controller was able to reach, and then maintain, a symmetrical pedaling. In the future, the controller will be validated on a larger number of stroke patients.

  4. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue.

    PubMed

    Maidhof, Robert; Tandon, Nina; Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana

    2012-11-01

    Maintenance of normal myocardial function depends intimately on synchronous tissue contraction, driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue but, due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation and unconstrained (i.e. not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate these three key factors in concert. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modelling studies. We then cultured cardiac cells obtained from neonatal rats in porous, channelled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After 8 days of culture, constructs grown with simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23 ± 0.10% vs 0.14 ± 0.05%, 0.13 ± 0.08% or 0.09 ± 0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization compared to control groups. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. Copyright © 2011 John Wiley & Sons, Ltd.

  5. A urodynamic study of surface neuromodulation versus sham in detrusor instability and sensory urgency.

    PubMed

    Bower, W F; Moore, K H; Adams, R D; Shepherd, R

    1998-12-01

    We studied the effect of surface neuromodulation on cystometric pressure and volume parameters in women with detrusor instability or sensory urgency. Electrical current was delivered to the suprapubic region and third sacral foramina via a transcutaneous electrical nerve stimulator with sham neuromodulation control. A consecutive series of women with proved detrusor instability or sensory urgency were randomized to 3 surface neuromodulation groups. Volume and pressure parameters were the main outcomes of transcutaneous electrical nerve stimulation applied during second cystometric fill. Sham transcutaneous electrical nerve stimulation did not alter the outcome measures. However, neuromodulation delivered across the suprapubic and sacral skin effected a reduction in mean maximum height of detrusor contraction. A current which inhibits motor activity was not superior to that which inhibits sensory perception in reducing detrusor pressure. Response in sensory urgency was poor. Results from our sham controlled study suggest that short-term surface neuromodulation via transcutaneous electrical nerve stimulation may have a role in the treatment of detrusor instability. Future studies must examine the clinical effect of long-term surface neuromodulation.

  6. The Effect of Transcutaneous Electrical Nerve Stimulation of Sympathetic Ganglions and Acupuncture Points on Distal Blood Flow.

    PubMed

    Kamali, Fahimeh; Mirkhani, Hossein; Nematollahi, Ahmadreza; Heidari, Saeed; Moosavi, Elahesadat; Mohamadi, Marzieh

    2017-04-01

    Transcutaneous electrical nerve stimulation (TENS) is a widely-practiced method to increase blood flow in clinical practice. The best location for stimulation to achieve optimal blood flow has not yet been determined. We compared the effect of TENS application at sympathetic ganglions and acupuncture points on blood flow in the foot of healthy individuals. Seventy-five healthy individuals were randomly assigned to three groups. The first group received cutaneous electrical stimulation at the thoracolumbar sympathetic ganglions. The second group received stimulation at acupuncture points. The third group received stimulation in the mid-calf area as a control group. Blood flow was recorded at time zero as baseline and every 3 minutes after baseline during stimulation, with a laser Doppler flow-meter. Individuals who received sympathetic ganglion stimulation showed significantly greater blood flow than those receiving acupuncture point stimulation or those in the control group (p<0.001). Data analysis revealed that blood flow at different times during stimulation increased significantly from time zero in each group. Therefore, the application of low-frequency TENS at the thoracolumbar sympathetic ganglions was more effective in increasing peripheral blood circulation than stimulation at acupuncture points. Copyright © 2017 Medical Association of Pharmacopuncture Institute. Published by Elsevier B.V. All rights reserved.

  7. Development of BION(TM) Technology for Functional Electrical Stimulation: Bidirectional Telemetry

    DTIC Science & Technology

    2001-10-25

    paralyzed limb , it is necessary to incorporate sensors and back telemetry to provide voluntary control and sensory feedback signals. We describe...requirements. Keywords - neural prostheses, electrical stimulation, implants, telemetry, sensors I. INTRODUCTION BIONs ( BIOnic Neurons) are modular...ents of a paralyzed limb will require a sophisticated control system that must be driven by two types of data from the patient: 1) command signals

  8. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    PubMed Central

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  9. Electrical stimulation modulates injury potentials in rats after spinal cord injury

    PubMed Central

    Zhang, Guanghao; Huo, Xiaolin; Wang, Aihua; Wu, Changzhe; Zhang, Cheng; Bai, Jinzhu

    2013-01-01

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as well as injury current, can be modulated by direct current field stimulation; however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around –70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon illustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cell membrane and the reduction of cation influx. PMID:25206563

  10. Alternating frequencies of transcutaneous electric nerve stimulation: does it produce greater analgesic effects on mechanical and thermal pain thresholds?

    PubMed

    Tong, K C; Lo, Sing Kai; Cheing, Gladys L

    2007-10-01

    To determine whether alternating frequency transcutaneous electric nerve stimulation (TENS) at 2 and 100Hz (2/100Hz) has a more potent hypoalgesic effect than a fixed frequency at 2 or 100Hz in healthy participants. A single-blind randomized controlled trial with a convenience sample. University physiotherapy department. Sixty-four healthy volunteers (32 men [mean age, 28.1+/-5.9y], 32 women [mean age, 27.7+/-5.6y]) were recruited and randomly divided into 4 groups. The 4 groups received TENS delivered at (1) 2Hz; (2) 100Hz; (3) 2/100Hz alternating frequency; and (4) no treatment (control group), respectively. Electric stimulation was applied over the anterior aspect of the dominant forearm for 30 minutes. Mechanical pain thresholds (MPTs) and heat pain thresholds (HPTs) were recorded before, during, and after TENS stimulation. The data were analyzed using linear mixed models, with group treated as a between-subject factor and time a within-subject factor. During and shortly after electric stimulation, HPT increased significantly in the alternating frequency stimulation group (P=.024). MPT increased significantly in both the 100Hz (P=.008) and the alternating frequency groups (P=.012), but the increase was substantially larger in the 100Hz group. Alternating frequency stimulation produced a greater elevation in the HPT, but a greater increase in the MPT was achieved using 100Hz stimulation.

  11. Low-Cost Computer-Controlled Current Stimulator for the Student Laboratory

    ERIC Educational Resources Information Center

    Guclu, Burak

    2007-01-01

    Electrical stimulation of nerve and muscle tissues is frequently used for teaching core concepts in physiology. It is usually expensive to provide every student group in the laboratory with an individual stimulator. This article presents the design and application of a low-cost [about $100 (U.S.)] isolated stimulator that can be controlled by two…

  12. Right median nerve electrical stimulation for acute traumatic coma (the Asia Coma Electrical Stimulation trial): study protocol for a randomised controlled trial.

    PubMed

    Wu, Xiang; Zhang, Chao; Feng, Junfeng; Mao, Qing; Gao, Guoyi; Jiang, Jiyao

    2017-07-10

    Traumatic brain injury (TBI) has become the most common cause of death and disability in persons between 15 and 30 years of age, and about 10-15% of patients affected by TBI will end up in a coma. Coma caused by TBI presents a significant challenge to neuroscientists. Right median nerve electrical stimulation has been reported as a simple, inexpensive, non-invasive technique to speed recovery and improve outcomes for traumatic comatose patients. This multicentre, prospective, randomised (1:1) controlled trial aims to demonstrate the efficacy and safety of electrical right median nerve stimulation (RMNS) in both accelerating emergence from coma and promoting long-term outcomes. This trial aims to enrol 380 TBI comatose patients to partake in either an electrical stimulation group or a non-stimulation group. Patients assigned to the stimulation group will receive RMNS in addition to standard treatment at an amplitude of 15-20 mA with a pulse width of 300 μs at 40 Hz ON for 20 s and OFF for 40 s. The electrical treatment will last for 8 h per day for 2 weeks. The primary endpoint will be the percentage of patients regaining consciousness 6 months after injury. The secondary endpoints will be Extended Glasgow Outcome Scale, Coma Recovery Scale-Revised and Disability Rating Scale scores at 28 days, 3 months and 6 months after injury; Glasgow Coma Scale, Glasgow Coma Scale Motor Part and Full Outline of Unresponsiveness scale scores on day 1 and day 7 after enrolment and 28 days, 3 months and 6 months after injury; duration of unconsciousness and mechanical ventilation; length of intensive care unit and hospital stays; and incidence of adverse events. Right median nerve electrical stimulation has been used as a safe, inexpensive, non-invasive therapy for neuroresuscitation of coma patients for more than two decades, yet no trial has robustly proven the efficacy and safety of this treatment. The Asia Coma Electrical Stimulation (ACES) trial has the following novel features compared with other major RMNS trials: (1) the ACES trial is an Asian multicentre randomised controlled trial; (2) RMNS therapy starts at an early stage 7-14 days after the injury; and (3) various assessment scales are used to evaluate the condition of patients. We hope the ACES trial will lead to optimal use of right median nerve electrical treatment. ClinicalTrials.gov, NCT02645578 . Registered on 23 December 2015.

  13. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    PubMed

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  14. Acromiohumeral Distance During Neuromuscular Electrical Stimulation of the Lower Trapezius and Serratus Anterior Muscles in Healthy Participants.

    PubMed

    Bdaiwi, Alya H; Mackenzie, Tanya Anne; Herrington, Lee; Horsley, Ian; Cools, Ann M

    2015-07-01

    Compromise to the acromiohumeral distance has been reported in participants with subacromial impingement syndrome compared with healthy participants. In clinical practice, patients with subacromial shoulder impingement are given strengthening programs targeting the lower trapezius (LT) and serratus anterior (SA) muscles to increase scapular posterior tilt and upward rotation. We are the first to use neuromuscular electrical stimulation to stimulate these muscle groups and evaluate how the muscle contraction affects the acromiohumeral distance. To investigate if electrical muscle stimulation of the LT and SA muscles, both separately and simultaneously, increases the acromiohumeral distance and to identify which muscle-group contraction or combination most influences the acromiohumeral distance. Controlled laboratory study. Human performance laboratory. Twenty participants (10 men and 10 women, age = 26.9 ± 8.0 years, body mass index = 23.8) were screened. Neuromuscular electrical stimulation of the LT and SA. Ultrasound measurement of the acromiohumeral distance. Acromiohumeral distance increased during contraction via neuromuscular electrical stimulation of the LT muscle (t(19) = -3.89, P = .004), SA muscle (t(19) = -7.67, P = .001), and combined LT and SA muscles (t(19) = -5.09, P = .001). We observed no differences in the increased acromiohumeral distance among the 3 procedures (F(2,57) = 3.109, P = .08). Our results supported the hypothesis that the muscle force couple around the scapula is important in rehabilitation and scapular control and influences acromiohumeral distance.

  15. Effect of combined opioid receptor and α2-adrenoceptor blockade on anxiety and electrically evoked startle responses.

    PubMed

    Vo, Lechi; Drummond, Peter D

    2017-06-01

    The R3 component of the electrically evoked blink reflex may form part of a startle reaction. Acoustic startle responses are augmented by yohimbine, an α 2 -adrenoceptor antagonist that blocks α 2 -autoreceptors, and are potentiated by opioid receptor blockade. To investigate these influences on electrically evoked startle responses, 16 mg yohimbine, with (16 participants) or without 50 mg naltrexone (23 participants), was administered in separate double-blind placebo-controlled cross-over experiments. In each experiment, R3 (a probable component of the startle response) was examined before and after high-frequency electrical stimulation of the forearm, a procedure that initiates inhibitory pain controls. Anxiety and somatic symptoms were greater after yohimbine than placebo, and were potentiated by naltrexone. Pain ratings for the electrically evoked startle stimuli decreased after high-frequency electrical stimulation in the placebo session but remained stable after drug administration. Yohimbine with naltrexone, but not yohimbine alone, also blocked an inhibitory effect of high-frequency electrical stimulation on electrically evoked sharp sensations and R3. Together, the findings suggest that adding naltrexone to yohimbine potentiated anxiety and blocked inhibitory influences of high-frequency electrical stimulation on electrically evoked sensations and startle responses. Thus, opioid peptides could reduce activity in nociceptive and startle-reflex pathways, or inhibit crosstalk between these pathways. Failure of this inhibitory opioid influence might be important in chronically painful conditions that are aggravated by startle stimuli.

  16. Toward a noninvasive automatic seizure control system in rats with transcranial focal stimulations via tripolar concentric ring electrodes

    PubMed Central

    Makeyev, Oleksandr; Liu, Xiang; Luna-Munguía, Hiram; Rogel-Salazar, Gabriela; Mucio-Ramirez, Samuel; Liu, Yuhong; Sun, Yan L.; Kay, Steven M.; Besio, Walter G.

    2012-01-01

    Epilepsy affects approximately one percent of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We are developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation system through our novel tripolar concentric ring electrodes to control seizures. In this study we demonstrate feasibility of an automatic seizure control system in rats with pentylenetetrazole-induced seizures through single and multiple stimulations. These stimulations are automatically triggered by a real-time electrographic seizure activity detector based on a disjunctive combination of detections from a cumulative sum algorithm and a generalized likelihood ratio test. An average seizure onset detection accuracy of 76.14% was obtained for the test set (n = 13). Detection of electrographic seizure activity was accomplished in advance of the early behavioral seizure activity in 76.92% of the cases. Automatically triggered stimulation significantly (p = 0.001) reduced the electrographic seizure activity power in the once stimulated group compared to controls in 70% of the cases. To the best of our knowledge this is the first closed-loop automatic seizure control system based on noninvasive electrical brain stimulation using tripolar concentric ring electrode electrographic seizure activity as feedback. PMID:22772373

  17. Toward a noninvasive automatic seizure control system in rats with transcranial focal stimulations via tripolar concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Liu, Xiang; Luna-Munguía, Hiram; Rogel-Salazar, Gabriela; Mucio-Ramirez, Samuel; Liu, Yuhong; Sun, Yan L; Kay, Steven M; Besio, Walter G

    2012-07-01

    Epilepsy affects approximately 1% of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We are developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation system through our novel tripolar concentric ring electrodes to control seizures. In this study, we demonstrate feasibility of an automatic seizure control system in rats with pentylenetetrazole-induced seizures through single and multiple stimulations. These stimulations are automatically triggered by a real-time electrographic seizure activity detector based on a disjunctive combination of detections from a cumulative sum algorithm and a generalized likelihood ratio test. An average seizure onset detection accuracy of 76.14% was obtained for the test set (n = 13). Detection of electrographic seizure activity was accomplished in advance of the early behavioral seizure activity in 76.92% of the cases. Automatically triggered stimulation significantly (p = 0.001) reduced the electrographic seizure activity power in the once stimulated group compared to controls in 70% of the cases. To the best of our knowledge this is the first closed-loop automatic seizure control system based on noninvasive electrical brain stimulation using tripolar concentric ring electrode electrographic seizure activity as feedback.

  18. Pulsed laser versus electrical energy for peripheral nerve stimulation

    PubMed Central

    Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2010-01-01

    Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515

  19. Transcutaneous Electrical Acupoint Stimulation in Children with Autism and Its Impact on Plasma Levels of Arginine-Vasopressin and Oxytocin: A Prospective Single-Blinded Controlled Study

    ERIC Educational Resources Information Center

    Zhang, Rong; Jia, Mei-Xiang; Zhang, Ji-Sui; Xu, Xin-Jie; Shou, Xiao-Jing; Zhang, Xiu-Ting; Li, Li; Li, Ning; Han, Song-Ping; Han, Ji-Sheng

    2012-01-01

    Acupuncture increases brain levels of arginine-vasopressin (AVP) and oxytocin (OXT), which are known to be involved in the modulation of mammalian social behavior. Transcutaneous electrical acupoint stimulation (TEAS) is often used clinically to produce a similar stimulation to that of acupuncture on the acupoints. In the present study, TEAS was…

  20. Electric fields in hippocampus due to transcranial focal electrical stimulation via concentric ring electrodes.

    PubMed

    Besio, Walter G; Hadidi, Ruba; Makeyev, Oleksandr; Luna-Munguía, Hiram; Rocha, Luisa

    2011-01-01

    As epilepsy affects approximately one percent of the world population, electrical stimulation of brain has recently shown potential as an additive seizure control therapy. In this study we applied focal transcranial electrical stimulation (TFS) on the surface of the skull of rats via concentric ring electrodes. We recorded electric potentials with a bipolar electrode consisting of two stainless steel wires implanted into the left ventral hippocampus. TFS current was gradually increased by 20% starting at 103 μA allowing us to assess the relationship between TFS current and both potentials recorded from the bipolar electrode and the resulting electric field. Generally, increases in TFS current resulted in increases in the electric field. This allows us to estimate what extra-cranial TFS current would be sufficient to cause the activation of neurons in the hippocampus.

  1. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Design & control of a 3D stroke rehabilitation platform.

    PubMed

    Cai, Z; Tong, D; Meadmore, K L; Freeman, C T; Hughes, A M; Rogers, E; Burridge, J H

    2011-01-01

    An upper limb stroke rehabilitation system is developed which combines electrical stimulation with mechanical arm support, to assist patients performing 3D reaching tasks in a virtual reality environment. The Stimulation Assistance through Iterative Learning (SAIL) platform applies electrical stimulation to two muscles in the arm using model-based control schemes which learn from previous trials of the task. This results in accurate movement which maximises the therapeutic effect of treatment. The principal components of the system are described and experimental results confirm its efficacy for clinical use in upper limb stroke rehabilitation. © 2011 IEEE

  3. Myoelectric intuitive control and transcutaneous electrical stimulation of the forearm for vibrotactile sensation feedback applied to a 3D printed prosthetic hand.

    PubMed

    Germany, Enrique I; Pino, Esteban J; Aqueveque, Pablo E

    2016-08-01

    This paper presents the development of a myoelectric prosthetic hand based on a 3D printed model. A myoelectric control strategy based on artificial neural networks is implemented on a microcontroller for online position estimation. Position estimation performance achieves a correlation index of 0.78. Also a study involving transcutaneous electrical stimulation was performed to provide tactile feedback. A series of stimulations with controlled parameters were tested on five able-body subjects. A single channel stimulator was used, positioning the electrodes 8 cm on the wrist over the ulnar and median nerve. Controlling stimulation parameters such as intensity, frequency and pulse width, the subjects were capable of distinguishing different sensations over the palm of the hand. Three main sensations where achieved: tickling, pressure and pain. Tickling and pressure were discretized into low, moderate and high according to the magnitude of the feeling. The parameters at which each sensation was obtained are further discussed in this paper.

  4. Moving-window dynamic optimization: design of stimulation profiles for walking.

    PubMed

    Dosen, Strahinja; Popović, Dejan B

    2009-05-01

    The overall goal of the research is to improve control for electrical stimulation-based assistance of walking in hemiplegic individuals. We present the simulation for generating offline input (sensors)-output (intensity of muscle stimulation) representation of walking that serves in synthesizing a rule-base for control of electrical stimulation for restoration of walking. The simulation uses new algorithm termed moving-window dynamic optimization (MWDO). The optimization criterion was to minimize the sum of the squares of tracking errors from desired trajectories with the penalty function on the total muscle efforts. The MWDO was developed in the MATLAB environment and tested using target trajectories characteristic for slow-to-normal walking recorded in healthy individual and a model with the parameters characterizing the potential hemiplegic user. The outputs of the simulation are piecewise constant intensities of electrical stimulation and trajectories generated when the calculated stimulation is applied to the model. We demonstrated the importance of this simulation by showing the outputs for healthy and hemiplegic individuals, using the same target trajectories. Results of the simulation show that the MWDO is an efficient tool for analyzing achievable trajectories and for determining the stimulation profiles that need to be delivered for good tracking.

  5. Evaluation of transcutaneous electrical simulation to improve recovery from corneal hypoesthesia after LASIK.

    PubMed

    Ghaffariyeh, Alireza; Peyman, Alireza; Puyan, Sadollah; Honarpisheh, Nazafarin; Bagheri, Babak; Peyman, Mohammadreza

    2009-08-01

    To evaluate the efficacy, and safety of transcutaneous electrical stimulation (TES) to accelerate corneal nerve regeneration and improved recovery from corneal hypesthasia after laser-assisted in situ keratomileusis (LASIK). Khodadoust Eye Hospital, Shiraz, Fars, Iran This prospective, randomized, clinical study comprised 40 eyes of 20 patients scheduled to undergo bilateral LASIK. In each patient, one eye was randomly assigned to receive transcutaneous electrical stimulation (20 HZ) for 60 minutes, and the other eye allocated as control. Corneal sensitivity was measured using the Cochet-Bonnet esthesiometer in four areas outside and five areas inside the LASIK flap preoperatively, and at 1 day, 1 week, 1 month, and 3 months postoperatively. Best-corrected visual acuity and the incidence of adverse events were noted at each visit. For all four points outside the LASIK flap, normal corneal sensitivity was maintained throughout the study; no significant difference was found between the study eyes and the control eyes at these points (P > 0.05). All points within the LASIK flap except the point closest to the hinge demonstrated profound corneal hypoesthesia at 1 day, 1 week, and 1 month postoperatively, with no differences noted between the control and study eyes (P > 0.05). After 3 months, points within the flap had statistically significantly better corneal sensitivity in the study group than in the control group (P < 0.05). Transcutaneous electrical stimulation significantly improves corneal sensitivity at 3 months after LASIK. This may be due to accelerated corneal nerve regeneration by electrical stimulation.

  6. Soft Graphene Nanofibers Designed for the Acceleration of Nerve Growth and Development.

    PubMed

    Feng, Zhang-Qi; Wang, Ting; Zhao, Bin; Li, Jiacheng; Jin, Lin

    2015-11-04

    Soft graphene nanofibers with recoverable electrical conductivity and excellent physicochemical stability are prepared by a controlled assembly technique. By using the soft graphene nanofibers for cellular electrical stimulation, the common inhibitory effect of long-term electrical stimulation on nerve growth and development is avoided, which usually happens with traditional 2D conductive materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.

    PubMed

    Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo

    2003-02-13

    Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.

  8. [Observation on non-invasive electrode pulse electric stimulation for treatment of Bell's palsy].

    PubMed

    Guo, Qing-Hua; Yan, Jian-Zhen; Yan, Wu-Shen; Xiao, Mei-Zhen

    2006-12-01

    To explore non-invasive therapy for treatment of Bell palsy. Two hundred and seventy-six were randomly divided into two groups, a treatment group and a control group, 138 cases in each group. The treatment group were treated with non-invasive electrode pulse electric stimulation at Taiyang (EX-HN 5), Sibai (ST 2), Qianzheng (Extra), Dicang (ST 4), and the control group with routine medicine (prednisone, dibazol, vitamine B complex and Qianzheng Powder), once each day, 10 days constituting one course. After two courses, their therapeutic effects were compared. The cured rate and the effective rate were 83.3% and 99.3% in the treatment group, and 48.5% and 88.4% in the control group respectively with a significant difference between the two groups (P < 0.05). Non-invasive electrode pulse electric stimulation at facial points has obvious therapeutic effect on Bell palsy.

  9. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training

    PubMed Central

    Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.

    2012-01-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI. PMID:16575026

  10. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

    PubMed

    Shields, Richard K; Dudley-Javoroski, Shauna; Littmann, Andrew E

    2006-08-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.

  11. Short-Term effects of neuromuscular electrical stimulation on muscle architecture of the tibialis anterior and gastrocnemius in children with cerebral palsy: preliminary results of a prospective controlled study.

    PubMed

    Karabay, İlkay; Öztürk, Gökhan Tuna; Malas, Fevziye Ünsal; Kara, Murat; Tiftik, Tülay; Ersöz, Murat; Özçakar, Levent

    2015-09-01

    The aim of this study was to explore the short-term effects of neuromuscular electrical stimulation application on tibialis anterior (stimulated muscle) and gastrocnemius (antagonist) muscles' size and architecture in children with cerebral palsy by using ultrasound. This prospective, controlled study included 28 children diagnosed with spastic diplegic cerebral palsy. Participants were treated either with neuromuscular electrical stimulation application and conventional physiotherapy (group A) or with conventional physiotherapy alone (group B). Outcome was evaluated by clinical (gross motor function, selective motor control, range of motion, spasticity) and ultrasonographic (cross-sectional area, pennation angle, fascicle length of tibialis anterior and gastrocnemius muscles) measurements before and after treatment in both groups. Cross-sectional area values of tibialis anterior (238.7 ± 61.5 vs. 282.0 ± 67.1 mm) and gastrocnemius (207.9 ± 48.0 vs. 229.5 ± 52.4 mm) (P < 0.001 and P = 0.008, respectively) muscles were increased after treatment in group A. Cross-sectional area values of tibialis anterior muscle were decreased (257.3 ± 64.7 vs. 239.7 ± 60.0 mm) after treatment in group B (P < 0.001), and the rest of the measurements were found not to have changed significantly in either group. These results have shown that cross-sectional area of both the agonist and antagonist muscles increased after 20 sessions of neuromuscular electrical stimulation treatment. Future studies with larger samples and longer follow-up are definitely awaited for better evaluation of neuromuscular electrical stimulation application on muscle architecture and its possible correlates in clinical/functional outcome.

  12. Neuroprotective effect of subretinal implants in the RCS rat.

    PubMed

    Pardue, Machelle T; Phillips, Michael J; Yin, Hang; Sippy, Brian D; Webb-Wood, Sarah; Chow, Alan Y; Ball, Sherry L

    2005-02-01

    Retinal prosthetics have been designed to interface with the neural retina by electrically stimulating the remaining retinal circuits after photoreceptor degeneration. However, the electrical stimulation provided by the subretinal implant may also stimulate neurotrophic factors that provide neuroprotection to the retina. This study was undertaken to determine whether electrical stimulation from a subretinal photodiode-based implant has a neuroprotective effect on photoreceptors in the RCS rat, a model of photoreceptor degeneration. Eyes of RCS rats were implanted with an active or inactive device or underwent sham surgery before photoreceptor degeneration. Outer retinal function was assessed with electroretinogram (ERG) recordings weekly until 8 weeks after surgery, at which time retinal tissue was collected and processed for morphologic assessment, including photoreceptor cell counts and retinal layer thickness. At 4 to 6 weeks after surgery, the ERG responses in the active-implant eyes were 30% to 70% greater in b-wave amplitude than the responses from eyes implanted with inactive devices, those undergoing sham surgery, or the nonsurgical control eyes. At 8 weeks after surgery the ERG responses from active-implant eyes were not significantly different from the control groups. However, the number of photoreceptors in eyes implanted with the active or inactive device was significantly greater in the regions over and around the implant versus sham-surgical and nonsurgical control eyes. These results suggest that subretinal electrical stimulation provides temporary preservation of retinal function in the RCS rat. In addition, implantation of an active or inactive device into the subretinal space causes morphologic preservation of photoreceptors in the RCS rat until 8 weeks after surgery. Further studies are needed to determine whether the correlation of neuropreservation with subretinal implantation is due to electrical stimulation and/or a mechanical presence of the implant in the subretinal space.

  13. Lateral geniculate body evoked potentials elicited by visual and electrical stimulation.

    PubMed

    Choi, Chang Wook; Kim, Pan Sang; Shin, Sun Ae; Yang, Ji Yeon; Yang, Yun Sik

    2014-08-01

    Blind individuals who have photoreceptor loss are known to perceive phosphenes with electrical stimulation of their remaining retinal ganglion cells. We proposed that implantable lateral geniculate body (LGB) stimulus electrode arrays could be used to generate phosphene vision. We attempted to refine the basic reference of the electrical evoked potentials (EEPs) elicited by microelectrical stimulations of the optic nerve, optic tract and LGB of a domestic pig, and then compared it to visual evoked potentials (VEPs) elicited by short-flash stimuli. For visual function measurement, VEPs in response to short-flash stimuli on the left eye of the domestic pig were assessed over the visual cortex at position Oz with the reference electrode at Fz. After anesthesia, linearly configured platinum wire electrodes were inserted into the optic nerve, optic track and LGB. To determine the optimal stimulus current, EEPs were recorded repeatedly with controlling the pulse and power. The threshold of current and charge density to elicit EEPs at 0.3 ms pulse duration was about ±10 µA. Our experimental results showed that visual cortex activity can be effectively evoked by stimulation of the optic nerve, optic tract and LGB using penetrating electrodes. The latency of P1 was more shortened as the electrical stimulation was closer to LGB. The EEPs of two-channel in the visual cortex demonstrated a similar pattern with stimulation of different spots of the stimulating electrodes. We found that the LGB-stimulated EEP pattern was very similar to the simultaneously generated VEP on the control side, although implicit time deferred. EEPs and VEPs derived from visual-system stimulation were compared. The LGB-stimulated EEP wave demonstrated a similar pattern to the VEP waveform except implicit time, indicating prosthetic-based electrical stimulation of the LGB could be utilized for the blind to perceive vision of phosphenes.

  14. Early intensive hand rehabilitation after spinal cord injury ("Hands On"): a protocol for a randomised controlled trial.

    PubMed

    Harvey, Lisa A; Dunlop, Sarah A; Churilov, Leonid; Hsueh, Ya-Seng Arthur; Galea, Mary P

    2011-01-17

    Loss of hand function is one of the most devastating consequences of spinal cord injury. Intensive hand training provided on an instrumented exercise workstation in conjunction with functional electrical stimulation may enhance neural recovery and hand function. The aim of this trial is to compare usual care with an 8-week program of intensive hand training and functional electrical stimulation. A multicentre randomised controlled trial will be undertaken. Seventy-eight participants with recent tetraplegia (C2 to T1 motor complete or incomplete) undergoing inpatient rehabilitation will be recruited from seven spinal cord injury units in Australia and New Zealand and will be randomised to a control or experimental group. Control participants will receive usual care. Experimental participants will receive usual care and an 8-week program of intensive unilateral hand training using an instrumented exercise workstation and functional electrical stimulation. Participants will drive the functional electrical stimulation of their target hands via a behind-the-ear bluetooth device, which is sensitive to tooth clicks. The bluetooth device will enable the use of various manipulanda to practice functional activities embedded within computer-based games and activities. Training will be provided for one hour, 5 days per week, during the 8-week intervention period. The primary outcome is the Action Research Arm Test. Secondary outcomes include measurements of strength, sensation, function, quality of life and cost effectiveness. All outcomes will be taken at baseline, 8 weeks, 6 months and 12 months by assessors blinded to group allocation. Recruitment commenced in December 2009. The results of this trial will determine the effectiveness of an 8-week program of intensive hand training with functional electrical stimulation. NCT01086930 (12th March 2010)ACTRN12609000695202 (12th August 2009).

  15. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in major depressive disorder patients.

    PubMed

    Tanaka, Yoshihiro; Ishitobi, Yoshinobu; Maruyama, Yoshihiro; Kawano, Aimi; Ando, Tomoko; Okamoto, Shizuko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Kodama, Kensuke; Isogawa, Koichi; Akiyoshi, Jotaro

    2012-03-30

    Major depressive disorder (MDD) is often associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis by chronic stress. In comparison, psychosocial stress-induced activation of salivary α-amylase (sAA) functions as a marker of sympathoadrenal medullary system (SAM) activity. However, in contrast to salivary cortisol, sAA has been less extensively studied in MDD patients. The present study measured sAA and salivary cortisol levels in patients with MDD. The authors determined Profile of Mood State (POMS) and State-Trait anxiety Inventory (STAI) scores, Heart Rate Variability (HRV), and sAA and salivary cortisol levels in 88 patients with MDD and 41 healthy volunteers following the application of electrical stimulation stress. Patients with major depressive disorder were 8 points or more on Hamilton Depression Scale (HAM-D) scores. Tension-Anxiety, Depression-Dejection, Anger-Hostility, Fatigue, and Confusion scores in patients with major depressive disorder were significantly increased compared to healthy controls. In contrast, Vigor scores in patients with MDD were significantly decreased compared with healthy controls. There was no difference in heart rate variability measures between MDD patients and healthy controls. The threshold of electrical stimulation applied in MDD patients was lower than that in healthy controls. SAA levels in female MDD patients were significantly elevated relative to controls both before and after electrical stimulation. Finally, there were no differences in salivary cortisol levels between major depressive patients and controls. In the present study only three time points were explored. Furthermore, the increased secretion of sAA before and after stimulation could allude to an increased responsiveness of novel and uncontrollable situations in patients with MDD. These preliminary results suggest that sAA might be a useful biological marker of MDD. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.

    PubMed

    del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-03-04

    Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.

  17. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton

    PubMed Central

    2014-01-01

    Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking. Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia. Acronym list: 10mWT: ten meters walking test; 6MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale. PMID:24594302

  18. Neurophysiological responses to unpleasant stimuli (acute electrical stimulations and emotional pictures) are increased in patients with schizophrenia

    PubMed Central

    Duval, Céline Z.; Goumon, Yannick; Kemmel, Véronique; Kornmeier, Jürgen; Dufour, André; Andlauer, Olivier; Vidailhet, Pierre; Poisbeau, Pierrick; Salvat, Eric; Muller, André; Mensah-Nyagan, Ayikoé G.; Schmidt-Mutter, Catherine; Giersch, Anne

    2016-01-01

    Patients with schizophrenia have often been described as insensitive to nociceptive signals, but objective evidence is sparse. We address this question by combining subjective behavioral and objective neurochemical and neurophysiological measures. The present study involved 21 stabilized and mildly symptomatic patients with schizophrenia and 21 control subjects. We applied electrical stimulations below the pain threshold and assessed sensations of pain and unpleasantness with rating scales, and Somatosensory Evoked Potentials (SEPs/EEG). We also measured attention, two neurochemical stress indices (ACTH/cortisol), and subjective VEPs/EEG responses to visual emotional stimuli. Our results revealed that, subjectively, patients’ evaluations do not differ from controls. However, the amplitude of EEG evoked potentials was greater in patients than controls as early as 50 ms after electrical stimulations and beyond one second after visual processing of emotional pictures. Such responses could not be linked to the stress induced by the stimulations, since stress hormone levels were stable. Nor was there a difference between patients and controls in respect of attention performance and tactile sensitivity. Taken together, all indices measured in patients in our study were either heightened or equivalent relative to healthy volunteers. PMID:26935652

  19. Adding transcutaneous electrical nerve stimulation to visual scanning training does not enhance treatment effect on hemispatial neglect: a randomized, controlled, double-blind study.

    PubMed

    Seniów, Joanna; Polanowska, Katarzyna; Leśniak, Marcin; Członkowska, Anna

    2016-12-01

    Left-sided transcutaneous electrical nerve stimulation (TENS) increases right hemispheric activity, which may improve the rehabilitative outcome of hemispatial neglect. To examine the behavioral effect of electrical stimulation of the nerve afferents of the left hand during early neuropsychological rehabilitation of post-stroke patients with hemispatial neglect. This randomized, controlled, double-blind study included 29 patients (enrolled in the experimental or control group) with left hemispatial neglect after right hemispheric stroke. For 3 weeks, patients received 15 therapeutic sessions involving TENS (active or sham) with a mesh glove applied on the entire left hand during the first 30 minutes of a 45-minute conventional visual scanning training (VST). Signs of hemispatial neglect were assessed using a psychometric test before and after treatment. Univariate analysis of covariance revealed that differences between the control and experimental groups were not significant after treatment (F(1, 22) = 0.294, P = 0.593) when adjusted for pre-treatment scores and time since stroke onset. This suggested that electrical stimulation failed to mitigate the severity of hemispatial neglect symptoms. Our study did not provide evidence of the effectiveness of TENS when added to VST during early rehabilitation for patients with post-stroke hemispatial neglect. Other techniques (applied alone or together) should be sought to improve recovery in this population.

  20. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    PubMed Central

    Miura, Naoto; Watanabe, Takashi

    2016-01-01

    Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556

  1. A wireless wearable surface functional electrical stimulator

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  2. Bilateral Changes of Spontaneous Activity Within the Central Auditory Pathway Upon Chronic Unilateral Intracochlear Electrical Stimulation.

    PubMed

    Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne

    2015-12-01

    In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the AC a trend for an opposite effect could be determined. Unilateral intracochlear electrical stimulation seems to facilitate the homeostasis of the network activity, since it decreases the spontaneous activity that is usually elevated upon deafferentiation. The electrical stimulation per se seems to be responsible for the bilateral changes described above, rather than the particular nature of the electrical stimulation (e.g., rate). The normalization effects of electrical stimulation found in the present study are of particular importance in cochlear implant recipients with single-sided deafness.

  3. An fMRI study of somatosensory-implicated acupuncture points in stable somatosensory stroke patients.

    PubMed

    Li, Geng; Jack, Clifford R; Yang, Edward S

    2006-11-01

    To assess differences in brain responses between stroke patients and controls to tactile and electrical acupuncture stimulation using functional MRI (fMRI). A total of 12 male, clinically stable stroke patients with left side somatosensory deficits, and 12 age-matched male control subjects were studied. fMRI was performed with two different paradigms; namely, tactile stimuli and electrical stimulation at acupuncture points LI4 and LI11 on the affected side of the body. fMRI data were analyzed using SPM99. Tactile stimulation in both patients and controls produced significant activation in primary and secondary sensory and motor cortical areas and cerebellum. Greater activation was present in patients than controls in the somatosensory cortex with both the tactile task and the acupuncture point (acupoint) stimulation. Activation was greater during the tactile task than the acupuncture stimulation in patients and normal controls. Differences observed between patients and controls on both tasks may indicate compensatory over recruitment of neocortical areas involved in somatosensory perception in the stroke patients. The observed differences between patients and controls on the acupoint stimulation task may also indicate that stimulation of acupoints used therapeutically to enhance recovery from stroke, selectively activates areas thought to be involved in mediating recovery from stroke via functional plasticity. fMRI of acupoint stimulation may illustrate the functional substrate of the therapeutically beneficial effect of acupuncture in stroke rehabilitation. Copyright (c) 2006 Wiley-Liss, Inc.

  4. Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation.

    PubMed

    Arabi, K; Sawan, M A

    1999-06-01

    An advanced stimulator for neuromuscular stimulation of spinal cord injured patients has been developed. The stimulator is externally controlled and powered by a single encoded radio frequency carrier and has four independently controlled bipolar stimulation channels. It offers a wide range of reprogrammability and flexibility, and can be used in many neuromuscular electrical stimulation applications. The implant system is adaptable to patient's needs and to future developments in stimulation algorithms by reprogramming the stimulator. The stimulator is capable of generating a wide range of stimulation waveforms and stimulation patterns and therefore is very suitable for selective nerve stimulation techniques. The reliability of the implant has been increased by using a forward error detection and correction communication protocol and by designing the chip for structural testability based on scan test approach. Implemented testability scheme makes it possible to verify the complete functionality of the implant before and after implantation. The stimulators architecture is designed to be modular and therefore its different blocks can be reused as standard building blocks in the design and implementation of other neuromuscular prostheses. Design for low-power techniques have also been employed to reduce power consumption of the electronic circuitry.

  5. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  6. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Cyclic AMP Production in Chicken and Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    2000-01-01

    Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  7. Transcutaneous Electrical Nerve Stimulation in Children with Monosymptomatic Nocturnal Enuresis: A Randomized, Double-Blind, Placebo Controlled Study.

    PubMed

    Jørgensen, Cecilie Siggaard; Kamperis, Konstantinos; Borch, Luise; Borg, Britt; Rittig, Søren

    2017-09-01

    In a third of all children with monosymptomatic nocturnal enuresis their condition is refractory to first line treatments. Transcutaneous electrical nerve stimulation has been documented to be efficacious in children with daytime incontinence. We investigated the effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Children with monosymptomatic nocturnal enuresis (3 or more wet nights per week) and no nocturnal polyuria were randomized to treatment with active or sham transcutaneous electrical nerve stimulation involving 1-hour sessions twice daily for 10 weeks in a double-blind design. Of the 52 children with monosymptomatic nocturnal enuresis included in the study 47 completed treatment (mean age 9.5 ± 2.1 years, 38 males). None of the children experienced a full response with complete remission of enuresis. Treatment with transcutaneous electrical nerve stimulation did not lead to significant changes in number of wet nights, nocturnal urine production on wet or dry nights, maximum voided volume with and without first morning voided volume, or voiding frequency when comparing parameters before and after treatment. The present study demonstrates no anti-enuretic effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Nocturnal urine production and bladder capacity remained unchanged during and after treatment with transcutaneous electrical nerve stimulation. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses

    PubMed Central

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible. PMID:26147771

  9. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    PubMed

    Becerra-Fajardo, Laura; Ivorra, Antoni

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible.

  10. Effect of Transcutaneous Electrical Nerve Stimulation on Sensation Thresholds in Patients with Painful Diabetic Neuropathy: An Observational Study

    ERIC Educational Resources Information Center

    Moharic, Metka

    2010-01-01

    Transcutaneous electrical nerve stimulation (TENS) is one of the therapies for painful neuropathy. Its analgesic mechanisms probably involve the gate control theory, the physiological block and the endogenous pain inhibitory system. The aim of the study was to determine whether TENS improves small fibre function diminished because of painful…

  11. Toward an implantable functional electrical stimulation device to correct strabismus

    PubMed Central

    Velez, Federico G.; Isobe, Jun; Zealear, David; Judy, Jack W.; Edgerton, V. Reggie; Patnode, Stephanie; Lee, Hyowon; Hahn, Brian T.

    2010-01-01

    PURPOSE To investigate the feasibility of electrically stimulating the lateral rectus muscle to recover its physiologic abduction ability in cases of complete sixth cranial (abducens) nerve palsy. METHODS In the feline lateral rectus muscle model, the effects of a charge-balanced, biphasic, current-controlled stimulus on the movement of the eye were investigated while stimulation frequency, amplitude, and pulse duration was varied. Eye deflection was measured with a force transducer. Denervated conditions were simulated by injection of botulinum toxin A. RESULTS Three chemically denervated and 4 control lateral rectus muscles were analyzed. In control lateral rectus muscles, the minimum fusion frequency was approximately 170 Hz, and the maximum evoked abduction was 27°. The minimum fusion frequency was unchanged after 4 weeks of chemical denervation. Stimulation of chemically denervated lateral rectus muscle resulted in 17° of abduction. For both innervated and chemically denervated lateral rectus muscle, frequencies greater than 175 Hz yielded very little increase in abduction. Modulating amplitude produced noticeable movement throughout the tested range (0.2 to 9 mA). CONCLUSIONS Results from the feline lateral rectus muscle showed that electrical stimulation is a feasible approach to evoke a contraction from a denervated lateral rectus muscle. The degree of denervation of the feline lateral rectus muscle was indeterminate. Varying the stimulation amplitude allowed greater eye movement. It is very likely that both frequency and amplitude must be modulated for finer control of static eye position. PMID:19375369

  12. Cell-stimulation therapy of lateral epicondylitis with frequency-modulated low-intensity electric current.

    PubMed

    Aliyev, R M; Geiger, G

    2012-03-01

    In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.

  13. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. I. Characteristics of evoked head movements.

    PubMed

    Quessy, Stephan; Freedman, Edward G

    2004-06-01

    The nucleus reticularis gigantocellularis (NRG) receives monosynaptic input from the superior colliculus (SC) and projects directly to neck motor neuron pools. Neurons in NRG are well situated to play a critical role in transforming SC signals into head movement commands. A previous study of movements evoked by NRG stimulation in the primate reported a variety of ipsilateral and contralateral head movements with horizontal, vertical and torsional components. In addition to head movements, it was reported that NRG stimulation could evoke movements of the pinnae, face, upper torso, and co-contraction of neck muscles. In this report, the role of the rhesus monkey NRG in head movement control was investigated using electrical stimulation of the rostral portion of the NRG. The goal was to characterize head movements evoked by NRG stimulation, describe the effects of altering stimulation parameters, and assess the relative movements of the eyes and head. Results indicate that electrical stimulation in the rostral portion of the NRG of the primate can consistently evoke ipsilateral head rotations in the horizontal plane. Head movement amplitude and peak velocity depend upon stimulation parameters (primarily frequency and duration of stimulation trains). During stimulation-induced head movements the eyes counter-rotate (presumably a result of the vestibulo-ocular reflex: VOR). At 46 stimulation sites from two subjects the average gain of this counter-rotation was -0.38 (+/-0.18). After the end of the stimulation train the head generally continued to move. During this epoch, after electrical stimulation ceased, VOR gain remained at this reduced level. In addition, VOR gain was similarly low when electrical stimulation was carried out during active fixation of a visual target. These data extend existing descriptions of head movements evoked by electrical stimulation of the NRG, and add to the understanding of the role of this structure in producing head movements.

  14. Electrical stimulation in the treatment of pain.

    PubMed

    Rushton, David N

    2002-05-20

    To review the published literature concerning the treatment of painful conditions using devices that deliver electrical stimulation to nervous structures. The review briefly surveys the results obtained using surface electrodes ("TENS") as well as implanted devices. The method used is a critical review of the important published literature up to mid-1999. References were obtained using Medline and the keywords "pain", together with "electrical", "stimulation", "neurostimulation" or "TENS". Electrical stimulation has been found to be of potential benefit in the management of a range of painful conditions. Adequately controlled trials of electrical stimulation are often difficult to achieve. Implanted devices tend to be used in the more severe intractable pain conditions. It is likely that there is more than one mechanism of action. The mechanisms of action are however still often poorly understood, even though historically theoretical and experimental advances in the understanding of pain mechanisms prompted the development of clinical systems and the institution of clinical studies. TENS has proved to be remarkably safe, and provides significant analgesia in about half of patients experiencing moderate predictable pain. Implanted devices can be more effective, but they carry a risk of device failure, implant infection or surgical complication, and are reserved for the more severe intractable chronic pains. The main implanted devices used clinically are the spinal cord stimulator and the deep brain stimulator.

  15. Adaptive Fractional-order Control for Synchronization of Two Coupled Neurons in the External Electrical Stimulation

    PubMed Central

    Mehdiabadi, M. R. Rahmani; Rouhani, E.; Mashhadi, S. K. Mousavi; Jalali, A. A.

    2014-01-01

    This paper addresses synchronizing two coupled chaotic FitzHugh–Nagumo (FHN) neurons with weakly gap junction under external electrical stimulation (EES). To transmit information among coupled neurons, by generalization of the integer-order FHN equations of the coupled system into the fractional-order in frequency domain using Crone approach, the behavior of each coupled neuron relies on its past behavior and the memorized system can be a better fit for the neuron response. An adaptive fractional-order controller based on the Lyaponuv stability theory was designed to synchronize two neurons electrically coupled with gap junction in EES. The proposed controller is also robust to the inevitable random noise such as disturbances of ionic channels. The simulation results demonstrate the effectiveness of the control scheme. PMID:25337373

  16. Brain-controlled muscle stimulation for the restoration of motor function

    PubMed Central

    Ethier, Christian; Miller, Lee E

    2014-01-01

    Loss of the ability to move, as a consequence of spinal cord injury or neuromuscular disorder, has devastating consequences for the paralyzed individual, and great economic consequences for society. Functional Electrical Stimulation (FES) offers one means to restore some mobility to these individuals, improving not only their autonomy, but potentially their general health and well-being as well. FES uses electrical stimulation to cause the paralyzed muscles to contract. Existing clinical systems require the stimulation to be preprogrammed, with the patient typically using residual voluntary movement of another body part to trigger and control the patterned stimulation. The rapid development of neural interfacing in the past decade offers the promise of dramatically improved control for these patients, potentially allowing continuous control of FES through signals recorded from motor cortex, as the patient attempts to control the paralyzed body part. While application of these ‘Brain Machine Interfaces’ (BMIs) has undergone dramatic development for control of computer cursors and even robotic limbs, their use as an interface for FES has been much more limited. In this review, we consider both FES and BMI technologies and discuss the prospect for combining the two to provide important new options for paralyzed individuals. PMID:25447224

  17. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed tomore » differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.« less

  18. Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells

    PubMed Central

    Chen, Michael Q.; Xie, Xiaoyan; Wilson, Kitchener D.; Sun, Ning; Wu, Joseph C.; Giovangrandi, Laurent; Kovacs, Gregory T. A.

    2010-01-01

    Stem cell therapy is emerging as a promising clinical approach for myocardial repair. However, the interactions between the graft and host, resulting in inconsistent levels of integration, remain largely unknown. In particular, the influence of electrical activity of the surrounding host tissue on graft differentiation and integration is poorly understood. In order to study this influence under controlled conditions, an in vitro system was developed. Electrical pacing of differentiating murine embryonic stem (ES) cells was performed at physiologically relevant levels through direct contact with microelectrodes, simulating the local activation resulting from contact with surrounding electroactive tissue. Cells stimulated with a charged balanced voltage-controlled current source for up to 4 days were analyzed for cardiac and ES cell gene expression using real-time PCR, immunofluorescent imaging, and genome microarray analysis. Results varied between ES cells from three progressive differentiation stages and stimulation amplitudes (nine conditions), indicating a high sensitivity to electrical pacing. Conditions that maximally encouraged cardiomyocyte differentiation were found with Day 7 EBs stimulated at 30 µA. The resulting gene expression included a sixfold increase in troponin-T and a twofold increase in β-MHCwithout increasing ES cell proliferation marker Nanog. Subsequent genome microarray analysis revealed broad transcriptome changes after pacing. Concurrent to upregulation of mature gene programs including cardiovascular, neurological, and musculoskeletal systems is the apparent downregulation of important self-renewal and pluripotency genes. Overall, a robust system capable of long-term stimulation of ES cells is demonstrated, and specific conditions are outlined that most encourage cardiomyocyte differentiation. PMID:20652088

  19. Acromiohumeral Distance During Neuromuscular Electrical Stimulation of the Lower Trapezius and Serratus Anterior Muscles in Healthy Participants

    PubMed Central

    Bdaiwi, Alya H.; Mackenzie, Tanya Anne; Herrington, Lee; Horsley, Ian; Cools, Ann M.

    2015-01-01

    Context Compromise to the acromiohumeral distance has been reported in participants with subacromial impingement syndrome compared with healthy participants. In clinical practice, patients with subacromial shoulder impingement are given strengthening programs targeting the lower trapezius (LT) and serratus anterior (SA) muscles to increase scapular posterior tilt and upward rotation. We are the first to use neuromuscular electrical stimulation to stimulate these muscle groups and evaluate how the muscle contraction affects the acromiohumeral distance. Objective To investigate if electrical muscle stimulation of the LT and SA muscles, both separately and simultaneously, increases the acromiohumeral distance and to identify which muscle-group contraction or combination most influences the acromiohumeral distance. Design Controlled laboratory study. Setting Human performance laboratory. Patients or Other Participants Twenty participants (10 men and 10 women, age = 26.9 ± 8.0 years, body mass index = 23.8) were screened. Intervention(s) Neuromuscular electrical stimulation of the LT and SA. Main Outcome Measure(s) Ultrasound measurement of the acromiohumeral distance. Results Acromiohumeral distance increased during contraction via neuromuscular electrical stimulation of the LT muscle (t19 = −3.89, P = .004), SA muscle (t19 = −7.67, P = .001), and combined LT and SA muscles (t19 = −5.09, P = .001). We observed no differences in the increased acromiohumeral distance among the 3 procedures (F2,57 = 3.109, P = .08). Conclusions Our results supported the hypothesis that the muscle force couple around the scapula is important in rehabilitation and scapular control and influences acromiohumeral distance. PMID:25933249

  20. Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation

    NASA Astrophysics Data System (ADS)

    Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.

    1997-05-01

    We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.

  1. A Wearable Body Controlling Device for Application of Functional Electrical Stimulation

    PubMed Central

    Jeffery, Nicholas D.

    2018-01-01

    In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury. PMID:29670039

  2. A Wearable Body Controlling Device for Application of Functional Electrical Stimulation.

    PubMed

    Taghavi, Nazita; Luecke, Greg R; Jeffery, Nicholas D

    2018-04-18

    In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury.

  3. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications.

    PubMed

    Ferrante, Simona; Pedrocchi, Alessandra; Iannò, Marco; De Momi, Elena; Ferrarin, Maurizio; Ferrigno, Giancarlo

    2004-01-01

    This study falls within the ambit of research on functional electrical stimulation for the design of rehabilitation training for spinal cord injured patients. In this context, a crucial issue is the control of the stimulation parameters in order to optimize the patterns of muscle activation and to increase the duration of the exercises. An adaptive control system (NEURADAPT) based on artificial neural networks (ANNs) was developed to control the knee joint in accordance with desired trajectories by stimulating quadriceps muscles. This strategy includes an inverse neural model of the stimulated limb in the feedforward line and a neural network trained on-line in the feedback loop. NEURADAPT was compared with a linear closed-loop proportional integrative derivative (PID) controller and with a model-based neural controller (NEUROPID). Experiments on two subjects (one healthy and one paraplegic) show the good performance of NEURADAPT, which is able to reduce the time lag introduced by the PID controller. In addition, control systems based on ANN techniques do not require complicated calibration procedures at the beginning of each experimental session. After the initial learning phase, the ANN, thanks to its generalization capacity, is able to cope with a certain range of variability of skeletal muscle properties.

  4. Colour stability of bovine Longissimus and Psoas major muscle as affected by electrical stimulation and hot boning.

    PubMed

    van Laack, R L; Smulders, F J

    1990-01-01

    From eight electrically stimulated and eight non-stimulated cows the righthand-side longissimus and psoas major muscles were hot boned within 1 1 2 h post mortem, vacuum packaged and chilled and storred at 1±1°C. Immediately after slaughter, the lefthand carcass-sides were blast-chilled for 1 1 2 h and subsequently chilled at 1±1°C until the following day. After cold boning, the longissimus and psoas major muscle were packaged, chilled and stored as the hot boned muscles. After 12 days of storage, steaks, cut from the primals, were displayed at 1±1°C under continuous illumination (300-400 lx). Colour measurements after 0, 2 and 4 days of display revealed a significant (p<0·10) effect of time of boning on non-stimulated psoas major muscle (lower values for a (∗), b (∗) values, chroma and %R630-%R580). Significant effects of electrical stimulation were not observed. Changes in hue tended to be more pronounced when the meat had been stimulated. Changes in chroma were largest (p<0·10) is non-stimulated, hot boned psoas muscle. Analysis of variances showed that in the longissimus muscle significant effects (p<0·10) of time boning and electrical stimulation were present. The effect of time of boning was often influenced by the use of electrical stimulation. Changes in hue and chroma indicated that hot boned samples had a higher colour stability than cold boned controls, especially when the carcasses had not been stimulated electrically. The observed differences in colour stability were rather small in all treatment groups and are not expected to present any practical merchandising problem. Copyright © 1990. Published by Elsevier Ltd.

  5. Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation.

    PubMed

    Wang, Xing; Chaudhry, Sharjeel A; Hou, Wensheng; Jia, Xiaofeng

    2017-02-05

    Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats' unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.

  6. Strength, Pain, Function in OIF/OEF Amputees: A Nurse-Managed Program

    DTIC Science & Technology

    2014-03-25

    resistance training and neuromuscular electrical stimulation in knee osteoarthritis : a randomized controlled trial. BMC Musculoskeletal Disorders, 13, 118... systematic review of the effects of different electromyostimulation methods on selected strength parameters in trained and elite athletes. Journal of...electrical stimulation on rehabilitation after ligament and meniscal injuries: a systematic review . Sao Paulo Medical Journal, 129(6), 414-423

  7. Dry cupping for plantar fasciitis: a randomized controlled trial.

    PubMed

    Ge, Weiqing; Leson, Chelsea; Vukovic, Corey

    2017-05-01

    [Purpose] The purpose of this study was to determine the effects of dry cupping on pain and function of patients with plantar fasciitis. [Subjects and Methods] Twenty-nine subjects (age 15 to 59 years old, 20 females and 9 males), randomly assigned into the two groups (dry cupping therapy and electrical stimulation therapy groups), participated in this study. The research design was a randomized controlled trial (RCT). Treatments were provided to the subjects twice a week for 4 weeks. Outcome measurements included the Visual Analogue Pain Scale (VAS) (at rest, first in the morning, and with activities), the Foot and Ankle Ability Measure (FAAM), the Lower Extremity Functional Scale (LEFS), as well as the pressure pain threshold. [Results]The data indicated that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function significantly in the population tested, as all the 95% Confidence Intervals (CIs) did not include 0 except for the pressure pain threshold. There was no significant difference between the dry cupping therapy and electrical stimulation groups in all the outcome measurements. [Conclusion] These results support that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function in the population tested.

  8. Dry cupping for plantar fasciitis: a randomized controlled trial

    PubMed Central

    Ge, Weiqing; Leson, Chelsea; Vukovic, Corey

    2017-01-01

    [Purpose] The purpose of this study was to determine the effects of dry cupping on pain and function of patients with plantar fasciitis. [Subjects and Methods] Twenty-nine subjects (age 15 to 59 years old, 20 females and 9 males), randomly assigned into the two groups (dry cupping therapy and electrical stimulation therapy groups), participated in this study. The research design was a randomized controlled trial (RCT). Treatments were provided to the subjects twice a week for 4 weeks. Outcome measurements included the Visual Analogue Pain Scale (VAS) (at rest, first in the morning, and with activities), the Foot and Ankle Ability Measure (FAAM), the Lower Extremity Functional Scale (LEFS), as well as the pressure pain threshold. [Results]The data indicated that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function significantly in the population tested, as all the 95% Confidence Intervals (CIs) did not include 0 except for the pressure pain threshold. There was no significant difference between the dry cupping therapy and electrical stimulation groups in all the outcome measurements. [Conclusion] These results support that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function in the population tested. PMID:28603360

  9. A voltage-controlled capacitive discharge method for electrical activation of peripheral nerves.

    PubMed

    Rosellini, Will M; Yoo, Paul B; Engineer, Navzer; Armstrong, Scott; Weiner, Richard L; Burress, Chester; Cauller, Larry

    2011-01-01

    A voltage-controlled capacitive discharge (VCCD) method was investigated as an alternative to rectangular stimulus pulses currently used in peripheral nerve stimulation therapies.  In two anesthetized Gottingen mini pigs, the threshold (total charge per phase) for evoking a compound nerve action potential (CNAP) was compared between constant current (CC) and VCCD methods. Electrical pulses were applied to the tibial and posterior cutaneous femoralis nerves using standard and modified versions of the Medtronic 3778 Octad.  In contrast to CC stimulation, the combined application of VCCD pulses with a modified Octad resulted in a marked decrease (-73 ± 7.4%) in the stimulation threshold for evoking a CNAP. This was consistent for different myelinated fiber types and locations of stimulation.  The VCCD method provides a highly charge-efficient means of activating myelinated fibers that could potentially be used within a wireless peripheral nerve stimulator system. © 2011 International Neuromodulation Society.

  10. Transcranial electric and magnetic stimulation: technique and paradigms.

    PubMed

    Paulus, Walter; Peterchev, Angel V; Ridding, Michael

    2013-01-01

    Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account. © 2013 Elsevier B.V. All rights reserved.

  11. Deficient "sensory" beta synchronization in Parkinson's disease.

    PubMed

    Degardin, A; Houdayer, E; Bourriez, J-L; Destée, A; Defebvre, L; Derambure, P; Devos, D

    2009-03-01

    Beta rhythm movement-related synchronization (beta synchronization) reflects motor cortex deactivation and sensory afference processing. In Parkinson's disease (PD), decreased beta synchronization after active movement reflects abnormal motor cortex idling and may be involved in the pathophysiology of akinesia. The objectives of the present study were to (i) compare event-related synchronization after active and passive movement and electrical nerve stimulation in PD patients and healthy, age-matched volunteers and (ii) evaluate the effect of levodopa. Using a 128-electrode EEG system, we studied beta synchronization after active and passive index finger movement and electrical median nerve stimulation in 13 patients and 12 control subjects. Patients were recorded before and after 150% of their usual morning dose of levodopa. The peak beta synchronization magnitude in the contralateral primary sensorimotor (PSM) cortex was significantly lower in PD patients after active movement, passive movement and electrical median nerve stimulation, compared with controls. Levodopa partially reversed the drop in beta synchronization after active movement but not after passive movement or electrical median nerve stimulation. If one considers that beta synchronization reflects sensory processing, our results suggest that integration of somaesthetic afferences in the PSM cortex is abnormal in PD during active and passive movement execution and after simple electrical median nerve stimulation. Better understanding of the mechanisms involved in the deficient beta synchronization observed here could prompt the development of new therapeutic approaches aimed at strengthening defective processes. The lack of full beta synchronization restoration by levodopa might be related to the involvement of non-dopaminergic pathways.

  12. The effect of electrical muscle stimulation on the prevention of disuse muscle atrophy in patients with consciousness disturbance in the intensive care unit.

    PubMed

    Hirose, Tomoya; Shiozaki, Tadahiko; Shimizu, Kentaro; Mouri, Tomoyoshi; Noguchi, Kazuo; Ohnishi, Mitsuo; Shimazu, Takeshi

    2013-08-01

    Disuse atrophy of the lower limbs of patients with consciousness disturbance has often been recognized as "an unavoidable consequence," such that the mechanism was not investigated diligently. In this study, we examined the preventive effects of electrical muscle stimulation (EMS) against disuse atrophy of the lower limbs in patients in coma after stroke or traumatic brain injury in the intensive care unit. We evaluated changes in cross-sectional area of lower limb muscles weekly with computed tomography in 6 control group patients and 9 EMS group patients. Electrical muscle stimulation was performed daily from day 7 after admission. We evaluated the anterior thigh muscle compartment, posterior thigh muscle compartment, anterior leg muscle compartment, and posterior leg muscle compartment. In the control group, the decrease in cross-sectional area progressed in all compartments every week (P < .0001). Cross-sectional areas of all compartments at day 14 were significantly decreased in the control group compared with those in the EMS group at day 7 (P < .001). We were able to limit the rate of muscle atrophy as measured in the cross-sectional areas to within 4% during the period of EMS (days 7-42) in 5 patients. The difference between the control and the EMS groups was statistically significant (P < .001). Electrical muscle stimulation is effective in the prevention of disuse muscle atrophy in patients with consciousness disorder. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Effect of Transcutaneous Acupoint Electrical Stimulation on Post-Hemorrhoidectomy-Associated Pain, Anxiety, and Heart Rate Variability: A Randomized-Controlled Study.

    PubMed

    Yeh, Mei-Ling; Chung, Yu-Chu; Hsu, Lun-Chia; Hung, Shuo-Hui

    2018-05-01

    Hemorrhoidectomy is the current best treatment for severe hemorrhoids, but it causes significant postoperative pain and anxiety, which is associated with heart rate variability (HRV). Transcutaneous acupoint electrical stimulation (TAES) was assumed to alleviate pain and anxiety, and modify the autonomic nervous system. This study aimed to examine the effects of TAES intervention on postoperative pain, anxiety, and HRV in patients who received a hemorrhoidectomy. A randomized-controlled trial with five repeated measures was conducted. The TAES group ( n = 39) received four 20-min sessions of electrical stimulation at chengshan (BL57) and erbai (EX-UE2) after hemorrhoidectomy, whereas the control group ( n = 41) did not. Data were collected using Visual Analogue Scale (VAS), State Anxiety Inventory (STAI), and HRV physiological signal monitor. TAES resulted in a significant group difference in pain scores, anxiety levels, and some HRV parameters. The findings indicate that TAES can help reduce pain and anxiety associated with hemorrhoidectomy. TAES is a noninvasive, simple, and convenient modality for post-hemorrhoidectomy-associated pain control and anxiety reduction.

  14. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in patients with the generalized type of social anxiety disorder.

    PubMed

    Tamura, A; Maruyama, Y; Ishitobi, Y; Kawano, A; Ando, T; Ikeda, R; Inoue, A; Imanaga, J; Okamoto, S; Kanehisa, M; Ninomiya, T; Tanaka, Y; Tsuru, J; Akiyoshi, J

    2013-11-01

    Social anxiety disorder is believed to be a stress-induced disease. Although it can be inferred from the symptoms during attacks that there exists some abnormality of autonomic nervous system in any of the stress systems in social anxiety disorder, little evidence has been reported. This study focused on comparing the reactivity of 2 stress systems, the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenal (HPA) axis in patients with social anxiety disorder. 32 patients with the generalized type of social anxiety disorder were compared with 80 age- and gender-matched controls. We collected saliva samples from patients and controls before and after electrical stimulation to measure the concentrations of salivary alpha-amylase (sAA) and salivary cortisol. Profile of Mood State (POMS) and State-Trait Anxiety Inventory (STAI) scores and Heart Rate Variability (HRV) were also determined following stimulation. SAA in patients displayed a significantly higher level at baseline and a significantly larger response to electrical stimulation as compared to controls, whereas no group differences were seen in any HRV. Neither within-subject nor group differences were seen in salivary cortisol levels. These results suggest that SAD patients displayed enhanced ANS (but not HPA axis) activity vs. healthy controls. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients.

    PubMed

    Hara, Yukihiro

    2008-02-01

    In recent years, our understanding of motor learning, neuroplasticity, and functional recovery after the occurrence of brain lesion has grown significantly. New findings in basic neuroscience have stimulated research in motor rehabilitation. Repeated motor practice and motor activity in a real-world environment have been identified in several prospective studies as favorable for motor recovery in stroke patients. Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. In this paper, an overview of current research into clinical and therapeutic applications of functional electrical stimulation (FES) is presented. In particular, electromyography (EMG)-initiated electrical muscle stimulation--but not electrical muscle stimulation alone--improves the motor function of the hemiparetic arm and hand. Triggered electrical stimulation is reported to be more effective than untriggered electrical stimulation in facilitating upper extremity motor recovery following stroke. Power-assisted FES induces greater muscle contraction by electrical stimulation in proportion to the voluntary integrated EMG signal picked up, which is regulated by a closed-loop control system. Power-assisted FES and motor point block for antagonist muscles have been applied with good results as a new hybrid FES therapy in an outpatient rehabilitation clinic for patients with stroke. Furthermore, a daily home program therapy with power-assisted FES using new equipment has been able to effectively improve wrist and finger extension and shoulder flexion. Proprioceptive sensory feedback might play an important role in power-assisted FES therapy. Although many physiotherapeutic modalities have been established, conclusive proof of their benefit and physiological models of their effects on neuronal structures and processes are still missing. A multichannel near-infrared spectroscopy study to noninvasively and dynamically measure hemoglobin levels in the brain during functional activity has shown that cerebral blood flow in the sensory-motor cortex on the injured side is higher during a power-assisted FES session than during simple active movement or simple electrical stimulation. Nevertheless, evidence-based strategies for motor rehabilitation are more easily available, particularly for patients with hemiparesis.

  16. Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.

    PubMed

    Pavesi, A; Soncini, M; Zamperone, A; Pietronave, S; Medico, E; Redaelli, A; Prat, M; Fiore, G B

    2014-07-01

    In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration. © 2014 Wiley Periodicals, Inc.

  17. Neck muscle biomechanics and neural control.

    PubMed

    Fice, Jason Bradley; Siegmund, Gunter P; Blouin, Jean-Sebastien

    2018-04-18

    The mechanics, morphometry, and geometry of our joints, segments and muscles are fundamental biomechanical properties intrinsic to human neural control. The goal of our study was to investigate if the biomechanical actions of individual neck muscles predicts their neural control. Specifically, we compared the moment direction & variability produced by electrical stimulation of a neck muscle (biomechanics) to their preferred activation direction & variability (neural control). Subjects sat upright with their head fixed to a 6-axis load cell and their torso restrained. Indwelling wire electrodes were placed into the sternocleidomastoid (SCM), splenius capitis (SPL), and semispinalis capitis (SSC) muscles. The electrically stimulated direction was defined as the moment direction produced when a current (2-19mA) was passed through each muscle's electrodes. Preferred activation direction was defined as the vector sum of the spatial tuning curve built from RMS EMG when subjects produced isometric moments at 7.5% and 15% of their maximum voluntary contraction (MVC) in 26 3D directions. The spatial tuning curves at 15% MVC were well-defined (unimodal, p<0.05) and their preferred directions were 23, 39, & 21{degree sign} different from their electrically stimulated directions for the SCM, SPL, and SSC respectively (p<0.05). Intra-subject variability was smaller in electrically stimulated moment directions when compared to voluntary preferred directions, and intra-subject variability decreased with increased activation levels. Our findings show that the neural control of neck muscles is not based solely on optimizing individual muscle biomechanics but, as activation increases, biomechanical constraints in part dictate the activation of synergistic neck muscles.

  18. The effect of electrical stimulation in combination with Bobath techniques in the prevention of shoulder subluxation in acute stroke patients.

    PubMed

    Fil, Ayla; Armutlu, Kadriye; Atay, Ahmet Ozgur; Kerimoglu, Ulku; Elibol, Bulent

    2011-01-01

    To examine the efficiency of electrical stimulation in combination with Bobath techniques in the prevention of inferior and anterior shoulder subluxation in acute stroke patients. A prospective randomized controlled trial. Intensive care unit and inpatient clinics of neurology in a university hospital. Forty-eight patients with acute stroke, divided equally into control and study groups. Subjects in both groups were treated in accordance with the Bobath concept during the early hospitalization period. In addition to Bobath techniques, electrical stimulation was also applied to the supraspinatus muscle, mid and posterior portions of the deltoid muscle of patients in the study group. Two radiological methods were used to measure the horizontal, vertical and total asymmetry and vertical distance values of the shoulder joint. Motor functions of the arm were evaluated with the Motor Assessment Scale. The hospitalization period was 12.62 ± 2.24 days for the control group and 11.66 ± 1.88 days for the study group. Shoulder subluxation occurred in 9 (37.5%) subjects in the control group, whereas it was not observed in the study group. All shoulder joint displacement values were higher in the control group than in the study group (horizontal asymmetry P = 0.0001, vertical asymmetry P = 0.0001, total asymmetry P = 0.0001, vertical range P = 0.002). Application of electrical stimulation combined with the Bobath approach proved to be efficient in preventing inferior and anterior shoulder subluxation in the acute stages of stroke.

  19. Transcutaneous electrical nerve stimulation effect on postoperative complications.

    PubMed

    Sezen, Celal Bugra; Akboga, Suleyman Anil; Celik, Ali; Kalafat, Cem Emrah; Tastepe, Abdullah Irfan

    2017-05-01

    Objectives Transcutaneous electrical nerve stimulation has been used to control post-thoracotomy pain, with conflicting results. We aimed to assess its efficacy on post-thoracotomy pain and early complications. Methods Between January 2012 and December 2014, 87 patients underwent a standard posterolateral thoracotomy and were randomized in 2 groups: group T was 43 patients who had transcutaneous electrical nerve stimulation and group C was 44 patients who had placebo stimulation with an inoperative device. Pain score was measured using a visual analogue scale ranging from 0 to 10. The frequency of the device was set at 100 Hz and pulse width at 100 ms. Results There were no statistically significant differences in the demographic characteristics of the 2 groups, and there was no difference in the duration of hospitalization (4.74 ± 1.6 vs. 5.23 ± 1.5 days; p = 0.06). Postoperative pain scores of the two groups showed that on postoperative day 0, 1, and 2, the mean pain scores of group T were significantly lower ( p = 0.001, p < 0.001, and p = 0.003). There were no significant differences in early complications or surgical technique. Conclusion We concluded that electrical stimulation is a safe and effective adjunctive therapy for acute post-thoracotomy pain control. However, it does not affect the duration of hospitalization or early pulmonary complications.

  20. Acid sensitization of esophageal mucosal afferents: implication for symptom perception in patients across the gastroesophageal reflux disease spectrum.

    PubMed

    Szczesniak, Michal Marcin; Fuentealba, Sergio Enrique; Cook, Ian J

    2013-01-01

    Sensitization of esophageal chemoreceptors, either directly by intermittent acid exposure or indirectly through esophagitis-associated inflammatory mediators, is likely to be the mechanism underlying the perception of heartburn. To compare basal esophageal sensitivity with electrical stimulation and acid, and to compare the degree of acid-induced sensitization in controls and in patient groups across the entire spectrum of gastroesophageal reflux disease: erosive oesophagitis (EO), nonerosive reflux disease (NERD), and functional heartburn (FH). Esophageal sensory and pain thresholds to electrical stimulation were measured before, 30, and 60 minutes after an intraesophageal infusion of saline or HCl. Patients received a 30-minute infusion of 0.15 M HCl and controls were randomized to receive either HCl (n = 11) or saline (n = 10). After electrical sensory threshold testing, participants received another 30-minute infusion of HCl to determine whether sensitivity to acid is increased by prior acid exposure All patient groups had higher basal sensory thresholds than healthy controls (controls, 13 ± 1.4 mA; FH, 20 ± 5.1 mA; NERD, 21 ± 5.1 mA; EO, 23 ± 5.4 mA; P < 0.05). Acute esophageal acid exposure reduced sensory thresholds to electrical stimulation in FH and NERD patients (P < 0.05). The level of acid sensitivity during the first HCl infusion was comparable between all patient groups and controls. The secondary infusion caused increased discomfort in all participants (P < 0.01). This acid-induced sensitization to HCl was significantly elevated in the patient groups ( P < 0.05). (1) Esophageal acid infusion sensitizes it to subsequent electrical and chemical stimulation. (2) The acid-related sensitization is greater in gastroesophageal reflux disease than in controls and may influence in part symptom perception in this population. (3) Acid-related sensitization within the gastroesophageal reflux disease population is not dependant on mucosal inflammation.

  1. Electrical foot stimulation and implications for the prevention of venous thromboembolic disease.

    PubMed

    Kaplan, Robert E; Czyrny, James J; Fung, Tat S; Unsworth, John D; Hirsh, Jack

    2002-08-01

    Venous stasis caused by immobility is an important risk factor for deep vein thrombosis following surgery and lower limb trauma, in bed-ridden medical patients, and in high-risk long distance air travelers. A safe and convenient method for reducing venous stasis would be useful in patients while in hospital and after discharge during their rehabilitation. 49 healthy subjects aged 51-76 were seated for 4 hours during which they received mild electrical stimulation of the calf, or sole of the foot (plantar muscles). Popliteal and femoral venous blood flow velocities were measured via doppler ultrasound. The non-stimulated lower extremity served as the simultaneous control. Subjects completed a questionnaire regarding their acceptance and tolerance of the electrical stimulation. There was a significant increase in venous femoral and popliteal blood flow for both calf (p < 0.035, p < 0.003), and plantar muscles (p < 0.0001, p < 0.009) on the stimulated side compared to the unstimulated side. The magnitude of the effect was similar for calf and plantar muscle stimulation. Subjects did not find the experience uncomfortable, and would use an electrical stimulator if told by their physician that they were at risk for developing blood clots. Mild electrical stimulation of the feet, as well as the calf, is a safe effective and convenient method for counteracting venous stasis and therefore has the potential to reduce the risk of deep vein thrombosis and pulmonary embolism for subjects who are immobilized.

  2. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    NASA Astrophysics Data System (ADS)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  3. Energy utilization and gluconeogenesis in isolated leech segmental ganglia: Quantitative studies on the control and cellular localization of endogenous glycogen.

    PubMed

    Pennington, A J; Pentreath, V W

    1988-01-01

    The isolated segmental ganglia of the horse leech Haemopis sanguisuga were used as a model system to study the utilization and control of glycogen stores within nervous tissue. The glycogen in the ganglia was extracted and assayed fluorimentrically and its cellular localization and turnover studied by autoradiography in conjunction with [(3)H]glucose. We measured the glycogen after various periods of electrical stimulation and after incubation with K(+), Ca(2+), ouabain and glucose. The results for each experimental ganglion were compared to a paired control ganglion and the results analysed by paired t-tests. Electrical stimulation caused sequential changes in glycogen levels: a reduction of up to 67% (5-10 min); followed by an increase of up to 124% (between 15-50 min); followed by a reduction of up to 63% (60-90 min). Values were calculated for glucose utilization (e.g. 0.53 ?mol glucose/gm wet weight/min after 90 min) and estimates derived for glucose consumption per action potential per neuron (e.g. 0.12 fmol at 90 min). Glucose (1.5-10 mM) increased the amount of glycogen (1.5 mM by 30% at 60 min) and attenuated the effects of electrical stimulation. Ouabain (1 mM) blocked the effect of 5 min electrical stimulation. Nine millimolar K(+) increased glycogen by 27% after 10 min and decreased glycogen by 34% after 60 min; 3 mM Ca(2+) had no effect after 10 or 20 min and decreased glycogen by 29% after 60 min. Other concentrations of K(+) and Ca(2+) reduced glycogen after 60 min. Autoradiographic analysis demonstrated that the effects of elevated K(+) were principally within the glial cells. We conclude that (i) the glycogen stores in the glial cells of leech segmental ganglia provide an endogenous energy source which can support sustained neuronal activity, (ii) both electrical stimulation and elevated K(+) can induce gluconeogenesis within the ganglia, (iii) that electrical activation of neurons produces changes in the glycogen in the glial cells which are controlled in part by changes in K(+).

  4. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation

    PubMed Central

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the “electrical agonist-antagonist muscle ratio (EAA ratio)” and “electrical agonist-antagonist muscle activity (EAA activity)” in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model. PMID:24987326

  5. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation.

    PubMed

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the "electrical agonist-antagonist muscle ratio (EAA ratio)" and "electrical agonist-antagonist muscle activity (EAA activity)" in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  6. Bio-robots automatic navigation with electrical reward stimulation.

    PubMed

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  7. Orderly recruitment of motor units under optical control in vivo.

    PubMed

    Llewellyn, Michael E; Thompson, Kimberly R; Deisseroth, Karl; Delp, Scott L

    2010-10-01

    A drawback of electrical stimulation for muscle control is that large, fatigable motor units are preferentially recruited before smaller motor units by the lowest-intensity electrical cuff stimulation. This phenomenon limits therapeutic applications because it is precisely the opposite of the normal physiological (orderly) recruitment pattern; therefore, a mechanism to achieve orderly recruitment has been a long-sought goal in physiology, medicine and engineering. Here we demonstrate a technology for reliable orderly recruitment in vivo. We find that under optical control with microbial opsins, recruitment of motor units proceeds in the physiological recruitment sequence, as indicated by multiple independent measures of motor unit recruitment including conduction latency, contraction and relaxation times, stimulation threshold and fatigue. As a result, we observed enhanced performance and reduced fatigue in vivo. These findings point to an unanticipated new modality of neural control with broad implications for nervous system and neuromuscular physiology, disease research and therapeutic innovation.

  8. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and almost completely restored iBCI decoding performance (>90% recovery for surface stimulation and full recovery for intramuscular stimulation). The results demonstrate that FES-induced artifacts can be easily mitigated in FES  +  iBCI systems by using LRR for artifact reduction, and suggest that the LRR method may also be useful in other noise reduction applications.

  9. Wireless Passive Stimulation of Engineered Cardiac Tissues.

    PubMed

    Liu, Shiyi; Navaei, Ali; Meng, Xueling; Nikkhah, Mehdi; Chae, Junseok

    2017-07-28

    We present a battery-free radio frequency (RF) microwave activated wireless stimulator, 25 × 42 × 1.6 mm 3 on a flexible substrate, featuring high current delivery, up to 60 mA, to stimulate engineered cardiac tissues. An external antenna shines 2.4 GHz microwave, which is modulated by an inverted pulse to directly control the stimulating waveform, to the wireless passive stimulator. The stimulator is equipped with an on-board antenna, multistage diode multipliers, and a control transistor. Rat cardiomyocytes, seeded on electrically conductive gelatin-based hydrogels, demonstrate synchronous contractions and Ca 2+ transients immediately upon stimulation. Notably, the stimulator output voltage and current profiles match the tissue contraction frequency within 0.5-2 Hz. Overall, our results indicate the promising potential of the proposed wireless passive stimulator for cardiac stimulation and therapy by induction of precisely controlled and synchronous contractions.

  10. Dual-afferent sensory input training for voluntary movement after stroke: A pilot randomized controlled study.

    PubMed

    Bae, Seahyun; Kim, Kyung-Yoon

    2017-01-01

    Stimulation through afferent sensory input is necessary to improve voluntary functional movement in stroke patients. Dual-afferent sensory input, which combines electromyography-triggered functional electric stimulation (ETFES) and action observation, was investigated to determine its effects on voluntary movements in stroke patients. This study was conducted on 18 patients with left hemiplegia diagnosed between 6 and 24 months prior. The 9 subjects in the dual-afferent sensory input (DASI) group underwent ETFES with action observation training for 4 weeks (20 min/d, 5 d/wk), while the 9 control group subjects underwent functional electric stimulation (FES) for the same duration. The outcome measures were the movement-related cortical potential (MRCP), H-reflex, electromyography (EMG), and balance. The control and DASI groups showed significant increases in MRCP, muscle activity, and balance, while H-reflex was significantly decreased. MRCP and balance showed significant differences between DASI and control groups. DASI stimulates voluntary movement in patients, causes rapid activation of the cerebral cortex, and reduces excessive excitation of spinal motor neurons. Therefore, DASI, which stimulates voluntary movement, has a greater effect on brain activation in stroke patients.

  11. StimDuino: an Arduino-based electrophysiological stimulus isolator.

    PubMed

    Sheinin, Anton; Lavi, Ayal; Michaelevski, Izhak

    2015-03-30

    Electrical stimulus isolator is a widely used device in electrophysiology. The timing of the stimulus application is usually automated and controlled by the external device or acquisition software; however, the intensity of the stimulus is adjusted manually. Inaccuracy, lack of reproducibility and no automation of the experimental protocol are disadvantages of the manual adjustment. To overcome these shortcomings, we developed StimDuino, an inexpensive Arduino-controlled stimulus isolator allowing highly accurate, reproducible automated setting of the stimulation current. The intensity of the stimulation current delivered by StimDuino is controlled by Arduino, an open-source microcontroller development platform. The automatic stimulation patterns are software-controlled and the parameters are set from Matlab-coded simple, intuitive and user-friendly graphical user interface. The software also allows remote control of the device over the network. Electrical current measurements showed that StimDuino produces the requested current output with high accuracy. In both hippocampal slice and in vivo recordings, the fEPSP measurements obtained with StimDuino and the commercial stimulus isolators showed high correlation. Commercial stimulus isolators are manually managed, while StimDuino generates automatic stimulation patterns with increasing current intensity. The pattern is utilized for the input-output relationship analysis, necessary for assessment of excitability. In contrast to StimuDuino, not all commercial devices are capable for remote control of the parameters and stimulation process. StimDuino-generated automation of the input-output relationship assessment eliminates need for the current intensity manually adjusting, improves stimulation reproducibility, accuracy and allows on-site and remote control of the stimulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. COMMUNICATION Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation

    NASA Astrophysics Data System (ADS)

    Heming, Ethan; Sanden, Andrew; Kiss, Zelma H. T.

    2010-12-01

    Although major advances have been made in the development of motor prostheses, fine motor control requires intuitive somatosensory feedback. Here we explored whether a thalamic site for a somatosensory neural prosthetic could provide natural somatic sensation to humans. Different patterns of electrical stimulation (obtained from thalamic spike trains) were applied in patients undergoing deep brain stimulation surgery. Changes in pattern produced different sensations, while preserving somatotopic representation. While most percepts were reported as 'unnatural', some stimulations produced more 'natural' sensations than others. However, the additional patterns did not elicit more 'natural' percepts than high-frequency (333 Hz) electrical stimulation. These features suggest that despite some limitations, the thalamus may be a feasible site for a somatosensory neural prosthesis and different stimulation patterns may be useful in its development.

  13. Closed-Loop Efficient Searching of Optimal Electrical Stimulation Parameters for Preferential Excitation of Retinal Ganglion Cells

    PubMed Central

    Guo, Tianruo; Yang, Chih Yu; Tsai, David; Muralidharan, Madhuvanthi; Suaning, Gregg J.; Morley, John W.; Dokos, Socrates; Lovell, Nigel H.

    2018-01-01

    The ability for visual prostheses to preferentially activate functionally-distinct retinal ganglion cells (RGCs) is important for improving visual perception. This study investigates the use of high frequency stimulation (HFS) to elicit RGC activation, using a closed-loop algorithm to search for optimal stimulation parameters for preferential ON and OFF RGC activation, resembling natural physiological neural encoding in response to visual stimuli. We evaluated the performance of a wide range of electrical stimulation amplitudes and frequencies on RGC responses in vitro using murine retinal preparations. It was possible to preferentially excite either ON or OFF RGCs by adjusting amplitudes and frequencies in HFS. ON RGCs can be preferentially activated at relatively higher stimulation amplitudes (>150 μA) and frequencies (2–6.25 kHz) while OFF RGCs are activated by lower stimulation amplitudes (40–90 μA) across all tested frequencies (1–6.25 kHz). These stimuli also showed great promise in eliciting RGC responses that parallel natural RGC encoding: ON RGCs exhibited an increase in spiking activity during electrical stimulation while OFF RGCs exhibited decreased spiking activity, given the same stimulation amplitude. In conjunction with the in vitro studies, in silico simulations indicated that optimal HFS parameters could be rapidly identified in practice, whilst sampling spiking activity of relevant neuronal subtypes. This closed-loop approach represents a step forward in modulating stimulation parameters to achieve appropriate neural encoding in retinal prostheses, advancing control over RGC subtypes activated by electrical stimulation. PMID:29615857

  14. Brain plasticity after implanted peroneal nerve electrical stimulation to improve gait in chronic stroke patients: Two case reports.

    PubMed

    Thibaut, Aurore; Moissenet, Florent; Di Perri, Carol; Schreiber, Céline; Remacle, Angélique; Kolanowski, Elisabeth; Chantraine, Frédéric; Bernard, Claire; Hustinx, Roland; Tshibanda, Jean-Flory; Filipetti, Paul; Laureys, Steven; Gosseries, Olivia

    2017-01-01

    Recent studies have shown that stimulation of the peroneal nerve using an implantable 4-channel peroneal nerve stimulator could improve gait in stroke patients. To assess structural cortical and regional cerebral metabolism changes associated with an implanted peroneal nerve electrical stimulator to correct foot drop related to a central nervous system lesion. Two stroke patients presenting a foot drop related to a central nervous system lesion were implanted with an implanted peroneal nerve electrical stimulator. Both patients underwent clinical evaluations before implantation and one year after the activation of the stimulator. Structural magnetic resonance imaging (MRI) and [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) were acquired before and one year after the activation of the stimulator. Foot drop was corrected for both patients after the implantation of the stimulator. After one year of treatment, patient 1 improved in three major clinical tests, while patient 2 only improved in one test. Prior to treatment, FDG-PET showed a significant hypometabolism in premotor, primary and supplementary motor areas in both patients as compared to controls, with patient 2 presenting more widespread hypometabolism. One year after the activation of the stimulator, both patients showed significantly less hypometabolism in the damaged motor cortex. No difference was observed on the structural MRI. Clinical improvement of gait under peroneal nerve electrical stimulation in chronic stroke patients presenting foot drop was paralleled to metabolic changes in the damaged motor cortex.

  15. Influence of transcutaneous electrical stimulation on heterotopic ossification: an experimental study in Wistar rats

    PubMed Central

    Zotz, T.G.G.; de Paula, J.B.

    2015-01-01

    Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues, resulting in joint mobility deficit and pain. Different treatment modalities have been tried to prevent HO development, but there is no consensus on a therapeutic approach. Since electrical stimulation is a widely used resource in physiotherapy practice to stimulate joint mobility, with analgesic and anti-inflammatory effects, its usefulness for HO treatment was investigated. We aimed to identify the influence of electrical stimulation on induced HO in Wistar rats. Thirty-six male rats (350-390 g) were used, and all animals were anesthetized for blood sampling before HO induction, to quantify the serum alkaline phosphatase. HO induction was performed by bone marrow implantation in both quadriceps of the animals, which were then divided into 3 groups: control (CG), transcutaneous electrical nerve stimulation (TENS) group (TG), and functional electrical stimulation (FES) group (FG) with 12 rats each. All animals were anesthetized and electrically stimulated twice per week, for 35 days from induction day. After this period, another blood sample was collected and quadriceps muscles were bilaterally removed for histological and calcium analysis and the rats were killed. Calcium levels in muscles showed significantly lower results when comparing TG and FG (P<0.001) and between TG and CG (P<0.001). Qualitative histological analyses confirmed 100% HO in FG and CG, while in TG the HO was detected in 54.5% of the animals. The effects of the muscle contractions caused by FES increased HO, while anti-inflammatory effects of TENS reduced HO. PMID:26292223

  16. Electrical stimulation of the hypothalamic nucleus paraventricularis mimics the effects of light on pineal melatonin synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olcese, J.; Reuss, S.; Steinlechner, S.

    In an attempt to clarify further the role of the hypothalamic paraventricular nuclei (PVN) in the control of pineal function, the effects of 2 min electrical stimulation of these nuclei were investigated in acutely blinded, adult, male Sprague-Dawley rats. Pineal serotonin-N-acetyltransferase (NAT) activity, melatonin content and catecholamine levels were measured by means of radio-enzymatic, radioimmunoassay and high-performance liquid-chromatography methods, respectively. All three pineal parameters underwent significant declines following brief PVN stimulation during the night time. These observations lend credence to the view that the neural pathways transmitting light information to the sympathetic innervation controlling pineal melatonin synthesis. 22 references, 1more » figure.« less

  17. Technical Rebuilding of Movement Function Using Functional Electrical Stimulation

    NASA Astrophysics Data System (ADS)

    Gföhler, Margit

    To rebuild lost movement functions, neuroprostheses based on functional electrical stimulation (FES) artificially activate skeletal muscles in corresponding sequences, using both residual body functions and artificial signals for control. Besides the functional gain, FES training also brings physiological and psychological benefits for spinal cord-injured subjects. In this chapter, current stimulation technology and the main components of FES-based neuroprostheses including enhanced control systems are presented. Technology and application of FES cycling and rowing, both approaches that enable spinal cord-injured subjects to participate in mainstream activities and improve their health and fitness by exercising like able-bodied subjects, are discussed in detail, and an overview of neuroprostheses that aim at restoring movement functions for daily life as walking or grasping is given.

  18. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2017-08-01

    Objective. Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). Main results. Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off visual pathways.

  19. Effect of LKB1 deficiency on mitochondrial content, fiber type, and muscle performance in the mouse diaphragm

    PubMed Central

    Brown, Jacob D.; Hancock, Chad R.; Mongillo, Anthony D.; Barton, J. Benjamin; DiGiovanni, Ryan A.; Parcell, Allen C.; Winder, William W.; Thomson, David M.

    2010-01-01

    Aim The Liver Kinase B1 (LKB1)/AMP-Activated Protein Kinase (AMPK) signaling pathway is a major regulator of skeletal muscle metabolic processes. During exercise, LKB1-mediated phosphorylation of AMPK leads to its activation, promoting mitochondrial biogenesis and glucose transport, among other effects. The roles of LKB1 and AMPK have not been fully characterized in the diaphragm. Methods Two methods of AMPK activation were used to characterize LKB1/AMPK signaling in diaphragms from muscle-specific LKB1 knockout (KO) and littermate control mice: (1) acute injection of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and (2) 5-min direct electrical stimulation of the diaphragm. Diaphragms were excised 60 minutes post-AICAR injection and immediately after electrical stimulation. Results AMPK phosphorylation increased with AICAR and electrical stimulation in control but not KO mice. Acetyl CoA carboxylase phosphorylation increased with AICAR in control but not KO mice, but increased in both genotypes with electrical stimulation. While the majority of mitochondrial protein levels were lower in KO diaphragms, uncoupling protein 3, complex I, and cytochrome oxidase IV protein levels were not different between genotypes. KO diaphragms have a lower percentage of IIx fibers and an elevated percentage of IIb fibers when compared to control diaphragms. While in vitro peak force generation was similar between genotypes, KO diaphragms fatigued more quickly and had an impaired ability to recover. Conclusion LKB1 regulates AMPK phosphorylation, mitochondrial protein expression, fiber type distribution, as well as recovery of the diaphragm from fatigue. PMID:21073663

  20. Autonomous Optimization of Targeted Stimulation of Neuronal Networks

    PubMed Central

    Kumar, Sreedhar S.; Wülfing, Jan; Okujeni, Samora; Boedecker, Joschka; Riedmiller, Martin

    2016-01-01

    Driven by clinical needs and progress in neurotechnology, targeted interaction with neuronal networks is of increasing importance. Yet, the dynamics of interaction between intrinsic ongoing activity in neuronal networks and their response to stimulation is unknown. Nonetheless, electrical stimulation of the brain is increasingly explored as a therapeutic strategy and as a means to artificially inject information into neural circuits. Strategies using regular or event-triggered fixed stimuli discount the influence of ongoing neuronal activity on the stimulation outcome and are therefore not optimal to induce specific responses reliably. Yet, without suitable mechanistic models, it is hardly possible to optimize such interactions, in particular when desired response features are network-dependent and are initially unknown. In this proof-of-principle study, we present an experimental paradigm using reinforcement-learning (RL) to optimize stimulus settings autonomously and evaluate the learned control strategy using phenomenological models. We asked how to (1) capture the interaction of ongoing network activity, electrical stimulation and evoked responses in a quantifiable ‘state’ to formulate a well-posed control problem, (2) find the optimal state for stimulation, and (3) evaluate the quality of the solution found. Electrical stimulation of generic neuronal networks grown from rat cortical tissue in vitro evoked bursts of action potentials (responses). We show that the dynamic interplay of their magnitudes and the probability to be intercepted by spontaneous events defines a trade-off scenario with a network-specific unique optimal latency maximizing stimulus efficacy. An RL controller was set to find this optimum autonomously. Across networks, stimulation efficacy increased in 90% of the sessions after learning and learned latencies strongly agreed with those predicted from open-loop experiments. Our results show that autonomous techniques can exploit quantitative relationships underlying activity-response interaction in biological neuronal networks to choose optimal actions. Simple phenomenological models can be useful to validate the quality of the resulting controllers. PMID:27509295

  1. Autonomous Optimization of Targeted Stimulation of Neuronal Networks.

    PubMed

    Kumar, Sreedhar S; Wülfing, Jan; Okujeni, Samora; Boedecker, Joschka; Riedmiller, Martin; Egert, Ulrich

    2016-08-01

    Driven by clinical needs and progress in neurotechnology, targeted interaction with neuronal networks is of increasing importance. Yet, the dynamics of interaction between intrinsic ongoing activity in neuronal networks and their response to stimulation is unknown. Nonetheless, electrical stimulation of the brain is increasingly explored as a therapeutic strategy and as a means to artificially inject information into neural circuits. Strategies using regular or event-triggered fixed stimuli discount the influence of ongoing neuronal activity on the stimulation outcome and are therefore not optimal to induce specific responses reliably. Yet, without suitable mechanistic models, it is hardly possible to optimize such interactions, in particular when desired response features are network-dependent and are initially unknown. In this proof-of-principle study, we present an experimental paradigm using reinforcement-learning (RL) to optimize stimulus settings autonomously and evaluate the learned control strategy using phenomenological models. We asked how to (1) capture the interaction of ongoing network activity, electrical stimulation and evoked responses in a quantifiable 'state' to formulate a well-posed control problem, (2) find the optimal state for stimulation, and (3) evaluate the quality of the solution found. Electrical stimulation of generic neuronal networks grown from rat cortical tissue in vitro evoked bursts of action potentials (responses). We show that the dynamic interplay of their magnitudes and the probability to be intercepted by spontaneous events defines a trade-off scenario with a network-specific unique optimal latency maximizing stimulus efficacy. An RL controller was set to find this optimum autonomously. Across networks, stimulation efficacy increased in 90% of the sessions after learning and learned latencies strongly agreed with those predicted from open-loop experiments. Our results show that autonomous techniques can exploit quantitative relationships underlying activity-response interaction in biological neuronal networks to choose optimal actions. Simple phenomenological models can be useful to validate the quality of the resulting controllers.

  2. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  3. Chronometric Electrical Stimulation of Right Inferior Frontal Cortex Increases Motor Braking

    PubMed Central

    Conner, Christopher R.; Aron, Adam R.; Tandon, Nitin

    2013-01-01

    The right inferior frontal cortex (rIFC) is important for stopping responses. Recent research shows that it is also activated when response emission is slowed down when stopping is anticipated. This suggests that rIFC also functions as a goal-driven brake. Here, we investigated the causal role of rIFC in goal-driven braking by using computer-controlled, event-related (chronometric), direct electrical stimulation (DES). We compared the effects of rIFC stimulation on trials in which responses were made in the presence versus absence of a stopping-goal (“Maybe Stop” [MS] vs “No Stop” [NS]). We show that DES of rIFC slowed down responses (compared with control-site stimulation) and that rIFC stimulation induced more slowing when motor braking was required (MS) compared with when it was not (NS). Our results strongly support a causal role of a rIFC-based network in inhibitory motor control. Importantly, the results extend this causal role beyond externally driven stopping to goal-driven inhibitory control, which is a richer model of human self-control. These results also provide the first demonstration of double-blind chronometric DES of human prefrontal cortex, and suggest that—in the case of rIFC—this could lead to augmentation of motor braking. PMID:24336725

  4. Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model

    NASA Astrophysics Data System (ADS)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-08-01

    Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.

  5. Effects of Robot-assisted Gait Training Combined with Functional Electrical Stimulation on Recovery of Locomotor Mobility in Chronic Stroke Patients: A Randomized Controlled Trial.

    PubMed

    Bae, Young-Hyeon; Ko, Young Jun; Chang, Won Hyuk; Lee, Ju Hyeok; Lee, Kyeong Bong; Park, Yoo Jung; Ha, Hyun Geun; Kim, Yun-Hee

    2014-12-01

    [Purpose] The purpose of the present study was to investigate the effects of robot-assisted gait training combined with functional electrical stimulation on locomotor recovery in patients with chronic stroke. [Subjects] The 20 subjects were randomly assigned into either an experimental group (n = 10) that received a combination of robot-assisted gait training and functional electrical stimulation on the ankle dorsiflexor of the affected side or a control group (n = 10) that received robot-assisted gait training only. [Methods] Both groups received the respective therapies for 30 min/day, 3 days/week for 5 weeks. The outcome was measured using the Modified Motor Assessment Scale (MMAS), Timed Up-and-Go Test (TUG), Berg Balance Scale (BBS), and gait parameters through gait analysis (Vicon 370 motion analysis system, Oxford Metrics Ltd., Oxford, UK). All the variables were measured before and after training. [Results] Step length and maximal knee extension were significantly greater than those before training in the experimental group only. Maximal Knee flexion showed a significant difference between the experimental and control groups. The MMAS, BBS, and TUG scores improved significantly after training compared with before training in both groups. [Conclusion] We suggest that the combination of robot-assisted gait training and functional electrical stimulation encourages patients to actively participate in training because it facilitates locomotor recovery without the risk of adverse effects.

  6. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  7. Mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in INS-1E clonal beta cells.

    PubMed

    Akhmedov, Dmitry; Braun, Matthias; Mataki, Chikage; Park, Kyu-Sang; Pozzan, Tullio; Schoonjans, Kristina; Rorsman, Patrik; Wollheim, Claes B; Wiederkehr, Andreas

    2010-11-01

    Glucose-evoked mitochondrial signals augment ATP synthesis in the pancreatic β cell. This activation of energy metabolism increases the cytosolic ATP/ADP ratio, which stimulates plasma membrane electrical activity and insulin granule exocytosis. We have recently demonstrated that matrix pH increases during nutrient stimulation of the pancreatic β cell. Here, we have tested whether mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in the rat β-cell line INS-1E. Acidification of the mitochondrial matrix pH by nigericin blunted nutrient-dependent respiratory and ATP responses (continuously monitored in intact cells). Using electrophysiology and single cell imaging, we find that the associated defects in energy metabolism suppress glucose-stimulated plasma membrane electrical activity and cytosolic calcium transients. The same parameters were unaffected after direct stimulation of electrical activity with tolbutamide, which bypasses mitochondrial function. Furthermore, lowered matrix pH strongly inhibited sustained, but not first-phase, insulin secretion. Our results demonstrate that the matrix pH exerts a control function on oxidative phosphorylation in intact cells and that this mode of regulation is of physiological relevance for the generation of downstream signals leading to insulin granule exocytosis. We propose that matrix pH serves a novel signaling role in sustained cell activation.

  8. A pelvic motion driven electrical stimulator for drop-foot treatment.

    PubMed

    Chen, Shih-Wei; Chen, Shih-Ching; Chen, Chiun-Fan; Lai, Jin-Shin; Kuo, Te-Son

    2009-01-01

    Foot switches operating with force sensitive resistors placed in the shoe sole were considered as an effective way for driving FES assisted walking systems in gait restoration. However, the reliability and durability of the foot switches run down after a certain number of steps. As an alternative for foot switches, a simple, portable, and easy to handle motion driven electrical stimulator (ES) is provided for drop foot treatment. The device is equipped with a single tri-axis accelerometer worn on the pelvis, a commercial dual channel electrical stimulator, and a controller unit. By monitoring the pelvic rotation and acceleration during a walking cycle, the events including heel strike and toe off of each step is thereby predicted by a post-processing neural network model.

  9. Orientation selective deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom

    2017-02-01

    Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.

  10. Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins

    PubMed Central

    Titushkin, Igor; Cho, Michael

    2009-01-01

    Abstract Cellular mechanics is known to play an important role in the cell homeostasis including proliferation, motility, and differentiation. Significant variation in the mechanical properties between different cell types suggests that control of the cell metabolism is feasible through manipulation of the cell mechanical parameters using external physical stimuli. We investigated the electrocoupling mechanisms of cellular biomechanics modulation by an electrical stimulation in two mechanically distinct cell types—human mesenchymal stem cells and osteoblasts. Application of a 2 V/cm direct current electric field resulted in approximately a twofold decrease in the cell elasticity and depleted intracellular ATP. Reduction in the ATP level led to inhibition of the linker proteins that are known to physically couple the cell membrane and cytoskeleton. The membrane separation from the cytoskeleton was confirmed by up to a twofold increase in the membrane tether length that was extracted from the cell membrane after an electrical stimulation. In comparison to human mesenchymal stem cells, the membrane-cytoskeleton attachment in osteoblasts was much stronger but, in response to the same electrical stimulation, the membrane detachment from the cytoskeleton was found to be more pronounced. The observed effects mediated by an electric field are cell type- and serum-dependent and can potentially be used for electrically assisted cell manipulation. An in-depth understanding and control of the mechanisms to regulate cell mechanics by external physical stimulus (e.g., electric field) may have great implications for stem cell-based tissue engineering and regenerative medicine. PMID:19167316

  11. Electrical acustimulation relieves vection-induced motion sickness

    NASA Technical Reports Server (NTRS)

    Hu, S.; Stern, R. M.; Koch, K. L.

    1992-01-01

    The aim of this study was to examine the effects of electrical acustimulation on gastric myoelectric activity and severity of symptoms of motion sickness. In experiment 1, 16 Chinese subjects received electrical acustimulation in one of two sessions. In experiment 2, 45 white and black American subjects were randomly divided into three groups: acustimulation, sham acustimulation, and control. Each subject sat in an optokinetic drum for 15 minutes baseline and 15 minutes of drum rotation. Subjects' electrogastrograms and subjective symptoms of motion sickness were obtained. In experiment 1, the mean symptom score and tachyarrhythmia during acustimulation sessions were significantly lower than during no-acustimulation sessions. In experiment 2, the mean symptom score of the acustimulation group was significantly lower than that of the sham-stimulation group and the control group; tachyarrhythmia in the acustimulation group was significantly less than that of the control group but not the sham-stimulation group. In conclusion, electrical acustimulation reduces the severity of symptoms of motion sickness and appears to decrease gastric tachyarrhythmia.

  12. [Electrical stimulation therapy and its effects on the general activity of motor impaired cerebral palsied children; a comparative study of the Bobath physiotherapy and its combination with the Hufschmidt electrical stimulation therapy (author's transl)].

    PubMed

    Leyendecker, C

    1975-08-01

    The purpose of this study was to answer the following questions: (1) Is it more effective to treat spastic cerebral palsy with the Hufschmidt electrical stimulation therapy combined with the Bobath neuro-development treatment or only with the Bobath therapy? (2) Can a general increase in activity be obtained by the electrotherapeutic muscle stimulation? A test group (combined Hufschmidt/Bobath therapy) and a control group (Bobath), both consisting of 10 subjects, were observed for four months. The duration of observation was divided into two four months treatment periods with a rest interval of two months in between. At the start of therapeutic measures, motor activity and psychic condition were tested with corresponding motormetric and psychodiagnostic techniques; three check-up examinations were carried out at the end of the first, and at the beginning and end of the second period of treatment. The motor-metric control examination showed that at the end of the first period the test group had achieved by far the better results, but at the end of the second therapeutic period, both groups were equally successful. The combined electrophysiotherapy hence reached in a relatively shorter time - as it were by leaps and bounds - the optimal obtainable state of functional improvements which, with the Bobath therapy alone, can be effected more slowly but with more continuity. The psychodiagnostic controls clearly indicate that the electrical stimulation produced an unspecified increase in activity, especially after the first phase of treatment, whereas in the second phase this could only be proven in a graded form. The report closes with an examination of the results and their consequences for the implementation of the treatment for cerebral palsied children.

  13. REPETETIVE HINDLIMB MOVEMENT USING INTERMITTENT ADAPTIVE NEUROMUSCULAR ELECTRICAL STIMULATION IN AN INCOMPLETE SPINAL CORD INJURY RODENT MODEL

    PubMed Central

    Fairchild, Mallika; Kim, Seung-Jae; Iarkov, Alex; Abbas, James J.; Jung, Ranu

    2010-01-01

    The long-term objective of this work is to understand the mechanisms by which electrical stimulation based movement therapies may harness neural plasticity to accelerate and enhance sensorimotor recovery after incomplete spinal cord injury (iSCI). An adaptive neuromuscular electrical stimulation (aNMES) paradigm was implemented in adult Long Evans rats with thoracic contusion injury (T8 vertebral level, 155±2 Kdyne). In lengthy sessions with lightly anesthetized animals, hip flexor and extensor muscles were stimulated using an aNMES control system in order to generate desired hip movements. The aNMES control system, which used a pattern generator/pattern shaper structure, adjusted pulse amplitude to modulate muscle force in order to control hip movement. An intermittent stimulation paradigm was used (5-cycles/set; 20-second rest between sets; 100 sets). In each cycle, hip rotation caused the foot plantar surface to contact a stationary brush for appropriately timed cutaneous input. Sessions were repeated over several days while the animals recovered from injury. Results indicated that aNMES automatically and reliably tracked the desired hip trajectory with low error and maintained range of motion with only gradual increase in stimulation during the long sessions. Intermittent aNMES thus accounted for the numerous factors that can influence the response to NMES: electrode stability, excitability of spinal neural circuitry, non-linear muscle recruitment, fatigue, spinal reflexes due to cutaneous input, and the endogenous recovery of the animals. This novel aNMES application in the iSCI rodent model can thus be used in chronic stimulation studies to investigate the mechanisms of neuroplasticity targeted by NMES-based repetitive movement therapy. PMID:20206164

  14. Effects of combined application of progressive resistance training and Russian electrical stimulation on quadriceps femoris muscle strength in elderly women with knee osteoarthritis.

    PubMed

    Park, Seong Hoon; Hwangbo, Gak

    2015-03-01

    [Purpose] The aim of this study was to investigate the effects of combined application of progressive resistance training and Russian electrical stimulation on quadriceps femoris muscle strength in elderly women with osteoarthritis of the knee. [Subjects] Thirty women over 65 years of age diagnosed with knee osteoarthritis participated in the present study. The subjects were randomly assigned to a control group (n=10), a progressive resistance training group (n=10), or a Russian electrical stimulation group (n=10). [Methods] Each group was treated 3 times weekly for 8 weeks, and each session lasted 45 minutes. Muscle strength was assessed by measuring the peak torque of the quadriceps femoris muscle. Outcome measurements were performed at baseline and at the fourth and eighth weeks of the treatment period. [Results] All groups showed significant intragroup differences in the quadriceps femoris muscle peak torque after the treatment intervention. There were significant intergroup differences between the Russian electrical stimulation group and the other groups. [Conclusion] The results of this study suggest that combined application of progressive resistance training and Russian electrical stimulation can be effective in strengthening the quadriceps femoris muscle in elderly women with knee osteoarthritis.

  15. Therapeutic orthosis and electrical stimulation for upper extremity hemiplegia after stroke: a review of effectiveness based on evidence.

    PubMed

    Aoyagi, Yoichiro; Tsubahara, Akio

    2004-01-01

    Upper extremity hemiplegia after stroke is common and disabling. Apart from conventional physical and occupational therapy, a number of additional approaches that use devices such as orthoses, prostheses, electrical stimulation, and robots have been introduced. The purpose of this review was to assess the clinical efficacy of such devices used for the affected upper extremities of acute, subacute, and chronic stroke patients. Assessments of their effectiveness and recommendations were based on the weight of published scientific evidence. The amount of evidence with respect to hand splints and shoulder slings is limited. Further study with a well-designed randomized controlled trial (RCT) is required to investigate accurately their short- and long-term efficacy. A number of studies suggested that the use of electrical stimulation for reducing shoulder subluxation or improving the function of wrist and finger extensors is effective during or shortly after the daily treatment period. The robotic approach to hemiplegic upper extremities appears to be a novel therapeutic strategy that may help improve hand and arm function. However, the longer term effectiveness after discontinuation as well as the motor recovery mechanism of electrical stimulation or robotic devices remains unclear. More research is needed to determine the evidence-based effectiveness of electrical stimulation or other devices for stroke survivors.

  16. A New Training for Older Adults Using Combined Neuromuscular Electrical Stimulation and Volitional Contraction: A Pilot Study.

    PubMed

    Takano, Yoshio; Matsuse, Hiroo; Tsukada, Yuuya; Omoto, Masayuki; Hashida, Ryuki; Shiba, Naoto

    2016-01-01

    The hybrid training system (HTS) resists the motion of a volitionally contracting agonist muscle using force generated by its electrically stimulated antagonist. We have developed a new training method using the principle of HTS. This study was designed to evaluate the effect of HTS with electrical stimulation on muscle strength and physical function by comparing it against training without electrical stimulation in older adults. 16 subjects were randomly divided into two groups: the squat and single leg lift training (control, CTR) group, and the CTR with HTS training group. Some electrical stimulation was applied to the quadriceps and hamstring muscles in the HTS group. The subjects performed training for 25 min per session 3 times a week for 12 weeks. At points before and after the research maximal isokinetic torque, knee-flexors (KFT) and knee-extensors (KET), a one-leg standing test (OLT), a functional reach test (FRT), a 10-meter maximal gait time (10MGT) and Timed up & go test (TUG) were conducted. None of the subjects had any injuries during the study period. TUG significantly improved after the training period in both the HTS group (7.15 sec to 6.01 sec P = 0.01) and in the CTR.

  17. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: a randomized controlled trial.

    PubMed

    Li, Zhen; Wang, Xiu-Xia; Liang, Yan-Yi; Chen, Shu-Yan; Sheng, Jing; Ma, Shao-Jun

    2018-01-01

    Force platform training with functional electric stimulation aimed at improving balance may be effective in fall prevention for older adults. Aim of the study is to evaluate the effects of the visual-feedback-based force platform balance training with functional electric stimulation on balance and fall prevention in older adults. A single-centre, unblinded, randomized controlled trial was conducted. One hundred and twenty older adults were randomly allocated to two groups: the control group ( n  = 60, one-leg standing balance exercise, 12 min/d) or the intervention group ( n  = 60, force platform training with functional electric stimulation, 12 min/d). The training was provided 15 days a month for 3 months by physical therapists. Medial-lateral and anterior-posterior maximal range of sway with eyes open and closed, the Berg Balance Scale, the Barthel Index, the Falls Efficacy scale-International were assessed at baseline and after the 3-month intervention. A fall diary was kept by each participant during the 6-month follow-up. On comparing the two groups, the intervention group showed significantly decreased ( p  < 0.01) medial-lateral and anterior-posterior maximal range of sway with eyes open and closed. There was significantly higher improvement in the Berg Balance Scale ( p  < 0.05), the Barthel Index ( p  < 0.05) and the Falls Efficacy Scale-International ( p  < 0.05), along with significantly lesser number of injurious fallers ( p  < 0.05), number of fallers ( p  < 0.05), and fall rates ( p  < 0.05) during the 6-month follow-up in the intervention group. This study showed that the visual feedback-based force platform training with functional electric stimulation improved balance and prevented falls in older adults.

  18. Mean diffusivity as a potential diffusion tensor biomarker of motor rehabilitation after electrical stimulation incorporating task specific exercise in stroke: a pilot study.

    PubMed

    Boespflug, Erin L; Storrs, Judd M; Allendorfer, Jane B; Lamy, Martine; Eliassen, James C; Page, Stephen

    2014-09-01

    Changes in diffusion tensor imaging (DTI) values co-occur with neurological and functional changes after stroke. However, quantitative DTI metrics have not been examined in response to participation in targeted rehabilitative interventions in chronic stroke. The primary purpose of this pilot study was to examine whether changes in DTI metrics co-occur with paretic arm movement changes among chronic stroke patients participating in a regimen of electrical stimulation targeting the paretic arm. Three subjects exhibiting stable arm hemiparesis were administered 30-minute (n = 1) or 120-minute (n = 2) therapy sessions emphasizing paretic arm use during valued, functional tasks and incorporating an electrical stimulation device. These sessions occurred every weekday for 8 weeks. A fourth subject served as a treatment control, participating in a 30-minute home exercise regimen without electrical stimulation every weekday for 8 weeks. DTI and behavioral outcome measures were acquired at baseline and after intervention. DTI data were analyzed using a region of interest (ROI) approach, with ROIs chosen based on tract involvement in sensorimotor function or as control regions. Behavioral outcome measures were the Fugl-Meyer Scale (FM) and the Action Research Arm Test (ARAT). The treatment control subject exhibited gains in pinch and grasp, as shown by a 5-point increase on the ARAT. The subject who participated in 30-minute therapy sessions exhibited no behavioral gains. Subjects participating in 120-minute therapy sessions displayed consistent impairment reductions and distal movement changes. DTI changes were largest in subjects two and three, with mean diffusivity (MD) decreases in the middle cerebellar peduncle and posterior limb of the internal capsule following treatment. No changes in fractional anisotropy (FA) were observed for sensorimotor tracts. Our preliminary results suggest that active rehabilitative therapies augmented by electrical stimulation may induce positive behavioral changes which are underscored by DTI changes indicative of increased white matter tract integrity in regions specific to sensory-motor function.

  19. Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators.

    PubMed

    Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine

    2016-06-13

    Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs.

  20. EFFECTS OF FUNCTIONAL ELECTRICAL STIMULATION IN REHABILITATION WITH HEMIPARESIS PATIENTS

    PubMed Central

    Tanović, Edina

    2009-01-01

    Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES) in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemi- paresis), a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (p<0,001). In conclusion, we can state that the patients in rehabilitation after a cerebrovascular accident require rehabilitation longer than 4 weeks. Walking rehabilitation after stroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities. PMID:19284395

  1. Designing electrical stimulated bioreactors for nerve tissue engineering

    NASA Astrophysics Data System (ADS)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  2. An Arbitrary Waveform Wearable Neuro-stimulator System for Neurophysiology Research on Freely Behaving Animals.

    PubMed

    Samani, Mohsen Mosayebi; Mahnam, Amin; Hosseini, Nasrin

    2014-04-01

    Portable wireless neuro-stimulators have been developed to facilitate long-term cognitive and behavioral studies on the central nervous system in freely moving animals. These stimulators can provide precisely controllable input(s) to the nervous system, without distracting the animal attention with cables connected to its body. In this study, a low power backpack neuro-stimulator was developed for animal brain researches that can provides arbitrary stimulus waveforms for the stimulation, while it is small and light weight to be used for small animals including rats. The system consists of a controller that uses an RF link to program and activate a small and light microprocessor-based stimulator. A Howland current source was implemented to produce precise current controlled arbitrary waveform stimulations. The system was optimized for ultra-low power consumption and small size. The stimulator was first tested for its electrical specifications. Then its performance was evaluated in a rat experiment when electrical stimulation of medial longitudinal fasciculus induced circling behavior. The stimulator is capable of delivering programmed stimulations up to ± 2 mA with adjusting steps of 1 μA, accuracy of 0.7% and compliance of 6 V. The stimulator is 15 mm × 20 mm × 40 mm in size, weights 13.5 g without battery and consumes a total power of only 5.l mW. In the experiment, the rat could easily carry the stimulator and demonstrated the circling behavior for 0.1 ms current pulses of above 400 μA. The developed system has a competitive size and weight, whereas providing a wide range of operation and the flexibility of generating arbitrary stimulation patterns ideal for long-term experiments in the field of cognitive and neuroscience research.

  3. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  4. Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation.

    PubMed

    Huang, Wei-Chen; Lo, Yu-Chih; Chu, Chao-Yi; Lai, Hsin-Yi; Chen, You-Yin; Chen, San-Yuan

    2017-04-01

    Chronic brain stimulation has become a promising physical therapy with increased efficacy and efficiency in the treatment of neurodegenerative diseases. The application of deep brain electrical stimulation (DBS) combined with manganese-enhanced magnetic resonance imaging (MEMRI) provides an unbiased representation of the functional anatomy, which shows the communication between areas of the brain responding to the therapy. However, it is challenging for the current system to provide a real-time high-resolution image because the incorporated MnCl 2 solution through microinjection usually results in image blurring or toxicity due to the uncontrollable diffusion of Mn 2+ . In this study, we developed a new type of conductive nanogel-based neural interface composed of amphiphilic chitosan-modified poly(3,4 -ethylenedioxythiophene) (PMSDT) that can exhibit biomimic structural/mechanical properties and ionic/electrical conductivity comparable to that of Au. More importantly, the PMSDT enables metal-ligand bonding with Mn 2+ ions, so that the system can release Mn 2+ ions rather than MnCl 2 solution directly and precisely controlled by electrical stimulation (ES) to achieve real-time high-resolution MEMRI. With the integration of PMSDT nanogel-based coating in polyimide-based microelectrode arrays, the post-implantation DBS enables frequency-dependent MR imaging in vivo, as well as small focal imaging in response to channel site-specific stimulation on the implant. The MR imaging of the implanted brain treated with 5-min electrical stimulation showed a thalamocortical neuronal pathway after 36 h, confirming the effective activation of a downstream neuronal circuit following DBS. By eliminating the susceptibility to artifact and toxicity, this system, in combination with a MR-compatible implant and a bio-compliant neural interface, provides a harmless and synchronic functional anatomy for DBS. The study demonstrates a model of MEMRI-functionalized DBS based on functional neural interface engineering and controllable delivery technology, which can be utilized in more detailed exploration of the functional anatomy in the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Less deep vein thrombosis due to transcutaneous fibular nerve stimulation in total knee arthroplasty: a randomized controlled trial.

    PubMed

    Izumi, Masashi; Ikeuchi, Masahiko; Aso, Koji; Sugimura, Natsuki; Kamimoto, Yuko; Mitani, Tetsuya; Ueta, Tadashi; Sato, Takayuki; Yokoyama, Masataka; Sugiura, Tetsuro; Tani, Toshikazu

    2015-11-01

    It has been known for years that deep vein thrombi (DVT) start to develop during total joint arthroplasty. Previously, we reported effective prevention of venous stasis by transcutaneous electrical nerve stimulation (TENS). It is hypothesized that TENS might be a thromboprophylactic tool for the limb undergoing surgery. The purpose of this study is to clarify the clinical efficacy and safety of TENS in patients during total knee arthroplasty (TKA). Ninety patients undergoing primary TKA were involved and randomly allocated to the TENS or control group. In the TENS group, electrical stimulation of the common fibular nerve, which produced a brisk dorsiflexion of the ankle, was performed for the operated leg during surgery. In the control group, no electrical stimulation was applied. Serum D-dimer and soluble fibrin monomer complex (SFMC) levels were measured before surgery, immediately after surgery, and post-operative day (POD) 1. Ultrasonography was performed on POD 1. Immediately after surgery, D-dimer and SFMC levels of each group were significantly lower in the TENS group compared with control (p < 0.05). The incidence of DVT was 11 % (five cases) in the TENS group while 31 % (14 cases) in control (p = 0.02). There were no adverse effects related to TENS. TENS during TKA showed significant effects on preventing DVT. Sustaining muscle pump activation during surgery prevented not only venous stasis, but also hypercoagulability of blood. Intraoperative TENS is a safe and novel strategy against early post-operative thromboembolism, which is difficult to be completed through existing prophylaxis after total joint arthroplasty. Randomized controlled trial, Level I.

  6. Short-term anomia training and electrical brain stimulation.

    PubMed

    Flöel, Agnes; Meinzer, Marcus; Kirstein, Robert; Nijhof, Sarah; Deppe, Michael; Knecht, Stefan; Breitenstein, Caterina

    2011-07-01

    Language training success in chronic aphasia remains only moderate. Electric brain stimulation may be a viable way to enhance treatment efficacy. In a randomized, double-blind, sham-controlled crossover trial, we assessed if anodal transcranial direct current stimulation compared to cathodal transcranial direct current stimulation and sham stimulation over the right temporo-parietal cortex would improve the success of short-term high-frequency anomia training. Twelve chronic poststroke aphasia patients were studied. Naming outcome was assessed after training and 2 weeks later. All training conditions led to a significant increase in naming ability, which was retained for at least 2 weeks after the end of the training. Application of anodal transcranial direct current stimulation significantly enhanced the overall training effect compared to sham stimulation. Baseline naming ability significantly predicted anodal transcranial direct current stimulation effects. Anodal transcranial direct current stimulation applied over the nonlanguage dominant hemisphere can enhance language training outcome in chronic aphasia. Clinical Trial Registration- URL: www.clinicaltrials.gov/. Unique identifier: NCT00822068.

  7. Improved proprioceptive function by application of subsensory electrical noise: Effects of aging and task-demand.

    PubMed

    Toledo, Diana R; Barela, José A; Kohn, André F

    2017-09-01

    The application of subsensory noise stimulation over the lower limbs has been shown to improve proprioception and postural control under certain conditions. Whereas the effect specificity seems to depend on several factors, studies are still needed to determine the appropriate method for training and rehabilitation purposes. In the current study, we investigated whether the application of subsensory electrical noise over the legs improves proprioceptive function in young and older adults. We aimed to provide evidence that stronger and age-related differential effects occur in more demanding tasks. Proprioceptive function was initially assessed by testing the detection of passive ankle movement (kinesthetic perception) in twenty-eight subjects (14 young and 14 older adults). Thereafter, postural control was assessed during tasks with different sensory challenges: i) by removing visual information (eyes closed) and; ii) by moving the visual scene (moving room paradigm). Tests performed with the application of electrical noise stimulation were compared to those performed without noise. The results showed that electrical noise applied over the legs led to a reduction in the response time to kinesthetic perception in both young and older adults. On the other hand, the magnitude of postural sway was reduced by noise stimulation only during a more challenging task, namely, when the optical flow was changing in an unpredictable (nonperiodic) manner. No differential effects of stimulation between groups were observed. These findings suggest that the relevance of proprioceptive inputs in tasks with different challenges, but not the subjects' age, is a determining factor for sensorimotor improvements due to electrical noise stimulation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Electrical stimulation as a treatment intervention to improve function, edema or pain following acute lateral ankle sprains: A systematic review.

    PubMed

    Feger, Mark A; Goetschius, John; Love, Hailey; Saliba, Sue A; Hertel, Jay

    2015-11-01

    The purpose of this systematic review was to assess whether electrical stimulation (ES), when used in conjunction with a standard treatment, can reduce levels of functional impairment, edema, and pain compared to a standard treatment alone, in patients following a lateral ankle sprain. We searched PubMed, CINAHL, SportDiscus, and Medline (OVID) databases through June 2014 using the terms "ankle sprain or ankle sprains or ligament injury or ligamentous injury," and "electric stimulation or electric stimulation or electrotherapy." Our search identified four randomized control trials, of which, neuromuscular ES and high-voltage pulsed stimulation were the only two ES modalities utilized. Effect sizes and 95% confidence intervals (CI) were estimated using Cohen's d for comparison between treatment groups. Three of four effect sizes for function had 95% CI that crossed zero. Twenty-four of the thirty-two effect sizes for edema had 95% CI that crossed zero. All effect sizes for pain had 95% CI that crossed zero. Therefore, the use of ES is not recommended as a means to improve function, reduce edema, or decrease pain in the treatment of acute lateral ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Energy-optimal electrical excitation of nerve fibers.

    PubMed

    Jezernik, Saso; Morari, Manfred

    2005-04-01

    We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.

  10. Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells.

    PubMed

    McCullen, Seth D; McQuilling, John P; Grossfeld, Robert M; Lubischer, Jane L; Clarke, Laura I; Loboa, Elizabeth G

    2010-12-01

    Electric stimulation is known to initiate signaling pathways and provides a technique to enhance osteogenic differentiation of stem and/or progenitor cells. There are a variety of in vitro stimulation devices to apply electric fields to such cells. Herein, we describe and highlight the use of interdigitated electrodes to characterize signaling pathways and the effect of electric fields on the proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). The advantage of the interdigitated electrode configuration is that cells can be easily imaged during short-term (acute) stimulation, and this identical configuration can be utilized for long-term (chronic) studies. Acute exposure of hASCs to alternating current (AC) sinusoidal electric fields of 1 Hz induced a dose-dependent increase in cytoplasmic calcium in response to electric field magnitude, as observed by fluorescence microscopy. hASCs that were chronically exposed to AC electric field treatment of 1 V/cm (4 h/day for 14 days, cultured in the osteogenic differentiation medium containing dexamethasone, ascorbic acid, and β-glycerol phosphate) displayed a significant increase in mineral deposition relative to unstimulated controls. This is the first study to evaluate the effects of sinusoidal AC electric fields on hASCs and to demonstrate that acute and chronic electric field exposure can significantly increase intracellular calcium signaling and the deposition of accreted calcium under osteogenic stimulation, respectively.

  11. Transcutaneous electrical nerve stimulation and interferential current demonstrate similar effects in relieving acute and chronic pain: a systematic review with meta-analysis.

    PubMed

    Almeida, Camila Cadena de; Silva, Vinicius Z Maldaner da; Júnior, Gerson Cipriano; Liebano, Richard Eloin; Durigan, Joao Luiz Quagliotti

    2018-02-02

    Transcutaneous electrical nerve stimulation and interferential current have been widely used in clinical practice. However, a systematic review comparing their effects on pain relief has not yet been performed. To investigate the effects of transcutaneous electrical nerve stimulation and interferential current on acute and chronic pain. We use Pubmed, Embase, LILACS, PEDro and Cochrane Central Register of Controlled Trials as data sources. Two independent reviewers that selected studies according to inclusion criteria, extracted information of interest and verified the methodological quality of the studies made study selection. The studies were selected if transcutaneous electrical nerve stimulation and interferential current were used as treatment and they had pain as the main outcome, as evaluated by a visual analog scale. Secondary outcomes were the Western Ontario Macmaster and Rolland Morris Disability questionnaires, which were added after data extraction. Eight studies with a pooled sample of 825 patients were included. The methodological quality of the selected studies was moderate, with an average of six on a 0-10 scale (PEDro). In general, both transcutaneous electrical nerve stimulation and interferential current improved pain and functional outcomes without a statistical difference between them. Transcutaneous electrical nerve stimulation and interferential current have similar effects on pain outcome The low number of studies included in this meta-analysis indicates that new clinical trials are needed. Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Effects of Electrical Stimulation in Spastic Muscles After Stroke: Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Stein, Cinara; Fritsch, Carolina Gassen; Robinson, Caroline; Sbruzzi, Graciele; Plentz, Rodrigo Della Méa

    2015-08-01

    Neuromuscular electric stimulation (NMES) has been used to reduce spasticity and improve range of motion in patients with stroke. However, contradictory results have been reported by clinical trials. A systematic review of randomized clinical trials was conducted to assess the effect of treatment with NMES with or without association to another therapy on spastic muscles after stroke compared with placebo or another intervention. We searched the following electronic databases (from inception to February 2015): Medline (PubMed), EMBASE, Cochrane Central Register of Controlled Trials and Physiotherapy Evidence Database (PEDro). Two independent reviewers assessed the eligibility of studies based on predefined inclusion criteria (application of electric stimulation on the lower or upper extremities, regardless of NMES dosage, and comparison with a control group which was not exposed to electric stimulation), excluding studies with <3 days of intervention. The primary outcome extracted was spasticity, assessed by the Modified Ashworth Scale, and the secondary outcome extracted was range of motion, assessed by Goniometer. Of the total of 5066 titles, 29 randomized clinical trials were included with 940 subjects. NMES provided reductions in spasticity (-0.30 [95% confidence interval, -0.58 to -0.03], n=14 randomized clinical trials) and increase in range of motion when compared with control group (2.87 [95% confidence interval, 1.18-4.56], n=13 randomized clinical trials) after stroke. NMES combined with other intervention modalities can be considered as a treatment option that provides improvements in spasticity and range of motion in patients after stroke. URL: http://www.crd.york.ac.uk/PROSPERO. Unique identifier: CRD42014008946. © 2015 American Heart Association, Inc.

  13. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  14. Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy

    PubMed Central

    Savić, Andrej M.; Malešević, Nebojša M.; Popović, Mirjana B.

    2014-01-01

    We present a feasibility study of a novel hybrid brain-computer interface (BCI) system for advanced functional electrical therapy (FET) of grasp. FET procedure is improved with both automated stimulation pattern selection and stimulation triggering. The proposed hybrid BCI comprises the two BCI control signals: steady-state visual evoked potentials (SSVEP) and event-related desynchronization (ERD). The sequence of the two stages, SSVEP-BCI and ERD-BCI, runs in a closed-loop architecture. The first stage, SSVEP-BCI, acts as a selector of electrical stimulation pattern that corresponds to one of the three basic types of grasp: palmar, lateral, or precision. In the second stage, ERD-BCI operates as a brain switch which activates the stimulation pattern selected in the previous stage. The system was tested in 6 healthy subjects who were all able to control the device with accuracy in a range of 0.64–0.96. The results provided the reference data needed for the planned clinical study. This novel BCI may promote further restoration of the impaired motor function by closing the loop between the “will to move” and contingent temporally synchronized sensory feedback. PMID:24616644

  15. Investigating Effects of Nano- to Micro-Ampere Alternating Current Stimulation on Trichophyton rubrum Growth.

    PubMed

    Kwon, Dong Rak; Kwon, Hyunjung; Lee, Woo Ram; Park, Joonsoo

    2016-10-01

    Fungi are eukaryotic microorganisms including yeast and molds. Many studies have focused on modifying bacterial growth, but few on fungal growth. Microcurrent electricity may stimulate fungal growth. This study aims to investigate effects of microcurrent electric stimulation on Trichophyton rubrum growth. Standard-sized inoculums of T. rubrum derived from a spore suspension were applied to potato dextrose cornmeal agar (PDACC) plates, gently withdrawn with a sterile pipette, and were applied to twelve PDACC plates with a sterile spreader. Twelve Petri dishes were divided into four groups. The given amperage of electric current was 500 nA, 2 µA, and 4 µA in groups A, B, and C, respectively. No electric current was given in group D. In the first 48 hours, colonies only appeared in groups A and B (500 nA and 2 µA exposure). Colonies in group A (500 nA) were denser. Group C (4 µA) plates showed a barely visible film of fungus after 96 hours of incubation. Fungal growth became visible after 144 hours in the control group. Lower intensities of electric current caused faster fungal growth within the amperage range used in this study. Based on these results, further studies with a larger sample size, various fungal species, and various intensities of electric stimulation should be conducted.

  16. Evaluation of focused multipolar stimulation for cochlear implants: a preclinical safety study

    NASA Astrophysics Data System (ADS)

    Shepherd, Robert K.; Wise, Andrew K.; Enke, Ya Lang; Carter, Paul M.; Fallon, James B.

    2017-08-01

    Objective. Cochlear implants (CIs) have a limited number of independent stimulation channels due to the highly conductive nature of the fluid-filled cochlea. Attempts to develop highly focused stimulation to improve speech perception in CI users includes the use of simultaneous stimulation via multiple current sources. Focused multipolar (FMP) stimulation is an example of this approach and has been shown to reduce interaction between stimulating channels. However, compared with conventional biphasic current pulses generated from a single current source, FMP is a complex stimulus that includes extended periods of stimulation before charge recovery is achieved, raising questions on whether chronic stimulation with this strategy is safe. The present study evaluated the long-term safety of intracochlear stimulation using FMP in a preclinical animal model of profound deafness. Approach. Six cats were bilaterally implanted with scala tympani electrode arrays two months after deafening, and received continuous unilateral FMP stimulation at levels that evoked a behavioural response for periods of up to 182 d. Electrode impedance, electrically-evoked compound action potentials (ECAPs) and auditory brainstem responses (EABRs) were monitored periodically over the course of the stimulation program from both the stimulated and contralateral control cochleae. On completion of the stimulation program cochleae were examined histologically and the electrode arrays were evaluated for evidence of platinum (Pt) corrosion. Main results. There was no significant difference in electrode impedance between control and chronically stimulated electrodes following long-term FMP stimulation. Moreover, there was no significant difference between ECAP and EABR thresholds evoked from control or stimulated cochleae at either the onset of stimulation or at completion of the stimulation program. Chronic FMP stimulation had no effect on spiral ganglion neuron (SGN) survival when compared with unstimulated control cochleae. Long-term implantation typically evoked a mild foreign body reaction proximal to the electrode array; however stimulated cochleae exhibited a small but statistically significant increase in the tissue response. Finally, there was no evidence of Pt corrosion following long-term FMP stimulation; stimulated electrodes exhibited the same surface features as the unstimulated control electrodes. Significance. Chronic intracochlear FMP stimulation at levels used in the present study did not adversely affect electrically-evoked neural thresholds or SGN survival but evoked a small, benign increase in inflammatory response compared to control ears. Moreover chronic FMP stimulation does not affect the surface of Pt electrodes at suprathreshold stimulus levels. These findings support the safe clinical application of an FMP stimulation strategy.

  17. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study.

    PubMed

    Kraus, Thomas; Kiess, Olga; Hösl, Katharina; Terekhin, Pavel; Kornhuber, Johannes; Forster, Clemens

    2013-09-01

    It has recently been shown that electrical stimulation of sensory afferents within the outer auditory canal may facilitate a transcutaneous form of central nervous system stimulation. Functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) effects in limbic and temporal structures have been detected in two independent studies. In the present study, we investigated BOLD fMRI effects in response to transcutaneous electrical stimulation of two different zones in the left outer auditory canal. It is hypothesized that different central nervous system (CNS) activation patterns might help to localize and specifically stimulate auricular cutaneous vagal afferents. 16 healthy subjects aged between 20 and 37 years were divided into two groups. 8 subjects were stimulated in the anterior wall, the other 8 persons received transcutaneous vagus nervous stimulation (tVNS) at the posterior side of their left outer auditory canal. For sham control, both groups were also stimulated in an alternating manner on their corresponding ear lobe, which is generally known to be free of cutaneous vagal innervation. Functional MR data from the cortex and brain stem level were collected and a group analysis was performed. In most cortical areas, BOLD changes were in the opposite direction when comparing anterior vs. posterior stimulation of the left auditory canal. The only exception was in the insular cortex, where both stimulation types evoked positive BOLD changes. Prominent decreases of the BOLD signals were detected in the parahippocampal gyrus, posterior cingulate cortex and right thalamus (pulvinar) following anterior stimulation. In subcortical areas at brain stem level, a stronger BOLD decrease as compared with sham stimulation was found in the locus coeruleus and the solitary tract only during stimulation of the anterior part of the auditory canal. The results of the study are in line with previous fMRI studies showing robust BOLD signal decreases in limbic structures and the brain stem during electrical stimulation of the left anterior auditory canal. BOLD signal decreases in the area of the nuclei of the vagus nerve may indicate an effective stimulation of vagal afferences. In contrast, stimulation at the posterior wall seems to lead to unspecific changes of the BOLD signal within the solitary tract, which is a key relay station of vagal neurotransmission. The results of the study show promise for a specific novel method of cranial nerve stimulation and provide a basis for further developments and applications of non-invasive transcutaneous vagus stimulation in psychiatric patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous Human Wounds.

    PubMed

    Emmerson, Elaine

    2017-03-01

    Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al. demonstrate that electrical stimulation promotes reinnervation and neural differentiation in human acute wounds, thus accelerating wound repair. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  19. T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure.

    PubMed

    Crocini, Claudia; Coppini, Raffaele; Ferrantini, Cecilia; Yan, Ping; Loew, Leslie M; Poggesi, Corrado; Cerbai, Elisabetta; Pavone, Francesco S; Sacconi, Leonardo

    2016-09-03

    Alterations of the β-adrenergic signalling, structural remodelling, and electrical failure of T-tubules are hallmarks of heart failure (HF). Here, we assess the effect of β-adrenoceptor activation on local Ca(2+) release in electrically coupled and uncoupled T-tubules in ventricular myocytes from HF rats. We employ an ultrafast random access multi-photon (RAMP) microscope to simultaneously record action potentials and Ca(2+) transients from multiple T-tubules in ventricular cardiomyocytes from a HF rat model of coronary ligation compared to sham-operated rats as a control. We confirmed that β-adrenergic stimulation increases the frequency of Ca(2+) sparks, reduces Ca(2+) transient variability, and hastens the decay of Ca(2+) transients: all these effects are similarly exerted by β-adrenergic stimulation in control and HF cardiomyocytes. Conversely, β-adrenergic stimulation in HF cells accelerates a Ca(2+) rise exclusively in the proximity of T-tubules that regularly conduct the action potential. The delayed Ca(2+) rise found at T-tubules that fail to conduct the action potential is instead not affected by β-adrenergic signalling. Taken together, these findings indicate that HF cells globally respond to β-adrenergic stimulation, except at T-tubules that fail to conduct action potentials, where the blunted effect of the β-adrenergic signalling may be directly caused by the lack of electrical activity.

  20. A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool

    NASA Astrophysics Data System (ADS)

    Lynch, Cheryl L.; Graham, Geoff M.; Popovic, Milos R.

    2011-08-01

    Functional electrical stimulation (FES) applications are frequently evaluated in simulation prior to testing in human subjects. Such simulations are usually based on the typical muscle responses to electrical stimulation, which may result in an overly optimistic assessment of likely real-world performance. We propose a novel method for simulating FES applications that includes non-ideal muscle behaviour during electrical stimulation resulting from muscle fatigue, spasms and tremors. A 'non-idealities' block that can be incorporated into existing FES simulations and provides a realistic estimate of real-world performance is described. An implementation example is included, showing how the non-idealities block can be incorporated into a simulation of electrically stimulated knee extension against gravity for both a proportional-integral-derivative controller and a sliding mode controller. The results presented in this paper illustrate that the real-world performance of a FES system may be vastly different from the performance obtained in simulation using nominal muscle models. We believe that our non-idealities block should be included in future simulations that involve muscle response to FES, as this tool will provide neural engineers with a realistic simulation of the real-world performance of FES systems. This simulation strategy will help engineers and organizations save time and money by preventing premature human testing. The non-idealities block will become available free of charge at www.toronto-fes.ca in late 2011.

  1. Electroacupuncture Reduces the Effects of Acute Noxious Stimulation on the Electrical Activity of Pain-Related Neurons in the Hippocampus of Control and Neuropathic Pain Rats

    PubMed Central

    Wang, Jun-Ying; Chen, Renbo; Feng, Xiu-Mei; Yan, Yaxia; Lippe, Irmgard Th.

    2016-01-01

    To study the effects of acupuncture analgesia on the hippocampus, we observed the effects of electroacupuncture (EA) and mitogen-activated protein kinase (MEK) inhibitor on pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal area CA1 of sham or chronic constrictive injury (CCI) rats. The animals were randomly divided into a control, a CCI, and a U0126 (MEK1/2 inhibitor) group. In all experiments, we briefly (10-second duration) stimulated the sciatic nerve electrically and recorded the firing rates of PENs and PINs. The results showed that in both sham and CCI rats brief sciatic nerve stimulation significantly increased the electrical activity of PENs and markedly decreased the electrical activity of PINs. These effects were significantly greater in CCI rats compared to sham rats. EA treatment reduced the effects of the noxious stimulus on PENs and PINs in both sham and CCI rats. The effects of EA treatment could be inhibited by U0126 in sham-operated rats. The results suggest that EA reduces effects of acute sciatic nerve stimulation on PENs and PINs in the CA1 region of the hippocampus of both sham and CCI rats and that the ERK (extracellular regulated kinase) signaling pathway is involved in the modulation of EA analgesia. PMID:27833763

  2. Pelvic floor muscle exercise by biofeedback and electrical stimulation to reinforce the pelvic floor muscle after normal delivery.

    PubMed

    Lee, In Sook; Choi, Euy Soon

    2006-12-01

    This study was conducted to investigate the effectiveness of pelvic floor muscle exercise using biofeedback and electrical stimulation after normal delivery. The subjects of this study were 49 (experimental group: 25, control group: 24) postpartum women who passed 6 weeks after normal delivery without complication of pregnancy, delivery and postpartum. The experimental group was applied to the pelvic muscle enforcement program by biofeedback and electrical stimulation for 30 minutes per session, twice a week for 6 weeks, after then self-exercise of pelvic floor muscle was done 50-60 repetition per session, 3 times a day for 6 weeks. Maximum pressure of pelvic floor muscle contraction (MPPFMC), average pressure of pelvic floor muscle contraction (APPFMC), duration time of pelvic floor muscle contraction (DTPFMC) and the subjective lower urinary symptoms were measured by digital perineometer and Bristol Female Urinary Symptom Questionnaire and compared between two groups prior to trial, at the end of treatment and 6 weeks after treatment. The results of this study indicated that MPPFMC, APPFMC, DTPFMC were significantly increased and subjective lower urinary symptoms were significantly decreased after treatment in the experimental group than in the control group. This study suggested that the pelvic floor muscle exercise using biofeedback and electrical stimulation might be a safer and more effective program for reinforcing pelvic floor muscle after normal delivery.

  3. Recovery after high-intensity intermittent exercise in elite soccer players using VEINOPLUS sport technology for blood-flow stimulation.

    PubMed

    Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe

    2012-01-01

    Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Randomized controlled clinical trial. National Institute of Sport, Expertise, and Performance (INSEP). Twenty-six healthy professional male soccer players. The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods.

  4. Impact of pelvic floor muscle training on sexual function of women with urinary incontinence and a comparison of electrical stimulation versus standard treatment (IPSU trial): a randomised controlled trial.

    PubMed

    Jha, Swati; Walters, Stephen J; Bortolami, Oscar; Dixon, Simon; Alshreef, Abualbishr

    2018-03-01

    To evaluate the clinical and cost-effectiveness of electric stimulation plus standard pelvic floor muscle training compared to standard pelvic floor muscle training alone in women with urinary incontinence and sexual dysfunction. Single centre two arm parallel group randomised controlled trial conducted in a Teaching hospital in England. Participants were women presenting with urinary incontinence and sexual dysfunction. The interventions compared were electric stimulation versus standard pelvic floor muscle training. included Prolapse and Incontinence Sexual function Questionnaire (PISQ) physical function dimension at post-treatment (primary); other dimensions of PISQ, SF-36; EQ-5D, EPAQ, resource use, adverse events and cost-effectiveness (secondary outcomes). 114 women were randomised (Intervention n=57; Control group n=57). 64/114 (56%). had valid primary outcome data at follow-up (Intervention 30; Control 34). The mean PISQ-PF dimension scores at follow-up were 33.1 (SD 5.5) and 32.3 (SD 5.2) for the Intervention and Control groups respectively; with the Control group having a higher (better) score. After adjusting for baseline score, BMI, menopausal status, time from randomisation and baseline oxford scale score the mean difference was -1.0 (95% CI: -4.0 to 1.9; P=0.474). There was no differences between the groups in any of the secondary outcomes at follow-up. Within this study, the use of electrical stimulation was cost-effective with very small incremental costs and quality adjusted life years (QALYs). In women presenting with urinary incontinence in conjunction with sexual dysfunction, physiotherapy is beneficial to improve overall sexual function. However no specific form of physiotherapy is beneficial over another. Trial registration ISRCTN09586238. Copyright © 2017 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  5. Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation

    PubMed Central

    Resquín, Francisco; Gonzalez-Vargas, Jose; Ibáñez, Jaime; Brunetti, Fernando; Pons, José Luis

    2016-01-01

    Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES) is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL) control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model. PMID:27990245

  6. Breathing-synchronised electrical stimulation of the abdominal muscles in patients with acute tetraplegia: A prospective proof-of-concept study.

    PubMed

    Liebscher, Thomas; Schauer, Thomas; Stephan, Ralph; Prilipp, Erik; Niedeggen, Andreas; Ekkernkamp, Axel; Seidl, Rainer O

    2016-11-01

    To examine whether, by enhancing breathing depth and expectoration, early use of breathing-synchronised electrical stimulation of the abdominal muscles (abdominal functional electrical stimulation, AFES) is able to reduce pulmonary complications during the acute phase of tetraplegia. Prospective proof-of-concept study. Spinal cord unit at a level 1 trauma center. Following cardiovascular stabilisation, in addition to standard treatments, patients with acute traumatic tetraplegia (ASIA Impairment Scale A or B) underwent breathing-synchronised electrical stimulation of the abdominal muscles to aid expiration and expectoration. The treatment was delivered in 30-minute sessions, twice a day for 90 days. The target was for nine of 15 patients to remain free of pneumonia meeting Centers for Disease Control and Prevention (CDC) diagnostic criteria. Eleven patients were recruited to the study between October 2011 and November 2012. Two patients left the study before completion. None of the patients contracted pneumonia during the study period. No complications from electrical stimulation were observed. AFES led to a statistically significant increase in peak inspiratory and expiratory flows and a non-statistically significant increase in tidal volume and inspiratory and expiratory flow. When surveyed, 6 out of 9 patients (67%) reported that the stimulation procedure led to a significant improvement in breathing and coughing. AFES appears to be able to improve breathing and expectoration and prevent pneumonia in the acute phase of tetraplegia (up to 90 days post-trauma). This result is being validated in a prospective multicentre comparative study.

  7. Ownership of an artificial limb induced by electrical brain stimulation

    PubMed Central

    Collins, Kelly L.; Cronin, Jeneva; Olson, Jared D.; Ehrsson, H. Henrik; Ojemann, Jeffrey G.

    2017-01-01

    Replacing the function of a missing or paralyzed limb with a prosthetic device that acts and feels like one’s own limb is a major goal in applied neuroscience. Recent studies in nonhuman primates have shown that motor control and sensory feedback can be achieved by connecting sensors in a robotic arm to electrodes implanted in the brain. However, it remains unknown whether electrical brain stimulation can be used to create a sense of ownership of an artificial limb. In this study on two human subjects, we show that ownership of an artificial hand can be induced via the electrical stimulation of the hand section of the somatosensory (SI) cortex in synchrony with touches applied to a rubber hand. Importantly, the illusion was not elicited when the electrical stimulation was delivered asynchronously or to a portion of the SI cortex representing a body part other than the hand, suggesting that multisensory integration according to basic spatial and temporal congruence rules is the underlying mechanism of the illusion. These findings show that the brain is capable of integrating “natural” visual input and direct cortical-somatosensory stimulation to create the multisensory perception that an artificial limb belongs to one’s own body. Thus, they serve as a proof of concept that electrical brain stimulation can be used to “bypass” the peripheral nervous system to induce multisensory illusions and ownership of artificial body parts, which has important implications for patients who lack peripheral sensory input due to spinal cord or nerve lesions. PMID:27994147

  8. Hypothermia augments non-cholinergic neuronal bronchoconstriction in pithed guinea-pigs.

    PubMed

    Rechtman, M P; King, R G; Boura, A L

    1991-08-16

    Electrical stimulation at C4-C7 in the spinal canal of pithed guinea-pigs injected with atropine, d-tubocurarine and pentolinium caused frequency-dependent bronchoconstriction. Such non-cholinergic responses to electrical stimulation, unlike responses to substance P, were abolished by pretreatment with capsaicin but not by mepyramine or propranolol. Bronchoconstrictor responses to electrical stimulation were inversely related to rectal temperature (between 30-40 degrees C) whereas responses to substance P increased with increasing temperature over the same range. Ouabain (i.v.) augmented responses to electrical stimulation at 35-37 degrees C but depressed those at 30-32 degrees C. Both morphine and the alpha 2-adrenoceptor agonist B-HT920 (i.v.) inhibited non-cholinergic-mediated bronchoconstrictor responses at 30-32 degrees C. These results stress the importance of adequate control of body temperature in this preparation. Lowered body temperature may increase neuronal output of neuropeptides whilst depressing bronchial smooth muscle sensitivity. The data support previous conclusions regarding the role of Na+/K+ activated ATPase in temperature-induced changes in sensitivity to bronchoconstrictor stimuli.

  9. Stimulation of the hydrolytic stage for biogas production from cattle manure in an electrochemical bioreactor.

    PubMed

    Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi

    Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.

  10. Different activation of opercular and posterior cingulate cortex (PCC) in patients with complex regional pain syndrome (CRPS I) compared with healthy controls during perception of electrically induced pain: a functional MRI study.

    PubMed

    Freund, Wolfgang; Wunderlich, Arthur P; Stuber, Gregor; Mayer, Florian; Steffen, Peter; Mentzel, Martin; Weber, Frank; Schmitz, Bernd

    2010-05-01

    Although the etiology of complex regional pain syndrome type 1 (CRPS 1) is still debated, many arguments favor central maladaptive changes in pain processing as an important causative factor. To look for the suspected alterations, 10 patients with CRPS affecting the left hand were explored with functional magnetic resonance imaging during graded electrical painful stimulation of both hands subsequently and compared with healthy participants. Activation of the anterior insula, posterior cingulate cortex (PCC), and caudate nucleus was seen in patients during painful stimulation. Compared with controls, CRPS patients had stronger activation of the PCC during painful stimulation of the symptomatic hand. The comparison of insular/opercular activation between controls and patients with CRPS I during painful stimulation showed stronger (posterior) opercular activation in controls than in patients. Stronger PCC activation during painful stimulation may be interpreted as a correlate of motor inhibition during painful stimuli different from controls. Also, the decreased opercular activation in CRPS patients shows less sensory-discriminative processing of painful stimuli.These results show that changed cerebral pain processing in CRPS patients is less sensory-discriminative but more motor inhibition during painful stimuli. These changes are not limited to the diseased side but show generalized alterations of cerebral pain processing in chronic pain patients.

  11. Clinical follow-up after cessation of chronic electrical neuromodulation in patients with severe coronary artery disease: a prospective randomized controlled study on putative involvement of sympathetic activity.

    PubMed

    Jessurun, G A; DeJongste, M J; Hautvast, R W; Tio, R A; Brouwer, J; van Lelieveld, S; Crijns, H J

    1999-10-01

    The present study assessed the reoccurrence of myocardial ischemia after withholding electrical neurostimulation. After randomization, in the study or withdrawal group, spinal cord stimulation (SCS) was set active during the first 4 weeks, followed by 4 weeks of withholding stimulation. In the control group, SCS was switched off during 4 weeks before the end of the study. The control group had no crossover period. Measurements were done at baseline, then after 4 and 8 weeks. The first periods at 4 weeks of each sequence of both groups were compared. In addition, a comparison of clinical variables was performed between the study group 4 weeks after withholding stimulation and the control group 4 weeks following randomization. A total number of 24 patients with refractory angina and an implanted spinal cord stimulator were included in the study (n = 12) and control group. Angina pectoris complaints, nitroglycerin intake, ischemia, and heart rate variability using 48-hour ambulatory electrocardiographic monitoring were assessed. In addition, neurohormonal status and symptom-limited aerobic capacity were evaluated. There was no increase of anginal complaints or ischemia after withholding stimulation. Neurohormonal levels and aerobic capacity were not altered. We conclude that there is no adverse clinical rebound phenomenon after withholding neurostimulation in patients with refractory angina pectoris.

  12. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation

    PubMed Central

    Chang, Su-Youne; Kimble, Christopher J.; Kim, Inyong; Paek, Seungleal B.; Kressin, Kenneth R.; Boesche, Joshua B.; Whitlock, Sidney V.; Eaker, Diane R.; Kasasbeh, Aimen; Horne, April E.; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.

    2014-01-01

    Object Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS “smart” device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS). Methods To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between −0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of −0.4 V between scans. Results By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine release that was time-locked to stimulation and increased progressively with stimulation frequency. Conclusions Here, the authors report a series of proof-of-principle tests in the rat brain demonstrating MINCS to be a reliable and flexible stimulation device that, when used in conjunction with WINCS, performs wirelessly controlled stimulation concurrent with artifact-free neurochemical recording. These findings suggest that the integration of neurochemical recording with neurostimulation may be a useful first step toward the development of a closed-loop DBS system for human application. PMID:24116724

  13. Effect of deep brain stimulation on different speech subsystems in patients with multiple sclerosis.

    PubMed

    Pützer, Manfred; Barry, William John; Moringlane, Jean Richard

    2007-11-01

    The effect of deep brain stimulation on articulation and phonation subsystems in seven patients with multiple sclerosis (MS) was examined. Production parameters in fast syllable-repetitions were defined and measured, and the phonation quality during vowel productions was analyzed. Speech material was recorded for patients (with and without stimulation) and for a group of healthy control speakers. With stimulation, the precision of glottal and supraglottal articulatory gestures is reduced, whereas phonation has a greater tendency to be hyperfunctional in comparison with the healthy control data. Different effects on the two speech subsystems are induced by electrical stimulation of the thalamus in patients with MS.

  14. Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model

    PubMed Central

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-01-01

    Neural activity can be modulated by applying a polarizing low frequency (≪ 100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5–25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson’s harmonic F-test, with 45/132 stimulated seizures in 4 animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in 3 of 4 animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording. PMID:19602730

  15. The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)

    NASA Astrophysics Data System (ADS)

    Azman, M. F.; Azman, A. W.

    2017-11-01

    Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.

  16. Microscopic magnetic stimulation of neural tissue

    PubMed Central

    Bonmassar, Giorgio; Lee, Seung Woo; Freeman, Daniel K.; Polasek, Miloslav; Fried, Shelley I.; Gale, John T.

    2012-01-01

    Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased performance associated with tissue inflammation. Magnetic stimulation overcomes these limitations but existing devices (that is, transcranial magnetic stimulation) are large, reducing their translation to chronic applications. In addition, existing devices are not effective for deeper, sub-cortical targets. Here we demonstrate that sub-millimeter coils can activate neuronal tissue. Interestingly, the results of both modelling and physiological experiments suggest that different spatial orientations of the coils relative to the neuronal tissue can be used to generate specific neural responses. These results raise the possibility that micro-magnetic stimulation coils, small enough to be implanted within the brain parenchyma, may prove to be an effective alternative to existing stimulation devices. PMID:22735449

  17. Creating a Reinforcement Learning Controller for Functional Electrical Stimulation of a Human Arm*

    PubMed Central

    Thomas, Philip S.; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen

    2010-01-01

    Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of Reinforcement Learning to create a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a two-dimensional arm model and Hill-based muscle dynamics. An actor-critic architecture is used with artificial neural networks for both the actor and the critic. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic’s ability to adapt without supervision in a reasonable number of episodes. PMID:22081795

  18. Topical hyperbaric oxygen and electrical stimulation: exploring potential synergy.

    PubMed

    Edsberg, Laura E; Brogan, Michael S; Jaynes, C David; Fries, Kristin

    2002-11-01

    Treatment of chronic wounds involves interventions ranging from dressings to surgery. Modalities gaining popularity in clinical settings include topical hyperbaric oxygen and electrical stimulation. A prospective, uncontrolled study was conducted to obtain preliminary observations and data about the effects of topical hyperbaric oxygen therapy and topical hyperbaric oxygen used with electrical stimulation on the healing of chronic wounds. All subjects were geriatric residents of long-term care facilities with Stage III or Stage IV pressure ulcers. Topical hyperbaric oxygen was applied daily to the wounds of eight subjects; three also received electrical stimulation. Initial wound size ranged from 87.75 cm2 to 7.04 cm2 with an average size of 30.1 +/- 28.5 (mean +/- sd) cm2. Healing times ranged from 8 to 49 weeks. After 4 weeks of treatment with topical hyperbaric oxygen, wound size decreased an average of 34.4% +/- 22.9%. Incidentally, the wounds of five of the eight subjects decreased more than 20%, for an average of 51.8% +/- 17.9%. No significant differences in healing were observed between patients receiving topical hyperbaric oxygen alone and those receiving topical hyperbaric oxygen/electrical stimulation. Preliminary data indicate that topical hyperbaric oxygen facilitates wound healing and full closure for pressure ulcers in patients with and without diabetes mellitus. A multicenter, prospective, randomized, double-blind controlled study is currently under way.

  19. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    PubMed

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  20. Long-term stimulation by active epiretinal implants in normal and RCD1 dogs

    NASA Astrophysics Data System (ADS)

    Güven, Dilek; Weiland, James D.; Fujii, Gildo; Mech, Brian V.; Mahadevappa, Manjunatha; Greenberg, Robert; Roizenblatt, Roberto; Qiu, Guanting; La Bree, Laurie; Wang, Xiaopeng; Hinton, David; Humayun, Mark S.

    2005-03-01

    An epiretinal prosthesis, consisting of an extraocular microelectronic stimulator and an intraocular electrode array, was implanted in one eye of three blind and three sighted dogs. Three dogs (2 blind, 1 normal) were stimulated for 120 days, and two dogs (both normal) for 60 and 103 days respectively for 8-10 h/day at levels of 0.1 mC cm-2 and 0.05 mC cm-2, with each stimulus level presented to half of the array. One blind dog was kept as an inactive implant control. During the study period, electroretinograms (ERG) and fundus photographs were recorded. At the end of the study period, the dogs were sacrificed and histological and morphometric evaluation was made of the retina. No inflammatory reaction, neovascularization or hemorrhage was observed during the follow-up examinations. ERGs were unchanged. Stimulus levels used were of sufficient amplitude to elicit cortical evoked potentials. Histological evaluation showed no inflammatory infiltrates or changes in retina morphometry related to electrical stimulation when compared to the unstimulated control eye. Morphometric analysis revealed no consistent differences relating to electrical stimulation. In summary, chronic electrical stimulation of the dog retina at up to 0.1 mC cm-2 with an epiretinal prosthesis does not appear to adversely affect the retina. This study is supported by The Fletcher Jones Foundation, National Eye Institute Grants 1R24EY12893 and EY03040, the Whitaker Foundation and Second Sight Medical Products, Inc.

  1. A multi-pad electrode based functional electrical stimulation system for restoration of grasp

    PubMed Central

    2012-01-01

    Background Functional electrical stimulation (FES) applied via transcutaneous electrodes is a common rehabilitation technique for assisting grasp in patients with central nervous system lesions. To improve the stimulation effectiveness of conventional FES, we introduce multi-pad electrodes and a new stimulation paradigm. Methods The new FES system comprises an electrode composed of small pads that can be activated individually. This electrode allows the targeting of motoneurons that activate synergistic muscles and produce a functional movement. The new stimulation paradigm allows asynchronous activation of motoneurons and provides controlled spatial distribution of the electrical charge that is delivered to the motoneurons. We developed an automated technique for the determination of the preferred electrode based on a cost function that considers the required movement of the fingers and the stabilization of the wrist joint. The data used within the cost function come from a sensorized garment that is easy to implement and does not require calibration. The design of the system also includes the possibility for fine-tuning and adaptation with a manually controllable interface. Results The device was tested on three stroke patients. The results show that the multi-pad electrodes provide the desired level of selectivity and can be used for generating a functional grasp. The results also show that the procedure, when performed on a specific user, results in the preferred electrode configuration characteristics for that patient. The findings from this study are of importance for the application of transcutaneous stimulation in the clinical and home environments. PMID:23009589

  2. Motor Cortex Stimulation Regenerative Effects in Peripheral Nerve Injury: An Experimental Rat Model.

    PubMed

    Nicolas, Nicolas; Kobaiter-Maarrawi, Sandra; Georges, Samuel; Abadjian, Gerard; Maarrawi, Joseph

    2018-06-01

    Immediate microsurgical nerve suture remains the gold standard after peripheral nerve injuries. However, functional recovery is delayed, and it is satisfactory in only 2/3 of cases. Peripheral electrical nerve stimulation proximal to the lesion enhances nerve regeneration and muscle reinnervation. This study aims to evaluate the effects of the motor cortex electrical stimulation on peripheral nerve regeneration after injury. Eighty rats underwent right sciatic nerve section, followed by immediate microsurgical epineural sutures. Rats were divided into 4 groups: Group 1 (control, n = 20): no electrical stimulation; group 2 (n = 20): immediate stimulation of the sciatic nerve just proximal to the lesion; Group 3 (n = 20): motor cortex stimulation (MCS) for 15 minutes after nerve section and suture (MCSa); group 4 (n = 20): MCS performed over the course of two weeks after nerve suture (MCSc). Assessment included electrophysiology and motor functional score at day 0 (baseline value before nerve section), and at weeks 4, 8, and 12. Rats were euthanized for histological study at week 12. Our results showed that MCS enhances functional recovery, nerve regeneration, and muscle reinnervation starting week 4 compared with the control group (P < 0.05). The MCS induces higher reinnervation rates even compared with peripheral stimulation, with better results in the MCSa group (P < 0.05), especially in terms of functional recovery. MCS seems to have a beneficial effect after peripheral nerve injury and repair in terms of nerve regeneration and muscle reinnervation, especially when acute mode is used. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    PubMed Central

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Fà, Mauro; Gessa, Gian Luigi

    2005-01-01

    Background Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled. PMID:15865626

  4. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  5. Mechanical design and driving mechanism of an isokinetic functional electrical stimulation-based leg stepping trainer.

    PubMed

    Hamzaid, N A; Fornusek, C; Ruys, A; Davis, G M

    2007-12-01

    The mechanical design of a constant velocity (isokinetic) leg stepping trainer driven by functional electrical stimulation-evoked muscle contractions was the focus of this paper. The system was conceived for training the leg muscles of neurologically-impaired patients. A commercially available slider crank mechanism for elliptical stepping exercise was adapted to a motorized isokinetic driving mechanism. The exercise system permits constant-velocity pedalling at cadences of 1-60 rev x min(-1). The variable-velocity feature allows low pedalling forces for individuals with very weak leg muscles, yet provides resistance to higher pedalling effort in stronger patients. In the future, the system will be integrated with a computer-controlled neuromuscular stimulator and a feedback control unit to monitor training responses of spinal cord-injured, stroke and head injury patients.

  6. Dysregulation of the Descending Pain System in Temporomandibular Disorders Revealed by Low-Frequency Sensory Transcutaneous Electrical Nerve Stimulation: A Pupillometric Study

    PubMed Central

    Monaco, Annalisa; Cattaneo, Ruggero; Mesin, Luca; Ortu, Eleonora; Giannoni, Mario; Pietropaoli, Davide

    2015-01-01

    Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the descending pain system may be involved in TMD. PMID:25905862

  7. Recovery of supraspinal control of leg movement in a chronic complete flaccid paraplegic man after continuous low-frequency pelvic nerve stimulation and FES-assisted training

    PubMed Central

    Possover, Marc; Forman, Axel

    2017-01-01

    Introduction: More than 30 years ago, functional electrical stimulation (FES) was developed as an orthotic system to be used for rehabilitation for SCI patients. In the present case report, FES-assisted training was combined with continuous low-frequency stimulation of the pelvic somatic nerves in a SCI patient. Case Presentation: We report on unexpected findings in a 41-year-old man with chronic complete flaccid paraplegia, since he was 18 years old, who underwent spinal stem cell therapy and a laparoscopic implantation of neuroprosthesis (LION procedure) in the pelvic lumbosacral nerves. The patient had complete flaccid sensomotoric paraplegia T12 as a result of a motor vehicle accident in 1998. In June 2011, he underwent a laparoscopic implantation of stimulation electrodes to the sciatic and femoral nerves for continuous low-frequency electrical stimulation and functional electrical stimulation of the pelvic nerves. Neither intraoperative direct stimulation of the pelvic nerves nor postoperative stimulation induced any sensation or muscle reactions. After 2 years of passive continuous low-frequency stimulation, the patient developed progressive recovery of electrically assisted voluntary motor functions below the lesions: he was first able to extend the right knee and 6 months later, the left. He is currently capable of voluntary weight-bearing standing and walking (with voluntary knee movements) about 50 m with open cuff crutches and drop foot braces. Discussion: Our findings suggest that continuous low-frequency pelvic nerve stimulation in combination with FES-assisted training might induce changes that affect both the upper and the lower motor neuron and allow supra- and infra-spinal inputs to engage residual spinal and peripheral pathways. PMID:28503316

  8. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  9. Inter-electrode tissue resistance is not affected by tissue oedema when electrically stimulating the lower limb of sepsis patients.

    PubMed

    Durfee, William K; Young, Joseph R; Ginz, Hans F

    2014-05-01

    ICU patients typically are given large amounts of fluid and often develop oedema. The purpose of this study was to evaluate whether the oedema would change inter-electrode resistance and, thus, require a different approach to using non-invasive electrical stimulation of nerves to assess muscle force. Inter-electrode tissue resistance in the lower leg was measured by applying a 300 µs constant current pulse and measuring the current through and voltage across the stimulating electrodes. The protocol was administered to nine ICU patients with oedema, eight surgical patients without oedema and eight healthy controls. No significant difference in inter-electrode resistance was found between the three groups. For all groups, resistance decreased as stimulation current increased. In conclusion, inter-electrode resistance in ICU patients with severe oedema is the same as the resistance in regular surgical patients and healthy controls. This means that non-invasive nerve stimulation devices do not need to be designed to accommodate different resistances when used with oedema patients; however, surface stimulation does require higher current levels with oedema patients because of the increased distance between the skin surface and the targeted nerve or muscle.

  10. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.

    PubMed

    Hart, D J; Taylor, P N; Chappell, P H; Wood, D E

    2006-06-01

    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.

  11. Electrostimulation of rat callus cells and human lymphocytes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aro, H.; Eerola, E.; Aho, A.J.

    1984-01-01

    Asymmetrical pulsing low voltage current was supplied via electrodes to cultured rat fracture callus cells and human peripheral blood lymphocytes. The (/sup 3/H)thymidine incorporation of the callus cells and 5-(/sup 125/I)iodo-2'-deoxyuridine incorporation of the lymphocytes were determined. The growth pattern of callus cells (estimated by cellular density) did not respond to electrical stimulation. However, the uptake of (/sup 3/H)thymidine was increased at the early phase of cell proliferation and inhibited at later phases of proliferation. The (/sup 3/H)thymidine uptake of confluent callus cell cultures did not respond to electrical stimulation. Lymphocytes reacted in a similar way; stimulated cells took upmore » more DNA precursor than control cells at the early phase of stimulation. During cell division, induced by the mitogens phytohemagglutinin and Concanavalin-A, the uptake of DNA precursor by stimulated cells was constantly inhibited. The results suggest that electrical stimuli affect the uptake mechanisms of cell membranes. The duality of the effect seems to be dependent on the cell cycle.« less

  12. Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration

    PubMed Central

    2013-01-01

    Background Our previous model of the non-isometric muscle fatigue that occurs during repetitive functional electrical stimulation included models of force, motion, and fatigue and accounted for applied load but not stimulation pulse duration. Our objectives were to: 1) further develop, 2) validate, and 3) present outcome measures for a non-isometric fatigue model that can predict the effect of a range of pulse durations on muscle fatigue. Methods A computer-controlled stimulator sent electrical pulses to electrodes on the thighs of 25 able-bodied human subjects. Isometric and non-isometric non-fatiguing and fatiguing knee torques and/or angles were measured. Pulse duration (170–600 μs) was the independent variable. Measurements were divided into parameter identification and model validation subsets. Results The fatigue model was simplified by removing two of three non-isometric parameters. The third remained a function of other model parameters. Between 66% and 77% of the variability in the angle measurements was explained by the new model. Conclusion Muscle fatigue in response to different stimulation pulse durations can be predicted during non-isometric repetitive contractions. PMID:23374142

  13. Duplex communicable implanted antenna for magnetic direct feeding method: Functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Kato, Kentaro; Matsuki, Hidetoshi; Sato, Fumihiro; Satoh, Tadakuni; Handa, Nobuyasu

    2009-04-01

    Functional electrical stimulation (FES) is the therapy used for the rehabilitation of lost movement function by applying electrical stimulation (ES) to paralyzed extremities. To realize ES, we adapted the implanted direct feeding method (DFM). In this method, small implanted stimulators are placed under the skin at a depth of 10-20 mm and stimulus energy and signals for controlling devices are applied to them by a mounted system using magnetic coupling. This method has the merits of having no percutaneous points and high-precision stimulation. However, since the mounted system and implanted elements are separated, it is necessary to add feedback information from inside the body to confirm the system operation for safety therapy or to rehabilitate motor function smoothly. Satisfying both restrictions, we propose the magnetic connective dual resonance (MCDR) antenna, which has two resonance circuits. Adding the LC serial circuit to the LC parallel circuit gives the sending function. In this paper, we report the principle of the MCDR antenna and verify its duplex communication ability through communication experiment. This antenna enables DFM of FES to rehabilitate more complex movements.

  14. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial.

    PubMed

    Kim, Tae-Woo; Lee, Byoung-Hee

    2016-09-01

    [Purpose] Evaluating the effect of brain-computer interface (BCI)-based functional electrical stimulation (FES) training on brain activity in children with spastic cerebral palsy (CP) was the aim of this study. [Subjects and Methods] Subjects were randomized into a BCI-FES group (n=9) and a functional electrical stimulation (FES) control group (n=9). Subjects in the BCI-FES group received wrist and hand extension training with FES for 30 minutes per day, 5 times per week for 6 weeks under the BCI-based program. The FES group received wrist and hand extension training with FES for the same amount of time. Sensorimotor rhythms (SMR) and middle beta waves (M-beta) were measured in frontopolar regions 1 and 2 (Fp1, Fp2) to determine the effects of BCI-FES training. [Results] Significant improvements in the SMR and M-beta of Fp1 and Fp2 were seen in the BCI-FES group. In contrast, significant improvement was only seen in the SMR and M-beta of Fp2 in the control group. [Conclusion] The results of the present study suggest that BCI-controlled FES training may be helpful in improving brain activity in patients with cerebral palsy and may be applied as effectively as traditional FES training.

  15. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.

    PubMed

    Fonoff, Erich Talamoni; Dale, Camila Squarzoni; Pagano, Rosana Lima; Paccola, Carina Cicconi; Ballester, Gerson; Teixeira, Manoel Jacobsen; Giorgi, Renata

    2009-01-03

    Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids.

  16. Three parameters optimizing closed-loop control in sequential segmental neuromuscular stimulation.

    PubMed

    Zonnevijlle, E D; Somia, N N; Perez Abadia, G; Stremel, R W; Maldonado, C J; Werker, P M; Kon, M; Barker, J H

    1999-05-01

    In conventional dynamic myoplasties, the force generation is poorly controlled. This causes unnecessary fatigue of the transposed/transplanted electrically stimulated muscles and causes damage to the involved tissues. We introduced sequential segmental neuromuscular stimulation (SSNS) to reduce muscle fatigue by allowing part of the muscle to rest periodically while the other parts work. Despite this improvement, we hypothesize that fatigue could be further reduced in some applications of dynamic myoplasty if the muscles were made to contract according to need. The first necessary step is to gain appropriate control over the contractile activity of the dynamic myoplasty. Therefore, closed-loop control was tested on a sequentially stimulated neosphincter to strive for the best possible control over the amount of generated pressure. A selection of parameters was validated for optimizing control. We concluded that the frequency of corrections, the threshold for corrections, and the transition time are meaningful parameters in the controlling algorithm of the closed-loop control in a sequentially stimulated myoplasty.

  17. A potential and novel therapy for obesity: "appendix" electrical stimulation in dogs.

    PubMed

    Lei, Yong; Chen, Jiande D Z

    2011-03-01

    Intestinal electrical stimulation (IES) has been introduced as a potential therapy for obesity. However, it is unknown whether the effects of IES on gastrointestinal motility and food intake are location-specific. The aim of this study was to assess the effects of "appendix" (cecum in dog) electrical stimulation (AES) on gastric tone, gastric emptying, and food intake in dogs. Twelve healthy dogs were used in three experiments. In experiments 1 and 2, gastric tone and food intake were studied in six dogs implanted with a gastric cannula and one pair of stimulation electrodes in the "appendix." Experiment 3 was performed to study gastric emptying in six dogs with a duodenal cannula and one pair of stimulation electrodes in the "appendix." (1) AES resulted in proximal gastric distention, with gastric volume increased from 114.9 ± 10.7 mL at baseline to 301.7 ± 37.1 mL during AES (p = 0.001), and the effect was completely blocked by a nitric oxide synthase inhibitor. (2) Gastric emptying was delayed at 90 min from 69.8 ± 9.5% in the control session to 15.2 ± 3.6% in the AES session (p = 0.002). 3) AES reduced food intake (average daily intake over a 1-week period) by 55.4% (550.4 ± 17.6 g at control vs. 245.7 ± 17.1 g with AES, p < 0.001). AES reduces gastric tone via the nitrergic pathway, delays gastric emptying, and inhibits food intake in healthy dogs. These data suggest the therapeutic potential of AES for obesity. Additionally, AES is technically more feasible than electrical stimulation of the stomach or duodenum because a stimulator with electrodes may be placed into the appendix via colonoscopy.

  18. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  19. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  20. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  1. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  2. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transcutaneous electrical nerve stimulator for... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...

  3. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transcutaneous electrical nerve stimulator for...

  4. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transcutaneous electrical nerve stimulator for...

  5. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transcutaneous electrical nerve stimulator for...

  6. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transcutaneous electrical nerve stimulator for...

  7. Transcutaneous Electrical Nerve Stimulation (TENS) A Possible Aid for Pain Relief in Developing Countries?

    PubMed Central

    Tashani, O; Johnson, MI

    2009-01-01

    Transcutaneous electrical nerve stimulation (TENS) refers to the delivery of electrical currents through the skin to activate peripheral nerves. The technique is widely used in developed countries to relieve a wide range of acute and chronic pain conditions, including pain resulting from cancer and its treatment. There are many systematic reviews on TENS although evidence is often inconclusive because of shortcomings in randomised control trials methodology. In this overview the basic science behind TENS will be discussed, the evidence of its effectiveness in specific clinical conditions analysed and a case for its use in pain management in developing countries will be made. PMID:21483510

  8. A family of neuromuscular stimulators with optical transcutaneous control.

    PubMed

    Jarvis, J C; Salmons, S

    1991-01-01

    A family of miniature implantable neuromuscular stimulators has been developed using surface-mounted Philips 4000-series integrated circuits. The electronic components are mounted by hand on printed circuits (platinum/gold on alumina) and the electrical connections are made by reflow soldering. The plastic integrated-circuit packages, ceramic resistors and metal interconnections are protected from the body fluids by a coating of biocompatible silicone rubber. This simple technology provides reliable function for at least 4 months under implanted conditions. The circuits have in common a single lithium cell power-supply (3.2 V) and an optical sensor which can be used to detect light flashes through the skin after the device has been implanted. This information channel may be used to switch the output of a device on or off, or to cycle through a series of pre-set programs. The devices are currently finding application in studies which provide an experimental basis for the clinical exploitation of electrically stimulated skeletal muscle in cardiac assistance, sphincter reconstruction or functional electrical stimulation of paralysed limbs.

  9. The effect of SIRT1 protein knock down on PGC-1α acetylation during skeletal muscle contraction.

    PubMed

    Park, Dae Ryoung; Kim, Jeong Seok; Kim, Chang Keun

    2014-03-01

    The purpose of this study was to investigate the effect of Sirtuin 1 (SIRT1) and General control nonderepressible 5 (GCN5) knock down on peroxisome proliferator- activated receptor gamma coactivator 1-alpha (PGC-1α) deacetylation during electrical stimulated skeletal muscle contraction. Skeletal muscle primary cell were isolated from C57BL/6 mice gastrocnemius and transfected lentiviral SIRT1 and GCN5 shRNA. Knock downed muscle cell were stimulated by electrical stimulation (1Hz, 3min) and collected for PGC-1α deceatylation assays. Immunoprecipitation performed for PGC-1α deacetylation, acetyl-lysine level was measured. Our resulted showed SIRT1 knock down not influenced to PGC-1α deacetylation during electrical stimulation induced muscle contraction while GCN5 knock down decreased PGC-1α deacetylation significantly (p<0.05). This study can be concluded that GCN5 is a critical factor for muscle contraction induced PGC-1α deacetylation.

  10. Effects of electrical stimulation of the rat vestibular labyrinth on c-Fos expression in the hippocampus.

    PubMed

    Hitier, Martin; Sato, Go; Zhang, Yan-Feng; Besnard, Stephane; Smith, Paul F

    2018-06-11

    Several studies have demonstrated that electrical activation of the peripheral vestibular system can evoke field potential, multi-unit neuronal activity and acetylcholine release in the hippocampus (HPC). However, no study to date has employed the immediate early gene protein, c-Fos, to investigate the distribution of activation of cells in the HPC following electrical stimulation of the vestibular system. We found that vestibular stimulation increased the number of animals expressing c-Fos in the dorsal HPC compared to sham control rats (P ≤ 0.02), but not in the ventral HPC. c-Fos was also expressed in an increased number of animals in the dorsal dentate gyrus (DG) compared to sham control rats (P ≤ 0.0001), and to a lesser extent in the ventral DG (P ≤ 0.006). The results of this study show that activation of the vestibular system results in a differential increase in the expression of c-Fos across different regions of the HPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Sham transcranial electrical stimulation and its effects on corticospinal excitability: a systematic review and meta-analysis.

    PubMed

    Dissanayaka, Thusharika D; Zoghi, Maryam; Farrell, Michael; Egan, Gary F; Jaberzadeh, Shapour

    2018-02-23

    Sham stimulation is used in randomized controlled trials (RCTs) to assess the efficacy of active stimulation and placebo effects. It should mimic the characteristics of active stimulation to achieve blinding integrity. The present study was a systematic review and meta-analysis of the published literature to identify the effects of sham transcranial electrical stimulation (tES) - including anodal and cathodal transcranial direct current stimulation (a-tDCS, c-tDCS), transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS) and transcranial pulsed current stimulation (tPCS) - on corticospinal excitability (CSE), compared to baseline in healthy individuals. Electronic databases - PubMed, CINAHL, Scopus, Science Direct and MEDLINE (Ovid) - were searched for RCTs of tES from 1990 to March 2017. Thirty RCTs were identified. Using a random-effects model, meta-analysis of a-tDCS, c-tDCS, tACS, tRNS and tPCS studies showed statistically non-significant pre-post effects of sham interventions on CSE. This review found evidence for statically non-significant effects of sham tES on CSE.

  12. A Systematic Review of Electric-Acoustic Stimulation

    PubMed Central

    Ching, Teresa Y. C.; Cowan, Robert

    2013-01-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259

  13. Dynamic graciloplasty for urinary incontinence: the potential for sequential closed-loop stimulation.

    PubMed

    Zonnevijlle, Erik D H; Perez-Abadia, Gustavo; Stremel, Richard W; Maldonado, Claudio J; Kon, Moshe; Barker, John H

    2003-11-01

    Muscle tissue transplantation applied to regain or dynamically assist contractile functions is known as 'dynamic myoplasty'. Success rates of clinical applications are unpredictable, because of lack of endurance, ischemic lesions, abundant scar formation and inadequate performance of tasks due to lack of refined control. Electrical stimulation is used to control dynamic myoplasties and should be improved to reduce some of these drawbacks. Sequential segmental neuromuscular stimulation improves the endurance and closed-loop control offers refinement in rate of contraction of the muscle, while function-controlling stimulator algorithms present the possibility of performing more complex tasks. An acute feasibility study was performed in anaesthetised dogs combining these techniques. Electrically stimulated gracilis-based neo-sphincters were compared to native sphincters with regard to their ability to maintain continence. Measurements were made during fast bladder pressure changes, static high bladder pressure and slow filling of the bladder, mimicking among others posture changes, lifting heavy objects and diuresis. In general, neo-sphincter and native sphincter performance showed no significant difference during these measurements. However, during high bladder pressures reaching 40 cm H(2)O the neo-sphincters maintained positive pressure gradients, whereas most native sphincters relaxed. During slow filling of the bladder the neo-sphincters maintained a controlled positive pressure gradient for a prolonged time without any form of training. Furthermore, the accuracy of these maintained pressure gradients proved to be within the limits set up by the native sphincters. Refinements using more complicated self-learning function-controlling algorithms proved to be effective also and are briefly discussed. In conclusion, a combination of sequential stimulation, closed-loop control and function-controlling algorithms proved feasible in this dynamic graciloplasty-model. Neo-sphincters were created, which would probably provide an acceptable performance, when the stimulation system could be implanted and further tested. Sizing this technique down to implantable proportions seems to be justified and will enable exploration of the possible benefits.

  14. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton

    PubMed Central

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization. PMID:29311798

  15. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.

    PubMed

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  16. A neural interface provides long-term stable natural touch perception.

    PubMed

    Tan, Daniel W; Schiefer, Matthew A; Keith, Michael W; Anderson, James Robert; Tyler, Joyce; Tyler, Dustin J

    2014-10-08

    Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted peripheral nerve interfaces in two human subjects with upper limb amputation provided stable, natural touch sensation in their hands for more than 1 year. Electrical stimulation using implanted peripheral nerve cuff electrodes that did not penetrate the nerve produced touch perceptions at many locations on the phantom hand with repeatable, stable responses in the two subjects for 16 and 24 months. Patterned stimulation intensity produced a sensation that the subjects described as natural and without "tingling," or paresthesia. Different patterns produced different types of sensory perception at the same location on the phantom hand. The two subjects reported tactile perceptions they described as natural tapping, constant pressure, light moving touch, and vibration. Changing average stimulation intensity controlled the size of the percept area; changing stimulation frequency controlled sensation strength. Artificial touch sensation improved the subjects' ability to control grasping strength of the prosthesis and enabled them to better manipulate delicate objects. Thus, electrical stimulation through peripheral nerve electrodes produced long-term sensory restoration after limb loss. Copyright © 2014, American Association for the Advancement of Science.

  17. A neural interface provides long-term stable natural touch perception

    PubMed Central

    Tan, Daniel W.; Schiefer, Matthew A.; Keith, Michael W.; Anderson, James Robert; Tyler, Joyce; Tyler, Dustin J.

    2017-01-01

    Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted peripheral nerve interfaces in two human subjects with upper limb amputation provided stable, natural touch sensation in their hands for more than 1 year. Electrical stimulation using implanted peripheral nerve cuff electrodes that did not penetrate the nerve produced touch perceptions at many locations on the phantom hand with repeatable, stable responses in the two subjects for 16 and 24 months. Patterned stimulation intensity produced a sensation that the subjects described as natural and without “tingling,” or paresthesia. Different patterns produced different types of sensory perception at the same location on the phantom hand. The two subjects reported tactile perceptions they described as natural tapping, constant pressure, light moving touch, and vibration. Changing average stimulation intensity controlled the size of the percept area; changing stimulation frequency controlled sensation strength. Artificial touch sensation improved the subjects’ ability to control grasping strength of the prosthesis and enabled them to better manipulate delicate objects. Thus, electrical stimulation through peripheral nerve electrodes produced long-term sensory restoration after limb loss. PMID:25298320

  18. Towards an ankle neuroprosthesis for hybrid robotics: Concepts and current sources for functional electrical stimulation.

    PubMed

    Casco, S; Fuster, I; Galeano, R; Moreno, J C; Pons, J L; Brunetti, F

    2017-07-01

    Hybrid rehabilitation robotics combine neuro-prosthetic devices (close-loop functional electrical stimulation systems) and traditional robotic structures and actuators to explore better therapies and promote a more efficient motor function recovery or compensation. Although hybrid robotics and ankle neuroprostheses (NPs) have been widely developed over the last years, there are just few studies on the use of NPs to electrically control both ankle flexion and extension to promote ankle recovery and improved gait patterns in paretic limbs. The aim of this work is to develop an ankle NP specifically designed to work in the field of hybrid robotics. This article presents early steps towards this goal and makes a brief review about motor NPs and Functional Electrical Stimulation (FES) principles and most common devices used to aid the ankle functioning during the gait cycle. It also shows a current sources analysis done in this framework, in order to choose the best one for this intended application.

  19. Combination of Foot Stimulation and Tramadol Treatment Reverses Irritation Induced Bladder Overactivity in Cats

    PubMed Central

    Mally, Abhijith D.; Zhang, Fan; Matsuta, Yosuke; Shen, Bing; Wang, Jicheng; Roppolo, James R.; de Groat, William C.; Tai, Changfeng

    2013-01-01

    Purpose We determined whether transcutaneous electrical foot stimulation combined with a low dose of tramadol (Sigma-Aldrich®) could completely suppress bladder overactivity. Materials and Methods Repeat cystometrograms were performed in 18 α-chloralose anesthetized cats by infusing the bladder with saline or 0.25% acetic acid. Transcutaneous electrical stimulation (5 Hz) of the cat hind foot at 2 to 4 times the threshold intensity needed to induce observable toe movement was applied to suppress acetic acid induced bladder overactivity. Tramadol (1 to 3 mg/kg intravenously) was administered to enhance foot inhibition. Results Acetic acid irritated the bladder, induced bladder overactivity and significantly decreased bladder capacity to a mean ± SE of 26% ± 5% of saline control capacity (p <0.01). Without tramadol, foot stimulation at 2 and 4 threshold intensity applied during acetic acid cystometrograms significantly increased bladder capacity to a mean of 47% ± 5% and 62% ± 6% of saline control capacity, respectively (p <0.05). Without foot stimulation, tramadol (1 mg/kg) only slightly changed bladder capacity to a mean of 39% ± 2% of saline control capacity (p >0.05), while 3 mg/kg significantly increased capacity to 85% ± 14% that of control (p <0.05). However, 1 mg/kg tramadol combined with foot stimulation increased bladder capacity to a mean of 71% ± 18% (2 threshold intensity) and 84% ± 14% (4 threshold intensity), respectively, which did not significantly differ from saline control capacity. In addition, long lasting (greater than 1.5 to 2 hours) post-stimulation inhibition was induced by foot stimulation combined with 3 mg/kg tramadol treatment. Conclusions This study suggests a new treatment strategy for overactive bladder by combining foot stimulation with a low dose of tramadol, which is noninvasive and has potentially high efficacy and fewer adverse effects. PMID:23088991

  20. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    NASA Astrophysics Data System (ADS)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  1. VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE

    PubMed Central

    Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A.; Redl, Heinz; Tracey, Kevin J.

    2010-01-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre–electrical vagus nerve stimulation = 1033 ± 210 s versus post–electrical vagus nerve stimulation = 585 ± 111 s; P < 0.05) and total blood loss (pre–electrical vagus nerve stimulation = 48.4 ± 6.8 mL versus post–electrical vagus nerve stimulation = 26.3 ± 6.7 mL; P < 0.05). Reduced bleeding time after vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity. PMID:19953009

  2. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  3. Gait training assisted by multi-channel functional electrical stimulation early after stroke: study protocol for a randomized controlled trial.

    PubMed

    van Bloemendaal, Maijke; Bus, Sicco A; de Boer, Charlotte E; Nollet, Frans; Geurts, Alexander C H; Beelen, Anita

    2016-10-01

    Many stroke survivors suffer from paresis of lower limb muscles, resulting in compensatory gait patterns characterised by asymmetries in spatial and temporal parameters and reduced walking capacity. Functional electrical stimulation has been used to improve walking capacity, but evidence is mostly limited to the orthotic effects of peroneal functional electrical stimulation in the chronic phase after stroke. The aim of this study is to investigate the therapeutic effects of up to 10 weeks of multi-channel functional electrical stimulation (MFES)-assisted gait training on the restoration of spatiotemporal gait symmetry and walking capacity in subacute stroke patients. In a proof-of-principle study with a randomised controlled design, 40 adult patients with walking deficits who are admitted for inpatient rehabilitation within 31 days since the onset of stroke are randomised to either MFES-assisted gait training or conventional gait training. Gait training is delivered in 30-minute sessions each workday for up to 10 weeks. The step length symmetry ratio is the primary outcome. Blinded assessors conduct outcome assessments at baseline, every 2 weeks during the intervention period, immediately post intervention and at 3-month follow-up. This study aims to provide preliminary evidence for the feasibility and effectiveness of MFES-assisted gait rehabilitation early after stroke. Results will inform the design of a larger multi-centre trial. This trial is registered at the Netherlands Trial Register (number NTR4762 , registered 28 August 2014).

  4. Effectiveness of transcutaneous electrical nerve stimulation and interferential current in primary dysmenorrhea.

    PubMed

    Tugay, Nazan; Akbayrak, Türkan; Demirtürk, Funda; Karakaya, Ilkim Citak; Kocaacar, Ozge; Tugay, Umut; Karakaya, Mehmet Gürhan; Demirtürk, Fazli

    2007-01-01

    To compare the effectiveness of transcutaneous electrical nerve stimulation and interferential current in primary dysmenorrhea. A prospective, randomized, and controlled study. Hacettepe University School of Physical Therapy and Rehabilitation. Thirty-four volunteer subjects with primary dysmenorrhea (mean age: 21.35 +/- 1.70 years) were included. Statistical analyses were performed in 32 subjects who completed all measures. Fifteen subjects received interferential current application for 20 minutes and 17 subjects received transcutaneous electrical nerve stimulation for 20 minutes when they were experiencing dysmenorrhea. Physical characteristics, years since menarche, length of menstrual cycle (days), and duration of menstruation (days) were recorded. Visual analog scale ( VAS) intensities of menstrual pain, referred lower limb pain, and low back pain were recorded before treatment, and immediately, 8 hours, and 24 hours after treatment. Intensities of the evaluated parameters decreased beginning from just after the applications in both groups (P<0.05). Intensity of referring low back pain in first three measurement times was different between the groups (P<0.05), but this difference is thought to be due to the baseline values of the groups. So, it can be said that no superiority existed between the methods (P>0.05). Both transcutaneous electrical nerve stimulation and interferential current appear to be effective in primary dysmenorrhea. As they are free from the potentially adverse effects of analgesics, and no adverse effects are reported in the literature nor observed in this study, a clinical trial of their effectiveness in comparison with untreated and placebo-treated control groups is warranted.

  5. Does electrical stimulation reduce spasticity after stroke? A randomized controlled study.

    PubMed

    Bakhtiary, Amir H; Fatemy, Elham

    2008-05-01

    To investigate the therapeutic effect of electrical stimulation on plantarflexor spasticity in stroke patients. A randomized controlled clinical trial study. Rehabilitation clinic of Semnan University of Medical Sciences. Forty stroke patients (aged from 42 to 65 years) with ankle plantarflexor spasticity. Fifteen minutes of inhibitory Bobath techniques were applied to one experimental group and a combination of 9 minutes of electrical stimulation on the dorsiflexor muscles and inhibitory Bobath techniques was applied to another group for 20 sessions daily. Passive ankle joint dorsiflexion range of motion, dorsiflexion strength test, plantarflexor muscle tone by Modified Ashworth Scale and soleus muscle H-reflex. The mean change of passive ankle joint dorsiflexion in the combination therapy group was 11.4 (SD 4.79) degrees versus 6.1 (SD 3.09) degrees, which was significantly higher (P = 0.001). The mean change of plantarflexor muscle tonicity measured by the Modified Ashworth Scale in the combination therapy group was -1.6 (SD 0.5) versus -1.1 (SD 0.31) in the Bobath group (P = 0.001). Dorsiflexor muscle strength was also increased significantly (P = 0.04) in the combination therapy group (0.7 +/- 0.37) compared with the Bobath group (0.4 +/- 0.23). However, no significant change in the amplitude of H-reflex was found between combination therapy (-0.41 +/- 0.29) and Bobath (-0.3 +/- 0.28) groups. Therapy combining Bobath inhibitory technique and electrical stimulation may help to reduce spasticity effectively in stroke patients.

  6. Surmounting retraining limits in musicians' dystonia by transcranial stimulation.

    PubMed

    Furuya, Shinichi; Nitsche, Michael A; Paulus, Walter; Altenmüller, Eckart

    2014-05-01

    Abnormal cortical excitability is evident in various movement disorders that compromise fine motor control. Here we tested whether skilled finger movements can be restored in musicians with focal hand dystonia through behavioral training assisted by transcranial direct current stimulation to the motor cortex of both hemispheres. The bilateral motor cortices of 20 pianists (10 with focal dystonia, 10 healthy controls) were electrically stimulated noninvasively during bimanual mirrored finger movements. We found improvement in the rhythmic accuracy of sequential finger movements with the affected hand during and after cathodal stimulation over the affected cortex and simultaneous anodal stimulation over the unaffected cortex. The improvement was retained 4 days after intervention. Neither a stimulation with the reversed montage of electrodes nor sham stimulation yielded any improvement. Furthermore, the amount of improvement was positively correlated with the severity of the symptoms. Bihemispheric stimulation without concurrent motor training failed to improve fine motor control, underlining the importance of combined retraining and stimulation for restoring the dystonic symptoms. For the healthy pianists, none of the stimulation protocols enhanced movement accuracy. These results suggest a therapeutic potential of behavioral training assisted by bihemispheric, noninvasive brain stimulation in restoring fine motor control in focal dystonia. © 2014 American Neurological Association.

  7. Influence of patterned electrical neuromuscular stimulation on quadriceps activation in individuals with knee joint injury.

    PubMed

    Glaviano, Neal R; Langston, William T; Hart, Joseph M; Saliba, Susan

    2014-12-01

    Neuromuscular Electrical Stimulation is a common intervention to address muscle weakness, however presents with many limitations such as fatigue, muscle damage, and patient discomfort that may influence its effectiveness. One novel form of electrical stimulation purported to improve neuromuscular re-education is Patterned Electrical Neuromuscular Stimulation (PENS), which is proposed to mimic muscle-firing patterns of healthy individuals. PENS provides patterned stimulating to the agonist muscle, antagonist muscle and then agonist muscle again in an effort to replicate firing patterns. The purpose of this study was to determine the effect of a single PENS treatment on knee extension torque and quadriceps activation in individuals with quadriceps inhibition. 18 subjects (10 males and 8 females: 24.2±3.4 years, 175.3±11.8cm, 81.8±12.4kg) with a history of knee injury/pain participated in this double-blinded randomized controlled laboratory trial. Participants demonstrated quadriceps inhibition with a central activation ratio of ≤90%. Maximal voluntary isometric contraction of the quadriceps and central activation ratio were measured before and after treatment. The treatment intervention was a 15-minute patterned electrical stimulation applied to the quadriceps and hamstring muscles with a strong motor contraction or a sham group, who received an identical set up as the PENS group, but received a 1mA subsensory stimulation. A 2×2 (group × time) ANCOVA was used to determine differences in maximal voluntary isometric contraction and central activation ratio between groups. The maximal voluntary isometric contraction was selected as a covariate due to baseline differences. There were no differences in change scores between pre- and post-intervention for maximal voluntary isometric contraction: (PENS: 0.09±0.32Nm/kg and Sham 0.15±0.18Nm/kg, p=0.713), or central activation ratio:(PENS: -1.22±6.06 and Sham: 1.48±3.7, p=0.270). A single Patterned Electrical Neuromuscular Stimulation treatment did not alter quadriceps central activation ratio or maximal voluntary isometric contraction. Unlike other types of muscle stimulation, PENS did not result in a reduction of quadriceps torque. Level III.

  8. Real time imaging of peripheral nerve vasculature using optical coherence angiography

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srikanth; Kumsa, Doe; Takmakov, Pavel; Welle, Cristin G.; Hammer, Daniel X.

    2016-03-01

    The peripheral nervous system (PNS) carries bidirectional information between the central nervous system and distal organs. PNS stimulation has been widely used in medical devices for therapeutic indications, such as bladder control and seizure cessation. Investigational uses of PNS stimulation include providing sensory feedback for improved control of prosthetic limbs. While nerve safety has been well documented for stimulation parameters used in marketed devices, novel PNS stimulation devices may require alternative stimulation paradigms to achieve maximum therapeutic benefit. Improved testing paradigms to assess the safety of stimulation will expedite the development process for novel PNS stimulation devices. The objective of this research is to assess peripheral nerve vascular changes in real-time with optical coherence angiography (OCA). A 1300-nm OCA system was used to image vasculature changes in the rat sciatic nerve in the region around a surface contacting single electrode. Nerves and vasculature were imaged without stimulation for 180 minutes to quantify resting blood vessel diameter. Walking track analysis was used to assess motor function before and 6 days following experiments. There was no significant change in vessel diameter between baseline and other time points in all animals. Motor function tests indicated the experiments did not impair functionality. We also evaluated the capabilities to image the nerve during electrical stimulation in a pilot study. Combining OCA with established nerve assessment methods can be used to study the effects of electrical stimulation safety on neural and vascular tissue in the periphery.

  9. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  10. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  11. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  12. Application of the Actor-Critic Architecture to Functional Electrical Stimulation Control of a Human Arm

    PubMed Central

    Thomas, Philip; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen

    2010-01-01

    Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of the actor-critic architecture, with neural networks for the both the actor and the critic, as a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a planar arm model and Hill-based muscle dynamics. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic’s ability to adapt without supervision in a reasonable number of episodes. Finally, we devise methods for achieving both rapid learning and long-term stability. PMID:20689654

  13. Application of the Actor-Critic Architecture to Functional Electrical Stimulation Control of a Human Arm.

    PubMed

    Thomas, Philip; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen

    2009-01-01

    Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of the actor-critic architecture, with neural networks for the both the actor and the critic, as a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a planar arm model and Hill-based muscle dynamics. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic's ability to adapt without supervision in a reasonable number of episodes. Finally, we devise methods for achieving both rapid learning and long-term stability.

  14. A patient-controlled functional electrical stimulation system for arm weight relief.

    PubMed

    Klauer, C; Ferrante, S; Ambrosini, E; Shiri, U; Dähne, F; Schmehl, I; Pedrocchi, A; Schauer, T

    2016-11-01

    A patient-driven control strategy for Functional Electrical Stimulation (FES), which amplifies volitionally-initiated shoulder abductions, is proposed to improve stroke patients' rehabilitation. Based on the measured abduction angle, a FES-induced muscle recruitment is generated that yields a pre-specified percentage of this angle - yielding arm weight relief. To guarantee the correct recruitment also under fatigue and uncertain muscle activation we employ feedback control of the recruitment level determined by filtering the FES-evoked electromyogram. Filter parameters are user-optimized to obtain a linear relation between filter output and angle with a good signal-to-noise ratio. The auto-tuned recruitment controller (RC) was tested on five healthy subjects and compared to direct stimulation (DS) while muscle fatigue progressively occurred. Results showed a more linear relation between recruitment level and angle than between non-controlled stimulation intensity and angle (R 2 =0.93 vs. R 2 =0.79, angular range of 54°). After 6 min of stimulation, abduction decreased by 42% ± 14 for DS and by 0% ± 12 for RC, showing an effective compensation of fatigue. RC yielded significant smaller errors than DS in generating desired angles (0.23% ± 5.9 vs. 14.6% ± 9.7). When FES-induced arm weight support was provided, a mean reduction of the volitional effort (determined by Electromyography) of 78% was achieved compared to angular tracking without FES. First experiments with one acute stroke patient are also reported. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. II. Effects on metrics and kinematics of ongoing gaze shifts to visual targets.

    PubMed

    Freedman, Edward G; Quessy, Stephan

    2004-06-01

    Saccade kinematics are altered by ongoing head movements. The hypothesis that a head movement command signal, proportional to head velocity, transiently reduces the gain of the saccadic burst generator (Freedman 2001, Biol Cybern 84:453-462) can account for this observation. Using electrical stimulation of the rhesus monkey nucleus reticularis gigantocellularis (NRG) to alter the head contribution to ongoing gaze shifts, two critical predictions of this gaze control hypothesis were tested. First, this hypothesis predicts that activation of the head command pathway will cause a transient reduction in the gain of the saccadic burst generator. This should alter saccade kinematics by initially reducing velocity without altering saccade amplitude. Second, because this hypothesis does not assume that gaze amplitude is controlled via feedback, the added head contribution (produced by NRG stimulation on the side ipsilateral to the direction of an ongoing gaze shift) should lead to hypermetric gaze shifts. At every stimulation site tested, saccade kinematics were systematically altered in a way that was consistent with transient reduction of the gain of the saccadic burst generator. In addition, gaze shifts produced during NRG stimulation were hypermetric compared with control movements. For example, when targets were briefly flashed 30 degrees from an initial fixation location, gaze shifts during NRG stimulation were on average 140% larger than control movements. These data are consistent with the predictions of the tested hypothesis, and may be problematic for gaze control models that rely on feedback control of gaze amplitude, as well as for models that do not posit an interaction between head commands and the saccade burst generator.

  16. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats

    PubMed Central

    2017-01-01

    Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats (n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals (p = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses (p = 0.71) nor due to the delay after the last stimulation dose (p = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200 μs, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain. PMID:29065603

  17. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats.

    PubMed

    Mucio-Ramírez, Samuel; Makeyev, Oleksandr

    2017-01-01

    Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats ( n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals ( p  = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses ( p  = 0.71) nor due to the delay after the last stimulation dose ( p  = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200  μ s, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  18. Injectable microstimulator for functional electrical stimulation.

    PubMed

    Loeb, G E; Zamin, C J; Schulman, J H; Troyk, P R

    1991-11-01

    A family of digitally controlled devices is constructed for functional electrical stimulation in which each module is an hermetically sealed glass capsule that is small enough to be injected through the lumen of a hypodermic needle. The overall design and component characteristics of microstimulators that receive power and command signals by inductive coupling from a single, externally worn coil are described. Each device stores power between stimulus pulses by charging an electrolytic capacitor formed by its two electrodes, made of sintered, anodised tantalum and electrochemically activated iridium, respectively. Externally, a highly efficient class E amplifier provides power and digitally encoded command signals to control the amplitude, duration and timing of pulses from up to 256 such microstimulators.

  19. The Role of Transcutaneous Electrical Nerve Stimulation in the Management of Temporomandibular Joint Disorder.

    PubMed

    Awan, Kamran Habib; Patil, Shankargouda

    2015-12-01

    Temporomandibular joint disorders (TMD) constitutes of a group of diseases that functionally affect the masticatory system, including the muscles of mastication and temporomandibular joint (TMJ). A number of etiologies with specific treatment have been identified, including the transcutaneous electrical nerve stimulation (TENS). The current paper presents a literature review on the use of TENS in the management of TMD patients. Temporomandibular joint disorder is very common disorder with approximately 75% of people showing some signs, while more than quarter (33%) having at least one symptom. An attempt to treat the pain should be made whenever possible. However, in cases with no defined etiology, starting with less intrusive and reversible techniques is prescribed. Transcutaneous electrical nerve stimulation is one such treatment modality, i.e. useful in the management of TMD. It comprises of controlled exposure of electrical current to the surface of skin, causing hyperactive muscles relaxation and decrease pain. Although the value of TENS to manage chronic pain in TMD patients is still controversial, its role in utilization for masticatory muscle pain is significant. However, an accurate diagnosis is essential to minimize its insufficient use. Well-controlled randomized trials are needed to determine the utilization of TENS in the management of TMD patients.

  20. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    PubMed

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  1. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty.

    PubMed

    Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre; Vaes, Peter

    2014-01-01

    To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.

  2. Theory of feedback controlled brain stimulations for Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  3. Botulinum toxin type A injection into the gastrocnemius muscle for spastic equinus in adults with stroke: a randomized controlled trial comparing manual needle placement, electrical stimulation and ultrasonography-guided injection techniques.

    PubMed

    Picelli, Alessandro; Tamburin, Stefano; Bonetti, Paola; Fontana, Carla; Barausse, Martina; Dambruoso, Francesca; Gajofatto, Francesca; Santilli, Valter; Smania, Nicola

    2012-11-01

    The aim of this study was to compare the clinical outcomes of manual needle placement, electrical stimulation, and ultrasonography-guided techniques for botulinum toxin injection into the gastrocnemius of adults with spastic equinus after stroke. After randomization into three groups, each patient received the same dose of botulinum toxin type A into the lateral and medial head of the gastrocnemius muscle (OnabotulinumtoxinA, 100U per head) of the affected leg. The manual needle placement group (n = 15) underwent injections using anatomic landmarks and palpation; the electrical stimulation group (n = 15) received injections with electrical stimulation guidance; and the ultrasonography group (n = 17) was injected under sonographic guidance. The modified Ashworth scale, the Tardieu scale, and the ankle passive range of motion were measured at baseline and 1 mo after injection. Nonparametric statistical analysis was used. One month after injection, the modified Ashworth scale improved better in the ultrasonography group than in the manual needle placement group (P = 0.008). The ankle passive range of motion improved better in the ultrasonography group than in the electrical stimulation (P = 0.004) and manual needle placement (P < 0.001) groups. No difference was found between groups for the Tardieu scale. Ultrasonography-guided injection technique could improve the clinical outcome of botulinum toxin injections into the gastrocnemius of adults with spastic equinus.

  4. Electrical Stimulation of the Suprahyoid Muscles in Brain-injured Patients with Dysphagia: A Pilot Study

    PubMed Central

    Beom, Jaewon; Kim, Sang Jun

    2011-01-01

    Objective To investigate the therapeutic effects of repetitive electrical stimulation of the suprahyoid muscles in brain-injured patients with dysphagia. Method Twenty-eight brain-injured patients who showed reduced laryngeal elevation and supraglottic penetration or subglottic aspiration during a videofluoroscopic swallowing study (VFSS) were selected. The patients received either conventional dysphagia management (CDM) or CDM with repetitive electrical stimulation of the suprahyoid muscles (ESSM) for 4 weeks. The videofluoroscopic dysphagia scale (VDS) using the VFSS and American Speech-Language-Hearing Association National Outcome Measurement System (ASHA NOMS) swallowing scale (ASHA level) was used to determine swallowing function before and after treatment. Results VDS scores decreased from 29.8 to 17.9 in the ESSM group, and from 29.2 to 16.6 in the CDM group. However, there was no significant difference between the groups (p=0.796). Six patients (85.7%) in the ESSM group and 14 patients (66.7%) in the CDM group showed improvement according to the ASHA level with no significant difference between the ESSM and CDM groups (p=0.633). Conclusion Although repetitive neuromuscular electrical stimulation of the suprahyoid muscles did not further improve the swallowing function of dysphagia patients with reduced laryngeal elevation, more patients in the ESSM group showed improvement in the ASHA level than those in the CDM group. Further studies with concurrent controls and a larger sample group are required to fully establish the effects of repetitive neuromuscular electrical stimulation of the suprahyoid muscles in dysphagia patients. PMID:22506140

  5. The Effects of Transcutaneous Electrical Stimulation on the Orthodontic Movement of Teeth.

    DTIC Science & Technology

    1985-05-01

    Transcutaneous electrical nerve stimulation is an alternating electrical current applied k., ’ to the skin or gingiva with surface electrodes. Many...AD-AI68 889 THE EFFECTS OF TRANSCUTANEOUS ELECTRICAL STIMULATION ON 1/i THE ORTHODONTIC MOVEMENT OF TEETH(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON...SPECIAL FIELD OF THE THESIS: of Transcutaneous Electrical Stimiu- Transcutaneous Electrical Stimulation lation on the Orthodontic Movement

  6. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    PubMed

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery more than hyoid muscles.

  7. Electrical stimulation of the rostral medial prefrontal cortex in rabbits inhibits the expression of conditioned eyelid responses but not their acquisition

    PubMed Central

    Leal-Campanario, Rocío; Fairén, Alfonso; Delgado-García, José M.; Gruart, Agnès

    2007-01-01

    We have studied the role of rostral medial prefrontal cortex (mPFC) on reflexively evoked blinks and on classically conditioned eyelid responses in alert-behaving rabbits. The rostral mPFC was identified by its afferent projections from the medial half of the thalamic mediodorsal nuclear complex. Classical conditioning consisted of a delay paradigm using a 370-ms tone as the conditioned stimulus (CS) and a 100-ms air puff directed at the left cornea as the unconditioned stimulus (US). The CS coterminated with the US. Electrical train stimulation of the contralateral rostral mPFC produced a significant inhibition of air-puff-evoked blinks. The same train stimulation of the rostral mPFC presented during the CS–US interval for 10 successive conditioning sessions significantly reduced the generation of conditioned responses (CRs) as compared with values reached by control animals. Interestingly, the percentage of CRs almost reached control values when train stimulation of the rostral mPFC was removed from the fifth conditioning session on. The electrical stimulation of the rostral mPFC in well conditioned animals produced a significant decrease in the percentage of CRs. Moreover, the stimulation of the rostral mPFC was also able to modify the kinematics (latency, amplitude, and velocity) of evoked CRs. These results suggest that the rostral mPFC is a potent inhibitor of reflexively evoked and classically conditioned eyeblinks but that activation prevents only the expression of CRs, not their latent acquisition. Functional and behavioral implications of this inhibitory role of the rostral mPFC are discussed. PMID:17592148

  8. 76 FR 48062 - Effective Date of Requirement for Premarket Approval for Cranial Electrotherapy Stimulator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... devices include headaches following treatment with electrical stimulation. Potential risk of seizure--electrical stimulation of the brain may result in seizures, particularly in patients with a history of... effects from electrical stimulation of the brain--The physiological effects associated with electrical...

  9. Cellular Mechanisms of Transcranial Direct Current Stimulation

    DTIC Science & Technology

    2016-07-14

    REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master’s thesis, progress, quarterly, research , special, group ...in fEPSP timing was not resolved. Importantly, grouping across all pathways (e.g. not controlling pathway selectivity), 8 V/m radial positive fields...each signal group during DCS and in control conditions (no electrical stimulation). F) Changes in synaptic strength for each signal group under all

  10. WITHDRAWN: Transcutaneous electrical nerve stimulation and acupuncture-like transcutaneous electrical nerve stimulation for chronic low back pain.

    PubMed

    Gadsby, J G; Flowerdew, M W

    2007-07-18

    In view of the claims and counter-claims of the effectiveness of transcutaneous electrical nerve stimulation, it would seem appropriate to systematically review the literature. To determine the effectiveness of transcutaneous electrical nerve stimulation in reducing pain and improving range of movement in patients with chronic low back pain. Electronic searches of EMBASE, MEDLINE, CISCOM, AMED for all studies of TENS in the English language, identifying those treating chronic low back pain and hand searching their references. The inclusion criterion for studies included in this review, 6 of 68 identified, was comparisons of TENS/ALTENS versus placebo in patients with chronic low back pain. Outcome data on pain reduction, range of movement, functional status and work was extracted by two independent reviewers together with trial design qualities to construct a Quality Index. The ratio of odds of improvement in pain for each comparison was calculated: TENS vs. placebo at 1.62 (95% CI 0.90, 2.68); ALTENS vs. placebo at 7.22 (95% CI 2.60, 20.01) and TENS/ALTENS vs. placebo at 2.11 (95% CI 1.32, 3.38) times that of placebo. An improvement in pain reduction was seen in 45.80% (CI 37.00%, 55.00%) of TENS; 86.70% (CI 80.00%, 93.00%) of ALTENS; 54.00% (CI 46.20%, 61.80%) of TENS/ ALTENS and 36.40% (95%CI 28.40%, 44.40%) of placebo subjects. The odds of improvement in range of movement on ALTENS vs. placebo was 6.61 times (95% CI 2.36, 18.55) that of placebo. Transcutaneous electrical nerve stimulation appears to reduce pain and improve the range of movement in chronic low back pain subjects. A definitive randomised controlled study of ALTENS, TENS, placebo/no treatment controls, of sufficient power, is needed to confirm these findings.

  11. Standing with electrical stimulation and splinting is no better than standing alone for management of ankle plantarflexion contractures in people with traumatic brain injury: a randomised trial.

    PubMed

    Leung, Joan; Harvey, Lisa A; Moseley, Anne M; Whiteside, Bhavini; Simpson, Melissa; Stroud, Katarina

    2014-12-01

    Is a combination of standing, electrical stimulation and splinting more effective than standing alone for the management of ankle contractures after severe brain injury? A multi-centre randomised trial with concealed allocation, assessor blinding and intention-to-treat analysis. Thirty-six adults with severe traumatic brain injury and ankle plantarflexion contractures. All participants underwent a 6-week program. The experimental group received tilt table standing, electrical stimulation and ankle splinting. The control group received tilt table standing alone. The primary outcome was passive ankle dorsiflexion with a 12Nm torque. Secondary outcomes included: passive dorsiflexion with lower torques (3, 5, 7 and 9Nm); spasticity; the walking item of the Functional Independence Measure; walking speed; global perceived effect of treatment; and perceived treatment credibility. OUTCOME MEASURES were taken at baseline (Week 0), end of intervention (Week 6), and follow-up (Week 10). The mean between-group differences (95% CI) for passive ankle dorsiflexion at Week 6 and Week 10 were -3 degrees (-8 to 2) and -1 degrees (-6 to 4), respectively, in favour of the control group. There was a small mean reduction of 1 point in spasticity at Week 6 (95% CI 0.1 to 1.8) in favour of the experimental group, but this effect disappeared at Week 10. There were no differences for other secondary outcome measures except the physiotherapists' perceived treatment credibility. Tilt table standing with electrical stimulation and splinting is not better than tilt table standing alone for the management of ankle contractures after severe brain injury. ACTRN12608000637347. [Leung J, Harvey LA, Moseley AM, Whiteside B, Simpson M, Stroud K (2014) Standing with electrical stimulation and splinting is no better than standing alone for management of ankle plantarflexion contractures in people with traumatic brain injury: a randomised trial.Journal of Physiotherapy60: 201-208]. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  12. A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments.

    PubMed

    Alibeji, Naji A; Molazadeh, Vahidreza; Dicianno, Brad E; Sharma, Nitin

    2018-01-01

    A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.

  13. Effects of transcutaneous electrical nerve stimulation (TENS) on arterial stiffness and blood pressure in resistant hypertensive individuals: study protocol for a randomized controlled trial.

    PubMed

    Vilela-Martin, José Fernando; Giollo-Junior, Luiz Tadeu; Chiappa, Gaspar Rogério; Cipriano-Junior, Gerson; Vieira, Paulo José Cardoso; dos Santos Ricardi, Fábio; Paz-Landim, Manoel Ildefonso; de Andrade, Days Oliveira; Cestário, Elizabeth do Espírito Santo; Cosenso-Martin, Luciana Neves; Yugar-Toledo, Juan Carlos; Cipullo, José Paulo

    2016-03-29

    Resistant hypertension (RH) treatment requires an adequate and intense therapeutic approach. However, the results are not always satisfactory despite intensive treatment. Of the different pathophysiological mechanisms involved in the pathogenesis of RH, sympathetic overstimulation and therapies that block the sympathetic system have been widely studied. These approaches, however, are invasive and expensive. Another possible approach is by transcutaneous electrical nerve stimulation (TENS), a noninvasive method that modulates activity by using low-frequency transcutaneous electrical stimulation to inhibit primary afferent pathways. Thus, the current study will evaluate the effect of applying TENS in the cervicothoracic region of subjects with RH and will seek to develop a new low-cost and readily available therapy to treat this group of hypertensive individuals. This is a randomized, single blind (subject), parallel-assignment study controlled with a sham group and including participants aged 40 to 70 years with resistant hypertension. The trial has two arms: the treatment and control (sham group). The treatment group will be submitted to the stimulation procedure (TENS). The sham group will not be submitted to stimulation. The primary outcomes will be a reduction in the peripheral blood pressure and adverse events. The secondary outcomes will be a reduction the central blood pressure. The study will last 30 days. The sample size was calculated assuming an alpha error of 5 % to reject the null hypothesis with a statistical power of 80 %, thereby resulting in 28 participants per group (intervention versus sham). In recent decades, RH has become very common and costly. Adequate control requires several drugs, and in many cases, treatment is not successful. Sympathetic nervous system inhibition by renal denervation and central inhibition have significant effects in reducing BP; however, these treatments are costly and invasive. Another type of sympathetic nervous system inhibition can also be noninvasively achieved by electric current. Therefore, the application of TENS may be a new therapeutic option for treating resistant hypertensive individuals. Clinical Trials NCT02365974.

  14. Innovative neurophysiological methods in itch research: long-latency evoked potentials after electrical and thermal stimulation in patients with atopic dermatitis.

    PubMed

    Yudina, Marina M; Toropina, Galina G; Lvov, Andrey; Gieler, Uwe

    2011-10-01

    The aim of this study was to examine the findings of innovative neurophysiological methods of itch research. Short-latency and pain-related somatosensory-evoked potentials after electrical stimulation, as well as long-latency evoked potentials after thermal stimulation were studied in 38 patients with atopic dermatitis (AD) and 26 healthy volunteers. Quantitative Sensory Testing of thermal perception was performed in 22 patients with AD from the main AD group and in 15 healthy volunteers. Brain hyperactivity to electrical stimuli, delayed thermal-evoked potentials and elevated thermal thresholds were revealed in patients with AD compared with healthy controls. The data indicate small nerve fibre dysfunction in patients with AD, which may contribute to the pathogenesis of AD and chronic itch. The study demonstrates objective approaches to assess the function of small nerve fibres in patients with chronic itch.

  15. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  16. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  17. [Intracellular free calcium changes of mouse oocytes during activation induced by ethanol or electrical stimulations and parthenogenetic development].

    PubMed

    Deng, M Q; Fan, B Q

    1994-09-01

    Oocytes collected 18-19 h after HCG injection were stimulated with 7-8% ethanol or electrical pulses (1.7 KV/cm field strength, 80-100 microseconds duration, 3-4 times, 5-6 min interval). The parthenogenetic embryos derived from the above-mentioned methods developed to blastocyst stage just like those developed from fertilized eggs. Mouse oocytes were rather sensitive to ethanol stimulation. More than 95% of the treated oocytes were activated after stimulation of 7-8% ethanol for 5 min. Multiple electrical stimulations induced higher activation percentages of oocytes than only single electrical stimulation (71.5% vs. 63.6%). Intact oocytes were loaded with fluorescent Ca2+ indicator fura-2 and intracellular free calcium changes during artificial activation were measured by fluorescence detector. The results showed that ethanol could induce repetitive transient Ca2+ concentration increase in activated oocytes. Single electrical stimulation only induced single free calcium concentration elevation in oocyte while multiple electrical pulses could induce repetitive Ca2+ increase (each electrical pulse elicited the corresponding Ca2+ concentration peak). The pronuclei were not observed in the oocytes which had not exhibited calcium concentration rise during activation. Apart from electrical stimulation parameter, sufficient amount of Ca2+ in electric medium was crucial to mouse oocyte activation when stimulated with electrical pulses. The oocytes were hardly activated by electrical stimulations in a medium without Ca2+ even with longer pulse duration and the intracellular free calcium concentration in the oocytes showed no elevation. This indicates that the inflow of extracellular Ca2+ from tiny pores across the oocyte membrane caused by electrical stimulation is the main source of intracellular free calcium increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling

    PubMed Central

    Lareo, Angel; Forlim, Caroline G.; Pinto, Reynaldo D.; Varona, Pablo; Rodriguez, Francisco de Borja

    2016-01-01

    Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code) is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox. PMID:27766078

  19. Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling.

    PubMed

    Lareo, Angel; Forlim, Caroline G; Pinto, Reynaldo D; Varona, Pablo; Rodriguez, Francisco de Borja

    2016-01-01

    Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code) is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox.

  20. The effects of neuromuscular electrical stimulation for dysphagia in opercular syndrome: a case study

    PubMed Central

    Speyer, Renée; Roodenburg, Nel; Manni, Johannes J.

    2008-01-01

    A 76-year-old man with opercular syndrome characterized by complete bilateral loss of voluntary control of facial, lingual, pharyngeal and masticatory muscles is presented with focus on the severe dysphagia. Three years earlier the patient had experienced two strokes resulting in opercular syndrome with severe dysphagia. Despite initial logopedic dysphagia treatment, swallowing did not improve. A new treatment for dysphagia, consisting of neuromuscular electrical stimulation was applied on the patient. He returned to oral feeding. Clinical and treatment observations are reported. PMID:18180938

  1. Evidence of Pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat.

    PubMed

    Di Scala, G; Mana, M J; Jacobs, W J; Phillips, A G

    1987-01-01

    Stimulation of the periaqueductal grey (PAG) has been used to support aversive conditioning in a variety of species with several experimental paradigms. However, it has not been clearly demonstrated whether the behavioral changes produced by PAG stimulation in these paradigms are mediated by associative or nonassociative mechanisms. The present studies demonstrate that electrical stimulation of the PAG in the rat may be used to support associative learning in a Pavlovian paradigm. In each experiment, a fully controlled conditional emotional response (CER) procedure was used to examine the unconditional aversive properties of PAG stimulation. In Experiment 1a, weak associative conditioning was observed when a light CS was paired with PAG stimulation over 6 conditioning trials. In Experiment 1b, robust associative conditioning was obtained with a light CS when 18 conditioning trials were used. In Experiment 2, robust associative conditioning was demonstrated with a tone CS when 6 conditioning trials were used. The results parallel those found when other aversive stimuli are used as a UCS (e.g., footshock or intraorbital air puff), and because the present experiments included the proper control procedures the results clearly indicate that the behavioral changes produced by PAG stimulation are mediated by associative Pavlovian learning mechanisms rather than nonassociative mechanisms such as sensitization or pseudoconditioning. The present technique may be useful for assessing the neuroanatomical and neurochemical substrates underlying the aversive effects of brain-stimulation, and for screening the effects of drugs on the conditional and unconditional responses produced by such stimulation.

  2. Change in the P300 index - a pilot randomized controlled trial of low-frequency electrical stimulation of acupuncture points in middle-aged men and women.

    PubMed

    Choi, Kwang-Ho; Kwon, O Sang; Cho, Seong Jin; Lee, Sanghun; Kang, Seok-Yun; Ryu, Yeon Hee

    2017-05-03

    The P300 is a major index used to evaluate improvements in brain function. Although a few studies have reported evaluating the effectiveness of manual acupuncture or electro-acupuncture by monitoring the P300, research in this field is not yet very active. The aim of this study was to investigate the effects of periodic low-frequency electrical stimulation applied to BL62 and KI6 on brain activity by analyzing the P300. The study was conducted as a randomized double-blind test of 55 subjects in their 50s, including 26 males and 29 females. Each subject received 12 sessions of stimulation over a one-month period. In each session, low-frequency electrical stimulation at an average of 24 μA and 2 Hz was applied to the acupuncture points BL62 and KI6, and event-related potentials (ERPs) were measured before the first session and after the last session of the electrical stimulation. The results of a chi-square test indicated that the double-blind test was conducted correctly. Compared to the Sham group, all the subjects in the Real stimulation group showed a tendency toward a decreasing P300 latency and increasing P300 amplitude after all 12 sessions of stimulation. In the women, the amplitude significantly increased at Fz, Fcz, Cz, Cpz, and Pz. With this experiment, the low-frequency electrical stimulation of two acupuncture points (BL62 and K16) was confirmed to have a positive influence on the prevention of natural cerebral aging. This study was registered at the Clinical Research Information Service (CRIS) of the National Research Institute of Health ( https://cris.nih.go.kr/cris/search/search_result_st01_en.jsp? , Registration Number: KCT0001940). The date of registration was June 9, 2016.

  3. Recovery After High-Intensity Intermittent Exercise in Elite Soccer Players Using VEINOPLUS Sport Technology for Blood-Flow Stimulation

    PubMed Central

    Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe

    2012-01-01

    Context Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. Objective To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Design Randomized controlled clinical trial. Setting National Institute of Sport, Expertise, and Performance (INSEP). Patients or Other Participants Twenty-six healthy professional male soccer players. Intervention(s) The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Main Outcome Measures(s) Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. Results The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Conclusions Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods. PMID:23068586

  4. Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges.

    PubMed

    Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison

    2015-10-01

    Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, noninvasive, direct current stimulation uses an active electrode in the ear canal, tympanic membrane, or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms.

  5. Tinnitus Treatment with Precise and Optimal Electric Stimulation: Opportunities and Challenges

    PubMed Central

    Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison

    2015-01-01

    Purpose of review Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent findings Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, non-invasive, direct-current stimulation uses an active electrode in the ear canal, tympanic membrane or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Summary Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms. PMID:26208122

  6. Time-scaling based sliding mode control for Neuromuscular Electrical Stimulation under uncertain relative degrees.

    PubMed

    Oliveira, Tiago Roux; Costa, Luiz Rennó; Catunda, João Marcos Yamasaki; Pino, Alexandre Visintainer; Barbosa, William; Souza, Márcio Nogueira de

    2017-06-01

    This paper addresses the application of the sliding mode approach to control the arm movements by artificial recruitment of muscles using Neuromuscular Electrical Stimulation (NMES). Such a technique allows the activation of motor nerves using surface electrodes. The goal of the proposed control system is to move the upper limbs of subjects through electrical stimulation to achieve a desired elbow angular displacement. Since the human neuro-motor system has individual characteristics, being time-varying, nonlinear and subject to uncertainties, the use of advanced robust control schemes may represent a better solution than classical Proportional-Integral (PI) controllers and model-based approaches, being simpler than more sophisticated strategies using fuzzy logic or neural networks usually applied in this control problem. The objective is the introduction of a new time-scaling base sliding mode control (SMC) strategy for NMES and its experimental evaluation. The main qualitative advantages of the proposed controller via time-scaling procedure are its independence of the knowledge of the plant relative degree and the design/tuning simplicity. The developed sliding mode strategy allows for chattering alleviation due to the impact of the integrator in smoothing the control signal. In addition, no differentiator is applied to construct the sliding surface. The stability analysis of the closed-loop system is also carried out by using singular perturbation methods. Experimental results are conducted with healthy volunteers as well as stroke patients. Quantitative results show a reduction of 45% in terms of root mean square (RMS) error (from 5.9° to [Formula: see text] ) in comparison with PI control scheme, which is similar to that obtained in the literature. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty

    PubMed Central

    Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre

    2014-01-01

    Objective: To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. Data Sources: PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Review Methods: Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. Results: A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. Conclusion: This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality. PMID:26770730

  8. Neural Responses to Electrical Stimulation on Patterned Silk Films

    PubMed Central

    Hronik-Tupaj, Marie; Raja, Waseem Khan; Tang-Schomer, Min; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Peripheral nerve injury is a critical issue for trauma patients. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 minutes each day for 7 days. Responses were compared to neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared to the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on day 5 and day 7 compared to the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 minutes daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment. PMID:23401351

  9. Dose postural control improve following application of transcutaneous electrical nerve stimulation in diabetic peripheral neuropathic patients? A randomized placebo control trial.

    PubMed

    Saadat, Z; Rojhani-Shirazi, Z; Abbasi, L

    2017-12-01

    peripheral neuropathy is the most common problem of diabetes. Neuropathy leads to lower extremity somatosensory deficits and postural instability in these patients. However, there are not sufficient evidences for improving postural control in these patients. To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with diabetic neuropathy. Twenty eighth patients with diabetic neuropathy (40-55 Y/O) participated in this RCT study. Fourteen patients in case group received TENS and sham TENS was used for control group. Force plate platform was used to extract sway velocity and COP displacement parameters for postural control evaluation. The mean sway velocity and center of pressure displacement along the mediolateral and anteroposterior axes were not significantly different between two groups after TENS application (p>0.05). Application of 5min high frequency TENS on the knee joint could not improve postural control in patients with diabetic neuropathy. Copyright © 2017. Published by Elsevier Ltd.

  10. Neuroelectronics and modeling of electrical signals for monitoring and control of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Chintakuntla, Ritesh R.; Abraham, Jose K.; Varadan, Vijay K.

    2009-03-01

    The brain and the human nervous system are perhaps the most researched but least understood components of the human body. This is so because of the complex nature of its working and the high density of functions. The monitoring of neural signals could help one better understand the working of the brain and newer recording and monitoring methods have been developed ever since it was discovered that the brain communicates internally by means of electrical pulses. Neuroelectronics is the field which deals with the interface between electronics or semiconductors to living neurons. This includes monitoring of electrical activity from the brain as well as the development of feedback devices for stimulation of parts of the brain for treatment of disorders. In this paper these electrical signals are modeled through a nano/microelectrode arrays based on the electronic equivalent model using Cadence PSD 15.0. The results were compared with those previously published models such as Kupfmuller and Jenik's model, McGrogan's Neuron Model which are based on the Hodgkin and Huxley model. We have developed and equivalent circuit model using discrete passive components to simulate the electrical activity of the neurons. The simulated circuit can be easily be modified by adding some more ionic channels and the results can be used to predict necessary external stimulus needed for stimulation of neurons affected by the Parkinson's disease (PD). Implementing such a model in PD patients could predict the necessary voltages required for the electrical stimulation of the sub-thalamus region for the control tremor motion.

  11. The value of adding transcutaneous neuromuscular electrical stimulation (VitalStim) to traditional therapy for post-stroke dysphagia: a randomized controlled trial.

    PubMed

    Li, L; Li, Y; Huang, R; Yin, J; Shen, Y; Shi, J

    2015-02-01

    Dysphagia is not uncommon after stroke. Dysphagia may delay the functional recovery and substantially affects the quality of life after stroke, mainly if lest untreated. To detect and treat dysphagia as early as possible is critical for patients' recovery after stroke. Electrical stimulation has been reported as a treatment for pharyngeal dysphagia in recent studies, but the therapeutic effects of neuromuscular electrical stimulation (VitalStim®) therapy lacks convincing supporting evidence, needs further clinical investigation. To investigate the effects of neuromuscular electrical stimulation (VitalStim®) and traditional swallowing therapy on recovery of swallowing difficulties after stroke. Randomized controlled trial. University hospital. 135 stroke patients who had a diagnosis of dysphagia at the age between 50-80. 135 subjects were randomly divided into three groups: traditional swallowing therapy (N. = 45), VitalStim® therapy (N. = 45), and VitalStim® therapy plus traditional swallowing therapy (N. = 45). The traditional swallowing therapy included basic training and direct food intake training. Electrical stimulation was applied by an occupational therapist, using a modified hand-held battery-powered electrical stimulator (VitalStim® Dual Channel Unit and electrodes, Chattanooga Group, Hixson, TN, USA). Surface electromyography (sEMG), the Standardized Swallowing Assessment (SSA), Videofluoroscopic Swallowing Study (VFSS) and visual analog scale (VAS) were used to assess swallowing function before and 4 weeks after the treatment. The study included 118 subjects with dysphagia, 40 in the traditional swallowing therapy group and VitalStim® therapy group, 38 in the VitalStim and traditional swallowing therapy group. There were significant differences in sEMG value, SSA and VFSS scores in each group after the treatment (P < 0.001). After 4-week treatment, sEMG value (917.1 ± 91.2), SSA value (21.8 ± 3.5), oral transit time (0.4 ± 0.1) and pharyngeal transit time (0.8 ± 0.1) were significantly improved in the VitalStim® and traditional swallowing therapy group than the other two groups (P < 0.001). Data suggest that VitalStim® therapy coupled with traditional swallowing therapy may be beneficial for post-stroke dysphagia. VitalStim® therapy coupled with traditional swallowing therapy can improve functional recovery for post-stroke dysphagia.

  12. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    PubMed

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats

    NASA Astrophysics Data System (ADS)

    Li, Yu-Ting; Wickens, Jeffery R.; Huang, Yi-Ling; Pan, Wynn H. T.; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Objective. Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. Approach. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. Main results. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg-1 cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. Significance. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning behavior studies of freely moving rats.

  14. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.

    PubMed

    Li, Yu-Ting; Wickens, Jeffery R; Huang, Yi-Ling; Pan, Wynn H T; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg(-1) cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning behavior studies of freely moving rats.

  15. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    NASA Astrophysics Data System (ADS)

    Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.

    2013-04-01

    Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.

  16. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    PubMed Central

    Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J

    2013-01-01

    Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062

  17. A Human-machine-interface Integrating Low-cost Sensors with a Neuromuscular Electrical Stimulation System for Post-stroke Balance Rehabilitation.

    PubMed

    Kumar, Deepesh; Das, Abhijit; Lahiri, Uttama; Dutta, Anirban

    2016-04-12

    A stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow to brain thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Innovative methodologies for restorative neurorehabilitation are urgently required to reduce long-term disability. The ability of the nervous system to reorganize its structure, function and connections as a response to intrinsic or extrinsic stimuli is called neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. Beneficial neuroplastic changes may be facilitated with non-invasive electrotherapy, such as neuromuscular electrical stimulation (NMES) and sensory electrical stimulation (SES). NMES involves coordinated electrical stimulation of motor nerves and muscles to activate them with continuous short pulses of electrical current while SES involves stimulation of sensory nerves with electrical current resulting in sensations that vary from barely perceivable to highly unpleasant. Here, active cortical participation in rehabilitation procedures may be facilitated by driving the non-invasive electrotherapy with biosignals (electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG)) that represent simultaneous active perception and volitional effort. To achieve this in a resource-poor setting, e.g., in low- and middle-income countries, we present a low-cost human-machine-interface (HMI) by leveraging recent advances in off-the-shelf video game sensor technology. In this paper, we discuss the open-source software interface that integrates low-cost off-the-shelf sensors for visual-auditory biofeedback with non-invasive electrotherapy to assist postural control during balance rehabilitation. We demonstrate the proof-of-concept on healthy volunteers.

  18. A Human-machine-interface Integrating Low-cost Sensors with a Neuromuscular Electrical Stimulation System for Post-stroke Balance Rehabilitation

    PubMed Central

    Kumar, Deepesh; Das, Abhijit; Lahiri, Uttama; Dutta, Anirban

    2016-01-01

    A stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow to brain thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Innovative methodologies for restorative neurorehabilitation are urgently required to reduce long-term disability. The ability of the nervous system to reorganize its structure, function and connections as a response to intrinsic or extrinsic stimuli is called neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. Beneficial neuroplastic changes may be facilitated with non-invasive electrotherapy, such as neuromuscular electrical stimulation (NMES) and sensory electrical stimulation (SES). NMES involves coordinated electrical stimulation of motor nerves and muscles to activate them with continuous short pulses of electrical current while SES involves stimulation of sensory nerves with electrical current resulting in sensations that vary from barely perceivable to highly unpleasant. Here, active cortical participation in rehabilitation procedures may be facilitated by driving the non-invasive electrotherapy with biosignals (electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG)) that represent simultaneous active perception and volitional effort. To achieve this in a resource-poor setting, e.g., in low- and middle-income countries, we present a low-cost human-machine-interface (HMI) by leveraging recent advances in off-the-shelf video game sensor technology. In this paper, we discuss the open-source software interface that integrates low-cost off-the-shelf sensors for visual-auditory biofeedback with non-invasive electrotherapy to assist postural control during balance rehabilitation. We demonstrate the proof-of-concept on healthy volunteers. PMID:27166666

  19. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  20. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces

    PubMed Central

    Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-01-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734

  1. Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field

    PubMed Central

    Grimaldi, Piercesare; Schweers, Nicole

    2013-01-01

    Recent studies have demonstrated that strong neural modulations can be evoked with optogenetic stimulation in macaque motor cortex without observing any evoked movements (Han et al., 2009, 2011; Diester et al., 2011). It remains unclear why such perturbations do not generate movements and if conditions exist under which they may evoke movements. In this study, we examine the effects of five optogenetic constructs in the macaque frontal eye field and use electrical microstimulation to assess whether optical perturbation of the local network leads to observable motor changes during optical, electrical, and combined stimulation. We report a significant increase in the probability of evoking saccadic eye movements when low current electrical stimulation is coupled to optical stimulation compared with when electrical stimulation is used alone. Experiments combining channelrhodopsin 2 (ChR2) and electrical stimulation with simultaneous fMRI revealed no discernible fMRI activity at the electrode tip with optical stimulation but strong activity with electrical stimulation. Our findings suggest that stimulation with current ChR2 optogenetic constructs generates subthreshold activity that contributes to the initiation of movements but, in most cases, is not sufficient to evoke a motor response. PMID:24133271

  2. Neuromodulation for the Treatment of Lower Urinary Tract Symptoms.

    PubMed

    Yamanishi, Tomonori; Kaga, Kanya; Fuse, Miki; Shibata, Chiharu; Uchiyama, Tomoyuki

    2015-09-01

    Neuromodulation therapy incorporates electrical stimulation to target specific nerves that control lower urinary tract symptoms (LUTS). The objectives of this article are to review the mechanism of action, the type of neuromodulation, and the efficacy of neuromodulation mainly according to the results of randomized controlled trials. Neuromodulation includes pelvic floor electrical stimulation (ES) using vaginal, anal and surface electrodes, interferential therapy (IF), magnetic stimulation (MS), percutaneous tibial nerve stimulation, and sacral nerve stimulation (SNS). The former four stimulations are used for external periodic (short-term) stimulation, and SNS are used for internal, chronic (long-term) stimulation. All of these therapies have been reported to be effective for overactive bladder or urgency urinary incontinence. Pelvic floor ES, IF, and MS have also been reported to be effective for stress urinary incontinence. The mechanism of neuromodulation for overactive bladder has been reported to be the reflex inhibition of detrusor contraction by the activation of afferent fibers by three actions, i.e., the activation of hypogastric nerve, the direct inhibition of the pelvic nerve within the sacral cord and the supraspinal inhibition of the detrusor reflex. The mechanism of neuromodulation for stress incontinence is contraction of the pelvic floor muscles through an effect on the muscle fibers as well as through the stimulation of pudendal nerves. Overall, cure and improvement rates of these therapies for urinary incontinence are 30-50, and 60-90% respectively. MS has been considered to be a technique for stimulating nervous system noninvasively. SNS is indicated for patients with refractory overactive bladder and urinary retention. © 2015 Wiley Publishing Asia Pty Ltd.

  3. New controller for functional electrical stimulation systems.

    PubMed

    Fisekovic, N; Popovic, D B

    2001-07-01

    A novel, self-contained controller for functional electrical stimulation systems has been designed. The development was motivated by the need to have a general purpose, easy to use controller capable of stimulating many muscle groups, thus restoring complex motor functions (e.g. standing, walking, reaching, and grasping). The designed controller can regulate the frequency, pulse duration, and charge balance on up to 16 channels, and execute pre-programmed and sensory-driven control operations. The controller supports up to eight analog and six digital sensors, and comprises a memory block for including history of the sensory data (time series). Five independent timers provide the basis for the multi-modal and multi-level control of movement. The PC compatible interface is realised via an IR serial communication channel. The PC based software is user friendly and fully menu driven. This paper also presents a case study where the controller was implemented to restore walking in a paraplegic subject. The assistive system comprised the novel controller, the power and output stages of an eight-channel FES system (IEEE Trans Rehabil Eng, TRE-2 (1994) 234), ankle-foot orthoses, and a rolling walker. Stimulation was applied with surface electrodes positioned over the motoneurons that innervate muscles responsible for the hip and knee flexion and extension. The sensory system included goniometers at knee and hip joints, force-sensing resistors built in the shoe insoles, and digital accelerometers at the hips. A rule-based control algorithm was generated following a two-step procedure: (1) simulation and (2) machine learning as described in earlier studies (IEEE Trans Rehab Eng, TRE-7 (1999) 69). The paraplegic subject walked faster, and with less physiological effort, when automatic control was applied as compared to hand-control. This case study, as well as a previous one for assisting grasping (The design and testing of a new programmable electronic stimulator. N. Fisekovic, MS thesis. University of Belgrade, Belgrade, 2000) indicate that the novel control unit is effectively applicable to FES systems.

  4. Effects of neuromuscular electrical stimulation combined with effortful swallowing on post-stroke oropharyngeal dysphagia: a randomised controlled trial.

    PubMed

    Park, J-S; Oh, D-H; Hwang, N-K; Lee, J-H

    2016-06-01

    Neuromuscular electrical stimulation (NMES) has been used as a therapeutic intervention for dysphagia. However, the therapeutic effects of NMES lack supporting evidence. In recent years, NMES combined with traditional swallowing therapy has been used to improve functional recovery in patients with post-stroke dysphagia. This study aimed to investigate the effects of effortful swallowing combined with neuromuscular electrical stimulation on hyoid bone movement and swallowing function in stroke patients. Fifty stroke patients with mild dysphagia who were able to swallow against the resistance applied by using NMES and cooperate actively in training were included. This study was designed as a 6-week single-blind, randomised, controlled study. In the experimental group, two pairs of electrodes were placed horizontally in the infrahyoid region to depress the hyoid bone. The NMES intensity was increased gradually until the participants felt a grabbing sensation in their neck and performed an effortful swallow during the stimulation. In the placebo group, the same procedure was followed except for the intensity, which was increased gradually until the participants felt an electrical sensation. All participants underwent this intervention for 30 min per session, 5 sessions per week, for 6 weeks. Videofluoroscopic swallowing studies (VFSS) were carried out before and after the intervention and kinematics of the hyoid bone and swallowing function were analysed based on the VFSS. The experimental group revealed a significant increase in anterior and superior hyoid bone movement and the pharyngeal phase of the swallowing function. This intervention can be used as a novel remedial approach in dysphagic stroke patients. © 2016 John Wiley & Sons Ltd.

  5. Pre-pyloric neural electrical stimulation produces cholinergically-mediated reverse peristalsis in the acute canine model of microprocessor-invoked gastric motility for the treatment of obesity.

    PubMed

    Neshev, Emil; Onen, Denis; Jalilian, Ehsan; Mintchev, Martin P

    2006-04-01

    Gastric Electrical Stimulation (GES) has been suggested as a new tool for the treatment of obesity. Among the known methods for GES, only Neural Gastric Electrical Stimulation (NGES) provides direct control of contractility without utilizing the spontaneously existing gastric electrical activity as an intermediary. However, only one of the established GES techniques, gastric pacing, has been described to produce retrograde peristalsis for delaying gastric emptying. The aim of this study was to explore the possibility of producing retrograde peristalsis using either single electrode set or dual electrode set NGES. 8 anesthetized dogs underwent laparotomy and implantation of 2 circumferential electrode sets approximately 3 cm and 7 cm proximal to the pylorus, respectively. Single-set and dual-set NGES sessions were repeatedly administered using a custom-designed implantable neurostimulator. Gastric motility patterns were captured using 3 force transducers implanted on the anterior gastric wall along the gastric axis. Motility indices and velocities were employed to quantify the produced contractile patterns. Both single-set and dual-set NGES produced circumferential lumen-occluding contractions in the vicinity of the electrode sets. The invoked contractions propagated proximally in a retrograde fashion. The propagation scope was different depending on the number of electrode sets used. Different velocities of the invoked retrograde contractions associated with single- and dual-set NGES were observed and quantified. Contractility patterns reflected by the normalized motility indices were very similar regardless of the electrode stimulation technique. Pre-pyloric NGES can produce controlled retrograde peristalsis and serve as another avenue for the treatment of obesity.

  6. Rate-dependent electrical, contractile and restitution properties of isolated left ventricular myocytes in guinea-pig hypertrophy.

    PubMed

    Davey, P; Bryant, S; Hart, G

    2001-01-01

    Left ventricular hypertrophy predisposes to sudden cardiac death (SCD) and studies of human SCD suggest that the antecedent heart rate (HR) is usually < 100 beats min(-1). This is surprising in view of the known association between adrenergic receptor stimulation and SCD which by itself would suggest that it is more likely to occur from high rather than low HR. We therefore hypothesized that there may be electrical or mechanical abnormalities present in myocytes isolated from animals with left ventricular hypertrophy that predispose to SCD at low stimulation frequencies but which may not be present at high HR. Mild left ventricular hypertrophy was induced in guinea-pigs by infra-renal aortic banding. Electrical and mechanical properties of isolated myocytes were studied at different stimulation frequencies between 0.1 and 3 Hz. Action potential duration (APD) is prolonged in hypertrophy at stimulation frequencies < 1 Hz but not at faster rates. Contraction size, time-to-peak contraction (TTPC) and half-relaxation time are greatly enhanced in hypertrophy at all frequencies between 0.1 and 3 Hz. Electrical (50.3 +/- 5.2 ms in hypertrophy and 78.4 +/- 12.1 ms in control, P < 0.03) and mechanical (205 +/- 16 ms for hypertrophy and 266 +/- 24 ms for control cells, P < 0.03) restitution time constants are quicker in hypertrophy. The finding of APD prolongation at low but not at high frequencies is consistent with the finding that SCD arises from low and not high HR. This data supports the role of abnormal repolarization in SCD.

  7. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial.

    PubMed

    Chung, EunJung; Kim, Jung-Hee; Park, Dae-Sung; Lee, Byoung-Hee

    2015-03-01

    [Purpose] This study sought to determine the effects of brain-computer interface-based functional electrical stimulation (BCI-FES) on brain activation in patients with stroke. [Subjects] The subjects were randomized to in a BCI-FES group (n=5) and a functional electrical stimulation (FES) group (n=5). [Methods] Patients in the BCI-FES group received ankle dorsiflexion training with FES for 30 minutes per day, 5 times under the brain-computer interface-based program. The FES group received ankle dorsiflexion training with FES for the same amount of time. [Results] The BCI-FES group demonstrated significant differences in the frontopolar regions 1 and 2 attention indexes, and frontopolar 1 activation index. The FES group demonstrated no significant differences. There were significant differences in the frontopolar 1 region activation index between the two groups after the interventions. [Conclusion] The results of this study suggest that BCI-FES training may be more effective in stimulating brain activation than only FES training in patients recovering from stroke.

  8. Effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy

    PubMed Central

    Choi, Jong-Bae

    2016-01-01

    [Purpose] The aim of this study was to investigate the effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. [Subjects and Methods] Nine subjects received the electrical stimulation and traditional dysphagia therapy. Electrical stimulation was applied to stimulate each subject’s facial muscles 30 minutes a day, 5 days a week, for 4 weeks. [Results] Subjects showed significant improvement in cheek and lip strength and oral function after the intervention. [Conclusion] This study demonstrates that electrical stimulation improves facial muscle strength and oral function in stroke patients with dysphagia. PMID:27799689

  9. An fMRI study of acupuncture-induced brain activation of aphasia stroke patients.

    PubMed

    Li, Geng; Yang, Edward S

    2011-01-01

    This investigation aims to test the effect of acupuncture on word generation activation (WGA) in post-stroke aphasia patients. Seven vascular aphasia patients and 14 control subjects were studied using functional magnetic resonance imaging (fMRI). Each performed: (1) a word generation (WG) task alone, followed by (2) repeating WG after insertion of acupuncture needles (WGN) into SJ 8 (a language-implicated acupoint), followed by (3) repeating WGN reinforced by electrical stimulation (WGA) of SJ 8, and finally (4) electrical stimulation (ES) of SJ 8 alone. Significant activation was found in the opercular, triangular, or insula during the ES stimulation in patients when comparing each patient to 14 normal controls. For the WG task, significant activation was found in the inferior frontal gyrus when comparing each patient to 14 normal controls. The signal induced by acupuncture was larger than that of the WG task in the left middle frontal gyrus with the comparison of WGA vs. WGN in seven patients. Further, main significant effects in the right insula in patients were observed when comparing seven patients to 14 normal controls. The activation induced by ES stimulation was only found on the left side in controls. This activation was observed on the lesion side of superior and middle frontal gyrus (SMFG) in patients. This study demonstrates for the first time that language-deficit-implicated acupoint stimulation can selectively activate the brain on the lesion side in post-stroke aphasia patients. These results suggest that acupuncture may have therapeutic benefits in post-stroke aphasia patients. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Contralaterally Controlled Neuromuscular Electrical Stimulation for Recovery of Ankle Dorsiflexion

    PubMed Central

    Knutson, Jayme S.; Hansen, Kristine; Nagy, Jennifer; Bailey, Stephanie N.; Gunzler, Douglas D.; Sheffler, Lynne R.; Chae, John

    2013-01-01

    Objective Compare the effects of contralaterally controlled neuromuscular electrical stimulation (CCNMES) versus cyclic neuromuscular electrical stimulation (NMES) on lower extremity impairment, functional ambulation, and gait characteristics. Design Twenty-six stroke survivors with chronic (≥6mo) footdrop during ambulation were randomly assigned to six weeks of CCNMES or cyclic NMES. Both groups had ten sessions per week of self-administered home application of either CCNMES or cyclic NMES plus two sessions per week of gait training with a physical therapist. Primary outcomes included lower extremity Fugl-Meyer score, modified Emory Functional Ambulation Profile, and gait velocity. Assessments were made at pretreatment, posttreatment, and at 1 and 3 months posttreatment. Results There were no significant differences between groups in the outcome trajectories for any of the measures. With data from both groups pooled, there were significant but modest and sustained improvements in the Fugl-Meyer score and the modified Emory Functional Ambulation Profile, but not in gait velocity. Conclusions The results support the hypothesis that gait training combined with either CCNMES or cyclic NMES reduces lower extremity impairment and functional ambulation, but do not support the hypothesis that CCNMES is more effective than cyclic NMES in chronic patients. PMID:23867888

  11. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  12. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation.

    PubMed

    Andrews, Russell J

    2003-05-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  13. Real-time 4D electrical resistivity imaging of tracer transport within an energically stimulated fracture zone

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.

    2016-12-01

    Hydraulic fracture stimulation is used extensively in the subsurface energy sector to improve access between energy bearing formations and production boreholes. However, large uncertainties exist concerning the location and extent of stimulated fractures, and concerning the behavior of flow within those fractures. This uncertainty often results in significant risks, including induced seismicity and contamination of potable groundwater aquifers. Time-lapse electrical resistivity tomography (ERT) is a proven method of imaging fluid flow within fracture networks, by imaging the change in bulk conductivity induced by the presence of an electrically anomalous tracer within the fracture. In this work we demonstrate characterization and flow monitoring of a stimulated fracture using real-time four-dimensional ERT imaging within an unsaturated rhyolite formation. After stimulation, a conductive tracer was injected into the fracture zone. ERT survey data were continuously and autonomously collected, pre-processed on site, submitted to an off-site high performance computing system for inversion, and returned to the field for inspection. Surveys were collected at approximately 12 minute intervals. Data transmission and inversion required approximately 2 minutes per survey. The time-lapse imaging results show the dominant flow-paths within the stimulated fracture zone, thereby revealing the location and extent of the fracture, and the behavior of tracer flow within the fracture. Ultimately real-time imaging will enable site operators to better understand stimulation operations, and control post-stimulation reservoir operations for optimal performance and environmental protection.

  14. Concordance and acceptability of electric stimulation therapy: a randomised controlled trial.

    PubMed

    Miller, C; McGuiness, W; Wilson, S; Cooper, K; Swanson, T; Rooney, D; Piller, N; Woodward, M

    2017-08-02

    A pilot single-blinded randomised controlled trial (RCT) was conducted to examine concordance with and acceptability of electric stimulation therapy (EST) in patients with venous leg ulcers (VLUs) who had not tolerated moderate to high compression. Participants were randomised to the intervention group (n=15) or a placebo control group (n=8) in which EST was used four times daily for 20 minutes per session. Participants were monitored for eight weeks during which time concordance with the treatment and perceptions of the treatment were assessed. Concordance with the total recommended treatment time was 71.4% for the intervention group and 82.9% for the control group; a difference that was not statistically significant. Participants rated EST as acceptable (84.6% intervention; 83.3% control), only two participants, both from the placebo control group, would not be willing to use EST again. The majority considered EST easier to use than compression (68.4%). EST was a practical and acceptable treatment among people who have been unable to tolerate moderate to high compression therapy.

  15. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.

    PubMed

    Miocinovic, Svjetlana; Lempka, Scott F; Russo, Gary S; Maks, Christopher B; Butson, Christopher R; Sakaie, Ken E; Vitek, Jerrold L; McIntyre, Cameron C

    2009-03-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system.

  16. Nanostructured cavity devices for extracellular stimulation of HL-1 cells

    NASA Astrophysics Data System (ADS)

    Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard

    2015-05-01

    Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network. Electronic supplementary information (ESI) available: Comparison of non-filtered and Savitzky-Golay filtered action potential recordings, electrical signals and corresponding optical signals. See DOI: 10.1039/c5nr01690h

  17. Carbon nanotube-based bioceramic grafts for electrotherapy of bone.

    PubMed

    Mata, D; Horovistiz, A L; Branco, I; Ferro, M; Ferreira, N M; Belmonte, M; Lopes, M A; Silva, R F; Oliveira, F J

    2014-01-01

    Bone complexity demands the engineering of new scaffolding solutions for its reconstructive surgery. Emerging bone grafts should offer not only mechanical support but also functional properties to explore innovative bone therapies. Following this, ceramic bone grafts of Glass/hydroxyapatite (HA) reinforced with conductive carbon nanotubes (CNTs) - CNT/Glass/HA - were prepared for bone electrotherapy purposes. Computer-aided 3D microstructural reconstructions and TEM analysis of CNT/Glass/HA composites provided details on the CNT 3D network and further correlation to their functional properties. CNTs are arranged as sub-micrometric sized ropes bridging homogenously distributed ellipsoid-shaped agglomerates. This arrangement yielded composites with a percolation threshold of pc=1.5vol.%. At 4.4vol.% of CNTs, thermal and electrical conductivities of 1.5W·m(-1)·K(-1) and 55S·m(-1), respectively, were obtained, matching relevant requisites in electrical stimulation protocols. While the former avoids bone damaging from Joule's heat generation, the latter might allow the confinement of external electrical fields through the conductive material if used for in vivo electrical stimulation. Moreover, the electrically conductive bone grafts have better mechanical properties than those of the natural cortical bone. Overall, these highly conductive materials with controlled size CNT agglomerates might accelerate bone bonding and maximize the delivery of electrical stimulation during electrotherapy practices. © 2013.

  18. [The role of magnetic stimulation in diagnosis of the peripheral nervous system].

    PubMed

    Dressler, D; Benecke, R; Meyer, B U; Conrad, B

    1988-12-01

    Magnetic stimulation has recently been introduced as a new method for stimulation of neuronal tissues. Up to now most investigators were emphasized the advantages of this method for the investigation of the central nervous system. With this paper we want to show that magnetic stimulation may also be useful for the examination of the peripheral nervous system. Both, magnetic and electrical stimulation, seem to employ the same stimulation mechanisms in the nervous tissue. The results obtained with both methods should therefore be comparable. By measuring EMG-latencies after electrical and magnetic stimulation (Fig. 1) the exact site of magnetic stimulation can be determined. Magnetic stimulation offers major advantages over electrical stimulation: 1) Magnetic stimulation is a painless method even when high stimulus intensities are used. 2) Magnetic stimulation can reach deep neuronal structures that are not easily accessible using electrical stimulation (Fig. 2, Fig. 3). 3) Using a wide range of stimulus intensities (Fig. 4, Fig. 5) magnetic stimulation provides a much better descrimination of different components of the compound muscle action potential than electrical stimulation. Magnetic stimulation seems to be a promising new method for the electrodiagnostic examination of pain- sensitive patients, especially when deep-lying peripheral nerves have to be investigated.

  19. Effect of functional electrical stimulation on cardiovascular outcomes in patients with chronic heart failure.

    PubMed

    Kadoglou, Nikolaos Pe; Mandila, Christina; Karavidas, Apostolos; Farmakis, Dimitrios; Matzaraki, Vasiliki; Varounis, Christos; Arapi, Sofia; Perpinia, Anastasia; Parissis, John

    2017-05-01

    Background/design Functional electrical stimulation of lower limb muscles is an alternative method of training in patients with chronic heart failure (CHF). Although it improves exercise capacity in CHF, we performed a randomised, placebo-controlled study to investigate its effects on long-term clinical outcomes. Methods We randomly assigned 120 patients, aged 71 ± 8 years, with stable CHF (New York Heart Association (NYHA) class II/III (63%/37%), mean left ventricular ejection fraction 28 ± 5%), to either a 6-week functional electrical stimulation training programme or placebo. Patients were followed for up to 19 months for death and/or hospitalisation due to CHF decompensation. Results At baseline, there were no significant differences in demographic parameters, CHF severity and medications between groups. During a median follow-up of 383 days, 14 patients died (11 cardiac, three non-cardiac deaths), while 40 patients were hospitalised for CHF decompensation. Mortality did not differ between groups (log rank test P = 0.680), while the heart failure-related hospitalisation rate was significantly lower in the functional electrical stimulation group (hazard ratio (HR) 0.40, 95% confidence interval (CI) 0.21-0.78, P = 0.007). The latter difference remained significant after adjustment for prognostic factors: age, gender, baseline NYHA class and left ventricular ejection fraction (HR 0.22, 95% CI 0.10-0.46, P < 0.001). Compared to placebo, functional electrical stimulation training was associated with a lower occurrence of the composite endpoint (death or heart failure-related hospitalisation) after adjustment for the above-mentioned prognostic factors (HR 0.21, 95% CI 0.103-0.435, P < 0.001). However, that effect was mostly driven by the favourable change in hospitalisation rates. Conclusions In CHF patients, 6 weeks functional electrical stimulation training reduced the risk of heart failure-related hospitalisations, without affecting the mortality rate. The beneficial long-term effects of this alternative method of training require further investigation.

  20. Neuromuscular electrical stimulation and the treatment of lower urinary tract dysfunction in multiple sclerosis--a double blind, placebo controlled, randomised clinical trial.

    PubMed

    McClurg, D; Ashe, R G; Lowe-Strong, A S

    2008-01-01

    Lower urinary tract dysfunction affects up to 75% of the multiple sclerosis population. Results from our recent Pilot Study (McClurg et al., 2006) indicated that a combined programme of pelvic floor muscle training, electromyography biofeedback and neuromuscular electrical stimulation modalities may alleviate some of the distressing symptoms within this population. This clinical trial aimed to evaluate further the efficacy of these interventions and to establish the benefit of neuromuscular electrical stimulation above and beyond that of EMG biofeedback and pelvic floor muscle training. 74 multiple sclerosis patients who presented with lower urinary tract dysfunction were randomly allocated to one of two groups - Group 1 received Pelvic Floor Muscle Training, Electromyography Biofeedback and Placebo Neuromuscular Electrical Stimulation (n=37), and Group 2 which received Pelvic Floor Muscle Training, Electromyography Biofeedback, and Active Neuromuscular Electrical Stimulation (n=37). Treatment was for nine weeks with outcome measures recorded at weeks 0, 9, 16 and 24. The Primary Outcome Measure was the number of leakage episodes. Within group analysis was by Paired Samples t-test. Group differences were analysed using Repeated Measures Analysis of Variance and Post-hoc tests were used to determine the significance of differences between Groups at each time point. The mean number of incontinence episodes were reduced in Group 2 by 85% (p=0.001) whereas in Group 1 a lesser reduction of 47% (p=0.001) was observed. However, there was a statistically superior benefit in Group 2 when compared to Group 1 (p=0.0028). This superior benefit was evident in all other outcome measures. The addition of Active Neuromuscular Electrical Stimulation to a programme of Pelvic Floor Muscle Training and Electromyography Biofeedback should be considered as a first-line option in alleviating some of the symptoms of lower urinary tract dysfunction associated with multiple sclerosis. (c) 2007 Wiley-Liss, Inc.

  1. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.

    2004-01-01

    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  2. Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation of the motor cortex.

    PubMed Central

    Thompson, P D; Day, B L; Crockard, H A; Calder, I; Murray, N M; Rothwell, J C; Marsden, C D

    1991-01-01

    Activity in descending motor pathways after scalp electrical and magnetic brain stimulation of the motor cortex was recorded from the exposed cervico-medullary junction in six patients having trans-oral surgery of the upper cervical spine. Recordings during deep anaesthesia without muscle paralysis revealed an initial negative potential (D wave) at about 2 ms with electrical stimulation in five of the six patients. This was followed by a muscle potential which obscured any later waveforms. Magnetic stimulation produced clear potentials in only one patient. The earliest wave to magnetic stimulation during deep anaesthesia was 1-2 ms later than the earliest potential to electrical stimulation. Following lightening of the anaesthetic and the administration of muscle relaxants a series of later negative potentials (I waves) were more clearly seen to both electrical and magnetic stimulation. More I waves were recorded to magnetic stimulation during light anaesthesia than during deep anaesthesia. Increasing the intensity of electrical stimulation also produced an extra late I wave. At the highest intensity of magnetic stimulation the latency of the earliest potential was comparable to the D wave to electrical stimulation. The intervals between these various D and I waves corresponded to those previously described for the timing of single motor unit discharge after cortical stimulation. PMID:1654395

  3. Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation

    PubMed Central

    Sim, S.L.; Szalewski, R.J.; Johnson, L.J.; Akah, L.E.; Shoemaker, L.E.; Thoreson, W.B.; Margalit, E.

    2015-01-01

    We compared response patterns and electrical receptive fields (ERF) of retinal ganglion cells (RGCs) during epiretinal and subretinal electrical stimulation of isolated mouse retina. Retinas were stimulated with an array of 3200 independently controllable electrodes. Four response patterns were observed: a burst of activity immediately after stimulation (Type I cells, Vision Research (2008), 48, 1562–1568), delayed bursts beginning >25 ms after stimulation (Type II), a combination of both (Type III), and inhibition of ongoing spike activity. Type I responses were produced more often by epiretinal than subretinal stimulation whereas delayed and inhibitory responses were evoked more frequently by subretinal stimulation. Response latencies were significantly shorter with epiretinal than subretinal stimulation. These data suggest that subretinal stimulation is more effective at activating intraretinal circuits than epiretinal stimulation. There was no significant difference in charge threshold between subretinal and epiretinal configurations. ERFs were defined by the stimulating array surface area that successfully stimulated spikes in an RGC. ERFs were complex in shape, similar to receptive fields mapped with light. ERF areas were significantly smaller with subretinal than epiretinal stimulation. This may reflect the greater distance between stimulating electrodes and RGCs in the subretinal configuration. ERFs for immediate and delayed responses mapped within the same Type III cells differed in shape and size, consistent with different sites and mechanisms for generating these two response types. PMID:24863584

  4. Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test

    PubMed Central

    Rogel-Salazar, G; Luna-Munguía, H; Stevens, KE; Besio, WG

    2013-01-01

    Noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been under development by Besio as an alternative/complementary therapy for seizure control. TFS has shown efficacy attenuating penicillin, pilocarpine, and pentylenetetrazole– induced acute seizures in rat models. This study evaluated the effects of TFS via TCREs on the memory formation of healthy rats as a safety test of TFS. The short and long-term memory formation was tested after the application of TFS using the novel object recognition (NOR) test. Independent groups were used: naïve, control (without TFS), and TFS (treated). Naïve, control, and stimulated groups spent more time investigating the new object than the familiar one during the test phase. TFS via TCREs given once does not modify the short- and long-term memory formation in rats in the NOR test. Results provide an important step towards a better understanding for the safe usage of TFS via TCREs. PMID:23419871

  5. Synchronous electrical stimulation of laryngeal muscles: an alternative for enhancing recovery of unilateral recurrent laryngeal nerve paralysis.

    PubMed

    Garcia Perez, Alejandro; Hernández López, Xochiquetzal; Valadez Jiménez, Víctor Manuel; Minor Martínez, Arturo; Ysunza, Pablo Antonio

    2014-07-01

    Although electrical stimulation of the larynx has been widely studied for treating voice disorders, its effectiveness has not been assessed under safety and comfortable conditions. This article describes design, theoretical issues, and preliminary evaluation of an innovative system for transdermal electrical stimulation of the larynx. The proposed design includes synchronization of electrical stimuli with laryngeal neuromuscular activity. To study whether synchronous electrical stimulation of the larynx could be helpful for improving voice quality in patients with dysphonia due to unilateral recurrent laryngeal nerve paralysis (URLNP). A 3-year prospective study was carried out at the Instituto Nacional de Rehabilitacion in the Mexico City. Ten patients were subjected to transdermal current electrical stimulation synchronized with the fundamental frequency of the vibration of the vocal folds during phonation. The stimulation was triggered during the phase of maximum glottal occlusion. A complete acoustic voice analysis was performed before and after the period of electrical stimulation. Acoustic analysis revealed significant improvements in all parameters after the stimulation period. Transdermal synchronous electrical stimulation of vocal folds seems to be a safe and reliable procedure for enhancing voice quality in patients with (URLNP). Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  6. Conductive polymers for controlled release and treatment of central nervous system injury

    NASA Astrophysics Data System (ADS)

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly[(D,L-lactide-co-glycolide)-co-polyethylene glycol] (PLGA-PEG) nanoparticles and then demonstrated scalable incorporation and controlled release. In a functional application, electronically-controlled release of minocycline nanoparticles was used to rescue primary spinal cord neurons from an excitotoxic environment in vitro. This approach offers a wide range of therapeutic possibilities, especially for treating traumatic lesions of the central nervous system. Finally, we explored use of conductive polymers for directed differentiation of progenitor cells. Retinal progenitors were seeded on custom polypyrrole cell culture devices and subjected to a biomimetic pattern of electrical stimulation. Stimulated cells showed phenotypic changes, increased neurite outgrowth, increased immunocytochemical expression of cone rod homeobox (CRX) and protein kinase C (PK-C), and decreased expression of glial fibrillary acidic protein (GFAP). Biomimetic stimulation thus led cells towards early photoreceptor and bipolar cell fates, and away from an astrocytic cell fate. Electrical stimulation via a conductive polymer offers a novel approach for directing differentiation of progenitor cells.

  7. Alcohol impairs skeletal muscle protein synthesis and mTOR signaling in a time-dependent manner following electrically stimulated muscle contraction

    PubMed Central

    Lang, Charles H.

    2014-01-01

    Alcohol (EtOH) decreases protein synthesis and mammalian target of rapamycin (mTOR)-mediated signaling and blunts the anabolic response to growth factors in skeletal muscle. The purpose of the current investigation was to determine whether acute EtOH intoxication antagonizes the contraction-induced increase in protein synthesis and mTOR signaling in skeletal muscle. Fasted male mice were injected intraperitoneally with 3 g/kg EtOH or saline (control), and the right hindlimb was electrically stimulated (10 sets of 6 contractions). The gastrocnemius muscle complex was collected 30 min, 4 h, or 12 h after stimulation. EtOH decreased in vivo basal protein synthesis (PS) in the nonstimulated muscle compared with time-matched Controls at 30 min, 4 h, and 12 h. In Control, but not EtOH, PS was decreased 15% after 30 min. In contrast, PS was increased in Control 4 h poststimulation but remained unchanged in EtOH. Last, stimulation increased PS 10% in Control and EtOH at 12 h, even though the absolute rate remained reduced by EtOH. The stimulation-induced increase in the phosphorylation of S6K1 Thr421/Ser424 (20–52%), S6K1 Thr389 (45–57%), and its substrate rpS6 Ser240/244 (37–72%) was blunted by EtOH at 30 min, 4 h, and 12 h. Phosphorylation of 4E-BP1 Ser65 was also attenuated by EtOH (61%) at 4 h. Conversely, phosphorylation of extracellular signal-regulated kinase Thr202/Tyr204 was increased by stimulation in Control and EtOH mice at 30 min but only in Control at 4 h. Our data indicate that acute EtOH intoxication suppresses muscle protein synthesis for at least 12 h and greatly impairs contraction-induced changes in synthesis and mTOR signaling. PMID:25257868

  8. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice.

    PubMed

    Park, Dong-Wook; Ness, Jared P; Brodnick, Sarah K; Esquibel, Corinne; Novello, Joseph; Atry, Farid; Baek, Dong-Hyun; Kim, Hyungsoo; Bong, Jihye; Swanson, Kyle I; Suminski, Aaron J; Otto, Kevin J; Pashaie, Ramin; Williams, Justin C; Ma, Zhenqiang

    2018-01-23

    Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 μC/cm 2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.

  9. Development of a simple MR-compatible vibrotactile stimulator using a planar-coil-type actuator.

    PubMed

    Kim, Hyung-Sik; Choi, Mi-Hyun; Chung, Yoon-Gi; Kim, Sung-Phil; Jun, Jae-Hoon; Park, Jang-Yeon; Yi, Jeong-Han; Park, Jong-Rak; Lim, Dae-Woon; Chung, Soon-Cheol

    2013-06-01

    For this study, we developed a magnetic resonance (MR)-compatible vibrotactile stimulator using a planar-coil-type actuator. The newly developed vibrotactile stimulator consists of three units: control unit, drive unit, and planar-coil-type actuator. The control unit controls frequency, intensity, time, and channel, and transfers the stimulation signals to the drive unit. The drive unit operates the planar-coil-type actuator in response to commands from the control unit. The planar-coil-type actuator, which uses a planar coil instead of conventional electric wire, generates vibrating stimulation through interaction of the current of the planar coil with the static magnetic field of the MR scanner. Even though the developed tactile stimulating system is small, simple, and inexpensive, it has a wide range of stimulation frequencies (20 ~ 400 Hz, at 40 levels) and stimulation intensities (0 ~ 7 V, at 256 levels). The stimulation intensity does not change due to frequency changes. Since the transient response time is a few microseconds, the stimulation time can be controlled on a scale of microseconds. In addition, this actuator has the advantages of providing highly repeatable stimulation, being durable, being able to assume various shapes, and having an adjustable contact area with the skin. The new stimulator operated stably in an MR environment without affecting the MR images. Using functional magnetic resonance imaging, we observed the brain activation changes resulting from stimulation frequency and intensity changes.

  10. Electrical and optical co-stimulation in the deaf white cat

    NASA Astrophysics Data System (ADS)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  11. The effect of stimulus frequency on the analgesic response to percutaneous electrical nerve stimulation in patients with chronic low back pain.

    PubMed

    Ghoname, E S; Craig, W F; White, P F; Ahmed, H E; Hamza, M A; Gajraj, N M; Vakharia, A S; Noe, C E

    1999-04-01

    Low back pain (LBP) is one of the most common medical problems in our society. Increasingly, patients are turning to nonpharmacologic analgesic therapies such as percutaneous electrical nerve stimulation (PENS). We designed this sham-controlled study to compare the effect of three different frequencies of electrical stimulation on the analgesic response to PENS therapy. Sixty-eight consenting patients with LBP secondary to degenerative lumbar disc disease were treated with PENS therapy at 4 Hz, alternating 15 Hz and 30 Hz (15/30 Hz), and 100 Hz, as well as sham-PENS (0 Hz), according to a randomized, cross-over study design. Each treatment was administered for a period of 30 min three times per week for 2 wk. The pre- and posttreatment assessments included the health status survey short form and visual analog scales for pain, physical activity, and quality of sleep. After receiving all four treatments, patients completed a global assessment questionnaire. The sham-PENS treatments failed to produce changes in the degree of pain, physical activity, sleep quality, or daily intake of oral analgesic medications. In contrast, 4-Hz, 15/30-Hz, and 100-Hz stimulation all produced significant decreases in the severity of pain, increases in physical activity, improvements in the quality of sleep, and decreases in oral analgesic requirements (P < 0.01). Of the three frequencies, 15/30 Hz was the most effective in decreasing pain, increasing physical activity, and improving the quality of sleep (P < 0.05). In the global assessment, 40% of the patients reported that 15/30 Hz was the most desirable therapy, and it was also more effective in improving the patient's sense of well-being. We conclude that the frequency of electrical stimulation is an important determinant of the analgesic response to PENS therapy. Alternating stimulation at 15-Hz and 30-Hz frequencies was more effective than either 4 Hz or 100 Hz in improving outcome measures in patients with LBP. The frequency of electrical stimulation seems to be an important determinant of the analgesic efficacy of percutaneous electrical nerve stimulation. Mixed low- and high-frequency stimulation was more effective than either low or high frequencies alone in the treatment of patients with low back pain.

  12. Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain.

    PubMed

    Reinhart, Robert M G; Zhu, Julia; Park, Sohee; Woodman, Geoffrey F

    2015-07-28

    Executive control and flexible adjustment of behavior following errors are essential to adaptive functioning. Loss of adaptive control may be a biomarker of a wide range of neuropsychiatric disorders, particularly in the schizophrenia spectrum. Here, we provide support for the view that oscillatory activity in the frontal cortex underlies adaptive adjustments in cognitive processing following errors. Compared with healthy subjects, patients with schizophrenia exhibited low frequency oscillations with abnormal temporal structure and an absence of synchrony over medial-frontal and lateral-prefrontal cortex following errors. To demonstrate that these abnormal oscillations were the origin of the impaired adaptive control in patients with schizophrenia, we applied noninvasive dc electrical stimulation over the medial-frontal cortex. This noninvasive stimulation descrambled the phase of the low-frequency neural oscillations that synchronize activity across cortical regions. Following stimulation, the behavioral index of adaptive control was improved such that patients were indistinguishable from healthy control subjects. These results provide unique causal evidence for theories of executive control and cortical dysconnectivity in schizophrenia.

  13. Dormitory Residents Reduce Electricity Consumption when Exposed to Real-Time Visual Feedback and Incentives

    ERIC Educational Resources Information Center

    Petersen, John E.; Shunturov, Vladislav; Janda, Kathryn; Platt, Gavin; Weinberger, Kate

    2007-01-01

    Purpose: In residential buildings, personal choices influence electricity and water consumption. Prior studies indicate that information feedback can stimulate resource conservation. College dormitories provide an excellent venue for controlled study of the effects of feedback. The goal of this study is to assess how different resolutions of…

  14. [A comparison of time resolution among auditory, tactile and promontory electrical stimulation--superiority of cochlear implants as human communication aids].

    PubMed

    Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T

    1992-09-01

    Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.

  15. Hybrid assistive systems for rehabilitation: lessons learned from functional electrical therapy in hemiplegics.

    PubMed

    Popović, Dejan B; Popović, Mirjana B

    2006-01-01

    This paper suggests that the optimal method for promoting of the recovery of upper extremity function in hemiplegic individuals is the use of hybrid assistive systems (HAS). The suggested HAS is a combination of stimulation of paralyzed distal segments (hand) in synchrony with robot controlled movements of proximal segments (upper arm and forearm). The use of HAS is envisioned as part of voluntary activation of preserved sensory-motor systems during task related exercise. This HAS design follows our results from functional electrical therapy, constraint induced movement therapy, intensive exercise therapy, and use of robots for rehabilitation. The suggestion is also based on strong evidences that cortical plasticity is best promoted by task related exercise and patterned electrical stimulation.

  16. Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways.

    PubMed

    Lambernd, S; Taube, A; Schober, A; Platzbecker, B; Görgens, S W; Schlich, R; Jeruschke, K; Weiss, J; Eckardt, K; Eckel, J

    2012-04-01

    Obesity is closely associated with muscle insulin resistance and is a major risk factor for the pathogenesis of type 2 diabetes. Regular physical activity not only prevents obesity, but also considerably improves insulin sensitivity and skeletal muscle metabolism. We sought to establish and characterise an in vitro model of human skeletal muscle contraction, with a view to directly studying the signalling pathways and mechanisms that are involved in the beneficial effects of muscle activity. Contracting human skeletal muscle cell cultures were established by applying electrical pulse stimulation. To induce insulin resistance, skeletal muscle cells were incubated with human adipocyte-derived conditioned medium, monocyte chemotactic protein (MCP)-1 and chemerin. Similarly to in exercising skeletal muscle in vivo, electrical pulse stimulation induced contractile activity in human skeletal muscle cells, combined with the formation of sarcomeres, activation of AMP-activated protein kinase (AMPK) and increased IL-6 secretion. Insulin-stimulated glucose uptake was substantially elevated in contracting cells compared with control. The incubation of skeletal muscle cells with adipocyte-conditioned media, chemerin and MCP-1 significantly reduced the insulin-stimulated phosphorylation of Akt. This effect was abrogated by concomitant pulse stimulation of the cells. Additionally, pro-inflammatory signalling by adipocyte-derived factors was completely prevented by electrical pulse stimulation of the myotubes. We showed that the effects of electrical pulse stimulation on skeletal muscle cells were similar to the effect of exercise on skeletal muscle in vivo in terms of enhanced AMPK activation and IL-6 secretion. In our model, muscle contractile activity eliminates insulin resistance by blocking pro-inflammatory signalling pathways. This novel model therefore provides a unique tool for investigating the molecular mechanisms that mediate the beneficial effects of muscle contraction.

  17. Nanomaterial-Enabled Neural Stimulation

    PubMed Central

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  18. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    PubMed

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  19. Electrical Stimulation of Coleopteran Muscle for Initiating Flight

    PubMed Central

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  20. Placebo-controlled vagus nerve stimulation paired with tones in a patient with refractory tinnitus: a case report.

    PubMed

    De Ridder, Dirk; Kilgard, Michael; Engineer, Navzer; Vanneste, Sven

    2015-04-01

    Classical neuromodulation consists of applying electrical or magnetic stimuli to the nervous system to modulate ongoing activity and connectivity. However, recently, an exciting novel neuromodulation technique was developed in which stimulation of the vagal nerve was paired with simultaneous presentation of tones, demonstrating that it reverses a tinnitus percept in noise-exposed rats. To determine whether this therapy could also be effective in humans, we delivered a similar therapy in a patient with chronic tinnitus unresponsive to previous therapies. In this report, we describe the case of a 59-year-old man who suffered from bilateral tinnitus for 14 years that arose after a cervical fusion operation. Pharmacotherapy, transcranial magnetic stimulation, transcranial direct current stimulation, neurofeedback, and bilateral auditory cortex stimulation via implanted electrodes did not improve the tinnitus. After implanting the vagal nerve stimulator, the patient received daily vagus nerve stimulation tone pairings for 4 weeks in a non-placebo-controlled way. At the end of therapy, the patient experienced a significant reduction in tinnitus symptoms that lasted for 2 months after treatment. Tinnitus Handicap Inventory and Tinnitus Reaction Questionnaire were reduced by 48% and 68%, respectively. Symptoms of depression were also improved by 40%, as quantified by the Beck Depression Inventory. Three months after ending therapy, placebo stimulation was performed consisting of only tone presentation without the simultaneous electrical stimuli. This resulted in further continuation of the gradual relapse to the baseline state, without renewed improvement. Our results suggest that vagus nerve stimulation paired with tones could become an effective therapy for the treatment of tinnitus.

  1. Electrical neurostimulation with imbalanced waveform mitigates dissolution of platinum electrodes

    PubMed Central

    Kumsa, Doe; Hudak, Eric M; Montague, Fred W; Kelley, Shawn C; Untereker, Darrel F; Hahn, Benjamin P; Condit, Chris; Cholette, Martin; Lee, Hyowon; Bardot, Dawn; Takmakov, Pavel

    2017-01-01

    Objective Electrical neurostimulation has traditionally been limited to the use of charge-balanced waveforms. Charge-imbalanced and monophasic waveforms are not used to deliver clinical therapy, because it is believed that these stimulation paradigms may generate noxious electrochemical species that cause tissue damage. Approach In this study, we investigated the dissolution of platinum as one of such irreversible reactions over a range of charge densities up to 160 µC cm−2 with current-controlled first phase, capacitive discharge second phase waveforms of both cathodic-first and anodic-first polarity. We monitored the concentration of platinum in solution under different stimulation delivery conditions including charge-balanced, charge-imbalanced, and monophasic pulses. Main results We observed that platinum dissolution decreased during charge-imbalanced and monophasic stimulation when compared to charge-balanced waveforms. Significance This observation provides an opportunity to re-evaluate the charge-balanced waveform as the primary option for sustainable neural stimulation. PMID:27650936

  2. Optimization and evaluation of a proportional derivative controller for planar arm movement.

    PubMed

    Jagodnik, Kathleen M; van den Bogert, Antonie J

    2010-04-19

    In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Optimization and evaluation of a proportional derivative controller for planar arm movement

    PubMed Central

    Jagodnik, Kathleen M.; van den Bogert, Antonie J.

    2013-01-01

    In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. PMID:20097345

  4. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients.

    PubMed

    Gordon, Tessa; Amirjani, Nasim; Edwards, David C; Chan, K Ming

    2010-05-01

    Electrical stimulation (ES) of injured peripheral nerves accelerates axonal regeneration in laboratory animals. However, clinical applicability of this intervention has never been investigated in human subjects. The aim of this pilot study was to determine the effect of ES on axonal regeneration after surgery in patients with median nerve compression in the carpal tunnel causing marked motor axonal loss. A randomized control trial was conducted to provide proof of principle for ES-induced acceleration of axon regeneration in human patients. Carpel tunnel release surgery (CTRS) was performed and in the stimulation group of patients, stainless steel electrode wires placed alongside the median nerve proximal to the surgical decompression site for immediate 1 h 20 Hz bipolar ES. Subjects were followed for a year at regular intervals. Axonal regeneration was quantified using motor unit number estimation (MUNE) and sensory and motor nerve conduction studies. Purdue Pegboard Test, Semmes Weinstein Monofilaments, and Levine's Self-Assessment Questionnaire were used to assess functional recovery. The stimulation group had significant axonal regeneration 6-8 months after the CTRS when the MUNE increased to 290+/-140 (mean+/-SD) motor units (MU) from 150+/-62 MU at baseline (p<0.05). In comparison, MUNE did not significantly improve in the control group (p>0.2). Terminal motor latency significantly accelerated in the stimulation group but not the control group (p>0.1). Sensory nerve conduction values significantly improved in the stimulation group earlier than the controls. Other outcome measures showed a significant improvement in both patient groups. We conclude that brief low frequency ES accelerates axonal regeneration and target reinnervation in humans. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Optical mapping of optogenetically shaped cardiac action potentials.

    PubMed

    Park, Sarah A; Lee, Shin-Rong; Tung, Leslie; Yue, David T

    2014-08-19

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation.

  6. Optical mapping of optogenetically shaped cardiac action potentials

    PubMed Central

    Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.

    2014-01-01

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113

  7. Is there a role for TENS application in the control of diabetes mellitus in insulin-dependent patients?

    PubMed

    Khan, Mueen Ullah

    2012-11-01

    An 80-year-old man with insulin-dependent diabetes mellitus presented to the hospital with low back pain. He was initially managed with non-steroidal anti-inflammatory drugs, tramadol and epidural steroid injection. Transcutaneous electrical nerve stimulation (TENS), applied on the back and buttocks, was subsequently advised. Initially, TENS was applied once every 24 hours. On improvement of pain symptoms, it was increased to thrice every 24 hours. The patient then complained of symptoms of hypoglycaemia (blood sugar level < 4 mmol/L). Discontinuation of TENS resulted in raised blood sugar level. When TENS was restarted, the same hypoglycaemic response was noted. The insulin dosage was adjusted to half of the patient's routine daily requirement with continued application of TENS. This incidental finding has alerted us to hypoglycaemic episodes following TENS application, which may be due to effective pain control, decreased sympathetic stimulation, enhanced insulin sensitivity or altered muscle metabolism due to electrical stimulation.

  8. Tongue muscle plasticity following hypoglossal nerve stimulation in aged rats

    PubMed Central

    Connor, Nadine P.; Russell, John A.; Jackson, Michelle A.; Kletzien, Heidi; Wang, Hao; Schaser, Allison J.; Leverson, Glen E.; Zealear, David L.

    2012-01-01

    Introduction Age-related decreases in tongue muscle mass and strength have been reported. It may be possible to prevent age-related tongue muscle changes using neuromuscular electrical stimulation (NMES). Our hypothesis was that alterations in muscle contractile properties and myosin heavy chain composition would be found following NMES. Methods Fifty-four young, middle-aged and old Fischer 344/Brown Norway rats were included. Twenty-four rats underwent bilateral electrical stimulation of the hypoglossal nerves for 8 weeks and were compared with control or sham rats. Muscle contractile properties and myosin heavy chain (MHC) in the genioglossus (GG), styloglossus (SG) and hyoglossus (HG) muscles were examined. Results In comparison with unstimulated control rats, we found reduced muscle fatigue, increased contraction and half decay times and increased twitch and tetanic tension. Increased Type I MHC was found, except for GG in old and middle-aged rats. Discussion Transitions in tongue muscle contractile properties and phenotype were found following NMES. PMID:23169566

  9. Inverted Pendulum Standing Apparatus for Investigating Closed-Loop Control of Ankle Joint Muscle Contractions during Functional Electrical Stimulation.

    PubMed

    Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R

    2014-01-01

    The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.

  10. Inverted Pendulum Standing Apparatus for Investigating Closed-Loop Control of Ankle Joint Muscle Contractions during Functional Electrical Stimulation

    PubMed Central

    Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.

    2014-01-01

    The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992

  11. Effects of transcutaneous electrical nerve stimulation on pain intensity during application of carboxytherapy in patients with cellulite: A randomized placebo-controlled trial.

    PubMed

    Sadala, Adria Y; Machado, Aline F P; Liebano, Richard E

    2018-01-16

    Carboxytherapy may generate local pain that is considered the main limiting factor in clinical practice. Transcutaneous electric nerve stimulation (TENS) is widely used in the control of acute pain; however, the effect of TENS on pain relief during carboxytherapy has not been studied to date. To assess the effect of TENS on pain intensity during carboxytherapy in patients with cellulite in the gluteal region. This randomized clinical trial was conducted with 84 patients, 18-44 years of age, who had moderate cellulite in the gluteal region, according to Cellulite Severity Scale, but never received carboxytherapy. Patients were randomized into 3 groups: active TENS, placebo TENS, and control group. For the intervention, skin depressions with cellulite were outlined, and the gluteal area to be treated was defined. The subcutaneous injection of CO 2 was performed using 0.30 × 13 mm-needles at a 45° angle, with a controlled flow rate of 100 mL/min maintained for 1 minute at each puncture site. The parameters for TENS were as follows: frequency of 100 Hz and pulse duration of 200 μs; TENS intensity was adjusted until the patient reported strong paresthesia. The visual numeric pain rating scale was used to assess pain intensity after each puncture. The active TENS group reported lower pain intensity compared to the placebo TENS (P < .0001) and control (P < .0001) groups. Transcutaneous electric nerve stimulation (TENS) was effective in reducing pain intensity during carboxytherapy in patients with cellulite in the gluteal region. © 2018 Wiley Periodicals, Inc.

  12. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve

    NASA Astrophysics Data System (ADS)

    Caravaca, A. S.; Tsaava, T.; Goldman, L.; Silverman, H.; Riggott, G.; Chavan, S. S.; Bouton, C.; Tracey, K. J.; Desimone, R.; Boyden, E. S.; Sohal, H. S.; Olofsson, P. S.

    2017-12-01

    Objective. Neural reflexes regulate immune responses and homeostasis. Advances in bioelectronic medicine indicate that electrical stimulation of the vagus nerve can be used to treat inflammatory disease, yet the understanding of neural signals that regulate inflammation is incomplete. Current interfaces with the vagus nerve do not permit effective chronic stimulation or recording in mouse models, which is vital to studying the molecular and neurophysiological mechanisms that control inflammation homeostasis in health and disease. We developed an implantable, dual purpose, multi-channel, flexible ‘microelectrode’ array, for recording and stimulation of the mouse vagus nerve. Approach. The array was microfabricated on an 8 µm layer of highly biocompatible parylene configured with 16 sites. The microelectrode was evaluated by studying the recording and stimulation performance. Mice were chronically implanted with devices for up to 12 weeks. Main results. Using the microelectrode in vivo, high fidelity signals were recorded during physiological challenges (e.g potassium chloride and interleukin-1β), and electrical stimulation of the vagus nerve produced the expected significant reduction of blood levels of tumor necrosis factor (TNF) in endotoxemia. Inflammatory cell infiltration at the microelectrode 12 weeks of implantation was limited according to radial distribution analysis of inflammatory cells. Significance. This novel device provides an important step towards a viable chronic interface for cervical vagus nerve stimulation and recording in mice.

  13. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    NASA Astrophysics Data System (ADS)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  14. Microsoft kinect-based artificial perception system for control of functional electrical stimulation assisted grasping.

    PubMed

    Strbac, Matija; Kočović, Slobodan; Marković, Marko; Popović, Dejan B

    2014-01-01

    We present a computer vision algorithm that incorporates a heuristic model which mimics a biological control system for the estimation of control signals used in functional electrical stimulation (FES) assisted grasping. The developed processing software acquires the data from Microsoft Kinect camera and implements real-time hand tracking and object analysis. This information can be used to identify temporal synchrony and spatial synergies modalities for FES control. Therefore, the algorithm acts as artificial perception which mimics human visual perception by identifying the position and shape of the object with respect to the position of the hand in real time during the planning phase of the grasp. This artificial perception used within the heuristically developed model allows selection of the appropriate grasp and prehension. The experiments demonstrate that correct grasp modality was selected in more than 90% of tested scenarios/objects. The system is portable, and the components are low in cost and robust; hence, it can be used for the FES in clinical or even home environment. The main application of the system is envisioned for functional electrical therapy, that is, intensive exercise assisted with FES.

  15. Microsoft Kinect-Based Artificial Perception System for Control of Functional Electrical Stimulation Assisted Grasping

    PubMed Central

    Kočović, Slobodan; Popović, Dejan B.

    2014-01-01

    We present a computer vision algorithm that incorporates a heuristic model which mimics a biological control system for the estimation of control signals used in functional electrical stimulation (FES) assisted grasping. The developed processing software acquires the data from Microsoft Kinect camera and implements real-time hand tracking and object analysis. This information can be used to identify temporal synchrony and spatial synergies modalities for FES control. Therefore, the algorithm acts as artificial perception which mimics human visual perception by identifying the position and shape of the object with respect to the position of the hand in real time during the planning phase of the grasp. This artificial perception used within the heuristically developed model allows selection of the appropriate grasp and prehension. The experiments demonstrate that correct grasp modality was selected in more than 90% of tested scenarios/objects. The system is portable, and the components are low in cost and robust; hence, it can be used for the FES in clinical or even home environment. The main application of the system is envisioned for functional electrical therapy, that is, intensive exercise assisted with FES. PMID:25202707

  16. [New use of pulse-oximeter as a prophylactic Stimulator to the wearer and a lifesaving tools for prevention of hypoxic mishaps].

    PubMed

    Morioka, Tohru; Terasaki, Hidenori

    2014-03-01

    Pulse-oximeter has been widely used for the clinical assessment of physical status of a patient and as an alarming tool of hypoxia to medical personnel at the bedside or in the observation center. However, it has never been used for direct stimulation of the wearer. We considered innovation of pulse-oximeter as a prophylactic alarm-oximeter for the wearer. If SPO2 goes down to unfavorable level, the alarm-oximeter starts to send signal through a control box to a stimulator, such as an electrical nerve stimulator, a cold thermal tip, or mechanical device like a vibrator or compressor. The dermal stimulator is usually fixed to the right or left wrist with a Velcro band. The control box is affixed to the wristband by using Velcro. The alarm may be sent to an earphone or speaker with a verbal command like "take a deep breath". Alarm-oximeter will be combined to an oxygen inhaler or mechanical ventilatory assist device, or a drug administration system through electric line or wireless transmitter to start or change its function before the arrival of medical personnel. It will prevent hypoxic mishaps during medical intervention or sleep apnea syndrome. It will be also applicable to stop snoring.

  17. Development of an integrated surface stimulation device for systematic evaluation of wound electrotherapy.

    PubMed

    Howe, D S; Dunning, J; Zorman, C; Garverick, S L; Bogie, K M

    2015-02-01

    Ideally, all chronic wounds would be prevented as they can become life threatening complications. The concept that a wound produces a 'current of injury' due to the discontinuity in the electrical field of intact skin provides the basis for the concept that electrical stimulation (ES) may provide an effective treatment for chronic wounds. The optimal stimulation waveform parameters are unknown, limiting the reliability of achieving a successful clinical therapeutic outcome. In order to gain a more thorough understanding of ES for chronic wound therapy, systematic evaluation using a valid in vivo model is required. The focus of the current paper is development of the flexible modular surface stimulation (MSS) device by our group. This device can be programed to deliver a variety of clinically relevant stimulation paradigms and is essential to facilitate systematic in vivo studies. The MSS version 2.0 for small animal use provides all components of a single-channel, programmable current-controlled ES system within a lightweight, flexible, independently-powered portable device. Benchtop testing and validation indicates that custom electronics and control algorithms support the generation of high-voltage, low duty-cycle current pulses in a power-efficient manner, extending battery life and allowing ES therapy to be delivered for up to 7 days without needing to replace or disturb the wound dressing.

  18. Effect of neuromuscular electrical muscle stimulation on energy expenditure in healthy adults.

    PubMed

    Hsu, Miao-Ju; Wei, Shun-Hwa; Chang, Ya-Ju

    2011-01-01

    Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES) at different intensities on energy expenditure (oxygen and calories) in healthy adults. The secondary aim was to develop a generalized linear regression (GEE) model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender) associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females) participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1), motor threshold (E2), and maximal intensity comfortably tolerated (E3). Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject's demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

  19. Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation.

    PubMed

    Ring, Haim; Rosenthal, Nechama

    2005-01-01

    Assess the effects of daily neuroprosthetic (NESS Handmaster) functional electrical stimulation in sub-acute stroke. Controlled study, patients clinically stratified to 2 groups; no active finger movement, and partial active finger movements, and then randomized to control and neuroprosthesis groups. Observer blinded evaluations at baseline and completion of the 6-week study. 22 patients with moderate to severe upper limb paresis 3-6 months post-onset. Patients in day hospital rehabilitation, receiving physical and occupational therapy 3 times weekly. The neuroprosthesis group used the device at home. The neuroprosthesis group had significantly greater improvements in spasticity, active range of motion and scores on the functional hand tests (those with partial active motion). Of the few patients with pain and oedema, there was improvement only among those in the neuroprosthesis group. There were no adverse reactions. Supplementing standard outpatient rehabilitation with daily home neuroprosthetic activation improves upper limb outcomes.

  20. Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly.

    PubMed

    Yan, Kun; Liu, Yi; Zhang, Jitao; Correa, Santiago O; Shang, Wu; Tsai, Cheng-Chieh; Bentley, William E; Shen, Jana; Scarcelli, Giuliano; Raub, Christopher B; Shi, Xiao-Wen; Payne, Gregory F

    2018-02-12

    The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.

  1. Different mechanisms for the short-term effects of real versus sham transcutaneous electrical nerve stimulation (TENS) in patients with chronic pain: a pilot study.

    PubMed

    Oosterhof, Jan; Wilder-Smith, Oliver H; Oostendorp, Rob A; Crul, Ben J

    2012-01-01

    Transcutaneous electrical nerve stimulation (TENS) has existed since the early 1970s. However, randomized placebo controlled studies show inconclusive results in the treatment of chronic pain. These results could be explained by assuming that TENS elicits a placebo response. However, in animal research TENS has been found to decrease hyperalgesia, which contradicts this assumption. The aim of this study is to use quantitative sensory testing to explore changes in pain processing during sham versus real TENS in patients with chronic pain. Patients with chronic pain (N = 20) were randomly allocated to real TENS or sham TENS application. Electrical pain thresholds (EPTs) were determined inside and outside the segment stimulated, before and after the first 20 minutes of the intervention, and after a period of 10 days of daily real/sham TENS application. Pain relief did not differ significantly for real versus sham TENS. However, by comparing time courses of EPTs, it was found that EPT values outside the segment of stimulation increased for sham TENS, whereas for real TENS these values decreased. There were, however, no differences for EPT measurements inside the segment stimulated. These results illustrate the importance of including mechanism-reflecting parameters in addition to symptoms when conducting pain research.

  2. The effects of electromyography-triggered electrical stimulation on shoulder subluxation, muscle activation, pain, and function in persons with stroke: A pilot study.

    PubMed

    Jeon, Somyung; Kim, Young; Jung, Kyoungsim; Chung, Yijung

    2017-01-01

    The purpose of this study was to examine the effects of task-oriented electromyography-triggered stimulation for shoulder subluxation, muscle activation, pain and upper extremity function in hemiparetic stroke patients. Twenty participants with subacute hemiparetic stroke were recruited for this study and were randomly divided into two groups: experimental group (n = 10) and control group (n = 10). Subjects in the experimental group participated in task-oriented electromyography triggered stimulation for 30 minutes, five times a week for four weeks, whereas the control group received cyclic functional electrical stimulation for 30 minutes, five times a week for four weeks. Subjects in both groups received conventional physical therapy for four weeks (30 min/day, five times/week). Data collected included the degree of shoulder subluxation which had been confirmed by X-ray, muscle activation of the supraspinatus and posterior deltoid muscles by electromyography, pain by the Visual Analogue Scale (VAS), and hand function by the Fugl-Meyer Assessment (FMA) before and after the four week exercise period. The results showed significant improvement in shoulder subluxation, muscle activation, and VAS results in the experimental group, compared with the control group(p < 0.05). FMA scores showed no significant differences between the two groups. In conclusion, task-oriented electromyography-triggered stimulation improved shoulder subluxation, muscle activation, pain and upper extremity function. These results suggest that task-oriented electromyography-triggered stimulation is effective and beneficial for individuals with subacute stroke, and that further studies should be conducted on multivarious anatomical regions.

  3. Treatment Effects for Dysphagia in Adults with Multiple Sclerosis: A Systematic Review.

    PubMed

    Alali, Dalal; Ballard, Kirrie; Bogaardt, Hans

    2016-10-01

    Dysphagia or swallowing difficulties have been reported to be a concern in adults with multiple sclerosis (MS). This problem can result in several complications including aspiration pneumonia, reduced quality of life and an increase in mortality rate. No previous systematic reviews on treatment effects for dysphagia in MS have been published. The main objective of this study is to summarise and qualitatively analyse published studies on treatment effects for dysphagia in MS. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were applied to conduct a systematic search of seven databases, using relevant key words, and subsequent analysis of the identified studies. The studies were required to meet all three inclusion criteria of including a statement on intention to treat, or measure the effects of treatment for dysphagia in adults with MS and data on treatment outcomes for at least one adult diagnosed with MS. Retained studies were evaluated by two independent reviewers using a critical appraisal tool. This study has not been registered. A total of 563 studies were identified from the database searches. After screening and assessment of full articles for eligibility, five studies were included in the review. Three examined electrical stimulation and two examined the use of botulinum toxin. One study testing electrical stimulation was a randomised controlled trial, two were well-designed case series and two were case series lacking experimental control. All studies reported some positive effects on dysphagia; however, treatments that involved the use of electrical stimulation showed larger effect sizes. There is a paucity of evidence to guide treatment of dysphagia in MS, with only electrical stimulation and botulinum toxin treatment represented in the literature search conducted here. While both treatments show initial promise for reducing the swallowing impairment, they require further research using well-controlled experimental designs to determine their clinical applicability and long-term treatment effects for dysphagia across different types and severity of MS.

  4. Functional electrical stimulation for chronic heart failure: a meta-analysis.

    PubMed

    Smart, Neil A; Dieberg, Gudrun; Giallauria, Francesco

    2013-07-15

    We conducted a meta-analysis of randomized, controlled trials of combined electrical stimulation versus conventional exercise training or placebo control in heart failure patients. A systematic search was conducted of Medline (Ovid) (1950-September 2011), Embase.com (1974-September 2011), Cochrane Central Register of Controlled Trials and CINAHL (1981-September 2011). The search strategy included a mix of MeSH and free text terms for the key concepts heart failure, exercise training and functional electrical stimulation (FES). FES produced inferior improvements in peak VO2 when compared to cycle training: mean difference (MD) -0.32 ml.kg(-1).min(-1) (95% C.I. -0.63 to -0.02 ml.kg(-1).min(-1), p=0.04), however FES elicited superior improvements in peak VO2: MD 2.30 ml.kg(-1).min(-1) (95% C.I. 1.98 to 2.62 ml.kg(-1).min(-1), p<0.00001); and six minute walk distance to sedentary care or sham FES; MD 46.9 m (95% C.I. 22.5 to 71.3m, p=0.0002). There was no difference in change in quality of life between cycling and FES, but FES elicited significantly larger improvements in Minnesota Living with Heart Failure score than placebo or sham treatment; MD 1.15 (95% C.I. 0.69 to 1.61, p<0.00001). Moreover, the total FES intervention hours were strongly correlated with change in peak VO2, (r=0.80, p=0.02). Passive or active exercise is beneficial for patients with moderate to severe heart failure, but active cycling, or other aerobic/resistance activity is preferred in patients with heart failure who are able to exercise, and FES is the preferred modality in those unable to actively exercise. The benefits of FES may however, be smaller than those observed in conventional exercise training. Aggregate hours of electrical stimulation therapy were associated with larger improvements in cardio-respiratory fitness. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Efficacy of Selected Electrical Therapies on Chronic Low Back Pain: A Comparative Clinical Pilot Study.

    PubMed

    Rajfur, Joanna; Pasternok, Małgorzata; Rajfur, Katarzyna; Walewicz, Karolina; Fras, Beata; Bolach, Bartosz; Dymarek, Robert; Rosinczuk, Joanna; Halski, Tomasz; Taradaj, Jakub

    2017-01-07

    BACKGROUND In the currently available research publications on electrical therapy of low back pain, generally no control groups or detailed randomization were used, and such studies were often conducted with relatively small groups of patients, based solely on subjective questionnaires and pain assessment scales (lacking measurement methods to objectify the therapeutic progress). The available literature also lacks a comprehensive and large-scale clinical study. The purpose of this study was to assess the effects of treating low back pain using selected electrotherapy methods. The study assesses the influence of individual electrotherapeutic treatments on reduction of pain, improvement of the range of movement in lower section of the spine, and improvement of motor functions and mobility. MATERIAL AND METHODS The 127 patients qualified for the therapy (ultimately, 123 patients completed the study) and assigned to 6 comparison groups: A - conventional TENS, B - acupuncture-like TENS, C - high-voltage electrical stimulation, D - interferential current stimulation, E - diadynamic current, and F - control group. RESULTS The research showed that using electrical stimulation with interferential current penetrating deeper into the tissues results in a significant and more efficient elimination of pain, and an improvement of functional ability of patients suffering from low back pain on the basis of an analysis of both subjective and objective parameters. The TENS currents and high voltage were helpful, but not as effective. The use of diadynamic currents appears to be useless. CONCLUSIONS Selected electrical therapies (interferential current, TENS, and high voltage) appear to be effective in treating chronic low back pain.

  6. Efficacy of Selected Electrical Therapies on Chronic Low Back Pain: A Comparative Clinical Pilot Study

    PubMed Central

    Rajfur, Joanna; Pasternok, Małgorzata; Rajfur, Katarzyna; Walewicz, Karolina; Fras, Beata; Bolach, Bartosz; Dymarek, Robert; Rosinczuk, Joanna; Halski, Tomasz; Taradaj, Jakub

    2017-01-01

    Background In the currently available research publications on electrical therapy of low back pain, generally no control groups or detailed randomization were used, and such studies were often conducted with relatively small groups of patients, based solely on subjective questionnaires and pain assessment scales (lacking measurement methods to objectify the therapeutic progress). The available literature also lacks a comprehensive and large-scale clinical study. The purpose of this study was to assess the effects of treating low back pain using selected electrotherapy methods. The study assesses the influence of individual electrotherapeutic treatments on reduction of pain, improvement of the range of movement in lower section of the spine, and improvement of motor functions and mobility. Material/Methods The 127 patients qualified for the therapy (ultimately, 123 patients completed the study) and assigned to 6 comparison groups: A – conventional TENS, B – acupuncture-like TENS, C – high-voltage electrical stimulation, D – interferential current stimulation, E – diadynamic current, and F – control group. Results The research showed that using electrical stimulation with interferential current penetrating deeper into the tissues results in a significant and more efficient elimination of pain, and an improvement of functional ability of patients suffering from low back pain on the basis of an analysis of both subjective and objective parameters. The TENS currents and high voltage were helpful, but not as effective. The use of diadynamic currents appears to be useless. Conclusions Selected electrical therapies (interferential current, TENS, and high voltage) appear to be effective in treating chronic low back pain. PMID:28062862

  7. The effect of Functional Electric Stimulation in stroke patients' motor control - a case report

    NASA Astrophysics Data System (ADS)

    Pripas, Denise; Rogers Venditi Beas, Allan; Fioramonte, Caroline; Gonsales de Castro, Pedro Claudio; Goroso, Daniel Gustavo; Cecília dos Santos Moreira, Maria

    2011-12-01

    Functional Electric Stimulation (FES) has been studied as a therapeutic resource to reduce spasticity in hemiplegic patients, however there are no studies about the effects of FES in motor control of these patients during functional tasks like balance maintenance. Muscular activation of gastrocnemius medialis and semitendinosus was investigated in both limbs of a hemiparetic patient during self-disturbed quiet stance before and after FES on tibialis anterior, by surface electromyography. The instant of maximum activation peak of GM and ST were calculated immediately after a motor self-disturbance, in order to observe muscular synergy between these two muscles, and possible balance strategies used (ankle or hip strategy). At the preserved limb there occurred distal-proximal synergy (GM followed by ST), expected for small perturbations; however, at spastic limb there was inversion of this synergy (proximal-distal) after FES. It is possible that intervention of electricity had inhibited synergical pathways due to antidromic effect, making it difficult to use ankle strategy in the spastic limb.

  8. Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats.

    PubMed

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing

    2009-10-01

    Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.

  9. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    PubMed Central

    Springer, Shmuel; Vatine, Jean-Jacques; Lipson, Ronit; Wolf, Alon; Laufer, Yocheved

    2012-01-01

    The study objective was to assess the effect of functional electrical stimulation (FES) applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years) with hemiparesis (5.37 ± 5.43 years since diagnosis) demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (P < 0.0001). In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone. PMID:23097635

  10. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    PubMed

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis: A Randomized Trial.

    PubMed

    Knutson, Jayme S; Gunzler, Douglas D; Wilson, Richard D; Chae, John

    2016-10-01

    It is unknown whether one method of neuromuscular electrical stimulation for poststroke upper limb rehabilitation is more effective than another. Our aim was to compare the effects of contralaterally controlled functional electrical stimulation (CCFES) with cyclic neuromuscular electrical stimulation (cNMES). Stroke patients with chronic (>6 months) moderate to severe upper extremity hemiparesis (n=80) were randomized to receive 10 sessions/wk of CCFES- or cNMES-assisted hand opening exercise at home plus 20 sessions of functional task practice in the laboratory for 12 weeks. The task practice for the CCFES group was stimulation assisted. The primary outcome was change in Box and Block Test (BBT) score at 6 months post treatment. Upper extremity Fugl-Meyer and Arm Motor Abilities Test were also measured. At 6 months post treatment, the CCFES group had greater improvement on the BBT, 4.6 (95% confidence interval [CI], 2.2-7.0), than the cNMES group, 1.8 (95% CI, 0.6-3.0), between-group difference of 2.8 (95% CI, 0.1-5.5), P=0.045. No significant between-group difference was found for the upper extremity Fugl-Meyer (P=0.888) or Arm Motor Abilities Test (P=0.096). Participants who had the largest improvements on BBT were <2 years post stroke with moderate (ie, not severe) hand impairment at baseline. Among these, the 6-month post-treatment BBT gains of the CCFES group, 9.6 (95% CI, 5.6-13.6), were greater than those of the cNMES group, 4.1 (95% CI, 1.7-6.5), between-group difference of 5.5 (95% CI, 0.8-10.2), P=0.023. CCFES improved hand dexterity more than cNMES in chronic stroke survivors. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00891319. © 2016 American Heart Association, Inc.

  12. The electrical potential difference through the foot epithelium of the snail Achatina achatina, Lameere during mechanical and chemical stimulation.

    PubMed

    Tyrakowski, Tomasz; Hołyńska, Iga; Lampka, Magdalena; Kaczorowski, Piotr

    2006-01-01

    An important electrophysiological variable--the transepithelial potential difference reflects the electrogenic transepithelial ion currents, which are produced and modified by ion transport processes in polarized cells of epithelium. These processes result from coordinated function of transporters in apical and basolateral cell membranes and have been observed in all epithelial tissues studied so far. The experiments were performed on isolated specimens of snail foot. In the experiments, the baseline transepithelial electrical potential difference--PD, changes of transepithelial difference during mechanical stimulation--dPD and the transepithelial resistance were measured with an Ussing apparatus. A total of 60 samples of foot ventral surface of 28 snails were studied. The transepithelial electrical potential difference of isolated foot ranged from -6.0 to 10.0 mV under different experimental conditions. Mechanical stimulation of foot ventral surface caused changes of electrogenic ion transport, observed as transient hyperpolarization (electrical potential difference became more positive). When the transepithelial electrical potential difference decreased during stimulation, the reaction was described as depolarization. When amiloride and bumetanide were added to the stimulating fluid so that the sodium and chloride ion transport pathways were inhibited, prolonged depolarization occurred. Under the influence of different stimuli: mechanical (gentle rinsing), chemical (changes of ion concentrations) and pharmacological (application of ion inhibitors), transient changes of potential difference (dPD) were evoked, ranging from about -0.7 to almost 2.0 mV. Changes in transepithelial potential difference of the pedal surface of the snail's foot related to these physiological stimuli are probably involved in the locomotion of the animal and are under control of the part of the nervous system in which tachykinin related peptides (TRP) act as transmitters.

  13. The influence of local versus global heat on the healing of chronic wounds in patients with diabetes.

    PubMed

    Petrofsky, Jerrold S; Lawson, Daryl; Suh, Hye Jin; Rossi, Christine; Zapata, Karina; Broadwell, Erin; Littleton, Lindsay

    2007-12-01

    In a previous study, it was shown that placing a subject with chronic diabetic ulcers in a warm room prior to the use of electrical stimulation dramatically increased the healing rate. However, global heating is impractical in many therapeutic environments, and therefore in the present investigation the effect of global heat versus using a local heat source to warm the wound was investigated. Twenty-nine male and female subjects participated in a series of experiments to determine the healing associated with electrical stimulation with the application of local heat through a heat lamp compared to global heating of the subject in a warm room. Treatment consisted of biphasic electrical stimulation at currents at 20 mA for 30 min three times per week for 4 weeks in either a 32 degrees C room or, with the application of local heat, to raise skin temperature to 37 degrees C. Skin blood flow was measured by a laser Doppler imager. Blood flow increased with either local or global heating. During electrical stimulation, blood flow almost doubled on the outside and on the edge of the wound with a smaller increase in the center of the wound. However, the largest increase in blood flow was in the subjects exposed to global heating. Further, healing rates, while insignificant for subjects who did not receive electrical stimulation, showed 74.5 +/- 23.4% healing with global heat and 55.3 +/- 31.1% healing with local heat in 1 month; controls actually had a worsening of their wounds. The best healing modality was global heat. However, there was still a significant advantage in healing with local heat.

  14. PI3K Phosphorylation Is Linked to Improved Electrical Excitability in an In Vitro Engineered Heart Tissue Disease Model System.

    PubMed

    Kana, Kujaany; Song, Hannah; Laschinger, Carol; Zandstra, Peter W; Radisic, Milica

    2015-09-01

    Myocardial infarction, a prevalent cardiovascular disease, is associated with cardiomyocyte cell death, and eventually heart failure. Cardiac tissue engineering has provided hopes for alternative treatment options, and high-fidelity tissue models for drug discovery. The signal transduction mechanisms relayed in response to mechanoelectrical (physical) stimulation or biochemical stimulation (hormones, cytokines, or drugs) in engineered heart tissues (EHTs) are poorly understood. In this study, an EHT model was used to elucidate the signaling mechanisms involved when insulin was applied in the presence of electrical stimulation, a stimulus that mimics functional heart tissue environment in vitro. EHTs were insulin treated, electrically stimulated, or applied in combination (insulin and electrical stimulation). Electrical excitability parameters (excitation threshold and maximum capture rate) were measured. Protein kinase B (AKT) and phosphatidylinositol-3-kinase (PI3K) phosphorylation revealed that insulin and electrical stimulation relayed electrical excitability through two separate signaling cascades, while there was a negative crosstalk between sustained activation of AKT and PI3K.

  15. Prolonged Stimulation of a Brainstem Raphe Region Attenuates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Madsen, Pernille M.; Sloley, Stephanie S.; Vitores, Alberto A.; Carballosa-Gautam, Melissa M.; Brambilla, Roberta; Hentall, Ian D.

    2017-01-01

    Multiple sclerosis (MS), a neuroinflammatory disease, has few treatment options, none entirely adequate. We studied whether prolonged electrical stimulation of a hindbrain region (the nucleus raphe magnus) can attenuate experimental autoimmune encephalomyelitis, a murine model of MS induced by MOG35-55 injection. Eight days after symptoms emerged, a wireless electrical stimulator with a connectorless protruding microelectrode was implanted cranially, and daily intermittent stimulation of awake, unrestrained mice began immediately. The thoracic spinal cord was analyzed for changes in histology (on day 29) and gene expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19–25 that stimulation for >16 days eliminated. Prolonged stimulation also reduced infiltrating immune cells and increased numbers of myelinated axons. It additionally lowered gene expression for some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and for platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising it for myelin basic protein. Restorative treatments for MS might profitably consider ways to stimulate the raphe magnus, directly or via its inputs, or to emulate its serotonergic and peptidergic output. PMID:28147248

  16. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice.

    PubMed

    Kolodziej, Angela; Lippert, Michael; Angenstein, Frank; Neubert, Jenni; Pethe, Annette; Grosser, Oliver S; Amthauer, Holger; Schroeder, Ulrich H; Reymann, Klaus G; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2014-12-01

    Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Application of a rat hindlimb model: a prediction of force spaces reachable through stimulation of nerve fascicles.

    PubMed

    Johnson, Will L; Jindrich, Devin L; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie

    2011-12-01

    A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb, which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model, we investigated the suitability of a lumped-parameter model for the prediction of muscle activation during dynamic tasks. Using the validated model, we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury.

  18. Application of a Rat Hindlimb Model: A Prediction of Force Spaces Reachable Through Stimulation of Nerve Fascicles

    PubMed Central

    Johnson, Will L.; Jindrich, Devin L.; Zhong, Hui; Roy, Roland R.

    2011-01-01

    A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model we investigated the suitability of a lumped-parameter model for prediction of muscle activation during dynamic tasks. Using the validated model we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury. PMID:21244999

  19. Effects of functional electrical stimulation on gait recovery post-neurological injury during inpatient rehabilitation.

    PubMed

    Lairamore, Chad I; Garrison, Mark K; Bourgeon, Laetitia; Mennemeier, Mark

    2014-10-01

    This stage 2 trial investigated the therapeutic effect of single channel, peroneal functional electrical stimulation (FES) for improving gait and muscle activity in people with neurological injuries who were enrolled in an inpatient rehabilitation program. Twenty-six patients (16 male; M age = 51.3 yr., SD = 16.2; 2-33 days post-injury) completed the study. Participants were randomly assigned to an experimental group (n = 13) or control group (n = 13). The experimental group received FES and the control group received sensory stimulation during 45-min. gait training sessions three times a week for the duration of their stay in a rehabilitation facility (average of four sessions for both groups). Changes in gait speed, tibialis anterior muscle electromyography (EMG), and FIM™ locomotion scores were compared between groups. No significant differences were found, as both groups demonstrated similar improvements. The current results with this small sample suggest a low dose of gait training with single channel FES did not augment gait nor EMG activity beyond gait training with sensory stimulation; therefore, clinicians will likely be better served using a larger dose of FES or multichannel FES in this clinical population.

  20. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle force reproduction and muscle fatigue reduction.

  1. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.

    PubMed

    Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick

    2018-03-10

    Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.

  2. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds

    PubMed Central

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2011-01-01

    Background This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. Methods and results After electrical stimulation, the number of multinucleated myotubes on the electrospun polyurethane carbon nanotube scaffolds was significantly larger than that on nonconductive electrospun polyurethane scaffolds (5% and 10% w/v polyurethane). In the absence of electrical stimulation, myoblasts also differentiated on the electrospun polyurethane carbon nanotube scaffolds, as evidenced by expression of Myf-5 and myosin heavy chains. The myotube number and length were significantly greater on the electrospun carbon nanotubes with 10% w/v polyurethane than on those with 5% w/v polyurethane. The results suggest that, in the absence of electrical stimulation, skeletal myotube formation is dependent on the morphology of the electrospun scaffolds, while with electrical stimulation it is dependent on the electrical conductivity of the scaffolds. Conclusion This study indicates that electrospun polyurethane carbon nanotubes can be used to modulate skeletal myotube formation with or without application of electrical stimulation. PMID:22072883

  3. Computational optogenetics: A novel continuum framework for the photoelectrochemistry of living systems

    NASA Astrophysics Data System (ADS)

    Wong, Jonathan; Abilez, Oscar J.; Kuhl, Ellen

    2012-06-01

    Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second-order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.

  4. Computational Optogenetics: A Novel Continuum Framework for the Photoelectrochemistry of Living Systems.

    PubMed

    Wong, Jonathan; Abilez, Oscar J; Kuhl, Ellen

    2012-06-01

    Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.

  5. The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures.

    PubMed

    Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Zhao, Zhiqing; Long, Yuyang; Fang, Yuan; Wang, Meizhen; Yin, Jun; Shen, Dongsheng

    2015-05-01

    Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h(-1), which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8%, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1% more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.

  6. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation.

    PubMed

    Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki

    2017-01-01

    Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis.

  7. Paired Associative Stimulation Using Brain-Computer Interfaces for Stroke Rehabilitation: A Pilot Study.

    PubMed

    Cho, Woosang; Sabathiel, Nikolaus; Ortner, Rupert; Lechner, Alexander; Irimia, Danut C; Allison, Brendan Z; Edlinger, Guenter; Guger, Christoph

    2016-06-13

    Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to monitor patients' movement imagery in real-time, and utilizes the information to control functional electrical stimulation (FES) and bar feedback for complete sensorimotor closed loop. To realize this approach, we introduce the recoveriX system, a hardware and software platform for PAS. After 10 sessions of recoveriX training, one stroke patient partially regained control of dorsiflexion in her paretic wrist. A controlled group study is planned with a new version of the recoveriX system, which will use a new FES system and an avatar instead of bar feedback.

  8. Electrical stimulation of dorsal root entry zone attenuates wide-dynamic range neuronal activity in rats

    PubMed Central

    Yang, Fei; Zhang, Chen; Xu, Qian; Tiwari, Vinod; He, Shao-Qiu; Wang, Yun; Dong, Xinzhong; Vera-Portocarrero, Louis P.; Wacnik, Paul W.; Raja, Srinivasa N.; Guan, Yun

    2014-01-01

    Objectives Recent clinical studies suggest that neurostimulation at the dorsal root entry zone (DREZ) may alleviate neuropathic pain. However, the mechanisms of action for this therapeutic effect are unclear. Here, we examined whether DREZ stimulation inhibits spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. Materials and Methods We conducted in vivo extracellular single-unit recordings of WDR neurons in rats after an L5 spinal nerve ligation (SNL) or sham surgery. We set bipolar electrical stimulation (50 Hz, 0.2 ms, 5 min) of the DREZ at the intensity that activated only Aα/β-fibers by measuring the lowest current at which DREZ stimulation evoked a peak antidromic sciatic Aα/β-compound action potential without inducing an Aδ/C-compound action potential (i.e., Ab1). Results The elevated spontaneous activity rate of WDR neurons in SNL rats [n=25; data combined from day 14–16 (n = 15) and day 45–75 post-SNL groups (n=10)] was significantly decreased from the pre-stimulation level (p<0.01) at 0–15 min and 30–45 min post-stimulation. In both sham-operated (n=8) and nerve-injured rats, DREZ stimulation attenuated the C-component, but not A-component, of the WDR neuronal response to graded intracutaneous electrical stimuli (0.1–10 mA, 2 ms) applied to the skin receptive field. Further, DREZ stimulation blocked windup (a short form of neuronal sensitization) to repetitive noxious stimuli (0.5 Hz) at 0–15 min in all groups (p<0.05). Conclusions Attenuation of WDR neuronal activity may contribute to DREZ stimulation-induced analgesia. This finding supports the notion that DREZ may be a useful target for neuromodulatory control of pain. PMID:25308522

  9. Evaluation of patient suitability for a retinal prosthesis using structural and functional tests of inner retinal integrity

    NASA Astrophysics Data System (ADS)

    Huang, Qiuhen; Chowdhury, Vivek; Coroneo, Minas Theodore

    2009-06-01

    The purpose of this study was to assess inner retinal structure and function in patients with retinitis pigmentosa (RP) using optical coherence tomography (OCT) imaging of the retina, and electrical stimulation of the retina with a contact lens electrode. OCT images of 17 RP patients were acquired at the macula and at four quadrants of the peripheral retina in both eyes. Analysis was made of the residual inner retinal thickness and nerve fibre layer thickness in RP patients, and this was compared to normal controls. Eight of these patients further underwent contact lens electrical stimulation of one eye and thresholds for phosphene perception were obtained. OCT imaging showed a significant amount of inner retinal preservation in the peripheral retina and the macula of RP patients despite severe visual acuity and visual field loss. Phosphene thresholds were obtained across the range of pulse durations tested but were much higher than those obtained in normal controls. Phosphene thresholds in RP patients moderately correlated with inner retinal thicknesses as measured by OCT. Preservation of inner retinal structure in patients with RP and the responsiveness of these eyes to electrical stimulation suggest adequate inner retinal preservation for a retinal prosthesis to be successful.

  10. Percutaneous tibial nerve stimulation versus sham electrical stimulation for the treatment of faecal incontinence in adults (CONFIDeNT): a double-blind, multicentre, pragmatic, parallel-group, randomised controlled trial.

    PubMed

    Knowles, Charles H; Horrocks, Emma J; Bremner, Stephen A; Stevens, Natasha; Norton, Christine; O'Connell, P Ronan; Eldridge, Sandra

    2015-10-24

    Percutaneous tibial nerve stimulation (PTNS) is a new ambulatory therapy for faecal incontinence. Data from case series suggest it has beneficial outcomes in 50-80% patients; however its effectiveness against sham electrical stimulation has not been investigated. We therefore aimed to assess the short-term efficacy of PTNS against sham electrical stimulation in adults with faecal incontinence. We did a double-blind, multicentre, pragmatic, parallel-group, randomised controlled trial (CONtrol of Faecal Incontinence using Distal NeuromodulaTion [CONFIDeNT]) in 17 specialist hospital units in the UK that had the skills to manage patients with faecal incontinence. Eligible participants aged 18 years or older with substantial faecal incontinence for whom conservative treatments (such as dietary changes and pelvic floor exercises) had not worked, were randomly assigned (1:1) to receive either PTNS (via the Urgent PC neuromodulation system) or sham stimulation (via a transcutaneous electrical nerve stimulation machine to the lateral forefoot) once per week for 12 weeks. Randomisation was done with permuted block sizes of two, four, and six, and was stratified by sex and then by centre for women. Patients and outcome assessors were both masked to treatment allocation for the 14-week duration of the trial (but investigators giving the treatment were not masked). The primary outcome was a clinical response to treatment, which we defined as a 50% or greater reduction in episodes of faecal incontinence per week. We assessed this outcome after 12 treatment sessions, using data from patients' bowel diaries. Analysis was by intention to treat, and missing data were multiply imputed. This trial is registered with the ISRCTN registry, number 88559475, and is closed to new participants. Between Jan 23, 2012, and Oct 31, 2013, we randomly assigned 227 eligible patients (of 373 screened) to receive either PTNS (n=115) or sham stimulation (n=112). 12 patients withdrew from the trial: seven from the PTNS group and five from the sham group (mainly because they could not commit to receiving treatment every week). Two patients (one in each group) withdrew because of an adverse event that was unrelated to treatment (exacerbation of fibromyalgia and rectal bleeding). 39 (38%) of 103 patients with full data from bowel diaries in the PTNS group had a 50% or greater reduction in the number of episodes of faecal incontinence per week compared with 32 (31%) of 102 patients in the sham group (adjusted odds ratio 1·28, 95% CI 0·72-2·28; p=0·396). No serious adverse events related to treatment were reported in the trial. Seven mild, related adverse events were reported in each treatment group, mainly pain at the needle site (four in PTNS, three in sham). PTNS given for 12 weeks did not confer significant clinical benefit over sham electrical stimulation in the treatment of adults with faecal incontinence. Further studies are warranted to determine its efficacy in the long term, and in patient subgroups (ie, those with urgency). National Institute for Health Research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Electromagnetic Field Modeling of Transcranial Electric and Magnetic Stimulation: Targeting, Individualization, and Safety of Convulsive and Subconvulsive Applications

    NASA Astrophysics Data System (ADS)

    Deng, Zhi-De

    The proliferation of noninvasive transcranial electric and magnetic brain stimulation techniques and applications in recent years has led to important insights into brain function and pathophysiology of brain-based disorders. Transcranial electric and magnetic stimulation encompasses a wide spectrum of methods that have developed into therapeutic interventions for a variety of neurological and psychiatric disorders. Although these methods are at different stages of development, the physical principle underlying these techniques is the similar. Namely, an electromagnetic field is induced in the brain either via current injection through scalp electrodes or via electromagnetic induction. The induced electric field modulates the neuronal transmembrane potentials and, thereby, neuronal excitability or activity. Therefore, knowledge of the induced electric field distribution is key in the design and interpretation of basic research and clinical studies. This work aims to delineate the fundamental physical limitations, tradeoffs, and technological feasibility constraints associated with transcranial electric and magnetic stimulation, in order to inform the development of technologies that deliver safer, and more spatially, temporally, and patient specific stimulation. Part I of this dissertation expounds on the issue of spatial targeting of the electric field. Contrasting electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) configurations that differ markedly in efficacy, side effects, and seizure induction efficiency could advance our understanding of the principles linking treatment parameters and therapeutic outcome and could provide a means of testing hypotheses of the mechanisms of therapeutic action. Using the finite element method, we systematically compare the electric field characteristics of existing forms of ECT and MST. We introduce a method of incorporating a modality-specific neural activation threshold in the electric field models that can inform dosage requirements in convulsive therapies. Our results indicate that the MST electric field is more focal and more confined to the superficial cortex compared to ECT. Further, the conventional ECT current amplitude is much higher than necessary for seizure induction. One of the factors important to clinical outcome is seizure expression. However, it is unknown how the induced electric field is related to seizure onset and propagation. In this work, we explore the effect of the electric field distribution on the quantitative ictal electroencephalography and current source density in ECT and MST. We further demonstrate how the ECT electrode shape, size, spacing, and current can be manipulated to yield more precise control of the induced electric field. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Next, we demonstrate how the electric field induced by transcranial magnetic stimulation (TMS) can be controlled. We present the most comprehensive comparison of TMS coil electric field penetration and focality to date. The electric field distributions of more than 50 TMS coils were simulated. We show that TMS coils differ markedly in their electric field characteristics, but they all are subject to a consistent depth-focality tradeoff. Specifically, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electric field spread. Figure-8 type coils are fundamentally more focal compared to circular type coils. Understanding the depth-focality tradeoff can help researchers and clinicians to appropriately select coils and interpret TMS studies. This work also enables the development of novel TMS coils with electronically switchable active and sham modes as well as for deep TMS. Design considerations of these coils are extensively discussed. Part II of the dissertation aims to quantify the effect of individual, sex, and age differences in head geometry and conductivity on the induced neural stimulation strength and focality of ECT and MST. Across and within ECT studies, there is marked unexplained variability in seizure threshold and clinical outcomes. It is not known to what extent the age and sex effects on seizure threshold are mediated by interindividual variation in neural excitability and/or anatomy of the head. Addressing this question, we examine the effect on ECT and MST induced field characteristics of the variability in head diameter, scalp and skull thicknesses and conductivities, as well as brain volume, in a range of values that are representative of the patient population. Variations in the local tissue properties such as scalp and skull thickness and conductivity affect the existing ECT configurations more than MST. On the other hand, the existing MST coil configurations show greater sensitivity to head diameter variation compared to ECT. Due to the high focality of MST compared to ECT, the stimulated brain volume in MST is more sensitive to variation in tissue layer thicknesses. We further demonstrate how individualization of the stimulus pulse current amplitude, which is not presently done in ECT or MST, can be used as a means of compensating for interindividual anatomical variability, which could lead to better and more consistent clinical outcomes. Part III of the dissertation aims to systemically investigate, both computationally and experimentally, the safety of TMS and ECT in patients with a deep-brain stimulation system, and propose safety guidelines for the dual-device therapy. We showed that the induction of significant voltages in the subcutaneous leads in the scalp during TMS could result in unintended and potentially dangerous levels of electrical currents in the DBS electrode contacts. When applying ECT in patients with intracranial implants, we showed that there is an increase in the electric field strength in the brain due to conduction through the burr holes, especially when the burr holes are not fitted with nonconductive caps. Safety concerns presently limit the access of patients with intracranial electronic devices to therapies involving transcranial stimulation technology, which may preclude them from obtaining appropriate medical treatments. Gaining better understanding of the interactions between transcranial and implanted stimulation devices will demarcate significant safety risks from benign interactions, and will provide recommendations for reducing risk, thus enhancing the patient's therapeutic options.

  12. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...Sept 2015 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury 5a...evaluate the restoration of bladder and bowel function using electrical stimulation and block after spinal cord injury in human subjects. All staff

  13. Increased electrical nerve stimulation threshold of the sciatic nerve in patients with diabetic foot gangrene: a prospective parallel cohort study.

    PubMed

    Keyl, Cornelius; Held, Tanja; Albiez, Georg; Schmack, Astrid; Wiesenack, Christoph

    2013-07-01

    Peripheral neuropathy may affect nerve conduction in patients with diabetes mellitus. This study was designed to test the hypothesis that the electrical stimulation threshold for a motor response of the sciatic nerve is increased in patients suffering from diabetic foot gangrene compared to non-diabetic patients. Prospective non-randomised trial with two parallel groups. Two university-affiliated hospitals. Patients scheduled for surgical treatment of diabetic foot gangrene (n = 30) and non-diabetic patients (n = 30) displaying no risk factors for neuropathy undergoing orthopaedic foot or ankle surgery. The minimum current intensity required to elicit a typical motor response (dorsiflexion or eversion of the foot) at a pulse width of 0.1 ms and a stimulation frequency of 1 Hz when the needle tip was positioned under ultrasound control directly adjacent to the peroneal component of the sciatic nerve. The non-diabetic patients were younger [64 (SD 12) vs. 74 (SD 7) years] and predominantly female (23 vs. 8). The geometric mean of the motor stimulation threshold was 0.26 [95% confidence interval (95% CI) 0.24 to 0.28] mA in non-diabetic and 1.9 (95% CI 1.6 to 2.2) mA in diabetic patients. The geometric mean of the electrical stimulation threshold was significantly (P < 0.001) increased by a factor of 7.2 (95% CI 6.1 to 8.4) in diabetic compared to non-diabetic patients. The electrical stimulation threshold for a motor response of the sciatic nerve is increased by a factor of 7.2 in patients with diabetic foot gangrene, which might hamper nerve identification.

  14. Electrical Stimulation Improves Microbial Salinity Resistance and Organofluorine Removal in Bioelectrochemical Systems

    PubMed Central

    Feng, Huajun; Zhang, Xueqin; Guo, Kun; Vaiopoulou, Eleni; Shen, Dongsheng; Long, Yuyang; Yin, Jun

    2015-01-01

    Fed batch bioelectrochemical systems (BESs) based on electrical stimulation were used to treat p-fluoronitrobenzene (p-FNB) wastewater at high salinities. At a NaCl concentration of 40 g/liter, p-FNB was removed 100% in 96 h in the BES, whereas in the biotic control (BC) (absence of current), p-FNB removal was only 10%. By increasing NaCl concentrations from 0 g/liter to 40 g/liter, defluorination efficiency decreased around 40% in the BES, and in the BC it was completely ceased. p-FNB was mineralized by 30% in the BES and hardly in the BC. Microorganisms were able to store 3.8 and 0.7 times more K+ and Na+ intracellularly in the BES than in the BC. Following the same trend, the ratio of protein to soluble polysaccharide increased from 3.1 to 7.8 as the NaCl increased from 0 to 40 g/liter. Both trends raise speculation that an electrical stimulation drives microbial preference toward K+ and protein accumulation to tolerate salinity. These findings are in accordance with an enrichment of halophilic organisms in the BES. Halobacterium dominated in the BES by 56.8% at a NaCl concentration of 40 g/liter, while its abundance was found as low as 17.5% in the BC. These findings propose a new method of electrical stimulation to improve microbial salinity resistance. PMID:25819966

  15. Non-invasive red light optogenetic pacing and optical coherence microscopy (OCM) imaging for drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2017-02-01

    Cardiac pacing could be a powerful tool for investigating mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, traditional electrical pacing using pacemaker requires an invasive surgical procedure. Electrical currents from the implanted electrodes can also cause damage to heart tissue, further restricting its utility. Optogenetic pacing has been developed as a promising, non-invasive alternative to electrical stimulation for controlling animal heart rhythms. It induces heart contractions by shining pulsed light on transgene-generated microbial opsins, which in turn activate the light gated ion channels in animal hearts. However, commonly used opsins in optogenetic pacing, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we performed optogenetic pacing by expression of recently engineered red-shifted microbial opsins, ReaChR and CsChrimson, in a well-established animal model, Drosophila melanogaster, using the 617 nm stimulation light pulses. The OCM technique enables non-invasive optical imaging of animal hearts with high speed and ultrahigh axial and transverse resolutions. We integrated a customized OCM system with the optical stimulation system to monitor the optogenetic pacing noninvasively. The use of red-sifted opsins enabled deeper penetration of simulating light at lower power, which is promising for applications of optogenetic pacing in mammalian cardiac pathology studies or clinical treatments in the future.

  16. Subacute and chronic electrical stimulation of the hippocampus on intractable temporal lobe seizures: preliminary report.

    PubMed

    Velasco, A L; Velasco, M; Velasco, F; Menes, D; Gordon, F; Rocha, L; Briones, M; Márquez, I

    2000-01-01

    Recent animal experiments show that the application of an electrical stimulus to the amygdala or hippocampus following the kindling stimulus produced a significant and long-lasting suppressive effect on this experimental model of epilepsy. This is a preliminary report on the development of a surgical neuromodulatory procedure by chronic electrical stimulation of the hippocampus (CHCS) for control of intractable temporal lobe seizures in patients in whom anterior temporal lobectomy is not advisable, i.e., patients with bilateral temporal foci or a unilateral focus spreading to surrounding cerebral regions of the dominant hemisphere. This work was divided in two main consecutive stages. In the first stage, we demonstrated that subacute hippocampal stimulation (SAHCS) blocks intractable temporal lobe epileptogenesis with no additional damage to the stimulated tissue, and in a second stage, we attempt to demonstrate that CHCS may produce a sustained, long-lasting antiepileptic condition without additional undesirable effects on language and memory. In addition, taking advantage of this unique and ethically permissible situation, we attempt to determine whether or not the antiepileptic effects of SAHCS and CHCS are due to inhibition of the stimulation of hippocampal tissue by means of a number of electrophysiological, single photon computed tomography (SPECT) perfusion, and autoradiographic techniques.SAHCS during 3-4 weeks prior to anterior temporal lobectomy applied to a critical area located either at the anterior Pes hippocampus close to the amygdala or at the parahippocampal gyrus close to the entorhinal cortex abolished clinical seizures and significantly decreased the number of interictal spikes at focus after 5-6 days. Microscopy analysis of the stimulated tissue showed no evident histopathological differences between stimulated vs. non-stimulated hippocampal tissues. Additionally, CHCS persistently blocked temporal lobe epileptogenesis for 3-4 months with no apparent additional undesirable effects on short memory. Also, inhibition of the stimulated hippocampus seems to be one of the possible mechanisms underlying the beneficial antiepileptic effects of SAHCS and CHCS. This was revealed by increased threshold and decreased duration of the afterdischarges induced by hippocampal stimulation, flattening of the hippocampal-evoked response recovery cycles, SPECT hypoperfusion of the hippocampal region, and increased hippocampal benzodiazepine receptor binding. Future studies increasing the number and time of follow-up of patients under hippocampal stimulation are necessary before considering CHCS a reliable procedure for controlling intractable temporal lobe seizures.

  17. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: A randomized placebo-controlled trial.

    PubMed

    Antonino, Diego; Teixeira, André L; Maia-Lopes, Paulo M; Souza, Mayara C; Sabino-Carvalho, Jeann L; Murray, Aaron R; Deuchars, Jim; Vianna, Lauro C

    Despite positive outcomes of transcutaneous vagus nerve stimulation (tVNS) via the auricular branch of the vagus nerve (ABVN), the mechanisms underlying these outcomes remain unclear. Additionally, previous studies have not been controlled the possible placebo effects of tVNS. To test the hypothesis that tVNS acutely improves spontaneous cardiac baroreflex sensitivity (cBRS) and autonomic modulation, and that these effects are specific to stimulation of ABVN. Thirteen healthy men (23±1yrs) were randomized across three experimental visits. In active tVNS, electrodes were placed on the tragus of the ear and electrical current was applied by using a Transcutaneous Electrical Nerve Stimulation device. A time-control visit was performed with the electrodes placed on tragus, but no current was applied (sham-T). Additionally, to avoid a placebo effect, another sham protocol was performed with same electrical current of the active visit, but the electrodes were placed on the ear lobe (an area without cutaneous nerve endings from the vagus - tLS). Beat-to-beat heart rate (HR) and blood pressure (BP) were monitored at rest, during stimulation (active, sham-T and tLS) and recovery. cBRS was measured via sequence technique. Both HR (HRV) and BP variability (BPV) were also measured. Arterial BP and BPV were not affected by any active or sham protocols (P > 0.05). Resting HR and LF/HF ratio of HRV decreased (Δ-3.4 ± 1% and Δ-15 ± 12%, P < 0.05, respectively) and cBRS increased (Δ24 ± 8%, P < 0.05) during active tVNS, but were unchanged during both sham protocols. tVNS acutely improves cBRS and autonomic modulation in healthy young men. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Micro-particle transporting system using galvanotactically stimulated apo-symbiotic cells of Paramecium bursaria.

    PubMed

    Furukawa, Shunsuke; Karaki, Chiaki; Kawano, Tomonori

    2009-01-01

    It is well known that Paramecium species including green paramecia (Paramecium bursaria) migrate towards the anode when exposed to an electric field in a medium. This type of a cellular movement is known as galvanotaxis. Our previous study revealed that an electric stimulus given to P bursaria is converted to a galvanotactic cellular movement by involvement of T-type calcium channel on the plasma membrane [Aonuma et al. (2007), Z. Naturforsch. 62c, 93-102]. This phenomenon has attracted the attention of bioengineers in the fields of biorobotics or micro-robotics in order to develop electrically controllable micromachineries. Here, we demonstrate the galvanotactic controls of the cellular migration of P bursaria in capillary tubes (diameter, 1-2 mm; length, 30-240 mm). Since the Paramecium cells take up particles of various sizes, we attempted to use the electrically stimulated cells of P bursaria as the vehicle for transportation of micro-particles in the capillary system. By using apo-symbiotic cells of P bursaria obtained after forced removal of symbiotic algae, the uptake of the particles could be maximized and visualized. Then, electrically controlled transportations of particle-filled apo-symbiotic P bursaria cells were manifested. The particles transported by electrically controlled cells (varying in size from nm to /m levels) included re-introduced green algae, fluorescence-labeled polystyrene beads, magnetic microspheres, emerald green fluorescent protein (EmGFP)-labeled cells of E. coli, Indian ink, and crystals of zeolite (hydrated aluminosilicate minerals with a micro-porous structure) and some metal oxides. Since the above demonstrations were successful, we concluded that P bursaria has a potential to be employed as one of the micro-biorobotic devices used in BioMEMS (biological micro-electro-mechanical systems).

  19. Compositos CNTs/bioceramico para a estimulacao eletrica ossea in situ

    NASA Astrophysics Data System (ADS)

    Mata, Diogo Miguel Rodrigues Marinho da

    The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of 500 mg/day. The deposition parameters were optimised to obtain high pure CNTs 99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the increase of the cell metabolic activity and DNA content by 130% and 60%, relatively to the non-stimulated condition, after only 3 days of daily stimulation of 15 μA for 15 min. Moreover, the osteoblastic gene expression for Runx2, osteocalcin (OC) and ALP was enhanced by 80%, 50% and 25%, after 5 days of stimulation. Instead, for dielectric materials, the stimulus delivering was less efficient, giving an equal or lower cellular response than the non-stimulated condition. The proposed electroconductive bone grafts offer exciting possibilities in bone regeneration strategies by delivering in situ electrical stimulus to cells and consequent control of the new bone tissue formation rate. It is expected that conductive smart biomaterials might turn the selective bone electrotherapy of clinical relevance by decreasing the postoperative healing times.

  20. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    PubMed

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  1. Effects of locus coeruleus stimulation on the responses of SI neurons of the rat to controlled natural and electrical stimulation of the skin.

    PubMed

    Snow, P J; Andre, P; Pompeiano, O

    1999-02-01

    1. The effects of microstimulation of the locus coeruleus (LC) region on the spontaneous discharge and the response of SI neurons to natural and electrical stimulation of the skin have been investigated in 26 urethane anesthetized Sprague-Dawley rats. In particular, one or two air puffs, 5-10 msec in duration, 1-2 psi, usually separated by an interval of 40 msec, were applied on the hairy skin of the wrist or the forepaw at the presentation rate of 1/sec. For units unresponsive to air puffs, similar presentation of low intensity electrical stimuli (0.2-5.0 V, 0.2-0.4 msec pulses) were applied through two needles inserted on the most effective area of the skin. Both natural and electrical stimulations of the skin were applied under control conditions, as well as 50 msec after a 250 msec train of 0.3 msec pulses at 40 Hz. 20-30 microA applied stereotaxically to the LC complex through a tungsten microelectrode. 2. Not all cortical units exhibited spontaneous discharge. Most of the units, however, which were spontaneously active, were inhibited by electrical stimulation of the LC complex, while the remaining ones were excited. The sites of stimulation, which included either the LC proper or the locus subcoeruleus, were identified following both anatomical and physiological criteria. 3. SI neurons recorded at sites between 400 and 950 microns below the surface of the cortex, thus being most likely granule cells of layers III and IV, responded to cutaneous stimuli with spikes which occurred with a latency of 20-30 msec in response to single air puffs and a latency of 15-20 msec in response to single electrical pulses to the skin. In both instances the response to the second stimulus applied at the interstimulus interval of 40 msec was markedly reduced or abolished due to postexcitatory inhibition following the response to the first stimulus (in-field inhibition). In contrast, units particularly located at or below 1000 microns from the cortical surface, which were of very large size probably corresponding to large layer V pyramidal cells, were often difficult to activate with air puffs applied at the centre of the receptive field (RF) and were submitted to electrical stimulation of the skin. 4. Among the 59 isolated SI units tested either to air puffs (45 neurons) or to electrical skin stimulation (14 neurons), 15 units (i.e., 25.4%) were facilitated, while 12 units (i.e., 20.3%) were inhibited following stimulation of the LC complex. 5. A marked feature of the facilitatory effects which usually involved the predominant response to the first air puff, but also the smaller response to the second puff, was that the increase in the number of spikes per stimulus was accompanied by a temporal focusing of the responses characterized by a clear tightening of the latency and narrowing of the peak of activity, which was often accompanied by some level of tonic inhibition of the background discharge. Thus, LC stimulation increased the signal-to-noise ratio of SI neuronal responses to skin stimulation. When inhibitory effects were induced by LC stimulation, they clearly affected the unit response to the first air puff, which was severely depressed. However, the response to the second puff could be facilitated, suggesting that LC stimulation might have produced inhibition of those inhibitory interneurons responsible for the postexcitatory inhibition of the units under examination. Evidence for spatial focusing of the response was not easily documented. In some units, however, LC stimulation produced either facilitation of the responses to puffs at the receptive field center and inhibition of the responses to puffs at the edge at the receptive field or vice versa. 6. Since the LC complex contains in the rat a predominant population of noradrenergic neurons, it is likely that the effects described above were mainly due to activation of these noradrenergic neurons. 7. (ABSTRACT TRUNCATED)

  2. Neuronal excitability level transition induced by electrical stimulation

    NASA Astrophysics Data System (ADS)

    Florence, G.; Kurths, J.; Machado, B. S.; Fonoff, E. T.; Cerdeira, H. A.; Teixeira, M. J.; Sameshima, K.

    2014-12-01

    In experimental studies, electrical stimulation (ES) has been applied to induce neuronal activity or to disrupt pathological patterns. Nevertheless, the underlying mechanisms of these activity pattern transitions are not clear. To study these phenomena, we simulated a model of the hippocampal region CA1. The computational simulations using different amplitude levels and duration of ES revealed three states of neuronal excitability: burst-firing mode, depolarization block and spreading depression wave. We used the bifurcation theory to analyse the interference of ES in the cellular excitability and the neuronal dynamics. Understanding this process would help to improve the ES techniques to control some neurological disorders.

  3. Sustained reduction in blood pressure from electrical activation of the baroreflex is mediated via the central pathway of unmyelinated baroreceptors.

    PubMed

    Turner, Michael J; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru

    2014-06-13

    This study aims to identify the contribution of myelinated (A-fiber) and unmyelinated (C-fiber) baroreceptor central pathways to the baroreflex control of sympathetic nerve activity and arterial pressure. Two binary white noise stimulation protocols were used to electrically stimulate the aortic depressor nerve and activate reflex responses from either A-fiber (3 V, 20-100 Hz) or C-fiber (20 V, 0-10 Hz) baroreceptor in anesthetized Sprague-Dawley rats (n=10). Transfer function analysis was performed between stimulation and sympathetic nerve activity (central arc), sympathetic nerve activity and arterial pressure (peripheral arc), and stimulation and arterial pressure (Stim-AP arc). The central arc transfer function from nerve stimulation to splanchnic sympathetic nerve activity displayed derivative characteristics for both stimulation protocols. However, the modeled steady-state gain (0.28 ± 0.04 vs. 4.01 ± 0.2%·Hz(-1), P<0.001) and coherence at 0.01 Hz (0.44 ± 0.05 vs. 0.81 ± 0.03, P<0.05) were significantly lower for A-fiber stimulation compared with C-fiber stimulation. The slope of the dynamic gain was higher for A-fiber stimulation (14.82 ± 1.02 vs. 7.21 ± 0.79 dB·decade(-1), P<0.001). The steady-state gain of the Stim-AP arc was also significantly lower for A-fiber stimulation compared with C-fiber stimulation (0.23 ± 0.05 vs. 3.05 ± 0.31 mmHg·Hz(-1), P<0.001). These data indicate that the A-fiber central pathway contributes to high frequency arterial pressure regulation and the C-fiber central pathway provides more sustained changes in sympathetic nerve activity and arterial pressure. A sustained reduction in arterial pressure from electrical stimulation of arterial baroreceptor afferents is likely mediated through the C-fiber central pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Electrical stimulation in exercise training

    NASA Technical Reports Server (NTRS)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve muscle strength for over a century. Bigelow reported in 1894, for example, the use of electrical stimulation on a young man for the purpose of increasing muscle strength. Employing a rapidly alternating sinusoidal induced current and a dynamometer for strength testing, Bigelow reported that the total lifting capacity of a patient increased from 4328 pounds to 4639 pounds after only 25 minutes of stimulation. In 1965, Massey et al. reported on the use of an Isotron electrical stimulator that emitted a high frequency current. Interestingly enough, the frequencies used by Massey et al. and the frequencies used by Bigelow in 1894 were in the same range of frequencies reported by Kots as being the most effective in strength development. It would seem the Russian secret of high frequency electrical stimulation for strength development, then, is not a modern development at all.

  5. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    PubMed

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation.

    PubMed

    Qu, Hongen; Xie, Yongji; Liu, Xiaoxuan; He, Xin; Hao, Manzhao; Bao, Yong; Xie, Qing; Lan, Ning

    2016-01-01

    Neuromuscular electrical stimulation (NMES) is a promising assistive technology for stroke rehabilitation. Here we present the design and development of a multimuscle stimulation system as an emerging therapy for people with paretic stroke. A network-based multichannel NMES system was integrated based on dual bus architecture of communication and an H-bridge current regulator with a power booster. The structure of the system was a body area network embedded with multiple stimulators and a communication protocol of controlled area network to transmit muscle stimulation parameter information to individual stimulators. A graphical user interface was designed to allow clinicians to specify temporal patterns and muscle stimulation parameters. We completed and tested a prototype of the hardware and communication software modules of the multichannel NMES system. The prototype system was first verified in nondisabled subjects for safety, and then tested in subjects with stroke for feasibility with assisting multijoint movements. Results showed that synergistic stimulation of multiple muscles in subjects with stroke improved performance of multijoint movements with more natural velocity profiles at elbow and shoulder and reduced acromion excursion due to compensatory trunk rotation. The network-based NMES system may provide an innovative solution that allows more physiological activation of multiple muscles in multijoint task training for patients with stroke.

  7. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats

    PubMed Central

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-01-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord. PMID:29557386

  8. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  9. The Effect of Electrical Stimulation Combined with Foam Dressing on Ulcer Healing in Rats with Spinal Cord Injury.

    PubMed

    Yu, Ki-Pi; Yoo, Seol Bong; Yang, Seok Jeong; Yoon, Yong-Soon

    2015-11-01

    To evaluate the effect of electrical stimulation (ES) combined with foam dressing on wound healing in rats with spinal cord injury. Complete spinal cord injury was induced in 49 male Sprague-Dawley rats at the T11-L1 level, after which a pressure ulcer was induced on the left thigh. The newly invented surface electrode, which was fitted with foam inside, was applied to the ulcers. Rats were divided into 2 groups as follows: the ES group, which received foam dressings and ES (2 Hz and 200-microsecond duration, 15 mA) for 4 times a day, 30 minutes each, for 3 weeks; and the control group, which received the foam dressings without ES. The ulcer area was measured by taking a photograph daily from day 0 to day 21. Histopathologic and immune-histochemical evaluations were performed on day 1 and days 7, 14, and 21. The area of the ulcers of the ES group was smaller than that of the control group after day 14 (P < .05). In the ES group, the vascularity was significantly greater on day 14 and more decreased on day 21 compared with day 7 than that in the control group (P < .05). In the ES group, the area of positive reaction to anti-α-SMA antibody was increased compared with the control group on days 7 and 14 and decreased on day 21 (P > .05). Electrical stimulation combined with foam dressing by means of newly invented surface electrodes facilitates and accelerates the wound-healing process.

  10. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation

    PubMed Central

    Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki

    2017-01-01

    Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis. PMID:28883745

  11. Electrical Cerebral Stimulation Modifies Inhibitory Systems

    NASA Astrophysics Data System (ADS)

    Cuéllar-Herrera, M.; Rocha, L.

    2003-09-01

    Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.

  12. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    PubMed

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.

  13. Electrical stimulation attenuates morphological alterations and prevents atrophy of the denervated cranial tibial muscle.

    PubMed

    Bueno, Cleuber Rodrigo de Souza; Pereira, Mizael; Favaretto, Idvaldo Aparecido; Bortoluci, Carlos Henrique Fachin; Santos, Thais Caroline Pereira Dos; Dias, Daniel Ventura; Daré, Letícia Rossi; Rosa, Geraldo Marco

    2017-01-01

    To investigate if electrical stimulation through Russian current is able to maintain morphology of the cranial tibial muscle of experimentally denervated rats. Thirty-six Wistar rats were divided into four groups: the Initial Control Group, Final Control Group, Experimental Denervated and Treated Group, Experimental Denervated Group. The electrostimulation was performed with a protocol of Russian current applied three times per week, for 45 days. At the end, the animals were euthanized and histological and morphometric analyses were performed. Data were submitted to statistical analysis with a significance level of p<0.05. The Experimental Denervated Group and the Experimental Denervated and Treated Group had cross-sectional area of smaller fiber compared to the Final Control Group. However, there was significant difference between the Experimental Denervated Group and Experimental Denervated and Treated Group, showing that electrical stimulation minimized muscle atrophy. The Experimental Denervated and Treated Group and Initial Control Group showed similar results. Electrical stimulation through Russian current acted favorably in maintaining morphology of the cranial tibial muscle that was experimentally denervated, minimizing muscle atrophy. Investigar se a estimulação elétrica pela corrente russa é capaz de manter a morfologia do músculo tibial cranial de ratos desnervados experimentalmente. Foram utilizados 36 ratos Wistar, distribuídos em quatro grupos: Grupo Controle Inicial, Grupo Controle Final, Grupo Experimental Desnervado Tratado, Grupo Experimental Desnervado. A eletroestimulação foi realizada com um protocolo de corrente russa aplicada três vezes por semanas, durante 45 dias. Ao final, os animais foram eutanasiados e, em seguida, foram realizadas as análises histológica e morfométrica. Os dados foram submetidos à análise estatística, com nível de significância de p<0,05. Os Grupos Experimental Desnervado e o Grupo Experimental Desnervado Tratado apresentaram área de secção transversal da fibra menor quando comparados ao Grupo Controle Final. Entretanto, constatou-se diferença significativa entre o Grupo Experimental Desnervado e o Grupo Experimental Desnervado Tratado, mostrando que a estimulação elétrica minimizou atrofia muscular. Ainda, observou-se que o Grupo Experimental Desnervado Tratado apresentou resultados semelhantes ao Grupo Controle Inicial. A estimulação elétrica por meio da corrente russa foi favorável na manutenção da morfologia do músculo tibial cranial desnervado experimentalmente, minimizando a atrofia muscular.

  14. Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke.

    PubMed

    Hong, Il Ki; Choi, Jong Bae; Lee, Jong Ha

    2012-09-01

    Paresis of the upper extremity after stroke is not effectively solved by existing therapies. We investigated whether mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic upper extremity in patients with chronic stroke and induced cortical changes. Fourteen subjects with chronic stroke (≥12 months) were randomly allocated to receive mental imagery training combined with electromyogram-triggered electric stimulation (n=7) or generalized functional electric stimulation (n=7) on the forearm extensor muscles of the paretic extremity in 2 20-minute daily sessions 5 days a week for 4 weeks. The upper extremity component of the Fugl-Meyer Motor Assessment, the Motor Activity Log, the modified Barthel Index, and (18)F-fluorodeoxyglucose brain positron emission tomography were measured before and after the intervention. The group receiving mental imagery training combined with electromyogram-triggered electric stimulation exhibited significant improvements in the upper extremity component of the Fugl-Meyer Motor Assessment after intervention (median, 7; interquartile range, 5-8; P<0.05), but the group receiving functional electric stimulation did not (median, 0; interquartile range, 0-3). Differences in score changes between the 2 groups were significant. The mental imagery training combined with electromyogram-triggered electric stimulation group showed significantly increased metabolism in the contralesional supplementary motor, precentral, and postcentral gyri (P(uncorrected)<0.001) after the intervention, but the functional electric stimulation group showed no significant differences. Mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic extremity in patients with chronic stroke. The intervention increased metabolism in the contralesional motor-sensory cortex. Clinical Trial Registration- URL: https://e-irb.khmccri.or.kr/eirb/receipt/index.html?code=02&status=5. Unique identifier: KHUHMDIRB 1008-02.

  15. Cochlear Implants (For Parents)

    MedlinePlus

    ... nerve, and send it to the brain. The cochlear implant package is made up of: a receiver-stimulator that contains all of the electronic circuits that control the flow of electrical pulses into the ear an antenna ...

  16. Differential effect of brief electrical stimulation on voltage-gated potassium channels

    PubMed Central

    Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.

    2017-01-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (NaV channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (KV channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different KV-channel subtypes. Computational modeling reveals substantial differences in the response of specific KV-channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different KV-channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that KV-channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (KV channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between KV channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or “fading,” may be attributed to KV-channel activation. PMID:28202576

  17. Activity-dependent sensitivity of proprioceptive sensory neurons in the stick insect femoral chordotonal organ.

    PubMed

    DiCaprio, Ralph A; Wolf, Harald; Büschges, Ansgar

    2002-11-01

    Mechanosensory neurons exhibit a wide range of dynamic changes in response, including rapid and slow adaptation. In addition to mechanical factors, electrical processes may also contribute to sensory adaptation. We have investigated adaptation of afferent neurons in the stick insect femoral chordotonal organ (fCO). The fCO contains sensory neurons that respond to position, velocity, and acceleration of the tibia. We describe the influence of random mechanical stimulation of the fCO on the response of fCO afferent neurons. The activity of individual sensory neurons was recorded intracellularly from their axons in the main leg nerve. Most fCO afferents (93%) exhibited a marked decrease in response to trapezoidal stimuli following sustained white noise stimulation (bandwidth = 60 Hz, amplitudes from +/-5 to +/-30 degrees ). Concurrent decreases in the synaptic drive to leg motoneurons and interneurons were also observed. Electrical stimulation of spike activity in individual fCO afferents in the absence of mechanical stimulation also led to a dramatic decrease in response in 15 of 19 afferents tested. This indicated that electrical processes are involved in the regulation of the generator potential or encoding of action potentials and partially responsible for the decreased response of the afferents. Replacing Ca(2+) with Ba(2+) in the saline surrounding the fCO greatly reduced or blocked the decrease in response elicited by electrically induced activity or mechanical stimulation when compared with control responses. Our results indicate that activity of fCO sensory neurons strongly affects their sensitivity, most likely via Ca(2+)-dependent processes.

  18. Cerebral somatic pain modulation during autogenic training in fMRI.

    PubMed

    Naglatzki, R P; Schlamann, M; Gasser, T; Ladd, M E; Sure, U; Forsting, M; Gizewski, E R

    2012-10-01

    Functional magnetic resonance imaging (fMRI) studies are increasingly employed in different conscious states. Autogenic training (AT) is a common clinically used relaxation method. The purpose of this study was to investigate the cerebral modulation of pain activity patterns due to AT and to correlate the effects to the degree of experience with AT and strength of stimuli. Thirteen volunteers familiar with AT were studied with fMRI during painful electrical stimulation in a block design alternating between resting state and electrical stimulation, both without AT and while employing the same paradigm when utilizing their AT abilities. The subjective rating of painful stimulation and success in modulation during AT was assessed. During painful electrical stimulation without AT, fMRI revealed activation of midcingulate, right secondary sensory, right supplementary motor, and insular cortices, the right thalamus and left caudate nucleus. In contrast, utilizing AT only activation of left insular and supplementary motor cortices was revealed. The paired t-test revealed pain-related activation in the midcingulate, posterior cingulate and left anterior insular cortices for the condition without AT, and activation in the left ventrolateral prefrontal cortex under AT. Activation of the posterior cingulate cortex and thalamus correlated with the amplitude of electrical stimulation. This study revealed an effect on cerebral pain processing while performing AT. This might represent the cerebral correlate of different painful stimulus processing by subjects who are trained in performing relaxation techniques. However, due to the absence of a control group, further studies are needed to confirm this theory. © 2012 European Federation of International Association for the Study of Pain Chapters.

  19. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation

    PubMed Central

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-01-01

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.8 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.86) and depth (r = 0.88) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI: http://dx.doi.org/10.7554/eLife.18834.001 PMID:28169833

  20. Transcranial magnetic stimulation--may be useful as a preoperative screen of motor tract function.

    PubMed

    Galloway, Gloria M; Dias, Brennan R; Brown, Judy L; Henry, Christina M; Brooks, David A; Buggie, Ed W

    2013-08-01

    Transcranial motor stimulation with noninvasive cortical surface stimulation, using a high-intensity magnetic field referred to as transcranial magnetic stimulation generally, is considered a nonpainful technique. In contrast, transcranial electric stimulation of the motor tracts typically cannot be done in unanesthesized patients. Intraoperative monitoring of motor tract function with transcranial electric stimulation is considered a standard practice in many institutions for patients during surgical procedures in which there is potential risk of motor tract impairment so that the risk of paraplegia or paraparesis can be reduced. Because transcranial electric stimulation cannot be typically done in the outpatient setting, transcranial magnetic stimulation may be able to provide a well-tolerated method for evaluation of the corticospinal motor tracts before surgery. One hundred fifty-five patients aged 5 to 20 years were evaluated preoperatively with single-stimulation nonrepetitive transcranial magnetic stimulation for preoperative assessment. The presence of responses to transcranial magnetic stimulation reliably predicted the presence of responses to transcranial electric stimulation intraoperatively. No complications occurred during the testing, and findings were correlated to the clinical history and used in the setup of the surgical monitoring.

  1. Different Movement of Hyolaryngeal Structures by Various Application of Electrical Stimulation in Normal Individuals

    PubMed Central

    Kim, Sae Hyun; Oh, Byung-Mo; Han, Tae Ryun; Jeong, Ho Joong

    2015-01-01

    Objective To identify the differences in the movement of the hyoid bone and the vocal cord with and without electrical stimulation in normal subjects. Methods Two-dimensional motion analysis using a videofluoroscopic swallowing study with and without electrical stimulation was performed. Surface electrical stimulation was applied during swallowing using electrodes placed at three different locations on each subject. All subjects were analyzed three times using the following electrode placements: with one pair of electrodes on the suprahyoid muscles and a second pair on the infrahyoid muscles (SI); with placement of the electrode pairs on only the infrahyoid muscles (IO); and with the electrode pairs placed vertically on the suprahyoid and infrahyoid muscles (SIV). Results The main outcomes of this study demonstrated an initial downward displacement as well as different movements of the hyoid bone with the three electrode placements used for electrical stimulation. The initial positions of the hyoid bone with the SI and IO placements resulted in an inferior and anterior displaced position. During swallowing, the hyoid bone moved in a more superior and less anterior direction, resulting in almost the same peak position compared with no electrical stimulation. Conclusion These results demonstrate that electrical stimulation caused an initial depression of the hyoid bone, which had nearly the same peak position during swallowing. Electrical stimulation during swallowing was not dependent on the position of the electrode on the neck, such as on the infrahyoid or on both the suprahyoid and infrahyoid muscles. PMID:26361589

  2. Electrical stimulation superimposed onto voluntary muscular contraction.

    PubMed

    Paillard, Thierry; Noé, Frédéric; Passelergue, Philippe; Dupui, Philippe

    2005-01-01

    Electrical stimulation (ES) reverses the order of recruitment of motor units (MU) observed with voluntary muscular contraction (VOL) since under ES, large MU are recruited before small MU. The superimposition of ES onto VOL (superimposed technique: application of an electrical stimulus during a voluntary muscle action) can theoretically activate more motor units than VOL performed alone, which can engender an increase of the contraction force. Two superimposed techniques can be used: (i) the twitch interpolation technique (ITT), which consists of interjecting an electrical stimulus onto the muscle nerve; and (ii) the percutaneous superimposed electrical stimulation technique (PST), where the stimulation is applied to the muscle belly. These two superimposed techniques can be used to evaluate the ability to fully activate a muscle. They can thus be employed to distinguish the central or peripheral nature of fatigue after exhausting exercise. In general, whatever the technique employed, the superimposition of ES onto volitional exercise does not recruit more MU than VOL, except with eccentric actions. Nevertheless, the neuromuscular response associated with the use of the superimposed technique (ITT and PST) depends on the parameter of the superimposed current. The sex and the training level of the subjects can also modify the physiological impact of the superimposed technique. Although the motor control differs drastically between training with ES and VOL, the integration of the superimposed technique in training programmes with healthy subjects does not reveal significant benefits compared with programmes performed only with voluntary exercises. Nevertheless, in a therapeutic context, training programmes using ES superimposition compensate volume and muscle strength deficit with more efficiency than programmes using VOL or ES separately.

  3. Frequency dependence of behavioral modulation by hippocampal electrical stimulation

    PubMed Central

    La Corte, Giorgio; Wei, Yina; Chernyy, Nick; Gluckman, Bruce J.

    2013-01-01

    Electrical stimulation offers the potential to develop novel strategies for the treatment of refractory medial temporal lobe epilepsy. In particular, direct electrical stimulation of the hippocampus presents the opportunity to modulate pathological dynamics at the ictal focus, although the neuroanatomical substrate of this region renders it susceptible to altering cognition and affective processing as a side effect. We investigated the effects of three electrical stimulation paradigms on separate groups of freely moving rats (sham, 8-Hz and 40-Hz sine-wave stimulation of the ventral/intermediate hippocampus, where 8- and 40-Hz stimulation were chosen to mimic naturally occurring hippocampal oscillations). Animals exhibited attenuated locomotor and exploratory activity upon stimulation at 40 Hz, but not at sham or 8-Hz stimulation. Such behavioral modifications were characterized by a significant reduction in rearing frequency, together with increased freezing behavior. Logistic regression analysis linked the observed changes in animal locomotion to 40-Hz electrical stimulation independently of time-related variables occurring during testing. Spectral analysis, conducted to monitor the electrophysiological profile in the CA1 area of the dorsal hippocampus, showed a significant reduction in peak theta frequency, together with reduced theta power in the 40-Hz vs. the sham stimulation animal group, independent of locomotion speed (theta range: 4–12 Hz). These findings contribute to the development of novel and safe medical protocols by indicating a strategy to constrain or optimize parameters in direct hippocampal electrical stimulation. PMID:24198322

  4. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling

    PubMed Central

    Pearcey, Gregory E. P.; Noble, Steven A.; Munro, Bridget; Zehr, E. Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation (CONTROL + STIM), sprints with sensory stimulation (SPRINT + STIM) and sprints without stimulation (SPRINT). Seven participants also performed a fourth session (CONTROL), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM, participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM, participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints. PMID:29326570

  5. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling.

    PubMed

    Pearcey, Gregory E P; Noble, Steven A; Munro, Bridget; Zehr, E Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation ( CONTROL + STIM ), sprints with sensory stimulation ( SPRINT + STIM ) and sprints without stimulation ( SPRINT ). Seven participants also performed a fourth session ( CONTROL ), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM , participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM , participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints.

  6. Percutaneous tibial nerve stimulation versus electrical stimulation with pelvic floor muscle training for overactive bladder syndrome in women: results of a randomized controlled study.

    PubMed

    Scaldazza, Carlo Vecchioli; Morosetti, Carolina; Giampieretti, Rosita; Lorenzetti, Rossana; Baroni, Marinella

    2017-01-01

    This study compared percutaneous tibial nerve stimulation (PTNS) versus electrical stimulation with pelvic floor muscle training (ES + PFMT) in women with overactive bladder syndrome (OAB). 60 women with OAB were enrolled. Patients were randomized into two groups. In group A, women underwent ES with PFMT, in group B women underwent PTNS. A statistically significant reduction in the number of daily micturitions, episodes of nocturia and urge incontinence was found in the two groups but the difference was more substantial in women treated with PTNS; voided volume increased in both groups. Quality of life improved in both groups, whereas patient perception of urgency improved only in women treated with PTNS. Global impression of improvement revealed a greater satisfaction in patients treated with PTNS. This study demonstrates the effectiveness of PTNS and ES with PFMT in women with OAB, but greater improvements were found with PTNS. Copyright® by the International Brazilian Journal of Urology.

  7. A system for the delivery of programmable, adaptive stimulation intensity envelopes for drop foot correction applications.

    PubMed

    Breen, P P; O'Keeffe, D T; Conway, R; Lyons, G M

    2006-03-01

    We describe the design of an intelligent drop foot stimulator unit for use in conjunction with a commercial neuromuscular electrical nerve stimulation (NMES) unit, the NT2000. The developed micro-controller unit interfaces to a personal computer (PC) and a graphical user interface (GUI) allows the clinician to graphically specify the shape of the stimulation intensity envelope required for a subject undergoing drop foot correction. The developed unit is based on the ADuC812S micro-controller evaluation board from Analog Devices and uses two force sensitive resistor (FSR) based foot-switches to control application of stimulus. The unit has the ability to display to the clinician how the stimulus intensity envelope is being delivered during walking using a data capture capability. The developed system has a built-in algorithm to dynamically adjust the delivery of stimulus to reflect changes both within the gait cycle and from cycle to cycle. Thus, adaptive control of stimulus intensity is achieved.

  8. Neuromuscular electrostimulation techniques: historical aspects and current possibilities in treatment of pain and muscle waisting.

    PubMed

    Heidland, August; Fazeli, Gholamreza; Klassen, André; Sebekova, Katarina; Hennemann, Hans; Bahner, Udo; Di Iorio, Biagio

    2013-01-01

    Application of electricity for pain treatment dates back to thousands of years BC. The Ancient Egyptians and later the Greeks and Romans recognized that electrical fishes are capable of generating electric shocks for relief of pain. In the 18th and 19th centuries these natural producers of electricity were replaced by man-made electrical devices. This happened in following phases. The first was the application of static electrical currents (called Franklinism), which was produced by a friction generator. Christian Kratzenstein was the first to apply it medically, followed shortly by Benjamin Franklin. The second phase was Galvanism. This method applied a direct electrical current to the skin by chemical means, applied a direct and pulsed electrical current to the skin. In the third phase the electrical current was induced intermittently and in alternate directions (called Faradism). The fourth stage was the use of high frequency currents (called d'Arsonvalisation). The 19th century was the "golden age" of electrotherapy. It was used for countless dental, neurological, psychiatric and gynecological disturbances. However, at beginning of the 20th century electrotherapy fell from grace. It was dismissed as lacking a scientific basis and being used also by quacks and charlatans for unserious aims. Furthermore, the development of effective analgesic drugs decreased the interest in electricity. In the second half of the 20th century electrotherapy underwent a revival. Based on animal experiments and clinical investigations, its neurophysiological mechanisms were elucidated in more details. The pain relieving action of electricity was explained in particular by two main mechanisms: first, segmental inhibition of pain signals to the brain in the dorsal horn of the spinal cord and second, activation of the descending inhibitory pathway with enhanced release of endogenous opioids and other neurochemical compounds (serotonin, noradrenaline, gamma aminobutyric acid (GABA), acetylcholine and adenosine). The modern electrotherapy of neuromusculo- skeletal pain is based in particular on the following types: transcutaneous electrical nerve stimulation (TENS), percutaneous electrical nerve stimulation (PENS or electro-acupuncture) and spinal cord stimulation (SCS). In mild to moderate pain, TENS and PENS are effective methods, whereas SCS is very useful for therapy of refractory neuropathic or ischemic pain. In 2005, high tone external muscle stimulation (HTEMS) was introduced. In diabetic peripheral neuropathy, its analgesic action was more pronounced than TENS application. HTEMS appeared also to have value in the therapy of symptomatic peripheral neuropathy in end-stage renal disease (ESRD). Besides its pain-relieving effect, electrical stimulation is of major importance for prevention or treatment of muscle dysfunction and sarcopenia. In controlled clinical studies electrical myostimulation (EMS) has been shown to be effective against the sarcopenia of patients with chronic congestive heart disease, diabetes, chronic obstructive pulmonary disease and ESRD.

  9. Repetitive electric brain stimulation reduces food intake in humans.

    PubMed

    Jauch-Chara, Kamila; Kistenmacher, Alina; Herzog, Nina; Schwarz, Marianka; Schweiger, Ulrich; Oltmanns, Kerstin M

    2014-10-01

    The dorsolateral prefrontal cortex (DLPFC) plays an important role in appetite and food intake regulation. Because previous data revealed that transcranial direct current stimulation (tDCS) of the DLPFC reduces food cravings, we hypothesized that repetitive electric stimulation of the right DLPFC would lower food intake behavior in humans. In a single-blind, code-based, placebo-controlled, counterbalanced, randomized crossover experiment, 14 healthy young men with body mass index (in kg/m(2)) from 20 to 25 were examined during 8 d of daily tDCS or a sham stimulation. After tDCS or sham stimulation on the first and the last day of both experimental conditions, participants consumed food ad libitum from a standardized test buffet. One week of daily anodal tDCS reduced overall caloric intake by 14% in comparison with sham stimulation. Moreover, repetitive tDCS diminished self-reported appetite scores. Our study implies that the application of anodal direct currents to the right DLPFC represents a promising option for reducing both caloric intake and appetite in humans. This trial was registered at the German Clinical Trials Register (www.germanctr.de) as DRKS00005811. © 2014 American Society for Nutrition.

  10. Ablation of the sphenopalatine ganglion does not attenuate the infarct reducing effect of vagus nerve stimulation

    PubMed Central

    Ay, Ilknur; Ay, Hakan

    2013-01-01

    Electrical stimulation of the cervical vagus nerve reduces infarct size by approximately 50% after cerebral ischemia in rats. The mechanism of ischemic protection by vagus nerve stimulation (VNS) is not known. In this study, we investigated whether the infarct reducing effect of VNS was mediated by activation of the parasympathetic vasodilator fibers that originate from the sphenopalatine ganglion (SPG) and innervate the anterior cerebral circulation. We examined the effects of electrical stimulation of the cervical vagus nerve in two groups of rats: one with and one without SPG ablation. Electrical stimulation was initiated 30 min after induction of ischemia, and lasted for 1h. Measurement of infarct size 24h later revealed that the volume of ischemic damage was smaller in those animals that received VNS treatment (41.32 ± 2.07% vs. 24.19 ± 2.62% of the contralateral hemispheric volume, n=6 in both; p<0.05). SPG ablation did not abolish this effect; the reduction in infarct volume following VNS was 58% in SPG-damaged animals, 41% in SPG-intact animals (p>0.05). In both SPG-intact and SPG-damaged animals VNS treatment resulted in better motor outcome (p<0.05 vs. corresponding controls for both). Our findings show that VNS can protect the brain against acute ischemic injury, and that this effect is not mediated by SPG projections. PMID:23273773

  11. When the Ostrich-Algorithm Fails: Blanking Method Affects Spike Train Statistics.

    PubMed

    Joseph, Kevin; Mottaghi, Soheil; Christ, Olaf; Feuerstein, Thomas J; Hofmann, Ulrich G

    2018-01-01

    Modern electroceuticals are bound to employ the usage of electrical high frequency (130-180 Hz) stimulation carried out under closed loop control, most prominent in the case of movement disorders. However, particular challenges are faced when electrical recordings of neuronal tissue are carried out during high frequency electrical stimulation, both in-vivo and in-vitro . This stimulation produces undesired artifacts and can render the recorded signal only partially useful. The extent of these artifacts is often reduced by temporarily grounding the recording input during stimulation pulses. In the following study, we quantify the effects of this method, "blanking," on the spike count and spike train statistics. Starting from a theoretical standpoint, we calculate a loss in the absolute number of action potentials, depending on: width of the blanking window, frequency of stimulation, and intrinsic neuronal activity. These calculations were then corroborated by actual high signal to noise ratio (SNR) single cell recordings. We state that, for clinically relevant frequencies of 130 Hz (used for movement disorders) and realistic blanking windows of 2 ms, up to 27% of actual existing spikes are lost. We strongly advice cautioned use of the blanking method when spike rate quantification is attempted. Blanking (artifact removal by temporarily grounding input), depending on recording parameters, can lead to significant spike loss. Very careful use of blanking circuits is advised.

  12. When the Ostrich-Algorithm Fails: Blanking Method Affects Spike Train Statistics

    PubMed Central

    Joseph, Kevin; Mottaghi, Soheil; Christ, Olaf; Feuerstein, Thomas J.; Hofmann, Ulrich G.

    2018-01-01

    Modern electroceuticals are bound to employ the usage of electrical high frequency (130–180 Hz) stimulation carried out under closed loop control, most prominent in the case of movement disorders. However, particular challenges are faced when electrical recordings of neuronal tissue are carried out during high frequency electrical stimulation, both in-vivo and in-vitro. This stimulation produces undesired artifacts and can render the recorded signal only partially useful. The extent of these artifacts is often reduced by temporarily grounding the recording input during stimulation pulses. In the following study, we quantify the effects of this method, “blanking,” on the spike count and spike train statistics. Starting from a theoretical standpoint, we calculate a loss in the absolute number of action potentials, depending on: width of the blanking window, frequency of stimulation, and intrinsic neuronal activity. These calculations were then corroborated by actual high signal to noise ratio (SNR) single cell recordings. We state that, for clinically relevant frequencies of 130 Hz (used for movement disorders) and realistic blanking windows of 2 ms, up to 27% of actual existing spikes are lost. We strongly advice cautioned use of the blanking method when spike rate quantification is attempted. Impact statement Blanking (artifact removal by temporarily grounding input), depending on recording parameters, can lead to significant spike loss. Very careful use of blanking circuits is advised. PMID:29780301

  13. Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory.

    PubMed

    Peräkylä, Jari; Sun, Lihua; Lehtimäki, Kai; Peltola, Jukka; Öhman, Juha; Möttönen, Timo; Ogawa, Keith H; Hartikainen, Kaisa M

    2017-12-01

    The mediodorsal nucleus of the thalamus (MD), with its extensive connections to the lateral pFC, has been implicated in human working memory and executive functions. However, this understanding is based solely on indirect evidence from human lesion and imaging studies and animal studies. Direct, causal evidence from humans is missing. To obtain direct evidence for MD's role in humans, we studied patients treated with deep brain stimulation (DBS) for refractory epilepsy. This treatment is thought to prevent the generalization of a seizure by disrupting the functioning of the patient's anterior nuclei of the thalamus (ANT) with high-frequency electric stimulation. This structure is located superior and anterior to MD, and when the DBS lead is implanted in ANT, tip contacts of the lead typically penetrate through ANT into the adjoining MD. To study the role of MD in human executive functions and working memory, we periodically disrupted and recovered MD's function with high-frequency electric stimulation using DBS contacts reaching MD while participants performed a cognitive task engaging several aspects of executive functions. We hypothesized that the efficacy of executive functions, specifically working memory, is impaired when the functioning of MD is perturbed by high-frequency stimulation. Eight participants treated with ANT-DBS for refractory epilepsy performed a computer-based test of executive functions while DBS was repeatedly switched ON and OFF at MD and at the control location (ANT). In comparison to stimulation of the control location, when MD was stimulated, participants committed 2.26 times more errors in general (total errors; OR = 2.26, 95% CI [1.69, 3.01]) and 2.86 times more working memory-related errors specifically (incorrect button presses; OR = 2.88, CI [1.95, 4.24]). Similarly, participants committed 1.81 more errors in general ( OR = 1.81, CI [1.45, 2.24]) and 2.08 times more working memory-related errors ( OR = 2.08, CI [1.57, 2.75]) in comparison to no stimulation condition. "Total errors" is a composite score consisting of basic error types and was mostly driven by working memory-related errors. The facts that MD and a control location, ANT, are only few millimeters away from each other and that their stimulation produces very different results highlight the location-specific effect of DBS rather than regionally unspecific general effect. In conclusion, disrupting and recovering MD's function with high-frequency electric stimulation modulated participants' online working memory performance providing causal, in vivo evidence from humans for the role of MD in human working memory.

  14. Modelling the cost-utility of bio-electric stimulation therapy compared to standard care in the treatment of elderly patients with chronic non-healing wounds in the UK.

    PubMed

    Clegg, John P; Guest, Julian F

    2007-04-01

    To estimate the cost-utility of bio-electric stimulation therapy (Posifect) compared to standard care in elderly patients with chronic, non-healing wounds of > 6 months duration, from the perspective of the National Health Service (NHS) in the UK. Clinical and resource use data from a 16 week clinical evaluation of bio-electric stimulation therapy among patients who had recalcitrant wounds were combined with utility data obtained from a standard gamble analysis to construct a 16 week Markov model. The model considers the decision by a clinician to continue with a patient's previous care plan or treat with bio-electric stimulation therapy. Unit resource costs at 2005/2006 prices were applied to the resource utilisation estimates within the model, enabling the cost-utility of bio-electric stimulation therapy compared to standard care to be estimated. The acquisition cost of Posifect had not been decided at the time of performing this study. Hence, the base case analysis used a cost of 50 pounds per dressing. 33% of all wounds are expected to heal within 16 weeks after the start of bio-electric stimulation therapy. Consequently, using bio-electric stimulation therapy is expected to lead to a 51% decrease in the number of domiciliary clinician visits, from 4.7 to 2.3 per week. The model also showed that using bio-electric stimulation therapy instead of patients' standard care is expected to reduce the NHS cost of managing them by 16% from 2287 pounds (95% CI: 1838 pounds; 2735 pounds) to 1921 pounds (95% CI: 1609 pounds; 2233 pounds) and result in a health gain of 0.023 QALYs over 16 weeks. Hence, bio-electric stimulation therapy was found to be a dominant treatment. Sensitivity analyses demonstrated that the cost-utility of using bio-electric stimulation therapy relative to standard care is very sensitive to the acquisition cost of the therapy, the acquisition cost of patients' drugs and the number of clinician visits and less sensitive to utility values and the acquisition cost of other dressings. Within the limitations of the model, bio-electric stimulation therapy is expected to afford the NHS a cost-effective dressing compared to standard care in the management of chronic non-healing wounds of > 6 months duration. Bio-electric stimulation therapy's acquisition cost is expected to be offset by a reduction in the requirement for domiciliary clinician visits, leading to a release of NHS resources for use elsewhere in the system, thereby generating an increase in NHS efficiency.

  15. Effects of different electrical brain stimulation protocols on subcomponents of motor skill learning.

    PubMed

    Prichard, George; Weiller, Cornelius; Fritsch, Brita; Reis, Janine

    2014-01-01

    Noninvasive electrical brain stimulation (NEBS) with transcranial direct current (tDCS) or random noise stimulation (tRNS) applied to the primary motor cortex (M1) can augment motor learning. We tested whether different types of stimulation alter particular aspects of learning a tracing task over three consecutive days, namely skill acquisition (online/within session effects) or consolidation (offline/between session effects). Motor training on a tracing task over three consecutive days was combined with different types and montages of stimulation (tDCS, tRNS). Unilateral M1 stimulation using tRNS as well as unilateral and bilateral M1 tDCS all enhanced motor skill learning compared to sham stimulation. In all groups, this appeared to be driven by online effects without an additional offline effect. Unilateral tDCS resulted in large skill gains immediately following the onset of stimulation, while tRNS exerted more gradual effects. Control stimulation of the right temporal lobe did not enhance skill learning relative to sham. The mechanisms of action of tDCS and tRNS are likely different. Hence, the time course of skill improvement within sessions could point to specific and temporally distinct interactions with the physiological process of motor skill learning. Exploring the parameters of NEBS on different tasks and in patients with brain injury will allow us to maximize the benefits of NEBS for neurorehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Functional electrical stimulation to the abdominal wall muscles synchronized with the expiratory flow does not induce muscle fatigue.

    PubMed

    Okuno, Yukako; Takahashi, Ryoichi; Sewa, Yoko; Ohse, Hirotaka; Imura, Shigeyuki; Tomita, Kazuhide

    2017-03-01

    [Purpose] Continuous electrical stimulation of abdominal wall muscles is known to induce mild muscle fatigue. However, it is not clear whether this is also true for functional electrical stimulation delivered only during the expiratory phase of breathing. This study aimed to examine whether or not intermittent electrical stimulation delivered to abdominal wall muscles induces muscle fatigue. [Subjects and Methods] The subjects were nine healthy adults. Abdominal electrical stimulation was applied for 1.5 seconds from the start of expiration and then turned off during inspiration. The electrodes were attached to both sides of the abdomen at the lower margin of the 12th rib. Abdominal electrical stimulation was delivered for 15 minutes with the subject in a seated position. Expiratory flow was measured during stimulus. Trunk flexor torque and electromyography activity were measured to evaluate abdominal muscle fatigue. [Results] The mean stimulation on/off ratio was 1:2.3. The declining rate of abdominal muscle torque was 61.1 ± 19.1% before stimulus and 56.5 ± 20.9% after stimulus, not significantly different. The declining rate of mean power frequency was 47.8 ± 11.7% before stimulus and 47.9 ± 10.2% after stimulus, not significantly different. [Conclusion] It was found that intermittent electrical stimulation to abdominal muscles synchronized with the expiratory would not induce muscle fatigue.

  17. Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.

    PubMed

    Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry

    2007-01-01

    We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.

  18. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    NASA Astrophysics Data System (ADS)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications.

  19. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.

    PubMed

    Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel

    2017-07-26

    Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required. Copyright © 2017 the authors 0270-6474/17/377188-10$15.00/0.

  20. Neuromuscular Electrical Stimulation for Mobility Support of Elderly

    PubMed Central

    2015-01-01

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within “MOBIL” we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in “compliance data storage” as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the correlation between normalized MVC and normalized MSC was calculated. It is obvious that MVC can increase to strongly variable extent (3 to 65 %), but in few cases also decrease (-4 to 15 %) over the study period. The correlation suggests that an increase of roughly 1 % of normalized MSC can lead to an increase of about 10 % in MVC in the given training conditions. Overall, we can say that we have a stimulator that has turned out to work sufficiently. The most important feature is the integrated compliance recording because this is very useful for interpretation of the study outcome. The electrical stimulation training has shown that even with relatively small induced contraction intensity we still get some increase in the achievable voluntary extension torque. PMID:26913167

  1. Neuromuscular Electrical Stimulation for Mobility Support of Elderly.

    PubMed

    Mayr, Winfried

    2015-08-24

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within "MOBIL" we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in "compliance data storage" as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the correlation between normalized MVC and normalized MSC was calculated. It is obvious that MVC can increase to strongly variable extent (3 to 65 %), but in few cases also decrease (-4 to 15 %) over the study period. The correlation suggests that an increase of roughly 1 % of normalized MSC can lead to an increase of about 10 % in MVC in the given training conditions. Overall, we can say that we have a stimulator that has turned out to work sufficiently. The most important feature is the integrated compliance recording because this is very useful for interpretation of the study outcome. The electrical stimulation training has shown that even with relatively small induced contraction intensity we still get some increase in the achievable voluntary extension torque.

  2. Electrical stimulation as a means for achieving recovery of function in stroke patients.

    PubMed

    Popović, Dejan B; Sinkaer, Thomas; Popović, Mirjana B

    2009-01-01

    This review presents technologies used in and assesses the main clinical outcomes of electrical therapies designed to speed up and increase functional recovery in stroke patients. The review describes methods which interface peripheral systems (e.g., cyclic neural stimulation, stimulation triggered by electrical activity of muscles, therapeutic functional electrical stimulation) and transcranial brain stimulation with surface and implantable electrodes. Our conclusion from reviewing these data is that integration of electrical therapy into exercise-active movement mediated by electrical activation of peripheral and central sensory-motor mechanisms enhances motor re-learning following damage to the central nervous system. Motor re-learning is considered here as a set of processes associated with practice or experience that leads to long-term changes in the capability for movement. An important suggestion is that therapeutic effects are likely to be much more effective when treatment is applied in the acute, rather than in the chronic, phase of stroke.

  3. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  4. Package architecture and component design for an implanted neural stimulator with closed loop control.

    PubMed

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.

  5. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    PubMed

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.

  6. Efficacy of electroacupuncture compared with transcutaneous electric nerve stimulation for functional constipation: Study protocol for a randomized, controlled trial.

    PubMed

    Zeng, Yuxiao; Zhang, Xuecheng; Zhou, Jing; Wang, Xinwei; Jiao, Ruimin; Liu, Zhishun

    2018-05-01

    To treat functional constipation, both electroacupuncture (EA) therapy and transcutaneous electric nerve stimulation (TENS) are safe and effective. However, no head-to-head comparison trial has been conducted. This trial compares the efficacy of electroacupuncture relative to transcutaneous electric nerve stimulation for functional constipation. Individuals with functional constipation will be randomly allocated to receive either EA or TENS (n = 51, each), 3 times per week for 8 weeks. The primary outcome is the percentage of participants with an average increase from baseline of 1 or more complete spontaneous bowel movements at week 8. The secondary outcome measures are the following: at the time of visits, changes in the number of complete spontaneous bowel movements, number of spontaneous bowel movements, stool character, difficulty in defecation, patients' assessment of quality of life regarding constipation (self-report questionnaire), and use of auxiliary defecation methods. The results of this trial should verify whether EA is more efficacious than TENS for relieving symptoms of functional constipation. The major limitation of the study is the lack of blinding of the participants and acupuncturist.

  7. Muscular urinary sphincter: electrically stimulated myoplasty for functional sphincter reconstruction.

    PubMed

    Palacio, M M; Van Aalst, V C; Perez Abadia, G A; Stremel, R W; Werker, P M; Ren, X; Petty, G D; Heilman, S J; Van Savage, J G; Garcia Fernandez, A; Kon, M; Tobin, G R; Barker, J H

    1998-11-01

    To reconstruct an electrically stimulated muscular urinary sphincter (MUS) using a tailored gracilis muscle free flap with intact nerve. Unilateral surgically tailored gracilis muscle free flaps were transferred into the pelvis in eight dogs, leaving the obturator nerve intact. The muscle's pedicle vessels were anastomosed to the inferior epigastric artery and vein in the pelvis and the muscle was wrapped around the bladder neck. Electrodes were inserted into the MUS and connected to a programmable pulse generator. After 8 weeks of training the MUS, the pulse generator was programmed to be "on" for 4 hours and "off' for 15 minutes in a continuous cycle. Urodynamic studies were performed periodically, and at the end of the experiment the MUS and proximal urethra were harvested for histology. Three control dogs had sham operations. All MUS's functioned well following the procedure. Histology of the MUS/urethra complex showed no evidence of stricture. Except for one dog, all urethras were easily catheterized. This electrically stimulated innervated free-flap MUS technique effectively increases bladder outlet resistance without producing urethral obstruction.

  8. Posterior tibial nerve stimulation vs parasacral transcutaneous neuromodulation for overactive bladder in children.

    PubMed

    Barroso, Ubirajara; Viterbo, Walter; Bittencourt, Joana; Farias, Tiago; Lordêlo, Patrícia

    2013-08-01

    Parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation have emerged as effective methods to treat overactive bladder in children. However, to our knowledge no study has compared the 2 methods. We evaluated the results of parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation in children with overactive bladder. We prospectively studied children with overactive bladder without dysfunctional voiding. Success of treatment was evaluated by visual analogue scale and dysfunctional voiding symptom score, and by level of improvement of each specific symptom. Parasacral transcutaneous electrical nerve stimulation was performed 3 times weekly and posterior tibial nerve stimulation was performed once weekly. A total of 22 consecutive patients were treated with posterior tibial nerve stimulation and 37 with parasacral transcutaneous electrical nerve stimulation. There was no difference between the 2 groups regarding demographic characteristics or types of symptoms. Concerning the evaluation by visual analogue scale, complete resolution of symptoms was seen in 70% of the group undergoing parasacral transcutaneous electrical nerve stimulation and in 9% of the group undergoing posterior tibial nerve stimulation (p = 0.02). When the groups were compared, there was no statistically significant difference (p = 0.55). The frequency of persistence of urgency and diurnal urinary incontinence was nearly double in the group undergoing posterior tibial nerve stimulation. However, this difference was not statistically significant. We found that parasacral transcutaneous electrical nerve stimulation is more effective in resolving overactive bladder symptoms, which matches parental perception. However, there were no statistically significant differences in the evaluation by dysfunctional voiding symptom score, or in complete resolution of urgency or diurnal incontinence. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Does Transcranial Direct Current Stimulation Combined with Peripheral Electrical Stimulation Have an Additive Effect in the Control of Hip Joint Osteonecrosis Pain Associated with Sickle Cell Disease? A Protocol for a One-Session Double Blind, Block-Randomized Clinical Trial.

    PubMed

    Lopes, Tiago da Silva; Silva, Wellington Dos Santos; Ribeiro, Sânzia B; Figueiredo, Camila A; Campbell, Fernanda Q; Daltro, Gildasio de Cerqueira; Valenzuela, Antônio; Montoya, Pedro; Lucena, Rita de C S; Baptista, Abrahão F

    2017-01-01

    Chronic pain in Sickle Cell Disease (SCD) is probably related to maladaptive plasticity of brain areas involved in nociceptive processing. Transcranial Direct Current Stimulation (tDCS) and Peripheral Electrical Stimulation (PES) can modulate cortical excitability and help to control chronic pain. Studies have shown that combined use of tDCS and PES has additive effects. However, to date, no study investigated additive effects of these neuromodulatory techniques on chronic pain in patients with SCD. This protocol describes a study aiming to assess whether combined use of tDCS and PES more effectively alleviate pain in patients with SCD compared to single use of each technique. The study consists of a one-session double blind, block-randomized clinical trial (NCT02813629) in which 128 participants with SCD and femoral osteonecrosis will be enrolled. Stepwise procedures will occur on two independent days. On day 1, participants will be screened for eligibility criteria. On day 2, data collection will occur in four stages: sample characterization, baseline assessment, intervention, and post-intervention assessment. These procedures will last ~5 h. Participants will be divided into two groups according to homozygous for S allele (HbSS) ( n = 64) and heterozygous for S and C alleles (HbSC) ( n = 64) genotypes. Participants in each group will be randomly assigned, equally, to one of the following interventions: (1) active tDCS + active PES; (2) active tDCS + sham PES; (3) sham tDCS + active PES; and (4) sham tDCS + sham PES. Active tDCS intervention will consist of 20 min 2 mA anodic stimulation over the primary motor cortex contralateral to the most painful hip. Active PES intervention will consist of 30 min sensory electrical stimulation at 100 Hz over the most painful hip. The main study outcome will be pain intensity, measured by a Visual Analogue Scale. In addition, electroencephalographic power density, cortical maps of the gluteus maximus muscle elicited by Transcranial Magnetic Stimulation (TMS), serum levels of Brain-derived Neurotrophic Factor (BDNF), and Tumor Necrosis Factor (TNF) will be assessed as secondary outcomes. Data will be analyzed using ANOVA of repeated measures, controlling for confounding variables.

  10. Antiadipogenic effects of subthermal electric stimulation at 448 kHz on differentiating human mesenchymal stem cells

    PubMed Central

    HERNÁNDEZ-BULE, MARÍA LUISA; MARTÍNEZ-BOTAS, JAVIER; TRILLO, MARÍA ÁNGELES; PAÍNO, CARLOS L; ÚBEDA, ALEJANDRO

    2016-01-01

    The 448 kHz capacitive-resistive electric transfer (CRET) is an electrothermal therapy currently applied in anticellulite and antiobesity treatments. The aim of the present study was to determine whether exposure to the CRET electric signal at subthermal doses affected early adipogenic processes in adipose-derived stem cells (ADSC) from human donors. ADSC were incubated for 2 or 9 days in the presence of adipogenic medium, and exposed or sham-exposed to 5 min pulses of 448 kHz electric signal at 50 µA/mm2 during the last 48 h of the incubation. Colorimetric, immunofluorescence, western blotting and reverse transcription-quantitative polymerase chain reaction assays were performed to assess adipogenic differentiation of the ADSC. Electric stimulation significantly decreased cytoplasmic lipid content, after both 2 and 9 days of differentiation. The antiadipogenic response in the 9 day samples was accompanied by activation of mitogen-activated protein kinase kinase 1/2, decreased expression and partial inactivation of peroxisome proliferator-activated receptor (PPAR) γ, which was translocated from the nucleus to the cytoplasm, together with a significant decrease in the expression levels of the PPARG1 gene, perilipin, angiopoietin-like protein 4 and fatty acid synthase. These results demonstrated that subthermal stimulation with CRET interferes with the early adipogenic differentiation in ADSC, indicating that the electric stimulus itself can modulate processes controlling the synthesis and mobilization of fat, even in the absence of the concomitant thermal and mechanical components of the thermoelectric therapy CRET. PMID:27035334

  11. Decreased Axon Flare Reaction to Electrical Stimulation in Patients With Chronic Demyelinating Inflammatory Polyneuropathy.

    PubMed

    Kokotis, Panagiotis; Schmelz, Martin; Papagianni, Aikaterini E; Zambelis, Thomas; Karandreas, Nikos

    2017-03-01

    In chronic inflammatory demyelinating polyradiculopathy (CIDP), the impairment of unmyelinated nerve fibers appears unexpected. The measurement of the electrically induced axon flare reflex is a clinical test to assess the peripheral C-nociceptor function. In this study, we compared the flare area in patients suffering from CIDP with healthy subjects. We examined 18 patients fulfilling the criteria for CIDP (11 men, mean age 51.8 years, SD 15.1) and 18 age-matched adult healthy volunteers (control group) (11 men, mean age 51.9 years, SD 15.8). The flare responses were elicited by transcutaneous electrical stimulation and recorded by laser Doppler imaging. There was a significant reduction of electrically induced maximum flare area in the foot dorsum of patients with CIDP (t-value 2.08, P = 0.04) which proved to be length-dependent measured by a numerical index comparing the results with the forearm and thigh. The repeatedmeasures ANOVA revealed statistically significant smaller flare areas in all body regions for the CIDP group (P < 0.001). The axon flare reaction to electrical stimulation was decreased in patients with chronic demyelinating inflammatory polyneuropathy. The evaluation of the axon flare response can be proposed as a noninvasive objective functional test to detect an impaired C-fiber function in CIDP patients with the advantages of simplicity of the procedure, time economy, and objectivity.

  12. Electrical Stimulation Modulates High γ Activity and Human Memory Performance

    PubMed Central

    Berry, Brent M.; Miller, Laura R.; Khadjevand, Fatemeh; Ezzyat, Youssef; Wanda, Paul; Sperling, Michael R.; Lega, Bradley; Stead, S. Matt

    2018-01-01

    Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62–118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with “poor” memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation. PMID:29404403

  13. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    PubMed Central

    Ponnath, Abhilash; Farris, Hamilton E.

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437

  14. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    PubMed

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  15. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  16. Polypyrrole Film as a Drug Delivery System for the Controlled Release of Risperidone

    NASA Astrophysics Data System (ADS)

    Svirskis, Darren; Travas-Sejdic, Jadranka; Rodgers, Anthony; Garg, Sanjay

    2009-07-01

    Conducting polymers are finding applications in medicine including drug delivery systems, biosensors and templates for the regeneration of nervous pathways. We aim to develop a novel system where the drug release rate can be controlled by electrical stimulation. Polypyrrole (PPY) is being used as a drug delivery system due to its inherent electrical conductivity, ease of preparation and apparent biocompatibility. Risperidone is an atypical antipsychotic drug used in the treatment of psychosis and related disorders, including schizophrenia. PPY was synthesised using p-toluene sulfonic acid as a primary dopant, in the presence of risperidone. A validated high performance liquid chromatography (HPLC) analytical method was used to quantify risperidone release. It has been demonstrated that the release rate of risperidone can be altered through the application, or absence, of electrical stimulation. Technology such as this would find use in drug-delivering implants where the dose could be adjusted through application of external stimulus, optimising benefit to side effect ratio, while simultaneously ensuring patient adherence (which is a particular challenge in mental health conditions).

  17. Repetitive transcranial magnetic stimulator with controllable pulse parameters.

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  18. Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury.

    PubMed

    Benoussaad, Mourad; Poignet, Philippe; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine; Fattal, Charles; Guiraud, David

    2013-06-01

    We investigated the parameter identification of a multi-scale physiological model of skeletal muscle, based on Huxley's formulation. We focused particularly on the knee joint controlled by quadriceps muscles under electrical stimulation (ES) in subjects with a complete spinal cord injury. A noninvasive and in vivo identification protocol was thus applied through surface stimulation in nine subjects and through neural stimulation in one ES-implanted subject. The identification protocol included initial identification steps, which are adaptations of existing identification techniques to estimate most of the parameters of our model. Then we applied an original and safer identification protocol in dynamic conditions, which required resolution of a nonlinear programming (NLP) problem to identify the serial element stiffness of quadriceps. Each identification step and cross validation of the estimated model in dynamic condition were evaluated through a quadratic error criterion. The results highlighted good accuracy, the efficiency of the identification protocol and the ability of the estimated model to predict the subject-specific behavior of the musculoskeletal system. From the comparison of parameter values between subjects, we discussed and explored the inter-subject variability of parameters in order to select parameters that have to be identified in each patient.

  19. Detecting electroporation by assessing the time constants in the exponential response of human skin to voltage controlled impulse electrical stimulation.

    PubMed

    Bîrlea, Sinziana I; Corley, Gavin J; Bîrlea, Nicolae M; Breen, Paul P; Quondamatteo, Fabio; OLaighin, Gearóid

    2009-01-01

    We propose a new method for extracting the electrical properties of human skin based on the time constant analysis of its exponential response to impulse stimulation. As a result of this analysis an adjacent finding has arisen. We have found that stratum corneum electroporation can be detected using this analysis method. We have observed that a one time-constant model is appropriate for describing the electrical properties of human skin at low amplitude applied voltages (<30V), and a two time-constant model best describes skin electrical properties at higher amplitude applied voltages (>30V). Higher voltage amplitudes (>30V) have been proven to create pores in the skin's stratum corneum which offer a new, lower resistance, pathway for the passage of current through the skin. Our data shows that when pores are formed in the stratum corneum they can be detected, in-vivo, due to the fact that a second time constant describes current flow through them.

  20. Focal activation of primary visual cortex following supra-choroidal electrical stimulation of the retina: Intrinsic signal imaging and linear model analysis.

    PubMed

    Cloherty, Shaun L; Hietanen, Markus A; Suaning, Gregg J; Ibbotson, Michael R

    2010-01-01

    We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.

Top