Laser program annual report, 1977. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, C.F.; Jarman, B.D.
1978-07-01
An overview is given of the laser fusion program. The solid-state program covers the Shiva and Nova projects. Laser components, control systems, alignment systems, laser beam diagnostics, power conditioning, and optical components are described. The fusion experimental program concerns the diagnostics and data acquisition associated with Argus and Shiva. (MOW)
Fusion plasma theory project summaries
NASA Astrophysics Data System (ADS)
1993-10-01
This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.
2016-09-01
other associated grants. 15. SUBJECT TERMS SUNY Poly, STEM, Artificial Intelligence , Command and Control 16. SECURITY CLASSIFICATION OF: 17...neuromorphic system has the potential to be widely used in a high-efficiency artificial intelligence system. Simulation results have indicated that the...novel multiresolution fusion and advanced fusion performance evaluation tool for an Artificial Intelligence based natural language annotation engine for
Plasma Physics Network Newsletter, No. 3
NASA Astrophysics Data System (ADS)
1991-02-01
This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the 'Buenos Aires Memorandum' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a 'Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research'; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 to October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article 'Long Term Physics R and D Planning (for ITER)' by F. Engelmann; in the planned sequence of 'Reports on National Fusion Programs' contributions on the Chinese and Yugoslav programs; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International physics Group-A sub unit of the American Physical Society) Newsletter.
Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; ...
2015-09-21
The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here asmore » an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.« less
A New Internet Tool for Automatic Evaluation in Control Systems and Programming
ERIC Educational Resources Information Center
Munoz de la Pena, D.; Gomez-Estern, F.; Dormido, S.
2012-01-01
In this paper we present a web-based innovative education tool designed for automating the collection, evaluation and error detection in practical exercises assigned to computer programming and control engineering students. By using a student/instructor code-fusion architecture, the conceptual limits of multiple-choice tests are overcome by far.…
Fusion Energy Division progress report, 1 January 1990--31 December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.
1994-03-01
The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less
Experimental plasma research project summaries
NASA Astrophysics Data System (ADS)
1992-06-01
This is the latest in a series of Project Summary books that date back to 1976. It is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories, and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma. Additionally, innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into the three categories of plasma physics, diagnostic development, and atomic physics.
2013-03-01
The Baseline Capabilities for State and Major Urban Area Fusion Centers required fusion centers to establish programs to interact with the private...sector. These programs took the form of Public and Private Sector outreach programs. This requirement had a profound budgetary and operational impact on...fusion centers, but agencies received very little guidance about how to plan, organize, and sustain these programs. The goal of this thesis was to
Nonlinear Burn Control and Operating Point Optimization in ITER
NASA Astrophysics Data System (ADS)
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body.
Lindmo, Karine; Simonsen, Anne; Brech, Andreas; Finley, Kim; Rusten, Tor Erik; Stenmark, Harald
2006-07-01
Lysosomal degradation of cytoplasm by way of autophagy is essential for cellular amino acid homeostasis and for tissue remodeling. In insects such as Drosophila, autophagy is developmentally upregulated in the larval fat body prior to metamorphosis. Here, autophagy is induced by the hormone ecdysone through down-regulation of the autophagy-suppressive phosphoinositide 3-kinase (PI3K) signaling pathway. In yeast, Vps18 and other members of the HOPS complex have been found essential for autophagic degradation. In Drosophila, the Vps18 homologue Deep orange (Dor) has previously been shown to mediate fusion of multivesicular endosomes with lysosomes. A requirement of Dor for ecdysone-mediated chromosome puffing has also been reported. In the present report, we have tested the hypothesis that Dor may control programmed autophagy at the level of ecdysone signaling as well as by mediating autophagosome-to-lysosome fusion. We show that dor mutants are defective in programmed autophagy and provide evidence that autophagy is blocked at two levels. First, PI3K activity was not down-regulated correctly in dor larvae, which correlated with a decrease in ecdysone reporter activity. The down-regulation of PI3K activity was restored by feeding ecdysone to the mutant larvae. Second, neither exogenous ecdysone nor overexpression of PTEN, a silencer of PI3K signaling, restored fusion of autophagosomes with lysosomes in the fat body of dor mutants. These results indicate that Dor controls autophagy indirectly, via ecdysone signaling, as well as directly, via autolysosomal fusion.
Fusion Safety Program annual report, fiscal year 1994
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.
1995-03-01
This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.
Improved Controls for Fusion RF Systems. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Jeffrey A.
2011-11-08
We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way thatmore » they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration.« less
Burn Control in Fusion Reactors via Isotopic Fuel Tailoring
NASA Astrophysics Data System (ADS)
Boyer, Mark D.; Schuster, Eugenio
2011-10-01
The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. Economic and technological constraints may require future commercial reactors to operate with low temperature, high-density plasma, for which the burn condition may be unstable. An active control system will be essential for stabilizing such operating points. In this work, a volume-averaged transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. The ability to modulate the DT fuel mix is exploited in order to reduce the fusion power during thermal excursions without the need for impurity injection. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. Supported by the NSF CAREER award program (ECCS-0645086).
Grantham, Steven; Lane, Brandon; Neira, Jorge; Mekhontsev, Sergey; Vlasea, Mihaela; Hanssen, Leonard
2017-01-01
The National Institute of Standards and Technology’s (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system’s operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described. PMID:28579666
Review of the magnetic fusion program by the 1986 ERAB Fusion Panel
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.
1987-09-01
The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.
A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindmo, Karine; Simonsen, Anne; Brech, Andreas
2006-07-01
Lysosomal degradation of cytoplasm by way of autophagy is essential for cellular amino acid homeostasis and for tissue remodeling. In insects such as Drosophila, autophagy is developmentally upregulated in the larval fat body prior to metamorphosis. Here, autophagy is induced by the hormone ecdysone through down-regulation of the autophagy-suppressive phosphoinositide 3-kinase (PI3K) signaling pathway. In yeast, Vps18 and other members of the HOPS complex have been found essential for autophagic degradation. In Drosophila, the Vps18 homologue Deep orange (Dor) has previously been shown to mediate fusion of multivesicular endosomes with lysosomes. A requirement of Dor for ecdysone-mediated chromosome puffing hasmore » also been reported. In the present report, we have tested the hypothesis that Dor may control programmed autophagy at the level of ecdysone signaling as well as by mediating autophagosome-to-lysosome fusion. We show that dor mutants are defective in programmed autophagy and provide evidence that autophagy is blocked at two levels. First, PI3K activity was not down-regulated correctly in dor larvae, which correlated with a decrease in ecdysone reporter activity. The down-regulation of PI3K activity was restored by feeding ecdysone to the mutant larvae. Second, neither exogenous ecdysone nor overexpression of PTEN, a silencer of PI3K signaling, restored fusion of autophagosomes with lysosomes in the fat body of dor mutants. These results indicate that Dor controls autophagy indirectly, via ecdysone signaling, as well as directly, via autolysosomal fusion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of currentmore » scientific excellence and recommendations for future goals and balance within the Program was requested.« less
Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.
Li, Yongqiang; Liu, Xue; Li, Xinyi; Liu, Yiyang; Zheng, Yi; Wang, Min; Shen, Hao
2013-08-01
Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh-Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes.
Design and implementation of a prototype micropositioning and fusion of optical fibers
NASA Astrophysics Data System (ADS)
Vega, Fabio; Torres, Cesar; Mattos, Lorenzo
2011-09-01
We developed an automated system in micro and optical fiber fusion, using stepper motors of 3.6 ° (1.8 ° Medium step) with a threaded system for displacements in the order of microns, a LM016 LCD for User message management, a PIC16F877A microcontroller to control the prototype. We also used internal modules: TMR0, EEPROM, PWM (pulse width modulation) control using a pulse opto-cupped the discharge circuit high voltage (20 to 35 kilovolt transformer for FLYBACK fusion) The USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial interface with the PC. The software platform developed under Visual Basic 6.0, which lets you manipulate the prototype from the PC. The entire program is optimized for microcontroller interrupt, macro-functions and is written in MPLAB 7.31. The prototype is now finished.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R.W.
1982-02-22
The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outlinemore » specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R.W.
1982-04-20
The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outlinemore » specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.« less
Two Strategic Decisions Facing Fusion
NASA Astrophysics Data System (ADS)
Baldwin, D. E.
1998-06-01
Two strategic decisions facing the U.S. fusion program are described. The first decision deals with the role and rationale of the tokamak within the U. S. fusion program, and it underlies the debate over our continuing role in the evolving ITER collaboration (mid-1998). The second decision concerns how to include Inertial Fusion Energy (IFE) as a viable part of the national effort to harness fusion energy.
2014-07-01
technology work seeks to address gaps in the management, processing, and fusion of heterogeneous (i.e., soft and hard ) information to aid human decision...and bandwidth) to exploit the vast and growing amounts of data [16], [17]. There is also a broad research program on techniques for soft and hard ...Mott, G. de Mel, and T. Pham, “Integrating hard and soft information sources for D2D using controlled natural language,” in Proc. Information Fusion
Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2000-12-01
This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Prioritiesmore » and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.« less
Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device
NASA Astrophysics Data System (ADS)
Motojima, Osamu
2006-12-01
The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program as an integrated part of ITER and Development of Fusion Energy project Agreement. Moreover, the relationship with the NIFS' new parent organization the National Institutes of Natural Sciences and with foreign research institutions is briefly explained.
Measles Virus Fusion Protein: Structure, Function and Inhibition
Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C.
2016-01-01
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options. PMID:27110811
Measles Virus Fusion Protein: Structure, Function and Inhibition.
Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C
2016-04-21
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.
The next large helical devices
NASA Astrophysics Data System (ADS)
Iiyoshi, Atsuo; Yamazaki, Kozo
1995-06-01
Helical systems have the strong advantage of inherent steady-state operation for fusion reactors. Two large helical devices with fully superconducting coil systems are presently under design and construction. One is the LHD (Large Helical Device) [Fusion Technol. 17, 169 (1990)] with major radius=3.9 m and magnetic field=3-4 T, that is under construction during 1990-1997 at NIFS (National Institute for Fusion Science), Nagoya/Toki, Japan; it features continuous helical coils and a clean helical divertor focusing on edge configuration optimization. The other one in the W7-X (Wendelstein 7-X) [in Plasma Physics and Controlled Fusion Nuclear Research, 1990, (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] with major radius=5.5 m and magnetic field=3 T, that is under review at IPP (Max-Planck Institute for Plasma Physics), Garching, Germany; it has adopted a modular coil system after elaborate optimization studies. These two programs are complementary in promoting world helical fusion research and in extending the understanding of toroidal plasmas through comparisons with large tokamaks.
76 FR 49757 - Fusion Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-11
... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... science, fusion science, and fusion technology related to the Fusion Energy Sciences program. Additionally...
Fusion energy for space: Feasibility demonstration. A proposal to NASA
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1992-01-01
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power space systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis
2014-10-01
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the programmore » continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.« less
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less
How a RING finger protein and a steroid hormone control autophagy.
Lindmo, Karine; Stenmark, Harald
2006-01-01
Previous work in our laboratory has indicated that the steroid hormone ecdysone triggers programmed autophagy in the fat body of Drosophila larvae by downregulating the class I phosphoinositide 3-kinase (PI3K) pathway. We recently found evidence that Deep orange (Dor), a Drosophila RING finger protein implicated in late-endosomal trafficking, controls ecdysone signaling as well as autolysosome fusion, thus exerting a dual regulation of autophagy. We found that dor mutants are defective in programmed autophagy. The mutant larvae showed impaired upregulation of ecdysone signaling during development, accompanied by a failure to downregulate the PI3K pathway. Downregulation of the PI3K pathway could be restored by feeding the dor mutants with ecdysone. Even though ecdysone signaling and autophagy were impaired in the dor mutants, we detected an accumulation of autophagosomes in dor mutant fat bodies. This could probably be attributed to the failure of autophagosomes to fuse with lysosomes. In this Addendum we review these findings and provide some speculations about how Dor may control both ecdysone signalling and autolysosomal fusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correll, D
The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, J.S.
1983-06-01
The current status of magnetic fusion is summarized. The science is in place; the application must be made. Government will have to underwrite the risk of the program, but the private sector must manage it. Government officials must be convinced fusion is in the interest of the taxpayer, private sector decision makers that it is commercial. Questions concerning reliability, availability, first cost, safety, environment, and sociology must be asked. Fusion energy is essentially inexhaustible, appears environmentally acceptable, and is one of a very short list of alternatives.
The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Roth, J. Reece
1990-01-01
An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.
Fusion energy division annual progress report, period ending December 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is themore » extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
2014-12-24
Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated themore » options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.« less
Perspectives for the high field approach in fusion research and advances within the Ignitor Program
NASA Astrophysics Data System (ADS)
Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Belforte, G.; Boggio-Sella, E.; Cardinali, A.; Cenacchi, G.; Conti, F.; Costa, E.; D'Amico, A.; Detragiache, P.; De Tommasi, G.; DeVellis, A.; Faelli, G.; Ferraris, P.; Frattolillo, A.; Giammanco, F.; Grasso, G.; Lazzaretti, M.; Mantovani, S.; Merriman, L.; Migliori, S.; Napoli, R.; Perona, A.; Pierattini, S.; Pironti, A.; Ramogida, G.; Rubinacci, G.; Sassi, M.; Sestero, A.; Spillantini, S.; Tavani, M.; Tumino, A.; Villone, F.; Zucchi, L.
2015-05-01
The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets.
Commercial objectives, technology transfer, and systems analysis for fusion power development
NASA Astrophysics Data System (ADS)
Dean, Stephen O.
1988-09-01
Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.
Commercial objectives, technology transfer, and systems analysis for fusion power development
NASA Technical Reports Server (NTRS)
Dean, Stephen O.
1988-01-01
Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.
ICF quarterly report January - March 1997 volume 7, number 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J
The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide criticalmore » information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, Rajesh; Zinkle, Steven J.; Foster, Mark S.
2015-05-01
The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasmamore » facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions to address those challenges. No prioritization was attempted amongst these five PRDs. We note that ITER, an international collaborative project to substantially extend fusion science and technology, is implicitly a driver and beneficiary of the research described in these PRDs; specific ITER issues are discussed in the background and PRD chapters. For succinctness, we describe these PRDs directly below; a brief introduction to magnetic fusion and the workshop process/timeline is given in Chapter I, and panelists are listed in the Appendix.« less
An adaptive structure data acquisition system using a graphical-based programming language
NASA Technical Reports Server (NTRS)
Baroth, Edmund C.; Clark, Douglas J.; Losey, Robert W.
1992-01-01
An example of the implementation of data fusion using a PC and a graphical programming language is discussed. A schematic of the data acquisition system and user interface panel for an adaptive structure test are presented. The computer programs (a series of icons 'wired' together) are also discussed. The way in which using graphical-based programming software to control a data acquisition system can simplify analysis of data, promote multidisciplinary interaction, and provide users a more visual key to understanding their data are shown.
Midterm Summary of Japan-US Fusion Cooperation Program TITAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muroga, Takeo; Sze, Dai-Kai; Sokolov, Mikhail
2011-01-01
Japan-US cooperation program TITAN (Tritium, Irradiation and Thermofluid for America and Nippon) started in April 2007 as 6-year project. This is the summary report at the midterm of the project. Historical overview of the Japan-US cooperation programs and direction of the TITAN project in its second half are presented in addition to the technical highlights. Blankets are component systems whose principal functions are extraction of heat and tritium. Thus it is crucial to clarify the potentiality for controlling heat and tritium flow throughout the first wall, blanket and out-of-vessel recovery systems. The TITAN project continues the JUPITER-II activity but extendsmore » its scope including the first wall and the recovery systems with the title of 'Tritium and thermofluid control for magnetic and inertial confinement systems'. The objective of the program is to clarify the mechanisms of tritium and heat transfer throughout the first-wall, the blanket and the heat/tritium recovery systems under specific conditions to fusion such as irradiation, high heat flux, circulation and high magnetic fields. Based on integrated models, the breeding, transfer, inventory of tritium and heat extraction properties will be evaluated for some representative liquid breeder blankets and the necessary database will be obtained for focused research in the future.« less
Plasma Physics/Fusion Energy Education at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff
2007-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, N.R.
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power spacemore » systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.« less
Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. Petti; Brad J. Merrill; Phillip Sharpe
2006-07-01
The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In thismore » paper, recent accomplishments are reviewed and future directions outlined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, Hutch
Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan,more » aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)« less
User's guide to the Residual Gas Analyzer (RGA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artman, S.A.
1988-08-04
The Residual Gas Analyzer (RGA), a Model 100C UTI quadrupole mass spectrometer, measures the concentrations of selected masses in the Fusion Energy Division's (FED) Advanced Toroidal Facility (ATF). The RGA software is a VAX FORTRAN computer program which controls the experimental apparatus, records the raw data, performs data reduction, and plots the data. The RGA program allows data to be collected from an RGA on ATF or from either of two RGAs in the laboratory. In the laboratory, the RGA diagnostic plays an important role in outgassing studied on various candidate materials for fusion experiments. One such material, graphite, ismore » being used more often in fusion experiments due to its ability to withstand high power loads. One of the functions of the RGA diagnostic is aid in the determination of the best grade of graphite to be used in these experiments and to study the procedures used to condition it. A procedure of particular interest involves baking the graphite sample in order to remove impurities that may be present in it. These impurities can be studied while in the ATF plasma or while being baked and outgassed in the laboratory. The Residual Gas Analyzer is a quadrupole mass spectrometer capable of scanning masses ranging in size from 1 atomic mass unit (amu) to 300 amu while under computer control. The procedure for collecting data for a particular mass is outlined.« less
Thomas, Emily E; Pandey, Naresh; Knudsen, Sarah; Ball, Zachary T; Silberg, Jonathan J
2017-08-18
Transcriptional control can be used to program cells to label proteins with noncanonical amino acids by regulating the expression of orthogonal aminoacyl tRNA synthetases (aaRSs). However, we cannot yet program cells to control labeling in response to aaRS and ligand binding. To identify aaRSs whose activities can be regulated by interactions with ligands, we used a combinatorial approach to discover fragmented variants of Escherichia coli methionyl tRNA synthetase (MetRS) that require fusion to associating proteins for maximal activity. We found that these split proteins could be leveraged to create ligand-dependent MetRS using two approaches. When a pair of MetRS fragments was fused to FKBP12 and the FKBP-rapamycin binding domain (FRB) of mTOR and mutations were introduced that direct substrate specificity toward azidonorleucine (Anl), Anl metabolic labeling was significantly enhanced in growth medium containing rapamycin, which stabilizes the FKBP12-FRB complex. In addition, fusion of MetRS fragments to the termini of the ligand-binding domain of the estrogen receptor yielded proteins whose Anl metabolic labeling was significantly enhanced when 4-hydroxytamoxifen (4-HT) was added to the growth medium. These findings suggest that split MetRS can be fused to a range of ligand-binding proteins to create aaRSs whose metabolic labeling activities depend upon post-translational interactions with ligands.
Fusion programs in applied plasma physics
NASA Astrophysics Data System (ADS)
1992-07-01
The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (1) Applied Plasma Physics Theory Program, (2) Alpha Particle Diagnostic, (3) Edge and Current Density Diagnostic, and (4) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (RF). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described.
Remotely controlled fusion of selected vesicles and living cells: a key issue review
NASA Astrophysics Data System (ADS)
Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.
2018-03-01
Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi
2016-05-01
A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.
U. S. fusion programs: Struggling to stay in the game
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, M.
Funding for the US fusion energy program has suffered and will probably continue to suffer major cuts. A committee hand-picked by Energy Secretary James Watkins urged the Department of Energy to mount an aggressive program to develop fusion power, but congress cut funding from $323 million in 1990 to $275 million in 1991. This portends dire conditions for fusion research and development. Projects to receive top priority are concerned with the tokamaks and to keep the next big machine, the Burning Plasma Experiment, scheduled for beginning of construction in 1993 on schedule. Secretary Watkins is said to want to keepmore » the International Thermonuclear Energy Reactor (ITER) on schedule. ITER would follow the Burning Plasma Experiment.« less
Saturn S-2 quality assurance techniques, critical process control. Volume 7: Metallic materials
NASA Technical Reports Server (NTRS)
Ross, W. D., Jr.
1970-01-01
The special skills developed during the Saturn S-2 Program are documented to enable qualified personnel to carry out efficient operations in future S-2 production. Skills covered include: acceptance testing of fusion-welding equipment, weld operators and inspector certification, machine certification, preweld operations, and repair weld certification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori
2016-12-30
The present report summarizes and discusses the current results and on-going activity towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program.
A U.S. Strategy for Timely Fusion Energy Development
NASA Astrophysics Data System (ADS)
Wade, Mickey
2017-10-01
Worldwide energy demand is expected to explode in the latter half of this century. In anticipation of this demand, the U.S. DOE recently asked the National Academy of Science to provide guidance on a long-term strategic plan assuming that ``economical fusion energy within the next several decades is a U.S. strategic interest. ``Delivering on such a plan will require an R&D program that delivers key data and understanding on the building blocks of a) burning plasma physics, b) optimization of the coupled core-edge solution, and c) fusion nuclear science to inform the design of a cost-attractive DEMO reactor in this time frame. Such a program should leverage existing facilities in the U.S. program including ITER, provide substantive motivation for an expanding R&D scope (and funding), and enable timely redirection of resources within the program as appropriate (and endorsed by DOE and the fusion community). This paper will outline a potential strategy that provides world-leading opportunities for the research community in a range of areas while delivering on key milestones required for timely fusion energy development. Supported by General Atomics internal funding.
Presentation Stations of the General Atomics Fusion Educational Program
NASA Astrophysics Data System (ADS)
Lee, R. L.; Fusion Group Education Outreach Team
1996-11-01
The General Atomics Fusion Group's Educational Program has been actively promoting fusion science and applications throughout San Diego County's secondary school systems for over three years. The educational program allows many students to learn more about nuclear fusion science, its applications, and what it takes to become an active participant in an important field of study. It also helps educators to better understand how to teach fusion science in their classroom. Tours of the DIII--D facility are a centerpiece of the program. Over 1000 students visited the DIII--D research facility during the 1995--1996 school year for a half-day of presentations, discussions, and hands-on learning. Interactive presentations are provided at six different stations by GA scientists and engineers to small groups of students during the tours. Stations include topics on energy, plasma science, the electromagnetic spectrum, radiation and risk assessment, and data acquisition. Included also is a tour of the DIII--D machine hall and model where students can see and discuss many aspects of the tokamak. Portions of each station will be presented and discussed.
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick
2014-01-01
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection,more » to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
III International Conference on Laser and Plasma Researches and Technologies
NASA Astrophysics Data System (ADS)
2017-12-01
A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of the speakers, participants, organizing and program committee members for their contribution to the conference.
Adolescents' perceptions of music therapy following spinal fusion surgery.
Kleiber, Charmaine; Adamek, Mary S
2013-02-01
To explore adolescents' memories about music therapy after spinal fusion surgery and their recommendations for future patients. Spinal fusion for adolescent idiopathic scoliosis is one of the most painful surgeries performed. Music therapy is shown to decrease postoperative pain in children after minor surgery. In preparation for developing a preoperative information program, we interviewed adolescents who had spinal fusion and postoperative music therapy to find out what they remembered and what they recommended for future patients. Eight adolescents who had spinal fusion for adolescent idiopathic scoliosis were interviewed about their experiences. For this qualitative study, the investigators independently used thematic analysis techniques to formulate interpretive themes. Together they discussed their ideas and assigned overall meanings to the information. The eight participants were 13-17 years of age and had surgery between 2-24 months previously. The overarching themes identified from the interviews were relaxation and pain perception, choice and control, therapist interaction and preoperative information. Participants stated that music therapy helped with mental relaxation and distraction from pain. It was important to be able to choose the type of music for the therapy and to use self-control to focus on the positive. Their recommendation was that future patients should be provided with information preoperatively about music therapy and pain management. Participants recommended a combination of auditory and visual information, especially the experiences of previous patients who had spinal fusion and music therapy. Music provided live at the bedside by a music therapist was remembered vividly and positively by most of the participants. The presence of a music therapist providing patient-selected music at the bedside is important. Methods to introduce adolescents to music therapy and how to use music for relaxation should be developed and tested. © 2012 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tierney, Brian; Dart, Eli; Tierney, Brian
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of themore » DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote collaboration with the control room of a Tokamak running an experiment. This is especially important since the current plans for ITER assume that this problem will be solved.« less
On Fusing Recursive Traversals of K-d Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers currently cannot exploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach to dependence characterization and program transformation to enable fusion across recursively specified traversals over k-ary trees. We present the FuseT source-to-source code transformation framework to automatically generate fused composite recursive operators from an input program containing a sequence of primitive recursive operators. We use our framework to implement fused operators for MADNESS, Multiresolution Adaptive Numerical Environmentmore » for Scientific Simulation. We show that locality optimization through fusion can offer more than an order of magnitude performance improvement.« less
Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.
2011-10-01
Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.
Commercial objectives, technology transfer, and systems analysis for fusion power development
NASA Astrophysics Data System (ADS)
Dean, Stephen O.
1988-03-01
Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.
Essential Role of DAP12 Signaling in Macrophage Programming into a Fusion-Competent State
Helming, Laura; Tomasello, Elena; Kyriakides, Themis R.; Martinez, Fernando O.; Takai, Toshiyuki; Gordon, Siamon; Vivier, Eric
2009-01-01
Multinucleated giant cells, formed by fusion of macrophages, are a hallmark of granulomatous inflammation. With a genetic approach, we show that signaling through the adaptor protein DAP12 (DNAX activating protein of 12 kD), its associated receptor triggering receptor expressed by myeloid cells 2 (TREM-2), and the downstream protein tyrosine kinase Syk is required for the cytokine-induced formation of giant cells and that overexpression of DAP12 potentiates macrophage fusion. We also present evidence that DAP12 is a general macrophage fusion regulator and is involved in modulating the expression of several macrophage-associated genes, including those encoding known mediators of macrophage fusion, such as DC-STAMP and Cadherin 1. Thus, DAP12 is involved in programming of macrophages through the regulation of gene and protein expression to induce a fusion-competent state. PMID:18957693
Kinetic advantage of controlled intermediate nuclear fusion
NASA Astrophysics Data System (ADS)
Guo, Xiaoming
2012-09-01
The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.
Fusion Science Education Outreach
NASA Astrophysics Data System (ADS)
Danielson, C. A.; DIII-D Education Group
1996-11-01
This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.
Fusion policy advisory committee named
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Department of Energy Secretary James Watkins has announced the formation of new Fusion Policy Advisory Committee which will recommend a policy for conducting DOE's fusion energy research program. Issues that will be considered by the committee include the balance of research activities within the programs, the timing of experiments to test the burning of plasma fuel, the International Thermonuclear Experimental Reactor, and the development of laser technologies, DOE said. Watkins said that he would be entirely open to the committee's advice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive actionmore » plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'« less
Fusion Simulation Program Definition. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, John R.
2012-09-05
We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-01-01
This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsedmore » heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick; Bradu, Benjamin
2014-01-01
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
Monticone, Marco; Ambrosini, Emilia; Rocca, Barbara; Foti, Calogero; Ferrante, Simona
2017-06-01
The Tampa Scale of Kinesiophobia (TSK) is a commonly-used measure for the assessment of fear of movement beliefs in chronic complaints, but its responsiveness in subjects after lumbar fusion has been never reported. Evaluating the responsiveness and minimal clinically important differences (MCIDs) for the TSK and its subscales after lumbar fusion. Population-based cohort study. Secondary care rehabilitation hospital. In-patients undergoing rehabilitation after lumbar fusion. At the beginning and end of a four-week motor and cognitive-behavioral rehabilitation program, 180 patients completed the TSK. After the intervention, the global perceived effect (GPE) was analyzed to produce a dichotomous outcome (improved vs. stable). Responsiveness for the TSK and its subscales were calculated by distribution (effect size [ES], standardized response mean [SRM]) and anchor-based methods (receiver operating characteristics (ROC) curves; correlations between change scores of the TSK and its subscales and GPE). ROC curves were also used to compute MCID values. The ES ranged from 1.63 to 1.77 and the SRM from 1.25 to 1.39 for TSK and its subscales. The ROC analyses revealed a value of area under the curve (0.999 [95% CI: 0.978; 1.000], 0.998 [95% CI: 0.975; 1.000], 0.990 [95% CI: 0.962; 0.999] for the TSK, Harm and Activity Avoidance subscales, respectively). MCID values greater than 6 (95% CI: >5; >6), 4 (95% CI: >3; >5), and 2 (95% CI: >2; >2) were achieved for the TSK, Harm and Activity Avoidance subscales, respectively. Correlations between change scores of the TSK and its subscales and GPE were high (0.786-0.830). The TSK and its subscales were sensitive in detecting clinical changes in subjects undergoing rehabilitation after lumbar fusion. The obtained MCID values will help in the design of future randomized controlled trials and in the interpretation of the clinical impact of a rehabilitation program after lumbar fusion.
UCLA Tokamak Program Close Out Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Robert John
2014-02-04
The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reachingmore » a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.« less
Burning plasma regime for Fussion-Fission Research Facility
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.
2010-11-01
The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.
ERIC Educational Resources Information Center
Clarke, Ben; Doabler, Christian T.; Strand Cary, Mari; Kosty, Derek; Baker, Scott; Fien, Hank; Smolkowski, Keith
2014-01-01
This pilot study examined the efficacy of a Tier 2 first-grade mathematics intervention program targeting whole-number understanding for students at risk in mathematics. The study used a randomized block design. Students (N = 89) were randomly assigned to treatment (Fusion) or control (standard district practice) conditions. Measures of…
Stabilized Liner Compressor: The Return of Linus
NASA Astrophysics Data System (ADS)
Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan
2015-11-01
To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.
Cluster-impact fusion, or beam-contaminant fusion? (abstract)a),b)
NASA Astrophysics Data System (ADS)
Lo, Daniel H.; Petrasso, Richard D.; Wenzel, Kevin W.
1992-10-01
Beuhler, Friedlander, and Friedman (BFF) reported anomalously huge D-D fusion rates while bombarding deuterated targets with (D2O)N+ clusters (N˜25-1000) accelerated to ≊325 keV [R. J. Beuhler et al., Phys. Rev. Lett. 63, 1292 (1989); R. J. Beuhler et al., J. Phys. Chem. 94, 7665 (1990)] [i.e., ≊0.3 keV lab energy for D in (D2O)100+]. However, from our analysis of BFF's fusion product spectra, we conclude that their D lab energy was ˜50 keV. Therefore, no gross anomalies exist. Also, from our analysis of the BFF beam-ranging experiments through 500 μg/cm2 of Au, we conclude that light-ion-beam contaminants (e.g., D+ of order 100 keV) have not been ruled out, and are the probable cause of their fusion reactions. This work was supported by LLNL Subcontract B116798, Department of Energy (DOE) Grant No. DE-FG02-91ER54109, DOE Magnetic Fusion Energy Technology Fellowship Program (D. H. Lo), and DOE Fusion Energy Postdoctoral Research Program (Kevin W. Wenzel).
Variable control of neutron albedo in toroidal fusion devices
Jassby, D.L.; Micklich, B.J.
1983-06-01
This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.
Sheean, Andrew J; Tennent, David J; Owens, Johnny G; Wilken, Jason M; Hsu, Joseph R; Stinner, Daniel J
2016-11-01
Fractures of the distal tibia, ankle, and foot sustained through a high-energy mechanism can be extremely debilitating, and ankle and/or subtalar fusion may be indicated if the limb is deemed salvageable. Functional outcomes among this population are often poor. The purposes of this study were to evaluate the effect of an advanced rehabilitation program combined with the use of a custom ankle-foot orthosis for patients with ankle or subtalar fusion on selected physical performance measures and patient-derived outcome measures and to determine if the response to treatment was predicated upon the type of fusion. We conducted a prospective, longitudinal, observational, cohort study composed of 23 active duty Service Members treated for lower extremity trauma. Patients were separated into 2 groups: group 1 was composed of 12 patients who underwent isolated ankle fusion or ankle fusion combined with ipsilateral subtalar fusion, group 2 was composed of 11 patients who underwent subtalar fusion only. Patient-reported outcome (PRO) measures and physical performance measures were recorded at baseline and at the conclusion of the rehabilitation program. Significant improvements in both groups were seen in each of the 4 physical performance measures. Only group 2 showed significant improvements in all domains of the Veteran's Rand 12-Item Health Survey (VR-12) and Short Musculoskeletal Function Assessment (SMFA) at all points during the course of rehabilitation. Among a subset of patients treated for severe lower extremity trauma with ankle and/or subtalar fusion, an integrated orthotic and rehabilitation initiative improved physical performance and PRO measures over an 8-week course. Level III, prospective comparative series. © The Author(s) 2016.
Preface to the Special Issue: Strategic Opportunities for Fusion Energy
Mauel, M. E.; Greenwald, Martin; Ryutov, Dmitri D.; ...
2016-01-23
Here, the Journal of Fusion Energy provides a forum for discussion of broader policy and planning issues that play a crucial role in energy fusion programs. In keeping with this purpose and in response to several recent strategic planning efforts worldwide, this Special Issue on Strategic Opportunities was launched with the goal to invite fusion scientists and engineers to record viewpoints of the scientific opportunities and policy issues that can drive continued advancements in fusion energy research.
NASA Astrophysics Data System (ADS)
Smith, Roger J.
2008-10-01
A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local Bpol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local Te, ne, and B∥ along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher neB∥ product and higher ne and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Cadwallader
The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclearmore » endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical exposure value is ~1000 times the Earth’s magnetic field, but the Earth’s field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel.« less
Manipulator for rotating and examining small spheres
Weinstein, Berthold W. [Livermore, CA; Willenborg, David L. [Livermore, CA
1980-02-12
A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.
Myomaker is a membrane activator of myoblast fusion and muscle formation.
Millay, Douglas P; O'Rourke, Jason R; Sutherland, Lillian B; Bezprozvannaya, Svetlana; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N
2013-07-18
Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.
Remote experimental site concept development
NASA Astrophysics Data System (ADS)
Casper, Thomas A.; Meyer, William; Butner, David
1995-01-01
Scientific research is now often conducted on large and expensive experiments that utilize collaborative efforts on a national or international scale to explore physics and engineering issues. This is particularly true for the current US magnetic fusion energy program where collaboration on existing facilities has increased in importance and will form the basis for future efforts. As fusion energy research approaches reactor conditions, the trend is towards fewer large and expensive experimental facilities, leaving many major institutions without local experiments. Since the expertise of various groups is a valuable resource, it is important to integrate these teams into an overall scientific program. To sustain continued involvement in experiments, scientists are now often required to travel frequently, or to move their families, to the new large facilities. This problem is common to many other different fields of scientific research. The next-generation tokamaks, such as the Tokamak Physics Experiment (TPX) or the International Thermonuclear Experimental Reactor (ITER), will operate in steady-state or long pulse mode and produce fluxes of fusion reaction products sufficient to activate the surrounding structures. As a direct consequence, remote operation requiring robotics and video monitoring will become necessary, with only brief and limited access to the vessel area allowed. Even the on-site control room, data acquisition facilities, and work areas will be remotely located from the experiment, isolated by large biological barriers, and connected with fiber-optics. Current planning for the ITER experiment includes a network of control room facilities to be located in the countries of the four major international partners; USA, Russian Federation, Japan, and the European Community.
Fusion Materials Semiannual Progress Report for Period Ending December 31, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowcliff, A.F.; Burn, G.
1999-04-01
This is the twenty-fifth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the U.S. Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately.« less
Steady State Advanced Tokamak (SSAT): The mission and the machine
NASA Astrophysics Data System (ADS)
Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.
1992-03-01
Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the U.S. National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new 'Steady State Advanced Tokamak' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO.
2007-02-23
approach for signal-level watermark inheritance. 15. SUBJECT TERMS EOARD, Steganography , Image Fusion, Data Mining, Image ...in watermarking algorithms , a program interface and protocol has been de - veloped, which allows control of the embedding and retrieval processes by the...watermarks in an image . Watermarking algorithm (DLL) Watermarking editor (Delphi) - User marks all objects: ci - class information oi - object instance
Dynamic Information Collection and Fusion
2015-12-02
AFRL-AFOSR-VA-TR-2016-0069 DYNAMIC INFORMATION COLLECTION AND FUSION Venugopal Veeravalli UNIVERSITY OF ILLINOIS CHAMPAIGN Final Report 12/02/2015...TITLE AND SUBTITLE Dynamic Information Collection and Fusion 5a. CONTRACT NUMBER FA9550-10-1-0458 5b. GRANT NUMBER AF FA9550-10-1-0458 5c. PROGRAM...information collection, fusion , and inference from diverse modalities Our research has been organized under three inter-related thrusts. The first thrust
Report of the Fusion Energy Sciences Advisory Committee Panel on Priorities and Balance
NASA Astrophysics Data System (ADS)
Baker, Charles; Davidson, Ronald; Dean, Stephen; Freidberg, Jeffrey; Sheffield, John
1999-06-01
This report presents the results and recommendations of the deliberations of the DOE Fusion Energy Sciences Advisory Committee (FESAC) Panel on Priorities and Balance, which met in Knoxville, TN, 18-21 August 1999. The Panel identified the achievement of a more integrated national program in magnetic fusion energy (MFE) and inertial fusion energy (IFE) as a major programmatic and policy goal for the years ahead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauel, M. E.; Greenwald, Martin; Ryutov, Dmitri D.
Here, the Journal of Fusion Energy provides a forum for discussion of broader policy and planning issues that play a crucial role in energy fusion programs. In keeping with this purpose and in response to several recent strategic planning efforts worldwide, this Special Issue on Strategic Opportunities was launched with the goal to invite fusion scientists and engineers to record viewpoints of the scientific opportunities and policy issues that can drive continued advancements in fusion energy research.
Line-Tension Controlled Mechanism for Influenza Fusion
Risselada, Herre Jelger; Smirnova, Yuliya G.; Grubmüller, Helmut; Marrink, Siewert Jan; Müller, Marcus
2012-01-01
Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide’s ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a ‘super’ bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions. PMID:22761674
Will fusion be ready to meet the energy challenge for the 21st century?
NASA Astrophysics Data System (ADS)
Bréchet, Yves; Massard, Thierry
2016-05-01
Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community. LMJ a defense facility for nuclear deterrence is also open to academic community along with a unique PW class laser PETAL. Research on fusion at LMJ-PETAL is one of the designated topics for experiments on the facility. Pairing with other smaller European facilities such as Orion, PALS or LULI2000, LMJ-PETAL will bring new and exciting results and contribution in fusion science in the coming years.
Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas
NASA Astrophysics Data System (ADS)
Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio
2014-06-01
It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the plasma while minimizing the interaction between the plasma and launching structures. These potentially harmful interactions between the plasma and the vessel and launching structures are challenging: (i) significant and variable loss of power in the edge regions of confined plasmas and surrounding vessel structures adversely affect the core plasma performance and lifetime of a device; (ii) the launcher design is partly "trial and error," with the consequence that launchers may have to be reconfigured after initial tests in a given device, at an additional cost. Over the broader frequency range, another serious gap is a quantitative lack of understanding of the combined effects of nonlinear wave-plasma processes, energetic particle interactions and non-axisymmetric equilibrium effects on determining the overall efficiency of plasma equilibrium and stability profile control techniques using RF waves. This is complicated by a corresponding lack of predictive understanding of the time evolution of transport and stability processes in fusion plasmas.
Controlled Nuclear Fusion: Status and Outlook
ERIC Educational Resources Information Center
Rose, David J.
1971-01-01
Presents the history, current concerns and potential developments of nuclear fusion as a major energy source. Controlled fusion research is summarized, technological feasibility is discussed and environmental factors are examined. Relationships of alternative energy sources as well as energy utilization are considered. (JM)
Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.D. Levine; V.L. Finley
1998-03-01
The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasmamore » experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report. During 1996, PPPL completed the removal of contaminated soil from two locations that were identified through the monitoring program: petroleum hydrocarbons along a drainage swale and chromium adjacent to the cooling tower.« less
Development of Electron Beam Pumped KrF Lasers for Fusion Energy
2008-01-01
Direct drive with krypton fluoride (KrF) lasers is an attractive approach to inertial fusion energy (IFE): KrF lasers have outstanding beam spatial...attractive power plant [3]. In view of these advances, several world-wide programs are underway to develop KrF lasers for fusion energy . These include
Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures - 6.
1983-05-01
structures for the superconducting magnets of magnetic fusion energy power plants and prototypes. The program was conceived and developed jointly by the...staffs of the National Bureau of Standards and the Office of Fusion Energy of the Department of Energy; it is managed by NBS and sponsored by DoE
Shock Ignition Target Design for Inertial Fusion Energy
2010-01-01
Shock ignition target design for inertial fusion energy Andrew J. Schmitt,1, a) Jason W. Bates,1 Steven P. Obenschain,1 Steven T. Zalesak,2 and David...2010 to 00-00-2010 4. TITLE AND SUBTITLE Shock ignition target design for inertial fusion energy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM
America COMPETES Act and the FY2010 Budget
2009-06-29
Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early Career...the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this contention, these America COMPETES Act programs were...Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart Zweben; Samuel Cohen; Hantao Ji
Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.
Fusion materials semiannual progress report for the period ending June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, G.
1998-09-01
This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Smith, Roger J
2008-10-01
A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.
Stability of concentration-related self-interstitial atoms in fusion material tungsten
NASA Astrophysics Data System (ADS)
Hong, Zhang; Shu-Long, Wen; Min, Pan; Zheng, Huang; Yong, Zhao; Xiang, Liu; Ji-Ming, Chen
2016-05-01
Based on the density functional theory, we calculated the structures of the two main possible self-interstitial atoms (SIAs) as well as the migration energy of tungsten (W) atoms. It was found that the difference of the <110> and <111> formation energies is 0.05-0.3 eV. Further analysis indicated that the stability of SIAs is closely related to the concentration of the defect. When the concentration of the point defect is high, <110> SIAs are more likely to exist, <111> SIAs are the opposite. In addition, the vacancy migration probability and self-recovery zones for these SIAs were researched by making a detailed comparison. The calculation provided a new viewpoint about the stability of point defects for self-interstitial configurations and would benefit the understanding of the control mechanism of defect behavior for this novel fusion material. Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. A0920502051411-5 and 2682014ZT30), the Program of International Science and Technology Cooperation, China (Grant No. 2013DFA51050), the National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2011GB112001 and 2013GB110001), the National High Technology Research and Development Program of China (Grant No. 2014AA032701), the National Natural Science Foundation of China (Grant No. 11405138), the Southwestern Institute of Physics Funds, China, the Western Superconducting Technologies Company Limited, China, the Qingmiao Plan of Southwest Jiaotong University, China (Grant No. A0920502051517-6), and the China Postdoctoral Science Foundation (Grant No. 2014M560813).
Effect of Dietary Calcium on Spinal Bone Fusion in an Ovariectomized Rat Model
Cho, Jae-Hoon; Cho, Dae-Chul; Yu, Song-Hee; Jeon, Young-Hoon; Sung, Joo-Kyung
2012-01-01
Objective To evaluate the effect of calcium supplementation on spinal bone fusion in ovariectomized (OVX) rats. Methods Sixteen female Sprague Dawley rats underwent bilateral ovariectomy at 12 weeks of age to induce osteoporosis and were randomly assigned to two groups : control group (n=8) and calcium-supplemented group (OVX-Ca, n=8). Autologous spinal bone fusion surgery was performed on both groups 8 weeks later. After fusion surgery, the OVX-Ca group was supplemented with calcium in drinking water for 8 weeks. Blood was obtained 4 and 8 weeks after fusion surgery. Eight weeks after fusion surgery, the rats were euthanized and the L4-5 spine removed. Bone fusion status and fusion volume were evaluated by manual palpation and three-dimensional computed tomography. Results The mean fusion volume in the L4-5 spine was significantly greater in the OVX-Ca group (71.80±8.06 mm3) than in controls (35.34±8.24 mm3) (p<0.01). The level of osteocalcin, a bone formation marker, was higher in OVX-Ca rats than in controls 4 weeks (610.08±10.41 vs. 551.61±12.34 ng/mL) and 8 weeks (552.05±19.67 vs. 502.98±22.76 ng/mL) after fusion surgery (p<0.05). The level of C-terminal telopeptide fragment of type I collagen, a bone resorption marker, was significantly lower in OVX-Ca rats than in controls 4 weeks (77.07±12.57 vs. 101.75±7.20 ng/mL) and 8 weeks (69.58±2.45 vs. 77.15±4.10 ng/mL) after fusion surgery (p<0.05). A mechanical strength test showed that the L4-5 vertebrae in the OVX-Ca group withstood a 50% higher maximal load compared with the controls (p<0.01). Conclusion Dietary calcium given to OVX rats after lumbar fusion surgery improved fusion volume and mechanical strength in an ovariectomized rat model. PMID:23133713
Method of controlling fusion reaction rates
Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice
1988-01-01
A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.
Method of controlling fusion reaction rates
Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice
1988-03-01
A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.
2011-10-01
The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
Manipulator for rotating and examining small spheres
Weinstein, B.W.; Willenborg, D.L.
1980-02-12
A manipulator is disclosed which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern. 8 figs.
Advanced Photonic Sensors Enabled by Semiconductor Bonding
2010-05-31
a dry scroll backing pump to maintain the high differential pressure between the UV gun and the sample/analysis chamber. We also replaced the...semiconductor materials in an ultra-high vacuum (UHV) environment where the properties of the interface can be controlled with atomic-level precision. Such...year research program, we designed and constructed a unique system capable of fusion bonding two wafers in an ultra-high vacuum environment. This system
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.
The challenge of developing structural materials for fusion power systems
NASA Astrophysics Data System (ADS)
Bloom, Everett E.
1998-10-01
Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Central in the goal of designing a safe, environmentally benign, and economically competitive fusion power system is the requirement for high performance, low activation materials. The general performance requirements for such materials have been defined and it is clear that materials developed for other applications (e.g. aerospace, nuclear fission, fossil energy systems) will not fully meet the needs of fusion. Advanced materials, with composition and microstructure tailored to yield properties that will satisfy the specific requirements of fusion must be developed. The international fusion programs have made significant progress towards this goal. Compositional requirements for low activation lead to a focus of development efforts on silicon carbide composites, vanadium alloys, and advanced martensitic steels as candidate structural material systems. Control of impurities will be critically important in actually achieving low activation but this appears possible. Neutron irradiation produces significant changes in the mechanical and physical properties of each of these material systems raising feasibility questions and design limitations. A focus of the research and development effort is to understand these effects, and through the development of specific compositions and microstructures, produce materials with improved and adequate performance. Other areas of research that are synergistic with the development of radiation resistant materials include fabrication, joining technology, chemical compatibility with coolants and tritium breeders and specific questions relating to the unique characteristics of a given material (e.g. coatings to reduce gas permeation in SiC composites) or design concept (e.g. electrical insulator coatings for liquid metal concepts).
Overview of the US Fusion Materials Sciences Program
NASA Astrophysics Data System (ADS)
Zinkle, Steven
2004-11-01
The challenging fusion reactor environment (radiation, heat flux, chemical compatibility, thermo-mechanical stresses) requires utilization of advanced materials to fulfill the promise of fusion to provide safe, economical, and environmentally acceptable energy. This presentation reviews recent experimental and modeling highlights on structural materials for fusion energy. The materials requirements for fusion will be compared with other demanding technologies, including high temperature turbine components, proposed Generation IV fission reactors, and the current NASA space fission reactor project to explore the icy moons of Jupiter. A series of high-performance structural materials have been developed by fusion scientists over the past ten years with significantly improved properties compared to earlier materials. Recent advances in the development of high-performance ferritic/martensitic and bainitic steels, nanocomposited oxide dispersion strengthened ferritic steels, high-strength V alloys, improved-ductility Mo alloys, and radiation-resistant SiC composites will be reviewed. Multiscale modeling is providing important insight on radiation damage and plastic deformation mechanisms and fracture mechanics behavior. Electron microscope in-situ straining experiments are uncovering fundamental physical processes controlling deformation in irradiated metals. Fundamental modeling and experimental studies are determining the behavior of transmutant helium in metals, enabling design of materials with improved resistance to void swelling and helium embrittlement. Recent chemical compatibility tests have identified promising new candidates for magnetohydrodynamic insulators in lithium-cooled systems, and have established the basic compatibility of SiC with Pb-Li up to high temperature. Research on advanced joining techniques such as friction stir welding will be described. ITER materials research will be briefly summarized.
Neuspiel, Margaret; Zunino, Rodolfo; Gangaraju, Sandhya; Rippstein, Peter; McBride, Heidi
2005-07-01
Mitochondrial fusion in higher eukaryotes requires at least two essential GTPases, Mitofusin 1 and Mitofusin 2 (Mfn2). We have created an activated mutant of Mfn2, which shows increased rates of nucleotide exchange and decreased rates of hydrolysis relative to wild type Mfn2. Mitochondrial fusion is stimulated dramatically within heterokaryons expressing this mutant, demonstrating that hydrolysis is not requisite for the fusion event, and supporting a role for Mfn2 as a signaling GTPase. Although steady-state mitochondrial fusion required the conserved intermembrane space tryptophan residue, this requirement was overcome within the context of the hydrolysis-deficient mutant. Furthermore, the punctate localization of Mfn2 is lost in the dominant active mutants, indicating that these sites are functionally controlled by changes in the nucleotide state of Mfn2. Upon staurosporine-stimulated cell death, activated Bax is recruited to the Mfn2-containing puncta; however, Bax activation and cytochrome c release are inhibited in the presence of the dominant active mutants of Mfn2. The dominant active form of Mfn2 also protected the mitochondria against free radical-induced permeability transition. In contrast to staurosporine-induced outer membrane permeability transition, pore opening induced through the introduction of free radicals was dependent upon the conserved intermembrane space residue. This is the first evidence that Mfn2 is a signaling GTPase regulating mitochondrial fusion and that the nucleotide-dependent activation of Mfn2 concomitantly protects the organelle from permeability transition. The data provide new insights into the critical relationship between mitochondrial membrane dynamics and programmed cell death.
The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion
NASA Astrophysics Data System (ADS)
Miller, J. D.
1986-11-01
One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions.
The Effects of Ketorolac Injected via Patient Controlled Analgesia Postoperatively on Spinal Fusion
Park, Si-Young; Moon, Seong-Hwan; Park, Moon-Soo; Oh, Kyung-Soo
2005-01-01
Lumbar spinal fusions have been performed for spinal stability, pain relief and improved function in spinal stenosis, scoliosis, spinal fractures, infectious conditions and other lumbar spinal problems. The success of lumbar spinal fusion depends on multifactors, such as types of bone graft materials, levels and numbers of fusion, spinal instrumentation, electrical stimulation, smoking and some drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs). From January 2000 to December 2001, 88 consecutive patients, who were diagnosed with spinal stenosis or spondylolisthesis, were retrospectively enrolled in this study. One surgeon performed all 88 posterolateral spinal fusions with instrumentation and autoiliac bone graft. The patients were divided into two groups. The first group (n=30) was infused with ketorolac and fentanyl intravenously via patient controlled analgesia (PCA) postoperatively and the second group (n=58) was infused only with fentanyl. The spinal fusion rates and clinical outcomes of the two groups were compared. The incidence of incomplete union or nonunion was much higher in the ketorolac group, and the relative risk was approximately 6 times higher than control group (odds ratio: 5.64). The clinical outcomes, which were checked at least 1 year after surgery, showed strong correlations with the spinal fusion status. The control group (93.1%) showed significantly better clinical results than the ketorolac group (77.6%). Smoking had no effect on the spinal fusion outcome in this study. Even though the use of ketorolac after spinal fusion can reduce the need for morphine, thereby decreasing morphine related complications, ketorolac used via PCA at the immediate postoperative state inhibits spinal fusion resulting in a poorer clinical outcome. Therefore, NSAIDs such as ketorolac, should be avoided after posterolateral spinal fusion. PMID:15861498
Control of muscle formation by the fusogenic micropeptide myomixer
Bi, Pengpeng; Ramirez-Martinez, Andres; Li, Hui; Cannavino, Jessica; McAnally, John R.; Shelton, John M.; Sánchez-Ortiz, Efrain; Bassel-Duby, Rhonda; Olson, Eric N.
2017-01-01
Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84–amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development. PMID:28386024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Marsden, David; Collins, George
Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less
Study of Tungsten effect on CFETR performance
NASA Astrophysics Data System (ADS)
Shi, Shengyu; Xiang Gao Collaboration; Guoqiang Li Collaboration; Nan Shi Collaboration; Vincent Chan Collaboration; Xiang Jian Collaboration
2017-10-01
An integrated modeling workflow using OMFIT/TGYRO is constructed to evaluate W impurity effects on China Fusion Engineering Test Reactor (CFETR) performance. Self-consistent modeling of tungsten(W) core density profile, accounting for turbulence and neoclassical transport, is performed based on the CFETR steady-state scenario developed by D.Zhao (ZhaoDeng, APS, 2016). It's found that the fusion performance degraded in a limited level with increasing W concentration. The main challenge arises in sustainment of H-mode with significant W radiation. Assuming the power threshold of H-L back transition is approximately the same as that of L-H transition, using the scaling law of Takizuka (Takizuka etc, Plasma Phys. Control. Fusion, 2004), it is found that the fractional W concentration should not exceed 3e-5 to stay in H-mode for CFETR phase I. A future step is to connect this requirement to W wall erosion modeling. We are grateful to Dr. Emiliano Fable and Dr. Thomas Pütterich and Ms. Emily Belli for very helpful discussions and comments. We also would like to express our thanks to all the members of the CFETR Physics Group, and we appreciate the General Atomic Theory Group for permission to use the OMFIT framework and GA code suite, and for their valuable technical support. Numerical computations were performed on the ShenMa High Performance Computing Cluster in the Institute of Plasma Physics, Chinese Academy of Sciences. This work was mainly supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2014GB110001, 2014GB110002, 2014GB110003) and supported in part by the National ITER Plans Program of China (Grant Nos. 2013GB106001, 2013GB111002, 2015GB110001).
Status of fusion research and implications for D/He-3 systems
NASA Technical Reports Server (NTRS)
Miley, George H.
1988-01-01
World wide programs in both magnetic confinement and inertial confinement fusion research have made steady progress towards the experimental demonstration of energy breakeven. However, after breakeven is achieved, considerable time and effort must still be expended to develop a usable power plant. The main program described is focused on Deuterium-Tritium devices. In magnetic confinement, three of the most promising high beta approaches with a reasonable experimental data base are the Field Reversed Configuration, the high field tokamak, and the dense Z-pinch. The situation is less clear in inertial confinement where the first step requires an experimental demonstration of D/T spark ignition. It appears that fusion research has reached a point in time where an R and D plan to develop a D/He-3 fusion reactor can be laid out with some confidence of success.
Synchronized fusion development considering physics, materials and heat transfer
NASA Astrophysics Data System (ADS)
Wong, C. P. C.; Liu, Y.; Duan, X. R.; Xu, M.; Li, Q.; Feng, K. M.; Zheng, G. Y.; Li, Z. X.; Wang, X. Y.; Li, B.; Zhang, G. S.
2017-12-01
Significant achievements have been made in the last 60 years in the development of fusion energy with the tokamak configuration. Based on the accumulated knowledge, the world is embarking on the construction and operation of ITER (International Thermonuclear Experimental Reactor) with a production of 500 MWf fusion power and the demonstration of physics Q = 10. ITER will demonstrate D-T burn physics for a duration of a few hundred seconds to prepare for the next long-burn or steady state nuclear testing tokamak operating at much higher neutron fluence. With the evolution into a steady state nuclear device, such as the China Fusion Engineering Test Reactor (CFETR), it is necessary to examine the boundary conditions imposed by the combined development of tokamak physics, fusion materials and fusion technology for a reactor. The development of ferritic steel alloys as the structural material suitable for use at high neutron fluence leads to the use of helium as the most likely reactor coolant. This points to the fundamental technology limitation on the removal of chamber wall maximum heat flux at around 1 MW m-2 and an average heat flux of 0.1 MW m-2 for the next test reactor. Future reactor performance will then depend on the control of spatial and temporal edge heat flux peaking in order to increase the average heat flux to the chamber wall. With these severe material and technological limitations, system studies were used to scope out a few robust steady state synchronized fusion reactor (SFR) designs. As an example, a low fusion power design at 131.6 MWf, which can satisfy steady state design requirements, would have a major radius of 5.5 m and minor radius of 1.6 m. Such a design with even more advanced structural materials like W f/W composite could allow higher performance and provide a net electrical production of 62 MWe. These can be incorporated into the CFETR program.
Safety and environmental constraints on space applications of fusion energy
NASA Technical Reports Server (NTRS)
Roth, J. Reece
1990-01-01
Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.
New High Gain Target Design for a Laser Fusion Power Plant
2000-06-07
target with a minimum energy gain, about 100. Demonstration of ignition or low gain is only important for fusion energy if it leads into a target concept...nonlinear saturation of these instabilities. Our approach is to try to avoid them. 4. A Development Path to Fusion Energy The laser and target concept...on the exact date required to develop fusion energy , it would be worthwhile for a power plant development program to provide enough time and funds
SiC MOSFET Switching Power Amplifier Project Summary
NASA Astrophysics Data System (ADS)
Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Henson, Alex
2017-10-01
Eagle Harbor Technologies has completed a Phase I/II program to develop SiC MOSFET based Switching Power Amplifiers (SPA) for precision magnet control in fusion science applications. During this program, EHT developed several units have been delivered to the Helicity Injected Torus (HIT) experiment at the University of Washington to drive both the voltage and flux circuits of the helicity injectors. These units are capable of switching 700 V at 100 kHz with an adjustable duty cycle from 10 - 90% and a combined total output current of 96 kA for 4 ms (at max current). The SPAs switching is controlled by the microcontroller at HIT, which adjusts the duty cycle to maintain a specific waveform in the injector. The SPAs include overcurrent and shoot-through protection circuity. EHT will present an overview of the program including final results for the SPA waveforms. With support of DOE SBIR.
Hemi-fused structure mediates and controls fusion and fission in live cells
Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul; Wen, Peter J.; Krystofiak, Evan S.; Villarreal, Seth A.; Chiang, Hsueh-Cheng; Kachar, Bechara; Wu, Ling-Gang
2016-01-01
Membrane fusion and fission are vital to eukaryotes’ life1–5. For three decades, it has been proposed that fusion is mediated by fusion between proximal leaflets of two bilayers (hemi-fusion) that produces a hemi-fused structure, followed by fusion between distal leaflets, whereas fission is via hemi-fission, which also produces a hemi-fused structure, followed by full fission1, 4, 6–10. This hypothesis remained unsupported owing to the lack of observation of hemi-fusion/hemi-fission in live cells. A competing fusion hypothesis involving protein-lined pore formation has also been proposed2, 11–15. Using confocal and super-resolution STED microscopy, we observed the hemi-fused Ω-shaped structure for the first time in live cells, neuroendocrine chromaffin cells and pancreatic β-cells. This structure was generated from fusion pore opening or closure (fission) at the plasma membrane. Unexpectedly, its transition to full fusion or fission was determined by competition between fusion and calcium/dynamin-dependent fission mechanisms, and was surprisingly slow (seconds to tens of seconds) in a significant fraction of the events. These results provide key missing evidence over the past three decades proving the hemi-fusion and hemi-fission hypothesis in live cells, and reveal the hemi-fused intermediate as a key structure controlling fusion/fission, as fusion and fission mechanisms compete to determine its transition to fusion or fission. PMID:27309816
ATG14 controls SNARE-mediated autophagosome fusion with a lysosome.
Liu, Rong; Zhi, Xiaoyong; Zhong, Qing
2015-01-01
Autophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes. However, it remains unclear whether these SNAREs are fusion competent and how their fusogenic activity is specifically regulated during autophagy. Using a combination of biochemical, cell biology, and genetic approaches, we demonstrated that fusogenic activity of the autophagic SNARE complex is temporally and spatially controlled by ATG14/Barkor/Atg14L, an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex (PtdIns3K). ATG14 directly binds to the STX17-SNAP29 binary complex on autophagosomes and promotes STX17-SNAP29-VAMP8-mediated autophagosome fusion with lysosomes. ATG14 homo-oligomerization is required for SNARE binding and fusion promotion, but is dispensable for PtdIns3K stimulation and autophagosome biogenesis. Consequently, ATG14 homo-oligomerization is required for autophagosome fusion with a lysosome, but is dispensable for autophagosome biogenesis. These data support a key role of ATG14 in controlling autophagosome fusion with a lysosome.
Information fusion based optimal control for large civil aircraft system.
Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen
2015-03-01
Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Should the US abandon efforts to develop commercial fusion power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, W.D.; Kinter, E.E.
1993-01-22
This article presents viewpoints and rationale for continuing and disbanding the US efforts to develop commercial fusion power. The views of W.D. Kay, an assistant professor of political science at Northeastern University, are presented regarding - yes, abandon efforts. Meanwhile, the views of Edwin Keutes, former director of the Magnetic Fusion Program for DOE, are presented for continued development.
NASA Technical Reports Server (NTRS)
1994-01-01
In the mid-1980s, Kinetic Systems and Langley Research Center determined that high speed CAMAC (Computer Automated Measurement and Control) data acquisition systems could significantly improve Langley's ARTS (Advanced Real Time Simulation) system. The ARTS system supports flight simulation R&D, and the CAMAC equipment allowed 32 high performance simulators to be controlled by centrally located host computers. This technology broadened Kinetic Systems' capabilities and led to several commercial applications. One of them is General Atomics' fusion research program. Kinetic Systems equipment allows tokamak data to be acquired four to 15 times more rapidly. Ford Motor company uses the same technology to control and monitor transmission testing facilities.
Development of D+3He Fusion Electric Thrusters and Power Supplies for Space
NASA Astrophysics Data System (ADS)
Morse, Thomas M.
1994-07-01
Development of D+3He Fusion Electric Thrusters (FET) and Power Supplies (FPS) should occur at a lunar base because of the following: availability of helium-3, a vacuum better than on Earth, low K in shade reachable by radiant cooling, supply of ``high temp'' superconducting ceramic-metals, and a low G environment. The early FET will be much smaller than an Apollo engine, with specific impulse of 10,000-100,000-s. Solar power and low G will aid early development. To counter the effect of low G on humans, centrifuges will be employed for sleeping and resting. Work will be done by telerobotic view control. The FPS will be of comparable size, and will generate power mainly by having replaceable rectennas, resonant to the fusion synchrotron radiation. FPSs are used for house keeping power and initiating superconduction. Spaceships will carry up to ten FETs and two FPSs. In addition to fusion fuel, the FET will inject H or Li low mass propellant into the fusion chamber. Developing an FET would be difficult on Earth. FET spaceships will park between missions in L1, and an FET Bus will fetch humans/supplies from Moon and Earth. Someday FETs, with rocket assist, will lift spaceships from Earth, and make space travel to planets far cheaper, faster, and safer, than at present. Too long a delay due to the space station, or the huge cost of getting into space by current means, will damage the morale of the space program.
Current status and future R&D for reduced-activation ferritic/martensitic steels
NASA Astrophysics Data System (ADS)
Hishinuma, A.; Kohyama, A.; Klueh, R. L.; Gelles, D. S.; Dietz, W.; Ehrlich, K.
1998-10-01
International research and development programs on reduced-activation ferritic/martensitic steels, the primary candidate-alloys for a DEMO fusion reactor and beyond, are briefly summarized, along with some information on conventional steels. An International Energy Agency (IEA) collaborative test program to determine the feasibility of reduced-activation ferritic/martensitic steels for fusion is in progress and will be completed within this century. Baseline properties including typical irradiation behavior for Fe-(7-9)%Cr reduced-activation ferritic steels are shown. Most of the data are for a heat of modified F82H steel, purchased for the IEA program. Experimental plans to explore possible problems and solutions for fusion devices using ferromagnetic materials are introduced. The preliminary results show that it should be possible to use a ferromagnetic vacuum vessel in tokamak devices.
NASA Technical Reports Server (NTRS)
1989-01-01
Technology developed during a joint research program with Langley and Kinetic Systems Corporation led to Kinetic Systems' production of a high speed Computer Automated Measurement and Control (CAMAC) data acquisition system. The study, which involved the use of CAMAC equipment applied to flight simulation, significantly improved the company's technical capability and produced new applications. With Digital Equipment Corporation, Kinetic Systems is marketing the system to government and private companies for flight simulation, fusion research, turbine testing, steelmaking, etc.
The effects of local insulin application to lumbar spinal fusions in a rat model.
Koerner, John D; Yalamanchili, Praveen; Munoz, William; Uko, Linda; Chaudhary, Saad B; Lin, Sheldon S; Vives, Michael J
2013-01-01
The rates of pseudoarthrosis after a single-level spinal fusion have been reported up to 35%, and the agents that increase the rate of fusion have an important role in decreasing pseudoarthrosis after spinal fusion. Previous studies have analyzed the effects of local insulin application to an autograft in a rat segmental defect model. Defects treated with a time-released insulin implant had significantly more new bone formation and greater quality of bone compared with controls based on histology and histomorphometry. A time-released insulin implant may have similar effects when applied in a lumbar spinal fusion model. This study analyzes the effects of a local time-released insulin implant applied to the fusion bed in a rat posterolateral lumbar spinal fusion model. Our hypothesis was twofold: first, a time-released insulin implant applied to the autograft bed in a rat posterolateral lumbar fusion will increase the rate of successful fusion and second, will alter the local environment of the fusion site by increasing the levels of local growth factors. Animal model (Institutional Animal Care and Use Committee approved) using 40 adult male Sprague-Dawley rats. Forty skeletally mature Sprague-Dawley rats weighing approximately 500 g each underwent posterolateral intertransverse lumbar fusions with iliac crest autograft from L4 to L5 using a Wiltse-type approach. After exposure of the transverse processes and high-speed burr decortication, a Linplant (Linshin Canada, Inc., ON, Canada) consisting of 95% microrecrystalized palmitic acid and 5% bovine insulin (experimental group) or a sham implant consisting of only palmitic acid (control group) was implanted on the fusion bed with iliac crest autograft. As per the manufacturer, the Linplant has a release rate of 2 U/day for a minimum of 40 days. The transverse processes and autograft beds of 10 animals from the experimental and 10 from the control group were harvested at Day 4 and analyzed for growth factors. The remaining 20 spines were harvested at 8 weeks and underwent a radiographic examination, manual palpation, and microcomputed tomographic (micro-CT) examination. One of the 8-week control animals died on postoperative Day 1, likely due to anesthesia. In the groups sacrificed at Day 4, there was a significant increase in insulinlike growth factor-I (IGF-I) in the insulin treatment group compared with the controls (0.185 vs. 0.129; p=.001). No significant differences were demonstrated in the levels of transforming growth factor beta-1, platelet-derived growth factor-AB, and vascular endothelial growth factor between the groups (p=.461, .452, and .767 respectively). Based on the radiographs, 1 of 9 controls had a solid bilateral fusion mass, 2 of 9 had unilateral fusion mass, 3 of 9 had small fusion mass bilaterally, and 3 of 9 had graft resorption. The treatment group had solid bilateral fusion mass in 6 of 10 and unilateral fusion mass in 4 of 10, whereas a small bilateral fusion mass and graft resorption were not observed. The difference between the groups was significant (p=.0067). Based on manual palpation, only 1 of 9 controls was considered fused, 4 of 9 were partially fused, and 4 of 9 were not fused. In the treatment group, there were 6 of 10 fusions, 3 of 10 partial fusions, and 1 of 10 were not fused. The difference between the groups was significant (p=.0084). Based on the micro-CT, the mean bone volume of the control group was 126.7 mm(3) and 203.8 mm(3) in the insulin treatment group. The difference between the groups was significant (p=.0007). This study demonstrates the potential role of a time-released insulin implant as a bone graft enhancer using a rat posterolateral intertransverse lumbar fusion model. The insulin-treatment group had significantly higher fusion rates based on the radiographs and manual palpation and had significantly higher levels of IGF-I and significantly more bone volume on micro-CT. Copyright © 2013 Elsevier Inc. All rights reserved.
Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis.
Koseoglu, Secil; Dilks, James R; Peters, Christian G; Fitch-Tewfik, Jennifer L; Fadel, Nathalie A; Jasuja, Reema; Italiano, Joseph E; Haynes, Christy L; Flaumenhaft, Robert
2013-03-01
Platelet granule exocytosis serves a central role in hemostasis and thrombosis. Recently, single-cell amperometry has shown that platelet membrane fusion during granule exocytosis results in the formation of a fusion pore that subsequently expands to enable the extrusion of granule contents. However, the molecular mechanisms that control platelet fusion pore expansion and collapse are not known. We identified dynamin-related protein-1 (Drp1) in platelets and found that an inhibitor of Drp1, mdivi-1, blocked exocytosis of both platelet dense and α-granules. We used single-cell amperometry to monitor serotonin release from individual dense granules and, thereby, measured the effect of Drp1 inhibition on fusion pore dynamics. Inhibition of Drp1 increased spike width and decreased prespike foot events, indicating that Drp1 influences fusion pore formation and expansion. Platelet-mediated thrombus formation in vivo after laser-induced injury of mouse cremaster arterioles was impaired after infusion of mdivi-1. These results demonstrate that inhibition of Drp1 disrupts platelet fusion pore dynamics and indicate that Drp1 can be targeted to control thrombus formation in vivo.
NASA Astrophysics Data System (ADS)
Majeed, Raad H.; Oudah, Osamah N.
2018-05-01
Thermonuclear fusion reaction plays an important role in developing and construction any power plant system. Studying the physical behavior for the possible mechanism governed energies released by the fusion products to precise understanding the related kinematics. In this work a theoretical formula controlled the general applied thermonuclear fusion reactions is achieved to calculating the fusion products energy depending upon the reactants physical properties and therefore, one can calculate other parameters governed a given reaction. By using this formula, the energy spectrum of 4He produced from T-3He fusion reaction has been sketched with respect to reaction angle and incident energy ranged from (0.08-0.6) MeV.
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis
2011-04-01
A self-contained Fortran-90 program based on a three-dimensional classical dynamical reaction model with stochastic breakup is presented, which is a useful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates (i) integrated complete and incomplete fusion cross sections and their angular momentum distribution, (ii) the excitation energy distribution of the primary incomplete-fusion products, (iii) the asymptotic angular distribution of the incomplete-fusion products and the surviving breakup fragments, and (iv) breakup observables, such as angle, kinetic energy and relative energy distributions. Program summaryProgram title: PLATYPUS Catalogue identifier: AEIG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 342 No. of bytes in distributed program, including test data, etc.: 344 124 Distribution format: tar.gz Programming language: Fortran-90 Computer: Any Unix/Linux workstation or PC with a Fortran-90 compiler Operating system: Linux or Unix RAM: 10 MB Classification: 16.9, 17.7, 17.8, 17.11 Nature of problem: The program calculates a wide range of observables in reactions induced by weakly-bound two-body nuclei near the Coulomb barrier. These include integrated complete and incomplete fusion cross sections and their spin distribution, as well as breakup observables (e.g. the angle, kinetic energy, and relative energy distributions of the fragments). Solution method: All the observables are calculated using a three-dimensional classical dynamical model combined with the Monte Carlo sampling of probability-density distributions. See Refs. [1,2] for further details. Restrictions: The program is suited for a weakly-bound two-body projectile colliding with a stable target. The initial orientation of the segment joining the two breakup fragments is considered to be isotropic. Additional comments: Several source routines from Numerical Recipies, and the Mersenne Twister random number generator package are included to enable independent compilation. Running time: About 75 minutes for input provided, using a PC with 1.5 GHz processor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia L. Finley
The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program ismore » to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface, ground, a nd waste water monitoring. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stencel, J.R.; Finley, V.L.
This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research sincemore » 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.« less
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Hoa, Christine; Bonnay, Patrick; Bon-Mardion, Michel; Monteiro, Lionel
2015-12-01
In this article, we present a new Simulink library of cryogenics components (such as valve, phase separator, mixer, heat exchanger...) to assemble to generate model-based control schemes. Every component is described by its algebraic or differential equation and can be assembled with others to build the dynamical model of a complete refrigerator or the model of a subpart of it. The obtained model can be used to automatically design advanced model based control scheme. It also can be used to design a model based PI controller. Advanced control schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT- 60SA). The paper gives the example of the generation of the dynamical model of the 400W@1.8K refrigerator and shows how to build a Constrained Model Predictive Control for it. Based on the scheme, experimental results will be given. This work is being supported by the French national research agency (ANR) through the ANR-13-SEED-0005 CRYOGREEN program.
Laser Program Annual Report - 1979 Unclassified Excerpts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindl, J D
The objective of the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) program is to demonstrate the scientific feasibility of ICF for military applications (to develop and utilize the capability to study nuclear weapons physics in support of the weapons program) and for energy-directed uses in the civilian sector. The demonstration of scientific feasibility for both military and civilian objectives will require achieving gains on the order of 10 to 100 in fusion microexplosions. Our major near-term milestones include the attainment of high compression, one-hundred to one-thousand times (100 to 1000X) liquid D-T density in the thermonuclear fuel andmore » ignition of thermonuclear burn. In 1979, our laser fusion experiments and analysis programs focused on two important areas related to achieving this goal: conducting x-ray-driven implosions of a variety of D-T-filled fuel capsule's to unprecedented high densities ({approx}> 50X liquid D-T density) and the determination of the scaling of hot electrons and thermal radiation in hohlraums.« less
NASA Technical Reports Server (NTRS)
Oneil, William F.
1993-01-01
The fusion of radar and electro-optic (E-O) sensor images presents unique challenges. The two sensors measure different properties of the real three-dimensional (3-D) world. Forming the sensor outputs into a common format does not mask these differences. In this paper, the conditions under which fusion of the two sensor signals is possible are explored. The program currently planned to investigate this problem is briefly discussed.
Faust, James J.; Christenson, Wayne; Doudrick, Kyle; Ros, Robert
2017-01-01
Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, αMβ2) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials. PMID:28340410
PREFACE: The fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007)
NASA Astrophysics Data System (ADS)
Azechi, Hiroshi; Hammel, Bruce; Gauthier, Jean-Claude
2008-06-01
The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007) was held on 9-14 September 2007 at Kobe International Conference Center in Kobe, Japan. The host organizations for this conference were Osaka University and the Institute of Laser Engineering (ILE) at Osaka University; and co-organized by the Institute Lasers and Plasmas (ILP) in France, the Commissariatá l'Energie Atomique (CEA), Lawrence Livermore National Laboratory (LLNL), National Institute for Fusion Science (NIFS) in Japan, and Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA). The conference objective was to review the state of the art of research in inertial fusion sciences and applications since the last conference held in Biarritz, France, in 2005. 470 abstracts were accepted, and 448 persons from 18 countries attended the conference. These Proceedings contain 287 of the papers presented at IFSA 2007. This collection of papers represents the manuscripts submitted to and passing the peer review process. The program was organized with some specific features: The reviews of influential programs appeared both at the very beginning and at the very end of the Conference to attract attendance throughout the Conference. Each poster session had the same time period as a single oral session, thereby avoiding overlap with oral talks. The everyday program was structured to be as similar as possible so the attendees could easily recognize the program. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, researchers presented the exciting advances in both traditional hot spot ignition and fast ignition approach, including status report of USA's National Ignition Facility (NIF), French Laser Magajoule (LMJ), Japanese Fast Ignition Realization Experiment (FIREX), and European High Power laser Energy Research (HiPER). A particular emphasis of the meeting was that the `physics of inertial fusion' category was dominated by fast-ignition and related ultra-intense laser interaction. Progress in direct drive over the past few years resulted in the achievement of high-density cryogenic implosions at OMEGA. Continuous progresses in hohlraum physics gave confidence in the achievement of ignition at NIF and LMJ. Advances in Z-pinch included double-hohlraum irradiation symmetry and the PW laser beam for the Z-facility. Progress of laser material development for IFE driver was a very interesting topic of inertial fusion energy drivers, including KrF and DPSSL lasers and particle beams. Of special interest, a future session was focused on strategy of inertial fusion energy development. Laboratory tours were held in the middle of the Conference. The Laser for Fusion EXperiments (LFEX), a new high-energy petawatt laser at ILE, was one of the key attractions of IFSA 2007. 83 participants toured LFEX and GEKKO XII lasers, and 35 joined a tour of KPSA-JAEA. In parallel to the tour, the `Symposium on Academics-Industries Cooperation for Applications of High-Power Lasers' was held with more than 90 participants mostly from the industrial community. These Proceedings start with special chapters on the keynote and focus speeches and the Teller lectures. The keynotes and focus give an overview of progress in inertial fusion in Asia, North America, and Europe. The Teller lectures show the contributions of this year's two winners: Brian Thomas of AWE, UK and Kunioki Mima of ILE. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers laser, particle beams, and fusion technology including IFE reactors and target fabrication; and Part C covers science and technology applications such as laboratory astrophysics, laser particle acceleration, x-ray and EUV sources, and new applications of intense lasers. These parts are further divided into chapters covering specific areas of science or technology. Within each chapter the talks relevant to that subject are gathered. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2007 an extremely successful conference. The proceedings were published with the support of Dr Y Sakawa, Dr H Homma, Ms S Karasuyama, Ms M Odagiri, and Ms I Kobatake. Kunioki Mima Co-chair Hiroshi Azechi Technical Program Committee Co-chair John Lindl Co-chair Bruce Hammel Technical Program Committee Co-chair Christine Labaune Co-chair Jean-Claude Gauthier Technical Program Committee Co-chair
Singh, Ankit; Srivastava, Subhi; Chouksey, Ankita; Panwar, Bhupendra Singh; Verma, Praveen C; Roy, Sribash; Singh, Pradhyumna K; Saxena, Gauri; Tuli, Rakesh
2015-04-01
Transgenic hairy roots of Solanum lycopersicum were engineered to express a recombinant protein containing a fusion of rabies glycoprotein and ricin toxin B chain (rgp-rtxB) antigen under the control of constitutive CaMV35S promoter. Asialofetuin-mediated direct ELISA of transgenic hairy root extracts was performed using polyclonal anti-rabies antibodies (Ab1) and epitope-specific peptidal anti-RGP (Ab2) antibodies which confirmed the expression of functionally viable RGP-RTB fusion protein. Direct ELISA based on asialofetuin-binding activity was used to screen crude protein extracts from five transgenic hairy root lines. Expressions of RGP-RTB fusion protein in different tomato hairy root lines varied between 1.4 and 8 µg in per gram of tissue. Immunoblotting assay of RGP-RTB fusion protein from these lines showed a protein band on monomeric size of ~84 kDa after denaturation. Tomato hairy root line H03 showed highest level of RGP-RTB protein expression (1.14 %) and was used further in bench-top bioreactor for the optimization of scale-up process to produce large quantity of recombinant protein. Partially purified RGP-RTB fusion protein was able to induce the immune response in BALB/c mice after intra-mucosal immunization. In the present investigation, we have not only successfully scaled up the hairy root culture but also established the utility of this system to produce vaccine antigen which subsequently will reduce the total production cost for implementing rabies vaccination programs in developing nations. This study in a way aims to provide consolidated base for low-cost preparation of improved oral vaccine against rabies.
Sensor fusion V; Proceedings of the Meeting, Boston, MA, Nov. 15-17, 1992
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Topics addressed include 3D object perception, human-machine interface in multisensor systems, sensor fusion architecture, fusion of multiple and distributed sensors, interface and decision models for sensor fusion, computational networks, simple sensing for complex action, multisensor-based control, and metrology and calibration of multisensor systems. Particular attention is given to controlling 3D objects by sketching 2D views, the graphical simulation and animation environment for flexible structure robots, designing robotic systems from sensorimotor modules, cylindrical object reconstruction from a sequence of images, an accurate estimation of surface properties by integrating information using Bayesian networks, an adaptive fusion model for a distributed detection system, multiple concurrent object descriptions in support of autonomous navigation, robot control with multiple sensors and heuristic knowledge, and optical array detectors for image sensors calibration. (No individual items are abstracted in this volume)
Zhang, Fan; Liu, Ming; Harper, Stephen; Lee, Michael; Huang, He
2014-07-22
To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.
Fusion/Astrophysics Teacher Research Academy
NASA Astrophysics Data System (ADS)
Correll, Donald
2005-10-01
In order to engage California high school science teachers in the area of plasma physics and fusion research, LLNL's Fusion Energy Program has partnered with the UC Davis Edward Teller Education Center, ETEC (http://etec.ucdavis.edu), the Stanford University Solar Center (http://solar-center.stanford.edu) and LLNL's Science / Technology Education Program, STEP (http://education.llnl.gov). A four-level ``Fusion & Astrophysics Research Academy'' has been designed to give teachers experience in conducting research using spectroscopy with their students. Spectroscopy, and its relationship to atomic physics and electromagnetism, provides for an ideal plasma `bridge' to the CA Science Education Standards (http://www.cde.ca.gov/be/st/ss/scphysics.asp). Teachers attend multiple-day professional development workshops to explore new research activities for use in the high school science classroom. A Level I, 3-day program consists of two days where teachers learn how plasma researchers use spectrometers followed by instructions on how to use a research grade spectrometer for their own investigations. A 3rd day includes touring LLNL's SSPX (http://www.mfescience.org/sspx/) facility to see spectrometry being used to measure plasma properties. Spectrometry classroom kits are made available for loaning to participating teachers. Level I workshop results (http://education.llnl.gov/fusion&_slash;astro/) will be presented along with plans being developed for Level II (one week advanced SKA's), Level III (pre-internship), and Level IV (summer internship) research academies.
Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.
ERIC Educational Resources Information Center
Fillo, J. A.
This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…
Selected Tracking and Fusion Applications for the Defence and Security Domain
2010-05-01
SUBTITLE Selected Tracking and Fusion Applications for the Defence and Security Domain 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...characterized, for example, by sensor ranges from less than a meter to hundreds of kilometers, by time scales ranging from less than second to a few...been carried out within the framework of a multinational technology program called MAJIIC (Multi-Sensor Aerospace-Ground Joint ISR Interoperability
FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery
Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo
2012-01-01
Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2–ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data. PMID:22570408
FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery.
Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo
2012-09-01
Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2-ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia Finley
The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program ismore » to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.« less
BigFoot: a program to reduce risk for indirect drive laser fusion
NASA Astrophysics Data System (ADS)
Thomas, Cliff
2017-10-01
The conventional approach to inertial confinement fusion (ICF) with indirect drive is to design for high convergence (40), DT areal density, and target gain. By construction, this strategy is challenged by low-mode control of the implosion (Legendre P2 and P4), instability, and difficulties interpreting data. Here we consider an alternative - an approach to ICF that emphasizes control. To begin, we optimize for hohlraum predictability, and coupling to the capsule. Rather than focus on density, we work on making a high-energy hotspot we can diagnose and ``tune'' at low convergence (20). Though gain is reduced, this makes it possible to study (and improve) stagnation physics in a regime relevant to ignition (1E16-1E17). Further improvements can then be made with small, incremental increases in areal density, target scale, etc. Details regarding the ``BigFoot'' platform and pulse are reported, including recent findings. Work that could enable additional improvements in capsule stability and hohlraum control will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Variable control of neutron albedo in toroidal fusion devices
Jassby, Daniel L.; Micklich, Bradley J.
1986-01-01
An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.
Javaid, Shaista; Naz, Sehrish; Amin, Imran; Jander, Georg; Ul-Haq, Zaheer; Mansoor, Shahid
2018-03-19
Sucking pests pose a serious agricultural challenge, as available transgenic technologies such as Bacillus thuringiensis crystal toxins (Bt) are not effective against them. One approach is to produce fusion protein toxins for the control of these pests. Two protein toxins, Hvt (ω-atracotoxin from Hadronyche versuta) and onion leaf lectin, were translationally fused to evaluate the negative effects of fusion proteins on Phenacoccus solenopsis (mealybug), a phloem-feeding insect pest. Hvt was cloned both N-terminally (HL) and then C-terminally (LH) in the fusion protein constructs, which were expressed transiently in Nicotiana tabacum using a Potato Virus X (PVX) vector. The HL fusion protein was found to be more effective against P. solenopsis, with an 83% mortality rate, as compared to the LH protein, which caused 65% mortality. Hvt and lectin alone caused 42% and 45%, respectively, under the same conditions. Computational studies of both fusion proteins showed that the HL protein is more stable than the LH protein. Together, these results demonstrate that translational fusion of two insecticidal proteins improved the insecticidal activity relative to each protein individually and could be expressed in transgenic plants for effective control of sucking pests.
Yishake, Mumingjiang; Yasen, Miersalijiang; Jiang, Libo; Liu, Wangmi; Xing, Rong; Chen, Qian; Lin, Hong; Dong, Jian
2018-03-01
There has been no study regarding the effect of a combination of teriparatide (TPTD) and zoledronic acid (ZA) on vertebral fusion. In this study, we investigate the effect of single and combined TPTD and ZA treatment on lumbar vertebral fusion in aged ovariectomized (OVX) rats. Sixty two-month-old female Sprague-Dawley rats were ovariectomized and underwent bilateral L4-L5 posterolateral intertransverse fusion after 10 months. The OVX rats received vehicle (control) treatment, or ZA (100 µg/kg, once), or TPTD (60 µg/kg/2 d for 42 d), or ZA + TPTD until they were euthanized at 6 weeks following lumbar vertebral fusion. The lumbar spine was harvested. Bone mineral density (BMD), bone fusion, bone volume (BV), and bone formation rate (BFR)were analyzed by dual-energy X-ray absorptiometry (DXA), radiography, micro-computed tomography, and histomorphometry. Compared with vehicle (control) treatment, ZA and TPTD monotherapy increased bone volume (BV) at fusion site, and ZA + TPTD combined therapy had an additive effect. Treatment with TPTD and ZA + TPTD increased the bone fusion rate when compared with the control group. ZA monotherapy did not alter the rate of bone fusion. The TPTD and ZA + TPTD treatment groups had increased mineral apposition rate (MAR), mineralizing surfaces/bone surface ((MS/BS), and BFR/BS compared with the OVX group. Our experiment confirm that the monotherapy with TPTD and combination therapy with ZA + TPTD in an OVX rat model of osteopenia following lumbar vertebral fusion surgery increased bone fusion mass and bone fusion rate, and ZA + TPTD combined therapy had an additive effect on bone fusion mass. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:937-944, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
SEAL Studies of Variant Blanket Concepts and Materials
NASA Astrophysics Data System (ADS)
Cook, I.; Taylor, N. P.; Forty, C. B. A.; Han, W. E.
1997-09-01
Within the European SEAL ( Safety and Environmental Assessment of fusion power, Long-term) program, safety and environmental assessments have been performed which extend the results of the earlier SEAFP (Safety and Environmental Assessment of Fusion Power) program to a wider range of blanket designs and material choices. The four blanket designs analysed were those which had been developed within the Blanket program of the European Fusion Programme. All four are based on martensitic steel as structural material, and otherwise may be summarized as: water-cooled lithium-lead; dual-cooled lithium-lead; helium-cooled lithium silicate (BOT geometry); helium-cooled lithium aluminate (or zirconate) (BIT geometry). The results reveal that all the blankets show the favorable S&E characteristics of fusion, though there are interesting and significant differences between them. The key results are described. Assessments have also been performed of a wider range of materials than was considered in SEAFP. These were: an alternative vanadium alloy, an alternative low-activation martensitic steel, titanium-aluminum intermetallic, and SiC composite. Assessed impurities were included in the compositions, and these had very important effects upon some of the results. Key results impacting upon accident characteristics, recycling, and waste management are described.
Faust, James J; Christenson, Wayne; Doudrick, Kyle; Ros, Robert; Ugarova, Tatiana P
2017-06-01
Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, α M β 2 ) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Digitally controlled twelve-pulse firing generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berde, D.; Ferrara, A.A.
1981-01-01
Control System Studies for the Tokamak Fusion Test Reactor (TFTR) indicate that accurate thyristor firing in the AC-to-DC conversion system is required in order to achieve good regulation of the various field currents. Rapid update and exact firing angle control are required to avoid instabilities, large eddy currents, or parasitic oscillations. The Prototype Firing Generator was designed to satisfy these requirements. To achieve the required /plus or minus/0.77/degree/firing accuracy, a three-phase-locked loop reference was designed; otherwise, the Firing Generator employs digital circuitry. The unit, housed in a standard CAMAC crate, operates under microcomputer control. Functions are performed under program control,more » which resides in nonvolatile read-only memory. Communication with CICADA control system is provided via an 11-bit parallel interface.« less
Opioids delay healing of spinal fusion: a rabbit posterolateral lumbar fusion model.
Jain, Nikhil; Himed, Khaled; Toth, Jeffrey M; Briley, Karen C; Phillips, Frank M; Khan, Safdar N
2018-04-19
Opioid use is prevalent for management of pre- and post-operative pain in patients undergoing spinal fusion. There is evidence that opioids downregulate osteoblasts in-vitro, and one previous study found that morphine delays the maturation and remodeling of callus in a rat femur fracture model. However, the effect of opioids on healing of spinal fusion has not been investigated before. Isolating the effect of opioid exposure in humans would be limited by the numerous confounding factors that affect fusion healing. Therefore, we have used a well-established rabbit model to study the process of spinal fusion healing that closely mimics humans. To study the effect of systemic opioids on the process of healing of spinal fusion in a rabbit posterolateral spinal fusion model. Pre-clinical animal study. 24 adult New Zealand white rabbits were studied in two groups after approval from the Institutional Animal Care and Use Committee (IACUC). The opioid group (n=12) received four-weeks pre-operative and six-weeks post-operative transdermal fentanyl. Serum fentanyl levels were measured just before surgery and four-weeks post-operatively to ensure adequate levels. The control group (n=12) received only peri-operative pain control as necessary. All animals received a bilateral L5-L6 posterolateral spinal fusion using iliac crest autograft. Animals were euthanized at the six-week post-operative time point, and assessment of fusion was done by manual palpation, plain radiographs, micro-computed tomography (microCT), and histology. 12 animals in control group and 11 animals in the opioid group were available for analysis at the end of six weeks. The fusion scores on manual palpation, radiographs, and microCT were not statistically different. Three-dimensional microCT morphometry found that the fusion mass in the opioid group had a lower bone volume (p=0.09), lower trabecular number (p=0.02) and higher trabecular separation (p=0.02) as compared to control. Histological analysis found areas of incorporation of autograft, and unincorporated graft fragments in both groups. In the control group, there was remodeling of de-novo woven bone to lamellar organization with incorporation of osteocytes, formation of mature marrow, and relative paucity of hypertrophied osteoblasts lining new bone. Sections from the opioid group showed formation of de-novo woven bone, and hypertrophied osteoblasts seen lining the new bone. There were no sections showing lamellar organization and development of mature marrow elements in the opioid group. Less dense trabeculae on microCT correlated with histological findings of relatively immature fusion mass in the opioid group. Systemic opioids led to an inferior quality fusion mass with delay in maturation and remodeling at six-weeks in this rabbit spinal fusion model. These preliminary results lay foundation for further research to investigate underlying cellular mechanisms, temporal fusion process, and dose-duration relationship of opioids responsible for our findings. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pace, D. C.; Collins, C. S.; Crowley, B.; Grierson, B. A.; Heidbrink, W. W.; Pawley, C.; Rauch, J.; Scoville, J. T.; Van Zeeland, M. A.; Zhu, Y. B.; The DIII-D Team
2017-01-01
A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significant changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. Developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.
Scott, Trevor P.; Phan, Kevin H.; Tian, Haijun; Suzuki, Akinobu; Montgomery, Scott R.; Johnson, Jared S.; Atti, Elisa; Tetratis, Sotirios; Pereira, Renata C.; Wang, Jeffrey C.; Daubs, Michael D.; Stappenbeck, Frank; Parhami, Farhad
2015-01-01
Background Context The non-union rate following lumbar spinal fusion is as high as 25%. Bone morphogenetic protein-2 (rhBMP2) has been used as a biological adjunct to promote bony fusion. However, recently there have been concerns about BMP2. Oxysterol 133 (Oxy133) has been shown to promote excellent fusion rates in rodent lumbar spine models and offers a potential alternative to rhBMP2. Purpose The purpose of this study was to compare the fusion rate of rhBMP2 and Oxy133 in a randomized controlled trial using a posterolateral lumbar rabbit spinal fusion model. Study Design This was a randomized control animal study. Methods Twenty-four male adult white New Zealand rabbits (3–3.5kg) underwent bilateral posterolateral lumbar spinal fusion at L4–L5. Rabbits were divided into 4 groups: control (A), 30 µg rhBMP2 (B), 20 mg Oxy133 (C), and 60 mg Oxy133 (D). At 4 weeks, fusion was evaluated by fluoroscopy, and at 8 weeks the rabbits were sacrificed and fusion was evaluated radiographically, by manual palpation, and with microCT. Dr. Parhami is a founder and Dr. Stappenbeck is the Director of Chemistry at MAX BioPharma, which has licensed the rights to Oxy133 from UCLA, both have financial interests in the technology presented here. UCLA holds equity in MAX BioPharma. All other authors have no conflicts of interest. Studies reported here were supported in part by the NIH/NIAMS grant RO1AR059794 and in part by MAX BioPharma that purchased the rabbits and provided Oxy133. Results Fusion rates by radiographic analysis at 8 weeks were: group A 40.0%, group B 91.7%, group C 91.7%, and group D 100%. Evaluation of fusion masses by manual palpation of excised spines after sacrifice showed the following fusion rates: group A 0%, group B 83.3%, group C 83.3%, and group D 90%. MicroCT scanning confirmed these findings. Conclusions These findings in a rabbit model demonstrate that both 20 mg dose and 60 mg dose Oxy133 promote fusion that is equivalent to fusion induced by 30 µg rhBMP2 and significantly greater than the control group. The present findings confirm that Oxy133 is a promising candidate for therapeutic development as an alternative to rhBMP2 to promote spinal fusion. PMID:25450659
An Overview of INEL Fusion Safety R&D Facilities
NASA Astrophysics Data System (ADS)
McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.
1997-06-01
The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.
From pure fusion to fusion-fission Demo tokamaks
NASA Astrophysics Data System (ADS)
Mirnov, S. V.
2013-04-01
The major requirements for pure fusion tokamak reactors and tokamak-based fusion neutron sources (FNS) are analyzed together with possible paths from the present-day tokamak towards the FNS tokamak. The FNS are of interest for traditional fission reactors as a method of waste management by burning of long-lived transuranic radionuclides (minorities) and fission fuel breeding. The Russian fission community places several hard requirements on the quality of FNS suitable for the first step of the investigation program of minority burning and breeding. They are (a) a steady-state regime of neutron production (more than 80% of the operational time), (b) a neutron power flux density greater than >0.2 MW m-2, (c) a total surface integrated neutron power >10 MW. Among the different FNS projects, based on magnetically confined plasmas, only ‘classical tokamak’ is most likely to fulfill these requirements in the nearest future. Some of the most important improvements of the ‘classical tokamak’ needed for successful realization of the FNS are (1) decrease in Zeff (probably, by making use of lithium as a part of plasma-facing components), (2) He removal and closed loop DT fuel circulation, (3) increase in the energy of stationary injected neutral tritium beams up to 150-170 keV and (4) control of impurity contamination at the plasma center (probably, by local RF heating). These key issues are discussed.
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Miley, George H.; Santarius, John F.
1991-01-01
The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Xiaoming
The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion verymore » difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.« less
Background: Energy's holy grail. [The quest for controlled fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This article presents a brief history of the pursuit and development of fusion as a power source. Starting with the 1950s through the present, the research efforts of the US and other countries is highlighted, including a chronology of hey developments. Other topics discussed include cold fusion and magnetic versus inertial fusion issues.
CICART Center For Integrated Computation And Analysis Of Reconnection And Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Amitava
CICART is a partnership between the University of New Hampshire (UNH) and Dartmouth College. CICART addresses two important science needs of the DoE: the basic understanding of magnetic reconnection and turbulence that strongly impacts the performance of fusion plasmas, and the development of new mathematical and computational tools that enable the modeling and control of these phenomena. The principal participants of CICART constitute an interdisciplinary group, drawn from the communities of applied mathematics, astrophysics, computational physics, fluid dynamics, and fusion physics. It is a main premise of CICART that fundamental aspects of magnetic reconnection and turbulence in fusion devices, smaller-scalemore » laboratory experiments, and space and astrophysical plasmas can be viewed from a common perspective, and that progress in understanding in any of these interconnected fields is likely to lead to progress in others. The establishment of CICART has strongly impacted the education and research mission of a new Program in Integrated Applied Mathematics in the College of Engineering and Applied Sciences at UNH by enabling the recruitment of a tenure-track faculty member, supported equally by UNH and CICART, and the establishment of an IBM-UNH Computing Alliance. The proposed areas of research in magnetic reconnection and turbulence in astrophysical, space, and laboratory plasmas include the following topics: (A) Reconnection and secondary instabilities in large high-Lundquist-number plasmas, (B) Particle acceleration in the presence of multiple magnetic islands, (C) Gyrokinetic reconnection: comparison with fluid and particle-in-cell models, (D) Imbalanced turbulence, (E) Ion heating, and (F) Turbulence in laboratory (including fusion-relevant) experiments. These theoretical studies make active use of three high-performance computer simulation codes: (1) The Magnetic Reconnection Code, based on extended two-fluid (or Hall MHD) equations, in an Adaptive Mesh Refinement (AMR) framework, (2) the Particle Simulation Code, a fully electromagnetic 3D Particle-In-Cell (PIC) code that includes a collision operator, and (3) GS2, an Eulerian, electromagnetic, kinetic code that is widely used in the fusion program, and simulates the nonlinear gyrokinetic equations, together with a self-consistent set of Maxwell’s equations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, V.L. and Levine, J.D.
The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7more » million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 10 20 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an adjacent area to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.« less
A new vision for fusion energy research: Fusion rocket engines for planetary defense
Wurden, G. A.; Weber, T. E.; Turchi, P. J.; ...
2015-11-16
Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.
A new vision for fusion energy research: Fusion rocket engines for planetary defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurden, G. A.; Weber, T. E.; Turchi, P. J.
Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.
Membrane Fusion Induced by Small Molecules and Ions
Mondal Roy, Sutapa; Sarkar, Munna
2011-01-01
Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes. PMID:21660306
Real-time sensor validation and fusion for distributed autonomous sensors
NASA Astrophysics Data System (ADS)
Yuan, Xiaojing; Li, Xiangshang; Buckles, Bill P.
2004-04-01
Multi-sensor data fusion has found widespread applications in industrial and research sectors. The purpose of real time multi-sensor data fusion is to dynamically estimate an improved system model from a set of different data sources, i.e., sensors. This paper presented a systematic and unified real time sensor validation and fusion framework (RTSVFF) based on distributed autonomous sensors. The RTSVFF is an open architecture which consists of four layers - the transaction layer, the process fusion layer, the control layer, and the planning layer. This paradigm facilitates distribution of intelligence to the sensor level and sharing of information among sensors, controllers, and other devices in the system. The openness of the architecture also provides a platform to test different sensor validation and fusion algorithms and thus facilitates the selection of near optimal algorithms for specific sensor fusion application. In the version of the model presented in this paper, confidence weighted averaging is employed to address the dynamic system state issue noted above. The state is computed using an adaptive estimator and dynamic validation curve for numeric data fusion and a robust diagnostic map for decision level qualitative fusion. The framework is then applied to automatic monitoring of a gas-turbine engine, including a performance comparison of the proposed real-time sensor fusion algorithms and a traditional numerical weighted average.
A Summary of the NASA Fusion Propulsion Workshop 2000
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Turchi, Peter J.; Santarius, John F.; Schafer, Charles (Technical Monitor)
2001-01-01
A NASA Fusion Propulsion Workshop was held on Nov. 8 and 9, 2000 at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. A total of 43 papers were presented at the Workshop orally or by posters, covering a broad spectrum of issues related to applying fusion to propulsion. The status of fusion research was reported at the Workshop showing the outstanding scientific research that has been accomplished worldwide in the fusion energy research program. The international fusion research community has demonstrated the scientific principles of fusion creating plasmas with conditions for fusion burn with a gain of order unity: 0.25 in Princeton TFTR, 0.65 in the Joint European Torus, and a Q-equivalent of 1.25 in Japan's JT-60. This research has developed an impressive range of physics and technological capabilities that may be applied effectively to the research of possibly new propulsion-oriented fusion schemes. The pertinent physics capabilities include the plasma computational tools, the experimental plasma facilities, the diagnostics techniques, and the theoretical understanding. The enabling technologies include the various plasma heating, acceleration, and the pulsed power technologies.
NASA Astrophysics Data System (ADS)
Zagorodny, A.; Kocherga, O.
2007-05-01
The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud
The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysismore » and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms« less
The Relationship between Serum Vitamin D Levels and Spinal Fusion Success: A Quantitative Analysis
Metzger, Melodie F.; Kanim, Linda E.; Zhao, Li; Robinson, Samuel T.; Delamarter, Rick B.
2015-01-01
Study Design An in vivo dosing study of vitamin D in a rat posterolateral spinal fusion model with autogenous bone grafting. Rats randomized to four levels of Vitamin D adjusted rat chow, longitudinal serum validation, surgeons/observers blinded to dietary conditions, and rats followed prospectively for fusion endpoint. Objective To assess the impact of dietary and serum levels of Vitamin D on fusion success, consolidation of fusion mass, and biomechanical stiffness after posterolateral spinal fusion procedure. Summary of Background Data Metabolic risk factors, including vitamin D insufficiency, are often overlooked by spine surgeons. Currently there are no published data on the causal effect of insufficient or deficient vitamin D levels on the success of establishing solid bony union after a spinal fusion procedure. Methods 50 rats were randomized to four experimentally controlled rat chow diets: normal control, vitamin D-deficient, vitamin-D insufficient, and a non-toxic high dose of vitamin D, four weeks prior to surgery and maintained post-surgery until sacrifice. Serum levels of 25(OH)D were determined at surgery and sacrifice using radioimmunoassay. Posterolateral fusion surgery with tail autograft was performed. Rats were sacrificed 12 weeks post-operatively and fusion was evaluated via manual palpation, high resolution radiographs, μCT, and biomechanical testing. Results Serum 25(OH)D and calcium levels were significantly correlated with vitamin-D adjusted chow (p<0.001). There was a dose dependent relationship between vitamin D adjusted chow and manual palpation fusion with greatest differences found in measures of radiographic density between high and deficient vitamin D (p<0.05). Adequate levels of vitamin D (high and normal control) yielded stiffer fusion than inadequate levels (insufficient and deficient) (p<0.05). Conclusions Manual palpation fusion rates increased with supplementation of dietary vitamin D. Biomechanical stiffness, bone volume and density were also positively-related to vitamin D, and calcium. PMID:25627287
NASA Astrophysics Data System (ADS)
Conde, Miguel Ángel; García-Peñalvo, Francisco José; Casany, Marià José; Alier Forment, Marc
Learning processes are changing related to technological and sociological evolution, taking this in to account, a new learning strategy must be considered. Specifically what is needed is to give an effective step towards the eLearning 2.0 environments consolidation. This must imply the fusion of the advantages of the traditional LMS (Learning Management System) - more formative program control and planning oriented - with the social learning and the flexibility of the web 2.0 educative applications.
NASA Astrophysics Data System (ADS)
Emmerman, Philip J.
2005-05-01
Teams of robots or mixed teams of warfighters and robots on reconnaissance and other missions can benefit greatly from a local fusion station. A local fusion station is defined here as a small mobile processor with interfaces to enable the ingestion of multiple heterogeneous sensor data and information streams, including blue force tracking data. These data streams are fused and integrated with contextual information (terrain features, weather, maps, dynamic background features, etc.), and displayed or processed to provide real time situational awareness to the robot controller or to the robots themselves. These blue and red force fusion applications remove redundancies, lessen ambiguities, correlate, aggregate, and integrate sensor information with context such as high resolution terrain. Applications such as safety, team behavior, asset control, training, pattern analysis, etc. can be generated or enhanced by these fusion stations. This local fusion station should also enable the interaction between these local units and a global information world.
Thought action fusion: can it be corrected?
Zucker, Bonnie G; Craske, Michelle G; Barrios, Velma; Holguin, Monique
2002-06-01
The goal of this study was to investigate whether or not a brief educational intervention delivered prior to engaging in an anxiety-provoking task (writing a sentence about hoping that a friend/relative was in a car accident) would be effective in offsetting anxiety in college students with a strong propensity to endorse statements of thought action fusion (TAF). As hypothesized, individuals receiving the educational intervention were less anxious than a placebo intervention control group at post task; they were also less likely to endorse statements of TAF after receiving the educational intervention. Also, those who chose to neutralize after writing the sentence (regardless of experimental group) were more likely to report feeling guiltier, more immoral and a greater sense of responsibility about writing the sentence prior to neutralizing than those who did not subsequently neutralize. These results are discussed in relation to the cognitive theory of obsessive-compulsive disorder and implications for prevention programs.
3D reconstruction from multi-view VHR-satellite images in MicMac
NASA Astrophysics Data System (ADS)
Rupnik, Ewelina; Pierrot-Deseilligny, Marc; Delorme, Arthur
2018-05-01
This work addresses the generation of high quality digital surface models by fusing multiple depths maps calculated with the dense image matching method. The algorithm is adapted to very high resolution multi-view satellite images, and the main contributions of this work are in the multi-view fusion. The algorithm is insensitive to outliers, takes into account the matching quality indicators, handles non-correlated zones (e.g. occlusions), and is solved with a multi-directional dynamic programming approach. No geometric constraints (e.g. surface planarity) or auxiliary data in form of ground control points are required for its operation. Prior to the fusion procedures, the RPC geolocation parameters of all images are improved in a bundle block adjustment routine. The performance of the algorithm is evaluated on two VHR (Very High Resolution)-satellite image datasets (Pléiades, WorldView-3) revealing its good performance in reconstructing non-textured areas, repetitive patterns, and surface discontinuities.
Rhee, Wootack; Ha, Seongil; Lim, Jae Hyeon; Jang, Il Tae
2014-01-01
Objective Using alendronate after spinal fusion is a controversial issue due to the inhibition of osteoclast mediated bone resorption. In addition, there are an increasing number of reports that the endplate degeneration influences the lumbar spinal fusion. The object of this retrospective controlled study was to evaluate how the endplate degeneration and the bisphosphonate medication influence the spinal fusion through radiographic evaluation. Methods In this study, 44 patients who underwent single-level posterior lumbar interbody fusion (PLIF) using cage were examined from April 2007 to March 2009. All patients had been diagnosed as osteoporosis and would be recommended for alendronate medication. Endplate degeneration is categorized by the Modic changes. The solid fusion is defined if there was bridging bone between the vertebral bodies, either within or external to the cage on the plain X-ray and if there is less than 5° of angular difference in dynamic X-ray. Results In alendronate group, fusion was achieved in 66.7% compared to 73.9% in control group (no medication). Alendronate did not influence the fusion rate of PLIF. However, there was the statistical difference of fusion rate between the endplate degeneration group and the group without endplate degeneration. A total of 52.4% of fusion rate was seen in the endplate degeneration group compared to 91.3% in the group without endplate degeneration. The endplate degeneration suppresses the fusion process of PLIF. Conclusion Alendronate does not influence the fusion process in osteoporotic patients. The endplate degeneration decreases the fusion rate. PMID:25620981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeper, Ramon J.
This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.
NASA Astrophysics Data System (ADS)
Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M.; Samulyak, R.; Stoltz, P.; the PLX-α Team
2015-11-01
Under ARPA-E's ALPHA program, the Plasma Liner Experiment-ALPHA (PLX- α) project aims to demonstrate the viability and scalability of spherically imploding plasma liners as a standoff, high-implosion-velocity magneto-inertial-fusion (MIF) driver that is potentially compatible with both low- and high- β targets. The project has three major objectives: (a) advancing existing contoured-gap coaxial-gun technology to achieve higher operational reliability/precision and better control/reproducibility of plasma-jet properties and profiles; (2) conducting ~ π / 2 -solid-angle plasma-liner experiments with 9 guns to demonstrate (along with extrapolations from modeling) that the jet-merging process leads to Mach-number degradation and liner uniformity that are acceptable for MIF; and (3) conducting 4 π experiments with up to 60 guns to demonstrate the formation of an imploding spherical plasma liner for the first time, and to provide empirical ram-pressure and uniformity scaling data for benchmarking our codes and informing us whether the scalings justify further development beyond ALPHA. This talk will provide an overview of the PLX- α project as well as key research results to date. Supported by ARPA-E's ALPHA program; original PLX construction supported by DOE Fusion Energy Sciences.
Effect of TheraCyte-encapsulated parathyroid cells on lumbar fusion in a rat model.
Chen, Sung-Hsiung; Huang, Shun-Chen; Lui, Chun-Chung; Lin, Tzu-Ping; Chou, Fong-Fu; Ko, Jih-Yang
2012-09-01
Implantation of TheraCyte 4 × 10(6) live parathyroid cells can increase the bone marrow density of the spine of ovariectomized rats. There has been no published study examining the effect of such implantation on spinal fusion outcomes. The purpose of this study was to examine the effect of TheraCyte-encapsulated parathyroid cells on posterolateral lumbar fusions in a rat model. Forty Sprague-Dawley rats underwent single-level, intertransverse process spinal fusions using iliac crest autograft. The rats were randomly assigned to two groups: Group 1 rats received sham operations on their necks (control; N = 20); Group 2 rats were implanted with TheraCyte-encapsulated 4 × 10(6) live parathyroid cells into the subcutis of their necks (TheraCyte; N = 20). Six weeks after surgery the rats were killed. Fusion was assessed by inspection, manual palpation, radiography, and histology. Blood was drawn to measure the serum levels of calcium, phosphorus, and intact parathyroid hormone (iPTH). Based on manual palpation, the control group had a fusion rate of 33 % (6/18) and the TheraCyte group had a fusion rate of 72 % (13/18) (P = 0.044). Histology confirmed the manual palpation results. Serum iPTH levels were significantly higher in the TheraCyte group compared with the control group (P < 0.05); neither serum calcium nor phosphorus levels were significantly different between the two groups. This pilot animal study revealed that there were more fusions in rats that received TheraCyte-encapsulated 4 × 10(6) live parathyroid cells than in control rats without significant change in serum calcium or phosphorus concentrations. As with any animal study, the results may not extrapolate to a higher species. Further studies are needed to determine if these effects are clinically significant.
Hurlbert, R John; Alexander, David; Bailey, Stewart; Mahood, James; Abraham, Ed; McBroom, Robert; Jodoin, Alain; Fisher, Charles
2013-12-01
Multicenter randomized controlled trial. To evaluate the effect of recombinant human bone morphogenetic protein (rhBMP-2) on radiographical fusion rate and clinical outcome for surgical lumbar arthrodesis compared with iliac crest autograft. In many types of spinal surgery, radiographical fusion is a primary outcome equally important to clinical improvement, ensuring long-term stability and axial support. Biologic induction of bone growth has become a commonly used adjunct in obtaining this objective. We undertook this study to objectify the efficacy of rhBMP-2 compared with traditional iliac crest autograft in instrumented posterolateral lumbar fusion. Patients undergoing 1- or 2-level instrumented posterolateral lumbar fusion were randomized to receive either autograft or rhBMP-2 for their fusion construct. Clinical and radiographical outcome measures were followed for 2 to 4 years postoperatively. One hundred ninety seven patients were successfully randomized among the 8 participating institutions. Adverse events attributable to the study drug were not significantly different compared with controls. However, the control group experienced significantly more graft-site complications as might be expected. 36-Item Short Form Health Survey, Oswestry Disability Index, and leg/back pain scores were comparable between the 2 groups. After 4 years of follow-up, radiographical fusion rates remained significantly higher in patients treated with rhBMP-2 (94%) than those who received autograft (69%) (P = 0.007). The use of rhBMP-2 for instrumented posterolateral lumbar surgery significantly improves the chances of radiographical fusion compared with the use of autograft. However, there is no associated improvement in clinical outcome within a 4-year follow-up period. These results suggest that use of rhBMP-2 should be considered in cases where lumbar arthrodesis is of primary concern.
The impact of preoperative epidural injections on postoperative infection in lumbar fusion surgery.
Singla, Anuj; Yang, Scott; Werner, Brian C; Cancienne, Jourdan M; Nourbakhsh, Ali; Shimer, Adam L; Hassanzadeh, Hamid; Shen, Francis H
2017-05-01
OBJECTIVE Lumbar epidural steroid injections (LESIs) are performed for both diagnostic and therapeutic purposes for a variety of indications, including low-back pain, the leading cause of disability and expense due to work-related conditions in the US. The steroid agent used in epidural injections is reported to relieve nerve root inflammation, local ischemia, and resultant pain, but the injection may also have an adverse impact on spinal surgery performed thereafter. In particular, the possibility that preoperative epidural injections may increase the risk of surgical site infection after lumbar spinal fusion has been reported but has not been studied in detail. The goal of the present study was to use a large national insurance database to analyze the association of preoperative LESIs with surgical site infection after lumbar spinal fusion. METHODS A nationwide insurance database of patient records was used for this retrospective analysis. Current Procedural Terminology codes were used to query the database for patients who had undergone LESI and 1- or 2-level lumbar posterior spinal fusion procedures. The rate of postoperative infection after 1- or 2-level posterior spinal fusion was analyzed. These study patients were then divided into 3 separate cohorts: 1) lumbar spinal fusion performed within 1 month after LESI, 2) fusion performed between 1 and 3 months after LESI, and 3) fusion performed between 3 and 6 months after LESI. The study patients were compared with a control cohort of patients who underwent lumbar fusion without previous LESI. RESULTS The overall 3-month infection rate after lumbar spinal fusion procedure was 1.6% (1411 of 88,540 patients). The infection risk increased in patients who received LESI within 1 month (OR 2.6, p < 0.0001) or 1-3 months (OR 1.4, p = 0.0002) prior to surgery compared with controls. The infection risk was not significantly different from controls in patients who underwent lumbar fusion more than 3 months after LESI. CONCLUSIONS Lumbar spinal fusion performed within 3 months after LESI may be associated with an increased rate of postoperative infection. This association was not found when lumbar fusion was performed more than 3 months after LESI.
Neck Pain, Preoperative Opioids, and Functionality After Cervical Fusion.
Faour, Mhamad; Anderson, Joshua T; Haas, Arnold R; Percy, Rick; Woods, Stephen T; Ahn, Uri M; Ahn, Nicholas U
2017-01-01
The use of opioids among patients with workers' compensation claims is associated with tremendous costs, especially for patients who undergo spinal surgery. This study compared return-to-work rates after single-level cervical fusion for degenerative disk disease between patients who received opioids before surgery and patients who underwent fusion with no previous opioid use. All study subjects qualified for workers' compensation benefits for injuries sustained at work between 1993 and 2011. The study population included 281 subjects who underwent single-level cervical fusion for degenerative disk disease with International Classification of Diseases, Ninth Revision, and Current Procedural Terminology code algorithms. The opioid group included 77 subjects who received opioids preoperatively. The control group included 204 subjects who had surgery with no previous opioid use. The primary outcome was meeting return-to-work criteria within 3 years of follow-up after fusion. Secondary outcome measures after surgery, surgical details, and presurgical characteristics for each cohort also were collected. In 36.4% of the opioid group, return-to-work criteria were met compared with 56.4% of the control group. Patients who took opioids were less likely to meet return-to-work criteria compared with the control group (odds ratio, 0.44; 95% confidence interval, 0.26-0.76; P=.0028). Return-to-work rates within the first year after fusion were 24.7% for the opioid group and 45.6% for the control group (P=.0014). Patients who used opioids were absent from work for 255 more days compared with the control group (P=.0001). The use of opioids for management of diskogenic neck pain, with the possibility of surgical intervention, is a negative predictor of successful return to work after fusion in a workers' compensation population. [Orthopedics. 2017; 40(1):25-32.]. Copyright 2016, SLACK Incorporated.
Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klueh, R.L.
1997-04-01
An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction withmore » the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.« less
Escobar-Henriques, Mafalda; Langer, Thomas
2006-01-01
A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.
Amiri Pichakolaei, Ahmad; Fahimi, Samad; Bakhshipour Roudsari, Abbas; Fakhari, Ali; Akbari, Ebrahim; Rahimkhanli, Masoumeh
2014-01-01
Objective: The present study aimed to investigate the metacognitive model of obsessive-compulsive disorder (OCD), through a comparative study of thought fusion beliefs and thought control strategies between patients with OCD, depression, and normal people. Methods: This is a causal-comparative study. About 20 patients were selected with OCD, and 20 patients with major depression disorder (MDD), and 20 normal individuals. Participants completed a thought fusion instrument and thought control questionnaire. Data were analyzed using multivariate analysis of variance. Results: Results indicated that patients with OCD obtained higher scores than two other groups. Also, there was a statistical significant difference between the three groups in thought control strategies and punishment, worry, and distraction subscales. Conclusion: Therefore, the results of the present study supported the metacognitive model of obsessive and showed thought fusion beliefs and thought control strategies can be effective in onset and continuity of OCD. PMID:25780373
Control of plasma stored energy for burn control using DIII-D in-vessel coils
Hawryluk, Richard J.; Eidietis, Nicholas W.; Grierson, Brian A.; ...
2015-04-09
A new approach has been experimentally demonstrated to control the stored energy by applying a non-axisymmetric magnetic field using the DIII-D in-vessel coils to modify the energy confinement time. In future burning plasma experiments as well as magnetic fusion energy power plants, various concepts have been proposed to control the fusion power. The fusion power in a power plant operating at high gain can be related to the plasma stored energy and hence, is a strong function of the energy confinement time. Thus, an actuator that modifies the confinement time can be used to adjust the fusion power. In relativelymore » low collisionality DIII-D discharges, the application of nonaxisymmetric magnetic fields results in a decrease in confinement time and density pumpout. Furthermore, gas puffing was used to compensate the density pumpout in the pedestal while control of the stored energy was demonstrated by the application of non-axisymmetric fields.« less
Fusion materials semiannual progress report for the period ending December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.« less
Stereopsis and fusion in anisometropia according to the presence of amblyopia.
Jeon, Hyun Sun; Choi, Dong Gyu
2017-12-01
To evaluate the level of stereopsis and fusion in patients with anisometropia according to the presence of amblyopia. We included 107 children with anisometropia, divided into groups with non-amblyopic anisometropia (NA, n = 72) and amblyopic anisometropia (AA, n = 35). Normal subjects without anisometropia were enrolled in the control group (n = 73). Main outcome measures were the level of stereopsis and sensory fusion as evaluated by Titmus stereotest and Worth 4-dot test, respectively, using anisometropic glasses. The degree of anisometropia in the NA, AA, and control groups was 2.54 diopters (D), 4.29 D, and 0.30 D, respectively (P = 0.014). Stereopsis (arcsec) was significantly worse in the AA group than the NA and control groups (641.71, 76.25, 54.52, respectively, P < 0.001), while no significant difference was found between the NA and control groups. The rate of fusion was significantly lower in the AA than the NA group (14.3% vs. 65.3%, P < 0.001), and was significantly lower in the NA than the control group (65.3% vs. 80.6%, P = 0.001). The levels of stereopsis and sensory fusion with anisometropic glasses were significantly worse in the AA than in the NA group. The level of stereopsis in the NA group, however, did not differ significantly from that in the isometropic control, while the rate of fusion was significantly lower. Early prescription of anisometropic glasses is needed to improve visual acuity and binocularity in children with possible amblyopic anisometropia.
Djan, Igor; Petrović, Borislava; Erak, Marko; Nikolić, Ivan; Lucić, Silvija
2013-08-01
Development of imaging techniques, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), made great impact on radiotherapy treatment planning by improving the localization of target volumes. Improved localization allows better local control of tumor volumes, but also minimizes geographical misses. Mutual information is obtained by registration and fusion of images achieved manually or automatically. The aim of this study was to validate the CT-MRI image fusion method and compare delineation obtained by CT versus CT-MRI image fusion. The image fusion software (XIO CMS 4.50.0) was applied to delineate 16 patients. The patients were scanned on CT and MRI in the treatment position within an immobilization device before the initial treatment. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated on CT alone and on CT+MRI images consecutively and image fusion was obtained. Image fusion showed that CTV delineated on a CT image study set is mainly inadequate for treatment planning, in comparison with CTV delineated on CT-MRI fused image study set. Fusion of different modalities enables the most accurate target volume delineation. This study shows that registration and image fusion allows precise target localization in terms of GTV and CTV and local disease control.
Development of DEMO-FNS tokamak for fusion and hybrid technologies
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.
2015-07-01
The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.
Fleege, C; Rickert, M; Werner, I; Rauschmann, M; Arabmotlagh, M
2016-09-01
Determination of the extent of spinal fusion for lumbar degenerative diseases is often difficult due to minor pathologies in the adjacent segment. Although surgical intervention is required, fusion seems to be an overtreatment. Decompression alone may be not enough as this segment is affected by multiple factors such as destabilization, low grade degeneration and an unfavorable biomechanical transition next to a rigid construct. An alternative surgical treatment is a hybrid construct, consisting of fusion and implantation of an interlaminar stabilization device at the adjacent level. The aim of this study was to compare long-term clinical outcome after lumbar fusion with a hybrid construct including an interlaminar stabilization device as "topping-off". A retrospective analysis of 25 lumbar spinal fusions from 2003 to 2010 with additional interlaminar stabilization device was performed. Through a matched case controlled procedure 25 congruent patients who received lumbar spinal fusion in one or two levels were included as a control group. At an average follow-up of 43 months pre- and postoperative pain, ODI, SF-36 as well as clinical parameters, such as leg and back pain, walking distance and patient satisfaction were recorded. Pain relief, ODI improvement and patient satisfaction was significantly higher in the hybrid group compared to the control group. SF-36 scores improved in both groups but was higher in the hybrid group, although without significance. Evaluation of walking distance showed no significant differences. Many outcome parameters present significantly better long-term results in the hybrid group compared to sole spinal fusion. Therefore, in cases with a clear indication for lumbar spinal fusion with the need for decompression at the adjacent level due to spinal stenosis or moderate spondylarthrosis, support of this segment with an interlaminar stabilization device demonstrates a reasonable treatment option with good clinical outcome. Also, the length of the fusion construct can be reduced allowing for a softer and more harmonic transition.
The transition zone above a lumbosacral fusion.
Hambly, M F; Wiltse, L L; Raghavan, N; Schneiderman, G; Koenig, C
1998-08-15
The clinical and radiographic effect of a lumbar or lumbosacral fusion was studied in 42 patients who had undergone a posterolateral fusion with an average follow-up of 22.6 years. To examine the long-term effects of posterolateral lumbar or lumbosacral fusion on the cephalad two motion segments (transition zone). It is commonly held that accelerated degeneration occurs in the motion segments adjacent to a fusion. Most studies are of short-term, anecdotal, uncontrolled reports that pay particular attention only to the first motion segment immediately cephalad to the fusion. Forty-two patients who had previously undergone a posterolateral lumbar or lumbosacral fusion underwent radiographic and clinical evaluation. Rate of fusion, range of motion, osteophytes, degenerative spondylolisthesis, retrolisthesis, facet arthrosis, disc ossification, dynamic instability, and disc space height were all studied and statistically compared with an age- and gender-matched control group. The patient's self-reported clinical outcome was also recorded. Degenerative changes occurred at the second level above the fused levels with a frequency equal to those occurring in the first level. There was no statistical difference between the study group and the cohort group in the presence of radiographic changes within the transition zone. In those patients undergoing fusion for degenerative processes, 75% reported a good to excellent outcome, whereas 84% of those undergoing fusion for spondylolysis or spondylolisthesis reported a good to excellent outcome. Radiographic changes occur within the transition zone cephalad to a lumbar or lumbosacral fusion. However, these changes are also seen in control subjects who have had no surgery.
Heating Efficiency of Beat Wave Excitation in a Density Gradient,
1988-02-01
and Technology, January 1988. PPG-1124 Research Highlights in The Pisces Program," R.V. Conn, et al, January 1988. PPG-1125 "Magnetic Fusion ... Energy , vol. 5. Technical Assessement of Critical Issues in the Steady State Operation of Fusion Confinement Devices," D. M. Goebel, Assessment Chairman
NASA Astrophysics Data System (ADS)
Stork, D.; Heidinger, R.; Muroga, T.; Zinkle, S. J.; Moeslang, A.; Porton, M.; Boutard, J.-L.; Gonzalez, S.; Ibarra, A.
2017-09-01
Materials damage by 14.1MeV neutrons from deuterium-tritium (D-T) fusion reactions can only be characterised definitively by subjecting a relevant configuration of test materials to high-intensity ‘fusion-neutron spectrum sources’, i.e. those simulating closely D-T fusion-neutron spectra. This provides major challenges to programmes to design and construct a demonstration fusion reactor prior to having a large-scale, high-intensity source of such neutrons. In this paper, we discuss the different aspects related to these ‘relevant configuration’ tests, including: • generic issues in materials qualification/validation, comparing safety requirements against those of investment protection; • lessons learned from the fission programme, enabling a reduced fusion materials testing programme; • the use and limitations of presently available possible irradiation sources to optimise a fusion neutron testing program including fission-neutron irradiation of isotopically and chemically tailored steels, ion damage by high-energy helium ions and self-ion beams, or irradiation studies with neutron sources of non-fusion spectra; and • the different potential sources of simulated fusion neutron spectra and the choice using stripping reactions from deuterium-beam ions incident on light-element targets.
Export Control Requirements for Tritium Processing Design and R&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollis, William Kirk; Maynard, Sarah-Jane Wadsworth
This document will address requirements of export control associated with tritium plant design and processes. Los Alamos National Laboratory has been working in the area of tritium plant system design and research and development (R&D) since the early 1970’s at the Tritium Systems Test Assembly (TSTA). This work has continued to the current date with projects associated with the ITER project and other Office of Science Fusion Energy Science (OS-FES) funded programs. ITER is currently the highest funding area for the DOE OS-FES. Although export control issues have been integrated into these projects in the past a general guidance documentmore » has not been available for reference in this area. To address concerns with currently funded tritium plant programs and assist future projects for FES, this document will identify the key reference documents and specific sections within related to tritium research. Guidance as to the application of these sections will be discussed with specific detail to publications and work with foreign nationals.« less
Export Control Requirements for Tritium Processing Design and R&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollis, William Kirk; Maynard, Sarah-Jane Wadsworth
2015-10-30
This document will address requirements of export control associated with tritium plant design and processes. Los Alamos National Laboratory has been working in the area of tritium plant system design and research and development (R&D) since the early 1970’s at the Tritium Systems Test Assembly (TSTA). This work has continued to the current date with projects associated with the ITER project and other Office of Science Fusion Energy Science (OS-FES) funded programs. ITER is currently the highest funding area for the DOE OS-FES. Although export control issues have been integrated into these projects in the past a general guidance documentmore » has not been available for reference in this area. To address concerns with currently funded tritium plant programs and assist future projects for FES, this document will identify the key reference documents and specific sections within related to tritium research. Guidance as to the application of these sections will be discussed with specific detail to publications and work with foreign nationals.« less
Tortolani, P Justin; Park, Andrew E; Louis-Ugbo, John; Attallah-Wasef, Emad S; Kraiwattanapong, Chaiwat; Heller, John G; Boden, Scott D; Yoon, S Tim
2004-01-01
Malignant spinal lesions may require surgical excision and segmental stabilization. The decision to perform a concomitant fusion procedure is influenced in part by the need for adjunctive chemotherapy as well as the patient's anticipated survival. Although some evidence exists that suggests that chemotherapy may inhibit bony healing, no information exists regarding the effect of chemotherapy on spinal fusion healing. To determine the effect of a frequently used chemotherapeutic agent, doxorubicin, on posterolateral spinal fusion rates. Prospective animal model of posterolateral lumbar fusion. Determination of spinal fusion by manual palpation of excised spines. Plain radiographic evaluation of denuded spines to evaluate intertransverse bone formation. Thirty-two New Zealand White rabbits underwent posterior intertransverse process fusion at L5-L6 with the use of iliac autograft bone. Rabbits randomly received either intravenous doxorubicin (2.5 mg/kg) by means of the central vein of the ear at the time of surgery (16 animals) or no treatment (16 animals; the control group). The animals were euthanized at 5 weeks, and the lumbar spines were excised. Spine fusion was assessed by manually palpating (by observers blinded to the treatment group) at the level of arthrodesis, and at the adjacent levels proximal and distal. This provided similar information to surgical fusion assessment by palpation in humans. Fusion was defined as the absence of palpable motion. Posteroanterior radiographs of the excised spines were graded in a blinded fashion using a five-point scoring system (0 to 4) devised to describe the amount of bone observed between the L5-L6 transverse processes. Power analysis conducted before initiation of the study indicated that an allocation of 16 animals to each group would permit detection of at least a 20% difference in fusion rates with statistical significance at p=.05. Eleven of the 16 spines (69%) in the control group and 6 of the 16 spines (38%) in the doxorubicin group fused. This difference was statistically significant (=.038). There was no significant correlation (p>.05) between the radiographic grade of bone formation (0 to 4) and fusion as determined by palpation. There were four wound infections in the control group and four in the doxorubicin group. However, solid fusions were palpated in three of these four spines in both the control and treatment groups. No significant differences in wound complications were noted with doxorubicin administration. A single dose of doxorubicin administered intravenously at the time of surgery appears to play a significant inhibitory role in the process of spinal fusion. If similar effects occur in humans, these data suggest that doxorubicin may be harmful to bone healing in a spine fusion if given during the perioperative period. Further investigation will be necessary to determine the effect of time to aid at determining whether doxorubicin administered several weeks pre- or postoperatively results in improved fusion rate, and whether bone morphogenetic proteins can overcome these inhibitory effects.
Mass Producing Targets for Nuclear Fusion
NASA Technical Reports Server (NTRS)
Wang, T. G.; Elleman, D. D.; Kendall, J. M.
1983-01-01
Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.
Wolfe, Lisa L.; Shenk, Tanya M.; Powell, Bradford; Rocke, Tonie E.
2011-01-01
As part of an ongoing restoration program in Colorado, USA, we evaluated adverse reactions and seroconversion in captive Canada lynx (Lynx canadensis) after vaccination with a recombinant F1-V fusion protein vaccine against Yersinia pestis, the bacterium that causes plague. Ten adult female lynx received the F1-V vaccine; 10 source- and age-matched lynx remained unvaccinated as controls. All of the vaccinated and control lynx remained apparently healthy throughout the confinement period. We observed no evidence of injection site or systemic reactions to the F1-V vaccine. Among vaccinated lynx, differences in log10 reciprocal antibody titers measured in sera collected before and after vaccination (two doses) ranged from 1.2 to 5.2 for anti-F1 antibodies and from 0.6 to 5.2 for anti-V antibodies; titers in unvaccinated lynx did not change appreciably over the course of confinement prior to release, and thus differences in anti-F1 (P=0.003) and anti-V (P=0.0005) titers were greater among vaccinated lynx than among controls. Although our findings suggest that the F1-V fusion protein vaccine evaluated here is likely to stimulate antibody responses that may help protect Canada lynx from plague, we observed no apparent differences in survival between vaccinated and unvaccinated subject animals. Retrospectively, 22 of 50 (44%; 95% confidence interval 29–59%) unvaccinated lynx captured or recaptured in Colorado during 2000–08 had passive hemagglutination antibody titers >1:16, consistent with exposure to Y. pestis; paired pre- and postrelease titers available for eight of these animals showed titer increases similar in magnitude to those seen in response to vaccination, suggesting at least some lynx may naturally acquire immunity to plague in Colorado habitats.
A novel framework for command and control of networked sensor systems
NASA Astrophysics Data System (ADS)
Chen, Genshe; Tian, Zhi; Shen, Dan; Blasch, Erik; Pham, Khanh
2007-04-01
In this paper, we have proposed a highly innovative advanced command and control framework for sensor networks used for future Integrated Fire Control (IFC). The primary goal is to enable and enhance target detection, validation, and mitigation for future military operations by graphical game theory and advanced knowledge information fusion infrastructures. The problem is approached by representing distributed sensor and weapon systems as generic warfare resources which must be optimized in order to achieve the operational benefits afforded by enabling a system of systems. This paper addresses the importance of achieving a Network Centric Warfare (NCW) foundation of information superiority-shared, accurate, and timely situational awareness upon which advanced automated management aids for IFC can be built. The approach uses the Data Fusion Information Group (DFIG) Fusion hierarchy of Level 0 through Level 4 to fuse the input data into assessments for the enemy target system threats in a battlespace to which military force is being applied. Compact graph models are employed across all levels of the fusion hierarchy to accomplish integrative data fusion and information flow control, as well as cross-layer sensor management. The functional block at each fusion level will have a set of innovative algorithms that not only exploit the corresponding graph model in a computationally efficient manner, but also permit combined functional experiments across levels by virtue of the unifying graphical model approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia L. Finley
The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practicalmore » reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring continue d under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the low levels of volatile organic compounds in an area adjacent to PPPL. In 2001, PPPL was in compliance with its permit limits for surface and sanitary discharges and had no reportable releases. Additionally, as part of DOE's program for the purchase of recycled content and other environmentally preferred products, PPPL has ranked in the excellent category of 80 to 90% of the goal.« less
Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk
2017-01-04
Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
ERIC Educational Resources Information Center
Glasstone, Samuel
This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…
Joint interpretation of geophysical data using Image Fusion techniques
NASA Astrophysics Data System (ADS)
Karamitrou, A.; Tsokas, G.; Petrou, M.
2013-12-01
Joint interpretation of geophysical data produced from different methods is a challenging area of research in a wide range of applications. In this work we apply several image fusion approaches to combine maps of electrical resistivity, electromagnetic conductivity, vertical gradient of the magnetic field, magnetic susceptibility, and ground penetrating radar reflections, in order to detect archaeological relics. We utilize data gathered from Arkansas University, with the support of the U.S. Department of Defense, through the Strategic Environmental Research and Development Program (SERDP-CS1263). The area of investigation is the Army City, situated in Riley Country of Kansas, USA. The depth of the relics is estimated about 30 cm from the surface, yet the surface indications of its existence are limited. We initially register the images from the different methods to correct from random offsets due to the use of hand-held devices during the measurement procedure. Next, we apply four different image fusion approaches to create combined images, using fusion with mean values, wavelet decomposition, curvelet transform, and curvelet transform enhancing the images along specific angles. We create seven combinations of pairs between the available geophysical datasets. The combinations are such that for every pair at least one high-resolution method (resistivity or magnetic gradiometry) is included. Our results indicate that in almost every case the method of mean values produces satisfactory fused images that corporate the majority of the features of the initial images. However, the contrast of the final image is reduced, and in some cases the averaging process nearly eliminated features that are fade in the original images. Wavelet based fusion outputs also good results, providing additional control in selecting the feature wavelength. Curvelet based fusion is proved the most effective method in most of the cases. The ability of curvelet domain to unfold the image in terms of space, wavenumber, and orientation, provides important advantages compared with the rest of the methods by allowing the incorporation of a-priori information about the orientation of the potential targets.
Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo.
Myer, A; Wagner, D S; Vivian, J L; Olson, E N; Klein, W H
1997-05-15
Skeletal muscle is formed via a complex series of events during embryogenesis. These events include commitment of mesodermal precursor cells, cell migration, cell-cell recognition, fusion of myoblasts, activation of structural genes, and maturation. In mice lacking the bHLH transcription factor myogenin, myoblasts are specified and positioned correctly, but few fuse to form multinucleated fibers. This indicates that myogenin is critical for the fusion process and subsequent differentiation events of myogenesis. To further define the nature of the myogenic defects in myogenin-null mice, we investigated whether myogenin-null myoblasts are capable of fusing with wild-type myoblasts in vivo using chimeric mice containing mixtures of myogenin-null and wild-type cells. Chimeric embryos demonstrated that myogenin-null myoblasts readily fused in the presence of wild-type myoblasts. However, chimeric myofibers did not express wild-type levels of muscle-specific gene products, and myofibers with a high percentage of mutant nuclei appeared abnormal, suggesting that the wild-type nuclei could not fully rescue mutant nuclei in the myofibers. These data demonstrate that myoblast fusion can be uncoupled from complete myogenic differentiation and that myogenin regulates a specific subset of genes with diverse function. Thus, myogenin appears to control not only transcription of muscle structural genes but also the extracellular environment in which myoblast fusion takes place. We propose that myogenin regulates the expression of one or more extracellular or cell surface proteins required to initiate the muscle differentiation program.
CNVs leading to fusion transcripts in individuals with autism spectrum disorder
Holt, Richard; Sykes, Nuala H; Conceição, Inês C; Cazier, Jean-Baptiste; Anney, Richard JL; Oliveira, Guiomar; Gallagher, Louise; Vicente, Astrid; Monaco, Anthony P; Pagnamenta, Alistair T
2012-01-01
There is strong evidence that rare copy number variants (CNVs) have a role in susceptibility to autism spectrum disorders (ASDs). Much research has focused on how CNVs mediate a phenotypic effect by altering gene expression levels. We investigated an alternative mechanism whereby CNVs combine the 5′ and 3′ ends of two genes, creating a ‘fusion gene'. Any resulting mRNA with an open reading frame could potentially alter the phenotype via a gain-of-function mechanism. We examined 2382 and 3096 rare CNVs from 996 individuals with ASD and 1287 controls, respectively, for potential to generate fusion transcripts. There was no increased burden in individuals with ASD; 122/996 cases harbored at least one rare CNV of this type, compared with 179/1287 controls (P=0.89). There was also no difference in the overall frequency distribution between cases and controls. We examined specific examples of such CNVs nominated by case–control analysis and a candidate approach. Accordingly, a duplication involving REEP1-POLR1A (found in 3/996 cases and 0/1287 controls) and a single occurrence CNV involving KIAA0319-TDP2 were tested. However, no fusion transcripts were detected by RT-PCR. Analysis of additional samples based on cell line availability resulted in validation of a MAPKAPK5-ACAD10 fusion transcript in two probands. However, this variant was present in controls at a similar rate and is unlikely to influence ASD susceptibility. In summary, although we find no evidence that fusion-gene generating CNVs lead to ASD susceptibility, discovery of a MAPKAPK5-ACAD10 transcript with an estimated frequency of ∼1/200 suggests that gain-of-function mechanisms should be considered in future CNVs studies. PMID:22549408
Macrophage Fusion Is Controlled by the Cytoplasmic Protein Tyrosine Phosphatase PTP-PEST/PTPN12
Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean
2013-01-01
Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading. PMID:23589331
Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.
Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André
2013-06-01
Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.
Critical Fusion--Technology and Equity in Secondary Education
ERIC Educational Resources Information Center
Magolda, Peter
2006-01-01
This manuscript reports on the first year of a formative, external program evaluation of the Critical Fusion Initiative (CFI), which involved a higher education institution, a public high school, a corporation, and two nonprofit organizations. The initiative fused technology and education to address the issue of equity by assisting 16 high school…
PBFA II, a 100 TW Pulsed Power Driver for the Inertial Confinement Fusion Program
1985-06-01
providing a 30 MV, 15 ns output pulse,which accelerates lithium ions. The ions will focus onto a pellet containing deuterium-tritium, producing fusion ... energy . Several research areas will be reviewed: low jitter, highly reliable 370 kJ Marx generators; highly synchronized gas switching at 5 MV; efficient
Ar-Xe Laser: The Path to a Robust, All-Electric Shipboard Directed Energy Weapon
2008-12-18
Krypton Fluoride (KrF) laser for fusion energy and is sponsored by the Department of Energy’s (DOE) High Average Power Laser (HAPL) program. DOE...Electronics Conference, Arlington VA, October 2007. 9. “Electron Beam Pumped Lasers for Fusion Energy and Directed Energy Applications”, presented by
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Taylor, P. L.; Lee, R. L.
2000-10-01
The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.
NASA Astrophysics Data System (ADS)
Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kazakov, Vadim S.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.
2017-04-01
This work presents method for performing precision macro-structure defects "tapers" and "up-tapers" written in conventional silica telecommunication multimode optical fibers by commercially available field fusion splicer with modified software settings and following writing fiber Bragg gratings over or near them. We developed technique for macrodefect geometry parameters estimation via analysis of photo-image performed after defect writing and displayed on fusion splicer screen. Some research results of defect geometry dependence on fusion current and fusion time values re-set in splicer program are represented that provided ability to choose their "the best" combination. Also experimental statistical researches concerned with "taper" and "up-taper" diameter stability as well as their insertion loss values during their writing under fixed corrected splicer program parameters were performed. We developed technique for FBG writing over or near macro-structure defect. Some results of spectral response measurements produced for short-length samples of multimode optical fiber with fiber Bragg gratings written over and near macro-defects prepared by using proposed technique are presented.
Myomaker: A membrane activator of myoblast fusion and muscle formation
Millay, Douglas P.; O’Rourke, Jason R.; Sutherland, Lillian B.; Bezprozvannaya, Svetlana; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.
2013-01-01
Summary Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibers. However, the identity of myogenic proteins that directly govern this fusion process has remained elusive. Here, we discovered a muscle-specific membrane protein, named Myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is down-regulated thereafter. Over-expression of Myomaker in myoblasts dramatically enhances fusion and genetic disruption of Myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibers. Remarkably, forced expression of Myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacologic perturbation of the actin cytoskeleton abolishes the activity of Myomaker, consistent with prior studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein both necessary and sufficient for mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation. PMID:23868259
Inertial Confinement Fusion Annual Report 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correll, D
The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change providedmore » a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also provide a short summary of the quarterly activities within Nova laser operations, Beamlet laser operations, and National Ignition Facility laser design. LLNL's ICF Program falls within DOE's national ICF program, which includes the Nova and Beamlet (LLNL), OMEGA (University of Rochester Laboratory for Laser Energetics), Nike (Naval Research Laboratory), and Trident (Los Alamos National Laboratory) laser facilities. The Particle Beam Fusion Accelerator (Z) and Saturn pulsed-power facilities are at Sandia National Laboratories. General Atomics, Inc., develops and provides many of the targets for the above experimental facilities. Many of the ICF Annual Report articles are co-authored with our colleagues from these other ICF institutions.« less
2016 Annual Site Environmental Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Virginia
This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory’s (PPPL) operations. The results of the 2016 environmental surveillance and monitoring program for PPPL’s are presented and discussed. The report also summarizes environmental initiatives, assessments, and community involvement programs that were undertaken in 2016. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality – a clean,more » alternative energy source. 2016 marked the eighteenth year of National Spherical Torus Experiment and the first year of NSTX-U (Upgrade) operations. The NSTX-U Project is a collaboration among national laboratories, universities, and national and international research institutions and is a major element in the US Fusion Energy Sciences Program. Its design tests the physics principles of spherical torus (ST) plasmas, playing an important role in the development of smaller, more economical fusion reactors. NSTX-U began operations after its first upgrade that installed the new center stack magnets and second neutral beam, which would allow for hotter plasmas and greater field strength to maintain the fusion reaction longer. Due to operational issues with a poloidal coil, NSTX-U operated briefly in 2016. In 2016, PPPL’s radiological environmental monitoring program measured tritium in the air at the NSTX-U Stack and at on -site sampling stations. Using highly sensitive monitors, PPPL is capable of detecting small changes in the ambient levels of tritium. The operation of an in- stack monitor located on D-site is used to demonstrate compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations. Also included in PPPL’s radiological environmental monitoring program, are water monitoring – ground and surface, and waste waters. PPPL’s radiological monitoring program characterized the background levels of tritium in the environment; the data are presented in this report. Ground water monitoring continued under the New Jersey Department of Environmental Protection’s Site Remediation Program. PPPL monitored for non-radiological contaminants, mainly volatile organic compounds (components of chlorinated degreasing solvents). In 2016, PPPL was in compliance with its permit limits for surface and sanitary discharges, excepting two elevated chlorine-produced oxidant concentration. PPPL was honored with awards for its waste reduction and recycling program, and its “EPEAT” electronics purchasing for the third consecutive year.« less
NASA Astrophysics Data System (ADS)
Zhou, Xuanfeng; Chen, Zilun; Chen, Haihuan; Hou, Jing
2012-11-01
A method based on controlled air hole collapse for low-loss fusion splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) was demonstrated. A taper rig was used to control air hole collapse accurately to enlarge the MFDs of PCFs which was then spliced with SMFs using a fusion splicer. An optimum mode field match at the interface of PCF-SMF was achieved and a low-loss with 0.64 dB was obtained from 3.57 dB for a PCF with 4 μm MFD and a SMF with 10.4 μm MFD experimentally.
Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid
2018-02-01
In the present study, we evaluated induced immune responses following DNA vaccine containing cocktail or fusion of LeIF, LACK and TSA genes or each gene alone. Mice were injected with 100 µg of each plasmid containing the gene of insert, plasmid DNA alone as the first control group or phosphate buffer saline as the second control group. Then, cellular and humoral responses, lesion size were measured for all groups. All vaccinated mice induced Th1 immune responses against Leishmania characterized by higher IFN-γ and IgG2a levels compared with control groups (p < 0.05). In addition, IFN-γ levels increased in groups immunized with fusion and cocktail vaccines in comparison with LACK (p < 0.001) and LeIF (p < 0.01) groups after challenge. In addition, fusion and cocktail groups produced higher IgG2a values than groups vaccinated with a gene alone (p < 0.05). Lesion progression delayed for all immunized groups compared with control groups from 5th week post-infection (p < 0.05). Mean lesion size decreased in immunized mice with fusion DNA than three groups vaccinated with one gene alone (p < 0.05). While, lesion size decreased significantly in cocktail recipient group than LeIF recipient group (p < 0.05). There was no difference in lesion size between fusion and cocktail groups. Overall, immunized mice with cocktail and fusion vaccines showed stronger Th1 response by production of higher IFN-γ and IgG2a and showed smaller mean lesion size. Therefore, use of multiple antigens can improve induced immune responses by DNA vaccination.
Laser program annual report 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, C.D.; Rufer, M.L.; Murphy, P.W.
1984-06-01
In the 1983 Laser Program Annual Report we present the accomplishments and unclassified activities of the Laser Program at Lawrence Livermore National laboratory (LLNL) for the year 1983. It should be noted that the report, of necessity, is a summary, and more detailed expositions of the research can be found in the many publications and reports authored by staff members in the Laser Program. The purpose of this report is to present our work in a brief form, but with sufficient depth to provide an overview of the analytical and experimental aspects of the LLNL Inertial-Confinement Fusion (ICF) Program. Themore » format of this report is basically the same as that of previous years. Section 1 is an overview and highlights the important accomplishments and directions of the Program. Sections 2 through 7 provide the detailed information on the various major parts of the Program: Laser Systems and Operations, Target Design, Target Fabrication, Fusion Experiments, Laser Research and Development, and Energy Applications.« less
Control of a laser inertial confinement fusion-fission power plant
Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.
2015-10-27
A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, V.L.; Wiezcorek, M.A.
This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasmamore » Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.« less
DOE R&D Accomplishments Database
Teller, E.
1958-07-03
Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.
17th Workshop on MHD Stability Control: addressing the disruption challenge for ITER
NASA Astrophysics Data System (ADS)
Buttery, Richard
2013-08-01
This annual workshop on magnetohydrodynamic stability control was held on 5-7 November 2012 at Columbia University in the city of New York, in the aftermath of a violent hydrodynamic instability event termed 'Hurricane Sandy'. Despite these challenging circumstances, Columbia University managed an excellent meeting, enabling the full participation of the community. This Workshop has been held since 1996 to help in the development of understanding and control of magnetohydrodynamic (MHD) instabilities for future fusion reactors. It covers a wide range of stability topics—from disruptions, to tearing modes, error fields, edge-localized modes (ELMs), resistive wall modes (RWMs) and ideal MHD—spanning many device types (tokamaks, stellarators and reversed field pinches) to identify commonalities in the physics and a means of control. The theme for 2012 was 'addressing the disruption challenge for ITER', and thus the first day had a heavy focus on both the avoidance and mitigation of disruptions in ITER. Key elements included understanding how to apply 3D fields to maintain stability, as well as managing the disruption process itself through mitigating loads in the thermal quench and handling so called 'runaway electrons'. This culminated in a panel discussion on the disruption mitigation strategy for ITER, which noted that heat load asymmetries during the thermal quench appear to be an artifact of MHD processes, and that runaway electron generation may be inevitable, suggesting research should focus on control and dissipation of the runaway beam. The workshop was combined this year with the annual US-Japan MHD Workshop, with a special section looking more deeply at 'Fundamentals of 3D Perturbed Equilibrium Control', with interesting sessions on 3D equilibrium reconstruction, RWM physics, novel control concepts such as non-magnetic sensing, adaptive control, q < 2 tokamak operation, and the effects of flow. The final day turned to tearing mode interactions, exploring the state of the art in 3D modeling, and innovative means of control through application of electromagnetic torques, use of electron cyclotron current drive and even the idea of electrostatic current drive. This concluded with a second panel discussion on the disruption avoidance strategy in ITER, which commented on the important role played by energetic particles in stability, ideas of active stability sensing and ways to progress 3D reconstruction. In this special section of Plasma Physics and Controlled Fusion , we present several of the invited and contributed papers from the 2012 workshop, which have been subject to the normal refereeing procedures of the journal. These give a sense of the exceptional quality of the presentations at this workshop, which may be found at: http://fusion.gat.com/conferences/mhd12/. The Program Committee deeply appreciates the participation and support our community continues to show in this workshop, which provides an unparalleled opportunity for in-depth discussion of MHD issues. We would also like to thank our hosts Columbia University, and in particular Professor Gerald Navratil, for outstanding support and facilities in the face of Hurricane Sandy's adversity. The meeting thanked outgoing Program Chair, Dr Richard Buttery from General Atomics, and welcomed next year's Program Chair, Professor David Maurer from Auburn University. The next meeting will be held in Santa Fe 18-20 November 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Neumeyer; M. Ono; S.M. Kaye
1999-11-01
The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.
A pharmacological study of Arabidopsis cell fusion between the persistent synergid and endosperm.
Motomura, Kazuki; Kawashima, Tomokazu; Berger, Frédéric; Kinoshita, Tetsu; Higashiyama, Tetsuya; Maruyama, Daisuke
2018-01-29
Cell fusion is a pivotal process in fertilization and multinucleate cell formation. A plant cell is ubiquitously surrounded by a hard cell wall, and very few cell fusions have been observed except for gamete fusions. We recently reported that the fertilized central cell (the endosperm) absorbs the persistent synergid, a highly differentiated cell necessary for pollen tube attraction. The synergid-endosperm fusion (SE fusion) appears to eliminate the persistent synergid from fertilized ovule in Arabidopsis thaliana Here, we analyzed the effects of various inhibitors on SE fusion in an in vitro culture system. Different from other cell fusions, neither disruption of actin polymerization nor protein secretion impaired SE fusion. However, transcriptional and translational inhibitors decreased the SE fusion success rate and also inhibited endosperm division. Failures of SE fusion and endosperm nuclear proliferation were also induced by roscovitine, an inhibitor of cyclin-dependent kinases (CDK). These data indicate unique aspects of SE fusion such as independence of filamentous actin support and the importance of CDK-mediated mitotic control. © 2018. Published by The Company of Biologists Ltd.
Mechanical Engineering Department engineering research: Annual report, FY 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, R.M.; Essary, K.L.; Genin, M.S.
1986-12-01
This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstractsmore » were prepared for each of the 13 reports in this publication. (JDH)« less
The Genetic Programming of Industrial Microorganisms.
ERIC Educational Resources Information Center
Hopwood, David A.
1981-01-01
Traces the development of the field of industrial microbial genetics, describing a range of techniques for genetic programing. Includes a discussion of site-directed mutagenesis, protoplast fusion, and recombinant DNA manipulations. (CS)
Generating High-Brightness Ion Beams for Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Cuneo, M. E.
1997-11-01
The generation of high current density ion beams with applied-B ion diodes showed promise in the late-1980's as an efficient, rep-rate, focusable driver for inertial confinement fusion. These devices use several Tesla insulating magnetic fields to restrict electron motion across anode-cathode gaps of order 1-2 cm, while accelerating ions to generate ≈ 1 kA/cm^2, 5 - 15 MeV beams. These beams have been used to heat hohlraums to about 65 eV. However, meeting the ICF driver requirements for low-divergence and high-brightness lithium ion beams has been more technically challenging than initially thought. Experimental and theoretical work over the last 5 years shows that high-brightness beams meeting the requirements for inertial confinement fusion are possible. The production of these beams requires the simultaneous integration of at least four conditions: 1) rigorous vacuum cleaning techniques for control of undesired anode, cathode, ion source and limiter plasma formation from electrode contaminants to control impurity ions and impedance collapse; 2) carefully tailored insulating magnetic field geometry for uniform beam generation; 3) high magnetic fields (V_crit/V > 2) and other techniques to control the electron sheath and the onset of a high divergence electromagnetic instability that couples strongly to the ion beam; and 4) an active, pre-formed, uniform lithium plasma for low source divergence which is compatible with the above electron-sheath control techniques. These four conditions have never been simultaneously present in any lithium beam experiment, but simulations and experimental tests of individual conditions have been done. The integration of these conditions is a goal of the present ion beam generation program at Sandia. This talk will focus on the vacuum cleaning techniques for ion diodes and pulsed power devices in general, including experimental results obtained on the SABRE and PBFA-II accelerators over the last 3 years. The current status of integration of the other key physics and technologies required to demonstrate high-brightness ion beams will also be presented.
Siribumrungwong, Koopong; Cheewakidakarn, Julin; Tangtrakulwanich, Boonsin; Nimmaanrat, Sasikaan
2015-03-18
Poor postoperative pain control is frequently associated with complications and delayed discharge from a hospital. Preemptive analgesia is one of the methods suggested for reducing postoperative pain. Opioids are effective for pain control, but there known addictive properties make physicians cautious about using them. Parecoxib and ketorolac are potent non-opioid NSAIDs that are attractive alternative drugs to opioids to avoid opioid-related side effects. However, there are no good head-to-head comparisons between these two drugs in the aspect of preemptive analgesic effects in lumbar spinal fusion surgery. This study aimed to compare the efficacy in terms of postoperative pain control and safety of parecoxib with ketorolac as preemptive analgesia in posterior lumbar spinal fusion patients. A prospective, double-blinded randomized controlled trial was carried out in patients undergoing posterior lumbar spinal fusion, who were randomized into 3 groups (n = 32). Parecoxib, ketorolac or a placebo was given to each patient via injection around 30 minutes prior to incision. The efficacy of postoperative pain control was assessed by a verbal numerical rating score (0-10). And various postoperative things were monitored for analysis, such as total opioid consumption, complications, and estimated blood loss. Both the ketorolac and parecoxib groups showed significantly better early postoperative pain reduction at the postanesthesia care unit (PACU) than the control group (p < 0.05). There were no differences between the pain scores of ketorolac and parecoxib at any time points. Complications and bleeding were not significantly different between all three groups. Preemptive analgesia using both ketorolac and parecoxib showed a significantly better early postoperative pain control in the PACU than the control group in patients undergoing lumbar spinal fusion. ClinicalTrials.gov NCT01859585. Registered 15 May 2013.
Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles
Dhanyasi, Nagaraju; Segal, Dagan; Shimoni, Eyal; Shinder, Vera
2015-01-01
Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell–cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast–myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell–cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process. PMID:26459604
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-01-01
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-12-13
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.
Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment
NASA Technical Reports Server (NTRS)
Dent, William V., Jr.
1998-01-01
The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.
Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module
NASA Astrophysics Data System (ADS)
Deepak, SHARMA; Paritosh, CHAUDHURI
2018-04-01
The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.
Boddupally, Dayakar; Tamirisa, Srinath; Gundra, Sivakrishna Rao; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao
2018-05-31
To evolve rice varieties resistant to different groups of insect pests a fusion gene, comprising DI and DII domains of Bt Cry1Ac and carbohydrate binding domain of garlic lectin (ASAL), was constructed. Transgenic rice lines were generated and evaluated to assess the efficacy of Cry1Ac::ASAL fusion protein against three major pests, viz., yellow stem borer (YSB), leaf folder (LF) and brown planthopper (BPH). Molecular analyses of transgenic plants revealed stable integration and expression of the fusion gene. In planta insect bioassays on transgenics disclosed enhanced levels of resistance compared to the control plants. High insect mortality of YSB, LF and BPH was observed on transgenics compared to that of control plants. Furthermore, honeydew assays revealed significant decreases in the feeding ability of BPH on transgenic plants as compared to the controls. Ligand blot analysis, using BPH insects fed on cry1Ac::asal transgenic rice plants, revealed a modified receptor protein-binding pattern owing to its ability to bind to additional receptors in insects. The overall results authenticate that Cry1Ac::ASAL protein is endowed with remarkable entomotoxic effects against major lepidopteran and hemipteran insects. As such, the fusion gene appears promising and can be introduced into various other crops to control multiple insect pests.
Elhamdani, Abdeladim; Azizi, Fouad; Artalejo, Cristina R
2006-03-15
Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.
Distributed Information Fusion through Advanced Multi-Agent Control
2016-10-17
AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015
Distributed Information Fusion through Advanced Multi-Agent Control
2016-09-09
AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015
Current situation: New enthusiasm. [Nuclear fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
For decades the costly field of controlled nuclear fusion has been rocked by ups and downs, promise and problems. In spite of the many setbacks, scientists and DOE officials are determined to push ahead. [open quotes]We are very confident that by some time after the first decade of the next century, we will have a clear demonstration [of the technology] to give us unlimited energy....We are very excited about it,[close quotes] Energy Secretary Watkins said last spring in proposing a $360 million fusion energy budget for fiscal 1993. This article cites recent hey developments in terms of technical accomplishments, fundingmore » decisions, policy decisions, and efforts to collaborate internationally on controlled nuclear fusion. The International Thermonuclear Experimental Reactor is discussed also.« less
Current status and recent research achievements in SiC/SiC composites
NASA Astrophysics Data System (ADS)
Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.
2014-12-01
The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.
Evaluation of the Jonker-Volgenant-Castanon (JVC) assignment algorithm for track association
NASA Astrophysics Data System (ADS)
Malkoff, Donald B.
1997-07-01
The Jonker-Volgenant-Castanon (JVC) assignment algorithm was used by Lockheed Martin Advanced Technology Laboratories (ATL) for track association in the Rotorcraft Pilot's Associate (RPA) program. RPA is Army Aviation's largest science and technology program, involving an integrated hardware/software system approach for a next generation helicopter containing advanced sensor equipments and applying artificial intelligence `associate' technologies. ATL is responsible for the multisensor, multitarget, onboard/offboard track fusion. McDonnell Douglas Helicopter Systems is the prime contractor and Lockheed Martin Federal Systems is responsible for developing much of the cognitive decision aiding and controls-and-displays subsystems. RPA is scheduled for flight testing beginning in 1997. RPA is unique in requiring real-time tracking and fusion for large numbers of highly-maneuverable ground (and air) targets in a target-dense environment. It uses diverse sensors and is concerned with a large area of interest. Target class and identification data is tightly integrated with spatial and kinematic data throughout the processing. Because of platform constraints, processing hardware for track fusion was quite limited. No previous experience using JVC in this type environment had been reported. ATL performed extensive testing of the JVC, concentrating on error rates and run- times under a variety of conditions. These included wide ranging numbers and types of targets, sensor uncertainties, target attributes, differing degrees of target maneuverability, and diverse combinations of sensors. Testing utilized Monte Carlo approaches, as well as many kinds of challenging scenarios. Comparisons were made with a nearest-neighbor algorithm and a new, proprietary algorithm (the `Competition' algorithm). The JVC proved to be an excellent choice for the RPA environment, providing a good balance between speed of operation and accuracy of results.
Giri, Veda N.; Ruth, Karen; Hughes, Lucinda; Uzzo, Robert G.; Chen, David Y.T.; Boorjian, Stephen A.; Viterbo, Rosalia; Rebbeck, Timothy R.
2011-01-01
Introduction The TMPRSS2-ERG gene fusion occurs in >50% of prostate tumors and has been associated with poor outcomes. The T-allele (Valine) of the Met160Val (rs12329760) in TMPRSS2 has been associated with this fusion. We evaluated this polymorphism with respect to self-identified race or ethnicity (SIRE), time to prostate cancer (PCA) diagnosis, and screening parameters in the Prostate Cancer Risk Assessment Program, a prospective screening program for high-risk men. Patients and Methods 631 men ages 35-69 years were studied. “High-risk” was defined as ≥ one first degree or two second degree relatives with PCA, any African American (AA) man regardless of familial PCA, and men with BRCA1/2 mutations. Men with elevated PSA or other indications for PCA underwent biopsy. Men were followed from time of study entry to PCA diagnosis. Cox models were used to evaluate time to PCA diagnosis by genotype. Results Genotype distribution differed significantly by SIRE (CT/TT vs. CC, p<0.0001). Among 183 Caucasian men with at least one follow-up visit, PCA was more than doubled in men carrying CT/TT vs CC genotypes (HR= 2.55, 95% CI=1.14-5.70) after controlling for age and PSA. No association was seen among AA men by TMPRSS2 genotype. Conclusions The T-allele of the Met160Val variant in TMPRSS2, which has been associated with the TMPRSS2-ERG fusion, may be informative of time to PCA diagnosis for a subset of high-risk Caucasian men who are undergoing regular PCA screening. This variant along with other genetic markers warrant further study for personalizing PCA screening. PMID:20735386
Metabolic Stress and Disorders Related to Alterations in Mitochondrial Fission or Fusion
Babbar, Mansi; Sheikh, M. Saeed
2014-01-01
Mitochondrial morphology and metabolism play an important role in cellular homeostasis. Recent studies have shown that the fidelity of mitochondrial morphology is important in maintaining mitochondrial shape, number, size, membrane potential, ATP synthesis, mtDNA, motility, signaling, quality control, response to cellular stress, mitophagy and apoptosis. This article provides an overview of the current state of knowledge of the fission and fusion machinery with a focus on the mechanisms underlying the regulation of the mitochondrial morphology and cellular energy state. Several lines of evidence indicate that dysregulation of mitochondrial fission or fusion is associated with mitochondrial dysfunction, which in turn impacts mitophagy and apoptosis. Metabolic disorders are also associated with dysregulation of fission or fusion and the available lines of evidence point to a bidirectional interplay between the mitochondrial fission or fusion reactions and bioenergetics. Clearly, more in-depth studies are needed to fully elucidate the mechanisms that control mitochondrial fission and fusion. It is envisioned that the outcome of such studies will improve the understanding of the molecular basis of related metabolic disorders and also facilitate the development of better therapeutics. PMID:24533171
Helping Teachers Teach Plasma Physics
NASA Astrophysics Data System (ADS)
Correll, Donald
2008-11-01
Lawrence Livermore National Laboratory's E/O program in Fusion Science and Plasma Physics now includes both `pre-service' as well as `in-service' high school science teacher professional development activities. Teachers are instructed and mentored by `master teachers' and LLNL plasma researchers working in concert. The Fusion/Plasma E/O program exploits a unique science education partnership that exists between LLNL's Science Education Program and the UC Davis Edward Teller Education Center. For `in-service' teachers, the Fusion & Astrophysics Teacher Research Academy (TRA) has four levels of workshops that are designed to give in-service high school science teachers experience in promoting and conducting research, most notably in the filed of plasma spectroscopy. Participating teachers in all four TRA levels may earn up to ten units of graduate credit from Cal-State University East Bay, and may apply these units toward a Masters of Science in Education. For `pre-service' teachers, the Science Teacher and Researcher (STAR) program, as a partnership with the California State University System, includes attracting undergraduate science majors to teaching careers by allowing them to pursue professional identities as both a research scientist as well as a science teacher. Participating `pre-service' STAR students are provided research internships at LLNL and work closely with the `in-service' TRA teachers. Results from the continuum `pre-service' to `in-service' science teacher professional development programs will be presented.
Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas
NASA Astrophysics Data System (ADS)
Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul
2016-10-01
In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.
Direct observation of intermediate states in model membrane fusion
Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig
2016-01-01
We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285
Direct observation of intermediate states in model membrane fusion.
Keidel, Andrea; Bartsch, Tobias F; Florin, Ernst-Ludwig
2016-03-31
We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead's thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules.
Thermonuclear Power Engineering: 60 Years of Research. What Comes Next?
NASA Astrophysics Data System (ADS)
Strelkov, V. S.
2017-12-01
This paper summarizes results of more than half a century of research of high-temperature plasmas heated to a temperature of more than 100 million degrees (104 eV) and magnetically insulated from the walls. The energy of light-element fusion can be used for electric power generation or as a source of fissionable fuel production (development of a fusion neutron source—FNS). The main results of studies of tokamak plasmas which were obtained in the Soviet Union with the greatest degree of thermal plasma isolation among all other types of devices are presented. As a result, research programs of other countries were redirected to tokamaks. Later, on the basis of the analysis of numerous experiments, the international fusion community gradually came to an opinion that it is possible to build a tokamak (ITER) with Q > 1 (where Q is the ratio of the fusion power to the external power injected into the plasma). The ITER program objective is to achieve Q = 1-10 for a discharge time of up to 1000 s. The implementation of this goal does not solve the problem of a steadystate operation. The solution to this problem is a reliable first wall and current generation. This is a task of the next fusion power plant construction stage, called DEMO. Comparison of DEMO and FNS parameters shows that, at this development stage, the operating parameters and conditions of these devices are identical.
Practical Considerations for Optic Nerve Estimation in Telemedicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnowski, Thomas Paul; Aykac, Deniz; Chaum, Edward
The projected increase in diabetes in the United States and worldwide has created a need for broad-based, inexpensive screening for diabetic retinopathy (DR), an eye disease which can lead to vision impairment. A telemedicine network with retina cameras and automated quality control, physiological feature location, and lesion / anomaly detection is a low-cost way of achieving broad-based screening. In this work we report on the effect of quality estimation on an optic nerve (ON) detection method with a confidence metric. We report on an improvement of the fusion technique using a data set from an ophthalmologists practice then show themore » results of the method as a function of image quality on a set of images from an on-line telemedicine network collected in Spring 2009 and another broad-based screening program. We show that the fusion method, combined with quality estimation processing, can improve detection performance and also provide a method for utilizing a physician-in-the-loop for images that may exceed the capabilities of automated processing.« less
Extracellular annexins and dynamin are important for sequential steps in myoblast fusion
Leikina, Evgenia; Melikov, Kamran; Sanyal, Sarmistha; Verma, Santosh K.; Eun, Bokkee; Gebert, Claudia; Pfeifer, Karl; Lizunov, Vladimir A.; Kozlov, Michael M.
2013-01-01
Myoblast fusion into multinucleated myotubes is a crucial step in skeletal muscle development and regeneration. Here, we accumulated murine myoblasts at the ready-to-fuse stage by blocking formation of early fusion intermediates with lysophosphatidylcholine. Lifting the block allowed us to explore a largely synchronized fusion. We found that initial merger of two cell membranes detected as lipid mixing involved extracellular annexins A1 and A5 acting in a functionally redundant manner. Subsequent stages of myoblast fusion depended on dynamin activity, phosphatidylinositol(4,5)bisphosphate content, and cell metabolism. Uncoupling fusion from preceding stages of myogenesis will help in the analysis of the interplay between protein machines that initiate and complete cell unification and in the identification of additional protein players controlling different fusion stages. PMID:23277424
Wang, Nanxiang; Xie, Huanxin; Xi, Chunyang; Zhang, Han; Yan, Jinglong
2017-03-09
The benefits of posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps are well established. However, the problem of non-union due to mechanical support is not completely resolved. The aim of the study was to compare the efficacy of polyether ether ketone (PEEK) rod device with conventional titanium devices in the posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps. This was a randomized controlled study with an experimental animal model. Thirty-two mongrel dogs were randomly divided into two groups-control group (n = 16), which received the titanium device and the treatment group (n = 16), which received PEEK rods. The animals were sacrificed 8 or 16 weeks after surgery. Lumbar spines of dogs in both groups were removed, harvested, and assessed for radiographic, biomechanical, and histological changes. Results in the current study indicated that there was no significant difference in the lumbar spine of the control and treatment groups in terms of radiographic, manual palpation, and gross examination. However, certain parameters of biomechanical testing showed significant differences (p < 0.05) in stiffness and displacement, revealing a better fusion (treatment group showed decreased stiffness with decreased displacement) of the bone graft. Similarly, the histological analysis also revealed a significant fusion mass in both treatment and control groups (p < 0.05). These findings revealed that fixation using PEEK connecting rod could improve the union of the bone graft in the posterior lumbar spine fusion surgery compared with that of the titanium rod fixation.
A visual analytic framework for data fusion in investigative intelligence
NASA Astrophysics Data System (ADS)
Cai, Guoray; Gross, Geoff; Llinas, James; Hall, David
2014-05-01
Intelligence analysis depends on data fusion systems to provide capabilities of detecting and tracking important objects, events, and their relationships in connection to an analytical situation. However, automated data fusion technologies are not mature enough to offer reliable and trustworthy information for situation awareness. Given the trend of increasing sophistication of data fusion algorithms and loss of transparency in data fusion process, analysts are left out of the data fusion process cycle with little to no control and confidence on the data fusion outcome. Following the recent rethinking of data fusion as human-centered process, this paper proposes a conceptual framework towards developing alternative data fusion architecture. This idea is inspired by the recent advances in our understanding of human cognitive systems, the science of visual analytics, and the latest thinking about human-centered data fusion. Our conceptual framework is supported by an analysis of the limitation of existing fully automated data fusion systems where the effectiveness of important algorithmic decisions depend on the availability of expert knowledge or the knowledge of the analyst's mental state in an investigation. The success of this effort will result in next generation data fusion systems that can be better trusted while maintaining high throughput.
Park, In-Hyun; Chen, Jie
2005-09-09
Skeletal myogenesis is a well orchestrated cascade of events regulated by multiple signaling pathways, one of which is recently characterized by its sensitivity to the bacterial macrolide rapamycin. Previously we reported that the mammalian target of rapamycin (mTOR) regulates the initiation of the differentiation program in mouse C2C12 myoblasts by controlling the expression of insulin-like growth factor-II in a kinase-independent manner. Here we provide experimental evidence suggesting that a different mode of mTOR signaling regulates skeletal myogenesis at a later stage. In the absence of endogenous mTOR function in C2C12 cells treated with rapamycin, a kinase-inactive mTOR fully supports myogenin expression, but causes a delay in contractile protein expression. Myoblasts fuse to form nascent myotubes in the absence of kinase-active mTOR, whereas the formation of mature myotubes by further fusion requires the catalytic activity of mTOR. Therefore, the two stages of myocyte fusion are molecularly separable at the level of mTOR signaling. In addition, our data suggest that a factor secreted into the culture medium is responsible for mediating the function of mTOR in regulating the late-stage fusion leading to mature myotubes. Furthermore, taking advantage of the unique features of cells stably expressing a mutant mTOR, we have performed cDNA microarray analysis to compare global gene expression profiles between mature and nascent myotubes, the results of which have implicated classes of genes and revealed candidate regulators in myotube maturation or functions of mature myotubes.
Inertial Fusion and High-Energy-Density Science in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarter, C B
2001-09-06
Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependabilitymore » of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, V.L.; Wieczorek, M.A.
This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL`s environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physicsmore » Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten @on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S&R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects.« less
CTA with fluoroscopy image fusion guidance in endovascular complex aortic aneurysm repair.
Sailer, A M; de Haan, M W; Peppelenbosch, A G; Jacobs, M J; Wildberger, J E; Schurink, G W H
2014-04-01
To evaluate the effect of intraoperative guidance by means of live fluoroscopy image fusion with computed tomography angiography (CTA) on iodinated contrast material volume, procedure time, and fluoroscopy time in endovascular thoraco-abdominal aortic repair. CTA with fluoroscopy image fusion road-mapping was prospectively evaluated in patients with complex aortic aneurysms who underwent fenestrated and/or branched endovascular repair (FEVAR/BEVAR). Total iodinated contrast material volume, overall procedure time, and fluoroscopy time were compared between the fusion group (n = 31) and case controls (n = 31). Reasons for potential fusion image inaccuracy were analyzed. Fusion imaging was feasible in all patients. Fusion image road-mapping was used for navigation and positioning of the devices and catheter guidance during access to target vessels. Iodinated contrast material volume and procedure time were significantly lower in the fusion group than in case controls (159 mL [95% CI 132-186 mL] vs. 199 mL [95% CI 170-229 mL], p = .037 and 5.2 hours [95% CI 4.5-5.9 hours] vs. 6.3 hours (95% CI 5.4-7.2 hours), p = .022). No significant differences in fluoroscopy time were observed (p = .38). Respiration-related vessel displacement, vessel elongation, and displacement by stiff devices as well as patient movement were identified as reasons for fusion image inaccuracy. Image fusion guidance provides added value in complex endovascular interventions. The technology significantly reduces iodinated contrast material dose and procedure time. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Baird, Stephen L.
2005-01-01
Fusion is the process that powers the sun and the stars. Since the 1950s, scientists and engineers in the United States and around the world have been conducting fusion research in pursuit of the creation of a new energy source for our planet and to further our understanding and control of plasma, the fourth state of matter that dominates the…
Method for the controlled liberation of fusion nuclear energy (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1972-08-18
L'invention concerne des reactions thermonucleaires. Elle se rapporte a un procede de fusion dans lequel de l'energie laser est concentree sur de minuscules spheres de combustible forme de deuterium et de tritium, de maniere a creer d'une part un plasma superficiel assurant un transfert efficace d'energie et d'autre part des ondes de choc convergeant au centre et assurant la fusion nucleaire de la matiere centrale. Ceci est applicable a la production d'energie thermique par fusion nucleaire. (FR)
Recruitment of mitofusin 2 into “lipid rafts” drives mitochondria fusion induced by Mdivi-1
Ciarlo, Laura; Vona, Rosa; Manganelli, Valeria; Gambardella, Lucrezia; Raggi, Carla; Marconi, Matteo; Malorni, Walter; Sorice, Maurizio; Garofalo, Tina; Matarrese, Paola
2018-01-01
The regulation of the mitochondrial dynamics and the balance between fusion and fission processes are crucial for the health and fate of the cell. Mitochondrial fusion and fission machinery is controlled by key proteins such as mitofusins, OPA-1 and several further molecules. In the present work we investigated the implication of lipid rafts in mitochondrial fusion induced by Mdivi-1. Our results underscore the possible implication of lipid “rafts” in mitochondrial morphogenetic changes and their homeostasis. PMID:29721168
Epidural Abscess: A Propensity Analysis of Surgical Treatment Strategies.
Chaker, Anisse N; Bhimani, Abhiraj D; Esfahani, Darian R; Rosinski, Clayton L; Geever, Brett W; Patel, Akash S; Hobbs, Jonathan G; Burch, Taylor G; Patel, Saavan; Mehta, Ankit I
2018-06-18
Observational analysis of retrospectively collected data. A retrospective study was performed in order to compare the surgical profile of risk factors and perioperative complications for laminectomy and laminectomy with fusion procedures in the treatment of SEA. Spinal epidural abscess (SEA) is a highly morbid condition typically presenting with back pain, fever, and neurologic deficits. Posterior fusion has been used to supplement traditional laminectomy of SEA to improve spinal stability. At present, the ideal surgical strategy - laminectomy with or without fusion - remains elusive. 30-day outcomes such as reoperation and readmission following laminectomy and laminectomy with fusion in patients with SEA were investigated utilizing the American College of Surgeons National Quality Improvement Program database. Demographics and clinical risk factors were collected, and propensity matching was performed to account for differences in risk profiles between the groups. 738 patients were studied (608 laminectomy alone, 130 fusion). The fusion population was in worse health. The fusion population experienced significantly greater rate of return to the operating room (odds ratio (OR) 1.892), with the difference primarily accounted for by cervical spine operations. Additionally, fusion patients had significantly greater rates of blood transfusion. Infection was the most common reason for reoperation in both populations. Both laminectomy and laminectomy with fusion effectively treat SEA, but addition of fusion is associated with significantly higher rates of transfusion and perioperative return to the operating room. In operative situations where either procedure is reasonable, surgeons should consider that fusion nearly doubles the odds of reoperation in the short-term, and weigh this risk against the benefit of added stability. 3.
Two heretical thoughts on fusion and climate
NASA Astrophysics Data System (ADS)
Manheimer, Wallace
2016-10-01
This presents and explores 2 heretical thoughts regarding controlled fusion and climate. First, the only way that fusion can contribute to midcentury power is by switching its goal from pure fusion, to fusion breeding. Fusion breeding makes many fewer demands on the fusion device than does pure fusion. Fusion breeding could lead to a sustainable, carbon free, environmentally and economically viable, midcentury infrastructure, with little or no proliferation risk, which could provide terawatts of power for the world. The second involves climate. We are all inundated by media warnings, not only of warming from CO2 in the atmosphere, but all sorts of other environmental disasters. For instance there will be more intense storms, rising sea levels, wild fires, retreating glaciers, droughts, loss of agricultural productivity... These assertions are very easy to check out. Such a search shows that we are nowhere near any sort of environmental crisis. The timing could be serendipitous; the time necessary to develop fusion breeding could well match up to the time when it is needed so as to avoid harm to the earth's climate and/or depletion of finite energy resources.
Statistical algorithms improve accuracy of gene fusion detection
Hsieh, Gillian; Bierman, Rob; Szabo, Linda; Lee, Alex Gia; Freeman, Donald E.; Watson, Nathaniel; Sweet-Cordero, E. Alejandro
2017-01-01
Abstract Gene fusions are known to play critical roles in tumor pathogenesis. Yet, sensitive and specific algorithms to detect gene fusions in cancer do not currently exist. In this paper, we present a new statistical algorithm, MACHETE (Mismatched Alignment CHimEra Tracking Engine), which achieves highly sensitive and specific detection of gene fusions from RNA-Seq data, including the highest Positive Predictive Value (PPV) compared to the current state-of-the-art, as assessed in simulated data. We show that the best performing published algorithms either find large numbers of fusions in negative control data or suffer from low sensitivity detecting known driving fusions in gold standard settings, such as EWSR1-FLI1. As proof of principle that MACHETE discovers novel gene fusions with high accuracy in vivo, we mined public data to discover and subsequently PCR validate novel gene fusions missed by other algorithms in the ovarian cancer cell line OVCAR3. These results highlight the gains in accuracy achieved by introducing statistical models into fusion detection, and pave the way for unbiased discovery of potentially driving and druggable gene fusions in primary tumors. PMID:28541529
The choice of the energy embedding law in the design of heavy ionic fusion cylindrical targets
NASA Astrophysics Data System (ADS)
Dolgoleva, GV; Zykova, A. I.
2017-10-01
The paper considers the numerical design of heavy ion fusion (FIHIF) targets, which is one of the branches of controlled thermonuclear fusion (CTF). One of the important tasks in the targets design for controlled thermonuclear fusion is the energy embedding selection whereby it is possible to obtain “burning” (the presence of thermonuclear reactions) of the working DT region. The work is devoted to the rapid ignition of FIHIF targets by means of an additional short-term energy contribution to the DT substance already compressed by massively more longer by energy embedding. This problem has been fairly well studied for laser targets, but this problem is new for heavy ion fusion targets. Maximum momentum increasing is very technically difficult and expensive on modern FIHIF installations. The work shows that the additional energy embedding (“igniting” impulse) reduces the requirements to the maximum impulse. The purpose of this work is to research the ignition impulse effect on the FIHIF target parameters.
21 CFR 888.3080 - Intervertebral body fusion device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...
21 CFR 888.3080 - Intervertebral body fusion device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...
21 CFR 888.3080 - Intervertebral body fusion device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...
21 CFR 888.3080 - Intervertebral body fusion device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...
NASA Astrophysics Data System (ADS)
La Haye, Rob
2012-09-01
The Magnetohydrodynamic (MHD) Control Workshop with the theme 'Optimizing and Understanding the Role of Coils for Mode Control' was held at General Atomics (20-22 November 2011) following the 2011 APS-DPP Annual Meeting in Salt Lake City, Utah (14-18 November). This was the 16th in the annual series and was organized jointly by Columbia University, General Atomics, Princeton Plasma Physics Laboratory, and the University of Wisconsin-Madison. Program committee participation included representatives from the EU and Japan along with other US laboratory and university institutions. This workshop highlighted the role of applied non-axisymmetric magnetic fields from both internal and external coils for control of MHD stability to achieve high performance fusion plasmas. The application of 3D magnetic field offers control of important elements of equilibrium, stability, and transport. The use of active 3D fields to stabilize global instabilities and to correct magnetic field errors is an established tool for achieving high beta configurations. 3D fields also affect transport and plasma momentum, and are shown to be important for the control of edge localized modes (ELMs), resistive wall modes, and optimized stellarator configurations. The format was similar to previous workshops, including 13 invited talks, 21 contributed talks, and this year there were 2 panel discussions ('Error Field Correction' led by Andrew Cole of Columbia University and 'Application of Coils in General' led by Richard Buttery of General Atomics). Ted Strait of General Atomics also gave a summary of the International Tokamak Physics Activity (ITPA) MHD meeting in Padua, a group for which he is now the leader. In this special section of Plasma Physics and Controlled Fusion (PPCF) is a sample of the presentations at the workshop, which have been subject to the normal refereeing procedures of the journal. They include a review (A Boozer) and an invited talk (R Fitzpatrick) on error fields, an invited on control of neoclassical tearing modes (H van den Brand), and an invited talk (P Zanca) and a contributed talk (E Oloffson) on control of the resistive wall mode kink. These are just representative of the broad spectrum of recent work on stability found posted at the web site (https://fusion.gat.com/conferences/mhd11/). We thank PPCF for continuing to have this special issue section. This was the third time the workshop was held at General Atomics. We thank General Atomics for making the site available for an internationally represented workshop in the new era of heightened security and controls. The next workshop (17th) will be held at Columbia University for the (fourth time) (https://fusion.gat.com/conferences/mhd12/) with the theme of 'Addressing the Disruption Challenge for ITER' to be combined with the Joint US-Japan MHD Workshop with a special session on: 'Fundamentals of 3D Perturbed Equilibrium Control: Present & Beyond'.
Andersson, Mattias K; Afshari, Maryam K; Andrén, Ywonne; Wick, Michael J; Stenman, Göran
2017-09-01
Adenoid cystic carcinoma (ACC) is an aggressive cancer with no curative treatment for patients with recurrent/metastatic disease. The MYB-NFIB gene fusion is the main genomic hallmark and a potential therapeutic target. Oncogenic signaling pathways were studied in cultured cells and/or tumors from 15 ACC patients. Phospho-receptor tyrosine kinase (RTK) arrays were used to study the activity of RTKs. Effects of RTK inhibition on cell proliferation were analyzed with AlamarBlue, sphere assays, and two ACC xenograft models (n = 4-9 mice per group). The molecular effects of MYB-NFIB knockdown and IGF1R inhibition were studied with quantitative polymerase chain reaction, immunoblot, and gene expression microarrays. All statistical tests were two-sided. The MYB-NFIB fusion drives proliferation of ACC cells and is crucial for spherogenesis. Intriguingly, the fusion is regulated through AKT-dependent signaling induced by IGF1R overexpression and is downregulated upon IGF1R-inhibition (% expression of control ± SD = 27.2 ± 1.3, P < .001). MYB-NFIB regulates genes involved in cell cycle control, DNA replication/repair, and RNA processing. The transcriptional program induced by MYB-NFIB affects critical oncogenic mediators normally controlled by MYC and is reversed by pharmacological inhibition of IGF1R. Co-activation of epidermal growth factor receptor (EGFR) and MET promoted proliferation of ACC cells, and combined targeting of IGFR1/EGFR/MET induced differentiation and synergistically inhibited the growth of patient-derived xenografted ACCs (ACCX5M1, % growth of control ± SD = 34.9 ± 20.3, P = .006; ACCX6, % growth of control ± SD = 24.1 ± 17.5, P = .04). MYB-NFIB is an oncogenic driver and a key therapeutic target in ACC that is regulated by AKT-dependent IGF1R signaling. Our studies uncover a new strategy to target an oncogenic transcriptional master regulator and provide new important insights into the biology and treatment of ACC. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Systematic identification and analysis of frequent gene fusion events in metabolic pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Christopher S.; Lerma-Ortiz, Claudia; Gerdes, Svetlana Y.
Here, gene fusions are the most powerful type of in silico-derived functional associations. However, many fusion compilations were made when <100 genomes were available, and algorithms for identifying fusions need updating to handle the current avalanche of sequenced genomes. The availability of a large fusion dataset would help probe functional associations and enable systematic analysis of where and why fusion events occur. As a result, here we present a systematic analysis of fusions in prokaryotes. We manually generated two training sets: (i) 121 fusions in the model organism Escherichia coli; (ii) 131 fusions found in B vitamin metabolism. These setsmore » were used to develop a fusion prediction algorithm that captured the training set fusions with only 7 % false negatives and 50 % false positives, a substantial improvement over existing approaches. This algorithm was then applied to identify 3.8 million potential fusions across 11,473 genomes. The results of the analysis are available in a searchable database. A functional analysis identified 3,000 reactions associated with frequent fusion events and revealed areas of metabolism where fusions are particularly prevalent. In conclusion, customary definitions of fusions were shown to be ambiguous, and a stricter one was proposed. Exploring the genes participating in fusion events showed that they most commonly encode transporters, regulators, and metabolic enzymes. The major rationales for fusions between metabolic genes appear to be overcoming pathway bottlenecks, avoiding toxicity, controlling competing pathways, and facilitating expression and assembly of protein complexes. Finally, our fusion dataset provides powerful clues to decipher the biological activities of domains of unknown function.« less
Systematic identification and analysis of frequent gene fusion events in metabolic pathways
Henry, Christopher S.; Lerma-Ortiz, Claudia; Gerdes, Svetlana Y.; ...
2016-06-24
Here, gene fusions are the most powerful type of in silico-derived functional associations. However, many fusion compilations were made when <100 genomes were available, and algorithms for identifying fusions need updating to handle the current avalanche of sequenced genomes. The availability of a large fusion dataset would help probe functional associations and enable systematic analysis of where and why fusion events occur. As a result, here we present a systematic analysis of fusions in prokaryotes. We manually generated two training sets: (i) 121 fusions in the model organism Escherichia coli; (ii) 131 fusions found in B vitamin metabolism. These setsmore » were used to develop a fusion prediction algorithm that captured the training set fusions with only 7 % false negatives and 50 % false positives, a substantial improvement over existing approaches. This algorithm was then applied to identify 3.8 million potential fusions across 11,473 genomes. The results of the analysis are available in a searchable database. A functional analysis identified 3,000 reactions associated with frequent fusion events and revealed areas of metabolism where fusions are particularly prevalent. In conclusion, customary definitions of fusions were shown to be ambiguous, and a stricter one was proposed. Exploring the genes participating in fusion events showed that they most commonly encode transporters, regulators, and metabolic enzymes. The major rationales for fusions between metabolic genes appear to be overcoming pathway bottlenecks, avoiding toxicity, controlling competing pathways, and facilitating expression and assembly of protein complexes. Finally, our fusion dataset provides powerful clues to decipher the biological activities of domains of unknown function.« less
Second program on energy research and technologies
NASA Technical Reports Server (NTRS)
1982-01-01
The second major energy research and development program is described. Renewable and nonrenewable energy resources are presented which include nuclear technology and future energy sources, like fusion. The current status and outlook for future progress are given.
10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations Management (3) Fusion Energy (4) Health and Environmental Research (5) High Energy and Nuclear Physics (6...
Superconducting magnet development for tokamaks and mirrors: a technical assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laverick, C.; Jacobs, R. B.; Boom, R. W.
1977-11-01
The role of superconducting magnets in Magnetic Fusion Energy Research and Development is assessed from a consideration of program plans and schedules, the present status of the programs and the research and development suggestions arising from recent studies and workshops. A principal conclusion is that the large superconducting magnet systems needed for commercial magnetic fusion reactors can be constructed. However such magnets working under severe conditions, with increasingly stringent reliability, safety and cost restrictions can never be built unless experience is first gained in a number of important installations designed to prove physics and technology steps on the way tomore » commercial power demonstration. The immediate problem is to design a technology program in the absence of definite device needs and specifications, giving a priority weighting to the multiplicity of good, high quality development program suggestions when all proposals cannot be supported.« less
Effect of zoledronic acid on lumbar spinal fusion in osteoporotic patients.
Ding, Qirui; Chen, Jian; Fan, Jin; Li, Qingqing; Yin, Guoyong; Yu, Lipeng
2017-11-01
To investigate the effect of zoledronic acid (ZA) on lumbar spinal fusion in patients with osteoporosis. This retrospective study includes 94 osteoporotic patients suffering from lumbar degenerative diseases or lumbar fracture who underwent lumbar spinal fusion in our institution from January 2013 to August 2014. They were divided into ZA group and control group according to whether the patient received ZA infusion or not. The patients in ZA group were given 5 mg intravenous ZA at the 3rd-5th days after operation. All patients took daily oral supplement of 600 mg calcium carbonate and 800 IU vitamin D during the follow-up after operation. The Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), and Short Form 36 (SF-36) scores were recorded preoperatively and post-operatively to evaluate the clinic outcomes; the spinal fusion was assessed by X-ray or CT Scan. 64 patients finished the final follow-up, including 30 patients in ZA group and 34 patients in control group. No significant difference was observed in gender, age, and preoperative BMI VAS, ODI, and SF-36 scores between the two groups (P > 0.05). The post-operative VAS and ODI scores decreased rapidly at 3 and 6 months, but rose back slightly at 12 and 24 months in both groups. On the contrary, post-operative SF-36 scores increased rapidly at 3 and 6 months, while fell back slightly at 12 and 24 months, with a statistically significant difference between the two groups at 12 months, but not at 3 and 6 month post-operation. The spinal fusion rate in ZA group was 90% at 6 months, 92% at 12 months, while it was 75% at 6 months, 92.86% at 12 months in control group, significantly different between the two groups at 12 months, but not at 6 months. In the whole follow-up period, adjacent vertebral compressing fracture occurred in five patients in control group, none in ZA group. No pedicle screw loosening was observed in ZA group, with six in control group. Zoledronic acid accelerates spinal fusion, shortens the time of fusion without changing fusion rate, and also decreases the risk of adjacent vertebral compressing fracture and the rate of pedicle screw loosening, resulting in the improvement of clinical outcomes and quality of life.
Daniels, Timothy R; Younger, Alastair S E; Penner, Murray J; Wing, Kevin J; Le, Ian L D; Russell, Iain S; Lalonde, Karl-André; Evangelista, Peter T; Quiton, Jovelyn D; Glazebrook, Mark; DiGiovanni, Christopher W
2015-07-01
Ankle and hindfoot arthrodesis is often supplemented with autograft to promote bony union. Autograft harvest can lead to increased perioperative morbidity. Purified recombinant human platelet-derived growth factor BB homodimer (rhPDGF-BB) has stimulated bone formation in mandibular defects and hindfoot fusion. This randomized controlled trial evaluated the efficacy and safety of rhPDGF-BB combined with an injectable, osteoconductive beta-tricalcium phosphate (β-TCP)-collagen matrix versus autograft in ankle and hindfoot fusions. Seventy-five patients requiring ankle or hindfoot fusion were randomized 5:1 for rhPDGF-BB/β-TCP-collagen (treatment, n = 63) or autograft (control, n = 12). Prospective analysis included 142 autograft control subjects from another clinical trial with identical study protocols. Standardized operative and postoperative protocols were used. Patients underwent standard internal fixation augmented with autograft or 0.3 mg/mL rhPDGF-BB/β-TCP-collagen. Radiologic, clinical, and quality-of-life outcomes were assessed over 52 weeks. Primary outcome was joint fusion (50% or more osseous bridging on computed tomography) at 24 weeks. Secondary outcomes included radiographs, clinical healing status, visual analog scale pain score, American Orthopaedic Foot & Ankle Society Ankle-Hindfoot Scale score, Foot Function Index score, and Short Form-12 score. Noninferiority P values were calculated. Complete fusion of all involved joints at 24 weeks as indicated by computed tomography was achieved in 53 of 63 (84%) rhPDGF-BB/β-TCP-collagen-treated patients and 100 of 154 (65%) autograft-treated patients (P < .001). Mean time to fusion was 14.3 ± 8.9 weeks for rhPDGF-BB/β-TCP-collagen patients versus 19.7 ± 11.5 weeks for autograft patients (P < .01). Clinical success at 52 weeks was achieved in 57 of 63 (91%) rhPDGF-BB/β-TCP-collagen patients and 120 of 154 (78%) autograft patients (P < .001). Safety-related outcomes were equivalent. Autograft controls had 2 bone graft harvest infections. Application of rhPDGF-BB/β-TCP-collagen was a safe, effective alternative to autograft for ankle and hindfoot fusions, eliminating the pain and morbidity associated with autograft harvesting. Level I, prospective randomized study. © The Author(s) 2015.
Laser fusion pulse shape controller
Siebert, Larry D.
1977-01-01
An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.
Abreu, Patrícia A. E.; Miyasato, Patrícia A.; Vilar, Mônica M.; Dias, Waldely O.; Ho, Paulo L.; Tendler, Míriam; Nascimento, Ana L. T. O.
2004-01-01
We have constructed vectors that permit the expression in Escherichia coli of Schistosoma mansoni fatty acid-binding protein 14 (Sm14) in fusion with the nontoxic, but highly immunogenic, tetanus toxin fragment C (TTFC). The recombinant six-His-tagged proteins were purified by nickel affinity chromatography and used in immunization and challenge assays. Animals inoculated with TTFC in fusion with or coadministered with Sm14 showed high levels of tetanus toxin antibodies, while animals inoculated with Sm14 in fusion with or coadministered with TTFC showed high levels of Sm14 antibodies. In both cases, there were no changes in the type of immune response (Th2) obtained with the fusion proteins compared to those obtained with the nonfused proteins. Mice immunized with the recombinant proteins (TTFC in fusion with or coadministered with Sm14) survived the challenge with tetanus toxin and did not show any symptoms of the disease. Control animals inoculated with either phosphate-buffered saline (PBS) or Sm14 died with severe symptoms of tetanus after 24 h. Mice immunized with the recombinant proteins (Sm14 in fusion with or coadministered with TTFC) showed a 50% reduction in worm burden when they were challenged with S. mansoni cercariae, while control animals inoculated with either PBS or TTFC were not protected. The results show that the expression of other antigens in fusion at the carboxy terminus of TTFC is feasible for the development of a multivalent recombinant vaccine. PMID:15385496
XRF inductive bead fusion and PLC based control system
NASA Astrophysics Data System (ADS)
Zhu, Jin-hong; Wang, Ying-jie; Shi, Hong-xin; Chen, Qing-ling; Chen, Yu-xi
2009-03-01
In order to ensure high-quality X-ray fluorescence spectrometry (XRF) analysis, an inductive bead fusion machine was developed. The prototype consists of super-audio IGBT induction heating power supply, rotation and swing mechanisms, and programmable logic controller (PLC). The system can realize sequence control, mechanical movement control, output current and temperature control. Experimental results show that the power supply can operate at an ideal quasi-resonant state, in which the expected power output and the required temperature can be achieved for rapid heating and the uniform formation of glass beads respectively.
CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm: effect of resonance states
NASA Astrophysics Data System (ADS)
Gómez Camacho, A.; Lubian, J.; Zhang, H. Q.; Zhou, Shan-Gui
2017-12-01
Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+, 3- of 144Sm and 2+, 4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, J π =3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered. A. Gómez Camacho from CONACYT, México, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)
Three-Dimensional Road Network by Fusion of Polarimetric and Interferometric SAR Data
NASA Technical Reports Server (NTRS)
Gamba, P.; Houshmand, B.
1998-01-01
In this paper a fuzzy classification procedure is applied to polarimetric radar measurements, and street pixels are detected. These data are successively grouped into consistent roads by means of a dynamic programming approach based on the fuzzy membership function values. Further fusion of the 2D road network extracted and 3D TOPSAR measurements provides a powerful way to analyze urban infrastructures.
Joint Data Management for MOVINT Data-to-Decision Making
2011-07-01
flux tensor , aligned motion history images, and related approaches have been shown to be versatile approaches [12, 16, 17, 18]. Scaling these...methods include voting , neural networks, fuzzy logic, neuro-dynamic programming, support vector machines, Bayesian and Dempster-Shafer methods. One way...Information Fusion, 2010. [16] F. Bunyak, K. Palaniappan, S. K. Nath, G. Seetharaman, “Flux tensor constrained geodesic active contours with sensor fusion
User's guide for FRMOD, a zero dimensional FRM burn code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driemeryer, D.; Miley, G.H.
1979-10-15
The zero-dimensional FRM plasma burn code, FRMOD is written in the FORTRAN language and is currently available on the Control Data Corporation (CDC) 7600 computer at the Magnetic Fusion Energy Computer Center (MFECC), sponsored by the US Department of Energy, in Livermore, CA. This guide assumes that the user is familiar with the system architecture and some of the utility programs available on the MFE-7600 machine, since online documentation is available for system routines through the use of the DOCUMENT utility. Users may therefore refer to it for answers to system related questions.
Acceleration of fusion in mouse palates by in vitro exposure to excess G
NASA Technical Reports Server (NTRS)
Duke, J.; Janer, L.; Campbell, M.
1984-01-01
Palatal shelves from 13- and 14-day mouse embryos were excised and cultured in contiguous pairs. Experimental cultures were exposed to 2.6 G in a culture centrifuge; controls were in the same incubator. After 24 hours, palates were prepared for light or electron microscopy. Scoring of paraffin sections according to the stage of fusion seen in the medial epithelial edges (MEE) showed that palates exposed to excess G were in more advanced stages of fusion than were controls. Ultrastructurally, control MEE had tightly apposed cell membranes and numerous desmosomes; in centrifuged MEE, desmosomes had been removed and there was much intercellular space. Nuclear membranes were intact in control MEE, but showed marked deterioration in MEE of centrifuged palates. Few lysosomes and no necrosis were seen in control MEE; centrifuged MEE had numerous lysosomes as well as necrotic cells. Basal lamina were intact in controls, but interrupted in centrifuged palates. The results confirm the hypothesis that gravitational increases speed up the differentiative process.
β-MSCs: successful fusion of MSCs with β-cells results in a β-cell like phenotype.
Azizi, Zahra; Lange, Claudia; Paroni, Federico; Ardestani, Amin; Meyer, Anke; Wu, Yonghua; Zander, Axel R; Westenfelder, Christof; Maedler, Kathrin
2016-08-02
Bone marrow mesenchymal stromal cells (MSC) have anti-inflammatory, anti-apoptotic and immunosuppressive properties and are a potent source for cell therapy. Cell fusion has been proposed for rapid generation of functional new reprogrammed cells. In this study, we aimed to establish a fusion protocol of bone marrow-derived human MSCs with the rat beta-cell line (INS-1E) as well as human isolated pancreatic islets in order to generate insulin producing beta-MSCs as a cell-based treatment for diabetes.Human eGFP+ puromycin+ MSCs were co-cultured with either stably mCherry-expressing rat INS-1E cells or human dispersed islet cells and treated with phytohemagglutinin (PHA-P) and polyethylene glycol (PEG) to induce fusion. MSCs and fused cells were selected by puromycin treatment.With an improved fusion protocol, 29.8 ± 2.9% of all MSCs were β-MSC heterokaryons based on double positivity for mCherry and eGFP.After fusion and puromycin selection, human NKX6.1 and insulin as well as rat Neurod1, Nkx2.2, MafA, Pdx1 and Ins1 mRNA were highly elevated in fused human MSC/INS-1E cells, compared to the mixed control population. Such induction of beta-cell markers was confirmed in fused human MSC/human dispersed islet cells, which showed elevated NEUROD1, NKX2.2, MAFA, PDX1 and insulin mRNA compared to the mixed control. Fused cells had higher insulin content and improved insulin secretion compared to the mixed control and insulin positive beta-MSCs also expressed nuclear PDX1. We established a protocol for fusion of human MSCs and beta cells, which resulted in a beta cell like phenotype. This could be a novel tool for cell-based therapies of diabetes.
NASA Astrophysics Data System (ADS)
Herman, Robin
1990-10-01
The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.
Inertial-confinement fusion with lasers
NASA Astrophysics Data System (ADS)
Betti, R.; Hurricane, O. A.
2016-05-01
The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.
NASA Astrophysics Data System (ADS)
Evans, T. E.
2013-07-01
Large edge-localized mode (ELM) control techniques must be developed to help ensure the success of burning and ignited fusion plasma devices such as tokamaks and stellarators. In full performance ITER tokamak discharges, with QDT = 10, the energy released by a single ELM could reach ˜30 MJ which is expected to result in an energy density of 10-15 MJ/m2on the divertor targets. This will exceed the estimated divertor ablation limit by a factor of 20-30. A worldwide research program is underway to develop various types of ELM control techniques in preparation for ITER H-mode plasma operations. An overview of the ELM control techniques currently being developed is discussed along with the requirements for applying these techniques to plasmas in ITER. Particular emphasis is given to the primary approaches, pellet pacing and resonant magnetic perturbation fields, currently being considered for ITER.
TMPRSS2-ERG gene fusions are infrequent in prostatic ductal adenocarcinomas.
Lotan, Tamara L; Toubaji, Antoun; Albadine, Roula; Latour, Mathieu; Herawi, Mehsati; Meeker, Alan K; DeMarzo, Angelo M; Platz, Elizabeth A; Epstein, Jonathan I; Netto, George J
2009-03-01
Ductal adenocarcinoma of the prostate is an unusual subtype that may be associated with a more aggressive clinical course, and is less responsive to conventional therapies than the more common prostatic acinar adenocarcinoma. However, given its frequent association with an acinar component at prostatectomy, some have challenged the concept of prostatic ductal adenocarcinoma as a distinct clinicopathologic entity. We studied the occurrence of the TMPRSS2-ERG gene fusion, in 40 surgically resected ductal adenocarcinoma cases, and in their associated acinar component using fluorescence in situ hybridization. A group of 38 'pure' acinar adenocarcinoma cases matched with the ductal adenocarcinoma group for pathological grade and stage was studied as a control. Compared with the matched acinar adenocarcinoma cases, the TMPRSS2-ERG gene fusion was significantly less frequently observed in ductal adenocarcinoma (45 vs 11% of cases, P=0.002, Fisher's exact test). Here, of the ductal adenocarcinoma cases with the gene fusion, 75% were fused through deletion, and the remaining case was fused through translocation. The TMPRSS2-ERG gene fusion was also rare in the acinar component of mixed ductal-acinar tumors when compared with the pure acinar adenocarcinoma controls (5 vs 45%, P=0.001, Fisher's exact test). In 95% of the ductal adenocarcinoma cases in which a concurrent acinar component was analyzed, there was concordance for presence/absence of the TMPRSS2-ERG gene fusion between the different histologic subtypes. In the control group of pure acinar adenocarcinoma cases, 59% were fused through deletion and 41% were fused through translocation. The presence of the TMPRSS2-ERG gene fusion in some cases of prostatic ductal adenocarcinoma supports the concept that ductal adenocarcinoma and acinar adenocarcinoma may be related genetically. However, the significantly lower rate of the gene fusion in pure ductal adenocarcinoma cases underscores the fact that genetic and biologic differences exist between these two tumors that may be important for future therapeutic strategies.
Inertial-confinement fusion with lasers
Betti, R.; Hurricane, O. A.
2016-05-03
The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to themore » safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion.« less
[Possibilities of sonographic image fusion: Current developments].
Jung, E M; Clevert, D-A
2015-11-01
For diagnostic and interventional procedures ultrasound (US) image fusion can be used as a complementary imaging technique. Image fusion has the advantage of real time imaging and can be combined with other cross-sectional imaging techniques. With the introduction of US contrast agents sonography and image fusion have gained more importance in the detection and characterization of liver lesions. Fusion of US images with computed tomography (CT) or magnetic resonance imaging (MRI) facilitates the diagnostics and postinterventional therapy control. In addition to the primary application of image fusion in the diagnosis and treatment of liver lesions, there are more useful indications for contrast-enhanced US (CEUS) in routine clinical diagnostic procedures, such as intraoperative US (IOUS), vascular imaging and diagnostics of other organs, such as the kidneys and prostate gland.
Panagopoulos, Ioannis; Gorunova, Ludmila; Bjerkehagen, Bodil; Heim, Sverre
2014-01-01
Whole transcriptome sequencing was used to study a small round cell tumor in which a t(4;19)(q35;q13) was part of the complex karyotype but where the initial reverse transcriptase PCR (RT-PCR) examination did not detect a CIC-DUX4 fusion transcript previously described as the crucial gene-level outcome of this specific translocation. The RNA sequencing data were analysed using the FusionMap, FusionFinder, and ChimeraScan programs which are specifically designed to identify fusion genes. FusionMap, FusionFinder, and ChimeraScan identified 1017, 102, and 101 fusion transcripts, respectively, but CIC-DUX4 was not among them. Since the RNA sequencing data are in the fastq text-based format, we searched the files using the "grep" command-line utility. The "grep" command searches the text for specific expressions and displays, by default, the lines where matches occur. The "specific expression" was a sequence of 20 nucleotides from the coding part of the last exon 20 of CIC (Reference Sequence: NM_015125.3) chosen since all the so far reported CIC breakpoints have occurred here. Fifteen chimeric CIC-DUX4 cDNA sequences were captured and the fusion between the CIC and DUX4 genes was mapped precisely. New primer combinations were constructed based on these findings and were used together with a polymerase suitable for amplification of GC-rich DNA templates to amplify CIC-DUX4 cDNA fragments which had the same fusion point found with "grep". In conclusion, FusionMap, FusionFinder, and ChimeraScan generated a plethora of fusion transcripts but did not detect the biologically important CIC-DUX4 chimeric transcript; they are generally useful but evidently suffer from imperfect both sensitivity and specificity. The "grep" command is an excellent tool to capture chimeric transcripts from RNA sequencing data when the pathological and/or cytogenetic information strongly indicates the presence of a specific fusion gene.
ADS-B and multilateration sensor fusion algorithm for air traffic control
NASA Astrophysics Data System (ADS)
Liang, Mengchen
Air traffic is expected to increase rapidly in the next decade. But, the current Air Traffic Control (ATC) system does not meet the demand of the future safety and efficiency. The Next Generation Air Transportation System (NextGen) is a transformation program for the ATC system in the United States. The latest estimates by Federal Aviation Administration (FAA) show that by 2018 NextGen will reduce total delays in flight by 35 percent and provide 23 billion dollars in cumulative benefits. A satellite-based technology called the Automatic Dependent Surveillance-Broadcast (ADS-B) system is one of the most important elements in NextGen. FAA expects that ADS-B systems will be available in the National Airspace System (NAS) by 2020. However, an alternative surveillance system is needed due to vulnerabilities that exist in ADS-B systems. Multilateration has a high accuracy performance and is believed to be an ideal back-up strategy for ADS-B systems. Thus, in this study, we develop the ADS-B and multilateration sensor fusion algorithm for aircraft tracking applications in ATC. The algorithm contains a fault detection function for ADS-B information monitoring by using Trajectory Change Points reports from ADS-B and numerical vectors from a hybrid estimation algorithm. We consider two types of faults in the ADS-B measurement model to show that the algorithm is able to deal with the bad data from ADS-B systems and automatically select good data from multilateration systems. We apply fuzzy logic concepts and generate time variant parameters during the fusion process. The parameters play a role of weights for combining data from different sensors. The algorithm performance is validated through two aircraft tracking examples.
Hamp, Julia; Löwer, Andreas; Dottermusch-Heidel, Christine; Beck, Lothar; Moussian, Bernard; Flötenmeyer, Matthias
2016-01-01
ABSTRACT The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila. Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell–cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs. PMID:27521427
Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)
NASA Astrophysics Data System (ADS)
Allain, Jean Paul; Taylor, Chase N.
2012-05-01
The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.
The Physics of Advanced High-Gain Targets for Inertial Fusion Energy
NASA Astrophysics Data System (ADS)
Perkins, L. John
2010-11-01
In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.
Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules.
Wu, Yingjie; Frueh, Johannes; Si, Tieyan; Möhwald, Helmuth; He, Qiang
2015-02-07
In this study we investigated the effect of laser-induced membrane fusion of polyelectrolyte multilayer (PEM) based microcapsules bearing surface-attached gold nanoparticles (AuNPs) in aqueous media. We demonstrate that a dense coating of the capsules with AuNPs leads to enhanced light absorption, causing an increase of local temperature. This enhances the migration of polyelectrolytes within the PEMs and thus enables a complete fusion of two or more capsules. The encapsulated substances can achieve complete merging upon short-term laser irradiation (30 s, 30 mW @ 650 nm). The whole fusion process is followed by optical microscopy and scanning electron microscopy. In control experiments, microcapsules without AuNPs do not show a significant capsule fusion upon irradiation. It was also found that the duration of capsule fusion is affected by the density of AuNPs on the shell - the higher the density of AuNPs the shorter the fusion time. All these findings confirm that laser-induced microcapsule fusion is a new type of membrane fusion. This effect helps to study the interior exchange reactions of functional microcapsules, micro-reactors and drug transport across multilayers.
NASA Astrophysics Data System (ADS)
Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin
2015-09-01
The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
Chase: Control of Heterogeneous Autonomous Sensors for Situational Awareness
2016-08-03
remained the discovery and analysis of new foundational methodology for information collection and fusion that exercises rigorous feedback control over...simultaneously achieve quantified information and physical objectives. New foundational methodology for information collection and fusion that exercises...11.2.1. In the general area of novel stochastic systems analysis it seems appropriate to mention the pioneering work on non -Bayesian distributed learning
3D toroidal physics: Testing the boundaries of symmetry breakinga)
NASA Astrophysics Data System (ADS)
Spong, Donald A.
2015-05-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.
The Long way Towards Inertial Fusion Energy (lirpp Vol. 13)
NASA Astrophysics Data System (ADS)
Velarde, Guillermo
2016-10-01
In 1955 the first Geneva Conference was held in which two important events took place. Firstly, the announcement by President Eisenhower of the Program Atoms for Peace declassifying the information concerning nuclear fission reactors. Secondly, it was forecast that due to the research made on stellerators and magnetic mirrors, the first demo fusion facility would be in operation within ten years. This forecasting, as all of us know today, was a mistake. Forty years afterwards, we can say that probably the first Demo Reactor will be operative in some years more and I sincerely hope that it will be based on the inertial fusion concept...
Applying design principles to fusion reactor configurations for propulsion in space
NASA Technical Reports Server (NTRS)
Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.
1993-01-01
The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).
Soegaard, Rikke; Bünger, Cody E; Christiansen, Terkel; Høy, Kristian; Eiskjaer, Søren P; Christensen, Finn B
2007-10-15
Cost-utility evaluation of a randomized, controlled trial with a 4- to 8-year follow-up. To investigate the incremental cost per quality-adjusted-life-year (QALY) when comparing circumferential fusion to posterolateral fusion in a long-term, societal perspective. The cost-effectiveness of circumferential fusion in a long-term perspective is uncertain but nonetheless highly relevant as the ISSLS prize winner 2006 in clinical studies reported the effect of circumferential fusion superior to the effect of posterolateral fusion. A recent trial found no significant difference between posterolateral and circumferential fusion reporting cost-effectiveness from a 2-year viewpoint. A total of 146 patients were randomized to posterolateral or circumferential fusion and followed 4 to 8 years after surgery. The mean age of the cohort was 46 years (range, 20-65 years); 61% were females, 49% were smokers, 30% had primary diagnosis of isthmic spondylolisthesis, 35% had disc degeneration and no previous surgery, and 35% had disc degeneration and previous surgery. Eighty-two percent of patients have had symptoms for more than 2 years and 50% were out of the labor market due to sickness. The EQ-5D instrument was applied for the measurement of health-related quality of life and costs (2004 U.S. dollars) were measured in a full-scale societal perspective. Productivity costs were valued by the Friction Cost method, and both costs and effects were discounted. Arithmetic means and 95% bias-corrected, bootstrapped confidence intervals were reported. Nonparametric statistics were used for tests of statistical significance. Comprehensive sensitivity analysis was conducted and reported using cost-effectiveness acceptability curves. The circumferential group demonstrated clinical superiority over the posterolateral fusion group in functional outcome (P < 0.01), fusion rate (P < 0.04), and number of reoperations (P < 0.01) among others. Cost-utility analysis demonstrated circumferential fusion dominant over posterolateral fusion, that is, for each QALY gained performing circumferential fusion, the incremental saving was estimated at U.S. $49,306 (95% confidence interval, $27,183-$2,735,712). Results proved to be strong to various sensitivity analyses; only a differentiated underestimation of patients' need for postoperative household help against the circumferential approach could alter the dominance; however, still the probability of cost-effectiveness was >0.85 given a threshold for willingness to pay of U.S. $50,000 per QALY. Circumferential fusion is dominant over instrumented posterolateral fusion, that is, both being significantly cheaper and significantly better in a long-term, societal perspective.
2008-05-01
ch based on the fire control radar search to l o ck - o n t i m e F. Rhéaume A. Benaskeur DRDC Valcartier Defence R& D Canada...recherche visant à développer et démontrer des concepts avancés de fusion de données adaptative et de gestion de res- sources. Les systèmes C2 navals...militaires sont en grande partie appuyés par des techno- logies de fusion de données et de gestion de ressources. Le C2 naval militaire doit
Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.
Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B
2014-09-01
Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology. Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Zoledronic acid infusion for lumbar interbody fusion in osteoporosis.
Tu, Chao-Wei; Huang, Kuo-Feng; Hsu, Hsien-Ta; Li, Hung-Yu; Yang, Stephen Shei-Dei; Chen, Yi-Chu
2014-11-01
Clinical outcomes of intravenous (IV) infusion of zoledronic acid (ZOL) for lumbar interbody fusion surgery (LIFS) remain unknown. We investigated the efficacy of IV ZOL on clinical outcome and bone fusion after LIFS. We retrospectively analyzed 64 patients with both degenerative lumbar spondylolisthesis and osteoporosis who underwent LIFS from January 2007 to April 2010. All patients were followed up for 2 y. Thirty-two were treated with an IV infusion of ZOL 3 d after surgery and a second injection 1 y later, and the other 32 patients did not receive ZOL. Preoperatively and every 3 mo postoperatively, oswestry disability index questionnaire and visual analog scale (VAS) scores for back and leg were compared. Preoperative and final postoperative follow-up to evaluate for subsequent compression fractures were also performed. Pedicle screw loosening, cage subsidence, and fusion rate were documented 2 y after surgery. At 2-y follow-up, a solid fusion was achieved in 75% of the ZOL group and only 56% of the control group. At final follow up, the incidence of final subsequent vertebral compression fractures (19% of the ZOL group and 51% of the control group, P = 0.006), pedicle screw loosening (18% of the ZOL group and 45% of the control group, P = 0.03), and cage subsidence >2 mm (28% of the ZOL group and only 54% of the control group, P = 0.04) were significantly lower in the ZOL group than in the control group. The ZOL group demonstrated improvement in VAS (for leg pain VAS, 2/10 for the ZOL group and 5/10 for the control group; for back pain VAS, 2/10 for the ZOL group and 6/10 for the control group) and oswestry disability index scores (7/25 for the ZOL group and 16/25 for the control group). ZOL treatment has beneficial effects on instrumented LIFS both radiographic and clinically. Thus, ZOL treatment can be recommended for osteoporosis patients undergoing LIFS. Copyright © 2014 Elsevier Inc. All rights reserved.
HBT-EP Program: MHD Dynamics and Active Control through 3D Fields and Currents
NASA Astrophysics Data System (ADS)
Navratil, G. A.; Bialek, J.; Brooks, J. W.; Byrne, P. J.; Desanto, S.; Levesque, J. P.; Mauel, M. E.; Stewart, I. G.; Hansen, C. J.
2017-10-01
The HBT-EP active mode control research program aims to: (i) advance understanding of the effects of 3D shaping on advanced tokamak fusion performance, (ii) resolve important MHD issues associated with disruptions, and (iii) measure and mitigate the effects of 3D scrape-off layer (SOL) currents through active and passive control of the plasma edge and conducting boundary structures. Comparison of kink mode structure and RMP response in circular versus diverted plasmas shows good agreement with DCON modeling. SOL current measurements have been used to study SOL current dynamics and current-sharing with the vacuum vessel wall during kink-mode growth and disruptions. A multi-chord extreme UV/soft X-ray array is being installed to provide detailed internal mode structure information. Internal local electrodes were used to apply local bias voltage at two radial locations to study the effect of rotation profile on MHD mode rotation and stability and radial current flow through the SOL. A GPU-based low latency control system using 96 inputs and 64 outputs to apply magnetic perturbations for active control of kink modes is extended to directly control the SOL currents for kink-mode control. An extensive array of SOL current monitors and edge drive electrodes are being installed for pioneering studies of helical edge current control. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Obsessions and worry beliefs in an inpatient OCD population.
Calleo, Jessica S; Hart, John; Björgvinsson, Thröstur; Stanley, Melinda A
2010-12-01
Dysfunctional beliefs in obsessive-compulsive disorder (OCD) and worry are thought to contribute to vulnerability and maintenance of pathological anxiety. In this study, five belief domains concerning responsibility/threat estimation, perfectionism, intolerance of uncertainty, importance/control of thoughts and thought-action fusion were examined to see whether they differentially predicted worry and obsession severity in patients with severe OCD. Correlational analysis revealed that perfectionism and intolerance of uncertainty were associated with worry, whereas beliefs in the importance and control of thoughts and thought-action fusion were associated with obsession severity when obsession severity and worry, respectively, were controlled. In regression analyses, thought-action fusion and intolerance of uncertainty predicted OCD severity. The relation between dysfunctional beliefs and specific subtypes of OCD symptoms was also examined. Specific relationships were identified, including perfectionism with ordering, obsessions with control/importance of thoughts and checking and washing with threat estimation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Lee, Michael J; Dumonski, Mark; Phillips, Frank M; Voronov, Leonard I; Renner, Susan M; Carandang, Gerard; Havey, Robert M; Patwardhan, Avinash G
2011-11-01
A cadaveric biomechanical study. To investigate the biomechanical behavior of the cervical spine after cervical total disc replacement (TDR) adjacent to a fusion as compared to a two-level fusion. There are concerns regarding the biomechanical effects of cervical fusion on the mobile motion segments. Although previous biomechanical studies have demonstrated that cervical disc replacement normalizes adjacent segment motion, there is a little information regarding the function of a cervical disc replacement adjacent to an anterior cervical decompression and fusion, a potentially common clinical application. Nine cadaveric cervical spines (C3-T1, age: 60.2 ± 3.5 years) were tested under load- and displacement-control testing. After intact testing, a simulated fusion was performed at C4-C5, followed by C6-C7. The simulated fusion was then reversed, and the response of TDR at C5-C6 was measured. A hybrid construct was then tested with the TDR either below or above a single-level fusion and contrasted with a simulated two-level fusion (C4-C6 and C5-C7). The external fixator device used to simulate fusion significantly reduced range of motion (ROM) at C4-C5 and C6-C7 by 74.7 ± 8.1% and 78.1 ± 11.5%, respectively (P < 0.05). Removal of the fusion construct restored the motion response of the spinal segments to their intact state. Arthroplasty performed at C5-C6 using the porous-coated motion disc prosthesis maintained the total flexion-extension ROM to the level of the intact controls when used as a stand-alone procedure or when implanted adjacent to a single-level fusion (P > 0.05). The location of the single-level fusion, whether above or below the arthroplasty, did not significantly affect the motion response of the arthroplasty in the hybrid construct. Performing a two-level fusion significantly increased the motion demands on the nonoperated segments as compared to a hybrid TDR-plus fusion construct when the spine was required to reach the same motion end points. The spine with a hybrid construct required significantly less extension moment than the spine with a two-level fusion to reach the same extension end point. The porous-coated motion cervical prosthesis restored the ROM of the treated level to the intact state. When the porous-coated motion prosthesis was used in a hybrid construct, the TDR response was not adversely affected. A hybrid construct seems to offer significant biomechanical advantages over two-level fusion in terms of reducing compensatory adjacent-level hypermobility and also loads required to achieve a predetermined ROM.
A New Multi-Sensor Track Fusion Architecture for Multi-Sensor Information Integration
2004-09-01
NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION ...NAME(S) AND ADDRESS(ES) Lockheed Martin Aeronautical Systems Company,Marietta,GA,3063 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...tracking process and degrades the track accuracy. ARCHITECHTURE OF MULTI-SENSOR TRACK FUSION MODEL The Alpha
Cell biology. ER-to-Golgi traffic--this bud's for you.
Brittle, E E; Waters, M G
2000-07-21
How do protein-transporting vesicles, which bud from the endoplasmic reticulum (ER), specifically dock to, and fuse with, the Golgi apparatus? In their Perspective, Brittle and Waters discuss new work (Allan et al.) suggesting that some vesicle-associated docking and fusion proteins are "programmed" during vesicle budding from the ER and direct downstream events that occur during fusion of these transport vesicles with the membranes of the Golgi.
A Comprehensive Fusion Liaison Officer Program: The Arizona Model
2015-03-01
Office of Intelligence and Analysis, Office of Intelligence and Analysis Strategic Plan Fiscal Year 2011–Fiscal Year 2018 (Washington, DC: U.S...needs. The second chapter will provide a historical perspective to the reader on the creation of the post 9/11 city of Phoenix’s Liaison Officer...fusion centers’ benefit to address baseline capabilities and further benefit their home agencies. Chapter VI provides the reader recommendations and
A Physics Exploratory Experiment on Plasma Liner Formation
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter
2002-01-01
Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.
Segment fusion of ToF-SIMS images.
Milillo, Tammy M; Miller, Mary E; Fischione, Remo; Montes, Angelina; Gardella, Joseph A
2016-06-08
The imaging capabilities of time-of-flight secondary ion mass spectrometry (ToF-SIMS) have not been used to their full potential in the analysis of polymer and biological samples. Imaging has been limited by the size of the dataset and the chemical complexity of the sample being imaged. Pixel and segment based image fusion algorithms commonly used in remote sensing, ecology, geography, and geology provide a way to improve spatial resolution and classification of biological images. In this study, a sample of Arabidopsis thaliana was treated with silver nanoparticles and imaged with ToF-SIMS. These images provide insight into the uptake mechanism for the silver nanoparticles into the plant tissue, giving new understanding to the mechanism of uptake of heavy metals in the environment. The Munechika algorithm was programmed in-house and applied to achieve pixel based fusion, which improved the spatial resolution of the image obtained. Multispectral and quadtree segment or region based fusion algorithms were performed using ecognition software, a commercially available remote sensing software suite, and used to classify the images. The Munechika fusion improved the spatial resolution for the images containing silver nanoparticles, while the segment fusion allowed classification and fusion based on the tissue types in the sample, suggesting potential pathways for the uptake of the silver nanoparticles.
Programming chemistry in DNA-addressable bioreactors
Fellermann, Harold; Cardelli, Luca
2014-01-01
We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. PMID:25121647
Hadi, B A; Al Ramadani, R; Daas, R; Naylor, I; Zelkó, R
2010-08-01
This study is aimed at conducting a program for two different anesthetic methods used during a spinal fusion surgery to ensure better intra-operative hemodynamic stability and post-operative pain control. A prospective, randomized, double blind study in patients scheduled for spinal fusion surgery, who were randomly allocated to two groups, G1 and G2, (n = 15 per group), class I-II ASA, was carried out. Both groups received pre-operatively midazolam, followed intra-operatively by propofol, sevoflurane, atracurium, and either remifentanil infusion 0.2 microg/kg/min (G1), or the same dose of remifentanil infusion and low doses of ketamine infusion 1 microg/kg/min (G2) anesthetics, antidote medication and post-operative morphine doses. HR, MAP, vital signs, surgical bleeding, urine output, duration of surgery and duration of anesthesia were recorded. In a 24-h recovery period in a post-anesthesia care unit (PACU) the recovery time, the first pain score and analgesic requirements were measured. Intra-operative HR and arterial BP were significantly less (p < 0.05) in G1 as compared to G2. In the PACU the first pain scores were significantly less (p < 0.05) in G2 than in G1. The time for the first patient analgesia demand dose was greater in G2, as also morphine consumption which was greater in G1 than G2 (p < 0.05). Other results were the same. None of the patients had any adverse drug reaction. Adding low doses of ketamine hydrochloride could be a routine therapy to improve the hemodynamic stability and reduce the post-operative morphine consumption during spinal fusion surgery.
Menger, Richard P; Wolf, Michael E; Kukreja, Sunil; Sin, Anthony; Nanda, Anil
2015-01-01
Medicare data showing physician-specific reimbursement for 2012 were recently made public in the mainstream media. Given the ongoing interest in containing healthcare costs, we analyze these data in the context of the delivery of spinal surgery. Demographics of 206 leading surgeons were extracted including state, geographic area, residency training program, fellowship training, and academic affiliation. Using current procedural terminology (CPT) codes, information was evaluated regarding the number of lumbar laminectomies, lumbar fusions, add-on laminectomy levels, and anterior cervical fusions reimbursed by Medicare in 2012. In 2012 Medicare reimbursed the average neurosurgeon slightly more than an orthopedic surgeon for all procedures ($142,075 vs. $110,920), but this was not found to be statistically significant (P = 0.218). Orthopedic surgeons had a statistical trend illustrating increased reimbursement for lumbar fusions specifically, $1187 versus $1073 (P = 0.07). Fellowship trained spinal surgeons also, on average, received more from Medicare ($125,407 vs. $76,551), but again this was not statistically significant (P = 0.112). A surgeon in private practice, on average, was reimbursed $137,495 while their academic counterparts were reimbursed $103,144 (P = 0.127). Surgeons performing cervical fusions in the Centers for Disease Control West Region did receive statistically significantly less reimbursement for that procedure then those surgeons in other parts of the country (P = 0.015). Surgeons in the West were reimbursed on average $849 for CPT code 22,551 while those in the Midwest received $1475 per procedure. Medicare reimbursement data are fundamentally flawed in determining healthcare expenditure as it shows a bias toward delivery of care in specific patient demographics. However, neurosurgeons, not just policy makers, must take ownership to analyze, investigate, and interpret these data as it will affect healthcare reimbursement and delivery moving forward.
Fusion pores and their control of neurotransmitter and hormone release
Chang, Che-Wei; Chiang, Chung-Wei
2017-01-01
Ca2+-triggered exocytosis functions broadly in the secretion of chemical signals, enabling neurons to release neurotransmitters and endocrine cells to release hormones. The biological demands on this process can vary enormously. Although synapses often release neurotransmitter in a small fraction of a millisecond, hormone release can be orders of magnitude slower. Vesicles usually contain multiple signaling molecules that can be released selectively and conditionally. Cells are able to control the speed, concentration profile, and content selectivity of release by tuning and tailoring exocytosis to meet different biological demands. Much of this regulation depends on the fusion pore—the aqueous pathway by which molecules leave a vesicle and move out into the surrounding extracellular space. Studies of fusion pores have illuminated how cells regulate secretion. Furthermore, the formation and growth of fusion pores serve as a readout for the progress of exocytosis, thus revealing key kinetic stages that provide clues about the underlying mechanisms. Herein, we review the structure, composition, and dynamics of fusion pores and discuss the implications for molecular mechanisms as well as for the cellular regulation of neurotransmitter and hormone release. PMID:28167663
Developing DIII-D To Prepare For ITER And The Path To Fusion Energy
NASA Astrophysics Data System (ADS)
Buttery, Richard; Hill, David; Solomon, Wayne; Guo, Houyang; DIII-D Team
2017-10-01
DIII-D pursues the advancement of fusion energy through scientific understanding and discovery of solutions. Research targets two key goals. First, to prepare for ITER we must resolve how to use its flexible control tools to rapidly reach Q =10, and develop the scientific basis to interpret results from ITER for fusion projection. Second, we must determine how to sustain a high performance fusion core in steady state conditions, with minimal actuators and a plasma exhaust solution. DIII-D will target these missions with: (i) increased electron heating and balanced torque neutral beams to simulate burning plasma conditions (ii) new 3D coil arrays to resolve control of transients (iii) off axis current drive to study physics in steady state regimes (iv) divertors configurations to promote detachment with low upstream density (v) a reactor relevant wall to qualify materials and resolve physics in reactor-like conditions. With new diagnostics and leading edge simulation, this will position the US for success in ITER and a unique knowledge to accelerate the approach to fusion energy. Supported by the US DOE under DE-FC02-04ER54698.
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Yeongseon; Choi, Won Tae; Heller, William T.
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...
2017-07-27
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.
Holm, Christian K; Rahbek, Stine H; Gad, Hans Henrik; Bak, Rasmus O; Jakobsen, Martin R; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K; Sun, Chenglong; Thomsen, Martin K; Laustsen, Anders; Nielsen, Camilla G; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R
2016-02-19
Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.
NASA Astrophysics Data System (ADS)
Granda, Luis; Rivera, Maria; Velasquez, Colon; Barona, Diego; Carpintero, Natalia
2014-05-01
At the present time, rare earth elements deposits have became in strategic resources for extraction of raw materials in order to manufacture high tech devices (computers, LCD, cell phones, batteries for hybrid vehicles, fiber optics and wind turbines) (1).The appropriate analytical determination of the REE ( rare earth elements) in sediment and rock samples , is important to find potential deposits and to recognize geological environments for identifying possible alterations and mineral occurrences. The alkaline fusion, which aim is to move the entire sample from solid to liquid state by forming water soluble complexes of boron and lithium, as a previous procedure for the determination of these elements, usually takes a lot of time due to the complexity of the analysis phase and by the addition of other reagents (Tm and HF ) (2) to compensate the lack of strict temperature control. The objective of this work is to develop an efficient alternative to alkaline digestion using an electrical fusion machine, which allows to create temperature programs with advanced process control and supports up to 5 samples simultaneously, which generates a reproducibility of the method and results during the melting step. Additionally, this new method permits the processing of a larger number of samples in a shorter time. The samples analyzed in this method were weighed into porcelain crucibles and subjected to calcination for 4 hours at 950 ° C in order to determine the Lost on Ignition (LOI ) , that serves to adjust the analytical results and to preserve the shelf life of the platinum ware. Subsequently, a fraction of the calcined sample was weighed into platinum crucibles and mixed with ultra-pure lithium metaborate ( flux ) 1:4 . The crucible was then placed in the fusion machine, which was programmed to take the sample from room temperature to 950 ° C in five minutes, make a small ramp to 970 ° C maintain that temperature for five minutes and download the melt in a 10 % v / v nitric acid solution . After an incorporation time, a fraction of this sample was then diluted 20 times in ultrapure deionized water ( resistivity greater 18.2 megohms / cm ). The diluted sample was analized in the ICP- MS, which was setted in high sensitivity mode. The results were compared through cross samples (the same samples tested in the laboratory were sent to another international laboratory, which works under accreditation ISO 17025 ) and no major deviations (5%) was obtained by making comparisons between the two laboratories. When comparing the results and evaluated the development of the art, it is concluded that this is an alternative that allows performing samples up to 50 alkaline fusions per day with great accuracy, saving resources and time. References: (1) British Geological Survey, Natural Environment Research Council, , Minerals UK Centre of Sustainable mineral development: Rare Earth Elements, p18-22, 2011 (2) Germain Bayon, Jean Alix Barrat, Joel Etoubleau, Mathieu Benoit ,Claire Bollinger, and Sidonie Revillon: Determination of Rare Earth Elements, Sc, Y, Zr, Ba, Hf and Th in Geological Samples by ICP-MS after Tm Addition and Alkaline Fusion, Geostandards and Geoanalytical Research, vol 33-N1, p51-62, 2008
Quality dependent fusion of intramodal and multimodal biometric experts
NASA Astrophysics Data System (ADS)
Kittler, J.; Poh, N.; Fatukasi, O.; Messer, K.; Kryszczuk, K.; Richiardi, J.; Drygajlo, A.
2007-04-01
We address the problem of score level fusion of intramodal and multimodal experts in the context of biometric identity verification. We investigate the merits of confidence based weighting of component experts. In contrast to the conventional approach where confidence values are derived from scores, we use instead raw measures of biometric data quality to control the influence of each expert on the final fused score. We show that quality based fusion gives better performance than quality free fusion. The use of quality weighted scores as features in the definition of the fusion functions leads to further improvements. We demonstrate that the achievable performance gain is also affected by the choice of fusion architecture. The evaluation of the proposed methodology involves 6 face and one speech verification experts. It is carried out on the XM2VTS data base.
Levin, David A; Bendo, John A; Quirno, Martin; Errico, Thomas; Goldstein, Jeffrey; Spivak, Jeffrey
2007-12-01
This is a retrospective, independent study comparing 2 groups of patients treated surgically for discogenic low back pain associated with degenerative disc disease (DDD) in the lumbosacral spine. To compare the surgical and hospitalization charges associated with 1- and 2-level lumbar total disc replacement and circumferential lumbar fusion. Reported series of lumbar total disc replacement have been favorable. However, economic aspects of lumbar total disc replacement (TDR) have not been published or studied. This information is important considering the recent widespread utilization of new technologies. Recent studies have demonstrated comparable short-term clinical results between TDR and lumbar fusion recipients. Relative charges may be another important indicator of the most appropriate procedure. We report a hospital charge-analysis comparing ProDisc lumbar disc replacement with circumferential fusion for discogenic low back pain. In a cohort of 53 prospectively selected patients with severe, disabling back pain and lumbar disc degeneration, 36 received Synthes ProDisc TDR and 17 underwent circumferential fusion for 1- and 2-level degenerative disc disease between L3 and S1. Randomization was performed using a 2-to-1 ratio of ProDisc recipients to control spinal fusion recipients. Charge comparisons, including operating room charges, inpatient hospital charges, and implant charges, were made from hospital records using inflation-corrected 2006 U.S. dollars. Operating room times, estimated blood loss, and length of stay were obtained from hospital records as well. Surgeon and anesthesiologist fees were, for the purposes of comparison, based on Medicare reimbursement rates. Statistical analysis was performed using a 2-tailed Student t test. For patients with 1-level disease, significant differences were noted between the TDR and fusion control group. The mean total charge for the TDR group was $35,592 versus $46,280 for the fusion group (P = 0.0018). Operating room charges were $12,000 and $18,950, respectively, for the TDR and fusion groups (P < 0.05). Implant charges averaged $13,990 for the fusion group, which is slightly higher than the $13,800 for the ProDisc (P = 0.9). Estimated blood loss averaged 794 mL in the fusion group versus 412 mL in the TDR group (P = 0.0058). Mean OR minutes averaged 344 minutes for the fusion group and 185 minutes for the TDR (P < 0.05) Mean length of stay was 4.78 days for fusion versus 4.32 days for TDR (P = 0.394). For patients with 2-level disease, charges were similar between the TDR and fusion groups. The mean total charge for the 2-level TDR group was $55,524 versus $56,823 for the fusion group (P = 0.55). Operating room charges were $15,340 and $20,560, respectively, for the TDR and fusion groups (P = 0.0003). Surgeon fees and anesthesiologist charges based on Medicare reimbursement rates were $5857 and $525 for the fusion group, respectively, versus $2826 and $331 for the TDR group (P < 0.05 for each). Implant charges were significantly lower for the fusion group (mean, $18,460) than those for 2-level Synthes ProDisc ($27,600) (P < 0.05). Operative time averaged 387 minutes for fusion versus 242 minutes for TDR (P < 0.0001). EBL and length of stay were similar. Patients undergoing 1- and 2-level ProDisc total disc replacement spent significantly less time in the OR and had less EBL than controls. Charges were significantly lower for TDR compared with circumferential fusions in the 1-level patient group, while charges were similar in the 2-level group.
A Multiplexed Amplicon Approach for Detecting Gene Fusions by Next-Generation Sequencing.
Beadling, Carol; Wald, Abigail I; Warrick, Andrea; Neff, Tanaya L; Zhong, Shan; Nikiforov, Yuri E; Corless, Christopher L; Nikiforova, Marina N
2016-03-01
Chromosomal rearrangements that result in oncogenic gene fusions are clinically important drivers of many cancer types. Rapid and sensitive methods are therefore needed to detect a broad range of gene fusions in clinical specimens that are often of limited quantity and quality. We describe a next-generation sequencing approach that uses a multiplex PCR-based amplicon panel to interrogate fusion transcripts that involve 19 driver genes and 94 partners implicated in solid tumors. The panel also includes control assays that evaluate the 3'/5' expression ratios of 12 oncogenic kinases, which might be used to infer gene fusion events when the partner is unknown or not included on the panel. There was good concordance between the solid tumor fusion gene panel and other methods, including fluorescence in situ hybridization, real-time PCR, Sanger sequencing, and other next-generation sequencing panels, because 40 specimens known to harbor gene fusions were correctly identified. No specific fusion reads were observed in 59 fusion-negative specimens. The 3'/5' expression ratio was informative for fusions that involved ALK, RET, and NTRK1 but not for BRAF or ROS1 fusions. However, among 37 ALK or RET fusion-negative specimens, four exhibited elevated 3'/5' expression ratios, indicating that fusions predicted solely by 3'/5' read ratios require confirmatory testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan, Vladislav Alexander
Contents: H. Berk: Frequency Sweeping Due to Phase Space Structure Formation in Plasmas M. Campbell : The Legacy of Marshall Rosenbluth in the Development of the Laser Fusion Program in the United States J. Candy: Gyrokinetic Simulations of Fusion Plasmas P. Diamond: The Legacy of Marshall Rosenbluth in Magnetic Confinement Theory G-Y. Fu: Nonlinear Hybrid Simulations of Multiple Energetic Particle Driven Alfven Modes in Toroidal Plasmas O. Gurcan: Theory of Intrinsic Rotation and Momentum Transport V. L. Jacobs: Kinetic and Spectral Descriptions for Atomic Processes in Astrophysical and Laboratory Plasmas C. F. Kennel: Marshall Rosenbluth and Roald Sagdeev in Trieste:Themore » Birth of Modern Space Plasma N. A. Krall: The Contribution of Marshall Rosenbluth in the Development of Plasma Drift Wave and Universal Instability Theories C. S. Liu: The Legacy of Marshall Rosenbluth in Laser-Plasma Interaction Research N. Rostoker: Plasma Physics Research With Marshall Rosenbluth - My Teacher R. Z. Sagdeev: The Legacy of Marshall Rosenbluth in Plasma Physics V. Alexander Stefan A Note on the Rosenbluth Paper: Phys. Rev. Letters, 29, 565 (1972), and the Research in Parametric Plasma Theory Thereupon J. W. Van Dam: The Role of Marshall Rosenbluth in the Development of the Thermonuclear Fusion Program in the U.S.A. E. P. Velikhov: Problems in Plasma Astrophysics R. White: The Role of Marshall Rosenbluth in the Development of the Particle and MHD Interaction in Plasmas X. Xu: Edge Gyrokinetic Theory and Continuum Simulations Marshall Nicholas ROSENBLUTH (A Brief Biography) b. February 5,1927 - Albany, New York. d. September 28, 2003 - San Diego, California. M. N. Rosenbluth, a world-acclaimed scientist, is one of the ultimate authorities in plasma and thermonuclear fusion research, often indicated by the sobriquet the "Pope of Plasma Physics." His theoretical contributions have been central to the development of controlled thermonuclear fusion. In the 1950s his pioneering work in plasma instabilities, together with pioneering works of A. Sakharov, I. Tamm, L. Spitzer, Jr., L. A. Artsimovich, and others, led to the design of the TOKAMAK, the principal configuration used for contemporary magnetic fusion experiments. In addition to his research achievements, he has made significant administrative contributions as a scientific advisor in the fields of energy policy and national defense. He is the founder and the first director of The Institute for Fusion Studies at Austin, Texas. M. N. Rosenbluth has been the recipient of the E. O. Lawrence Memorial Award (1964),the Albert Einstein Award (1967),the James Clerk Maxwell prize in Plasma Physics(1976),and the Enrico Fermi Award (1986). M. N. Rosenbluth had been Science Advisor for the INSTITUTE for ADVANCED PHYSICS STUDIES (presently a division of The Stefan University) since 1989. He is the editor-in-chief of the FSRC, (Frontier Science Research Conferences) Book: "NEW IDEAS in TOKAMAK CONFINEMENT" Published by the American Institute of Physics (August 1994) in the Research Trends in Physics Series founded and edited by V. Alexander Stefan in 1989. M. N. Rosenbluth was a member of the American Academy of Arts and Sciences and the National Academy of Sciences of the USA, a Professor Emeritus at the University of California, San Diego, and a Senior Scientist at General Atomics, San Diego.« less
Shin, John I; Phan, Kevin; Kothari, Parth; Kim, Jun S; Guzman, Javier Z; Cho, Samuel K
2017-08-01
This is a retrospective analysis of administrative database. To elucidate the effect of glycemic control on surgical outcomes of middle-aged and elderly idiopathic scoliosis patients undergoing spinal fusion surgery. Diabetes mellitus (DM) is a condition thought to adversely affect outcomes of spine surgery. However, no study has stratified glycemic control levels and their impact on outcome for idiopathic scoliosis patients receiving a spinal fusion surgery. Previous studies may have reported higher than true rates of complications for controlled diabetic patients, who are the majority of diabetic patients. The Nationwide Inpatient Sample was queried from years 2002 to 2011. We extracted idiopathic scoliosis patients older than 45 years of age that received spinal fusion and analyzed complications and outcomes variables among 3 cohorts: nondiabetic patients, controlled diabetics, and uncontrolled diabetics. Multivariate analyses were used to assess whether glycemic control was a risk factor for adverse postoperative outcomes. Controlled diabetics had significantly increased rates of acute renal failure (ARF), while uncontrolled diabetics had significantly increased rates of acute postoperative hemorrhage. In multivariate analyses controlling for patient factors and comorbidities, controlled DM was found to be an independent predictor of ARF [odds ratio (OR), 1.863; 95% confidence interval (CI), 1.346-2.579; P=0.0002), and uncontrolled DM was found to be a significant risk factor for acute postoperative hemorrhage (OR, 2.182; 95% CI, 1.192-3.997; P=0.0115), ARF (OR, 4.839; 95% CI, 1.748-13.392; P=0.0024), deep vein thrombosis (OR, 5.825; 95% CI, 1.329-25.522, P=0.0194) and in-patient mortality (OR, 8.889; 95% CI, 1.001-78.945; P=0.0499). Controlled DM was found to be a risk factor for ARF in adult idiopathic scoliosis patients undergoing spinal fusion surgery, while uncontrolled DM was shown to be a risk factor for postoperative hemorrhage, ARF, deep vein thrombosis, and mortality. The present study provides valuable data for better informed consent for patients with diabetes considering surgery for idiopathic scoliosis. Level III.
Ryu, Robert; Techy, Fernando; Varadarajan, Ravikumar; Amirouche, Farid
2016-02-01
To study effects (stress loads) of lumbar fusion on the remaining segments (adjacent or not) of the lumbar spine in the setting of degenerated adjacent discs. A lumbar spine finite element model was built and validated. The full model of the lumbar spine was a parametric finite element model of segments L 1-5 . Numerous hypothetical combinations of one-level lumbar spine fusion and one-level disc degeneration were created. These models were subjected to 10 Nm flexion and extension moments and the stresses on the endplates and consequently on the intervertebral lumbar discs measured. These values were compared to the stresses on healthy lumbar spine discs under the same load and fusion scenarios. Increased stress at endplates was observed only in the settings of L4-5 fusion and L3-4 disc degeneration (8% stress elevation at L2,3 in flexion or extension, and 25% elevation at L3,4 in flexion only). All other combinations showed less endplate stress than did the control model. For fusion at L3-4 and degeneration at L4-5 , the stresses in the endplates at the adjacent level inferior to the fused disc decreased for both loading disc height reductions. Stresses in flexion decreased after fusion by 29.5% and 25.8% for degeneration I and II, respectively. Results for extension were similar. For fusion at L2-3 and degeneration at L4-5 , stresses in the endplates decreased more markedly at the degenerated (30%), than at the fused level (14%) in the presence of 25% disc height reduction and 10 Nm flexion, whereas in extension stresses decreased more at the fused (24.3%) than the degenerated level (5.86%). For fusion at L3-4 and degeneration at L2-3 , there were no increases in endplate stress in any scenario. For fusion at L4-5 and degeneration at L3-4 , progression of degeneration from I to II had a significant effect only in flexion. A dramatic increase in stress was noted in the endplates of the degenerated disc (L3-4 ) in flexion for degeneration II. Stresses are greater in flexion at the endplates of L3-4 and in flexion and extension at L2-3 in the presence of L3-4 disc disease and L4-5 fusion than in the control group. In all other combinations of fusion and disc disease, endplate stress was less for all levels tested than in the control model. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.
Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less
Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; ...
2017-02-26
Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less
Fusion energy for space missions in the 21st century: Executive summary
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1991-01-01
Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.
NASA Astrophysics Data System (ADS)
Armes, James L.
In order to develop successful cryopreservation protocols for various biological materials, it is necessary to determine the thermodynamic properties of nanoliter- scale biological samples: ranging from heat capacity to heat of fusion. Differential thermal analysis is a calorimetric technique which is efficacious at determining these thermodynamic properties and will help lend insight into the formation of intracellular ice which depends heavily on the rate at which the sample is cooled. If too much intracellular ice is formed during the cooling process, the biological material can be destroyed. To investigate the effects of a range of cooling and warming rates on a cell, a control system and data acquisition software has been developed for use with a custom microfabricated differential thermal analyzer (muDTA). Utilizing either an a-priori prediction of the muDTA's thermal response or an integrated software-based PID control system, the program developed allows for precise control over the cooling and warming rate of the muDTA. In order to enhance the accuracy of the a-priori predicted current profile, a 2D numeric model was developed of the muDTA. This model also has allowed for geometric optimization to be performed on the next generation prototype of the muDTA. The muDTA has been shown to accurately measure the freezing point and heat of fusion of deionized water samples, with sample volumes on the order of nanoliters. The heat capacity of dimethyl sulfoxide (DMSO) has also been experimentally determined.
A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity.
York, Joanne; Nunberg, Jack H
2018-01-01
For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.
Advances in the physics basis for the European DEMO design
NASA Astrophysics Data System (ADS)
Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.
2015-06-01
In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.
2017-07-31
Studies on Phase Transformations and Mechanical Properties of Fusion Welds in Advanced Naval Steels Sb. GRANT NUMBER N00014-12-1-0475 Sc. PROGRAM...naval and structural applications. However, prior to this research project, a fundamental understanding of the phase transformation behavior under the...Steel, Phase Transformations 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER a. REPORT b.ABSTRACT c. THIS PAGE ABSTRACT OF PAGES u u
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containment and inertial plasma compression are being pursued in distinctively different fusion experiments in the terrestrial fusion power program. Fusion schemes that attempt to combine the favorable attributes of these two aspects into one single integrated fusion scheme appear to have benefits that are worth exploring for propulsion application.
Dysregulation of haematopoietic stem cell regulatory programs in acute myeloid leukaemia.
Basilico, Silvia; Göttgens, Berthold
2017-07-01
Haematopoietic stem cells (HSC) are situated at the apex of the haematopoietic differentiation hierarchy, ensuring the life-long supply of mature haematopoietic cells and forming a reservoir to replenish the haematopoietic system in case of emergency such as acute blood loss. To maintain a balanced production of all mature lineages and at the same time secure a stem cell reservoir, intricate regulatory programs have evolved to control multi-lineage differentiation and self-renewal in haematopoietic stem and progenitor cells (HSPCs). Leukaemogenic mutations commonly disrupt these regulatory programs causing a block in differentiation with simultaneous enhancement of proliferation. Here, we briefly summarize key aspects of HSPC regulatory programs, and then focus on their disruption by leukaemogenic fusion genes containing the mixed lineage leukaemia (MLL) gene. Using MLL as an example, we explore important questions of wider significance that are still under debate, including the importance of cell of origin, to what extent leukaemia oncogenes impose specific regulatory programs and the relevance of leukaemia stem cells for disease development and prognosis. Finally, we suggest that disruption of stem cell regulatory programs is likely to play an important role in many other pathologies including ageing-associated regenerative failure.
Real-time MSE measurements for current profile control on KSTAR.
De Bock, M F M; Aussems, D; Huijgen, R; Scheffer, M; Chung, J
2012-10-01
To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm.
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Lee, R. L.
1999-11-01
The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.
General software design for multisensor data fusion
NASA Astrophysics Data System (ADS)
Zhang, Junliang; Zhao, Yuming
1999-03-01
In this paper a general method of software design for multisensor data fusion is discussed in detail, which adopts object-oriented technology under UNIX operation system. The software for multisensor data fusion is divided into six functional modules: data collection, database management, GIS, target display and alarming data simulation etc. Furthermore, the primary function, the components and some realization methods of each modular is given. The interfaces among these functional modular relations are discussed. The data exchange among each functional modular is performed by interprocess communication IPC, including message queue, semaphore and shared memory. Thus, each functional modular is executed independently, which reduces the dependence among functional modules and helps software programing and testing. This software for multisensor data fusion is designed as hierarchical structure by the inheritance character of classes. Each functional modular is abstracted and encapsulated through class structure, which avoids software redundancy and enhances readability.
Overview of Heavy Ion Fusion Accelerator Research in the U. S.
NASA Astrophysics Data System (ADS)
Friedman, Alex
2002-12-01
This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.
Generic Stellarator-like Magnetic Fusion Reactor
NASA Astrophysics Data System (ADS)
Sheffield, John; Spong, Donald
2015-11-01
The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.
An acceleration system for Laplacian image fusion based on SoC
NASA Astrophysics Data System (ADS)
Gao, Liwen; Zhao, Hongtu; Qu, Xiujie; Wei, Tianbo; Du, Peng
2018-04-01
Based on the analysis of Laplacian image fusion algorithm, this paper proposes a partial pipelining and modular processing architecture, and a SoC based acceleration system is implemented accordingly. Full pipelining method is used for the design of each module, and modules in series form the partial pipelining with unified data formation, which is easy for management and reuse. Integrated with ARM processor, DMA and embedded bare-mental program, this system achieves 4 layers of Laplacian pyramid on the Zynq-7000 board. Experiments show that, with small resources consumption, a couple of 256×256 images can be fused within 1ms, maintaining a fine fusion effect at the same time.
Relevance of advanced nuclear fusion research: Breakthroughs and obstructions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppi, Bruno, E-mail: coppi@mit.edu
2016-03-25
An in depth understanding of the collective modes that can be excited in a wide range of high-energy plasmas is necessary to advance nuclear fusion research in parallel with other fields that include space and astrophysics in particular. Important achievements are shown to have resulted from implementing programs based on this reality, maintaining a tight connection with different areas of investigations. This involves the undertaking of a plurality of experimental approaches aimed at understanding the physics of fusion burning plasmas. At present, the most advanced among these is the Ignitor experiment involving international cooperation, that is designed to investigate burningmore » plasma regimes near ignition for the first time.« less
Overview of FAR-TECH's magnetic fusion energy research
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.
2017-10-01
FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.
Magnetized Target Fusion in Advanced Propulsion Research
NASA Technical Reports Server (NTRS)
Cylar, Rashad
2003-01-01
The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the underlying principles involved in MTF. Magnetized Target Fusion is an attempt to combine MCF (magnetic confinement fusion) for energy confinement and ICF (inertial confinement fusion) for efficient compression heating and wall free containment of the fusing plasma. It also seeks to combine the best features to these two main commonplace approaches to fusion.
Preliminary Comparison of Radioactive Waste Disposal Cost for Fusion and Fission Reactors
NASA Astrophysics Data System (ADS)
Seki, Yasushi; Aoki, Isao; Yamano, Naoki; Tabara, Takashi
1997-09-01
The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a fission reactor has been evaluated and compared. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. The exposure doses were evaluated for the skyshine of gamma-ray during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical light water fission reactor was evaluated using the same methodology as for the fusion reactors. It is found that radwaste from the fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to the low level waste in Japan. The disposal cost of radwaste from five fusion power reactors and a typical light water reactor were roughly evaluated and compared.
Control of mechanically activated polymersome fusion: Factors affecting fusion
Henderson, Ian M.; Paxton, Walter F.
2014-12-15
Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less
Yan, Bin; Nie, Lin
2015-01-01
the aim of the study was to compare the clinical effect of Zero-profile interbody fusion device (Zero-P) with anterior cervical plate interbody fusion system (PCB) in treating cervical spondylosis. a total of 98 patients with cervical spondylosis (110 segments) in February 2011 to January 2013 were included in our hospital. All participants were randomly divided into observation group and control group with 49 cases in each group. The observation group was treated with Zero-P, while the control group received PCB treatment. Comparison of the two groups in neurological function score (JOA), pain visual analogue scale (VAS), the neck disability index (NDI), quality of life score (SF-36) and cervical curvature (Cobb angle) change were recorded and analyzed before and after treatment. The observation group was found with 90% excellent and good rate, which was higher than that of the control group (80%). Dysphagia rate in observational group was 16.33% (8/49), which was significantly less than that in control group (46.94%). Operation time and bleeding volume in the observation group was less than those in control group. Postoperative improvements of JOA score, VAS score, and NDI in observational group were also significantly better than that in control group (P<0.05). The clinical effect of Zero-P and PCB for the treatment of cervical spondylosis was quite fair, but Zero-P showed a better therapeutic effect with improvement of life quality.
Arthroscopic partial wrist fusion.
Ho, Pak-Cheong
2008-12-01
The wide intraarticular exposure of the wrist joint under arthroscopic view provides an excellent ground for various forms of partial wrist fusion. Combining with percutaneous fixation technique, arthroscopic partial wrist fusion can potentially generate the best possible functional outcome by preserving the maximal motion pertained with each type of partial wrist fusion because the effect of extraarticular adhesion associated with open surgery can be minimized. From November 1997 to May 2008, the author had performed 12 cases of arthroscopic partial wrist fusion, including scaphotrapeziotrapezoid fusion in 3, scaphoidectomy and 4-corner fusion in 4, radioscapholunate fusion in 3, radiolunate fusion in 1, and lunotriquetral fusion in 1 case. Through the radiocarpal or midcarpal joint, the corresponding articular surfaces were denuded of cartilage using arthroscopic burr and curette. Carpal bones involved in the fusion process were then transfixed with K wires percutaneously after alignment corrected and confirmed under fluoroscopic control. Autogenous cancellous bone graft or bone substitute were inserted and impacted to the fusion site through cannula under direct arthroscopic view. Final fixation could be by multiple K wires or cannulated screw system. Early mobilization was encouraged. Surgical complications were minor, including pin tract infection, skin burn, and delay union in 1 case. Uneventful radiologic union was obtained in 9 cases, stable fibrous union in 2, and nonunion in 1. The average follow-up period was 70 months. Symptom was resolved or improved, and functional motion was gained in all cases. All surgical scars were almost invisible, and aesthetic outcome was excellent.
NASA Astrophysics Data System (ADS)
Sheffield, J.
1981-08-01
For a specific configuration of magnetic field and plasma to be economically attractive as a commercial source of energy, it must contain a high-pressure plasma in a stable fashion while thermally isolating the plasma from the walls of the containment vessel. The tokamak magnetic configuration is presently the most successful in terms of reaching the considered goals. Tokamaks were developed in the USSR in a program initiated in the mid-1950s. By the early 1970s tokamaks were operating not only in the USSR but also in the U.S., Australia, Europe, and Japan. The advanced state of the tokamak program is indicated by the fact that it is used as a testbed for generic fusion development - for auxiliary heating, diagnostics, materials - as well as for specific tokamak advancement. This has occurred because it is the most economic source of a large, reproducible, hot, dense plasma. The basic tokamak is considered along with tokamak improvements, impurity control, additional heating, particle and power balance in a tokamak, aspects of microscopic transport, and macroscopic stability.
FY14 LLNL OMEGA Experimental Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, R. F.; Fournier, K. B.; Baker, K.
In FY14, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 324 target shots in FY14, with 246 shots using just the OMEGA laser system, 62 shots using just the EP laser system, and 16 Joint shots using Omega and EP together. Approximately 31% of the total number of shots (62 OMEGA shots, 42 EP shots) shots supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID).more » The remaining 69% (200 OMEGA shots and 36 EP shots, including the 16 Joint shots) were dedicated to experiments for High- Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less
Fusion Energy Sciences Network Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dart, Eli; Tierney, Brian
2012-09-26
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Officemore » of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.« less
FY15 LLNL OMEGA Experimental Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, R. F.; Baker, K. L.; Barrios, M. A.
In FY15, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 468 target shots in FY15, with 315 shots using just the OMEGA laser system, 145 shots using just the EP laser system, and 8 Joint shots using Omega and EP together. Approximately 25% of the total number of shots (56 OMEGA shots and 67 EP shots, including the 8 Joint shots) supported the Indirect Drivemore » Inertial Confinement Fusion Campaign (ICF-ID). The remaining 75% (267 OMEGA shots and 86 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less
An Overview of Research and Design Activities at CTFusion
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Jarboe, T. R.; Hossack, A. C.
2016-10-01
CTFusion, a newly formed company dedicated to the development of compact, toroidal fusion energy, is a spin-off from the University of Washington that will build upon the successes of the HIT-SI research program. The mission of the company to develop net-gain fusion power cores that will serve as the heart of economical fusion power plants or radioactive-waste destroying burner reactors. The overarching vision and development plan of the company will be presented, along with a detailed justification and design for our next device, the HIT-TD (Technology Demonstration) prototype. By externally driving the edge current and imposing non-axisymmetric magnetic perturbations, HIT-TD should demonstrate the sustainment of stable spheromak configurations with Imposed-Dynamo Current Drive (IDCD), as was accomplished in the HIT-SI device, with higher current gains and temperatures than previously possible. HIT-TD, if successful, will be an instrumental step along this path to economical fusion energy, and will serve as the stepping stone to our Proof-Of-Principle device (HIT-PoP). Beyond the implications of higher performance, sustained spheromaks for fusion applications, the HIT-TD platform will provide a unique system to observe plasma self-organizational phenomena of interest for other fusion devices, and astrophysical systems as well. Lastly, preliminary nuclear engineering design simulations with the MCNP6 code of the HIT-FNSF (Fusion Nuclear Science Facility) device will be presented.
Geisler, Fred H; Blumenthal, Scott L; Guyer, Richard D; McAfee, Paul C; Regan, John J; Johnson, J Patrick; Mullin, Bradford
2004-09-01
Arthrodesis is the gold standard for surgical treatment of lumbar degenerative disc disease (DDD). Solid fusion, however, can cause stress and increased motion in the segments adjacent to the fused level. This may initiate and/or accelerate the adjacent-segment disease process. Artificial discs are designed to restore and maintain normal motion of the lumbar intervertebral segment. Restoring and maintaining normal motion of the segment reduces stresses and loads on adjacent level segments. A US Food and Drug Administration Investigational Device Exemptions multicentered study of the Charité artificial disc was completed. The control group consisted of individuals who underwent anterior lumbar interbody fusion involving BAK cages and iliac crest bone graft. This is the first report of Class I data in which a lumbar artificial disc is compared with lumbar fusion. Of 304 individuals enrolled in the study, 205 were randomized to the Charité disc-treated group and 99 to the BAK fusion-treated (control) group. Neurological status was equivalent between the two groups at 6, 12, and 24 months postoperatively. The number of patients with major, minor, or other neurological complications was equivalent. There was a greater incidence of both major and minor complications in the BAK fusion group at 0 to 42 days postoperatively. Compared with data reported in the lumbar fusion literature, the Charité disc-treated patients had equivalent or better mean changes in visual analog scale and Oswestry Disability Index scores. The Charité artificial disc is safe and effective for the treatment of single-level lumbar DDD, resulting in no higher incidence of neurological complications compared with BAK-assisted fusion and leading to equivalent or better outcomes compared with those obtained in the control group and those reported in the lumbar fusion literature.
Cutler, J A; Tahir, R; Sreenivasamurthy, S K; Mitchell, C; Renuse, S; Nirujogi, R S; Patil, A H; Heydarian, M; Wong, X; Wu, X; Huang, T-C; Kim, M-S; Reddy, K L; Pandey, A
2017-07-01
Two major types of leukemogenic BCR-ABL fusion proteins are p190 BCR-ABL and p210 BCR-ABL . Although the two fusion proteins are closely related, they can lead to different clinical outcomes. A thorough understanding of the signaling programs employed by these two fusion proteins is necessary to explain these clinical differences. We took an integrated approach by coupling protein-protein interaction analysis using biotinylation identification with global phosphorylation analysis to investigate the differences in signaling between these two fusion proteins. Our findings suggest that p190 BCR-ABL and p210 BCR-ABL differentially activate important signaling pathways, such as JAK-STAT, and engage with molecules that indicate interaction with different subcellular compartments. In the case of p210 BCR-ABL , we observed an increased engagement of molecules active proximal to the membrane and in the case of p190 BCR-ABL , an engagement of molecules of the cytoskeleton. These differences in signaling could underlie the distinct leukemogenic process induced by these two protein variants.
Fusion technologies for Laser Inertial Fusion Energy (LIFE)
NASA Astrophysics Data System (ADS)
Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.
2013-11-01
The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Smith, Matthew B; Karatekin, Erdem; Gohlke, Andrea; Mizuno, Hiroaki; Watanabe, Naoki; Vavylonis, Dimitrios
2011-10-05
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Advancing Pre-college Science and Mathematics Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Rick
With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter,more » the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.« less
NASA Astrophysics Data System (ADS)
Fukuda, Takeshi
The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.
Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability
Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca
2017-01-01
Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726–35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. PMID:28213515
Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.
Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca
2017-04-07
Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
Hodor, P G; Ettensohn, C A
1998-07-01
Cell-cell fusion occurs in a wide variety of developmental contexts, yet the mechanisms involved are just beginning to be elucidated. In the sea urchin embryo, primary mesenchyme cells (PMCs) fuse to form syncytial filopodial cables within which skeletal spicules are deposited. Taking advantage of the optical transparency and ease of micromanipulation of sea urchin embryos, we have developed methods for directly observing the dynamics of PMC fusion in vivo. A fraction of the PMCs was labeled with fluorescent dextran and transfer of the dye to unlabeled PMCs was followed by time-lapse, fluorescence microscopy. Fusion was first detected about 2 h after PMCs began to migrate within the blastocoel. Fusion proceeded in parallel with the assembly of the PMC ring pattern and was complete by the early gastrula stage. The formation of a single, extensive PMC syncytium was confirmed by DiI labeling of fixed embryos. When single micromeres were isolated and cultured in unsupplemented seawater, they divided and their progeny underwent fusion. This shows that the capacity to fuse is autonomously programmed in the micromere-PMC lineage by the 16-cell stage. PMC transplantations at late embryonic stages revealed that these cells remain fusion-competent long after their fusion is complete. At late stages, other mesenchyme cells (blastocoelar cells) are also present within the blastocoel and are migrating and fusing with one another. Fusion-competent blastocoelar cells and PMCs come into contact but do not fuse with one another, indicating that these two cell types fuse by distinct mechanisms. When secondary mesenchyme cells convert to a skeletogenic fate they alter their fusogenic properties and join the PMC syncytium, as shown by transfer of fluorescent dextran. Our analysis has provided a detailed picture of the cellular basis and regulation of mesodermal cell fusion and has important implications regarding molecular mechanisms that underlie fusion.
The Nova Upgrade Facility for ICF ignition and gain
NASA Astrophysics Data System (ADS)
Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.
1992-01-01
Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.
NASA Astrophysics Data System (ADS)
Osychenko, Alina A.; Zalessky, Alexandr D.; Kostrov, Andrey N.; Ryabova, Anastasia V.; Krivokharchenko, Alexander S.; Nadtochenko, Viktor A.
2017-12-01
The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion.
Cloyd, Jordan M; Acosta, Frank L; Ames, Christopher P
2008-12-15
Retrospective review. To investigate the effect of age on the perioperative and radiographic complications associated with multilevel (>or=5) fusion of the cervicothoracic spine. Although the elderly comprise a substantial proportion of patients presenting with complex spinal pathology necessitating multilevel procedures across the cervical and cervicothoracic spine, the risk of perioperative and radiographic complications after these procedures is unknown. Between 2000 and 2007, 58 patients 65 years of age or older at a single institution underwent instrumented cervicothoracic spinal fusion of at least 5 levels. Fifty-eight patients under the age of 65 from the same time period served as a control group. A retrospective review of all hospital records, operative reports, radiographs, and clinic notes was conducted. Complications were classified as intraoperative, major and minor postoperative, and need for revision surgery. Flexion-extension radiographs were examined at discharge, 1.5, 6, 12 months, and then yearly, thereafter to evaluate fusion status and instrumentation-related complications. Principal diagnoses included spondylostenosis, malignancy, vertebral fracture, and osteomyelitis. Both groups were similar in number of levels fused (elderly, 6.7 +/- 2.1; control, 6.3 +/- 1.7) and circumferential procedures (27 vs. 28), respectively. There were no significant differences in operative time, blood loss, or length of hospital stay. Rates of intraoperative (5.2% vs. 3.4%), major (20.7% vs. 17.2%) and minor postoperative complications (27.6% vs. 22.4%), and reoperation (8.6% vs. 8.6%) were similar between the 2 groups. Utilization of a combined anterior-posterior fusion was associated with increased perioperative complications in the elderly on univariate but not multivariate analyses. Radiographic evidence of fusion was also comparable between the 2 groups. Perioperative complication rates of multilevel (>or=5) cervicothoracic spinal fusion in the elderly are high but not significantly different from those of younger patients. The use of a circumferential fusion procedure may increase the risk of a perioperative complication in older patients. Fusion rates are similar between the 2 groups.
Cell fusion contributes to the rescue of apoptotic cardiomyocytes by bone marrow cells
Yang, Wei-Jian; Li, Shu-Hong; Weisel, Richard D; Liu, Shi-Ming; Li, Ren-Ke
2012-01-01
Cardiomyocyte apoptosis is an important contributor to the progressive cardiac dysfunction that culminates in congestive heart failure. Bone marrow cells (BMCs) restore cardiac function following ischaemia, and transplanted BMCs have been reported to fuse with cells of diverse tissues. We previously demonstrated that the myogenic conversion of bone marrow stromal cells increased nearly twofold when the cells were co-cultured with apoptotic (TNF-α treated) cardiomyocytes. We therefore hypothesized that cell fusion may be a major mechanism by which BMCs rescue cardiomyocytes from apoptosis. We induced cellular apoptosis in neonatal rat cardiomyocytes by treatment with hydrogen peroxide (H2O2). The TUNEL assay demonstrated an increase in apoptosis from 4.5 ± 1.3% in non-treated cells to 19.0 ± 4.4% (P < 0.05) in treated cells. We subsequently co-cultured the apoptotic cardiomyocytes with BMCs and assessed cell fusion using flow cytometry. Fusion was rare in the non-treated control cardiomyocytes (0.3%), whereas H2O2 treatment led to significantly higher fusion rates than the control group (P < 0.05), with the highest rate of 7.9 ± 0.3% occurring at 25 μM H2O2. We found an inverse correlation between cell fusion and completion of cardiomyocyte apoptosis (R2 = 0.9863). An in vivo mouse model provided evidence of cell fusion in the infarcted myocardium following the injection of BMCs. The percentage of cells undergoing fusion was significantly higher in mice injected with BMCs following infarction (8.8 ± 1.3%) compared to mice that did not undergo infarction (4.6 ± 0.6%, P < 0.05). Enhancing cell fusion may be one method to preserve cardiomyocytes following myocardial infarction, and this new approach may provide a novel target for cardiac regenerative therapies. PMID:22805279
National Fusion Collaboratory: Grid Computing for Simulations and Experiments
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2004-05-01
The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.
Virtually-augmented interfaces for tactical aircraft.
Haas, M W
1995-05-01
The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.
Laparoscopic bone dowel fusions of the lumbar spine.
Silcox, D H
1998-10-01
Studies that show laparoscopic lumbar fusion to decrease cost or time of hospitalization or to increase the speed or incidence of return to activities are not currently available. Laparoscopic fusion of the lumbar spine appears to be a potentially attractive approach to treating axial back pain secondary to different causes. Although the technique is attractive because of its minimally invasive nature and marketing allure, it has yet to be established as to what the true clinical efficacy of this procedure will be. Further clinical study of these techniques with longer follow-up, and case-controlled studies should help clinicians to know the best fusion technique to offer patients.
Remote Sensing Data Fusion to Detect Illicit Crops and Unauthorized Airstrips
NASA Astrophysics Data System (ADS)
Pena, J. A.; Yumin, T.; Liu, H.; Zhao, B.; Garcia, J. A.; Pinto, J.
2018-04-01
Remote sensing data fusion has been playing a more and more important role in crop planting area monitoring, especially for crop area information acquisition. Multi-temporal data and multi-spectral time series are two major aspects for improving crop identification accuracy. Remote sensing fusion provides high quality multi-spectral and panchromatic images in terms of spectral and spatial information, respectively. In this paper, we take one step further and prove the application of remote sensing data fusion in detecting illicit crop through LSMM, GOBIA, and MCE analyzing of strategic information. This methodology emerges as a complementary and effective strategy to control and eradicate illicit crops.
2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Matthew Shirk
2013-01-01
The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for themore » Vehicle Technologies Program of the U.S. Department of Energy.« less
Application of the aqueous self-cooled blanket concept to fusion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutsch, L.; Steiner, D.; Embrechts, M.J.
1986-01-01
The development of a reliable, safe, and economically attractive tritium breeding blanket is an essential requirement in the path to commercial fusion power. The primary objective of the recently completed Blanket Comparison and Selection Study (BCSS) was to evaluate previously proposed concepts, and thereby identify a limited number of preferred options that would provide the focus for an R and D program. The water-cooled concepts in the BCSS scored relatively low. We consider it prudent that a promising water-cooled blanket concept be included in this program since nearly all power producing reactors currently rely on water technology. It is inmore » this context that we propose the novel water-cooled blanket concept described herein.« less
Preparation of ortho-para ratio controlled D2 gas for muon-catalyzed fusion.
Imao, H; Ishida, K; Kawamura, N; Matsuzaki, T; Matsuda, Y; Toyoda, A; Strasser, P; Iwasaki, M; Nagamine, K
2008-05-01
A negative muon in hydrogen targets, e.g., D2 or D-T mixture, can catalyze nuclear fusions following a series of atomic processes involving muonic hydrogen molecular formation (muon-catalyzed fusion, muCF). The ortho-para state of D2 is a crucial parameter not only for enhancing the fusion rate but also to precisely investigate various muonic atom processes. We have developed a system for controlling and measuring the ortho-para ratio of D2 gas for muCF experiments. We successfully collected para-enriched D2 without using liquid-hydrogen coolant. Ortho-enriched D2 was also obtained by using a catalytic conversion method with a mixture of chromium oxide and alumina. The ortho-para ratio of D2 gas was measured with a compact Raman spectroscopy system. We produced large volume (5-30 l at STP), high-purity (less than ppm high-Z contaminant) D2 targets with a wide range of ortho-para ratios (ortho 20%-99%). By using the ortho-para controlled D2 in muCF experiments, we observed the dependence of muCF phenomena on the ortho-para ratio.
Preparation of ortho-para ratio controlled D{sub 2} gas for muon-catalyzed fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imao, H.; Ishida, K.; Matsuzaki, T.
2008-05-15
A negative muon in hydrogen targets, e.g., D{sub 2} or D-T mixture, can catalyze nuclear fusions following a series of atomic processes involving muonic hydrogen molecular formation (muon-catalyzed fusion, {mu}CF). The ortho-para state of D{sub 2} is a crucial parameter not only for enhancing the fusion rate but also to precisely investigate various muonic atom processes. We have developed a system for controlling and measuring the ortho-para ratio of D{sub 2} gas for {mu}CF experiments. We successfully collected para-enriched D{sub 2} without using liquid-hydrogen coolant. Ortho-enriched D{sub 2} was also obtained by using a catalytic conversion method with a mixturemore » of chromium oxide and alumina. The ortho-para ratio of D{sub 2} gas was measured with a compact Raman spectroscopy system. We produced large volume (5-30 l at STP), high-purity (less than ppm high-Z contaminant) D{sub 2} targets with a wide range of ortho-para ratios (ortho 20%-99%). By using the ortho-para controlled D{sub 2} in {mu}CF experiments, we observed the dependence of {mu}CF phenomena on the ortho-para ratio.« less
Revisions to the JDL data fusion model
NASA Astrophysics Data System (ADS)
Steinberg, Alan N.; Bowman, Christopher L.; White, Franklin E.
1999-03-01
The Data Fusion Model maintained by the Joint Directors of Laboratories (JDL) Data Fusion Group is the most widely-used method for categorizing data fusion-related functions. This paper discusses the current effort to revise the expand this model to facilitate the cost-effective development, acquisition, integration and operation of multi- sensor/multi-source systems. Data fusion involves combining information - in the broadest sense - to estimate or predict the state of some aspect of the universe. These may be represented in terms of attributive and relational states. If the job is to estimate the state of a people, it can be useful to include consideration of informational and perceptual states in addition to the physical state. Developing cost-effective multi-source information systems requires a method for specifying data fusion processing and control functions, interfaces, and associate databases. The lack of common engineering standards for data fusion systems has been a major impediment to integration and re-use of available technology: current developments do not lend themselves to objective evaluation, comparison or re-use. This paper reports on proposed revisions and expansions of the JDL Data FUsion model to remedy some of these deficiencies. This involves broadening the functional model and related taxonomy beyond the original military focus, and integrating the Data Fusion Tree Architecture model for system description, design and development.
Femtosecond laser-induced fusion of nonadherent cells and two-cell porcine embryos.
Kuetemeyer, Kai; Lucas-Hahn, Andrea; Petersen, Bjoern; Niemann, Heiner; Heisterkamp, Alexander
2011-08-01
Cell fusion is a fundamental biological process that can be artificially induced by different methods. Although femtosecond (fs) lasers have been successfully employed for cell fusion over the past few years, the underlying mechanisms are still unknown. In our experimental study, we investigated the correlation between fs laser-induced cell fusion and membrane perforation, and the influence of laser parameters on the fusion efficiency of nonadherent HL-60 cells. We found that shorter exposure times resulted in higher fusion efficiencies with a maximum of 21% at 10 ms and 100 mJ/cm(2) (190 mW). Successful cell fusion was indicated by the formation of a long-lasting vapor bubble in the irradiated area with an average diameter much larger than in cell perforation experiments. With this knowledge, we demonstrated, for the first time, the fusion of very large parthenogenetic two-cell porcine embryos with high efficiencies of 55% at 20 ms and 360 mJ/cm(2) (670 mW). Long-term viability of fused embryos was proven by successful development up to the blastocyst stage in 70% of cases with no significant difference to controls. In contrast to previous studies, our results indicate that fs laser-induced cell fusion occurs when the membrane pore size exceeds a critical value, preventing immediate membrane resealing.
Design Considerations for Clean QED Fusion Propulsion Systems
NASA Astrophysics Data System (ADS)
Bussard, Robert W.; Jameson, Lorin W.
1994-07-01
The direct production of electric power appears possible from fusion reactions between fuels whose products consist solely of charged particles and thus do not present radiation hazards from energetic neutron production, as do reactions involving deuteron-bearing fuels. Among these are the fuels p, 11B, 3He, and 6Li. All of these can be ``burned'' in inertial-electrostatic-fusion (IEF) devices to power QED fusion-electric rocket engines. These IEF sources provide direct-converted electrical power at high voltage (MeV) to drive e-beams for efficient propellant heating to extreme temperatures, with resulting high specific impulse performance capabilities. IEF/QED engine systems using p11B can outperform all other advanced concepts for controlled fusion propulsion by 2-3 orders of magnitude, while 6Li6Li fusion yields one order of magnitude less advance. Either of these fusion rocket propulsion systems can provide very rapid transit for solar system missions, with high payload fractions in single-stage vehicles. The 3He3He reaction can not be used practically for direct electric conversion because of the wide spread in energy of its fusion products. However, it may eventually prove useful for thermal/electrical power generation in central station power plants, or for direct-fusion-product (DFP) propellant heatingin advanced deep-space rocket engines.
Lee, Ji-Hyun; Lee, Chan-Wool; Park, Si-Hyoung; Choe, Kwang-Min
2017-06-01
Cell-cell fusion is widely observed during development and disease, and imposes a dramatic change on participating cells. Cell fusion should be tightly controlled, but the underlying mechanism is poorly understood. Here, we found that the JAK/STAT pathway suppressed cell fusion during wound healing in the Drosophila larval epidermis, restricting cell fusion to the vicinity of the wound. In the absence of JAK/STAT signaling, a large syncytium containing a 3-fold higher number of nuclei than observed in wild-type tissue formed in wounded epidermis. The JAK/STAT ligand-encoding genes upd2 and upd3 were transcriptionally induced by wounding, and were required for suppressing excess cell fusion. JNK (also known as Basket in flies) was activated in the wound vicinity and activity peaked at ∼8 h after injury, whereas JAK/STAT signaling was activated in an adjoining concentric ring and activity peaked at a later stage. Cell fusion occurred primarily in the wound vicinity, where JAK/STAT activation was suppressed by fusion-inducing JNK signaling. JAK/STAT signaling was both necessary and sufficient for the induction of βPS integrin (also known as Myospheroid) expression, suggesting that the suppression of cell fusion was mediated at least in part by integrin protein. © 2017. Published by The Company of Biologists Ltd.
The Fusion of Membranes and Vesicles: Pathway and Energy Barriers from Dissipative Particle Dynamics
Grafmüller, Andrea; Shillcock, Julian; Lipowsky, Reinhard
2009-01-01
The fusion of lipid bilayers is studied with dissipative particle dynamics simulations. First, to achieve control over membrane properties, the effects of individual simulation parameters are studied and optimized. Then, a large number of fusion events for a vesicle and a planar bilayer are simulated using the optimized parameter set. In the observed fusion pathway, configurations of individual lipids play an important role. Fusion starts with individual lipids assuming a splayed tail configuration with one tail inserted in each membrane. To determine the corresponding energy barrier, we measure the average work for interbilayer flips of a lipid tail, i.e., the average work to displace one lipid tail from one bilayer to the other. This energy barrier is found to depend strongly on a certain dissipative particle dynamics parameter, and, thus, can be adjusted in the simulations. Overall, three subprocesses have been identified in the fusion pathway. Their energy barriers are estimated to lie in the range 8–15 kBT. The fusion probability is found to possess a maximum at intermediate tension values. As one decreases the tension, the fusion probability seems to vanish before the tensionless membrane state is attained. This would imply that the tension has to exceed a certain threshold value to induce fusion. PMID:19348749
The national ignition facility and atomic data
NASA Astrophysics Data System (ADS)
Crandall, David H.
1998-07-01
The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.
Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules
NASA Astrophysics Data System (ADS)
Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven
2009-11-01
Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.
Thermomagnetic burn control for magnetic fusion reactor
Rawls, J.M.; Peuron, A.U.
1980-07-01
Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.
The Multifaceted Role of SNARE Proteins in Membrane Fusion
Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A.
2017-01-01
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined. PMID:28163686
Haudenschild, Dominik R.; Wegner, Adam M.; Klineberg, Eric O.
2017-01-01
Study Design: Review of literature. Objectives: This review of literature investigates the application of mesenchymal stem cells (MSCs) in spinal fusion, highlights potential uses in the development of bone grafts, and discusses limitations based on both preclinical and clinical models. Methods: A review of literature was conducted looking at current studies using stem cells for augmentation of spinal fusion in both animal and human models. Results: Eleven preclinical studies were found that used various animal models. Average fusion rates across studies were 59.8% for autograft and 73.7% for stem cell–based grafts. Outcomes included manual palpation and stressing of the fusion, radiography, micro–computed tomography (μCT), and histological analysis. Fifteen clinical studies, 7 prospective and 8 retrospective, were found. Fusion rates ranged from 60% to 100%, averaging 87.1% in experimental groups and 87.2% in autograft control groups. Conclusions: It appears that there is minimal clinical difference between commercially available stem cells and bone marrow aspirates indicating that MSCs may be a good choice in a patient with poor marrow quality. Overcoming morbidity and limitations of autograft for spinal fusion, remains a significant problem for spinal surgeons and further studies are needed to determine the efficacy of stem cells in augmenting spinal fusion. PMID:29238646
The Multifaceted Role of SNARE Proteins in Membrane Fusion.
Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A
2017-01-01
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.
Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.
Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G
2016-05-27
Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Schoenfeld, Andrew J; Makanji, Heeren; Jiang, Wei; Koehlmoos, Tracey; Bono, Christopher M; Haider, Adil H
2017-12-01
Whether compensation for professional services drives the use of those services is an important question that has not been answered in a robust manner. Specifically, there is a growing concern that spine care practitioners may preferentially choose more costly or invasive procedures in a fee-for-service system, irrespective of the underlying lumbar disorder being treated. (1) Were proportions of interbody fusions higher in the fee-for-service setting as opposed to the salaried Department of Defense setting? (2) Were the odds of interbody fusion increased in a fee-for-service setting after controlling for indications for surgery? Patients surgically treated for lumbar disc herniation, spinal stenosis, and spondylolisthesis (2006-2014) were identified. Patients were divided into two groups based on whether the surgery was performed in the fee-for-service setting (beneficiaries receive care at a civilian facility with expenses covered by TRICARE insurance) or at a Department of Defense facility (direct care). There were 28,344 patients in the entire study, 21,290 treated in fee-for-service and 7054 treated in Department of Defense facilities. Differences in the rates of fusion-based procedures, discectomy, and decompression between both healthcare settings were assessed using multinomial logistic regression to adjust for differences in case-mix and surgical indication. TRICARE beneficiaries treated for lumbar spinal disorders in the fee-for-service setting had higher odds of receiving interbody fusions (fee-for-service: 7267 of 21,290 [34%], direct care: 1539 of 7054 [22%], odds ratio [OR]: 1.25 [95% confidence interval 1.20-1.30], p < 0.001). Purchased care patients were more likely to receive interbody fusions for a diagnosis of disc herniation (adjusted OR 2.61 [2.36-2.89], p < 0.001) and for spinal stenosis (adjusted OR 1.39 [1.15-1.69], p < 0.001); however, there was no difference for patients with spondylolisthesis (adjusted OR 0.99 [0.84-1.16], p = 0.86). The preferential use of interbody fusion procedures was higher in the fee-for-service setting irrespective of the underlying diagnosis. These results speak to the existence of provider inducement within the field of spine surgery. This reality portends poor performance for surgical practices and hospitals in Accountable Care Organizations and bundled payment programs in which provider inducement is allowed to persist. Level III, economic and decision analysis.
Schanzer, Juergen M; Fichtner, Iduna; Baeuerle, Patrick A; Kufer, Peter
2006-01-01
Cytokine targeting to tumor-associated antigens via antibody cytokine fusion proteins has demonstrated potent antitumor activity in numerous animal models and has led to the clinical development of 2 antibody-interleukin-2 (IL-2) fusion proteins. We previously reported on the construction and in vitro properties of a "dual" cytokine fusion protein for simultaneous targeted delivery of human granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-2 to human tumors. The fusion protein is based on a heterodimerized core structure formed by human CH1 and Ckappa domains (heterominibody) with C-terminally fused human cytokines and N-terminally fused single-chain antibody fragments specific for the tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM). For testing the antitumor activity in syngeneic mouse xenograft models, we developed "dual cytokine heterominibodies" with murine cytokines (mDCH). mDCH fusion proteins and, as controls, "single cytokine heterominibodies" (SCH) carrying either murine GM-CSF (mGM-CSF) or murine IL-2 (mIL-2) were constructed, of which all retained the specific activities of cytokines and binding to the Ep-CAM antigen on human Ep-CAM transfected mouse colon carcinoma CT26-KSA cells. Over a 5-day treatment course, DCH fusion proteins induced significant inhibition of established pulmonary CT26-KSA metastases in immune-competent Balb/c mice at low daily doses of 1 mug of fusion protein per mouse. However, with the tested dosing schemes, antitumor activity of mDCH was largely independent of cytokine targeting to tumors as demonstrated by a control protein with mutated Ep-CAM binding sites. Single cytokine fusion proteins mSCH-GM-CSF and mSCH-IL-2 showed similar antitumor activity as the dual cytokine fusion protein mDCH, indicating that GM-CSF and IL-2 in one molecule did not significantly synergize in tumor rejection under our experimental conditions. Our results seem to contradict the notion that IL-2 and GM-CSF can synergize in antitumor activity and that with conventional dose regimens, their specific targeting to tumors, as tested here with 2 antibodies of different affinities, enhances their antitumor activity.
Hamilton, Brian S.; Whittaker, Gary R.; Daniel, Susan
2012-01-01
Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future. PMID:22852045
NASA Astrophysics Data System (ADS)
Tobita, Kenji; Konishi, Satoshi; Tokimatsu, Koji; Nishio, Satoshi; Hiwatari, Ryoji
This section describes the future of fusion energy in terms of its impact on the global energy supply and global warming mitigation, the possible entry scenarios of fusion into future energy market, and innovative technologies for deploying and expanding fusion's share in the market. Section 5.1 shows that fusion energy can contribute to the stabilization of atmospheric CO2 concentration if fusion is introduced into the future energy market at a competitive price. Considerations regarding fusion's entry scenarios into the energy market are presented in Sec. 5.2, suggesting that fusion should replace fossil energy sources and thus contribute to global warming mitigation. In this sense, first generation fusion power plants should be a viable energy source with global appeal and be so attractive as to be employed in developing countries rather than in developed countries. Favorable factors lending to this purpose are fusion's stability as a power source, and its security, safety, and environmental frendliness as well as its cost-of-electricity. The requirements for core plasma to expand the share of fusion in the market in the latter half of this century are given in Sec.5.3, pointing out the importance of high beta access with low aspect ratio and plasma profile control. From this same point of view, innovative fusion technologies worthy of further development are commented on in Sec. 5.4, addressing the high temperature blanket, hydrogen production, high temperature superconductors, and hot cell maintenance.
Poller, Wolfram C; Dreger, Henryk; Schwerg, Marius; Melzer, Christoph
2015-01-01
Optimization of the AV-interval (AVI) in DDD pacemakers improves cardiac hemodynamics and reduces pacemaker syndromes. Manual optimization is typically not performed in clinical routine. In the present study we analyze the prevalence of E/A wave fusion and A wave truncation under resting conditions in 160 patients with complete AV block (AVB) under the pre-programmed AVI. We manually optimized sub-optimal AVI. We analyzed 160 pacemaker patients with complete AVB, both in sinus rhythm (AV-sense; n = 129) and under atrial pacing (AV-pace; n = 31). Using Doppler analyses of the transmitral inflow we classified the nominal AVI as: a) normal, b) too long (E/A wave fusion) or c) too short (A wave truncation). In patients with a sub-optimal AVI, we performed manual optimization according to the recommendations of the American Society of Echocardiography. All AVB patients with atrial pacing exhibited a normal transmitral inflow under the nominal AV-pace intervals (100%). In contrast, 25 AVB patients in sinus rhythm showed E/A wave fusion under the pre-programmed AV-sense intervals (19.4%; 95% confidence interval (CI): 12.6-26.2%). A wave truncations were not observed in any patient. All patients with a complete E/A wave fusion achieved a normal transmitral inflow after AV-sense interval reduction (mean optimized AVI: 79.4 ± 13.6 ms). Given the rate of 19.4% (CI 12.6-26.2%) of patients with a too long nominal AV-sense interval, automatic algorithms may prove useful in improving cardiac hemodynamics, especially in the subgroup of atrially triggered pacemaker patients with AV node diseases.
Performance testing of a prototype Pd-Ag diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, G. A.; Hodge, B. J.
The fusion fuel cycle has gained significant attention over the last decade as interest in fusion programs has increased. One of the critical components of the fusion process is the tritium fuel cycle. The tritium fuel cycle is designed to supply and recycle process tritium at a specific throughput rate. One of the most important processes within the tritium fuel cycle is the clean-up of the of the process tritium. This step will initially separate the hydrogen isotopes (H2, D2, and T2) from the rest of the process gas using Pd-Ag diffusers or permeators. The Pd-Ag diffuser is an integralmore » component for any tritium purification system; whether part of the United States’ defense mission or fusion programs. Domestic manufacturers of Pd-Ag diffusers are extremely limited and only a few manufacturers exist. Johnson-Matthey (JM) Pd-Ag diffusers (permeators) have previously been evaluated for the separation of hydrogen isotopes from non-hydrogen gas species in the process. JM is no longer manufacturing Pd-Ag diffusers and a replacement vendor needs to be identified to support future needs. A prototype Pd-Ag diffuser has been manufactured by Power and Energy, and is considered a potential replacement for the JM diffuser for tritium service. New diffuser designs for a tritium facility for any fusion energy applications must be characterized by evaluating their operating envelope prior to installation in a tritium processing facility. The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump configuration and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.« less
An accelerated fusion power development plan
NASA Astrophysics Data System (ADS)
Dean, Stephen O.; Baker, Charles C.; Cohn, Daniel R.; Kinkead, Susan D.
1991-06-01
Energy for electricity and transportation is a national issue with worldwide environmental and political implications. The world must have energy options for the next century that are not vulnerable to possible disruption for technical, environmental, public confidence, or other reasons. Growing concerns about the greenhouse effect and the safety of transporting oil may lead to reduced burning of coal and other fossil fuels, and the incidents at Three Mile Island and Chernobyl, as well as nuclear waste storage problems, have eroded public acceptance of nuclear fission. Meeting future world energy needs will require improvements in energy efficiency and conservation. However, the world will soon need new central station power plants and increasing amounts of fuel for the transportation sector. The use of fossil fuels, and possibly even fission power, will very likely be restricted because of environmental, safety, and, eventually, supply considerations. Time is running out for policymakers. New energy technologies cannot be brought to the marketplace overnight. Decades are required to bring a new energy production technology from conception to full market penetration. With the added urgency to mitigate deleterious environmental effects of energy use, policymakers must act decisively now to establish and support vigorous energy technology development programs. The U.S. has invested 8 billion over the past 40 years in fusion research and development. If the U.S. fusion program proceeds according to its present strategy, an additional 40 years, and more money, will be expended before fusion will provide commercial electricity. Such an extended schedule is neither cost-effective nor technically necessary. It is time to launch a national venture to construct and operate a fusion power pilot plant. Such a plant could be operational within 15 years of a national commitment to proceed.
Angiogram, fundus, and oxygen saturation optic nerve head image fusion
NASA Astrophysics Data System (ADS)
Cao, Hua; Khoobehi, Bahram
2009-02-01
A novel multi-modality optic nerve head image fusion approach has been successfully designed. The new approach has been applied on three ophthalmologic modalities: angiogram, fundus, and oxygen saturation retinal optic nerve head images. It has achieved an excellent result by giving the visualization of fundus or oxygen saturation images with a complete angiogram overlay. During this study, two contributions have been made in terms of novelty, efficiency, and accuracy. The first contribution is the automated control point detection algorithm for multi-sensor images. The new method employs retina vasculature and bifurcation features by identifying the initial good-guess of control points using the Adaptive Exploratory Algorithm. The second contribution is the heuristic optimization fusion algorithm. In order to maximize the objective function (Mutual-Pixel-Count), the iteration algorithm adjusts the initial guess of the control points at the sub-pixel level. A refinement of the parameter set is obtained at the end of each loop, and finally an optimal fused image is generated at the end of the iteration. It is the first time that Mutual-Pixel-Count concept has been introduced into biomedical image fusion area. By locking the images in one place, the fused image allows ophthalmologists to match the same eye over time and get a sense of disease progress and pinpoint surgical tools. The new algorithm can be easily expanded to human or animals' 3D eye, brain, or body image registration and fusion.
Structure-function analysis of myomaker domains required for myoblast fusion.
Millay, Douglas P; Gamage, Dilani G; Quinn, Malgorzata E; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N
2016-02-23
During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.
Status and improvement of CLAM for nuclear application
NASA Astrophysics Data System (ADS)
Huang, Qunying
2017-08-01
A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.
NASA Mars rover: a testbed for evaluating applications of covariance intersection
NASA Astrophysics Data System (ADS)
Uhlmann, Jeffrey K.; Julier, Simon J.; Kamgar-Parsi, Behzad; Lanzagorta, Marco O.; Shyu, Haw-Jye S.
1999-07-01
The Naval Research Laboratory (NRL) has spearheaded the development and application of Covariance Intersection (CI) for a variety of decentralized data fusion problems. Such problems include distributed control, onboard sensor fusion, and dynamic map building and localization. In this paper we describe NRL's development of a CI-based navigation system for the NASA Mars rover that stresses almost all aspects of decentralized data fusion. We also describe how this project relates to NRL's augmented reality, advanced visualization, and REBOT projects.
Status of DEMO-FNS development
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Shpanskiy, Yu. S.; DEMO-FNS Team
2017-07-01
Fusion-fission hybrid facility based on superconducting tokamak DEMO-FNS is developed in Russia for integrated commissioning of steady-state and nuclear fusion technologies at the power level up to 40 MW for fusion and 400 MW for fission reactions. The project status corresponds to the transition from a conceptual design to an engineering one. This facility is considered, in RF, as the main source of technological and nuclear science information, which should complement the ITER research results in the fields of burning plasma physics and control.
Programming chemistry in DNA-addressable bioreactors.
Fellermann, Harold; Cardelli, Luca
2014-10-06
We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
The Wonders of Physics Outreach Program
NASA Astrophysics Data System (ADS)
Sprott, J. C.; Mirus, K. A.; Newman, D. E.; Watts, C.; Feeley, R. E.; Fernandez, E.; Fontana, P. W.; Krajewski, T.; Lovell, T. W.; Oliva, S.; Stoneking, M. R.; Thomas, M. A.; Jaimison, W.; Maas, K.; Milbrandt, R.; Mullman, K.; Narf, S.; Nesnidal, R.; Nonn, P.
1996-11-01
One important step toward public education about fusion energy is to first elevate the public's appreciation of science in general. Toward this end, the Wonders of Physics program was started at the University of Wisconsin-Madison in 1984 as a public lecture and demonstration series in an attempt to stem a growing tide of science illiteracy and to bolster the public's perception of the scientific enterprise. Since that time, it has grown into a public outreach endeavor which consists of a traveling demonstration show, educational pamphlets, videos, software, a website (http://sprott.physics.wisc.edu/wop.htm), and the annual public lecture demonstration series including tours highlighting the Madison Symmetric Torus and departmental facilities. The presentation has been made about 400 times to a total audience in excess of 50,000. Sample educational materials and Lecture Kits will be available at the poster session. Currently at Oak Ridge National Laboratories. Currently at Max Planck Institut fuer Plasmaphysik. *Currently at Johnson Controls.
Tritium distribution in ground water around large underground fusion explosions
Stead, F.W.
1963-01-01
Tritium will be released in significant amounts from large underground nuclear fusion explosions in the Plowshare Program. The tritium could become highly concentrated in nearby ground waters, and could be of equal or more importance as a possible contaminant than other long-lived fission-product and induced radionuclides. Behavior of tritiated water in particular hydrologic and geologic environments, as illustrated by hypothetical explosions in dolomite and tuff, must be carefully evaluated to predict under what conditions high groundwater concentrations of tritium might occur.
Intelligent Data Fusion for Wide-Area Assessment of UXO Contamination
2008-02-29
Development Program (SERDP). The authors thank the SERDP staff and team members for their assistance, particularly Dr. Herb Nelson and Dr. Dan Steinhurst...Fusion and Integration for Intelligent Systems, Taipei, Taiwan , R.O.C., Aug., 1999. 4. B.J. Johnson, T.G. Moore, B.J. Blejer, C.F. Lee, T.P. Opar, S...gene-expression data using Dempster-Shafer Theory of evidence to predict breast cancer tumors,” Bioinformation 1(5), 170-5, (2006) 21. Dr. Herb H. Nelson, personal communication (2007)
2016-03-03
for each shot, as well as "raw" data that includes time-of-arrival (TOA) and direction-of-arrival (DOA) of the muzzle blast (MB) produced by the weapon...angle of arrival, muzzle blast, shock wave, bullet deceleration, fusion REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...of the muzzle blast (MB) produced by the weapon and the shock wave (SW) produced by the supersonic bullet. The localization accuracy is improved
Feasibility study of a magnetic fusion production reactor
NASA Astrophysics Data System (ADS)
Moir, R. W.
1986-12-01
A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells electricity, and (2) there is a risk of not meeting the design goals.
The New Feedback Control System of RFX-mod Based on the MARTe Real-Time Framework
NASA Astrophysics Data System (ADS)
Manduchi, G.; Luchetta, A.; Soppelsa, A.; Taliercio, C.
2014-06-01
A real-time system has been successfully used since 2004 in the RFX-mod nuclear fusion experiment to control the position of the plasma and its Magneto Hydrodynamic (MHD) modes. However, its latency and the limited computation power of the used processors prevented the usage of more aggressive control algorithms. Therefore a new hardware and software architecture has been designed to overcome such limitations and to provide a shorter latency and a much increased computation power. The new system is based on a Linux multi-core server and uses MARTe, a framework for real-time control which is gaining interest in the fusion community.
Christensen, Finn Bjarke
2004-10-01
Chronic low back pain (CLBP) has become one of the most common causes of disability in adults under 45 years of age and is consequently one of the most common reasons for early retirement in industrialised societies. Accordingly, CLBP represents an expensive drain on society's resources and is a very challenging area for which a consensus for rational therapy is yet to be established. The spinal fusion procedure was introduced as a treatment option for CLBP more than 70 years ago. However, few areas of spinal surgery have caused so much controversy as spinal fusion. The literature reveals divergent opinions about when fusion is indicated and how it should be performed. Furthermore, the significance of the role of postoperative rehabilitation following spinal fusion may be underestimated. There exists no consensus on the design of a program specific for rehabilitation. Ideally, for any given surgical procedure, it should be possible to identify not only possible complications relative to a surgical procedure, but also what symptoms may be expected, and what pain behaviour may be expected of a particular patient. The overall aims of the current studies were: 1) to introduce patient-based functional outcome evaluation into spinal fusion treatment; 2) to evaluate radiological assessment of different spinal fusion procedures; 3) to investigate the effect of titanium versus stainless steel pedicle screws on mechanical fixation and bone ingrowth in lumbar spinal fusion; 4) to analyse the clinical and radiological outcome of different lumbar spinal fusion techniques; 5) to evaluate complications and re-operation rates following different surgical procedures; and 6) to analyse the effect of different rehabilitation strategies for lumbar spinal fusion patients. The present thesis comprises 9 studies: 2 clinical retrospective studies, 1 clinical prospective case/reference study, 5 clinical randomised prospective studies and 1 animal study (Mini-pigs). In total, 594 patients were included in the investigation from 1979 to 1999. Each had prior to inclusion at least 2 years of CLBP and had therefore been subjected to most of the conservative treatment leg pain, due to localized isthmic spondylolisthesis grades I-II or primary or secondary degeneration. PATIENT-BASED FUNCTIONAL OUTCOME: Patients' self-reported parameters should include the impact of CLBP on daily activity, work and leisure time activities, anxiety/depression, social interests and intensity of back and leg pain. Between 1993 and 2003 approximately 1400 lumbar spinal fusion patients completed the Dallas Pain Questionnaire under prospective design studies. In 1996, the Low Back Pain Rating scale was added to the standard questionnaire packet distributed among spinal fusion patients. In our experience, these tools are valid instruments for clinical assessment of candidates for spinal fusion procedures. It is extremely difficult to interpret radiographs of both lumbar posterolateral fusion and anterior interbody fusion. Plain radiographs are clearly not the perfect media for analysis of spinal fusion, but until new and better diagnostic methods are available for clinical use, radiographs will remain the golden standard. Therefore, the development of a detailed reliable radiographic classification system is highly desirable. The classification used in the present thesis for the evaluation of posteroalteral spinal fusion, both with and without instrumentation, demonstrated good interobserver and intraobserver agreement. The classification showed acceptable reliability and may be one way to improve interstudy and intrastudy correlation of radiologic outcomes after posterolateral spinal fusion. Radiology-based evaluation of anterior lumbar interbody fusion is further complicated when cages are employed. The use of different cage designs and materials makes it almost impossible to establish a standard radiological classification system for anterior fusions. BONE-SCREW INTERFACE: Mechanical binding at the bone-screw interface was significantly greater for titanium pedicle screws than it was for stainless steel. This could be explained by the fact that the titanium screws had superior bone on-growth. There was no correlation between screw removal torques and pull-out strength. Clinically, the use of titanium and titanium-alloy pedicle screws may be preferable for osteoporotic patients and those with decreased osteogenesis. The present series of studies observed significant long-term functional improvement for approximately 70% of patients who had undergone lumbar spinal fusion procedure. Solid fusion as determined from radiographs ranged from 52% to 92% depending on the choice of surgical procedure. The choice of surgical procedure should relate to the diagnosis, as patients with isthmic spondylolisthesis (Grades I and II) are best served with posterolateral fusion without instrumentation, and patients with disc degeneration seem to gain most from instrumented posterolateral fusion or circumferential fusion. The number of perioperative complications increased with the use of pedicle screw systems to support posterolateral fusions and increased further with the use of circumferential fusions. There was no significant association between outcome result and perioperative complications. The risk of reoperation within 2 years after the spinal fusion procedure was, however, significantly lower for those who had received circumferential fusion in comparison to posterolateral fusion with instrumentation. Furthermore, the risk of non-union was found to be significantly lower for patients who had received circumferential fusion as compared to posterolateral fusion with and without instrumentation. The complications of sexual dysfunction and fusion at non-intended levels were found to be significant but without influence on the overall outcome. The patients in the Back-café group performed a succession of many daily tasks significantly better and moreover had less pain compared with both the Video and Training groups 2 years after lumbar spinal fusion. The Video group had significantly greater treatment demands outside the hospital system. This study demonstrates the importance of the inclusion of coping schemes and questions the role of intensive exercises in a rehabilitation program for spinal fusion patients.
Fu, Tao; Wang, Jing; Levin, Moran; Su, Qing; Li, Dongguo; Li, Junfa
2015-01-01
Purpose. To measure the changes in fusional vergence in Chinese children with intermittent exotropia (IXT) and the association with the control of IXT. Methods. Ninety-two patients with IXT (8-15 years old) were compared with 86 controls. Exodeviation control was evaluated using the Revised Newcastle Control Score. Angle of deviation was measured using prism and alternate cover testing at distance and near. Fusional vergence was measured using prism bar and synoptophore. This study was registered with ChiCTR-RCC-13003920. Results. Using prism bar, convergence break points were lower whereas divergence break points were higher in children with IXT at distance (P < 0.001) and near (P < 0.001) compared with controls. There was no significant difference in mean divergence amplitudes between the two groups when testing using a synoptophore (P = 0.53). In children with IXT, the distance between recovery point and break point in both convergence (distance: P = 0.02; near: P = 0.02) and divergence (distance: P < 0.001; near: P < 0.001) was larger than controls when detected by prism bar and synoptophore (convergence: P = 0.005; divergence: P = 0.006). Conclusions. Children with IXT have reduced convergence amplitudes as detected by both prism bar and synoptophore.
Analytic expression for poloidal flow velocity in the banana regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, M.
The poloidal flow velocity in the banana regime is calculated by improving the l = 1 approximation for the Fokker-Planck collision operator [M. Taguchi, Plasma Phys. Controlled Fusion 30, 1897 (1988)]. The obtained analytic expression for this flow, which can be used for general axisymmetric toroidal plasmas, agrees quite well with the recently calculated numerical results by Parker and Catto [Plasma Phys. Controlled Fusion 54, 085011 (2012)] in the full range of aspect ratio.
Quinlan, Patricia; Davis, Jack; Fields, Kara; Madamba, Pia; Colman, Lisa; Tinca, Daniela; Cannon Drake, Regina
Cold therapy used in the sports medicine settings has been found to be effective in reducing postoperative pain; however, there are limited studies that examine the effect of cold therapy on postoperative pain in patients with posterior lumbar spinal fusion. The purpose of this study was to determine the effects of cold on postoperative spine pain and add to the body of knowledge specific to practical application of cold therapy in the spine surgery setting. Researchers used a two-group randomized control design to evaluate the effects of local cold therapy on postoperative pain and analgesia use after lumbar spinal fusion surgery. The primary outcome was postoperative pain. Secondary outcomes included analgesia use and perceived benefit of cold therapy. The intervention (cold) group had a marginally greater reduction in mean Numerical Rating Scale score across all 12 pain checks (M ± SD = -1.1 ± 0.8 points reduction vs. -1.0 ± 0.8 points reduction, p = .589). On average, the intervention group used less morphine equivalents (M ± SD = 12.6 ± 31.5 vs. 23.7 ± 40.0) than the control group across pain checks seven to 12 (p = .042). This study provides additional evidence to support the use of cold therapy as an adjuvant pain management strategy to optimize pain control and reduce opioid consumption following spine fusion surgical procedures.
Atanasiu, Doina; Saw, Wan Ting; Gallagher, John R.; Hannah, Brian P.; Matsuda, Zene; Whitbeck, J. Charles; Cohen, Gary H.
2013-01-01
Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, “slow and fast,” emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a “hair trigger.” Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion. PMID:23946457
Fusion Rates of Different Anterior Grafts in Thoracolumbar Fractures.
Antoni, Maxime; Charles, Yann Philippe; Walter, Axel; Schuller, Sébastien; Steib, Jean-Paul
2015-11-01
Retrospective CT analysis of anterior fusion in thoracolumbar trauma. The aim of this study was to compare fusion rates of different bone grafts and to analyze risk factors for pseudarthrosis. Interbody fusion is indicated in anterior column defects. Different grafts are used: autologous iliac crest, titanium mesh cages filled with cancellous bone, and autologous ribs. It is not clear which graft offers the most reliable fusion. Radiologic data of 116 patients (71 men, 45 women) operated for type A2, A3, B, or C fractures were analyzed. The average age was 44.6 years (range, 16-75 y) and follow-up was 2.7 years (range, 1-9 y). All patients were treated by posterior instrumentation followed by an anterior graft: 53 cases with iliac crest, 43 cases with mesh cages, and 20 with rib grafts. Fusion was evaluated on CT and classified into complete fusion, partial fusion, unipolar pseudarthrosis, and bipolar pseudarthrosis. Iliac crest fused in 66%, cages in 98%, and rib grafts in 90%. The fusion rate of cages filled with bone was significantly higher as the iliac graft fusion rate (P=0.002). The same was applied to rib grafts compared with iliac crest (P=0.041). Additional bone formation around the main graft, bridging both vertebral bodies, was observed in 31 of the 53 iliac crests grafts. Pseudarthrosis occurred more often in smokers (P=0.042). A relationship between fracture or instrumentation types, sex, age, BMI, and fusion could not be determined. Tricortical iliac crest grafts showed an unexpected high pseudarthrosis rate in thoracolumbar injuries. Their cortical bone is dense and their fusion surface is small. Rib grafts led to a better fusion when used in combination with the cancellous bone from the fractured vertebral body. Titanium mesh cages filled with cancellous bone led to the highest fusion rate and built a complete bony bridge between vertebral bodies. Smoking seemed to influence fusion. Case control study, Level III.
A. Sakharov and Fusion Research
NASA Astrophysics Data System (ADS)
Coppi, Bruno
2012-02-01
In the landmark paper by Tamm and Sakharov [1], a controlled nuclear fusion reactor based on an axisymmetric magnetic confinement configuration whose principles remain valid to this day, was proposed. In the light of present understanding of plasma physics the virtues (e.g. that of considering the D-D reaction) and the shortcomings of this paper are pointed out. In fact, relatively recent results of theoretical plasma physics (e.g. discovery of the so called second stability region) and advances in high field magnet technology have made it possible to identify the parameters of meaningful experiments capable of exploring D-D and D-^3He burn conditions. At the same time an experimental program (IGNIR) has been undertaken through a (funded) collaboration between Italy and Russia to investigate D-T plasmas close to ignition conditions based on an advanced high field toroidal confinement configuration. A. Sakharov envisioned a bolder approach to fusion research than that advocated by some of his contemporaries. The time taken to design and decide to fabricate the first experiment capable of reaching ignition conditions is due in part to the problem of gaining an adequate understanding the expected physics of fusion burning plasmas. However, most of the relevant financial effort has gone in the pursuit of slow and indirect enterprises complying with the ``playing it safe'' tendencies of large organizations or motivated by the purpose to develop technologies or maintain a high level of expertise in plasma physics to the expected benefit of other kinds of endeavors. The creativity demonstrated by A. Sakharov in dealing with civil rights and disarmament issues is needed, while maintaining our concerns for energy and the environment on a global scale, to orient the funding for fusion research toward a direct and well based scientific effort on concepts for which a variety of developments can be envisioned. These can span from uncovering new physics relevant, for instance, to high energy astrophysics to the feasibility of new neutron sources.[4pt] [1] A. Sakharov, Collected Scientific Works (Publ. Marcel Dekkes, Inc., New York, N.Y., 1982).
Froholdt, Anne; Holm, Inger; Keller, Anne; Gunderson, Ragnhild B; Reikeraas, Olav; Brox, Jens I
2011-08-01
Reduced muscle strength and density observed at 1 year after lumbar fusion may deteriorate more in the long term. To compare the long-term effect of lumbar fusion and cognitive intervention and exercises on muscle strength, cross-sectional area, density, and self-rated function in patients with chronic low back pain (CLBP) and disc degeneration. Randomized controlled study with a follow-up examination at 8.5 years (range, 7-11 years). Patients with CLBP and disc degeneration randomized to either instrumented posterolateral fusion of one or both of the two lower lumbar levels or a 3-week cognitive intervention and exercise program were included. Isokinetic muscle strength was measured by a Cybex 6000 (Cybex-Lumex, Inc., Ronkonkoma, NY, USA). All patients had previous experience with the test procedure. The back extension (E) flexion (F) muscles were tested, and the E/F ratios were calculated. Cross-sectional area and density of the back muscles were measured at the L3-L4 segment by computed tomography. Patients rated their function by the General Function Score. Trunk muscle strength, cross-sectional area, density, and self-rated function. Fifty-five patients (90%) were included at long-term follow-up. There were no significant differences in cross-sectional area, density, muscle strength, or self-rated function between the two groups. The cognitive intervention and exercise group increased trunk muscle extension significantly (p<.05), and both groups performed significantly better on trunk muscle flexion tests (p<.01) at long-term follow-up. On average, self-rated function improved by 56%, cross-sectional area was reduced by 8.5%, and muscle density was reduced by 27%. Although this study did not assess the morphology of muscles likely damaged by surgery, trunk muscle strength and cross-sectional area above the surgical levels are not different between those who had lumbar fusion or cognitive intervention and exercises at 7- to 11-year follow-up. Copyright © 2011 Elsevier Inc. All rights reserved.
Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, Robert A.; Paterson, Reay G.; Jardetzky, Theodore S.
2006-01-05
Paramyxoviruses enter cells by fusion of their lipid envelope with the target cell plasma membrane. Fusion of the viral membrane with the plasma membrane allows entry of the viral genome into the cytoplasm. For paramyxoviruses, membrane fusion occurs at neutral pH, but the trigger mechanism that controls the viral entry machinery such that it occurs at the right time and in the right place remains to be elucidated. Two viral glycoproteins are key to the infection process-an attachment protein that varies among different paramyxoviruses and the fusion (F) protein, which is found in all paramyxoviruses. For many of the paramyxovirusesmore » (parainfluenza viruses 1-5, mumps virus, Newcastle disease virus and others), the attachment protein is the hemagglutinin/neuraminidase (HN) protein. In the last 5 years, atomic structures of paramyxovirus F and HN proteins have been reported. The knowledge gained from these structures towards understanding the mechanism of viral membrane fusion is described.« less
NASA Astrophysics Data System (ADS)
Tabak, M.
2016-10-01
There is a need to develop alternate energy sources in the coming century because fossil fuels will become depleted and their use may lead to global climate change. Inertial fusion can become such an energy source, but significant progress must be made before its promise is realized. The high-density approach to inertial fusion suggested by Nuckolls et al. leads reaction chambers compatible with civilian power production. Methods to achieve the good control of hydrodynamic stability and implosion symmetry required to achieve these high fuel densities will be discussed. Fast Ignition, a technique that achieves fusion ignition by igniting fusion fuel after it is assembled, will be described along with its gain curves. Fusion costs of energy for conventional hotspot ignition will be compared with those of Fast Ignition and their capital costs compared with advanced fission plants. Finally, techniques that may improve possible Fast Ignition gains by an order of magnitude and reduce driver scales by an order of magnitude below conventional ignition requirements are described.
Neblett, Randy; Mayer, Tom G; Brede, Emily; Gatchel, Robert J
2014-06-01
Abnormal pretreatment flexion-relaxation in chronic disabling occupational lumbar spinal disorder patients has been shown to improve with functional restoration rehabilitation. Little is known about the effects of prior lumbar surgeries on flexion-relaxation and its responsiveness to treatment. To quantify the effect of prior lumbar surgeries on the flexion-relaxation phenomenon and its responsiveness to rehabilitative treatment. A prospective cohort study of chronic disabling occupational lumbar spinal disorder patients, including those with and without prior lumbar spinal surgeries. A sample of 126 chronic disabling occupational lumbar spinal disorder patients with prior work-related injuries entered an interdisciplinary functional restoration program and agreed to enroll in this study. Fifty-seven patients had undergone surgical decompression or discectomy (n=32) or lumbar fusion (n=25), and the rest had no history of prior injury-related spine surgery (n=69). At post-treatment, 116 patients were reevaluated, including those with prior decompressions or discectomies (n=30), lumbar fusions (n=21), and no surgery (n=65). A comparison group of 30 pain-free control subjects was tested with an identical assessment protocol, and compared with post-rehabilitation outcomes. Mean surface electromyography (SEMG) at maximum voluntary flexion; subject achievement of flexion-relaxation (SEMG≤3.5 μV); gross lumbar, true lumbar, and pelvic flexion ROM; and a pain visual analog scale self-report during forward bending task. Identical measures were obtained at pretreatment and post-treatment. Patients entered an interdisciplinary functional restoration program, including a quantitatively directed, medically supervised exercise process and a multimodal psychosocial disability management component. The functional restoration program was accompanied by a SEMG-assisted stretching training program, designed to teach relaxation of the lumbar musculature during end-range flexion, thereby improving or normalizing flexion-relaxation and increasing lumbar flexion ROM. At 1 year after discharge from the program, a structured interview was used to obtain socioeconomic outcomes. At pre-rehabilitation, the no surgery group patients demonstrated significantly better performance than both surgery groups on absolute SEMG at maximum voluntary flexion and on true lumbar flexion ROM. Both surgery groups were less likely to achieve flexion-relaxation than the no surgery patients. The fusion patients had reduced gross lumbar flexion ROM and greater pain during bending compared with the no surgery patients, and reduced true lumbar flexion ROM compared with the discectomy patients. At post-rehabilitation, all groups improved substantially on all measures. When post-rehabilitation measures were compared with the pain-free control group, with gross and true lumbar ROM corrected by 8° per spinal segment fused, there were no differences between any of the patient groups and the pain-free control subjects on spinal ROM and only small differences in SEMG. The three groups had comparable socioeconomic outcomes at 1 year post-treatment in work retention, health-care utilization, new injury, and new surgery. Despite the fact that the patients with prior surgery demonstrated greater pretreatment SEMG and ROM deficits, functional restoration treatment, combined with SEMG-assisted stretching training, was successful in improving all these measures by post-treatment. After treatment, both groups demonstrated ROM within anticipated limits, and the majority of patients in all three groups successfully achieved flexion-relaxation. In a chronic disabling occupational lumbar spinal disorder cohort, surgery patients were nearly equal to nonoperated patients in responding to interdisciplinary functional restoration rehabilitation on measures investigated in this study, achieving close to normal performance measures associated with pain-free controls. The responsiveness and final scores shown in this study suggests that flexion-relaxation may be a useful, objective diagnostic tool to measure changes in physical capacity for chronic disabling occupational lumbar spinal disorder patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
NASA Astrophysics Data System (ADS)
Zhang, YK; Zhou, RJ; Hu, LQ; Chen, MW; Chao, Y.; EAST team
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11775263 and 11405219), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics, China (Grant No. 11261140328), and the National Magnetic Confnement Fusion Science Program of China (Grant No. 2015GB102004).
Superior serum half life of albumin tagged TNF ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Nicole; Schneider, Britta; Pfizenmaier, Klaus
2010-06-11
Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined bymore » ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.« less
[Effect of IGF-1 on proliferation and differentiation of primary human embryonic myoblasts].
Cen, Shiqiang; Zhang, Junmei; Huang, Fuguo; Yang, Zhiming; Xie, Huiqi
2008-01-01
To investigate the effect of IGF-1 on the growth of primary human embryonic myoblasts. The method of incorporation of 3H-TdR was used to evaluate the ability of proliferation of myoblasts. The count per minute (CPM) values of myoblasts at different concentrations (1, 2, 4, 8, 16 and 32 ng/mL) of IGF-1 were measured, and dose-effect curves were drawn to choose the optional concentration of IGF-1 to promote the proliferation. Then the experimental group of myoblasts received the addition of the optional concentration of IGF-1 in the growth medium, the control group just received the growth medium. The flow cytometry was used to detect the cell cycle. The method of incorporation of 3H-TdR was used to measure the peak-CPM. The myotube fusion rate was measured in myoblasts withdifferent concentrations (0, 5, 10, 15, 20, 25 and 30 ng/mL) of IGF-1 in fusion medium, the dose-effect curves were also drawn, so as to decided the optional concentration of IGF-1 in stimulating differentiation. Fusion medium with optional concentration of IGF-1 was used in experimental group, and the control group just with fusion medium. The fusion rate of myotube and the synthesis of creatine kinase (CK) were detected in both groups. The optional concentration of 5 ng/mL IGF-1 was chosen for stimulating proliferation. It was shown that the time of cell cycle of control was 96 hours, but that of the experimental group was reduced to 60 hours. The results of flow cytometry showed that the time of G1 phase, S phase and G2M phase was 70.03, 25.01 and 0.96 hours respectively in control group, and were 22.66, 16.47 and 20.87 hours respectively in experimental group. The time-CPM value curves showed that the peak-CPM emerged at 96 hours in control group and 48 hours in experimental group, whichwas in agreement with the results of the flow cytometry. The optional concentration stimulating proliferation was 20 ng/mL IGF-1. Compared with control, the quantity of CK was increased by 2,000 mU/mL and the fusion rate was elevated by 30% in experimental group. The concentrations of 20 ng/mL IGF-1 can elevat obviously the fusion rate and the quantity of CK. IGF-1 can enhance the proliferation and differentiation of myoblasts via inducing the number of myoblasts at G1 phase and increasing the number of myoblasts at S and G2M phases.
Wang, Yen-Ling
2014-01-01
Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study. PMID:24864236
Exploring lower-cost pathways to economical fusion power
Hsu, Scott C.
2017-08-04
This project, the Plasma Liner Experiment–ALPHA (PLX-α)5,is one of nine projects supported by the ALPHA Program6 of the Advanced Research Projects Agency–Energy (ARPA-E) of the U.S. Department of Energy (DOE). We use innovative, low-cost coaxial plasma guns (Fig. 1), developed and built by partner HyperV Technologies Corp.7, to launch a spherically converging array of supersonic plasma jets toward the middle of a large, spherical vacuum chamber (Fig. 2). A key near-term goal of PLX-α is to merge up to 60 plasma jets to form a spherically imploding plasma liner, as a low-cost, high-shot-rate driver for compressing magnetised target plasmas tomore » fusion conditions. Our approach is known as plasma-jet-driven MIF (or PJMIF)8. A new startup company HyperJet Fusion Corporation (which recently received seed funding from Strong Atomics, LLC, a new fusion venture fund) aims to develop PJMIF under continued public and private sponsorship.« less
Exploring lower-cost pathways to economical fusion power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Scott C.
This project, the Plasma Liner Experiment–ALPHA (PLX-α)5,is one of nine projects supported by the ALPHA Program6 of the Advanced Research Projects Agency–Energy (ARPA-E) of the U.S. Department of Energy (DOE). We use innovative, low-cost coaxial plasma guns (Fig. 1), developed and built by partner HyperV Technologies Corp.7, to launch a spherically converging array of supersonic plasma jets toward the middle of a large, spherical vacuum chamber (Fig. 2). A key near-term goal of PLX-α is to merge up to 60 plasma jets to form a spherically imploding plasma liner, as a low-cost, high-shot-rate driver for compressing magnetised target plasmas tomore » fusion conditions. Our approach is known as plasma-jet-driven MIF (or PJMIF)8. A new startup company HyperJet Fusion Corporation (which recently received seed funding from Strong Atomics, LLC, a new fusion venture fund) aims to develop PJMIF under continued public and private sponsorship.« less
Yorulmaz, O; Karanci, A N; Bastug, B; Kisa, C; Goka, E
2008-03-01
Although an inflated sense of responsibility, thought-action fusion, and thought suppression are influential factors in cognitive models of obsessive-compulsive disorder (OCD), their impact on OCD has generally been demonstrated in samples from Western countries. The aim of the present study is to evaluate these cognitive factors in Turkish patients with OCD, other anxiety disorders, and community controls. Group comparisons showed that responsibility based on self-dangerousness and thought suppression significantly distinguished OCD patients from patients with other anxiety disorders and controls. Moreover, correlation and discriminant function analyses indicated that thought-action fusion in morality and likelihood was also associated with OCD symptoms. The present findings provide support for the international validity and specificity of cognitive factors and model for OCD.
Thermomagnetic burn control for magnetic fusion reactor
Rawls, John M.; Peuron, Unto A.
1982-01-01
Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.
Goudeketting, Seline R; Heinen, Stefan G H; Ünlü, Çağdaş; van den Heuvel, Daniel A F; de Vries, Jean-Paul P M; van Strijen, Marco J; Sailer, Anna M
2017-08-01
To systematically review and meta-analyze the added value of 3-dimensional (3D) image fusion technology in endovascular aortic repair for its potential to reduce contrast media volume, radiation dose, procedure time, and fluoroscopy time. Electronic databases were systematically searched for studies published between January 2010 and March 2016 that included a control group describing 3D fusion imaging in endovascular aortic procedures. Two independent reviewers assessed the methodological quality of the included studies and extracted data on iodinated contrast volume, radiation dose, procedure time, and fluoroscopy time. The contrast use for standard and complex endovascular aortic repairs (fenestrated, branched, and chimney) were pooled using a random-effects model; outcomes are reported as the mean difference with 95% confidence intervals (CIs). Seven studies, 5 retrospective and 2 prospective, involving 921 patients were selected for analysis. The methodological quality of the studies was moderate (median 17, range 15-18). The use of fusion imaging led to an estimated mean reduction in iodinated contrast of 40.1 mL (95% CI 16.4 to 63.7, p=0.002) for standard procedures and a mean 70.7 mL (95% CI 44.8 to 96.6, p<0.001) for complex repairs. Secondary outcome measures were not pooled because of potential bias in nonrandomized data, but radiation doses, procedure times, and fluoroscopy times were lower, although not always significantly, in the fusion group in 6 of the 7 studies. Compared with the control group, 3D fusion imaging is associated with a significant reduction in the volume of contrast employed for standard and complex endovascular aortic procedures, which can be particularly important in patients with renal failure. Radiation doses, procedure times, and fluoroscopy times were reduced when 3D fusion was used.
NASA Astrophysics Data System (ADS)
Siccinio, M.; Fable, E.; Angioni, C.; Saarelma, S.; Scarabosio, A.; Zohm, H.
2018-01-01
An updated and improved version of the 0D divertor and scrape-off layer (SOL) model published in Siccinio et al (2016 Plasma Phys. Control. Fusion 58 125011) was coupled with the 1.5D transport code ASTRA (Pereverzev 1991 IPP Report 5/42, Pereverzev and Yushmanov 2002 IPP Report 5/98 and Fable et al 2013 Plasma Phys. Control. Fusion 55 124028). The resulting numerical tool was employed for various scans in the major radius R and in the toroidal magnetic field B T—for different safety factors q, allowable loop voltages V loop and H factors—in order to identify the most convenient choices for an electricity producing tokamak. Such a scenario analysis was carried out evaluating self-consistently, and simultaneously, the core profile and transport effects, which significantly impact on the fusion power outcome, and the divertor heat loads, which represent one of the most critical issues in view of the realization of fusion power plants (Zohm et al 2013 Nucl. Fusion 53 073019 and Wenninger et al 2017 Nucl. Fusion 57 046002). The main result is that, when divertor limits are enforced, the curves at constant electrical power output are closed on themselves in the R-BT plane, and a maximum achievable power exists—i.e. no benefits would be obtained from a further increase in R and B T once the optimum is reached. This result appears as an intrinsic physical limit for all those devices where a radiative SOL is needed to deal with the power exhaust, and where a lower limit on the power crossing the separatrix (e.g. because of the L-H transition) is present.
Effect of serum nicotine level on posterior spinal fusion in an in vivo rabbit model.
Daffner, Scott D; Waugh, Stacey; Norman, Timothy L; Mukherjee, Nilay; France, John C
2015-06-01
Cigarette smoking has a deleterious effect on spinal fusion. Although some studies have implied that nicotine is primarily responsible for poor fusion outcomes, other studies suggest that nicotine may actually stimulate bone growth. Hence, there may be a dose-dependent effect of nicotine on posterior spinal fusion outcomes. The purpose of this study was to determine if such a relationship could be shown in an in vivo rabbit model. This is a prospective in vivo animal study. Twenty-four adult male New Zealand white rabbits were randomly divided into four groups. All groups received a single-level posterolateral, intertransverse process fusion at L5-L6 with autologous iliac crest bone. One group served as controls and only underwent the spine fusion surgery. Three groups received 5.25-, 10.5-, and 21-mg nicotine patches, respectively, for 5 weeks. Serum nicotine levels were recorded for each group. All animals were euthanized 5 weeks postoperatively, and spinal fusions were evaluated radiographically, by manual palpation, and biomechanically. Statistical analysis evaluated the dose response effect of outcomes variables and nicotine dosage. This study was supported by a portion of a $100,000 grant from the Orthopaedic Research and Education Foundation. Author financial disclosures were completed in accordance with the journal's guidelines; there were no conflicts of interests disclosed that would have led to bias in this work. The average serum levels of nicotine from the different patches were 7.8±1.9 ng/mL for the 5.25-mg patch group; 99.7±17.7 ng/mL for the 10.5-mg patch group; and 149.1±24.6 ng/mL for the 21-mg patch group. The doses positively correlated with serum concentrations of nicotine (correlation coefficient=0.8410, p<.001). The 5.25-mg group provided the best fusion rate, trabeculation, and stiffness. On the basis of the palpation tests, the fusion rates were control (50%), 5.25 mg (80%), 10.5 mg (50%), and 21 mg (42.8%). Radiographic assessment of trabeculation and bone incorporation and biomechanical analysis of bending stiffness ratio were also greatest in the 5.25-mg group. Radiographic evaluation showed a significant (p=.0446) quadratic effect of nicotine dose on spinal fusion. The effects of nicotine on spinal fusion are complex, may be dose dependent, and may not always be detrimental. The uniformly negative effects of smoking reported in patients undergoing spinal fusion may possibly be attributed to the other components of cigarette smoke. Copyright © 2015 Elsevier Inc. All rights reserved.
Harrison, Christine J; Griffiths, Mike; Moorman, Fìona; Schnittger, Susanne; Cayuela, Jean-Michel; Shurtleff, Sheila; Gottardi, Enrico; Mitterbauer, Gerlinde; Colomer, Dolores; Delabesse, Eric; Castéras, Vincent; Maroc, Nicolas
2007-02-01
Rearrangements of the MLL gene are significant in acute leukemia. Among the most frequent translocations are t(4;11)(q21;q23) and t(9;11)(p22;q23), which give rise to the MLL-AFF1 and MLL-MLLT3 fusion genes (alias MLL-AF4 and MLL-AF9) in acute lymphoblastic and acute myeloid leukemia, respectively. Current evidence suggests that determining the MLL status of acute leukemia, including precise identification of the partner gene, is important in defining appropriate treatment. This underscores the need for accurate detection methods. A novel molecular diagnostic device, the MLL FusionChip, has been successfully used to identify MLL fusion gene translocations in acute leukemia, including the precise breakpoint location. This study evaluated the performance of the MLL FusionChip within a routine clinical environment, comprising nine centers worldwide, in the analysis of 21 control and 136 patient samples. It was shown that the assay allowed accurate detection of the MLL fusion gene, regardless of the breakpoint location, and confirmed that this multiplex approach was robust in a global multicenter trial. The MLL FusionChip was shown to be superior to other detection methods. The type of molecular information provided by MLL FusionChip gave an indication of the appropriate primers to design for disease monitoring of MLL patients following treatment.
Huang, H; Yang, Z; Xu, Q; Sheng, Z; Xie, Y; Yan, W; You, Y; Sun, L; Zheng, Z
1999-01-01
In this study, we provide evidence that a recombinant fusion protein containing beta-galactosidase and a tandem repeat peptide of immunogenic dominant epitope of foot-and-mouth disease virus (FMDV) VP1 protein elicits high levels of neutralizing antibody and protects both guinea pigs and swine against infection. Vaccination with this fusion protein induced a FMDV-specific proliferative T-cell response and a neutralizing antibody response. The immunized guinea pigs and swine were protected against FMD type O virus infection. Two DNA plasmids expressing genes of foot-and-mouth disease were constructed. Both plasmids pBO1 and pCO1 contain a signal sequence of the swine immunoglobulin G (IgG) gene and fusion protein gene of pXZ84. The signal sequence and fusion protein gene were under the control of a metallothionein promoter in the case of the pBO1 plasmid and under the control of a cytomegalovirus immediate early promoter in the case of pCO1 plasmid. When pBO1 and pCO1 were inoculated intramuscularly into guinea pigs, both plasmids elicited a neutralizing antibody response and spleen cell proliferation increased following stimulation with FMDV antigen, but animals were not protected from viral challenge.
Assembly of tissue engineered blood vessels with spatially-controlled heterogeneities.
Strobel, Hannah A; Hookway, Tracy; Piola, Marco; Fiore, Gianfranco Beniamino; Soncini, Monica; Alsberg, Eben; Rolle, Marsha
2018-05-04
Tissue-engineered human blood vessels may enable in vitro disease modeling and drug screening to accelerate advances in vascular medicine. Existing methods for tissue engineered blood vessel (TEBV) fabrication create homogenous tubes not conducive to modeling the focal pathologies characteristic of vascular disease. We developed a system for generating self-assembled human smooth muscle cell ring-units, which were fused together into TEBVs. The goal of this study was to assess the feasibility of modular assembly and fusion of ring building units to fabricate spatially-controlled, heterogeneous tissue tubes. We first aimed to enhance fusion and reduce total culture time, and determined that reducing ring pre-culture duration improved tube fusion. Next, we incorporated electrospun polymer ring units onto tube ends as reinforced extensions, which allowed us to cannulate tubes after only 7 days of fusion, and culture tubes with luminal flow in a custom bioreactor. To create focal heterogeneities, we incorporated gelatin microspheres into select ring units during self-assembly, and fused these rings between ring units without microspheres. Cells within rings maintained their spatial position within tissue tubes after fusion. This work describes a platform approach for creating modular TEBVs with spatially-defined structural heterogeneities, which may ultimately be applied to mimic focal diseases such as intimal hyperplasia or aneurysm.
Osychenko, Alina A; Zalessky, Alexandr D; Kostrov, Andrey N; Ryabova, Anastasia V; Krivokharchenko, Alexander S; Nadtochenko, Viktor A
2017-12-01
The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Couture, Jean; Boily, Edouard; Simard, Marc-Alain
1996-05-01
The research and development group at Loral Canada is now at the second phase of the development of a data fusion demonstration model (DFDM) for a naval anti-air warfare to be used as a workbench tool to perform exploratory research. This project has emphatically addressed how the concepts related to fusion could be implemented within the Canadian Patrol Frigate (CPF) software environment. The project has been designed to read data passively on the CPF bus without any modification to the CPF software. This has brought to light important time alignment issues since the CPF sensors and the CPF command and control system were not important time alignment issues since the CPF sensors and the CPF command and control system were not originally designed to support a track management function which fuses information. The fusion of data from non-organic sensors with the tactical Link-11 data has produced stimulating spatial alignment problems which have been overcome by the use of a geodetic referencing coordinate system. Some benchmark scenarios have been selected to quantitatively demonstrate the capabilities of this fusion implementation. This paper describes the implementation design of DFDM (version 2), and summarizes the results obtained so far when fusing the scenarios simulated data.
BigFoot, a program to reduce risk for indirect drive laser fusion
NASA Astrophysics Data System (ADS)
Thomas, Cliff
2016-10-01
The conventional approach to inertial confinement fusion (ICF) is to maximize compressibility, or, total areal density. To achieve high convergence (40), the laser pulse is shaped to launch a weak first shock, which is followed in turn by 2-3 stronger shocks. Importantly, this has an outsized effect on integrated target physics, as the time it takes the shocks to transit the shell is related to hohlraum wall motion and filling, and can contribute to difficulties achieving an implosion that is fast, tunable, and/or predictable. At its outset, this approach attempts to predict the tradeoff in capsule and hohlraum physics in a case that is challenging, and assumes the hotspot can still reach the temperature and density necessary to self-heat (4-5 keV and 0.1-0.2 g/cm2, respectively). Here, we consider an alternate route to fusion ignition, for which the benefits of predictability, control, and coupling could exceed the benefits of convergence. In this approach we avoid uncertainty, and instead, seek a target that is predictable. To simplify hohlraum physics and limit wall motion we keep the implosion time short (6-7 ns), and design the target to avoid laser-plasma instabilities. Whereas the previous focus was on density, it is now on making a 1D hotspot at low convergence (20) that is robust with respect to alpha heating (5-6 keV, and 0.2-0.3 g/cm2) . At present, we estimate the tradeoff between convergence and control is relatively flat, and advantages in coupling enable high velocity (450-500 um/ns) and high yield (1E17). Were the approach successful, we believe it could reduce barriers to progress, as further improvements could be made with small, incremental increases in areal density. Details regarding the ``BigFoot'' platform and pulse are reported, as well as initial experiments. Work that could enable additional improvements in laser power, laser control, and capsule stability will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics
1987-10-01
This program in low-energy x-ray physics and technology has expanded into a major program with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. This program addresses the development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development. The new laboratory includes five specially designed
Magnetized Target Fusion At General Fusion: An Overview
NASA Astrophysics Data System (ADS)
Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General
2017-10-01
Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.
The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells
NASA Astrophysics Data System (ADS)
Zheng, Yan; Zhang, Heting; Deng, Xiaojiang; Liu, Jing; Chen, Huiping
2017-01-01
Vacuole fusion is a necessary process for the establishment of a large central vacuole, which is the central location of various hydrolytic enzymes and other factors involved in death at the beginning of plant programmed cell death (PCD). In our report, the fusion of vacuoles has been presented in two ways: i) small vacuoles coalesce to form larger vacuoles through membrane fusion, and ii) larger vacuoles combine with small vacuoles when small vacuoles embed into larger vacuoles. Regardless of how fusion occurs, a large central vacuole is formed in rice (Oryza sativa) aleurone cells. Along with the development of vacuolation, the rupture of the large central vacuole leads to the loss of the intact plasma membrane and the degradation of the nucleus, resulting in cell death. Stabilizing or disrupting the structure of actin filaments (AFs) inhibits or promotes the fusion of vacuoles, which delays or induces PCD. In addition, the inhibitors of the vacuolar processing enzyme (VPE) and cathepsin B (CathB) block the occurrence of the large central vacuole and delay the progression of PCD in rice aleurone layers. Overall, our findings provide further evidence for the rupture of the large central vacuole triggering the PCD in aleruone layers.
Study of the Interaction of the HIV-1 Fusion Peptide with Lipid Bilayer Membranes
NASA Astrophysics Data System (ADS)
Heller, William; Rai, Durgesh
HIV-1 undergoes fusion with the cell membrane through interactions between its coat proteins and the target cell. Visualization of fusion with sufficient detail to determine the molecular mechanism remains elusive. Here, the interaction between a synthetic variant of the HIV-1 gp41 fusion peptide with vesicles composed of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) was studied. The peptide was observed to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet that is accompanied by a transition in the structure of the lipid bilayer vesicle. The peptide changes the distribution of lipids between the vesicle leaflets. Further, it creates two regions having different thicknesses. The results shed new light on how the peptide modifies the membrane structure to favor fusion. A portion of this research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.
Teller Award Acceptance Speech (LIRPP Vol. 12)
NASA Astrophysics Data System (ADS)
McCrory, Robert L.
2016-10-01
It is indeed an honor to receive an award named for such an accomplished and famous physicist who is present with us today, Dr. Edward Teller. In thinking over what to say on this occasion, I noted that the Teller Award was given for pioneering research in controlled fusion, in controlling fusion for the benefit of mankind. I think everyone in this audience certainly would agree that this lofty goal is truly one of the unconquered, grand challenges in applied physics...
2018-01-30
algorithms. Due to this, Fusion was built with the goal of extensibility throughout the architecture. The Fusion infrastructure enables software...DISTRIBUTION STATEMENT A: Approved for public release. Cleared, 88PA, Case# 2018-0820. b. Trigger a Highly Mobile ...modes were developed in IMPACT (i.e., normal full coverage patrol (NFCP) and highly mobile (HM)). In both NFCP and HM, all UxVs patrol their assigned
1984-12-01
system. The reconstruction process is Simply data fusion after allA data are in. After reconstruction, artifcial intelligence (Al) techniques may be...14. CATE OF fhPM~TVW MWtvt Ogv It PAWE COMN Interim __100 -_ TO December 1984 24 MILD ON" s-o Artificial intelligence Command control Data fusion...RD-Ai5O 867 RESEARCH NEEDS FOR ARTIFICIAL INTELLIGENCE APPLICATIONS i/i IN SUPPORT OF C3 (..(U) NAVAL OCEAN SVSTEIIS CENTER SAN DIEGO CA R R DILLARD
NASA Astrophysics Data System (ADS)
Andreev, N. E.; Gorbunov, Leonid M.; Tikhonchuk, Vladimir T.
1994-09-01
A brief analysis is made of the most important nonlinear processes which result from the interaction of laser radiation with thermonuclear targets. lt is shown that problems in the physics of the plasma corona should be an essential part of any programme of research on laser controlled thermonuclear fusion. A list is given of the problems that have to be solved first before going to the next level of laser energies.
Posterolateral lumbar fusion using Escherichia coli-derived rhBMP-2/hydroxyapatite in the mini pig.
Kong, Chang-Bae; Lee, Jae Hyup; Baek, Hae-Ri; Lee, Choon-Ki; Chang, Bong-Soon
2014-12-01
Hydroxyapatite (HA) is used as a bone graft extender for posterolateral spinal fusion in human. It is also useful as a recombinant human bone morphogenetic protein (rhBMP)-2 carrier because of its high affinity for rhBMP-2. To assess the osteoinductivity of Escherichia coli-derived rhBMP-2 (E-BMP-2) using HA granules as a carrier and to evaluate the bone-forming ability depending on the different dosages of E-BMP-2. A mini-pig lumbar posterolateral fusion model using microcomputed tomography (μCT) scanning. Thirty-one adult male mini pigs were randomized into a single control group (n=8) without E-BMP-2 and two experimental groups with two different doses of E-BMP-2 (1 mg per side, n=8 and 3 mg per side, n=15). Outcome was measured by plain radiography, manual palpation, CT, three-dimensional μCT, and histologic examinations. Bilateral intertransverse process arthrodesis was performed, and E-BMP-2 (0, 1.0, 3.0 mg per side) was implanted into the intertransverse space using HA granules as a carrier. Three mini pigs were removed because of death. Among 28 experimental subjects, 19 animals achieved solid bony union. The fusion rates were 37.5% for control group, 71.4% for 1 mg group, and 84.6% for 3 mg group. Fusion rates were significantly different among groups (p=.031). However, there was no statistically significant difference in fusion rates between 1 and 3 mg groups (p=.587). Thirty-eight intertransverse fusion masses of 19 subjects underwent μCT scanning. The bone volumes determined by μCT were 12,603±3,240 mm(3) for control group, 18,718±3,000 mm(3) for 1 mg group, and 26,768±7,256 mm(3) for 3 mg group, and the difference between groups was statistically significant (p<.001). This study shows that E-BMP-2 has osteoinductive activity in dose-dependent fashion, and porous HA granule is suitable for E-BMP-2 carrier in a porcine posterolateral fusion model. These preliminary findings suggest that E-BMP-2-adsorbed porous HA granules could be a novel effective bone graft substitute. Copyright © 2014 Elsevier Inc. All rights reserved.
University of Rochester, Laboratory for Laser Energetics
NASA Astrophysics Data System (ADS)
1987-01-01
In FY86 the Laboratory has produced a list of accomplishments in which it takes pride. LLE has met every laser-fusion program milestone to date in a program of research for direct-drive ultraviolet laser fusion originally formulated in 1981. LLE scientists authored or co-authored 135 scientific papers during 1985 to 1986. The collaborative experiments with NRL, LANL, and LLNL have led to a number of important ICF results. The cryogenic target system developed by KMS Fusion for LLE will be used in future high-density experiments on OMEGA to demonstrate the compression of thermonuclear fuel to 100 to 200 times that of solid (20 to 40 g/cm) in a test of the direct-drive concept, as noted in the National Academy of Sciences' report. The excellence of the advanced technology efforts at LLE is illustrated by the establishment of the Ultrafast Science Center by the Department of Defense through the Air Force Office of Scientific Research. Research in the Center will concentrate on bridging the gap between high-speed electronics and ultrafast optics by providing education, research, and development in areas critical to future communications and high-speed computer systems. The Laboratory for Laser Energetics continues its pioneering work on the interaction of intense radiation with matter. This includes inertial-fusion and advanced optical and optical electronics research; training people in the technology and applications of high-power, short-pulse lasers; and interacting with the scientific community, business, industry, and government to promote the growth of laser technology.
Deng, Qiannan; Guo, Ting; Zhou, Xiu; Xi, Yongmei; Yang, Xiaohang; Ge, Wanzhong
2016-08-01
Cell proliferation and tissue growth depend on the coordinated regulation of multiple signaling molecules and pathways during animal development. Previous studies have linked mitochondrial function and the Hippo signaling pathway in growth control. However, the underlying molecular mechanisms are not fully understood. Here we identify a Drosophila mitochondrial inner membrane protein ChChd3 as a novel regulator for tissue growth. Loss of ChChd3 leads to tissue undergrowth and cell proliferation defects. ChChd3 is required for mitochondrial fusion and removal of ChChd3 increases mitochondrial fragmentation. ChChd3 is another mitochondrial target of the Hippo pathway, although it is only partially required for Hippo pathway-mediated overgrowth. Interestingly, lack of ChChd3 leads to inactivation of Hippo activity under normal development, which is also dependent on the transcriptional coactivator Yorkie (Yki). Furthermore, loss of ChChd3 induces oxidative stress and activates the JNK pathway. In addition, depletion of other mitochondrial fusion components, Opa1 or Marf, inactivates the Hippo pathway as well. Taken together, we propose that there is a cross-talk between mitochondrial fusion and the Hippo pathway, which is essential in controlling cell proliferation and tissue homeostasis in Drosophila. Copyright © 2016 by the Genetics Society of America.
ORNL-TNS/PEPR overall heating requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Y. K.M.; Rome, J. A.
1977-01-01
The ORNL TNS/PEPR studies have the objectives of (1) leading to a system that demonstrates the fusion reactor core in the mid-to-late 1980's and extrapolates to an economic tokamak power reactor, and (2) providing a near-term focus for the scientific and technological programs toward the power reactor. This discussion of the overall heating requirements for the ORNL TNS/PEPR is concerned with the neutral beams as the primary heating method, the electron-cyclotron resonance (ECR) heating at a lower power level for profile control, and the upper hybrid resonance (UHR) initiation and preheating of currentless plasmas to reduce current start-up loop voltagemore » (V/sub l/) requirements.« less
Advances in Multi-Sensor Information Fusion: Theory and Applications 2017.
Jin, Xue-Bo; Sun, Shuli; Wei, Hong; Yang, Feng-Bao
2018-04-11
The information fusion technique can integrate a large amount of data and knowledge representing the same real-world object and obtain a consistent, accurate, and useful representation of that object. The data may be independent or redundant, and can be obtained by different sensors at the same time or at different times. A suitable combination of investigative methods can substantially increase the profit of information in comparison with that from a single sensor. Multi-sensor information fusion has been a key issue in sensor research since the 1970s, and it has been applied in many fields. For example, manufacturing and process control industries can generate a lot of data, which have real, actionable business value. The fusion of these data can greatly improve productivity through digitization. The goal of this special issue is to report innovative ideas and solutions for multi-sensor information fusion in the emerging applications era, focusing on development, adoption, and applications.
Cdc48 regulates a deubiquitylase cascade critical for mitochondrial fusion
den Brave, Fabian
2018-01-01
Cdc48/p97, a ubiquitin-selective chaperone, orchestrates the function of E3 ligases and deubiquitylases (DUBs). Here, we identify a new function of Cdc48 in ubiquitin-dependent regulation of mitochondrial dynamics. The DUBs Ubp12 and Ubp2 exert opposing effects on mitochondrial fusion and cleave different ubiquitin chains on the mitofusin Fzo1. We demonstrate that Cdc48 integrates the activities of these two DUBs, which are themselves ubiquitylated. First, Cdc48 promotes proteolysis of Ubp12, stabilizing pro-fusion ubiquitylation on Fzo1. Second, loss of Ubp12 stabilizes Ubp2 and thereby facilitates removal of ubiquitin chains on Fzo1 inhibiting fusion. Thus, Cdc48 synergistically regulates the ubiquitylation status of Fzo1, allowing to control the balance between activation or repression of mitochondrial fusion. In conclusion, we unravel a new cascade of ubiquitylation events, comprising Cdc48 and two DUBs, fine-tuning the fusogenic activity of Fzo1. PMID:29309037
Laser-induced tissue fluorescence in radiofrequency tissue-fusion characterization.
Su, Lei; Fonseca, Martina B; Arya, Shobhit; Kudo, Hiromi; Goldin, Robert; Hanna, George B; Elson, Daniel S
2014-01-01
Heat-induced tissue fusion is an important procedure in modern surgery and can greatly reduce trauma, complications, and mortality during minimally invasive surgical blood vessel anastomosis, but it may also have further benefits if applied to other tissue types such as small and large intestine anastomoses. We present a tissue-fusion characterization technology using laser-induced fluorescence spectroscopy, which provides further insight into tissue constituent variations at the molecular level. In particular, an increase of fluorescence intensity in 450- to 550-nm range for 375- and 405-nm excitation suggests that the collagen cross-linking in fused tissues increased. Our experimental and statistical analyses showed that, by using fluorescence spectral data, good fusion could be differentiated from other cases with an accuracy of more than 95%. This suggests that the fluorescence spectroscopy could be potentially used as a feedback control method in online tissue-fusion monitoring.
Distributed Multisensor Data Fusion under Unknown Correlation and Data Inconsistency
Abu Bakr, Muhammad; Lee, Sukhan
2017-01-01
The paradigm of multisensor data fusion has been evolved from a centralized architecture to a decentralized or distributed architecture along with the advancement in sensor and communication technologies. These days, distributed state estimation and data fusion has been widely explored in diverse fields of engineering and control due to its superior performance over the centralized one in terms of flexibility, robustness to failure and cost effectiveness in infrastructure and communication. However, distributed multisensor data fusion is not without technical challenges to overcome: namely, dealing with cross-correlation and inconsistency among state estimates and sensor data. In this paper, we review the key theories and methodologies of distributed multisensor data fusion available to date with a specific focus on handling unknown correlation and data inconsistency. We aim at providing readers with a unifying view out of individual theories and methodologies by presenting a formal analysis of their implications. Finally, several directions of future research are highlighted. PMID:29077035
Multisensor data fusion for integrated maritime surveillance
NASA Astrophysics Data System (ADS)
Premji, A.; Ponsford, A. M.
1995-01-01
A prototype Integrated Coastal Surveillance system has been developed on Canada's East Coast to provide effective surveillance out to and beyond the 200 nautical mile Exclusive Economic Zone. The system has been designed to protect Canada's natural resources, and to monitor and control the coastline for smuggling, drug trafficking, and similar illegal activity. This paper describes the Multiple Sensor - Multiple Target data fusion system that has been developed. The fusion processor has been developed around the celebrated Multiple Hypothesis Tracking algorithm which accommodates multiple targets, new targets, false alarms, and missed detections. This processor performs four major functions: plot-to-track association to form individual radar tracks; fusion of radar tracks with secondary sensor reports; track identification and tagging using secondary reports; and track level fusion to form common tracks. Radar data from coherent and non-coherent radars has been used to evaluate the performance of the processor. This paper presents preliminary results.
Evaluation of efficacy of a new hybrid fusion device: a randomized, two-centre controlled trial.
Siewe, Jan; Bredow, Jan; Oppermann, Johannes; Koy, Timmo; Delank, Stefan; Knoell, Peter; Eysel, Peer; Sobottke, Rolf; Zarghooni, Kourosh; Röllinghoff, Marc
2014-09-05
The 360° fusion of lumbar segments is a common and well-researched therapy to treat various diseases of the spine. But it changes the biomechanics of the spine and may cause adjacent segment disease (ASD). Among the many techniques developed to avoid this complication, one appears promising. It combines a rigid fusion with a flexible pedicle screw system (hybrid instrumentation, "topping off"). However, its clinical significance is still uncertain due to the lack of conclusive data. The study is a randomized, therapy-controlled, two-centre trial conducted in a clinical setting at two university hospitals. If they meet the criteria, outpatients presenting with degenerative disc disease, facet joint arthrosis or spondylolisthesis will be included in the study and randomized into two groups: a control group undergoing conventional fusion surgery (PLIF - posterior lumbar intervertebral fusion), and an intervention group undergoing fusion surgery using a new flexible pedicle screw system (PLIF + "topping off"), which was brought on the market in 2013. Follow-up examination will take place immediately after surgery, after 6 weeks and after 6, 12, 24 and 36 months. An ongoing assessment will be performed every year.Outcome measurements will include quality of life and pain assessments using validated questionnaires (ODI - Ostwestry Disability Index, SF-36™ - Short Form Health Survey 36, COMI - Core Outcome Measure Index). In addition, clinical and radiologic ASD, sagittal balance parameters and duration of work disability will be assessed. Inpatient and 6-month mortality, surgery-related data (e.g., intraoperative complications, blood loss, length of incision, surgical duration), postoperative complications (e.g. implant failure), adverse events, and serious adverse events will be monitored and documented throughout the study. New hybrid "topping off" systems might improve the outcome of lumbar spine fusion. But to date, there is a serious lack of and a great need of convincing data on safety or efficacy, including benefits and harms to the patients, of these systems. Health care providers are particularly interested in such data as these implants are much more expensive than conventional implants. In such a case, randomized clinical trials are the best way to evaluate benefits and risks. NCT01852526.
Zadegan, Shayan Abdollah; Jazayeri, Seyed Behnam; Abedi, Aidin; Bonaki, Hirbod Nasiri; Vaccaro, Alexander R.; Rahimi-Movaghar, Vafa
2017-01-01
Study Design: Systematic review. Objectives: Anterior cervical approach is associated with complications such as dysphagia and airway compromise. In this study, we aimed to systematically review the literature on the efficacy and safety of corticosteroid administration as a preventive measure of such complications in anterior cervical spine surgery with fusion. Methods: Following a systematic literature search of MEDLINE, Embase, and Cochrane databases in July 2016, all comparative human studies that evaluated the effect of steroids for prevention of complications in anterior cervical spine surgery with fusion were included, irrespective of number of levels and language. Risk of bias was assessed using MINORS (Methodological Index for Non-Randomized Studies) checklist and Cochrane Back and Neck group recommendations, for nonrandomized and randomized studies, respectively. Results: Our search yielded 556 articles, of which 9 studies (7 randomized controlled trials and 2 non–randomized controlled trials) were included in the final review. Dysphagia was the most commonly evaluated complication, and in most studies, its severity or incidence was significantly lower in the steroid group. Although prevertebral soft tissue swelling was less commonly assessed, the results were generally in favor of steroid use. The evidence for airway compromise and length of hospitalization was inconclusive. Steroid-related complications were rare, and in both studies that evaluated the fusion rate, it was comparable between steroid and control groups in long-term follow-up. Conclusions: Current literature supports the use of steroids for prevention of complications in anterior cervical spine surgery with fusion. However, evidence is limited by substantial risk of bias and small number of studies reporting key outcomes. PMID:29796378
Overview of the NSTX Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Sichta; J. Dong; G. Oliaro
2001-12-03
The National Spherical Torus Experiment (NSTX) is an innovative magnetic fusion device that was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. Since achieving first plasma in 1999, the device has been used for fusion research through an international collaboration of more than twenty institutions. The NSTX is operated through a collection of control systems that encompass a wide range of technology, from hardwired relay controls to real-time control systems with giga-FLOPS of capability. This paper presents a broad introduction to the controlmore » systems used on NSTX, with an emphasis on the computing controls, data acquisition, and synchronization systems.« less
NASA Astrophysics Data System (ADS)
Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.
2018-01-01
Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hvasta, Michael George; Kolemen, Egemen; Fisher, Adam
Plasma-facing components (PFC's) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC's, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC's can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metalmore » that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. Furthermore, these results show the promise of electromagnetic control for LM-PFC's and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.« less
Hvasta, Michael George; Kolemen, Egemen; Fisher, Adam; ...
2017-10-13
Plasma-facing components (PFC's) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC's, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC's can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metalmore » that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. Furthermore, these results show the promise of electromagnetic control for LM-PFC's and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.« less
NASA Astrophysics Data System (ADS)
Li, L.; Yang, K.; Jia, G.; Ran, X.; Song, J.; Han, Z.-Q.
2015-05-01
The accurate estimation of the tire-road friction coefficient plays a significant role in the vehicle dynamics control. The estimation method should be timely and reliable for the controlling requirements, which means the contact friction characteristics between the tire and the road should be recognized before the interference to ensure the safety of the driver and passengers from drifting and losing control. In addition, the estimation method should be stable and feasible for complex maneuvering operations to guarantee the control performance as well. A signal fusion method combining the available signals to estimate the road friction is suggested in this paper on the basis of the estimated ones of braking, driving and steering conditions individually. Through the input characteristics and the states of the vehicle and tires from sensors the maneuvering condition may be recognized, by which the certainty factors of the friction of the three conditions mentioned above may be obtained correspondingly, and then the comprehensive road friction may be calculated. Experimental vehicle tests validate the effectiveness of the proposed method through complex maneuvering operations; the estimated road friction coefficient based on the signal fusion method is relatively timely and accurate to satisfy the control demands.
Design and Modeling of a Liquid Lithium LiMIT Loop
NASA Astrophysics Data System (ADS)
Szott, Matthew; Christenson, Michael; Stemmley, Steven; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David
2017-10-01
The use of flowing liquid lithium in plasma facing components has been shown to reduce erosion and thermal stress damage, prolong device lifetime, decrease edge recycling, reduce impurities, and increase plasma performance, all while providing a clean and self-healing surface. The Liquid Metal Infused Trench (LiMIT) system has proven the concept of controlled thermoelectric magnetohydrodynamic-driven lithium flow for use in fusion relevant conditions, through tests at UIUC, HT-7, and Magnum PSI. As the use of liquid lithium in fusion devices progresses, emphasis must now be placed on full systems integration of flowing liquid metal concepts. The LiMIT system will be upgraded to include a full liquid lithium loop, which will pump lithium into the fusion device, utilize TEMHD to drive lithium through the vessel, and remove lithium for filtration and degassing. Flow control concepts recently developed at UIUC - including wetting control, dryout control, and flow velocity control - will be tested in conjunction in order to demonstrate a robust system. Lithium loop system requirements, designs, and modeling work will be presented, along with plans for installation and testing on the HIDRA device at UIUC. This work is supported by DOE/ALPS DE-FG02-99ER54515.
Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how doesmore » this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design.« less
Infusing Plasma into the High School Curriculum through Teacher Professional Development
NASA Astrophysics Data System (ADS)
Merali, Aliya; Guilbert, Nicholas; Ortiz, Myrna; Zwicker, Andrew
2013-10-01
A 2004 report submitted by the Fusion Energy Sciences Advisory Committee noted a critical need for action to prevent a shortage of fusion researchers, specifically highlighting the need for more students to enter the field. In an effort to expose students to plasma physics early on, PPPL created a professional development program for teachers, which provides the resources for infusing plasma into high school curricula. Over the last 15 years, teachers from across the country have participated in a one-week Plasma Camp course including lectures, labs, tours, curriculum planning, and classroom equipment funding opportunities. A 2005 survey indicated that at least 75% of program alumni used material from the workshop annually, primarily in the form of demonstrations. In a 2013 survey, participants were asked to detail how they use the workshop information in their classrooms, how the program has altered their teaching methods, and what factors, if any, have hindered the implementation of a plasma curriculum. Results of the 2013 survey will be presented.
Simulating Operation of a Complex Sensor Network
NASA Technical Reports Server (NTRS)
Jennings, Esther; Clare, Loren; Woo, Simon
2008-01-01
Simulation Tool for ASCTA Microsensor Network Architecture (STAMiNA) ["ASCTA" denotes the Advanced Sensors Collaborative Technology Alliance.] is a computer program for evaluating conceptual sensor networks deployed over terrain to provide military situational awareness. This or a similar program is needed because of the complexity of interactions among such diverse phenomena as sensing and communication portions of a network, deployment of sensor nodes, effects of terrain, data-fusion algorithms, and threat characteristics. STAMiNA is built upon a commercial network-simulator engine, with extensions to include both sensing and communication models in a discrete-event simulation environment. Users can define (1) a mission environment, including terrain features; (2) objects to be sensed; (3) placements and modalities of sensors, abilities of sensors to sense objects of various types, and sensor false alarm rates; (4) trajectories of threatening objects; (5) means of dissemination and fusion of data; and (6) various network configurations. By use of STAMiNA, one can simulate detection of targets through sensing, dissemination of information by various wireless communication subsystems under various scenarios, and fusion of information, incorporating such metrics as target-detection probabilities, false-alarm rates, and communication loads, and capturing effects of terrain and threat.
Sang, Ming; Zhang, Jiaxin; Li, Bin; Chen, Yuqing
2016-06-01
A TRAIL-CM4 fusion protein in soluble form with tumor selective apoptosis and antibacterial functions was expressed in the Escherichia coli expression system and isolated through dialysis refolding and histidine-tag Nickel-affinity purification. Fresh Jurkat cells were treated with the TRAIL-CM4 fusion protein. Trypan blue staining and MTT analyses showed that, similar to a TRAIL positive control, Jurkat cell proliferation was significantly inhibited. Flow cytometry analyses using Annexin V-fluorescein revealed that Jurkat cells treated with the TRAIL-CM4 fusion protein exhibited increased apoptosis. Laser confocal microscopy showed that APB-CM4 and the fusion protein TRAIL-CM4 can bind to Jurkat cell membranes and initiate their destruction. ABP-CM4 enhances the antitumor activity of TRAIL by targeting and damaging the tumor cell membrane. In antibacterial experiments, agar well diffusion and bacterial growth inhibition curve assays revealed concentration-dependent TRAIL-CM4 antibacterial activity against Escherichia coli K12D31. The expressed TRAIL-CM4 fusion protein exhibited enhanced antitumor and antibacterial activities. Fusion protein expression allowed the two different proteins to function in combination. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.
2011-06-01
We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.
Vesicular PtdIns(3,4,5)P3 and Rab7 are key effectors of sea urchin zygote nuclear membrane fusion.
Lete, Marta G; Byrne, Richard D; Alonso, Alicia; Poccia, Dominic; Larijani, Banafshé
2017-01-15
Regulation of nuclear envelope dynamics is an important example of the universal phenomena of membrane fusion. The signalling molecules involved in nuclear membrane fusion might also be conserved during the formation of both pronuclear and zygote nuclear envelopes in the fertilised egg. Here, we determine that class-I phosphoinositide 3-kinases (PI3Ks) are needed for in vitro nuclear envelope formation. We show that, in vivo, PtdIns(3,4,5)P 3 is transiently located in vesicles around the male pronucleus at the time of nuclear envelope formation, and around male and female pronuclei before membrane fusion. We illustrate that class-I PI3K activity is also necessary for fusion of the female and male pronuclear membranes. We demonstrate, using coincidence amplified Förster resonance energy transfer (FRET) monitored using fluorescence lifetime imaging microscopy (FLIM), a protein-lipid interaction of Rab7 GTPase and PtdIns(3,4,5)P 3 that occurs during pronuclear membrane fusion to create the zygote nuclear envelope. We present a working model, which includes several molecular steps in the pathways controlling fusion of nuclear envelope membranes. © 2017. Published by The Company of Biologists Ltd.
Time-Lapse Cinemicrographic Studies of X-Irradiated HeLa S3 Cells
Hurwitz, Camilla; Tolmach, L. J.
1969-01-01
Analysis of time-lapse cinemicrographs of X-irradiated HeLa S3 cells has shown that the incidence of cell fusion was increased from 0.9% (following 1267 divisions) in control cells to an average of 22% (following 655 divisions) in cells irradiated with 500 rad doses of 220 kv X-rays. The incidence depended on the stage of the generation cycle at which the parent cells were irradiated. It was nearly constant in the first three postirradiation generations. Fusion occurred at all stages of the generation cycle, but preferentially during the first 20%. Cells undergoing fusion progressed more slowly through the generation cycle and had a higher probability of disintegrating than did irradiated cells that did not fuse. The occurrence of fusion was clonally distributed in the population. It took place only between sister (or closely related) cells. Protoplasmic bridges were often visible between sister cells prior to fusion. Giant cells arose only as a result of fusion. The incidence of multipolar divisions, though higher than in unirradiated cells, was only 5.5% in cultures irradiated with 500 rads. Fusion occurred following 85% of the multipolar divisions and was often followed by a multipolar division. ImagesFigure 1 PMID:5807221
NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Sovinec, C. R.; Gianakon, T. A.; Held, E. D.; Kruger, S. E.; Schnack, D. D.
2003-05-01
Nonlinear numerical studies of macroscopic modes in a variety of magnetic fusion experiments are made possible by the flexible high-order accurate spatial representation and semi-implicit time advance in the NIMROD simulation code [A. H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747 (1999)]. Simulation of a resistive magnetohydrodynamics mode in a shaped toroidal tokamak equilibrium demonstrates computation with disparate time scales, simulations of discharge 87009 in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] confirm an analytic scaling for the temporal evolution of an ideal mode subject to plasma-β increasing beyond marginality, and a spherical torus simulation demonstrates nonlinear free-boundary capabilities. A comparison of numerical results on magnetic relaxation finds the n=1 mode and flux amplification in spheromaks to be very closely related to the m=1 dynamo modes and magnetic reversal in reversed-field pinch configurations. Advances in local and nonlocal closure relations developed for modeling kinetic effects in fluid simulation are also described.
INTRODUCTION: Status report on fusion research
NASA Astrophysics Data System (ADS)
Burkart, Werner
2005-10-01
A major milestone on the path to fusion energy was reached in June 2005 on the occasion of the signing of the joint declaration of all parties to the ITER negotiations, agreeing on future arrangements and on the construction site at Cadarache in France. The International Atomic Energy Agency has been promoting fusion activities since the late 1950s; it took over the auspices of the ITER Conceptual Design Activities in 1988, and of the ITER Engineering and Design Activities in 1992. The Agency continues its support to Member States through the organization of consultancies, workshops and technical meetings, the most prominent being the series of International Fusion Energy Conferences (formerly called the International Conference on Plasma Physics and Controlled Nuclear Fusion Research). The meetings serve as a platform for experts from all Member States to have open discussions on their latest accomplishments as well as on their problems and eventual solutions. The papers presented at the meetings and conferences are routinely published, many being sent to the journal it Nuclear Fusion, co-published monthly by Institute of Physics Publishing, Bristol, UK. The journal's reputation is reflected in the fact that it is a world-renowned publication, and the International Fusion Research Council has used it for the publication of a Status Report on Controlled Thermonuclear Fusion in 1978 and 1990. This present report marks the conclusion of the preparatory phases of ITER activities. It provides background information on the progress of fusion research within the last 15 years. The International Fusion Research Council (IFRC), which initiated the report, was fully aware of the complexities of including all scientific results in just one paper, and so decided to provide an overview and extensive references for the interested reader who need not necessarily be a fusion specialist. Professor Predhiman K. Kaw, Chairman, prepared the report on behalf of the IFRC, reflecting members' personal views on the latest achievements in fusion research, including magnetic and inertial confinement scenarios. The report describes fusion fundamentals and progress in fusion science and technology, with ITER as a possible partner in the realization of self-sustainable burning plasma. The importance of the socio-economic aspects of energy production using fusion power plants is also covered. Noting that applications of plasma science are of broad interest to the Member States, the report addresses the topic of plasma physics to assist in understanding the achievements of better coatings, cheaper light sources, improved heat-resistant materials and other high-technology materials. Nuclear fusion energy production is intrinsically safe, but for ITER the full range of hazards will need to be addressed, including minimising radiation exposure, to accomplish the goal of a sustainable and environmentally acceptable production of energy. We anticipate that the role of the Agency will in future evolve from supporting scientific projects and fostering information exchange to the preparation of safety principles and guidelines for the operation of burning fusion plasmas with a Q > 1. Technical progress in inertial and magnetic confinement, as well as in alternative concepts, will lead to a further increase in international cooperation. New means of communication will be needed, utilizing the best resources of modern information technology to advance interest in fusion. However, today the basis of scientific progress is still through journal publications and, with this in mind, we trust that this report will find an interested readership. We acknowledge with thanks the support of the members of the IFRC as an advisory body to the Agency. Seven chairmen have presided over the IFRC since its first meeting in 1971 in Madison, USA, ensuring that the IAEA fusion efforts were based on the best professional advice possible, and that information on fusion developments has been widely and expertly disseminated. We further acknowledge the efforts of the Chairman of the IFRC and of all authors and experts who contributed to this report on the present status of fusion research.
Monitoring and Hardware Management for Critical Fusion Plasma Instrumentation
NASA Astrophysics Data System (ADS)
Carvalho, Paulo F.; Santos, Bruno; Correia, Miguel; Combo, Álvaro M.; Rodrigues, AntÓnio P.; Pereira, Rita C.; Fernandes, Ana; Cruz, Nuno; Sousa, Jorge; Carvalho, Bernardo B.; Batista, AntÓnio J. N.; Correia, Carlos M. B. A.; Gonçalves, Bruno
2018-01-01
Controlled nuclear fusion aims to obtain energy by particles collision confined inside a nuclear reactor (Tokamak). These ionized particles, heavier isotopes of hydrogen, are the main elements inside of plasma that is kept at high temperatures (millions of Celsius degrees). Due to high temperatures and magnetic confinement, plasma is exposed to several sources of instabilities which require a set of procedures by the control and data acquisition systems throughout fusion experiments processes. Control and data acquisition systems often used in nuclear fusion experiments are based on the Advanced Telecommunication Computer Architecture (AdvancedTCA®) standard introduced by the Peripheral Component Interconnect Industrial Manufacturers Group (PICMG®), to meet the demands of telecommunications that require large amount of data (TB) transportation at high transfer rates (Gb/s), to ensure high availability including features such as reliability, serviceability and redundancy. For efficient plasma control, systems are required to collect large amounts of data, process it, store for later analysis, make critical decisions in real time and provide status reports either from the experience itself or the electronic instrumentation involved. Moreover, systems should also ensure the correct handling of detected anomalies and identified faults, notify the system operator of occurred events, decisions taken to acknowledge and implemented changes. Therefore, for everything to work in compliance with specifications it is required that the instrumentation includes hardware management and monitoring mechanisms for both hardware and software. These mechanisms should check the system status by reading sensors, manage events, update inventory databases with hardware system components in use and maintenance, store collected information, update firmware and installed software modules, configure and handle alarms to detect possible system failures and prevent emergency scenarios occurrences. The goal is to ensure high availability of the system and provide safety operation, experiment security and data validation for the fusion experiment. This work aims to contribute to the joint effort of the IPFN control and data acquisition group to develop a hardware management and monitoring application for control and data acquisition instrumentation especially designed for large scale tokamaks like ITER.
Fusion Power—A Chemical Engineering View of the Integrated Enterprise
NASA Astrophysics Data System (ADS)
Manganaro, James L.
2003-03-01
The purpose of this article was to achieve the beginning of an understanding of the integrated fusion enterprise from raw materials through power generation to decommissioning and waste disposal. The particular view point is that of a technically trained person who is only casually acquainted with the field. Emphasis is given to the chemical engineering aspects of controlled fusion power. It is concluded that there are indeed many areas in which the discipline of chemical engineering may contribute to the fusion effort. These areas include separation technology by physical and chemical means, heat and mass transfer in a packed bed blanket, tritium removal from molten coolants, distillation technology for isotope separation, and preparation of deuterium and lithium feed materials.
NASA Astrophysics Data System (ADS)
Awumah, A.; Mahanti, P.; Robinson, M. S.
2017-12-01
Image fusion is often used in Earth-based remote sensing applications to merge spatial details from a high-resolution panchromatic (Pan) image with the color information from a lower-resolution multi-spectral (MS) image, resulting in a high-resolution multi-spectral image (HRMS). Previously, the performance of six well-known image fusion methods were compared using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images (1). Results showed the Intensity-Hue-Saturation (IHS) method provided the best spatial performance, but deteriorated the spectral content. In general, there was a trade-off between spatial enhancement and spectral fidelity from the fusion process; the more spatial details from the Pan fused with the MS image, the more spectrally distorted the final HRMS. In this work, we control the amount of spatial details fused (from the LROC NAC images to WAC images) using a controlled IHS method (2), to investigate the spatial variation in spectral distortion on fresh crater ejecta. In the controlled IHS method (2), the percentage of the Pan component merged with the MS is varied. The percent of spatial detail from the Pan used is determined by a variable whose value may be varied between 1 (no Pan utilized) to infinity (entire Pan utilized). An HRMS color composite image (red=415nm, green=321/415nm, blue=321/360nm (3)) was used to assess performance (via visual inspection and metric-based evaluations) at each tested value of the control parameter (1 to 10—after which spectral distortion saturates—in 0.01 increments) within three regions: crater interiors, ejecta blankets, and the background material surrounding the craters. Increasing the control parameter introduced increased spatial sharpness and spectral distortion in all regions, but to varying degrees. Crater interiors suffered the most color distortion, while ejecta experienced less color distortion. The controlled IHS method is therefore desirable for resolution-enhancement of fresh crater ejecta; larger values of the control parameter may be used to sharpen MS images of ejecta patterns but with less impact to color distortion than in the uncontrolled IHS fusion process. References: (1) Prasun et. al (2016) ISPRS. (2) Choi, Myungjin (2006) IEEE. (3) Denevi et. al (2014) JGR.
Webb, Stacy R.; Smith, Stacy E.; Fried, Michael G.
2018-01-01
ABSTRACT Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families. IMPORTANCE Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens—Ebola virus, influenza virus, SARS CoV, and rabies virus—self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development. PMID:29669880
You, Jinyoung; Lee, Joohyeong; Kim, Jinyoung; Park, Junhong; Lee, Eunsong
2010-02-01
The objective of this study was to examine the effect of post-fusion treatment of somatic cell nuclear transfer (SCNT) oocytes with the proteasomal inhibitor MG132 on maturation promoting factor (MPF) activity, nuclear remodeling, embryonic development, and gene expression of cloned pig embryos. Immediately after electrofusion, SCNT oocytes were treated with MG132 and/or caffeine for 2 hr, vanadate for 0.5 hr, or vanadate for 0.5 hr followed by MG132 for 1.5 hr. Of the MG132 concentrations tested (0-5 microM), the 1 microM concentration showed a higher rate of blastocyst formation (25.9%) than 0 (14.2%), 0.5 (16.9%), and 5 microM (16.9%). Post-fusion treatment with MG132, caffeine, and both MG132 and caffeine improved blastocyst formation (22.1%, 21.4%, and 24.4%, respectively), whereas vanadate treatment inhibited blastocyst formation (6.5%) compared to the control (11.1%). When examined 2 hr after fusion and 1 hr after activation, MPF activity remained at a higher (P < 0.05) level in SCNT oocytes that were treated post-fusion with caffeine and/or MG132, but it was decreased by vanadate. The rate of oocytes showing premature chromosome condensation was not altered by MG132 but was decreased by vanadate treatment. In addition, formation of single pronuclei was increased by MG132 compared to control and vanadate treatment. MG132-treated embryos showed increased expression of POU5F1, DPPA2, DPPA3, DPPA5, and NDP52l1 genes compared to control embryos. Our results demonstrate that post-fusion treatment of SCNT oocytes with MG132 prevents MPF degradation and increases expression of transcription factors in SCNT embryos, which are necessary for normal development of SCNT embryos. (c) 2009 Wiley-Liss, Inc.
Herpes B Virus Utilizes Human Nectin-1 but Not HVEM or PILRα for Cell-Cell Fusion and Virus Entry
Fan, Qing; Amen, Melanie; Harden, Mallory; Severini, Alberto; Griffiths, Anthony
2012-01-01
To investigate the requirements of herpesvirus entry and fusion, the four homologous glycoproteins necessary for herpes simplex virus (HSV) fusion were cloned from herpes B virus (BV) (or macacine herpesvirus 1, previously known as cercopithecine herpesvirus 1) and cercopithecine herpesvirus 2 (CeHV-2), both related simian simplexviruses belonging to the alphaherpesvirus subfamily. Western blots and cell-based enzyme-linked immunosorbent assay (ELISA) showed that glycoproteins gB, gD, and gH/gL were expressed in whole-cell lysates and on the cell surface. Cell-cell fusion assays indicated that nectin-1, an HSV-1 gD receptor, mediated fusion of cells expressing glycoproteins from both BV and CeHV-2. However, herpesvirus entry mediator (HVEM), another HSV-1 gD receptor, did not facilitate BV- and CeHV-2-induced cell-cell fusion. Paired immunoglobulin-like type 2 receptor alpha (PILRα), an HSV-1 gB fusion receptor, did not mediate fusion of cells expressing glycoproteins from either simian virus. Productive infection with BV was possible only with nectin-1-expressing cells, indicating that nectin-1 mediated entry while HVEM and PILRα did not function as entry receptors. These results indicate that these alphaherpesviruses have differing preferences for entry receptors. The usage of the HSV-1 gD receptor nectin-1 may explain interspecies transfer of the viruses, and altered receptor usage may result in altered virulence, tropism, or pathogenesis in the new host. A heterotypic cell fusion assay resulting in productive fusion may provide insight into interactions that occur to trigger fusion. These findings may be of therapeutic significance for control of deadly BV infections. PMID:22345445
Kömürcü, Erkam; Özyalvaçlı, Gülzade; Kaymaz, Burak; Gölge, Umut Hatay; Göksel, Ferdi; Cevizci, Sibel; Adam, Gürhan; Ozden, Raif
2015-09-01
Spinal fusion is among the most frequently applied spinal surgical procedures. The goal of the present study was to evaluate whether the local administration of boric acid (BA) improves spinal fusion in an experimental spinal fusion model in rats. Currently, there is no published data that evaluates the possible positive effects if the local administration of BA on posterolateral spinal fusion. Thirty-two rats were randomly divided into four independent groups: no material was added at the fusion area for group 1; an autogenous morselized corticocancellous bone graft was used for group 2; an autogenous morselized corticocancellous bone graft with boric acid (8.7 mg/kg) for group 3; and only boric acid was placed into the fusion area for group 4. The L4-L6 spinal segments were collected at week 6, and the assessments included radiography, manual palpation, and histomorphometry. A statistically significant difference was determined between the groups with regard to the mean histopathological scores (p = 0.002), and a paired comparison was made with the Mann-Whitney U test to detect the group/groups from which the difference originated. It was determined that only the graft + BA practice increased the histopathological score significantly with regard to the control group (p = 0.002). Whereas, there was no statistically significant difference between the groups in terms of the manual assessment of fusion and radiographic analysis (respectively p = 0.328 and p = 0.196). This preliminary study suggests that BA may clearly be useful as a therapeutic agent in spinal fusion. However, further research is required to show the most effective dosage of BA on spinal fusion, and should indicate whether BA effects spinal fusion in the human body.
Dust charging and levitating in a sheath of plasma containing energetic particles
NASA Astrophysics Data System (ADS)
Ou, Jing; Zhao, Xiao-Yun; Lin, Bin-Bin
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11475223), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB101003), and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (Grant Nos. 11261140328 and 2012K2A2A6000443).
NASA Astrophysics Data System (ADS)
Berk, H. L.
2012-09-01
The topic of the behaviour of energetic alpha particles in magnetic fusion confined plasmas is perhaps the ultimate frontier plasma physics issue that needs to be understood in the quest to achieve controlled power from the fusion reaction in magnetically confined plasmas. The partial pressure of alpha particles in a burning plasma will be ~5-10% of the total pressure and under these conditions the alpha particles may be prone to develop instability through Alfvénic interaction. This may lead, even with moderate alpha particle loss, to a burn quench or severe wall damage. Alternatively, benign Alfvénic signals may allow the vital information to control a fusion burn. The significance of this issue has led to extensive international investigations and a biannual meeting that began in Kyiv in 1989, followed by subsequent meetings in Aspenäs (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007) and Kyiv (2009). The meeting was initially entitled 'Alpha Particles in Fusion Research' and then was changed during the 1997 meeting to 'Energetic Particles in Magnetic Confinement Systems' in appreciation of the need to study the significance of the electron runaway, which can lead to the production of energetic electrons with energies that can even exceed the energy produced by fusion products. This special issue presents some of the mature interesting work that was reported at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was held in Austin, Texas, USA (7-11 September 2011). This meeting immediately followed a related meeting, the 5th IAEA Technical Meeting on Theory of Plasma Wave Instabilities (5-7 September 2011). The meetings shared one day (7 September 2011) with presentations relevant to both groups. The presentations from most of the participants, as well as some preliminary versions of papers, are available at the websites [1, 2]. To view a presentation or paper, go to the link 'program', view the list or speakers and poster presenters and press 'talk' or 'paper' under the appropriate name. Summaries of the Energetic Particle Conference presentations were given by Kazuo Toi and Boris Breizman. They respectively discussed the experimental and theoretical progress presented at the meeting. Their presentations can be viewed on the 'iaeaep' website [1], by pressing 'Summary-I (or II)' by each of their names. Highlights of this meeting include the tremendous progress that has been achieved in the development of diagnostics that enables the 'viewing' of internal fluctuations and allows comparison with theoretical predictions, as demonstrated, for example, in the talks of P. Lauber and M. Osakabe. The need and development of hardened diagnostics in the severe radiation environment, such as those that will exist in ITER, was discussed in the talks of V. Kiptiley and V.A. Kazakhov. In theoretical studies, much of the effort is focused on nonlinear phenomena. For example, detailed comparison of theory and experiment on D-III-D on the n = 0 geodesic mode was reported in separate papers by R. Nazikian and G. Fu. A large number of theoretical papers were presented on wave chirping including a paper by B.N. Breizman, which notes that continual wave chirping from a single frequency may emanate continuously once marginal stability conditions have been established. Another area of wide interest was the detailed study of alpha orbits in a burning plasma, where losses can come from perturbations from perfect toroidal symmetry arising from finite coil number, magnetic field imperfections introduced by diagnostic or test modules and from instability. An important area of development, covered by M.A. Hole and D.A. Spong, is concerned with the self-consistent treatment of the induced fields that accounts for responses beyond vacuum field perturbations or a pure toroidally symmetric MHD response. In addition, a significant number of studies focused on understanding nonlinear behaviour by means of computer simulation of energetic particle driven instability. An under-represented area of investigation was the study of electron runaway formation during major tokamak disruptions. It was noted in an overview by S. Putvinski that electron energies in the 10-20 MeV range is to be expected during projected major disruptions in ITER and that reliable methods for mitigation of the runaway process needs to be developed. Significant recent work in the field of the disruption induced electron runaway, which was reported by J. Riemann, does not appear in this special issue of Nuclear Fusion as the work had been previously submitted to Physics of Plasmas [3]. Overall it is clear that reliable mitigation of electron runaway is an extremely important topic that is in need of better understanding and solutions. It has been my pleasure to serve as the organizer of the 12th meeting and to serve as a Guest Editor of this issue of Nuclear Fusion. I am sure that the contents of this issue will serve as a valuable research guide to the field of energetic particle behaviour in a burning plasma for many years to come. The site of the next meeting will by Beijing, China in the fall of 2013, which will be organized by Zinghong Lin. References [1] Program 2011 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Austin, Texas, USA, 7-11 September 2011) http://w3fusion.ph.utexas.edu/ifs/iaeaep/program.html [2] Program 2011 5th IAEA Technical Meeting on Theory of Plasma Wave Instabilities (Austin, Texas, USA, 5-7 September 2011) http://w3fusion.ph.utexas.edu/ifs/iaeapi/program.html [3] Riemann J., Smith H.M. and Helander P. 2012 Phys. Plasmas 19 012507
Iyama, Keita; Matsuse, Michiko; Mitsutake, Norisato; Rogounovitch, Tatiana; Saenko, Vladimir; Suzuki, Keiji; Ashizawa, Mai; Ookouchi, Chiyo; Suzuki, Satoshi; Mizunuma, Hiroshi; Fukushima, Toshihiko; Suzuki, Shinichi; Yamashita, Shunichi
2017-06-01
The BRAF V600E mutation is the most frequent genetic abnormality in adult papillary thyroid carcinomas (PTCs). On the other hand, various chromosomal rearrangements are more prevalent in childhood and adolescent PTCs. The aim of the present study was to identify novel rearrangements in PTCs from young patients. Among 63 postoperative specimens of childhood and adolescent PTCs, which had been discovered by the thyroid ultrasound screening program in Fukushima, nine samples without prevalent known oncogenes, BRAF V600E , RAS, RET/PTC1, RET/PTC3, and ETV6/NTRK3, were analyzed in the current study by quantitative real-time reverse transcription polymerase chain reaction to screen for novel fusion genes by comparing transcript expression between extracellular and kinase domains of ALK, NTRK1, NTRK3, and RET. Of the above nine samples, five samples were suspected to harbor a fusion, and using subsequent 5' rapid amplification of cDNA end (RACE), two already reported fusion oncogenes, STRN/ALK and TPR/NTRK1, and three novel fusions, SQSTM1/NTRK3, AFAP1L2/RET, and PPFIBP2/RET, were identified. Functional analyses of these three chimeric genes were performed, and their transforming abilities were confirmed through the activation of mitogen-activated protein kinase (MAPK). Three novel fusion oncogenes have been identified in young PTC patients in Fukushima, suggesting that rare fusions may be present among the cases negative for known oncogenes in this age group and that such rearrangements can play a significant role in thyroid carcinogenesis.
Energy-resolved neutron imaging for inertial confinement fusion
NASA Astrophysics Data System (ADS)
Moran, M. J.; Haan, S. W.; Hatchett, S. P.; Izumi, N.; Koch, J. A.; Lerche, R. A.; Phillips, T. W.
2003-03-01
The success of the National Ignition Facility program will depend on diagnostic measurements which study the performance of inertial confinement fusion (ICF) experiments. Neutron yield, fusion-burn time history, and images are examples of important diagnostics. Neutron and x-ray images will record the geometries of compressed targets during the fusion-burn process. Such images provide a critical test of the accuracy of numerical modeling of ICF experiments. They also can provide valuable information in cases where experiments produce unexpected results. Although x-ray and neutron images provide similar data, they do have significant differences. X-ray images represent the distribution of high-temperature regions where fusion occurs, while neutron images directly reveal the spatial distribution of fusion-neutron emission. X-ray imaging has the advantage of a relatively straightforward path to the imaging system design. Neutron imaging, by using energy-resolved detection, offers the intriguing advantage of being able to provide independent images of burning and nonburning regions of the nuclear fuel. The usefulness of energy-resolved neutron imaging depends on both the information content of the data and on the quality of the data that can be recorded. The information content will relate to the characteristic neutron spectra that are associated with emission from different regions of the source. Numerical modeling of ICF fusion burn will be required to interpret the corresponding energy-dependent images. The exercise will be useful only if the images can be recorded with sufficient definition to reveal the spatial and energy-dependent features of interest. Several options are being evaluated with respect to the feasibility of providing the desired simultaneous spatial and energy resolution.
Live imaging of mouse secondary palate fusion
Kim, Seungil; Prochazka, Jan; Bush, Jeffrey O.
2017-01-01
LONG ABSTRACT The fusion of the secondary palatal shelves to form the intact secondary palate is a key process in mammalian development and its disruption can lead to cleft secondary palate, a common congenital anomaly in humans. Secondary palate fusion has been extensively studied leading to several proposed cellular mechanisms that may mediate this process. However, these studies have been mostly performed on fixed embryonic tissues at progressive timepoints during development or in fixed explant cultures analyzed at static timepoints. Static analysis is limited for the analysis of dynamic morphogenetic processes such a palate fusion and what types of dynamic cellular behaviors mediate palatal fusion is incompletely understood. Here we describe a protocol for live imaging of ex vivo secondary palate fusion in mouse embryos. To examine cellular behaviors of palate fusion, epithelial-specific Keratin14-cre was used to label palate epithelial cells in ROSA26-mTmGflox reporter embryos. To visualize filamentous actin, Lifeact-mRFPruby reporter mice were used. Live imaging of secondary palate fusion was performed by dissecting recently-adhered secondary palatal shelves of embryonic day (E) 14.5 stage embryos and culturing in agarose-containing media on a glass bottom dish to enable imaging with an inverted confocal microscope. Using this method, we have detected a variety of novel cellular behaviors during secondary palate fusion. An appreciation of how distinct cell behaviors are coordinated in space and time greatly contributes to our understanding of this dynamic morphogenetic process. This protocol can be applied to mutant mouse lines, or cultures treated with pharmacological inhibitors to further advance understanding of how secondary palate fusion is controlled. PMID:28784960
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-20
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.
Balanced biomedical program plan. Volume X. Fusion analysis for and environmental research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
In this draft planning document for health and environmental research needs relevant to the development of fusion technology, an attempt is made to integrate input from the participating laboratories on the basis of the King-Muir study categories. The general description covers only those concepts and features that are considered important to an understanding of possible and probable effects of thermonuclear reactors on health and the environment. Appendixes are included which reflect an understanding of three areas of special interest: materials requirements, effects from magnetic fields, and tritium effects.
Munc13 controls the location and efficiency of dense-core vesicle release in neurons.
van de Bospoort, Rhea; Farina, Margherita; Schmitz, Sabine K; de Jong, Arthur; de Wit, Heidi; Verhage, Matthijs; Toonen, Ruud F
2012-12-10
Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In munc13-1/2-null mutant neurons, synaptic DCV release was reduced but not abolished, and synaptic preference was lost. The remaining fusion required prolonged stimulation, similar to extrasynaptic fusion in wild-type neurons. Conversely, Munc13-1 overexpression (M13OE) promoted extrasynaptic DCV release, also without prolonged stimulation. Thus, Munc13-1/2 facilitate DCV fusion but, unlike for synaptic vesicles, are not essential for DCV release, and M13OE is sufficient to produce efficient DCV release extrasynaptically.
A Fusion Nuclear Science Facility for a fast-track path to DEMO
Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...
2014-10-01
An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less
NASA Astrophysics Data System (ADS)
Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi
Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.