Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottler, Gary
General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.
Hydrogen Fuel Cell Electric Vehicle Learning Demonstration | Hydrogen and
Fuel Cells | NREL Fuel Cell Electric Vehicle Learning Demonstration Hydrogen Fuel Cell Electric Vehicle Learning Demonstration Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project-later dubbed the Fuel Cell Electric Vehicle (FCEV) Learning Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Puneet; Casey, Dan
This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion enginemore » shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).« less
Alternative Fuels Data Center: Tools
Calculator Compare cost of ownership and emissions for most vehicle models. mobile Petroleum Reduction ROI and payback period for natural gas vehicles and infrastructure. AFLEET Tool Calculate a fleet's , hydrogen, or fuel cell infrastructure. GREET Fleet Footprint Calculator Calculate your fleet's petroleum
The Effect of Converting to a U.S. Hydrogen Fuel Cell Vehicle Fleet on Emissions and Energy Use
NASA Astrophysics Data System (ADS)
Colella, W. G.; Jacobson, M. Z.; Golden, D. M.
2004-12-01
This study analyzes the potential change in emissions and energy use from replacing fossil-fuel based vehicles with hydrogen fuel cell vehicles. This study examines three different hydrogen production scenarios to determine their resultant emissions and energy usage: hydrogen produced via 1) steam reforming of methane, 2) coal gasification, or 3) wind electrolysis. The atmospheric model simulations require two primary sets of data: the actual emissions associated with hydrogen fuel production and use, and the corresponding reduction in emissions associated with reducing fossil fuel use. The net change in emissions is derived using 1) the U.S. EPA's National Emission Inventory (NEI) that incorporates several hundred categories of on-road vehicles and 2) a Process Chain Analysis (PCA) for the different hydrogen production scenarios. NEI: The quantity of hydrogen-related emission is ultimately a function of the projected hydrogen consumption in on-road vehicles. Data for hydrogen consumption from on-road vehicles was derived from the number of miles driven in each U.S. county based on 1999 NEI data, the average fleet mileage of all on-road vehicles, the average gasoline vehicle efficiency, and the efficiency of advanced 2004 fuel cell vehicles. PCA: PCA involves energy and mass balance calculations around the fuel extraction, production, transport, storage, and delivery processes. PCA was used to examine three different hydrogen production scenarios: In the first scenario, hydrogen is derived from natural gas, which is extracted from gas fields, stored, chemically processed, and transmitted through pipelines to distributed fuel processing units. The fuel processing units, situated in similar locations as gasoline refueling stations, convert natural gas to hydrogen via a combination of steam reforming and fuel oxidation. Purified hydrogen is compressed for use onboard fuel cell vehicles. In the second scenario, hydrogen is derived from coal, which is extracted from mines and chemically processed into a hydrogen rich gas. Hydrogen is transmitted through pipelines to refueling stations. In the third scenario, hydrogen is derived via electrolysis powered by wind-generated electricity that has been transmitted across the country to electrolyzers at distributed hydrogen refueling stations. If hydrogen is produced via the first scenario, total annual U.S. production of carbon dioxide (CO2) could be expected to decrease by approximately 900 million metric tons, or 16 percent of annual U.S. CO2 production from all anthropogenic sources. Under this scenario, compared with the conventional vehicle fleet, a fuel cell vehicle fleet would produce some additional CO2 emissions due to the electric power required for the compression of hydrogen, but less CO2 emissions on the road during vehicle operation. This scenario results in an additional methane leakage of approximately one million metric tons per year, or 4 percent of annual U.S. methane emissions from all anthropogenic sources.
Long Term Hydrogen Vehicle Fleet Operational Assessment
2011-03-21
Economy (mi/kg) Average Fuel Economy (mi/ gge ) 1 26.9 26.8 2 25.0 24.9 3 23.2 23.1 4 22.5 22.4 5 25.7 25.6 6 33.5 33.4 7 31.7 31.6 8 25.4 25.3 9 21.8...Fleet Fuel Economy was 26.2 mi/kg or 26.1 mi/ gge • The fuel economy of the fleet of H2ICEs was comparable to the standard hybrid-electric gasoline
Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel
UseA> Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels %. For information about this project, contact Ann Arbor Clean Cities Coalition. Download QuickTime Video Videos Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, Gus
2011-07-31
HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation ofmore » hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-16
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-22
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less
This paper presents an analysis of the potential energy, economic and environmental implications of hydrogen fuel cell vehicle (H2-FCV) penetration into the U.S. light duty vehicle fleet. The approach, which uses the U.S. EPA MARKet ALlocation technology database and model, allow...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-22
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.« less
Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.« less
Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter Hill; Michael Penev
2014-08-01
The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.
Aircraft HO sub x and NO sub x emission effects on stratospheric ozone and temperature
NASA Technical Reports Server (NTRS)
Glatt, L.; Widhopf, G. F.
1978-01-01
A simplified two-dimensional steady-state photochemical model of the atmosphere was developed. The model was used to study the effect on the thermal and chemical structure of the atmosphere of two types of pollution cases: (1) injection of NOx and HOx from a hypothetical fleet of supersonic and subsonic aircraft and (2) injection of HOx from a hypothetical fleet of liquid-fueled hydrogen aircraft. The results are discussed with regard to stratospheric perturbations in ozone, water vapor and temperature.
NASA Astrophysics Data System (ADS)
Jacobson, M. Z.; Colella, W. G.; Golden, D. M.
2004-12-01
The purpose of this study was to examine the potential effects on U.S. air pollution and regional climate of switching the current U.S. fleet of onroad motor vehicles to hydrogen fuel-cell vehicles, where hydrogen was produced by (1) steam-reforming of methane, (2) wind energy, or (3) coal gasification. An additional scenario in which the U.S. fleet was switched to gasoline-electric hybrid vehicles was also examined. The model used was GATOR-GCMOM, a global-through-urban-scale nested and parallelized gas, aerosol, transport, radiation, general-circulation, mesoscale, and ocean model. U.S. emission data for the baseline case were obtained from the U.S. National Emission Inventory, which considers 370,000 stack and fugitive sources, 250,000 area sources, and 1700 categories of onroad and nonroad vehicular sources (including motorcycles, passenger vehicles, trucks, recreational vehicles, construction vehicles, farm vehicles, industrial vehicles, etc.). Emission inventories for each of the three hydrogen scenarios were prepared following a process chain analysis that accounted for energy inputs and pollution outputs during all stages of hydrogen and fossil-fuel production, distribution, storage, and end-use. Emitted pollutants accounted for included CO, CO2, H2, H2O, CH4, speciated ROGs, NOx, NH3, SOx, and speciated particulate matter. Results from the first scenario suggest that switching vehicles in the U.S. to hydrogen produced by steam-reforming of methane may reduce emission of NOx, reactive hydrocarbons, CO, CO2, BC, NO3-, and NH4+, but increase CH4, H2, and SO2 (slightly).The switch may also decrease O3 over most of the U.S. but short-term near-surfaces increases may occur over low-vegetated cities (e.g., in Los Angeles and along the Boston-Washington corridor) due to loss of NOx that otherwise titrates O3. The switch is also estimated to decrease PAN, HCHO, and several other pollutants formed in the atmosphere. Isoprene may increase since fewer oxidants (OH, O3) will be available to destroy it. Results for the scenarios involving hydrogen from wind and coal gasification, and from the hybrid scenario will also be discussed, as will regional climate effects (including effects of H2O). Findings to date suggest that, even under a worst-case scenario of 10% hydrogen leakage, the conversion of the current fleet to hydrogen-fuel cell vehicles, where hydrogen is generated by steam-reforming of methane, may result in a measurable improvement in U.S. air quality.
Long Term Hydrogen Vehicle Fleet Operational Assessment
2011-03-21
presented in Table 2. Also included in Table 2 is the average fuel economy in miles per gallon of gasoline equivalent ( gge ) and kilometers per gge ...calculated by applying the conversion factor of one gge being equivalent to 0.997 kilograms of hydrogen [4...Number Average Fuel Economy mi/kg (km/kg) Average Fuel Economy mi/ gge (km/ gge ) 1 26.9 (43.3) 26.8 (43.1) 2 25.0 (40.2) 24.9
NASA Astrophysics Data System (ADS)
Colella, W. G.; Jacobson, M. Z.; Golden, D. M.
This study examines the potential change in primary emissions and energy use from replacing the current U.S. fleet of fossil-fuel on-road vehicles (FFOV) with hybrid electric fossil fuel vehicles or hydrogen fuel cell vehicles (HFCV). Emissions and energy usage are analyzed for three different HFCV scenarios, with hydrogen produced from: (1) steam reforming of natural gas, (2) electrolysis powered by wind energy, and (3) coal gasification. With the U.S. EPA's National Emission Inventory as the baseline, other emission inventories are created using a life cycle assessment (LCA) of alternative fuel supply chains. For a range of reasonable HFCV efficiencies and methods of producing hydrogen, we find that the replacement of FFOV with HFCV significantly reduces emission associated with air pollution, compared even with a switch to hybrids. All HFCV scenarios decrease net air pollution emission, including nitrogen oxides, volatile organic compounds, particulate matter, ammonia, and carbon monoxide. These reductions are achieved with hydrogen production from either a fossil fuel source such as natural gas or a renewable source such as wind. Furthermore, replacing FFOV with hybrids or HFCV with hydrogen derived from natural gas, wind or coal may reduce the global warming impact of greenhouse gases and particles (measured in carbon dioxide equivalent emission) by 6, 14, 23, and 1%, respectively. Finally, even if HFCV are fueled by a fossil fuel such as natural gas, if no carbon is sequestered during hydrogen production, and 1% of methane in the feedstock gas is leaked to the environment, natural gas HFCV still may achieve a significant reduction in greenhouse gas and air pollution emission over FFOV.
Cleaning the air and improving health with hydrogen fuel-cell vehicles.
Jacobson, M Z; Colella, W G; Golden, D M
2005-06-24
Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.
Air pollution and climate-forcing impacts of a global hydrogen economy.
Schultz, Martin G; Diehl, Thomas; Brasseur, Guy P; Zittel, Werner
2003-10-24
If today's surface traffic fleet were powered entirely by hydrogen fuel cell technology, anthropogenic emissions of the ozone precursors nitrogen oxide (NOx) and carbon monoxide could be reduced by up to 50%, leading to significant improvements in air quality throughout the Northern Hemisphere. Model simulations of such a scenario predict a decrease in global OH and an increased lifetime of methane, caused primarily by the reduction of the NOx emissions. The sign of the change in climate forcing caused by carbon dioxide and methane depends on the technology used to generate the molecular hydrogen. A possible rise in atmospheric hydrogen concentrations is unlikely to cause significant perturbations of the climate system.
Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles
NASA Astrophysics Data System (ADS)
Jacobson, M. Z.; Colella, W. G.; Golden, D. M.
2005-06-01
Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.
41 CFR 101-39.202 - Contractor authorized services.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services... related GSA Interagency Fleet Management System (IFMS) services solely for official purposes. (b) To the... -leased equipment which is not controlled by a GSA IFMS fleet management center, or for authorized...
Prospects for pipeline delivery of hydrogen as a fuel and as a chemical feedstock
NASA Technical Reports Server (NTRS)
Gregory, D. P.; Biederman, N. P.; Darrow, K. G., Jr.; Konopka, A. J.; Wurm, J.
1976-01-01
The possibility of using hydrogen for storing and carrying energy obtained from nonfossil sources such as nuclear and solar energy is examined. According to the method proposed, these nonfossil raw energy sources will be used to obtain hydrogen from water by three basically distinct routes: (1) electrical generation followed by electrolysis; (2) thermochemical decomposition; and (3) direct neutron or ultraviolet irradiation of hydrogen bearing molecules. The hydrogen obtained will be transmitted in long-distance pipelines, and distributed to all energy-consuming sectors. As a fuel gas, hydrogen has many qualities similar to natural gas and with only minor modifications, it can be transmitted and distributed in the same equipment, and can be burned in the same appliances as natural gas. Hydrogen can also be used as a clean fuel (water is the only combustion product) for automobiles, fleet vehicles, and aircraft.
Tug fleet and ground operations schedules and controls. Volume 2: part 1
NASA Technical Reports Server (NTRS)
1975-01-01
This Tug Fleet and Ground Operations Schedules and Controls Study addresses both ground operational data and technical requirements that span the Tug planning phase and operations phase. A similar study covering mission operations (by others) provides the complimentary flight operations details. The two studies provide the planning data requirements, resource allocation, and control milestones for supporting the requirements of the STS program. This Tug Fleet and Ground Operations Schedules and Controls Study incorporates the basic ground operations requirements and concepts provided by previous studies with the interrelationships of the planning, IUS transition, and Tug fleet operations phases. The interrelationships of these phases were studied as a system to optimize overall program benefits and minimize operational risk factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. Francfort
2003-11-01
Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine powermore » output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).« less
77 FR 75257 - Proposed Collection of Information: Medium- and Heavy-Duty Truck Fleet Survey
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
...-0170] Proposed Collection of Information: Medium- and Heavy-Duty Truck Fleet Survey AGENCY: National... collection of information will be in the form of a one-time survey of medium- and heavy-duty truck fleet... collection. OMB Control Number: To be issued at time of approval. Title: Medium- and Heavy-Duty Truck Fleet...
NASA Astrophysics Data System (ADS)
Ning, Zhi; Wubulihairen, Maimaitireyimu; Yang, Fenhuan
2012-12-01
Vehicular emissions are the major sources of air pollution in urban areas. For metropolitan cities with large population working and living in environments with direct traffic impact, emission control is of great significance to protect public health. Implementation of more stringent emission standards, retrofitting fleet with emission control devices and switching to clearer fuel has been commonly practiced in different cities including Hong Kong. The present study employed a new plume chasing method for effective and quick evaluation of on-road fleet emission factors of particulate matter (PM), nitrogen oxides (NOx), and butane from heavy duty diesel trucks, diesel buses and liquefied petroleum gas (LPG) vehicles. The results showed distinct profiles of the emissions from different fleets with excessive butane emissions from LPG fleet and contrasting PM and NOx emissions from diesel trucks and buses fleets. A cross comparison was also made with emission data from other cities and from historic local studies. The implications of the observed difference on the effectiveness of emission control measures and policy are discussed with recommendations of direction for future research and policy making.
NASA Astrophysics Data System (ADS)
Chen, Ti; Wen, Hao
2018-06-01
This paper presents a distributed control law with disturbance observer for the autonomous assembly of a fleet of flexible spacecraft to construct a large flexible space structure. The fleet of flexible spacecraft is driven to the pre-assembly configuration firstly, and then to the desired assembly configuration. A distributed assembly control law with disturbance observer is proposed by treating the flexible dynamics as disturbances acting on the rigid motion of the flexible spacecraft. Theoretical analysis shows that the control law can actuate the fleet to the desired configuration. Moreover, the collision avoidance between the members is also considered in the process from initial configuration to pre-assembly configuration. Finally, a numerical example is presented to verify the feasibility of proposed mission planning and the effectiveness of control law.
Fuel Cell Vehicle Fleet and Hydrogen Infrastructure at Hickam Air Force Base
2009-04-27
there has been no evidence of busbar or endplate corrosion in the manifold region. The crossover leak was the result of a failed humidification device...leak that develops within the humidifier can lead to a combustible gas mixture entering the fuel cell stack. This humidification device has been
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lies, K.H.; Postulka, A.; Gring, H.
Besides regulated components VW's research program in the field of characterization of diesel emissions comprises a detailed analysis of the particulates and a comprehensive study of a number of unregulated gaseous compounds. The following chemical compounds and classes of compounds are measured: particulates, traces of metals, major elements, sulfates, sulfur dioxide, hydrogen sulfide, hydrogen cyanide, aldehydes, ammonia, phenols, individual hydrocarbons, and odor (DOAS). The test fleet of this investigation included a number of VW and Audi cars equipped with 4-, and 5-cylinder diesel engines (naturally aspirated and turbocharged). All measurements were performed on a chassis dynamometer in accordance with themore » specification of the known US-test-procedures: Federal Test Procedure, Sulfate Emission Test, Fuel Economy Test. For sampling , in principle, the dilution tunnel technique was used combined with an automatically working collection system. This micro-processor controlled system involves 13 individual sample lines, 8 for gaseous and 5 for particulate components.« less
Tug fleet and ground operations schedules and controls. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1975-01-01
This study presents Tug Fleet and Ground Operations Schedules and Controls plan. This plan was developed and optimized out of a combination of individual Tug program phased subplans, special emphasis studies, contingency analyses and sensitivity analyses. The subplans cover the Tug program phases: (1) Tug operational, (2) Interim Upper Stage (IUS)/Tug fleet utilization, (3) and IUS/Tug payload integration, (4) Tug site activation, (5) IUS/Tug transition, (6) Tug acquisition. Resource requirements (facility, GSE, TSE, software, manpower, logistics) are provided in each subplan, as are appropriate Tug processing flows, active and total IUS and Tug fleet requirements, fleet management and Tug payload integration concepts, facility selection recommendations, site activation and IUS to Tug transition requirements. The impact of operational concepts on Tug acquisition is assessed and the impact of operating Tugs out of KSC and WTR is analyzed and presented showing WTR as a delta. Finally, cost estimates for fleet management and ground operations of the DDT&E and operational phases of the Tug program are given.
2017-03-01
Responsibility AWS Amazon Web Services C2 Command and Control C4ISR Command, Control, Communications, Computers and Intelligence, Surveillance...and Reconnaissance C5F Commander Fifth Fleet C6F Commander Sixth Fleet C7F Commander Seventh Fleet CAMTES Computer -Assisted Maritime...capabilities. C. SCOPE AND LIMITATIONS The scope of this study is considerable and encompasses numerous agencies and classification levels. Some
Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL
. Transit Fleets: Current Status 2017, L. Eudy and M. Post (November 2017) Zero Emission Bay Area (ZEBA ) Fuel Cell Bus Demonstration Results: Sixth Report, L. Eudy, M. Post, and M. Jeffers (September 2017 2017) American Fuel Cell Bus Project Evaluation: Third Report, L. Eudy, M. Post, and M. Jeffers (May
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... EPA that it has adopted amendments to its emission standards for fleets that operate nonroad, diesel..., CARB requested that EPA authorize California to enforce its In-Use Off-Road Diesel-Fueled Fleets... through 2449.3). CARB's regulations require fleets that operate nonroad, diesel-fueled equipment with...
47 CFR 87.25 - Filing of applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... rules. (c) One application may be submitted for the total number of aircraft stations in the fleet (fleet license). (d) One application for aeronautical land station license may be submitted for the total number of stations in the fleet. (e) One application for modification or transfer of control may be...
47 CFR 87.25 - Filing of applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... rules. (c) One application may be submitted for the total number of aircraft stations in the fleet (fleet license). (d) One application for aeronautical land station license may be submitted for the total number of stations in the fleet. (e) One application for modification or transfer of control may be...
47 CFR 87.25 - Filing of applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... rules. (c) One application may be submitted for the total number of aircraft stations in the fleet (fleet license). (d) One application for aeronautical land station license may be submitted for the total number of stations in the fleet. (e) One application for modification or transfer of control may be...
47 CFR 87.25 - Filing of applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... rules. (c) One application may be submitted for the total number of aircraft stations in the fleet (fleet license). (d) One application for aeronautical land station license may be submitted for the total number of stations in the fleet. (e) One application for modification or transfer of control may be...
Feng, Qiang; Chen, Yiran; Sun, Bo; Li, Songjie
2014-01-01
An optimization method for condition based maintenance (CBM) of aircraft fleet considering prognostics uncertainty is proposed. The CBM and dispatch process of aircraft fleet is analyzed first, and the alternative strategy sets for single aircraft are given. Then, the optimization problem of fleet CBM with lower maintenance cost and dispatch risk is translated to the combinatorial optimization problem of single aircraft strategy. Remain useful life (RUL) distribution of the key line replaceable Module (LRM) has been transformed into the failure probability of the aircraft and the fleet health status matrix is established. And the calculation method of the costs and risks for mission based on health status matrix and maintenance matrix is given. Further, an optimization method for fleet dispatch and CBM under acceptable risk is proposed based on an improved genetic algorithm. Finally, a fleet of 10 aircrafts is studied to verify the proposed method. The results shows that it could realize optimization and control of the aircraft fleet oriented to mission success.
Chen, Yiran; Sun, Bo; Li, Songjie
2014-01-01
An optimization method for condition based maintenance (CBM) of aircraft fleet considering prognostics uncertainty is proposed. The CBM and dispatch process of aircraft fleet is analyzed first, and the alternative strategy sets for single aircraft are given. Then, the optimization problem of fleet CBM with lower maintenance cost and dispatch risk is translated to the combinatorial optimization problem of single aircraft strategy. Remain useful life (RUL) distribution of the key line replaceable Module (LRM) has been transformed into the failure probability of the aircraft and the fleet health status matrix is established. And the calculation method of the costs and risks for mission based on health status matrix and maintenance matrix is given. Further, an optimization method for fleet dispatch and CBM under acceptable risk is proposed based on an improved genetic algorithm. Finally, a fleet of 10 aircrafts is studied to verify the proposed method. The results shows that it could realize optimization and control of the aircraft fleet oriented to mission success. PMID:24892046
Electric vehicles look promising for use in utility fleets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minner, D.
1984-06-01
The Electric Vehicle Development Corp. (EVDV) expects EV fleets to find a market for urban driving, especially among service fleets, once mass production begins. Electric utilities joined to form EVDC in order to keep abreast of research developments and the results of demonstrations taking place in several cities, where driver acceptance in utility demonstration programs is high. Major auto makers still need persuasion to develop a commercial prototype. Marketing will focus on controlled fleets having the management skills and the motivation to make the program work.
Alternative Fuels Data Center: Electric Buses Hit the Streets in Kentucky
, Kentucky, diversified its fleet with all-electric buses. For information about this project, contact Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4
Alternative Fuels Data Center: Clean Fleet DRIVES
Related Videos Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Photo of a truck Natural Gas Vehicles Make a Difference in Tennessee Oct. 28, 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, C.E.; Kuhn, I.F. Jr.
The fuel cell electric vehicle (FCEV) is undoubtedly the only option that can meet both the California zero emission vehicle (ZEV) standard and the President`s goal of tripling automobile efficiency without sacrificing performance in a standard 5-passenger vehicle. The three major automobile companies are designing and developing FCEVs powered directly by hydrogen under cost-shared contracts with the Department of Energy. Once developed, these vehicles will need a reliable and inexpensive source of hydrogen. Steam reforming of natural gas would produce the least expensive hydrogen, but funding may not be sufficient initially to build both large steam reforming plants and themore » transportation infrastructure necessary to deliver that hydrogen to geographically scattered FCEV fleets or individual drivers. This analysis evaluates the economic feasibility of using small scale water electrolysis to provide widely dispersed but cost-effective hydrogen for early FCEV demonstrations. We estimate the cost of manufacturing a complete electrolysis system in large quantities, including compression and storage, and show that electrolytic hydrogen could be cost competitive with fully taxed gasoline, using existing residential off-peak electricity rates.« less
Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase.
Mitchell, Andrew J; Dunham, Noah P; Martinie, Ryan J; Bergman, Jonathan A; Pollock, Christopher J; Hu, Kai; Allen, Benjamin D; Chang, Wei-Chen; Silakov, Alexey; Bollinger, J Martin; Krebs, Carsten; Boal, Amie K
2017-10-04
Iron(II)- and 2-(oxo)-glutarate-dependent oxygenases catalyze diverse oxidative transformations that are often initiated by abstraction of hydrogen from carbon by iron(IV)-oxo (ferryl) complexes. Control of the relative orientation of the substrate C-H and ferryl Fe-O bonds, primarily by direction of the oxo group into one of two cis-related coordination sites (termed inline and offline), may be generally important for control of the reaction outcome. Neither the ferryl complexes nor their fleeting precursors have been crystallographically characterized, hindering direct experimental validation of the offline hypothesis and elucidation of the means by which the protein might dictate an alternative oxo position. Comparison of high-resolution X-ray crystal structures of the substrate complex, an Fe(II)-peroxysuccinate ferryl precursor, and a vanadium(IV)-oxo mimic of the ferryl intermediate in the l-arginine 3-hydroxylase, VioC, reveals coordinated motions of active site residues that appear to control the intermediate geometries to determine reaction outcome.
US Navy lithium cell applications
NASA Technical Reports Server (NTRS)
Bowers, F. M.
1978-01-01
Applications of lithium systems that are already in the fleet are discussed. The approach that the Navy is taking in the control of the introduction of lithium batteries into the fleet is also discussed.
Alternative Fuels Data Center: Propane Powers Fleets Across the Nation
Public Television Related Videos Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Photo of a truck Natural Gas Vehicles Make a Difference in
Code of Federal Regulations, 2013 CFR
2013-07-01
... Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... NOX value achieved; and (iv) All values used in calculating the fleet average NOX value achieved. (2...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... NOX value achieved; and (iv) All values used in calculating the fleet average NOX value achieved. (2...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... NOX value achieved; and (iv) All values used in calculating the fleet average NOX value achieved. (2...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... NOX value achieved; and (iv) All values used in calculating the fleet average NOX value achieved. (2...
Summary of FY17 ParaChoice Accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Rebecca Sobel; West, Todd H.
As part of analysis support for FCTO, Sandia assesses the factors that influence the future of FCEVs and Hydrogen in the US vehicle fleet. Using ParaChoice, we model competition between FCEVs, conventional vehicles, and other alternative vehicle technologies in order to understand the drivers and sensitivities of adoption of FCEVs. ParaChoice leverages existing tools such as Autonomie (Moawad et al., 2016), AEO (U.S. Energy Information Administration, 2016), and the Macro System Model (Ruth et al., 2009) in order to synthesize a complete picture of the co-evolution of vehicle technology development, energy price evolution, and hydrogen production and pricing, with consumermore » demand for vehicles and fuel. We then assess impacts of FCEV market penetration and hydrogen use on green- house gas (GHG) emissions and petroleum consumption, providing context for the role of policy, technology development, infrastructure, and consumer behavior on the vehicle and fuel mix through parametric and sensitivity analyses.« less
Burgard, Daniel A; Provinsal, Melissa N
2009-12-01
A remote sensing device was used to obtain on-road and in-use gaseous emission measurements from three fleets of schools buses at two locations in Washington State. This paper reports each fleet's carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), and nitrogen dioxide (NO2) mean data. The fleets represent current emission retrofit technologies, such as diesel particulate filters and diesel oxidation catalysts, and a control fleet. This study shows that CO and HC emissions decrease with the use of either retrofit technology when compared with control buses of the same initial emission standards. The CO and HC emission reductions are consistent with published U.S. Environmental Protection Agency verified values. The total oxides of nitrogen (NOx), NO, and the NO2/NOx ratio all increase with each retrofit technology when compared with control buses. As was expected, the diesel particulate filters emitted significantly higher levels of NO2 than the control fleet because of the intentional conversion of NO to NO2 by these systems. Most prior research suggests that NOx emissions are unaffected by the retrofits; however, these previous studies have not included measurements from retrofit devices on-road and after nearly 5 yr of use. Two 2006 model-year buses were also measured. These vehicles did not have retrofit devices but were built to more stringent new engine standards. Reductions in HCs and NOx were observed for these 2006 vehicles in comparison to other non-retrofit earlier model-year vehicles.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being reengineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEiX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the reengineering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team s experiences with integrating multiple missions into a fleet-based automated ground system.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.
ENVIRONMENTAL TECHNOLOGY VERIFICATION OF EMISSION CONTROLS FOR HEAVY-DUTY DIESEL ENGINES
While lower emissions limits that took effect in 2004 and reduced sulfur content in diesel fuels will reduce emissions from new heavy-duty engines, the existing diesel fleet, which pollutes at much higher levels, may still have a lifetime of 20 to 30 years. Fleet operators seekin...
High-speed civil transport study: Special factors
NASA Technical Reports Server (NTRS)
1990-01-01
Studies relating to environmental factors associated with high speed civil transports were conducted. Projected total engine emissions for year 2015 fleets of several subsonic/supersonic transport fleet scenarios, discussion of sonic boom reduction methods, discussion of community noise level requirements, fuels considerations, and air traffic control impact are presented.
Data Collection and Validation of Newport Beach Hydrogen Station Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashuba, Michael John
2012-10-15
The hydrogen fueling station located at 1600 Jamboree Road in Newport Beach, California was designed and built to refuel light duty fuel cell electric vehicles (FCEVs). The station features the on-site generation of hydrogen through a small scale natural gas steam methane reformer (SMR). All the hydrogen related equipment was added to an existing retail gasoline/diesel station. The station is an early demonstration of what the footprint and equipment arrangement of a retail on-site SMR facility might look like. Commercial customer FCEV leases have only just begun in the last two years or so. And, individual Original Equipment Manufacturer (OEM)more » vehicle lease fleets are relatively small. Only a few hundred FCEVs are on the road in California. As a result, hydrogen throughput is relatively low at the few early pre-commercial hydrogen stations that are currently open. Therefore the stations are underutilized. This project aims to collect additional station data to allow the operator to potentially adjust various operational parameters in order to improve the overall efficiency of the station and lower operation and maintenance costs and to help improve air quality and reduce greenhouse gas emissions. Due to unforeseen delays, technical challenges and personnel reassignments the project was delayed to the point that the award was allowed to expire.« less
2012-05-29
CAPE CANAVERAL, Fla. – A technician controls a special crane as it lifts a newly removed fuel cell from space shuttle Endeavour's payload bay. The operation took place inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
Rocket Engine Innovations Advance Clean Energy
NASA Technical Reports Server (NTRS)
2012-01-01
During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.
NASA Astrophysics Data System (ADS)
Lau, Chui Fong; Rakowska, Agata; Townsend, Thomas; Brimblecombe, Peter; Chan, Tat Leung; Yam, Yat Shing; Močnik, Griša; Ning, Zhi
2015-12-01
Vehicle emissions are an important source of urban air pollution. Diesel fuelled vehicles, although constituting a relatively small fraction of fleet population in many cities, are significant contributors to the emission inventory due to their often long mileage for goods and public transport. Recent classification of diesel exhaust as carcinogenic by the World Health Organization also raises attention to more stringent control of diesel emissions to protect public health. Although various mandatory and voluntary based emission control measures have been implemented in Hong Kong, there have been few investigations to evaluate if the fleet emission characteristics have met desired emission reduction objectives and if adoption of an Inspection/Maintenance (I/M) programme has been effective in achieving these objectives. The limitations are partially due to the lack of cost-effective approaches for the large scale characterisation of fleet based emissions to assess the effectiveness of control measures and policy. This study has used a plume chasing method to collect a large amount of on-road vehicle emission data of Hong Kong highways and a detailed analysis was carried out to provide a quantitative evaluation of the emission characteristics in terms of the role of high and super-emitters in total emission reduction, impact of after-treatment on the multi-pollutants reduction strategy and the trend of NO2 emissions with newer emission standards. The study revealed that not all the high-emitters are from those vehicles of older Euro emission standards. Meanwhile, there is clear evidence that high-emitters for one pollutant may not be a high-emitter for another pollutant. Multi-pollutant control strategy needs to be considered in the enactment of the emission control policy which requires more comprehensive retrofitting technological solutions and matching I/M programme to ensure the proper maintenance of fleets. The plume chasing approach used in this study also shows to be a useful approach for assessing city wide vehicle emission characteristics.
Weis, Allison; Michalek, Jeremy J; Jaramillo, Paulina; Lueken, Roger
2015-05-05
We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.
DOT National Transportation Integrated Search
1996-05-01
The first round of emissions testing of light-duty alternative fuel vehicles : placed in the U.S. federal fleet under the provisions of the Alternative Motor : Fuels Act was recently completed. This undertaking included 75 Dodge B250 vans, : of which...
Matsumoto, Hisashi; Motomura, Tomokazu; Hara, Yoshiaki; Masuda, Yukiko; Mashiko, Kunihiro; Yokota, Hiroyuki; Koido, Yuichi
2013-04-01
Since 2001, a Japanese national project has developed a helicopter emergency medical service (HEMS) system ("doctor-helicopter") and a central Disaster Medical Assistance Team (DMAT) composed of mobile and trained medical teams for rapid deployment during the response phase of a disaster. In Japan, the DMAT Research Group has focused on command and control of doctor-helicopters in future disasters. The objective of this study was to investigate the effectiveness of such planning, as well as the problems encountered in deploying the doctor-helicopter fleet with DMAT members following the March 11, 2011 Great East Japan Earthquake. This study was undertaken to examine the effectiveness of aeromedical disaster relief activities following the Great East Japan Earthquake and to evaluate the assembly and operations of 15 doctor-helicopter teams dispatched for patient evacuation with medical support. Fifteen DMATs from across Japan were deployed from March 11th through March 13th to work out of two doctor-helicopter base hospitals. The dispatch center at each base hospital directed its own doctor-helicopter fleet under the command of DMAT headquarters to transport seriously injured or ill patients out of hospitals located in the disaster area. Disaster Medical Assistance Teams transported 149 patients using the doctor-helicopters during the first five days after the earthquake. The experiences and problems encountered point to the need for DMATs to maintain direct control over 1) communication between DMAT headquarters and dispatch centers; 2) information management concerning patient transportation; and 3) operation of the doctor-helicopter fleet during relief activities. As there is no rule of prioritization for doctor-helicopters to refuel ahead of other rotorcraft, many doctor-helicopters had to wait in line to refuel. The "doctor-helicopter fleet" concept was vital to Japan's disaster medical assistance and rescue activities. The smooth and immediate dispatch of the doctor-helicopter fleet must occur under the direct control of the DMAT, independent from local government authority. Such a command and control system for dispatching the doctor-helicopter fleet is strongly recommended, and collaboration with local government authorities concerning refueling priority should be addressed.
Real-Time Charging Strategies for an Electric Vehicle Aggregator to Provide Ancillary Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, George; Negrete-Pincetic, Matias; Olivares, Daniel E.
Real-time charging strategies, in the context of vehicle to grid (V2G) technology, are needed to enable the use of electric vehicle (EV) fleets batteries to provide ancillary services (AS). Here, we develop tools to manage charging and discharging in a fleet to track an Automatic Generation Control (AGC) signal when aggregated. We also propose a real-time controller that considers bidirectional charging efficiency and extend it to study the effect of looking ahead when implementing Model Predictive Control (MPC). Simulations show that the controller improves tracking error as compared with benchmark scheduling algorithms, as well as regulation capacity and battery cycling.
Real-Time Charging Strategies for an Electric Vehicle Aggregator to Provide Ancillary Services
Wenzel, George; Negrete-Pincetic, Matias; Olivares, Daniel E.; ...
2017-03-13
Real-time charging strategies, in the context of vehicle to grid (V2G) technology, are needed to enable the use of electric vehicle (EV) fleets batteries to provide ancillary services (AS). Here, we develop tools to manage charging and discharging in a fleet to track an Automatic Generation Control (AGC) signal when aggregated. We also propose a real-time controller that considers bidirectional charging efficiency and extend it to study the effect of looking ahead when implementing Model Predictive Control (MPC). Simulations show that the controller improves tracking error as compared with benchmark scheduling algorithms, as well as regulation capacity and battery cycling.
The Cost Effectiveness of West Coast Distributed Simulation Training for the Pacific Fleet
2001-12-01
TITLE AND SUBTITLE: The Cost Effectiveness of Distributed Simulation Training for Third Fleet 6. AUTHOR( S ) Shearon, Blane T. 5. FUNDING NUMBERS... ACCOUNTING FOR FIXED INFRASTRUCTURE COSTS ..................67 1. Installation of PACNORWEST MUTTS Van.................................67 2...ASTAC) training, Amphibious Boat Controller training, and other classes. To appropriately account for the TACDEW maintenance costs associated with
Code of Federal Regulations, 2014 CFR
2014-07-01
... plant. (v) Vehicle identification number. (vi) The FEL and the fleet-average standard to which the... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty...
Alternative Future Fleet Platform Architecture Study
2016-10-27
establishing sea control - projecting power - winning decisively To accomplish these missions, the Navy Project Team derived a ‘Distributed...allies and partners, and deter potential aggressors. The Distributed Fleet was further conceived to deliver decisive combat power , as part of a joint...global information system – the information that rides on the servers, undersea cables, satellites, and wireless networks that increasingly envelop
Fleet Assignment Using Collective Intelligence
NASA Technical Reports Server (NTRS)
Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.
2004-01-01
Product distribution theory is a new collective intelligence-based framework for analyzing and controlling distributed systems. Its usefulness in distributed stochastic optimization is illustrated here through an airline fleet assignment problem. This problem involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of linear and non-linear constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of this new stochastic optimization algorithm to a non-linear objective cold start fleet assignment problem. Results show that the optimizer can successfully solve such highly-constrained problems (130 variables, 184 constraints).
A Model for Forecasting Enlisted Student IA Billet Requirements
2016-03-01
Professional Apprentice Career Track PCS Permanent Change of Station PG Paygrade PFY Previous Fiscal Year POM Program Objectives Memorandum RCN Rating...paygrade levels contribute to fleet manning issues. Rating Control Number ( RCN ) Fit measures fleet manning levels for each community. Excess manning in one...lower RCN Fit levels. Second, authorized billets in TFMMS serve as the primary input for generating Enlisted Programmed Authorizations (EPA
Prospects of and Problems in Using Natural Gas for Motor Transport in RUSSIA
NASA Astrophysics Data System (ADS)
Chikishev, E.; Ivanov, A.; Anisimov, I.; Chainikov, D.
2016-08-01
This article is devoted to increasing the use of natural gas in Russia as a measure to decrease the negative influence of motor transport on the environment. A brief analysis of the global fleet of natural gas vehicles is provided above. The documents accepted in Russia to promote public awareness of compressed natural gas in transport are submitted. The basic reasons keeping the growth of natural gas vehicle fleets in Russia consist of weak branching of refuelling stations; difficulty in determining the actual amount of compressed natural gas required; and control methods of the consumption of gas fuel. The offers promoting the growth of the fleet of natural gas vehicles are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.
Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is inmore » liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.« less
Fuel Cells: Status and Technical/Economic Needs
NASA Technical Reports Server (NTRS)
Rambach, Glenn
1996-01-01
The need for fuel cell and alternative fuels has become increasingly important in that the U.S. spends 1 billion dollars per week to import oil, and is expected to import 80-100 billion per year in oil by the year 2010. These imports account for half of our oil supply. If 20% of the U.S. vehicle fleet were powered by fuel cells there would be: an offset 1.1 million barrels of oil per day; and a reduction of 2 million tons per year of regulated air pollutants. Fueling fuel cells with hydrogen from reformed natural gas results in more than 90% reduction in regulated emissions, and a 70% reduction in CO2, a greenhouse gas. And fueling fuel cells with hydrogen from renewables (wind, solar geothermal, hydro) results in total elimination of all emissions. When fuel cells become commercialized: they will improve America's economic competitiveness; and the regions where they are produced will benefit economically.
Gender Integration on U.S. Navy Submarines: Views of the First Wave
2015-06-01
Radiological Controls Assistant DACOWITS Defense Advisory Committee on Women in the Services DH Department Head DINQ delinquent DO Division...Previous studies have attempted to build statistical models based on surface fleet data to forecast female sustainability in the submarine fleet, yet 2...their integration? Such questions cannot be answered by collecting the type of quantitative data that can be analyzed using statistical methods. Complex
The Story of Ever Diminishing Vehicle Tailpipe Emissions as Observed in the Chicago, Illinois Area.
Bishop, Gary A; Haugen, Molly J
2018-05-15
The University of Denver has collected on-road fuel specific vehicle emissions measurements in the Chicago area since 1989. This nearly 30 year record illustrates the large reductions in light-duty vehicle tailpipe emissions and the remarkable improvements in emissions control durability to maintain low emissions over increasing periods of time. Since 1989 fuel specific carbon monoxide (CO) emissions have been reduced by an order of magnitude and hydrocarbon (HC) emissions by more than a factor of 20. Nitric oxide (NO) emissions have only been collected since 1997 but have seen reductions of 79%. This has increased the skewness of the emissions distribution where the 2016 fleet's 99th percentile contributes ∼3 times more of the 1990 total for CO and HC emissions. There are signs that these reductions may be leveling out as the emissions durability of Tier 2 vehicles in use today has almost eliminated the emissions reduction benefit of fleet turnover. Since 1997, the average age of the Chicago on-road fleet has increased 2 model years and the percentage of passenger vehicles has dropped from 71 to 52% of the fleet. Emissions are now so well controlled that the influence of driving mode has been completely eliminated as a factor for fuel specific CO and NO emissions.
Atmospheric Mining in the Outer Solar System: Resource Capturing, Exploration, and Exploitation
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2015-01-01
Atmospheric mining in the outer solar system (AMOSS) has been investigated as a means of fuel production for high-energy propulsion and power. Fusion fuels such as helium 3 (He-3) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. 3He and hydrogen (deuterium, etc.) were the primary gases of interest, with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of AMOSS. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and helium 4 (He-4) are produced. With these two additional gases, the potential exists for fueling small and large fleets of additional exploration and exploitation vehicles. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer-planet atmosphere to investigate cloud formation dynamics, global weather, localized storms or other disturbances, wind speeds, the poles, and so forth. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to probe the higher density regions of the gas giants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badin, J.S.; DiPietro, J.P.
The DOE Hydrogen Program is supporting research, development, and demonstration activities to overcome the barriers to the integration of hydrogen into the Nation`s energy infrastructure. Much work is required to gain acceptance of hydrogen energy system concepts and to develop them for implementation. A systems analysis database has been created that includes a formal documentation of technology characterization profiles and cost and performance information. Through a systematic and quantitative approach, system developers can understand and address important issues and thereby assure effective and timely commercial implementation. This project builds upon and expands the previously developed and tested pathway model andmore » provides the basis for a consistent and objective analysis of all hydrogen energy concepts considered by the DOE Hydrogen Program Manager. This project can greatly accelerate the development of a system by minimizing the risk of costly design evolutions, and by stimulating discussions, feedback, and coordination of key players and allows them to assess the analysis, evaluate the trade-offs, and to address any emerging problem areas. Specific analytical studies will result in the validation of the competitive feasibility of the proposed system and identify system development needs. Systems that are investigated include hydrogen bromine electrolysis, municipal solid waste gasification, electro-farming (biomass gasifier and PEM fuel cell), wind/hydrogen hybrid system for remote sites, home electrolysis and alternate infrastructure options, renewable-based electrolysis to fuel PEM fuel cell vehicle fleet, and geothermal energy used to produce hydrogen. These systems are compared to conventional and benchmark technologies. Interim results and findings are presented. Independent analyses emphasize quality, integrity, objectivity, a long-term perspective, corporate memory, and the merging of technical, economic, operational, and programmatic expertise.« less
Autonomy Architectures for a Constellation of Spacecraft
NASA Technical Reports Server (NTRS)
Barrett, Anthony
2000-01-01
This paper describes three autonomy architectures for a system that continuously plans to control a fleet of spacecraft using collective mission goals instead of goals of command sequences for each spacecraft. A fleet of self-commanding spacecraft would autonomously coordinate itself to satisfy high level science and engineering goals in a changing partially-understood environment-making feasible the operation of tens of even a hundred spacecraft (such as for interferometer or magnetospheric constellation missions).
2004-05-01
Army Soldier System Command: http://www.natick.armv.mil Role Name Facial Recognition Program Manager, Army Technical Lead Mark Chandler...security force with a facial recognition system. Mike Holloran, technology officer with the 6 Fleet, directed LCDR Hoa Ho and CAPT(s) Todd Morgan to...USN 6th Fleet was accomplished with the admiral expressing his support for continuing the evaluation of the a facial recognition system. This went
New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots
Gonzalez-de-Soto, Mariano; Pajares, Gonzalo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976
New trends in robotics for agriculture: integration and assessment of a real fleet of robots.
Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.
NASA Technical Reports Server (NTRS)
MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.
2005-01-01
The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.
Fleets of enduring drones to probe atmospheric phenomena with clouds
NASA Astrophysics Data System (ADS)
Lacroix, Simon; Roberts, Greg; Benard, Emmanuel; Bronz, Murat; Burnet, Frédéric; Bouhoubeiny, Elkhedim; Condomines, Jean-Philippe; Doll, Carsten; Hattenberger, Gautier; Lamraoui, Fayçal; Renzaglia, Alessandro; Reymann, Christophe
2016-04-01
A full spatio-temporal four-dimensional characterization of the microphysics and dynamics of cloud formation including the onset of precipitation has never been reached. Such a characterization would yield a better understanding of clouds, e.g. to assess the dominant mixing mechanism and the main source of cloudy updraft dilution. It is the sampling strategy that matters: fully characterizing the evolution over time of the various parameters (P, T, 3D wind, liquid water content, aerosols...) within a cloud volume requires dense spatial sampling for durations of the order of one hour. A fleet of autonomous lightweight UAVs that coordinate themselves in real-time as an intelligent network can fulfill this purpose. The SkyScanner project targets the development of a fleet of autonomous UAVs to adaptively sample cumuli, so as to provide relevant data to address long standing questions in atmospheric science. It mixes basic researches and experimental developments, and gathers scientists in UAV conception, in optimal flight control, in intelligent cooperative behaviors, and of course atmospheric scientists. Two directions of researches are explored: optimal UAV conception and control, and optimal control of a fleet of UAVs. The design of UAVs for atmospheric science involves the satisfaction of trade-offs between payload, endurance, ease of deployment... A rational conception scheme that integrates the constraints to optimize a series of criteria, in particular energy consumption, would yield the definition of efficient UAVs. This requires a fine modeling of each involved sub-system and phenomenon, from the motor/propeller efficiency to the aerodynamics at small scale, including the flight control algorithms. The definition of mission profiles is also essential, considering the aerodynamics of clouds, to allow energy harvesting schemes that exploit thermals or gusts. The conception also integrates specific sensors, in particular wind sensor, for which classic technologies are challenged at the low speeds of lightweight UAVs. The overall control of the fleet so as to gather series of synchronized data in the cloud volume is a poorly informed and highly constrained adaptive sampling problem, in which the UAV motions must be defined to maximize the amount of gathered information and the mission duration. The overall approach casts the problem in a hierarchy of two modeling and decision stages. A macroscopic parametrized model of the cloud is built from the gathered data and exploited at the higher level by an operator, who sets information gathering goals. A subset of the UAV fleet is allocated to each goal, considering the current fleet state. These high level goals are handled by the lower level, which autonomously optimizes the selected UAVs trajectories using an on-line updated dense model of the variables of interest. Building the models involves Gaussian processes techniques (kriging) to fuse the gathered data with a generic cumulus conceptual model, the latter being defined from thorough statistics on realistic MesoNH cloud simulations. The model is exploited by a planner to generate trajectories that minimize the uncertainty in the map, while steering the vehicles within the air flows to save energy.
NASA Astrophysics Data System (ADS)
Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.
2017-10-01
Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.
Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Washer, Glenn; Brooks, Thomas; Saulsberry, Regor
2007-01-01
This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.
41 CFR 102-34.330 - What is the Federal Fleet Report?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fleet Report? 102-34.330 Section 102-34.330 Public Contracts and Property Management Federal Property... MANAGEMENT Federal Fleet Report § 102-34.330 What is the Federal Fleet Report? The Federal Fleet Report (FFR..., in evaluating the effectiveness of the operation and management of individual fleets to determine...
Airport electric vehicle powered by fuel cell
NASA Astrophysics Data System (ADS)
Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.
Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.
Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M
2009-11-01
This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.
Advanced vehicles: Costs, energy use, and macroeconomic impacts
NASA Astrophysics Data System (ADS)
Wang, Guihua
Advanced vehicles and alternative fuels could play an important role in reducing oil use and changing the economy structure. We developed the Costs for Advanced Vehicles and Energy (CAVE) model to investigate a vehicle portfolio scenario in California during 2010-2030. Then we employed a computable general equilibrium model to estimate macroeconomic impacts of the advanced vehicle scenario on the economy of California. Results indicate that, due to slow fleet turnover, conventional vehicles are expected to continue to dominate the on-road fleet and gasoline is the major transportation fuel over the next two decades. However, alternative fuels could play an increasingly important role in gasoline displacement. Advanced vehicle costs are expected to decrease dramatically with production volume and technological progress; e.g., incremental costs for fuel cell vehicles and hydrogen could break even with gasoline savings in 2028. Overall, the vehicle portfolio scenario is estimated to have a slightly negative influence on California's economy, because advanced vehicles are very costly and, therefore, the resulting gasoline savings generally cannot offset the high incremental expenditure on vehicles and alternative fuels. Sensitivity analysis shows that an increase in gasoline price or a drop in alternative fuel prices could offset a portion of the negative impact.
Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems
NASA Astrophysics Data System (ADS)
Ally, Jamie; Pryor, Trevor
The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.
1989-10-19
installation. 4. Corrosion inhibiting compounds need to be applied in the final assealbly of models to all corrosion prone areas of the structure, e.g...Figure 12 shows an example of poor surface treatment of a previously repaired stringer area. Application of a corrosion inhibiting compound may have... compounds and a good corrosion control maintenance program. REFERENCE U. G. Goranson and M. Miller, "Aging Fleet - Aging Fleet Evaluation Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLanc, Katya Le; Powers, David; Joe, Jeffrey
2015-08-01
Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologiesmore » that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.« less
NASA Astrophysics Data System (ADS)
Bellido, E.
The EUTELSAT FDU (Flight Dynamics Unit) manages the resources to perform the typical activities of the large satellite operators and faces the usual difficulties raising from a vast and heterogeneous fleet. At present 20 satellites from 9 different platforms/sub-platforms are controlled from our Satellite Control Centre. The FDU was created in 2002 with the aim to respond to the operational needs of a growing fleet in terms of number of satellites and activities. It is at present composed of 6 engineering staff with the objective to provide operations service covering the whole lifecycle of the satellites from the procurement phase till the decommissioning. The most demanding activity is the daily operations, which must ensure maximum safety and continuity of service with the highest efficiency. Solutions have been applied from different areas: management, structure, operations organisation, processes, facilities, quality standards, etc. In addition to this, EUTELSAT is a growing communications operator and the FDU needs to contribute to the global objectives of the company. This paper covers our approach.
Contributing Data to the Fleet DNA Project (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-09-01
The Fleet DNA clearinghouse of commercial fleet transportation data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool - available at www.nrel.gov/fleetdna - provides data summaries and visualizations similar to real-world 'genetics' for medium- and heavy-duty commercial fleet vehicles operating within a variety of vocations. To contribute your fleet data, please contact Adam Duran of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) at adam.duran@nrel.gov or 303-275-4586.
Practical Application Limits of Fuel Cells and Batteries for Zero Emission Vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minnehan, John J.; Pratt, Joseph William
Batteries and hydrogen fuel cells provide zero emission power at the point of use. They are studied as an alternative powerplant for maritime vessels by considering 14 case studies of various ship sizes and routes varying from small passenger vessels to the largest cargo ships. The method used was to compare the mass and volume of the required zero emission solution to the available mass and volume on an existing vessel considering its current engine and fuel storage systems. The results show that it is practically feasible to consider these zero emission technologies for most vessels in the world's fleet.more » Hydrogen fuel cells proved to be the most capable while battery systems showed an advantage for high power, short duration missions. The results provide a guide to ship designers to determine the most suitable types of zero emission powerplants to fit a ship based on its size and energy requirements.« less
A New Remote Communications Link to Reduce Residential PV Solar Costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Randy; Sugiyama, Rod
Monitoring of PV/DER site production is expensive to install and unreliable. Among third party systems providers, lost communications links are a growing concern. Nearly 20% of links are failing, provisioning is complex, recovery is expensive, production data is lost, and access is fragmented. FleetLink is a new concept in DER system communications, purpose built for lowering the cost of maintaining active contact with residential end user sites and ensuring that production data is reliably available to third party systems providers. Systems providers require accurate, secure system monitoring and reporting of production data and system faults while driving down overall costsmore » to compete effectively. This plug and play, independently operating communications solution lowers the cost of fleet contact from typically .08 dollars-$.12/W down to .02 dollars -.03/W including installation and maintenance expenses. FleetLink establishes a breakthrough in simplicity that facilitates rapid expansion of residential solar by reducing initial capital outlay and lowering installation labor time and skill levels. The solution also facilitates higher DER installation growth rates by driving down maintenance costs and eliminating communications trouble calls. This is accomplished by the FleetLink’s unique network technology that enables dynamic network configuration for fast changes, and active, self-healing DER site contact for uptime assurance. Using an open source network framework with proprietary, application specific enhancements, FleetLink independently manages connectivity, security, recovery, grid control communications, and fleet expansion while presenting a compliant SunSpec interface to the third party operations centers. The net system cost savings of at least .05 dollars/W supports the SunShot cost goals and the flexibility and scalability of the solution accelerates the velocity and ubiquitous adoption of solar.« less
Schmidt, Liu-Ming; Williams, Pamela; King, Denis; Perera, Dayashan
2004-02-01
Bowel preparations for colonoscopy have to balance the demand for adequate cleansing action of the bowel and patient acceptability. There has been no study comparing Picoprep-3 (sodium picosulfate), a relatively new product, to Fleet (sodium phosphate), a well-studied and widely used preparation. This study was designed to compare the efficacy and patient tolerance of these two bowel preparations for colonoscopy. A randomized, single-blinded, prospective trial was conducted. A total of 400 consecutive patients presenting for elective colonoscopy at St George Private Hospital during a 20-week period were randomly assigned to receive Picoprep-3 or Fleet. Patients were asked to record the effects of the preparation, noting tolerability, taste, and side effects. Two hundred patients were assigned to the Picoprep-3 group and 200 to the Fleet group. Surgeons were blinded to the preparation used and rated the quality of the bowel preparation on a scale of 1 to 5 (1 being the optimal score). Picoprep-3 was found to be better tolerated (P < 0.0001) and better tasting (P < 0.0001) than Fleet. Patients in the Picoprep-3 group reported significantly less nausea (P < 0.001), vomiting (P < 0.004), dizziness (P < 0.01), abdominal pains (P = 0.0005), and thirst (P < 0.0001) associated with the preparation. There was no significant difference in visualization of the colon between the two groups as judged by the two colonoscopists (P = 0.06). Colonoscopy preparation with Picoprep-3 has similar efficacy but superior taste and tolerability compared with Fleet. Picoprep-3 caused less adverse side effects in the study population.
41 CFR 101-39.104-1 - Consolidations into a fleet management system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fleet management system. 101-39.104-1 Section 101-39.104-1 Public Contracts and Property Management..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.104-1 Consolidations into a fleet management...
An approach to the drone fleet survivability assessment based on a stochastic continues-time model
NASA Astrophysics Data System (ADS)
Kharchenko, Vyacheslav; Fesenko, Herman; Doukas, Nikos
2017-09-01
An approach and the algorithm to the drone fleet survivability assessment based on a stochastic continues-time model are proposed. The input data are the number of the drones, the drone fleet redundancy coefficient, the drone stability and restoration rate, the limit deviation from the norms of the drone fleet recovery, the drone fleet operational availability coefficient, the probability of the drone failure-free operation, time needed for performing the required tasks by the drone fleet. The ways for improving the recoverable drone fleet survivability taking into account amazing factors of system accident are suggested. Dependencies of the drone fleet survivability rate both on the drone stability and the number of the drones are analysed.
NASA Astrophysics Data System (ADS)
Hudson, E. C.; Johnson, Gordon; Summey, Delbert C.; Portmann, Helmut H., Jr.
2004-09-01
This paper discusses a comprehensive vision for unmanned systems that will shape the future of Naval Warfare within a larger Joint Force concept, and examines the broad impact that can be anticipated across the Fleet. The vision has been articulated from a Naval perspective in NAVSEA technical report CSS/TR-01/09, Shaping the Future of Naval Warfare with Unmanned Systems, and from a Joint perspective in USJFCOM Rapid Assessment Process (RAP) Report #03-10 (Unmanned Effects (UFX): Taking the Human Out of the Loop). Here, the authors build on this foundation by reviewing the major findings and laying out the roadmap for achieving the vision and truly transforming how we fight wars. The focus is on broad impact across the Fleet - but the implications reach across all Joint forces. The term "Unmanned System" means different things to different people. Most think of vehicles that are remotely teleoperated that perform tasks under remote human control. Actually, unmanned systems are stand-alone systems that can execute missions and tasks without direct physical manned presence under varying levels of human control - from teleoperation to full autonomy. It is important to note that an unmanned system comprises a lot more than just a vehicle - it includes payloads, command and control, and communications and information processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daley, R.; Ahdieh, N.; Bentley, J.
2014-01-01
A comprehensive Federal Fleet Management Handbook that builds upon the "Guidance for Federal Agencies on E.O. 13514 Section 12-Federal Fleet Management" and provides information to help fleet managers select optimal greenhouse gas and petroleum reduction strategies for each location, meeting or exceeding related fleet requirements, acquiring vehicles to support these strategies while minimizing fleet size and vehicle miles traveled, and refining strategies based on agency performance.
Fleet Management | Climate Neutral Research Campuses | NREL
Fleet Management Fleet Management Research campuses often own and operate vehicles to carry out Sample Project Related Links Fleet Management Options The goal of fleet management within climate action alternative fuel use. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) outlines
48 CFR 51.204 - Use of interagency fleet management system (IFMS) vehicles and related services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Contractor Use of Interagency Fleet Management System (IFMS) 51.204 Use of interagency fleet management system (IFMS) vehicles and related services. Contractors authorized to use interagency fleet management... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of interagency fleet...
National Clean Fleets Partnership (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with localmore » stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alleman, T. L.; Eudy, L.; Miyasato, M.
A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.
Improving aircraft energy efficiency
NASA Technical Reports Server (NTRS)
Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.
1976-01-01
Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.
Davies, Tim K.; Mees, Chris C.; Milner-Gulland, E. J.
2017-01-01
Spatial closures are widely used in marine conservation and fisheries management and it is important to understand their contribution to achieving management objectives. Many previous evaluations of closed area effects have used before-after comparisons, which, without controlling for a full range of factors, cannot ascribe changes in fleet behaviour to area closures per se. In this study we used a counterfactual approach to disentangle the effect of two closed areas on fishing location from other competing effects on the behaviour of the Indian Ocean tuna purse seine fishery. Our results revealed an inconsistent effect of the one of the closed areas between years, after taking into account the influence of environmental conditions on fleet behaviour. This suggests that the policy of closing the area per se was not the main driver for the fleet allocating its effort elsewhere. We also showed a marked difference in effect between the two closed areas resulting from their different locations in the fishery area. These findings highlight the need to account for other key fleet behavioural drivers when predicting or evaluating the contribution of area closures to achieving conservation and fishery management objectives. PMID:28355269
Davies, Tim K; Mees, Chris C; Milner-Gulland, E J
2017-01-01
Spatial closures are widely used in marine conservation and fisheries management and it is important to understand their contribution to achieving management objectives. Many previous evaluations of closed area effects have used before-after comparisons, which, without controlling for a full range of factors, cannot ascribe changes in fleet behaviour to area closures per se. In this study we used a counterfactual approach to disentangle the effect of two closed areas on fishing location from other competing effects on the behaviour of the Indian Ocean tuna purse seine fishery. Our results revealed an inconsistent effect of the one of the closed areas between years, after taking into account the influence of environmental conditions on fleet behaviour. This suggests that the policy of closing the area per se was not the main driver for the fleet allocating its effort elsewhere. We also showed a marked difference in effect between the two closed areas resulting from their different locations in the fishery area. These findings highlight the need to account for other key fleet behavioural drivers when predicting or evaluating the contribution of area closures to achieving conservation and fishery management objectives.
Alternative Fleet Architecture Design
2005-08-01
Alternative Fleet Architecture Design Stuart E. Johnson and Arthur K. Cebrowski Center...2005 4. TITLE AND SUBTITLE Alternative Fleet Architecture Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...these principles in mind. An alternative fleet architecture design and three examples of future fleet platform architectures are presented in this
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2014-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or helium 4 may be designed to probe the higher density regions of the gas giants. Outer planet atmospheric properties, atmospheric storm data, and mission planning for future outer planet UAVs are presented.
JSC Case Study: Fleet Experience with E-85 Fuel
NASA Technical Reports Server (NTRS)
Hummel, Kirck
2009-01-01
JSC has used E-85 as part of an overall strategy to comply with Presidential Executive Order 13423 and the Energy Policy Act. As a Federal fleet, we are required to reduce our petroleum consumption by 2 percent per year, and increase the use of alternative fuels in our vehicles. With the opening of our onsite dispenser in October 2004, JSC became the second federal fleet in Texas and the fifth NASA center to add E-85 fueling capability. JSC has a relatively small number of GSA Flex Fuel fleet vehicles at the present time (we don't include personal vehicles, or other contractor's non-GSA fleet), and there were no reasonably available retail E-85 fuel stations within a 15-minute drive or within five miles (one way). So we decided to install a small 1000 gallon onsite tank and dispenser. It was difficult to obtain a supplier due to our low monthly fuel consumption, and our fuel supplier contract has changed three times in less than five years. We experiences a couple of fuel contamination and quality control issues. JSC obtained good information on E-85 from the National Ethanol Vehicle Coalition (NEVC). We also spoke with Defense Energy Support Center, (DESC), Lawrence Berkeley Laboratory, and US Army Fort Leonard Wood. E-85 is a liquid fuel that is dispensed into our Flexible Fuel Vehicles identically to regular gasoline, so it was easy for our vehicle drivers to make the transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) regulates covered state government and alternative fuel provider fleets, pursuant to the Energy Policy Act of 1992 (EPAct), as amended. Covered fleets may meet their EPAct requirements through one of two compliance methods: Standard Compliance or Alternative Compliance. For model year (MY) 2015, the compliance rate with this program for the more than 3011 reporting fleets was 100%. More than 294 fleets used Standard Compliance and exceeded their aggregate MY 2015 acquisition requirements by 8% through acquisitions alone. The seven covered fleets that used Alternative Compliance exceeded their aggregate MY 2015 petroleum use reductionmore » requirements by 46%.« less
ITS Technologies in Military Wheeled Tactical Vehicles: Status Quo and the Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knee, H.E.
2001-07-02
The U.S. Army operates and maintains the largest trucking fleet in the United States. Its fleet consists of over 246,000 trucks, and it is responsible for buying and developing trucks for all branches of the armed forces. The Army's tactical wheeled vehicle fleet is the logistical backbone of the Army, and annually, the fleet logs about 823 million miles. The fleet consists of a number of types of vehicles. They include eight different families of trucks from the High Mobility Multi-Purpose Wheeled Vehicles to M900 series line haul tractors and special bodies. The average age of all the trucks withinmore » the Army fleet is 15 years, and very few have more than traditional driving instrumentation on-board. Over the past decade, the Department of Transportation's (DOT's) Intelligent Transportation Systems (ITS) Program has conducted research and deployment activities in a number of areas including in-vehicle systems, communication and telematics technologies. Many current model passenger vehicles have demonstrated the assimilation of these technologies to enhance safety and trip quality. Commercial vehicles are also demonstrating many new electronic devices that are assisting in making them safer and more efficient. Moreover, a plethora of new technologies are about to be introduced to drivers that promise greater safety, enhanced efficiency, congestion avoidance, fuel usage reduction, and enhanced trip quality. The U.S. Army has special needs with regard to fleet management, logistics, sustainability, reliability, survivability, and fuel consumption that goes beyond similar requirements within the private industry. In order to effectively apply emerging ITS technologies to the special needs of the U.S. Army, planning for the conduct of the Army's Vehicle Intelligence Program (AVIP) has now commenced. The AVIP will be focused on the conduct of research that: (1) will apply ITS technologies to the special needs of the Army, and (2) will conduct research for special needs wi th regard to vehicle control, driver assistance, integration of vehicle intelligence and robotic technologies, managing effectively the information flow to drivers, enhanced logistics capabilities and sustainability of the Army's fleet during battlefield conditions. This paper will highlight the special needs of the Army, briefly describe two programs, which are embracing ITS technologies to a limited extent, will outline the AVIP, and will provide some insight into future Army vehicle intelligence efforts.« less
Initial development of a practical safety audit tool to assess fleet safety management practices.
Mitchell, Rebecca; Friswell, Rena; Mooren, Lori
2012-07-01
Work-related vehicle crashes are a common cause of occupational injury. Yet, there are few studies that investigate management practices used for light vehicle fleets (i.e. vehicles less than 4.5 tonnes). One of the impediments to obtaining and sharing information on effective fleet safety management is the lack of an evidence-based, standardised measurement tool. This article describes the initial development of an audit tool to assess fleet safety management practices in light vehicle fleets. The audit tool was developed by triangulating information from a review of the literature on fleet safety management practices and from semi-structured interviews with 15 fleet managers and 21 fleet drivers. A preliminary useability assessment was conducted with 5 organisations. The audit tool assesses the management of fleet safety against five core categories: (1) management, systems and processes; (2) monitoring and assessment; (3) employee recruitment, training and education; (4) vehicle technology, selection and maintenance; and (5) vehicle journeys. Each of these core categories has between 1 and 3 sub-categories. Organisations are rated at one of 4 levels on each sub-category. The fleet safety management audit tool is designed to identify the extent to which fleet safety is managed in an organisation against best practice. It is intended that the audit tool be used to conduct audits within an organisation to provide an indicator of progress in managing fleet safety and to consistently benchmark performance against other organisations. Application of the tool by fleet safety researchers is now needed to inform its further development and refinement and to permit psychometric evaluation. Copyright © 2012 Elsevier Ltd. All rights reserved.
2009-01-06
enabling precise blue force tracking (BFT), enhancing joint force situational awareness, maneuverability, and command and control (C2... spacecraft , transmits the status of those systems to the control segment on the ground, and receives and processes instructions from the control segment...missions include the tracking , telemetry, and control operations of: (1) Ultrahigh frequency (UHF) follow-on satellite system and fleet
40 CFR 89.117 - Test fleet selection.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and... establishing deterioration factors, the manufacturer shall select the engines, subsystems, or components to be used to determine exhaust emission deterioration factors for each engine-family control system...
Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas
Santa Fe Metro Fleet Runs on Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Santa Fe Metro Fleet Runs on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Santa Fe Metro Fleet
An investigation of rental rates for centralized fleet vehicles.
DOT National Transportation Integrated Search
1999-01-01
This report details a study to investigate the current rental rate structure used by the Division of Fleet Management (Fleet Management) to charge state agencies for the use of centralized fleet vehicles. The researchers conducted a literature review...
CleanFleet final report. Volume 8, fleet economics
DOT National Transportation Integrated Search
1995-12-01
The costs that face a fleet operator in implementing alternative motor fuels : into fleet operations are examined. The cost assessment is built upon a list of thirteen cost factors grouped into the three catagories: infrastructure costs, vehicle owni...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Mark R
2017-09-06
FleetDASH helps federal fleet managers maximize their use of alternative fuel. This presentation explains how the dashboard works and demonstrates the newest capabilities added to the tool. It also reviews complementary online tools available to fleet managers on the Alternative Fuel Data Center.
41 CFR 101-39.106 - Unlimited exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.106 Unlimited exemptions. Unlimited exemptions from inclusion in the fleet... below. Unlimited exemptions do not preclude agencies from requesting fleet management services, if...
Increasing Fleet Readiness Through Improved Distance Support
2013-03-01
gis tic s D ata Pro ce ss Tra ini ng Da ta An aly ze Da ta An...Format Fleet Maintenance Formatted Data /sData F.2.2 • ... Fleet Support Infrastructure Data ~ Formatted Trainin~ ata l Obtain and Format Fleet...system either by using a form or a spreadsheet F.2.2 Obtain Data from Fleet Recorded System Performance Data is downloaded from ship either manually
41 CFR 101-39.102 - Determinations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.102 Determinations. Each determination to establish a fleet management system... name of the executive agency designated to be responsible for operating the fleet management system and...
Alternative fuel options and costs for use in Kansas and surrounding states
DOT National Transportation Integrated Search
1998-09-01
To meet state and federal mandates, state fleets, federal fleets, and fuel provider fleets must acquire alternatively fueled vehicles (AFVs). The Kansas House Bill 95-2161 exceeds the federal energy policy act regulations for state fleets. AFVs inclu...
National Clean Fleets Partnership (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-01-01
Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.
Transforming Our SMEX Organization by Way of Innovation, Standardization, and Automation
NASA Technical Reports Server (NTRS)
Madden, Maureen; Crouse, Pat; Carry, Everett; Esposito, timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorer (SMEX) Flight Operations Team (FOT) is currently tackling the challenge of supporting ground operations for several satellites that have surpassed their designed lifetime and have a dwindling budget. At Goddard Space Flight Center (GSFC), these missions are presently being reengineered into a fleet-oriented ground system. When complete, this ground system will provide command and control of four SMEX missions, and will demonstrate fleet automation and control concepts as a pathfinder for additional mission integrations. A goal of this reengineering effort is to demonstrate new ground-system technologies that show promise of supporting longer mission lifecycles and simplifying component integration. In pursuit of this goal, the SMEX organization has had to examine standardization, innovation, and automation. A core technology being demonstrated in this effort is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture focuses on providing standard interfaces for ground system applications to promote application interoperability. Building around commercial Message Oriented Middleware and providing a common messaging standard allows GMSEC to provide the capabilities necessary to support integration of new software components into existing missions and increase the level of interaction within the system. For SMS, GMSEC has become the technology platform to transform flight operations with the innovation and automation necessary to reduce operational costs. The automation technologies supported in SMEX are built upon capabilities provided by the GMSEC architecture that allows the FOT to further reduce the involvement of the console, operator. Initially, SMEX is automating only routine operations, such as safety and health monitoring, basic commanding, and system recovery. The operational concepts being developed here will reduce the need for staffed passes and are a necessity for future fleet management. As this project continues to evolve, additional innovations beyond GMSEC and automation have, and will continue to be developed. The team developed techniques for migrating ground systems of existing on-orbit assets. The tools necessary to monitor and control software failures were integrated and tailored for operational environments. All this was done with a focus of extending fleet operations to mission beyond SMU. The result of this work is the foundation for a broader fleet-capable ground system that will include several missions supported by the Space Science Mission Operations Project.
DOT National Transportation Integrated Search
1997-05-01
In todays increasingly competitive economic environment, effective management of commercial vehicle fleets is important for all types of carriers and for the trucking industry as a whole. To meet fleet management needs, carriers increasingly are t...
41 CFR 101-39.203 - Obtaining motor vehicles for short-term use.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... Fleet Management System (IFMS). Short-term use vehicles may be provided through Military Traffic... General Services Administration IFMS fleet management center. [56 FR 59888, Nov. 26, 1991] ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
...; Information Collection; Contractor Use of Interagency Fleet Management System Vehicles AGENCY: Department of... previously approved information collection requirement concerning contractor use of interagency fleet... Collection 9000- 0032, Contractor Use of Interagency Fleet Management System Vehicles, by any of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
...; Submission for OMB Review; Contractor Use of Interagency Fleet Management System Vehicles AGENCY: Department... previously approved information collection requirement concerning contractor use of interagency fleet... comments identified by Information Collection 9000- 0032, Contractor Use of Interagency Fleet Management...
A maintenance model for k-out-of-n subsystems aboard a fleet of advanced commercial aircraft
NASA Technical Reports Server (NTRS)
Miller, D. R.
1978-01-01
Proposed highly reliable fault-tolerant reconfigurable digital control systems for a future generation of commercial aircraft consist of several k-out-of-n subsystems. Each of these flight-critical subsystems will consist of n identical components, k of which must be functioning properly in order for the aircraft to be dispatched. Failed components are recoverable; they are repaired in a shop. Spares are inventoried at a main base where they may be substituted for failed components on planes during layovers. Penalties are assessed when failure of a k-out-of-n subsystem causes a dispatch cancellation or delay. A maintenance model for a fleet of aircraft with such control systems is presented. The goals are to demonstrate economic feasibility and to optimize.
Application of Strategic Planning Process with Fleet Level Analysis Methods
NASA Technical Reports Server (NTRS)
Mavris, Dimitri N.; Pfaender, Holger; Jimenez, Hernando; Garcia, Elena; Feron, Eric; Bernardo, Jose
2016-01-01
The goal of this work is to quantify and characterize the potential system-wide reduction of fuel consumption and corresponding CO2 emissions, resulting from the introduction of N+2 aircraft technologies and concepts into the fleet. Although NASA goals for this timeframe are referenced against a large twin aisle aircraft we consider their application across all vehicle classes of the commercial aircraft fleet, from regional jets to very large aircraft. In this work the authors describe and discuss the formulation and implementation of the fleet assessment by addressing the main analytical components: forecasting, operations allocation, fleet retirement, fleet replacement, and environmental performance modeling.
Fuel-Efficient Green Fleets Policy and Fleet Management Program Development The Alabama Green Fleets Review Committee (Committee) established a Green Fleets Policy (Policy) outlining a procedure for managers must classify their vehicle inventory for compliance with the Policy and submit annual plans for
Evolution of the deep-sea fleet that supports Canada's international trade
DOT National Transportation Integrated Search
2002-01-01
This study identifies the flag-related trends of fleets used in Canada's international sea-borne trade relative to the world fleet during the 15-year period from 1985 to 1999. The goal is to determine if there is any indication that fleets that serve...
A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies
NASA Astrophysics Data System (ADS)
Becker, Keith Frederick
Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post-processing, which does not capture physical interdependencies that may arise at the aircraft-level. The goal of the work that has been conducted here was the development of a methodology to develop surrogate fleet approaches that leverage the capability of physics-based aircraft models and the development of connectivity to fleet-level analysis tools to enable rapid evaluation of fuel burn and emissions metrics. Instead of requiring development of an individual physics-based model for each vehicle in the fleet, the surrogate fleet approaches seek to reduce the number of such models needed while still accurately capturing performance of the fleet. By reducing the number of models, both development time and execution time to generate fleet-level results may also be reduced. The initial steps leading to surrogate fleet formulation were a characterization of the commercial fleet into groups based on capability followed by the selection of a reference vehicle model and a reference set of operations for each group. Next, three potential surrogate fleet approaches were formulated. These approaches include the parametric correction factor approach, in which the results of a reference vehicle model are corrected to match the aggregate results of each group; the average replacement approach, in which a new vehicle model is developed to generate aggregate results of each group, and the best-in-class replacement approach, in which results for a reference vehicle are simply substituted for the entire group. Once candidate surrogate fleet approaches were developed, they were each applied to and evaluated over the set of reference operations. Then each approach was evaluated for their ability to model variations in operations. Finally, the ability of each surrogate fleet approach to capture implementation of different technology suites along with corresponding interdependencies between fuel burn and emissions was evaluated using the concept of a virtual fleet to simulate the technology response of multiple aircraft families. The results of experimentation led to a down selection to the best approach to use to rapidly characterize the performance of the commercial fleet for accurately in the context of acceptability of current fleet evaluation methods. The parametric correction factor and average replacement approaches were shown to be successful in capturing reference fleet results as well as fleet performance with variations in operations. The best-in-class replacement approach was shown to be unacceptable as a model for the larger fleet in each of the scenarios tested. Finally, the average replacement approach was the only one that was successful in capturing the impact of technologies on a larger fleet. These results are meaningful because they show that it is possible to calculate the fuel burn and emissions of a larger fleet with a reduced number of physics-based models within acceptable bounds of accuracy. At the same time, the physics-based modeling also provides the ability to evaluate the impact of technologies on fleet-level fuel burn and emissions metrics. The value of such a capability is that multiple future fleet scenarios involving changes in both aircraft operations and technology levels may now be rapidly evaluated to inform and equip policy makers of the implications of impacts of changes on fleet-level metrics.
A Framework for Creating Value from Fleet Data at Ecosystem Level
NASA Astrophysics Data System (ADS)
Kinnunen, Sini-Kaisu; Hanski, Jyri; Marttonen-Arola, Salla; Kärri, Timo
2017-09-01
As companies have recently gotten more interested in utilizing the increasingly gathered data and realizing the potential of data analysis, the ability to upgrade data into value for business has been recognized as an advantage. Companies gain competitive advantage if they are able to benefit from the fleet data that is produced both in and outside the boundaries of the company. Benefits of fleet management are based on the possibility to have access to the massive amounts of asset data that can then be utilized e.g. to gain cost savings and to develop products and services. The ambition of the companies is to create value from fleet data but this requires that different actors in ecosystem are working together for a common goal - to get the most value out of fleet data for the ecosystem. In order that this could be possible, we need a framework to meet the requirements of the fleet life-cycle data utilization. This means that the different actors in the ecosystem need to understand their role in the fleet data refining process in order to promote the value creation from fleet data. The objective of this paper is to develop a framework for knowledge management in order to create value from fleet data in ecosystems. As a result, we present a conceptual framework which helps companies to develop their asset management practices related to the fleet of assets.
50 CFR 600.1002 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... moratorium on new entrants, restrictions on vessel upgrades, and other effort control measures, taking into account the full potential fishing capacity of the fleet; (2) Establish a specified or target total...
33 CFR 162.270 - Restricted areas in vicinity of Maritime Administration Reserve Fleets.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Maritime Administration Reserve Fleets. 162.270 Section 162.270 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.270 Restricted areas in vicinity of Maritime Administration Reserve Fleets. (a) The... National Defense Reserve Fleets of the Maritime Administration, Department of Transportation: (1) James...
Alternative Fuels Data Center: Fleet Application for Public Transit
Vehicles Public Transit Vehicles to someone by E-mail Share Alternative Fuels Data Center : Fleet Application for Public Transit Vehicles on Facebook Tweet about Alternative Fuels Data Center : Fleet Application for Public Transit Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fleet
77 FR 14482 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... agencies to use this methodology to determine fleet inventory targets and to prepare fleet management plans.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program (EE... DOE receives will be made available on the Federal Energy Management Program's Federal Fleet...
Alternative Fuels Data Center: Fleet Applications for Vehicles
Applications for Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fleet Applications for Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fleet Applications for Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fleet Applications for Vehicles on Google
41 CFR 101-39.208 - Vehicles removed from defined areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services... operated outside the geographical area served by the issuing GSA IFMS fleet management center. However... shall notify the issuing GSA IFMS fleet management center of the following: (1) The location at which...
50 CFR 660.338 - Limited entry permits-small fleet.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Limited entry permits-small fleet. 660.338 Section 660.338 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.338 Limited entry permits-small fleet. (a) Small limited entry fisheries fleets...
41 CFR 101-39.107 - Limited exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet... incorporated in the fleet management system, if the exemption has been mutually agreed upon by the... of the fleet management system. [51 FR 11023, Apr. 1, 1986, as amended at 56 FR 59888, Nov. 26, 1991] ...
41 CFR 101-39.204 - Obtaining motor vehicles for indefinite assignment.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... related services of the GSA Interagency Fleet Management System (IFMS) are provided to requesting agencies... have been consolidated into the supporting GSA IFMS fleet management center, and no agency-owned...
48 CFR 970.5223-5 - DOE motor vehicle fleet fuel efficiency.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and Contract Clauses for Management and Operating Contracts 970.5223-5 DOE motor vehicle fleet fuel..., insert the following clause in contracts providing for Contractor management of the motor vehicle fleet... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false DOE motor vehicle fleet...
2015-12-01
B. THE PROSPECTIVE 2040 7TH FLEET FORCES Based on the current and planned naval forces allocated to 7th Fleet, it is assumed that the Navy’s 2040...approximately 15 percent of The Advanced Surface Force Fleet, or 20 ships, are allocated to 7th Fleet. Furthermore, 12 of The Advanced Surface...production, personnel support for cleanup and recovery efforts, berthing capability, and medical support.90 After determining the critical missions
NASA Astrophysics Data System (ADS)
Koptev, V. Yu
2017-02-01
The work represents the results of studying basic interconnected criteria of separate equipment units of the transport network machines fleet, depending on production and mining factors to improve the transport systems management. Justifying the selection of a control system necessitates employing new methodologies and models, augmented with stability and transport flow criteria, accounting for mining work development dynamics on mining sites. A necessary condition is the accounting of technical and operating parameters related to vehicle operation. Modern open pit mining dispatching systems must include such kinds of the information database. An algorithm forming a machine fleet is presented based on multi-variation task solution in connection with defining reasonable operating features of a machine working as a part of a complex. Proposals cited in the work may apply to mining machines (drilling equipment, excavators) and construction equipment (bulldozers, cranes, pile-drivers), city transport and other types of production activities using machine fleet.
Characterization of PTO and Idle Behavior for Utility Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Adam W.; Konan, Arnaud M.; Miller, Eric S.
This report presents the results of analyses performed on utility vehicle data composed primarily of aerial lift bucket trucks sampled from the National Renewable Energy Laboratory's Fleet DNA database to characterize power takeoff (PTO) and idle operating behavior for utility trucks. Two major data sources were examined in this study: a 75-vehicle sample of Odyne electric PTO (ePTO)-equipped vehicles drawn from multiple fleets spread across the United States and 10 conventional PTO-equipped Pacific Gas and Electric fleet vehicles operating in California. Novel data mining approaches were developed to identify PTO and idle operating states for each of the datasets usingmore » telematics and controller area network/onboard diagnostics data channels. These methods were applied to the individual datasets and aggregated to develop utilization curves and distributions describing PTO and idle behavior in both absolute and relative operating terms. This report also includes background information on the source vehicles, development of the analysis methodology, and conclusions regarding the study's findings.« less
Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys
Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Facebook Tweet about Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Twitter Bookmark Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Google Bookmark Alternative Fuels
41 CFR 101-39.105-1 - Transfers from discontinued or curtailed fleet management systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... discontinued or curtailed fleet management systems. 101-39.105-1 Section 101-39.105-1 Public Contracts and... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105-1 Transfers from...
Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet
Electrification New Mexico Utility Sparks Change with Fleet Electrification to someone by E -mail Share Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet Electrification on Facebook Tweet about Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet
75 FR 8563 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA AGENCY: Coast Guard... Fleet Week Maritime Festival. Entry into, transit through, mooring, or anchoring within these zones is... Fleet Week Maritime Festival. This safety zone is necessary as these events have historically resulted...
75 FR 71638 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA AGENCY: Coast Guard...) entitled ``Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA'' (Docket number...; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington. (a) Location. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38-MOTOR EQUIPMENT MANAGEMENT 38.8-Standard Form 149, U.S. Government National Credit Card § 109-38... the administrative control of fleet credit cards. Administrative control shall include, as a minimum: (1) A reconciliation of on-hand credit cards with the inventory list provided by GSA, (2) Providing...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 38-MOTOR EQUIPMENT MANAGEMENT 38.8-Standard Form 149, U.S. Government National Credit Card § 109-38... the administrative control of fleet credit cards. Administrative control shall include, as a minimum: (1) A reconciliation of on-hand credit cards with the inventory list provided by GSA, (2) Providing...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38-MOTOR EQUIPMENT MANAGEMENT 38.8-Standard Form 149, U.S. Government National Credit Card § 109-38... the administrative control of fleet credit cards. Administrative control shall include, as a minimum: (1) A reconciliation of on-hand credit cards with the inventory list provided by GSA, (2) Providing...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 38-MOTOR EQUIPMENT MANAGEMENT 38.8-Standard Form 149, U.S. Government National Credit Card § 109-38... the administrative control of fleet credit cards. Administrative control shall include, as a minimum: (1) A reconciliation of on-hand credit cards with the inventory list provided by GSA, (2) Providing...
Modelling the spatial behaviour of a tropical tuna purse seine fleet.
Davies, Tim K; Mees, Chris C; Milner-Gulland, E J
2014-01-01
Industrial tuna fisheries operate in the Indian, Atlantic and Pacific Oceans, but concerns over sustainability and environmental impacts of these fisheries have resulted in increased scrutiny of how they are managed. An important but often overlooked factor in the success or failure of tuna fisheries management is the behaviour of fishers and fishing fleets. Uncertainty in how a fishing fleet will respond to management or other influences can be reduced by anticipating fleet behaviour, although to date there has been little research directed at understanding and anticipating the human dimension of tuna fisheries. The aim of this study was to address gaps in knowledge of the behaviour of tuna fleets, using the Indian Ocean tropical tuna purse seine fishery as a case study. We use statistical modelling to examine the factors that influence the spatial behaviour of the purse seine fleet at broad spatiotemporal scales. This analysis reveals very high consistency between years in the use of seasonal fishing grounds by the fleet, as well as a forcing influence of biophysical ocean conditions on the distribution of fishing effort. These findings suggest strong inertia in the spatial behaviour of the fleet, which has important implications for predicting the response of the fleet to natural events or management measures (e.g., spatial closures).
The challenge to NOx emission control for heavy-duty diesel vehicles in China
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.
2012-07-01
China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km -1) nor brake-specific (g kW h-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3±3.3 g km-1, 12.5± 1.3 g km-1, and 11.8±2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOxmitigation for the HDDV fleet in the future.
The challenge to NOx emission control for heavy-duty diesel vehicles in China
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.
2012-10-01
China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g km-1, and 11.8 ± 2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOx mitigation for the HDDV fleet in the future.
Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert
several years. Golden Eagle will convert all fleet vehicles to CNG in their six branch operations Entire Fleet to CNG Golden Eagle Distributors Inc. to Convert Entire Fleet to CNG to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert Entire Fleet
41 CFR 102-34.340 - Do we need a fleet management information system?
Code of Federal Regulations, 2010 CFR
2010-07-01
... management information system? 102-34.340 Section 102-34.340 Public Contracts and Property Management Federal... VEHICLE MANAGEMENT Federal Fleet Report § 102-34.340 Do we need a fleet management information system? Yes, you must have a fleet management information system at the department or agency level that — (a...
Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas
New Hampshire Fleet Revs up With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Twitter Bookmark Alternative Fuels Data Center
Alternative Fuels Data Center: District of Columbia's Government Fleet Uses
a Wide Variety of Alternative FuelsA> District of Columbia's Government Fleet Uses a Wide Variety Government Fleet Uses a Wide Variety of Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels on Twitter
75 FR 20778 - Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
...-AA87 Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR AGENCY: Coast... during the Portland Rose Festival Fleet Week from June 2, 2010, through June 7, 2010. The security zone... is a need to provide a security zone for the 2010 Portland Rose Festival Fleet Week, and there is...
76 FR 30014 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA AGENCY: Coast Guard...) entitled ``Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA'' in the Federal... is added to read as follows: Sec. 165.1330 Safety Zone; Fleet Week Maritime Festival, Pier 66...
41 CFR 102-34.340 - Do we need a fleet management information system?
Code of Federal Regulations, 2011 CFR
2011-01-01
... management information system? 102-34.340 Section 102-34.340 Public Contracts and Property Management Federal... VEHICLE MANAGEMENT Federal Fleet Report § 102-34.340 Do we need a fleet management information system? Yes, you must have a fleet management information system at the department or agency level that — (a...
41 CFR 102-34.340 - Do we need a fleet management information system?
Code of Federal Regulations, 2013 CFR
2013-07-01
... management information system? 102-34.340 Section 102-34.340 Public Contracts and Property Management Federal... VEHICLE MANAGEMENT Federal Fleet Report § 102-34.340 Do we need a fleet management information system? Yes, you must have a fleet management information system at the department or agency level that — (a...
41 CFR 102-34.340 - Do we need a fleet management information system?
Code of Federal Regulations, 2012 CFR
2012-01-01
... management information system? 102-34.340 Section 102-34.340 Public Contracts and Property Management Federal... VEHICLE MANAGEMENT Federal Fleet Report § 102-34.340 Do we need a fleet management information system? Yes, you must have a fleet management information system at the department or agency level that — (a...
41 CFR 102-34.340 - Do we need a fleet management information system?
Code of Federal Regulations, 2014 CFR
2014-01-01
... management information system? 102-34.340 Section 102-34.340 Public Contracts and Property Management Federal... VEHICLE MANAGEMENT Federal Fleet Report § 102-34.340 Do we need a fleet management information system? Yes, you must have a fleet management information system at the department or agency level that — (a...
Assessment and Correlation of Customer and Rater Response to Cold-Start and Warmup Driveability
1993-08-01
Customer satisfaction fleet Year N % 1986 13 18 1988 10 14 1987 12 18 1988 12 16 1989 14 19 1990 9 12 1991 3 4 Consumer I Rater Fleet Hydrocarbon fuel...2 4 1991 0 0 Fuel system * Customer satisfaction fleet Fuel system N % Carbureted 19 26 PFI 33 48 1T1 21 29 Consumer I Rater Fleet Hydrooarbon fuel...between the customer fleet and one of the consumer /rater subfleets; these vehicles are included in both places in the tables above. 30 TABLE 2 AVERAGE
On-road vehicle emission control in Beijing: past, present, and future.
Wu, Ye; Wang, Renjie; Zhou, Yu; Lin, Bohong; Fu, Lixin; He, Kebin; Hao, Jiming
2011-01-01
Beijing, the capital of China, has experienced rapid motorization since 1990; a trend that is likely to continue. The growth in vehicles and the corresponding emissions create challenges to improving the urban air quality. In an effort to reduce the impact of vehicle emissions on urban air quality, Beijing has adopted a number of vehicle emission control strategies and policies since the mid 1990 s. These are classified into seven categories: (1) emission control on new vehicles; (2) emission control on in-use vehicles; (3) fuel quality improvements; (4) alternative-fuel and advanced vehicles; (5) economic policies; (6) public transport; and (7) temporal traffic control measures. Many have proven to be successful, such as the Euro emission standards, unleaded gasoline and low sulfur fuel, temporal traffic control measures during the Beijing Olympic Games, etc. Some, however, have been failures, such as the gasoline-to-LPG taxi retrofit program. Thanks to the emission standards for new vehicles as well as other controls, the fleet-average emission rates of CO, HC, NO(X), and PM(10) by each major vehicle category are decreasing over time. For example, gasoline cars decreased fleet-average emission factors by 12.5% for CO, 10.0% for HC, 5.8% for NO(X), and 13.0% for PM(10) annually since 1995, and such a trend is likely to continue. Total emissions for Beijing's vehicle fleet increased from 1995 to 1998. However, they show a clear and steady decrease between 1999 and 2009. In 2009, total emissions of CO, HC, NO(X), and PM(10) were 845,000 t, 121,000 t, 84,000 t, and 3700 t, respectively; with reductions of 47%, 49%, 47%, and 42%, relative to 1998. Beijing has been considered a pioneer in controlling vehicle emissions within China, similar to the role of California to the U.S. The continued rapid growth of vehicles, however, is challenging Beijing's policy-makers.
Controlled Speed Accessory Drive demonstration program
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1981-01-01
A Controlled Speed Accessory Drive System was examined in an effort to improve the fuel economy of passenger cars. Concept feasibility and the performance of a typical system during actual road driving conditions were demonstrated. The CSAD system is described as a mechanical device which limits engine accessory speeds, thereby reducing parasitic horsepower losses and improving overall vehicle fuel economy. Fuel consumption data were compiled for fleets of GSA vehicles. Various motor pool locations were selected, each representing different climatic conditions. On the basis of a total accumulated fleet usage of nearly three million miles, an overall fuel economy improvement of 6 percent to 7 percent was demonstrated. Coincident chassis dynamometer tests were accomplished on selected vehicles to establish the effect of different accessory drive systems on exhaust emissions, and to evaluate the magnitude of the mileage benefits which could be derived.
Human Health Effects of Ozone Depletion From Stratospheric Aircraft
NASA Technical Reports Server (NTRS)
Wey, Chowen (Technical Monitor)
2001-01-01
This report presents EPA's initial response to NASA's request to advise on potential environmental policy issues associated with the future development of supersonic flight technologies. Consistent with the scope of the study to which NASA and EPA agreed, EPA has evaluated only the environmental concerns related to the stratospheric ozone impacts of a hypothetical HSCT fleet, although recent research indicates that a fleet of HSCT is predicted to contribute to climate warming as well. This report also briefly describes the international and domestic institutional frameworks established to address stratospheric ozone depletion, as well as those established to control pollution from aircraft engine exhaust emissions.
Developing a Fleet Standardization Index for Airline Planning
NASA Technical Reports Server (NTRS)
deBorgesPan, Alexis George; EspiritoSanto, Respicio A., Jr.
2003-01-01
Quantifying subjective aspects is a difficult task that requires a great dedication of time from researchers and analysts. Nevertheless, one of the main objectives of it is to pave the way for a better understanding of the focused aspects. Fleet standardization is one of these subjective aspects that is extremely difficult to mm into numbers. Although, it is of great importance to know the benefits that may come with a higher level of standardization for airlines, which may be economical advantages, maintenance facilitation and others. A more standardized fleet may represent lower costs of operations and maintenance facilitation and others. A more standardized fleet may represent lower costs of operations and maintenance plus a much better planning of routes and flights. This study presents the first step on developing an index, hereto called "Fleet Standardization Index" or FSI (or IPF in Portuguese, for "Indice de Padronizacao de Frotas"), that will allow senior airline planners to compare different fleets and also simulate some results from maintaining or renewing their fleets. Although being a preliminary study, the results obtained may already be tested to compare different fleets (different airlines) and also analyze some possible impacts of a fleet renewal before it takes place. Therefore, the main objective of this paper is to introduce the proposed IPF index and to demonstrate that it is inversely proportional to the number of different airplane models, engines and other equipment, such as avionics.
Haugen, Molly J; Bishop, Gary A
2018-05-15
Two California heavy-duty fleets have been measured in 2013, 2015, and 2017 using the On-Road Heavy-Duty Measurement System. The Port of Los Angeles drayage fleet has increased in age by 3.3 model years (4.2-7.5 years old) since 2013, with little fleet turnover. Large increases in fuel-specific particle emissions (PM) observed in 2015 were reversed in 2017, returning to near 2013 levels, suggesting repairs and or removal of high emitting vehicles. Fuel-specific oxides of nitrogen (NO x ) emissions of this fleet have increased, and NO x after-treatment systems do not appear to perform ideally in this setting. At the Cottonwood weigh station in northern California, the fleet age has declined (7.8 to 6 years old) since 2013 due to fleet turnover, significantly lowering the average fuel-specific emissions for PM (-87%), black carbon (-76%), and particle number (-64%). Installations of retrofit-diesel particulate filters in model year 2007 and older vehicles have further decreased particle emissions. Cottonwood fleet fuel-specific NO x emissions have decreased slightly (-8%) during this period; however, newer technology vehicles with selective catalytic reduction systems (SCR) promise an additional factor of 4-5 further reductions in the long-haul fleet emissions as California transitions to an all SCR-equipped fleet.
Alternative Fuels Data Center: Kansas City Greens Its Fleet With Natural
Gas and Biodiesel Kansas City Greens Its Fleet With Natural Gas and Biodiesel to someone by E -mail Share Alternative Fuels Data Center: Kansas City Greens Its Fleet With Natural Gas and Biodiesel and Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Kansas City Greens Its Fleet With
Pages - U.S. Fleet Cyber Command
Links Expand Links : U.S. Fleet Cyber Command Help (new window) Site Help Page Content Website 2nd Banner.jpg Since its establishment on Jan. 29, 2010, U.S. Fleet Cyber Command (FCC)/U.S. TENTH Fleet (C10F civilians organized into 26 active commands, 40 Cyber Mission Force units, and 27 reserve commands around
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) and U.S. General Services Administration (GSA) are issuing comprehensive guidance on the federal fleet requirements of Executive Order (E.O.) 13693, Planning for Federal Sustainability in the Next Decade (E.O. 13693), to help federal agencies subject to the executive order develop an overall approach for reducing total fleet greenhouse gas (GHG) emissions and fleet-wide per-mile GHG emissions, and ensure the approach helps these agencies meet their requirements. Three key GHG emissions reduction strategies - right-sizing fleets to mission, increasing fleet fuel efficiency, and displacing petroleum with alternative fuel use - are essential to meeting themore » requirements and are discussed further in this document. This guidance document is intended to help agency Chief Sustainability Officers (CSOs) and headquarters fleet managers craft tailored executable plans that achieve the purpose of E.O. 13693. The guidance will assist agencies in completing the first phase of a comprehensive fleet management framework by identifying the strategies each agency will then implement to meet or exceed its requirements.« less
Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Matthew; Boriboonsomsin, Kanok
2014-12-31
The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for drivingmore » performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicle’s controller area network bus through the vehicle’s on-board diagnostic connector, it does not modify or interfere with the vehicle’s controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used for paratransit service. Detailed vehicle travel and operation data including route taken, driving speed, acceleration, braking, and the corresponding fuel consumption, were collected both before and during the test period. The data analysis results show that the fleet average fuel efficiency improvements for the three fleets with the use of the driving feedback system are in the range of 2% to 9%. The economic viability of the driving feedback system is high. A fully deployed system would require capital investment in smart device ($150-$350) and on-board diagnostics connector ($50-$100) as well as paying operating costs for wireless data plan and subscription fees ($20-$30 per month) for connecting to the data server and receiving various system services. For individual consumers who already own a smart device (such as smartphone) and commercial fleets that already use some kind of telematics services, the costs for deploying this driving feedback system would be much lower.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...
75 FR 34927 - Safety Zone; Parade of Ships, Seattle SeaFair Fleet Week, Pier 66, Elliott Bay, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
...-AA00 Safety Zone; Parade of Ships, Seattle SeaFair Fleet Week, Pier 66, Elliott Bay, WA AGENCY: Coast... Seattle SeaFair Fleet Week. This action is intended to restrict vessel traffic movement and entry into... of Ships for the annual Seattle SeaFair Fleet Week. For the purposes of this rule the Parade of Ships...
Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers
to Its Fleet Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Twitter Bookmark
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...
Fleet logistics system : data administration plans and procedures manual
DOT National Transportation Integrated Search
1996-01-23
This manual provides data administration (DA) procedures for developers and maintainers of Coast Guard fleet logistics information systems. Fleet logistics includes a community of supply, logistics, maintenance, and shipboard functions. The informati...
Digital Semaphore: Tactical Implications of QR Code Optical Signaling for Fleet Communications
2013-06-01
Emissions Control (EMCON) and Hazards of Electromagnetic Radiation to Ordnance (HERO) restrict the ability for Naval Vessels to communicate using...importance of visual communications methods is brought to light by discussing emissions control, hazards of electromagnetic radiation to ordnance , and...overview of emissions restrictions including Emissions Control (EMCON) and Hazards of Electromagnetic Radiation to Ordnance (HERO). Chapter VII is
40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.311-93 Emissions... fuel vapor emissions which are five or less total grams per test as measured by the current Federal... control devices (canister, purge system, etc.) related to control of evaporative emissions, the fuel vapor...
Morgantown People Mover Collision Avoidance System Design Summary
DOT National Transportation Integrated Search
1980-09-01
The Morgantown People Mover (MPM) is an automated two-mode (schedule and demand) transit system that consists of a fleet of electrically powered, rubber-tired, passenger-carrying vehicles operating on a dedicated guideway under computer control. The ...
22. View to north in representative rooftop penthouse, showing. elevator ...
22. View to north in representative rooftop penthouse, showing. elevator cable drums, governors, and (at rear) control panel. - U.S. Navy Fleet Supply Base, Storehouse No. 1, 830 Third Avenue, Brooklyn, Kings County, NY
Noise Control Handbook for Diesel-Powered Vehicles
DOT National Transportation Integrated Search
1975-05-01
The handbook has been prepared with the intention of assisting the truck fleet operator and the independent truck owner/operator in understanding and diagnosing noise problems and in selecting retrofittable components to lower truck exterior and inte...
Airport-Based Alternative Fuel Vehicle Fleets
DOT National Transportation Integrated Search
2001-01-01
Airports represent attractive opportunities for the expanded use of alternative fuel vehicles (AFVs). They are commonly served by dozens of fleets operating thousands of vehicles. These fleets include both ground service equipment such as tugs, tows,...
Fleet equipment performance measure preventive maintenance model.
DOT National Transportation Integrated Search
2013-02-28
The Texas Department of Transportation : (TxDOT) operates a large fleet of on-road and : off-road equipment. Consequently, fleet : maintenance procedures (specifically preventive : maintenance such as oil changes) represent a : significant cost to th...
41 CFR 109-39.107 - Limited exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.107 Limited exemptions. The Director, Office of... exemptions from the fleet management system. ...
Optimized deployment of emission reduction technologies for large fleets.
DOT National Transportation Integrated Search
2011-06-01
This research study produced an optimization framework for determining the most efficient emission : reduction strategies among vehicles and equipment in a large fleet. The Texas Department of : Transportations (TxDOTs) fleet data were utilized...
CleanFleet final report. Volume 7, vehicle emissions
DOT National Transportation Integrated Search
1995-12-01
CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, : was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily : commercial service. Measurements of exhaust and evaporative emissions from CleanFleet va...
Clean Cities case study : Barwood Cab Fleet study summary
DOT National Transportation Integrated Search
1999-05-21
Barwood Cab Fleet Study Summary is the second in a new series called 'Alternative Fuel Information Case Studies', designed to present real-world experiences with alternative fuels to fleet managers and other industry stakeholders.
NASA Astrophysics Data System (ADS)
Huang, Cheng; Tao, Shikang; Lou, Shengrong; Hu, Qingyao; Wang, Hongli; Wang, Qian; Li, Li; Wang, Hongyu; Liu, Jian'gang; Quan, Yifeng; Zhou, Lanlan
2017-11-01
CO, THC, NOx, and PM emission factors of 51 light-duty gasoline vehicles (LDGVs) spanning the emission standards from Euro 2 to Euro 5 were measured by a chassis dynamometer. High frequencies of high-emitting vehicles were observed in Euro 2 and Euro 3 LDGV fleet. 56% and 33% of high-emitting vehicles contributed 81%-92% and 82%-85% of the emissions in Euro 2 and Euro 3 test fleet, respectively. Malfunctions of catalytic convertors after high strength use are the main cause of the high emissions. Continuous monitoring of a gasoline vehicle dominated tunnel in Shanghai, China was conducted to evaluate the average emission factors of vehicles in real-world. The results indicated that the emission factors of LDGVs were considerably underestimated in EI guidebook in China. The overlook of high-emitting vehicles in older vehicle fleet is the main reason for this underestimation. Enhancing the supervision of high emission vehicles and strengthening the compliance tests of in-use vehicles are essential measures to control the emissions of in-use gasoline vehicles at the present stage in China.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management... fleet management systems. (a) Based on these studies, the Administrator of General Services, with the...
Telematics Framework for Federal Agencies: Lessons from the Marine Corps Fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Cabell; Singer, Mark R.
Executive Order 13693 requires federal agencies to acquire telematics for their light- and medium-duty vehicles as appropriate. This report is intended to help agencies that are deploying telematics systems and seeking to integrate them into their fleet management process. It provides an overview of telematics capabilities, lessons learned from the deployment of telematics in the Marine Corps fleet, and recommendations for federal fleet managers to maximize value from telematics.
Some Novel Design Principles for Collective Behaviors in Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
OSBOURN, GORDON C.
2002-09-01
We present a set of novel design principles to aid in the development of complex collective behaviors in fleets of mobile robots. The key elements are: the use of a graph algorithm that we have created, with certain proven properties, that guarantee scalable local communications for fleets of arbitrary size; the use of artificial forces to simplify the design of motion control; the use of certain proximity values in the graph algorithm to simplify the sharing of robust navigation and sensor information among the robots. We describe these design elements and present a computer simulation that illustrates the behaviors readilymore » achievable with these design tools.« less
Dallmann, Timothy R; Harley, Robert A; Kirchstetter, Thomas W
2011-12-15
Heavy-duty diesel drayage trucks have a disproportionate impact on the air quality of communities surrounding major freight-handling facilities. In an attempt to mitigate this impact, the state of California has mandated new emission control requirements for drayage trucks accessing ports and rail yards in the state beginning in 2010. This control rule prompted an accelerated diesel particle filter (DPF) retrofit and truck replacement program at the Port of Oakland. The impact of this program was evaluated by measuring emission factor distributions for diesel trucks operating at the Port of Oakland prior to and following the implementation of the emission control rule. Emission factors for black carbon (BC) and oxides of nitrogen (NO(x)) were quantified in terms of grams of pollutant emitted per kilogram of fuel burned using a carbon balance method. Concentrations of these species along with carbon dioxide were measured in the exhaust plumes of individual diesel trucks as they drove by en route to the Port. A comparison of emissions measured before and after the implementation of the truck retrofit/replacement rule shows a 54 ± 11% reduction in the fleet-average BC emission factor, accompanied by a shift to a more highly skewed emission factor distribution. Although only particulate matter mass reductions were required in the first year of the program, a significant reduction in the fleet-average NO(x) emission factor (41 ± 5%) was observed, most likely due to the replacement of older trucks with new ones.
Controlled Hydrogen Fleet and Infrastructure Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Scott Staley
2010-03-31
This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimatelymore » provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.« less
Fleet equipment performance measurement preventive maintenance model : final report.
DOT National Transportation Integrated Search
2014-04-01
The concept of preventive maintenance is very important in the effective management and deployment of : vehicle fleets. The Texas Department of Transportation (TxDOT) operates a large fleet of on-road and offroad : equipment. Newer engines and vehicl...
41 CFR 101-39.001 - Authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET... establishing fleet management systems to serve the needs of executive agencies; and (b) provide for the establishment, maintenance, and operation (including servicing and storage) of fleet management systems for...
Ohio's first ethanol-fueled light-duty fleet
DOT National Transportation Integrated Search
1998-12-31
In 1996, the State of Ohio established a : project to demonstrate the effectiveness of : ethanol as an alternative to gasoline in : fleet operations. The state purchased and : incorporated a number of flexible-fuel : vehicles (FFVs) into its fleet. F...
Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.
2001-05-29
Symposium Intelligent Systems for the Objective Fleet uTransmission controls uSteering (both on-transmission and under-carriage) uBraking (service and...parking) uTransmission select uThrottle uOther Electromechanical Opportunities uTurret drives (elevation, traverse) uAutomatic propellant handling systems
75 FR 63535 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Sunday, with maximum authorized speed of 65 mph. Lastly, UTA will buy a new fleet of Siemens S70 TRAX... from certain portions of 49 CFR, particularly Sec. Sec. 219 Control of Alcohol and Drug Use; 221 Rear...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Document contains guidance on the federal fleet requirements of Executive Order 13693: Planning for Federal Sustainability in the Next Decade and helps federal agencies subject to the executive order develop an overall approach for reducing total fleet greenhouse gas (GHG) emissions and fleet-wide per-mile GHG emissions.
Municipal Fleet Vehicle Electrification and Photovoltaic Power In the City of Pittsburgh.
DOT National Transportation Integrated Search
2016-01-01
This document reports the results of a cost benefit analysis on potential photovoltaic projects : in Pittsburgh and electrifying the citys light duty civilian vehicle fleet. Currently the : city of Pittsburgh has a civilian passenger vehicle fleet...
The Retrofit Puzzle Extended: Optimal Fleet Owner Behavior over Multiple Time Periods
DOT National Transportation Integrated Search
2009-08-04
In "The Retrofit Puzzle: Optimal Fleet Owner Behavior in the Context of Diesel Retrofit Incentive Programs" (1) an integer program was developed to model profit-maximizing diesel fleet owner behavior when selecting pollution reduction retrofits. Flee...
Code of Federal Regulations, 2010 CFR
2010-10-01
... GOVERNMENT SOURCES BY CONTRACTORS Contractor Use of Interagency Fleet Management System (IFMS) 51.201 Policy... contractors to obtain, for official purposes only, interagency fleet management system (IFMS) vehicles and... instance. (c) Government contractors shall not be authorized to obtain interagency fleet management system...
41 CFR 101-39.003 - Financing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET..., and operation of fleet management systems. (b) When an agency other than GSA operates an interagency fleet management system, the financing and accounting methods shall be developed by GSA in cooperation...
CleanFleet final report. Volume 2, project design and implementation
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The project evaluated five alternative motor fuels in commercial fleet service over a two-year period. T...
Reserve fleet manual [3rd ed., 1st rev.
DOT National Transportation Integrated Search
2003-03-17
The purpose of this document is to provide policy to the Regional Headquarters regarding vessel maintenance in the National Defense Reserve Fleet anchorages (fleet sites). This policy is for the acceptance of ships into, the maintenance of ships in, ...
CF6 jet engine performance improvement program. Task 1: Feasibility analysis
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1979-01-01
Technical and economic engine improvement concepts selected for subsequent development include: (1) fan improvement; (2) short core exhaust; (3) HP turbine aerodynamic improvement; (4) HP turbine roundness control; (5) HP turbine active clearance control; and (6) cabin air recirculation. The fuel savings for the selected engine modification concepts for the CF6 fleet are estimated.
High-Mileage Light-Duty Fleet Vehicle Emissions: Their Potentially Overlooked Importance.
Bishop, Gary A; Stedman, Donald H; Burgard, Daniel A; Atkinson, Oscar
2016-05-17
State and local agencies in the United States use activity-based computer models to estimate mobile source emissions for inventories. These models generally assume that vehicle activity levels are uniform across all of the vehicle emission level classifications using the same age-adjusted travel fractions. Recent fuel-specific emission measurements from the SeaTac Airport, Los Angeles, and multi-year measurements in the Chicago area suggest that some high-mileage fleets are responsible for a disproportionate share of the fleet's emissions. Hybrid taxis at the airport show large increases in carbon monoxide, hydrocarbon, and oxide of nitrogen emissions in their fourth year when compared to similar vehicles from the general population. Ammonia emissions from the airport shuttle vans indicate that catalyst reduction capability begins to wane after 5-6 years, 3 times faster than is observed in the general population, indicating accelerated aging. In Chicago, the observed, on-road taxi fleet also had significantly higher emissions and an emissions share that was more than double their fleet representation. When compounded by their expected higher than average mileage accumulation, we estimate that these small fleets (<1% of total) may be overlooked as a significant emission source (>2-5% of fleet emissions).
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.300 General. (a) The objective of the General Services Administration (GSA) Interagency Fleet Management System...
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.302 Rotation. GSA Interagency Fleet Management System (IFMS) vehicles on high mileage assignments may be...
41 CFR 109-39.103 - Agency appeals.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.103 Agency appeals. The Director, Office of... request exemption from, a determination made by GSA concerning the establishment of a fleet management...
48 CFR 51.203 - Means of obtaining service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MANAGEMENT USE OF GOVERNMENT SOURCES BY CONTRACTORS Contractor Use of Interagency Fleet Management System... interagency fleet management system (IFMS) vehicles and related services in writing to the appropriate GSA regional Federal Supply Service Bureau, Attention: Regional fleet manager, except that requests for more...
41 CFR 101-39.403 - Investigation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET... Interagency Fleet Management System (IFMS) vehicle shall be investigated and a report furnished to the manager of the GSA IFMS fleet management center which issued the vehicle. (b) The agency employing the...
48 CFR 51.205 - Contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... USE OF GOVERNMENT SOURCES BY CONTRACTORS Contractor Use of Interagency Fleet Management System (IFMS... Fleet Management System (IFMS) Vehicles and Related Services, in solicitations and contracts when a cost... interagency fleet management system (IFMS) vehicles and related services. [48 FR 42476, Sept. 19, 1983, as...
2009-09-01
Large, Medium-speed, Roll-on/Roll-off Ships T- AKR ,” 2009) The ships can support humanitarian missions as well. LMSRs normally have a crew size of 26...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited A MANPOWER...COMPARISON OF THREE U. S. NAVIES: THE CURRENT FLEET, A PROJECTED 313 SHIP FLEET, AND A MORE DISTRIBUTED BIMODAL ALTERNATIVE by Juan L. Carrasco
Navy Force Structure: A Bigger Fleet Background and Issues for Congress
2016-10-20
20, 2016; Hope Hodge Seck, “Overtaxed Fleet Needs Shorter Deployments,” Military.com, March 19, 2016; David Larter, “Carrier Scramble: CENTCOM, PACOM...example, Hope Hodge Seck, “CNO: Navy to Hit Seven-Month Deployments by End of Year,” Military.com, February 12, 2016; Chris Church, “Analysts: Truman...Will Harm the Fleet,” Navy Times, April 20, 2016; Hope Hodge Seck, “Overtaxed Fleet Needs Shorer Deployments,” Military.com, March 19, 2016; Bryan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, andmore » emerging technologies.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... are applicable to fleets comprised of four or more pieces of equipment powered by LSI engines... comment. If you send an email comment directly to EPA without going through http://www.regulations.gov...
Field Evaluation of Miles-Per-Gallon Meters
DOT National Transportation Integrated Search
1977-11-01
One hundred forty fleet automobiles based in Los Angeles were used to determine the influence of miles-per-gallon meters on fuel economy. Seventy cars were instrumented with the meters, and 70 were used without meters for control purposes. Fuel use a...
Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burman, K.; Kandt, A.; Lisell, L.
2012-05-01
This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaiimore » Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.« less
Reliability-Growth Assessment, Prediction, and Control for Electronic Engine Control (GAPCEEC)
1984-04-01
COMPEtTIN FOR Control (GAPCEEC) 4. PERFORMING ORG. REPORT NUMUR ______________________________ P&W/GPD/FR-17847 7. AUTI4OR(e) Michael E. McGlone...Control for Electronic Engine Control (GAPCEEC) program was performed under contract F33615-81 -C-2015. This 22-month program I. was formulated to study and...and (3) that data should be tracked c-ontinuously on an indiidual and fleet basis. UNCLASSIFIED 86CURITY CLASSIICATION OF THIS PAGErWmm Doe Rateio
Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-04-01
Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.
48 CFR 970.2307-1 - Motor vehicle fleet operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency... that the Federal motor vehicle fleet will serve as an example and provide a leadership role in the... management contracts which include Federal motor vehicle fleet operations. Section 506 of Executive Order...
Telematics Options and Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Cabell
This presentation describes the data tracking and analytical capabilities of telematics devices. Federal fleet managers can use the systems to keep their drivers safe, maintain a fuel efficient fleet, ease their reporting burden, and save money. The presentation includes an example of how much these capabilities can save fleets.
41 CFR 101-39.104-1 - Consolidations into a fleet management system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fleet management system. 101-39.104-1 Section 101-39.104-1 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and...
DOT National Transportation Integrated Search
1997-10-01
The FHWA has commissioned the Commercial Vehicle Fleet Management and Information Systems study to determine if there are fleet management needs that the public sector can address through the development of ITS for commercial vehicle operations. As p...
41 CFR 101-39.105-2 - Agency requests to withdraw participation.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105-2 Agency requests to withdraw participation. (a) Executive agencies receiving motor vehicle services from fleet management systems may request...
41 CFR 109-39.106 - Unlimited exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.106 Unlimited exemptions. The Director, Office of... determination that an unlimited exemption from inclusion of a motor vehicle in a fleet management system is...
Fleet Feedback and Fleet Efficiency Metrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Mark R
The Marine Corps have 10 years of experience implementing a telematics program and several lessons to share with partner agencies. This presentation details results of a Marine Corps survey as well as methods of using telematics to promote fleet efficiency and optimize the vehicle acquisition process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddell, Lucas; Muldoon, Frank; Henry, Stephen Michael
In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor-more » ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.« less
Game Theory in Fleet Management
NASA Astrophysics Data System (ADS)
Dulai, Tibor; Jaskó, Szilárd; Muhi, Dániel
2008-11-01
In this survey we attempt to apply the results of cooperative game theory on fleet management problems. We deal with the aspect of a fleet where the members have their own goal, however the fleet has a common purpose too. These goals are to reach all destinations and get back to the center as quickly as possible. If we draw the map of the area-which contains the destination points and their environment-as a graph, we should determinate circles in it for each member of the fleet. Separating the nodes for each member, we should find Hamilton-circles of the sub-graphs. How to separate the destination points between the fleet members? How to route the members? What happens if there is an accident on a road which changes the way of a member? It may influence the other members' route too. What to communicate for getting the relevant information? How to change the routes in real time? We use cooperative game theory to find the solution.
NASA Astrophysics Data System (ADS)
Zhang, Shaojun; Wu, Ye; Wu, Xiaomeng; Li, Mengliang; Ge, Yunshan; Liang, Bin; Xu, Yueyun; Zhou, Yu; Liu, Huan; Fu, Lixin; Hao, Jiming
2014-06-01
As a pioneer in controlling vehicle emissions within China, Beijing released the Clean Air Action Plan 2013-2017 document in August 2013 to improve its urban air quality. It has put forward this plan containing the most stringent emission control policies and strategies to be adopted for on-road vehicles of Beijing. This paper estimates the historic and future trends and uncertainties in vehicle emissions of Beijing from 1998 to 2020 by applying a new emission factor model for the Beijing vehicle fleet (EMBEV). Our updated results show that total emissions of CO, THC, NOx and PM2.5 from the Beijing vehicle fleet are 507 (395-819) kt, 59.1 (41.2-90.5) kt, 74.7 (54.9-103.9) kt and 2.69 (1.91-4.17) kt, respectively, at a 95% confidence level. This represents significant reductions of 58%, 59%, 31% and 62%, respectively, relative to the total vehicle emissions in 1998. The past trends clearly posed a challenge to NOx emission mitigation for the Beijing vehicle fleet, especially in light of those increasing NOx emissions from heavy-duty diesel vehicles (HDDVs) which have partly offset the reduction benefit from light-duty gasoline vehicles (LDGVs). Because of recently announced vehicle emission controls to be adopted in Beijing, including tighter emissions standards, limitations on vehicle growth by more stringent license control, promotion of alternative fuel technologies (e.g., natural gas) and the scrappage of older vehicles, estimated vehicle emissions in Beijing will continue to be mitigated by 74% of CO, 68% of THC, 56% of NOx and 72% of PM2.5 in 2020 compared to 2010 levels. Considering that many of the megacities in China are facing tremendous pressures to mitigate emissions from on-road vehicles, our assessment will provide a timely case study of significance for policy-makers in China.
New Zealand traffic and local air quality.
Irving, Paul; Moncrieff, Ian
2004-12-01
Since 1996 the New Zealand Ministry of Transport (MOT) has been investigating the effects of road transport on local air quality. The outcome has been the government's Vehicle Fleet Emissions Control Strategy (VFECS). This is a programme of measures designed to assist with the improvement in local air quality, and especially in the appropriate management of transport sector emissions. Key to the VFECS has been the development of tools to assess and predict the contribution of vehicle emissions to local air pollution, in a given urban situation. Determining how vehicles behave as an emissions source, and more importantly, how the combined traffic flows contribute to the total emissions within a given airshed location was an important element of the programme. The actual emissions output of a vehicle is more than that determined by a certified emission standard, at the point of manufacture. It is the engine technology's general performance capability, in conjunction with the local driving conditions, that determines its actual emissions output. As vehicles are a mobile emissions source, to understand the effect of vehicle technology, it is necessary to work with the average fleet performance, or "fleet-weighted average emissions rate". This is the unit measure of performance of the general traffic flow that could be passing through a given road corridor or network, as an average, over time. The flow composition can be representative of the national fleet population, but also may feature particular vehicle types in a given locality, thereby have a different emissions 'signature'. A summary of the range of work that has been completed as part of the VFECS programme is provided. The NZ Vehicle Fleet Emissions Model and the derived data set available in the NZ Traffic Emission Rates provide a significant step forward in the consistent analysis of practical, sustainable vehicle emissions policy and air-quality management in New Zealand.
Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-04-01
Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.
advanced lean burn vehicles. Fleets that use fuel blends containing at least 20% biodiesel (B20) may earn Energy Independence and Security Act of 2007, including fleet management plan requirements (Section 142 infrastructure installation requirements (Section 246). For more information, see the Federal Fleet Management
41 CFR 101-39.105 - Discontinuance or curtailment of service.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105 Discontinuance or curtailment of service. (a... efficiencies are realized from the operation of any fleet management system, the Administrator, GSA, will...
41 CFR 109-39.101-1 - Agency cooperation.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.101-1 Agency cooperation. The Director, Office of... representatives to coordinate with GSA concerning the establishment of a GSA fleet management system to serve...
41 CFR 109-39.105-2 - Agency requests to withdraw participation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.105-2 Agency requests to... of participation by a DOE organization of a given interagency fleet management system, the...
48 CFR 251.205 - Contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Fleet Management System (IFMS) Vehicles 251.205 Contract clause. Use the clause at 252.251-7001, Use of Interagency Fleet Management System (IFMS)Vehicles and Related Services, in solicitations and contracts which include the clause at FAR 52.251-2, Interagency Fleet Management System (IFMS) Vehicles and Related...
41 CFR 101-39.201 - Services available.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services § 101-39.201 Services available. GSA Interagency Fleet Management System (IFMS) vehicles and services shall be used in... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Services available. 101...
49 CFR 531.5 - Fuel economy standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the fleet average fuel economy standards in Table I, expressed in miles per... passenger automobile fleet shall comply with the fleet average fuel economy level calculated for that model...
49 CFR 531.5 - Fuel economy standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the fleet average fuel economy standards in Table I, expressed in miles per... passenger automobile fleet shall comply with the fleet average fuel economy level calculated for that model...
Cost-effectiveness of reducing sulfur emissions from ships.
Wang, Chengfeng; Corbett, James J; Winebrake, James J
2007-12-15
We model cost-effectiveness of control strategies for reducing SO2 emissions from U.S. foreign commerce ships traveling in existing European or hypothetical U.S. West Coast SO(x) Emission Control Areas (SECAs) under international maritime regulations. Variation among marginal costs of control for individual ships choosing between fuel-switching and aftertreatment reveals cost-saving potential of economic incentive instruments. Compared to regulations prescribing low sulfur fuels, a performance-based policy can save up to $260 million for these ships with 80% more emission reductions than required because least-cost options on some individual ships outperform standards. Optimal simulation of a market-based SO2 control policy for approximately 4,700 U.S. foreign commerce ships traveling in the SECAs in 2002 shows that SECA emissions control targets can be achieved by scrubbing exhaust gas of one out of ten ships with annual savings up to $480 million over performance-based policy. A market-based policy could save the fleet approximately $63 million annually under our best-estimate scenario. Spatial evaluation of ship emissions reductions shows that market-based instruments can reduce more SO2 closer to land while being more cost-effective for the fleet. Results suggest that combining performance requirements with market-based instruments can most effectively control SO2 emissions from ships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Robert
NREL and the National Biodiesel Board (NBB) will work cooperatively to assess the effects of biodiesel blends on the performance of modern diesel engines and emissions control systems meeting increasingly strict emissions standards. This work will include research to understand the impact of biodiesel blends on the operation and durability of particle filters and NOx control sorbents/catalysts, to quantify the effect on emission control systems performance, and to understand effects on engine component durability. Work to assess the impact of biodiesel blends on real world fleet operations will be performed. Also, research to develop appropriate ASTM standards for biodiesel qualitymore » and stability will be conducted. The cooperative project will involve engine testing and fleet evaluation studies at NREL using biodiesel from a variety of sources. In addition, NREL will work with NBB to set up an Industrial Steering Committee to design the scope for the various projects and to provide technical oversight to these projects. NREL and NBB will cooperatively communicate the study results to as broad an audience as possible.« less
Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors
Hallbert, Bruce P
2015-01-01
Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are neededmore » to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.« less
Tranzit XPress : hazardous material fleet management and monitoring system : evaluation report
DOT National Transportation Integrated Search
1997-07-01
In this report the evaluation performed on the first phase of the Tranzit XPress system is presented. The system comprises of a traffic/safety control center, motor vehicle instrumentation, and a variety of off vehicle tools that communicate with eac...
40 CFR 85.525 - Applicable standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Exemption of Clean Alternative Fuel Conversions From... prohibition, vehicles/engines that have been converted to operate on a different fuel must meet emission... allowable grouping. Fleet average standards do not apply unless clean alternative fuel conversions are...
Antisubmarine Warfare (ASW) Lexicon
1990-01-01
Communications Satellite CRT Cathode Ray Tube COMNAVSURFLANT Commander, CS Combat System; Computer Subsystem Naval Surface Force, U.S. Atlantic Fleet CSA Close...Sideband Low-Frequency Acoustic Vernier Analyzer LSD Large Screen Display LC Launch Control LSI Low Ship Impact 24 LSNSR Line-of-Bearing Sensor NCA
40 CFR 86.1860-17 - How to comply with the Tier 3 fleet-average standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light.... (4) For model year 2017, do not include vehicle sales in California or the section 177 states for...
Fleet Grants The Texas Commission on Environmental Quality (TCEQ) administers the Texas Clean Fleet Program (TCFP) as part of the Texas Emissions Reduction Plan (TERP). TCFP encourages owners of fleets current application periods, see the TCEQ TERP website. (Reference Senate Bill 1731, 2017, Texas Statutes
41 CFR 101-39.104 - Notice of establishment of a fleet management system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... management system in order to work out any problems pertaining to establishing and operating fleet management... of a fleet management system. 101-39.104 Section 101-39.104 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION...
41 CFR 101-39.104 - Notice of establishment of a fleet management system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... management system in order to work out any problems pertaining to establishing and operating fleet management... of a fleet management system. 101-39.104 Section 101-39.104 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION...
41 CFR 101-39.104 - Notice of establishment of a fleet management system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... management system in order to work out any problems pertaining to establishing and operating fleet management... of a fleet management system. 101-39.104 Section 101-39.104 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION...
41 CFR 101-39.104 - Notice of establishment of a fleet management system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... management system in order to work out any problems pertaining to establishing and operating fleet management... of a fleet management system. 101-39.104 Section 101-39.104 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION...
ARMY CYBER STRUCTURE ALIGNMENT
2016-02-16
Director of Navy Staff Vice Admiral J. M. Bird , Missions, Functions, and Tasks of Commander, U.S. Fleet Cyber Command and Commander, U.S. Tenth Fleet...www.doncio.navy.mil/ContentView.aspx?ID=649. Director of Navy Staff Vice Admiral J. M. Bird , Missions, Functions, and Tasks of Commander, U.S. Fleet Cyber
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... period within which vehicle manufacturers could comply with the program's fleet average non-methane... year meets the specified phase-in requirements according to the fleet average non- methane hydrocarbon requirement for that year. The fleet average non- methane hydrocarbon emission limits become progressively...
41 CFR 101-39.304 - Modification or installation of accessory equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.304 Modification or installation of accessory equipment. The modification of a GSA Interagency Fleet Management System (IFMS) vehicle or the permanent installation of...
41 CFR 101-39.206 - Seasonal or unusual requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services... requirements for vehicles or related services shall inform the GSA IFMS fleet management center as far in... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Seasonal or unusual...
41 CFR 101-39.102-1 - Records, facilities, personnel, and appropriations.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.102-1 Records, facilities, personnel, and appropriations. (a) If GSA decides to establish a fleet management system, GSA, with the assistance of the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System... operators and passengers in GSA Interagency Fleet Management System (IFMS) motor vehicles are aware of the... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false General. 109-39.300...
DOT National Transportation Integrated Search
1994-11-04
THE ECONOMIC WELL-BEING AND COMPETITIVENESS OF THE U.S. ECONOMY DEPEND HEAVILY ON RELIABLE AND EFFICIENT FREIGHT MOVEMENTS. TRUCKING ACCOUNTS FOR ABOUT 75 PERCENT ($270 BILLION) OF THE $350 BILLION SPENT ANNUALLY ON FREIGHT TRANSPORTATION. THE APPLIC...
DOT National Transportation Integrated Search
1994-05-01
This report documents an analysis performed in support of the United States Coast Guard in managing its fleet of construction tenders (WLICs). The project was sponsored by the Coast Guard's Office of Navigation Safety and Waterway Services, Short Ran...
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification and...
From Concept to Design: Progress on the J-2X Upper Stage Engine for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Byrd, Thomas
2008-01-01
In accordance with national policy and NASA's Global Exploration Strategy, the Ares Projects Office is embarking on development of a new launch vehicle fleet to fulfill the national goals of replacing the space shuttle fleet, returning to the moon, and exploring farther destinations like Mars. These goals are shaped by the decision to retire the shuttle fleet by 2010, budgetary constraints, and the requirement to create a new fleet that is safer, more reliable, operationally more efficient than the shuttle fleet, and capable of supporting long-range exploration goals. The present architecture for the Constellation Program is the result of extensive trades during the Exploration Systems Architecture Study and subsequent refinement by the Ares Projects Office at Marshall Space Flight Center.
AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2015-06-01
Collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization Study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report summarizes the fleets studied to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a batterymore » electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walkokwicz, K.; Duran, A.
2014-06-01
The Fleet DNA project objectives include capturing and quantifying drive cycle and technology variation for the multitude of medium- and heavy-duty vocations; providing a common data storage warehouse for medium- and heavy-duty vehicle fleet data across DOE activities and laboratories; and integrating existing DOE tools, models, and analyses to provide data-driven decision making capabilities. Fleet DNA advantages include: for Government - providing in-use data for standard drive cycle development, R&D, tech targets, and rule making; for OEMs - real-world usage datasets provide concrete examples of customer use profiles; for fleets - vocational datasets help illustrate how to maximize return onmore » technology investments; for Funding Agencies - ways are revealed to optimize the impact of financial incentive offers; and for researchers -a data source is provided for modeling and simulation.« less
VIEW OF CONTROL PANEL (RIGHT) AT THE GROUND FLOOR LEVEL ...
VIEW OF CONTROL PANEL (RIGHT) AT THE GROUND FLOOR LEVEL AND SIDE OF THE MISSILE TUBE (FOREGROUND). VIEW FACING EAST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI
Speed and path control for conflict-free flight in high air traffic demand in terminal airspace
NASA Astrophysics Data System (ADS)
Rezaei, Ali
To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new waypoints in the airspace. As a byproduct, instead of minimal path modification, one can use the aircraft arrival time schedule to generate the sequence in which the aircraft reach their destinations.
Alternative Fuels Data Center: Publications
report is a summary of the project design and results of the analysis of data collected during the hygiene, emissions, and fleet economics. CleanFleet Final Report Project Design and Implementation, Vol. 2 CleanFleet findings, the design and implementation of the project are summarized. Clean Cities Drive - Fall
baseline 2005. In baseline 2005, the fleet used 6,521 gasoline gallon equivalent (GGE) of E-85, in 2016 the fleet emitted 422 grams of carbon dioxide equivalent per mile. In 2017, it emitted 329 grams of carbon dioxide equivalent per mile. In 2005, NREL's fleet included 20 E-85 vehicles, 13 compressed natural gas
Code of Federal Regulations, 2011 CFR
2011-10-01
... Management System (IFMS) vehicles and related services. 252.251-7001 Section 252.251-7001 Federal Acquisition... Fleet Management System (IFMS) vehicles and related services. As prescribed in 251.205, use the following clause: Use of Interagency Fleet Management System (IFMS) Vehicles and Related Services (DEC 1991...
Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative
Fuels in Its Fleet Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... different strategies are and why they are used. (i) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust... as defined in § 86.1818-12. The model type carbon-related exhaust emission results determined...
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... different strategies are and why they are used. (i) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust... as defined in § 86.1818-12. The model type carbon-related exhaust emission results determined...
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... different strategies are and why they are used. (i) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust... as defined in § 86.1818-12. The model type carbon-related exhaust emission results determined...
40 CFR 86.421-78 - Test fleet.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Test fleet. 86.421-78 Section 86.421... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... to operate and test additional vehicles which are identical to those selected by the Administrator...
40 CFR 86.421-78 - Test fleet.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Test fleet. 86.421-78 Section 86.421... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... to operate and test additional vehicles which are identical to those selected by the Administrator...
40 CFR 86.421-78 - Test fleet.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test fleet. 86.421-78 Section 86.421... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... to operate and test additional vehicles which are identical to those selected by the Administrator...
Alternative Fuels Data Center: Alpha Baking Company Augments Its Fleet With
Propane Delivery Trucks Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks to someone by E-mail Share Alternative Fuels Data Center: Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks on Facebook Tweet about Alternative Fuels Data Center: Alpha Baking Company
41 CFR 101-39.404 - Claims in favor of the Government.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.4-Accidents and Claims § 101-39.404 Claims in favor of... Interagency Fleet Management System (IFMS) vehicle is at fault and that party can be reasonably identified... pertaining to the accident and its investigation to the servicing GSA IFMS fleet management center. The GSA...
Fleet DNA Brings Fleet Data to Life, Informs R&D | NREL
understand the broad operational range of commercial vehicles across vocations and weight classes. This commercial vehicle and equipment manufacturing realm-including Cummins, Robert Bosch, Peterbilt, Volvo, Ford Rosa, NREL 34672 The Fleet DNA clearinghouse of commercial vehicle operations data features over 11.5
40 CFR 86.421-78 - Test fleet.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... Administrator believes has the greatest probability of exceeding the standards will be selected. (b) At the... prior to the start of testing and not later than 30 days following notification of the test fleet...
40 CFR 86.421-78 - Test fleet.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... Administrator believes has the greatest probability of exceeding the standards will be selected. (b) At the... prior to the start of testing and not later than 30 days following notification of the test fleet...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Management System (IFMS) vehicles and related services. 252.251-7001 Section 252.251-7001 Federal Acquisition... Fleet Management System (IFMS) vehicles and related services. As prescribed in 251.205, use the following clause: Use of Interagency Fleet Management System (IFMS) Vehicles and Related Services (DEC 1991...
47 CFR 80.55 - Application for a fleet station license.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Application for a fleet station license. 80.55... SERVICES STATIONS IN THE MARITIME SERVICES Applications and Licenses § 80.55 Application for a fleet station license. (a) An applicant may apply for licenses for two or more radiotelephone stations aboard...
47 CFR 80.55 - Application for a fleet station license.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Application for a fleet station license. 80.55... SERVICES STATIONS IN THE MARITIME SERVICES Applications and Licenses § 80.55 Application for a fleet station license. (a) An applicant may apply for licenses for two or more radiotelephone stations aboard...
47 CFR 80.55 - Application for a fleet station license.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Application for a fleet station license. 80.55... SERVICES STATIONS IN THE MARITIME SERVICES Applications and Licenses § 80.55 Application for a fleet station license. (a) An applicant may apply for licenses for two or more radiotelephone stations aboard...
47 CFR 80.55 - Application for a fleet station license.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Application for a fleet station license. 80.55... SERVICES STATIONS IN THE MARITIME SERVICES Applications and Licenses § 80.55 Application for a fleet station license. (a) An applicant may apply for licenses for two or more radiotelephone stations aboard...
47 CFR 80.55 - Application for a fleet station license.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Application for a fleet station license. 80.55... SERVICES STATIONS IN THE MARITIME SERVICES Applications and Licenses § 80.55 Application for a fleet station license. (a) An applicant may apply for licenses for two or more radiotelephone stations aboard...
NREL Document Profiles Natural Gas Fueling, Fleet Operation
, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that LNG-powered vehicles program from concept to start-up to present-day operation, describing the vehicle, engine and fueling . The document Waste Management's LNG Truck Fleet Start-Up Experience is one of a series of NREL
14 CFR 21.4 - ETOPS reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... with more than two engines, the system must be in place for the first 250,000 world fleet engine-hours... place for the first 250,000 world fleet engine-hours for the approved airplane-engine combination and after that until— (i) The world fleet 12-month rolling average IFSD rate is at or below the rate...
National Clean Diesel Campaign (NCDC) The U.S. Environmental Protection Agency established the NCDC to reduce pollution emitted from diesel engines through the implementation of varied control existing diesel fleets, regulations for clean diesel engines and fuels, and regional collaborations and
Characterization of in-use emissions from TxDOT's non-road equipment fleet : final report.
DOT National Transportation Integrated Search
2010-08-01
The objective of this document is to present the findings of the study characterizing in-use emissions of TxDOT's non-road diesel equipment. This document presents literature reviews of emission reduction technologies and emission control measures pr...
Code of Federal Regulations, 2010 CFR
2010-07-01
... HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles...
NREL Evaluates Performance of Fast-Charge Electric Buses
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-09-16
This real-world performance evaluation is designed to enhance understanding of the overall usage and effectiveness of electric buses in transit operation and to provide unbiased technical information to other agencies interested in adding such vehicles to their fleets. Initial results indicate that the electric buses under study offer significant fuel and emissions savings. The final results will help Foothill Transit optimize the energy-saving potential of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals. help Foothill Transit optimize the energy-saving potentialmore » of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals.« less
Designing a Methodology for Future Air Travel Scenarios
NASA Technical Reports Server (NTRS)
Wuebbles, Donald J.; Baughcum, Steven L.; Gerstle, John H.; Edmonds, Jae; Kinnison, Douglas E.; Krull, Nick; Metwally, Munir; Mortlock, Alan; Prather, Michael J.
1992-01-01
The growing demand on air travel throughout the world has prompted several proposals for the development of commercial aircraft capable of transporting a large number of passengers at supersonic speeds. Emissions from a projected fleet of such aircraft, referred to as high-speed civil transports (HSCT's), are being studied because of their possible effects on the chemistry and physics of the global atmosphere, in particular, on stratospheric ozone. At the same time, there is growing concern about the effects on ozone from the emissions of current (primarily subsonic) aircraft emissions. Evaluating the potential atmospheric impact of aircraft emissions from HSCT's requires a scientifically sound understanding of where the aircraft fly and under what conditions the aircraft effluents are injected into the atmosphere. A preliminary set of emissions scenarios are presented. These scenarios will be used to understand the sensitivity of environment effects to a range of fleet operations, flight conditions, and aircraft specifications. The baseline specifications for the scenarios are provided: the criteria to be used for developing the scenarios are defined, the required data base for initiating the development of the scenarios is established, and the state of the art for those scenarios that have already been developed is discussed. An important aspect of the assessment will be the evaluation of realistic projections of emissions as a function of both geographical distribution and altitude from an economically viable commercial HSCT fleet. With an assumed introduction date of around the year 2005, it is anticipated that there will be no HSCT aircraft in the global fleet at that time. However, projections show that, by 2015, the HSCT fleet could reach significant size. We assume these projections of HSCT and subsonic fleets for about 2015 can the be used as input to global atmospheric chemistry models to evaluate the impact of the HSCT fleets, relative to an all-subsonic future fleet. The methodology, procedures, and recommendations for the development of future HSCT and the subsonic fleet scenarios used for this evaluation are discussed.
A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey
Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.« less
Medium- and Heavy-Duty Vehicle Field Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kenneth J; Prohaska, Robert S
This presentation provides information about NREL's real-world evaluations of commercial vehicle technologies, which compare the performance of advanced medium- and heavy-duty fleet vehicles to conventional vehicles. NREL conducts these customized evaluations in partnership with commercial and government fleets across the nation. Current fleet and industry partners include UPS, Workhorse, Parker Hannifin, Proterra, Foothill Transit, Long Beach Transit, BYD, Odyne, Duke Energy, Miami-Dade, TransPower, Eaton, Cummins, Bosch, and Clean Cities/National Clean Fleet Partnership. The presentation focuses on two particular vehicle evaluation projects -- hydraulic hybrid refuse haulers operated by Miami-Dade and electric transit buses operated by Foothill Transit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.
2014-01-01
Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop amore » characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-31
...The Coast Guard announces the availability of Office of Vessel Activities Policy Letter 11-05 regarding Distant Water Tuna Fleet vessels manning exemption eligibility and safety requirements. This final policy clarifies the requirements to allow a distant water tuna fleet vessel to engage foreign citizens under a temporary manning exemption.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
...Pursuant to Section 904 of the 2010 Coast Guard Authorization Act, the Coast Guard announces the availability of a draft policy regarding distant water tuna fleet vessels manning exemption eligibility and safety requirements. We request your comments on the Safety Requirements and Manning Exemption Eligibility on Distant Water Tuna Fleet Vessels.
Navy Force Structure: A Bigger Fleet Background and Issues for Congress
2016-09-16
Aircraft Carrier Gap in the Gulf,” Washington Institute for Near East Policy, October 5, 2015. 8 See, for example, Hope Hodge Seck, “CNO: Navy to Hit...Long Deployments Will Harm the Fleet,” Navy Times, April 20, 2016; Hope Hodge Seck, “Overtaxed Fleet Needs Shorer Deployments,” Military.com, March
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust emissions at the end of the model year for passenger... for sale, and certifying model types to standards as defined in § 86.1818-12. The model type carbon...
Alternative Fuels Data Center: Phoenix Utility Fleet Drives Smarter with
electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a BiodieselA> Phoenix Utility Fleet Drives Smarter with Biodiesel to someone by E-mail Share ... Aug. 26, 2017 Phoenix Utility Fleet Drives Smarter with Biodiesel Watch how a utility company in
fueled for the fleet to be subject to the regulatory requirements. Under Standard Compliance, the AFVs that may be used toward compliance or banked once the fleet achieves compliance for investments in composition. For more information, visit the EPAct State and Alternative Fuel Provider Fleets website
77 FR 76597 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... fleet to the age exploration M7 waiver. FRA assigned the petition Docket Number FRA-2004-17099. MNR is...). The MNR M7 fleet is currently undergoing age exploration tests. The MNR M7 fleet is averaging 68,000... only those components not yet captured by the KB-CT1 (M7) age exploration testing in support of this...
Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction,
Ethanol Use, Fuel Efficiency County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel , Ethanol Use, Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center
. FOURTH Fleet (USNAVSO/FOURTHFLT) employs maritime forces in cooperative maritime security operations in (Hidden)⬠USNAVSO/4th Fleet News Retrieving Data Links Secretary of the Navy Chief of Naval Operations Department of Defense U.S. Southern Command SOCIAL MEDIA Quick Links US Navy Recruiting | No Fear Act Data
Hydraulic Hybrid Fleet Vehicle Testing | Transportation Research | NREL
Hydraulic Hybrid Fleet Vehicle Evaluations Hydraulic Hybrid Fleet Vehicle Evaluations How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low
to achieve the Replacement Fuel Goal. For more information on the Private and Local Government Fleet Private and Local Government Fleets Under the Energy Policy Act (EPAct) of 1992, the U.S . Department of Energy (DOE) was directed to determine whether private and local government fleets should be
Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet
Plan into On-Road Reality City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality Plan into On-Road Reality on Facebook Tweet about Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality on Twitter Bookmark Alternative Fuels Data Center
41 CFR 101-39.104 - Notice of establishment of a fleet management system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... system. GSA will inform each affected agency of the time schedule for establishment of a fleet management... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Notice of establishment of a fleet management system. 101-39.104 Section 101-39.104 Public Contracts and Property Management...
77 FR 18718 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... Statistical Tool Web-based reporting system (FAST) for FY 2005. Moreover, section 438.102(b) would require... reflected in FY 2005 FAST data, or (2) the lesser of (a) five percent of total Federal fleet vehicle fuel... event that the Federal fleet's alternative fuel use value for FY 2005 submitted through FAST did not...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon
Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.« less
Management Tools for Bus Maintenance: Current Practices and New Methods. Final Report.
ERIC Educational Resources Information Center
Foerster, James; And Others
Management of bus fleet maintenance requires systematic recordkeeping, management reporting, and work scheduling procedures. Tools for controlling and monitoring routine maintenance activities are in common use. These include defect and fluid consumption reports, work order systems, historical maintenance records, and performance and cost…
1998-05-01
ROG reactive organic compound RONA Record of Non -applicability RTV rational threshold value RWQCB Regional Water Quality Control Board SARA...over water. The ranges are either scheduled via a designated military or civilian controlling agency (for restricted or warning areas) or are used...operations areas (MOAs), and air traffic control authorized airspace (ATCAA). Airspace designations throughout the United States are controlled by the Federal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Two online resources help fleets evaluate the economic soundness of a compressed natural gas program. The National Renewable Energy Laboratory's (NREL's) Vehicle Infrastructure and Cash-Flow Evaluation (VICE 2.0) model and the accompanying report, Building a Business Case for Compressed Natural Gas in Fleet Applications, are uniquely designed for fleet managers considering an investment in CNG and can help ensure wise investment decisions about CNG vehicles and infrastructure.
Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation
Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV batteries are charged by
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.
77 FR 44475 - Security Zones; Seattle's Seafair Fleet Week Moving Vessels, Puget Sound, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
...-AA87 Security Zones; Seattle's Seafair Fleet Week Moving Vessels, Puget Sound, WA AGENCY: Coast Guard... Seafair Fleet Week Moving Vessels Security Zones from 12:00 p.m. on July 31, 2012 through 5:00 p.m. on August 6, 2012. These security zones are necessary to help ensure the security of the vessels from...
Research requirements to improve reliability of civil helicopters
NASA Technical Reports Server (NTRS)
Dougherty, J. J., III; Barrett, L. D.
1978-01-01
The major reliability problems of the civil helicopter fleet as reported by helicopter operational and maintenance personnel are documented. An assessment of each problem is made to determine if the reliability can be improved by application of present technology or whether additional research and development are required. The reliability impact is measured in three ways: (1) The relative frequency of each problem in the fleet. (2) The relative on-aircraft manhours to repair, associated with each fleet problem. (3) The relative cost of repair materials or replacement parts associated with each fleet problem. The data reviewed covered the period of 1971 through 1976 and covered only turbine engine aircraft.
Fleet Assignment Using Collective Intelligence
NASA Technical Reports Server (NTRS)
Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.
2004-01-01
Airline fleet assignment involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of an agent-based integer optimization algorithm to a "cold start" fleet assignment problem. Results show that the optimizer can successfully solve such highly- constrained problems (129 variables, 184 constraints).
Operator Informational Needs for Multiple Autonomous Small Vehicles
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal
2015-01-01
With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.
Projecting effects of improvements in passive safety of the New Zealand light vehicle fleet.
Keall, Michael; Newstead, Stuart; Jones, Wayne
2007-09-01
In the year 2000, as part of the process for setting New Zealand road safety targets, a projection was made for a reduction in social cost of 15.5 percent associated with improvements in crashworthiness, which is a measure of the occupant protection of the light passenger vehicle fleet. Since that document was produced, new estimates of crashworthiness have become available, allowing for a more accurate projection. The objective of this paper is to describe a methodology for projecting changes in casualty rates associated with passive safety features and to apply this methodology to produce a new prediction. The shape of the age distribution of the New Zealand light passenger vehicle fleet was projected to 2010. Projected improvements in crashworthiness and associated reductions in social cost were also modeled based on historical trends. These projections of changes in the vehicle fleet age distribution and of improvements in crashworthiness together provided a basis for estimating the future performance of the fleet in terms of secondary safety. A large social cost reduction of about 22 percent for 2010 compared to the year 2000 was predicted due to the expected huge impact of improvements in passive vehicle features on road trauma in New Zealand. Countries experiencing improvements in their vehicle fleets can also expect significant reductions in road injury compared to a less crashworthy passenger fleet. Such road safety gains can be analyzed using some of the methodology described here.
Code of Federal Regulations, 2011 CFR
2011-01-01
... biological materials (including neat biodiesel); three P-series fuels (specifically known as Pure Regular... Centrally Fueled means a vehicle can be refueled at least 75 percent of its time at the location that is... of the time at a location that is owned, operated, or controlled by the fleet or covered person, or...
Back to the Sea: U.S. Strategic Requirements and Sea Control
2012-03-22
or request for forces? Does the habit of operating carriers with only one escort weaken our Navy institutionally by desensitizing the fleet to the...been in the marketplace since 2001," said Capt. Phil Altizer, director of Marketing and Advertising , NRC. http://www.navy.mil/search/display.asp
Probabilistic Guidance of Swarms using Sequential Convex Programming
2014-01-01
quadcopter fleet [24]. In this paper, sequential convex programming (SCP) [25] is implemented using model predictive control (MPC) to provide real-time...in order to make Problem 1 convex. The details for convexifying this problem can be found in [26]. The main steps are discretizing the problem using
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... EPA that it has adopted additional amendments to its emission standards for fleets that operate... standards and accompanying enforcement procedures must be consistent with section 209(a), section 209(e)(1... standards and enforcement procedures must be consistent with section 209(e)(1), which identifies the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... composed solely of container or refrigerated cargo vessels making fewer than twenty-five (25) visits to the.... \\7\\ ``Fleet'' means ``all container, passenger, and refrigerated cargo vessels, visiting a specific... of nitrogen and particulate matter from auxiliary diesel engines on container vessels, passenger...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
..., rents or leases any container vessel, passenger vessel, or refrigerated cargo vessel that visits any of...-Berth Regulation requires fleets of container vessels, passenger vessels and refrigerated cargo vessels... and particulate matter from auxiliary diesel engines on container vessels, passenger vessels and...
Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants
NASA Astrophysics Data System (ADS)
Rebak, Raul B.
2017-12-01
After a tsunami caused plant black out at Fukushima, followed by hydrogen explosions, the US Department of Energy partnered with fuel vendors to study safer alternatives to the current UO2-zirconium alloy system. This accident tolerant fuel alternative should better tolerate loss of cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. General electric, Oak ridge national laboratory, and their partners are proposing to replace zirconium alloy cladding in current commercial light water power reactors with an iron-chromium-aluminum (FeCrAl) cladding such as APMT or C26M. Extensive testing and evaluation is being conducted to determine the suitability of FeCrAl under normal operation conditions and under severe accident conditions. Results show that FeCrAl has excellent corrosion resistance under normal operation conditions and FeCrAl is several orders of magnitude more resistant than zirconium alloys to degradation by superheated steam under accident conditions, generating less heat of oxidation and lower amount of combustible hydrogen gas. Higher neutron absorption and tritium release effects can be minimized by design changes. The implementation of FeCrAl cladding is a near term solution to enhance the safety of the current fleet of commercial light water power reactors.
Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2015-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, Edward B; Daley, Ryan; Helm, Matthew
The University of Connecticut (UCONN) is exploring the possibility of adding electric vehicles (EVs) - including battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), or both - to its vehicle fleet. This report presents results of the UCONN fleet EV Suitability pilot program and offers recommendations for transitioning fleet vehicles to EVs as well as implementing adequate charging infrastructure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency fleet...; and (5) Fuel used. Note to § 102-34.335: The FAST system is also used by agency Fleet Managers to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency fleet...; and (5) Fuel used. Note to § 102-34.335: The FAST system is also used by agency Fleet Managers to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency fleet...; and (5) Fuel used. Note to § 102-34.335: The FAST system is also used by agency Fleet Managers to...
Code of Federal Regulations, 2011 CFR
2011-01-01
... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency fleet...; and (5) Fuel used. Note to § 102-34.335: The FAST system is also used by agency Fleet Managers to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency fleet...; and (5) Fuel used. Note to § 102-34.335: The FAST system is also used by agency Fleet Managers to...
Towards a Global Maritime Surveillance- A New European Challenge for European Security
NASA Astrophysics Data System (ADS)
Claverie, Alain; Barbagelata, Andrea; Pasco, Xavier; Darnis, Jean Pierre
2005-03-01
The illegal immigration connected to traffic and criminal activity is creating problems in Europe. Maritime surveillance is one of the most problematic dimensions.The political decision and the international agreement of the development of VTMS and the AIS are a first step towards securing the maritime traffic and protecting the maritime borders.The weight of the terrorism through the emergence of new set of threats is changing the situation in creating new needs of control through a global approach. The recent sea trial of the US department of Homeland Security is an indicator of this evolution. Space technologies have unique capabilities to support this kind of global approaches:• GNSS and the satellite telecommunication fleet (e.g. INMARSAT, ORBCOM) have a direct contribution to the extension of the AIS.• Satellite remote sensing is the logic extension of the control of the "VTMS" area.The new generation of satellite fleet (e.g. Pléiades, TerraSar, COSMO/SkyMed, Radarsat) should ensure an acceptable first level of control.The revisitation time, the near real time transmission with fast processing is an effective answer to the need of the Maritime Security Authorities.
Mapping sub-surface geostrophic currents from altimetry and a fleet of gliders
NASA Astrophysics Data System (ADS)
Alvarez, A.; Chiggiato, J.; Schroeder, K.
2013-04-01
Integrating the observations gathered by different platforms into a unique physical picture of the environment is a fundamental aspect of networked ocean observing systems. These are constituted by a spatially distributed set of sensors and platforms that simultaneously monitor a given ocean region. Remote sensing from satellites is an integral part of present ocean observing systems. Due to their autonomy, mobility and controllability, underwater gliders are envisioned to play a significant role in the development of networked ocean observatories. Exploiting synergism between remote sensing and underwater gliders is expected to result on a better characterization of the marine environment than using these observational sources individually. This study investigates a methodology to estimate the three dimensional distribution of geostrophic currents resulting from merging satellite altimetry and in situ samples gathered by a fleet of Slocum gliders. Specifically, the approach computes the volumetric or three dimensional distribution of absolute dynamic height (ADH) that minimizes the total energy of the system while being close to in situ observations and matching the absolute dynamic topography (ADT) observed from satellite at the sea surface. A three dimensional finite element technique is employed to solve the minimization problem. The methodology is validated making use of the dataset collected during the field experiment called Rapid Environmental Picture-2010 (REP-10) carried out by the NATO Undersea Research Center-NURC during August 2010. A marine region off-shore La Spezia (northwest coast of Italy) was sampled by a fleet of three coastal Slocum gliders. Results indicate that the geostrophic current field estimated from gliders and altimetry significantly improves the estimates obtained using only the data gathered by the glider fleet.
Communication and Control for Fleets of Autonomous Underwater Vehicles
2006-10-30
Washington State University (WSU) on fuzzy logic control systems [2-4] and autonomous vehicles [5-10]. The ALWSE-MC program developed at NAVSEA CSS was...rotating head sonar on crawlers as an additional sensor for navigation. We have previously investigated the use of video cameras on autonomous vehicles for...simulates autonomous vehicles performing mine reconnaissance/mapping, clearance, and surveillance in a littoral region. Three simulations were preformed
Cost and benefit estimates of partially-automated vehicle collision avoidance technologies.
Harper, Corey D; Hendrickson, Chris T; Samaras, Constantine
2016-10-01
Many light-duty vehicle crashes occur due to human error and distracted driving. Partially-automated crash avoidance features offer the potential to reduce the frequency and severity of vehicle crashes that occur due to distracted driving and/or human error by assisting in maintaining control of the vehicle or issuing alerts if a potentially dangerous situation is detected. This paper evaluates the benefits and costs of fleet-wide deployment of blind spot monitoring, lane departure warning, and forward collision warning crash avoidance systems within the US light-duty vehicle fleet. The three crash avoidance technologies could collectively prevent or reduce the severity of as many as 1.3 million U.S. crashes a year including 133,000 injury crashes and 10,100 fatal crashes. For this paper we made two estimates of potential benefits in the United States: (1) the upper bound fleet-wide technology diffusion benefits by assuming all relevant crashes are avoided and (2) the lower bound fleet-wide benefits of the three technologies based on observed insurance data. The latter represents a lower bound as technology is improved over time and cost reduced with scale economies and technology improvement. All three technologies could collectively provide a lower bound annual benefit of about $18 billion if equipped on all light-duty vehicles. With 2015 pricing of safety options, the total annual costs to equip all light-duty vehicles with the three technologies would be about $13 billion, resulting in an annual net benefit of about $4 billion or a $20 per vehicle net benefit. By assuming all relevant crashes are avoided, the total upper bound annual net benefit from all three technologies combined is about $202 billion or an $861 per vehicle net benefit, at current technology costs. The technologies we are exploring in this paper represent an early form of vehicle automation and a positive net benefit suggests the fleet-wide adoption of these technologies would be beneficial from an economic and social perspective. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ares I First Stage Propulsion System Status
NASA Technical Reports Server (NTRS)
Priskos, Alex S.
2010-01-01
With the retirement of the Space Shuttle inevitable, the US is faced with the need to loft a reliable cost-effective, technologically viable solution to bring the nation s fleet of spacecraft back up to industry standard. It must not only support the International Space Station (ISS), it must also be capable of supporting human exploration beyond low Earth orbit (LEO). NASA created the Constellation Program to develop a new fleet including the launch vehicles, the spacecraft, and the mission architecture to meet those objectives. The Ares First Stage Team is tasked with developing a propulsion system capable of safely, dependably and repeatedly lofting that new fleet. To minimize technical risks and development costs, the Solid Rocket Boosters (SRBs) of Shuttle were used as a starting point in the design and production of a new first stage element. While the first stage will provide the foundation, the structural backbone, power, and control for launch, the new propulsive element will also provide a greater total impulse to loft a safer, more powerful, fleet of space flight vehicles. Substantial design and system upgrades were required to meet the mass and trajectory requisites of the new fleet. Noteworthy innovations and design features include new forward structures, new propellant grain geometry, a new internal insulation system, and a state-of-the art avionics system. Additional advances were in materials and composite structures development, case bond liners, and thermal protection systems. Significant progress has been made in the design, development and testing of the propulsion and avionics systems for the new first stage element. Challenges, such as those anticipated with thrust oscillation, have been better characterized, and are being effectively mitigated. The test firing of the first development motor (DM-1) was a success that validated much of the engineering development to date. Substantive data has been collected and analyzed, allowing the Ares First Stage team to move forward, fine-tune the design, and advance to production of the second development motor (DM-2), which is now in fabrication. This paper will provide an overview of the design, development, challenges, and progress on the production of the new Ares First Stage propulsion system
Perspectives on AFVs: State and city government fleet manager survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, P.
1999-02-01
In an effort to reduce national dependence on imported oil and to improve urban air quality, the US Department of Energy (DOE) is promoting the development and deployment of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to develop and conduct projects to evaluate the performance and acceptability of light-duty AFVs compared to similar gasoline vehicles. As part of this effort, NREL has undertaken a number of evaluation projects, including conducting telephone surveys with fleet managers and drivers of AFVs in the federal fleet. This report summarizes themore » results of the survey of state and city government fleet managers.« less
NASA Technical Reports Server (NTRS)
Weber, Philip
2008-01-01
Ground crew veterans at Kennedy Space Center still talk about what they call "the summer of hydrogen"-the long, frustrating months in 1990 when the shuttle fleet was grounded by an elusive hydrogen leak that foiled our efforts to fill the orbiter's external fuel tank. Columbia (STS-35) was on Launch Pad A for a scheduled May 30 launch when we discovered the hydrogen leak during - tanking. The external fuel tank is loaded through the orbiter. Liquid hydrogen flows through a 17-inch umbilical between the orbiter and the tank. During fueling, we purge the aft fuselage with gaseous nitrogen to reduce the risk of fire, and we have a leak-detection system in the mobile launch platform, which samples (via tygon tubing) the atmosphere in and around the vehicle, drawing it down to a mass spectrometer that analyzes its composition. When we progressed to the stage of tanking where liquid hydrogen flows through the vehicle, the concentration of hydrogen approached four percent-the limit above which it would be dangerously flammable. We had a leak. We did everything we could think of to find it, and the contractor who supplied the flight hardware was there every day, working alongside us. We did tanking tests, which involved instrumenting the suspected leak sources, and cryo-loaded the external tank to try to isolate precisely where the leak originated. We switched out umbilicals; we replaced the seals between the umbilical and the orbiter. We inspected the seals microscopically and found no flaws. We replaced the recirculation pumps, and we found and replaced a damaged teflon seal in a main propulsion system detent cover, which holds the prevalve-the main valve supplying hydrogen to Space Shuttle Main Engine 3 -in the open position. The seal passed leak tests at ambient temperature but leaked when cryogenic temperatures were applied. We added new leak sensors-up to twenty at a time and tried to be methodical in our placements to narrow down the possible sources of the problem. We even switched orbiters, sending Columbia back to the Vehicle Assembly Building and bringing out Atlantis, scheduled to fly as STS-38. Two shuttles on their mobile launchers passing in the night was a majestic sight, but not one you want to see if you're trying to get an orbiter launched. None of this told us where the leak was, or if we were dealing with more than one leak source.
The CPAT 2.0.2 Domain Model - How CPAT 2.0.2 "Thinks" From an Analyst Perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddell, Lucas; Muldoon, Frank; Melander, Darryl J.
To help effectively plan the management and modernization of their large and diverse fleets of vehicles, the Program Executive Office Ground Combat Systems (PEO GCS) and the Program Executive Office Combat Support and Combat Service Support (PEO CS &CSS) commissioned the development of a large - scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This reportmore » contains a description of the organizational fleet structure and a thorough explanation of the business rules that the CPAT formulation follows involving performance, scheduling, production, and budgets. This report, which is an update to the original CPAT domain model published in 2015 (SAND2015 - 4009), covers important new CPAT features. This page intentionally left blank« less
INL Fleet Vehicle Characterization Study for the U.S. Department of Navy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Brion Dale; Francfort, James Edward; Smart, John Galloway
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC collected and evaluated data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization Study. The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate use of advanced plug-in electric vehicle (PEV) transportation. This report focuses on US Department of Navy's fleet to identify daily operational characteristics of select vehicles and report findings onmore » vehicle and mission characterizations to support the successful introduction of PEVs into the agency’s fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.« less
2012-05-29
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, technicians use a special crane to lift a fuel cell out of space shuttle Endeavour's payload bay. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Technicians monitor the progress as one of space shuttle Endeavour's three fuel cells is removed from the vehicle's payload bay. The operation took place inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
NASA Astrophysics Data System (ADS)
Karner, Donald; Francfort, James
The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.
On the nature of carbon-hydrogen bond activation at rhodium and related reactions.
Jones, William D
2005-06-27
Over the past 20 years, substantial progress has been made in the understanding of the activation of C-H and other strong bonds by reactive metal complexes in low oxidation states. This paper will present an overview of the use of pentamethylcyclopentadienyl and trispyrazolylborate rhodium complexes for the activation of arene and alkane C-H bonds. Insights into bond strengths, kinetic and thermodynamic selectivities, and the nature of the intermediates involved will be reviewed. The role of eta-2 arene complexes will be shown to be critical to the C-H activation reactions. Some information about the fleeting alkane sigma-complexes will also be presented. In addition, use of these complexes with thiophenes has shown the ability to cleave C-S bonds. Mechanistic information has been obtained indicating coordination through sulfur prior to cleavage. Relevant examples of nickel-based C-S cleavage will also be given.
NASA Technical Reports Server (NTRS)
Whitten, R. C.; Borucki, W. J.; Poppoff, I. G.; Latt, L.; Widhopf, G. F.; Capone, L. A.; Reigel, C. A.
1981-01-01
For a fleet of 250 aircraft, the change in the ozone column is predicted to be very close to zero; in fact, the ozone overburden may actually increase as a result of show that above 25 to 30 km the ozone abundance decreases via catalytic destruction, but at lower heights it increases, mainly as a result of coupling with odd hydrogen species. Water vapor released in the engine exhaust is predicted to cause ozone decreases; for the hypothetical engines used in the study, the total column ozone changes due to water vapor emission largely offset the predicted ozone increases due to NOx emission. The actual effect of water vapor may be less than calculated because present models do not include thermal feedback. Feedback refers to the cooling effect of additional water vapor that would tend to slow the NOx reactions which destroy ozone.
2012-05-29
CAPE CANAVERAL, Fla. – Technicians inside Kennedy Space Center's Orbiter Processing Facility-2 lower one of space shuttle Endeavour's recently removed fuel cells onto a waiting platform. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a crane hoists one of space shuttle Endeavour's three fuel cells out of the vehicle's payload bay. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Technicians inside Kennedy Space Center's Orbiter Processing Facility-2 lower one of space shuttle Endeavour's recently removed fuel cells onto a waiting platform. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a technician guides a newly removed fuel cell up and out of space shuttle Endeavour's payload bay. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, technicians use a special crane to lift a fuel cell out of space shuttle Endeavour's payload bay. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
The Navy at a Tipping Point: Maritime Dominance at Stake?
2010-03-01
Navy" USN Deployment Strategy Future Global Environment for USN Operations External and Internal Drivers on USN Options Five Means for a "Global...Defense CARAT Deployment HCA cruises Counter-Dnjg oPs NAVSO/4 ,h Fleet Patmi NAVCENT/5,h Fleet GFS . . „ Horn of Global Fleet Station ...against advanced air defenses, conduct and enable littoral/amphibious operations in opposed environments , and establish blue-water dominance against
77 FR 35862 - Safety Zone; Fleet Week Maritime Festival, Pier 66 Elliott Bay, Seattle, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
... Zone; Fleet Week Maritime Festival, Pier 66 Elliott Bay, Seattle, WA AGENCY: Coast Guard, DHS. ACTION... Festival's Pier 66 Safety Zone in Elliott Bay, WA from 8 a.m. until 8 p.m. on August 1, 2012, however, it... Fleet Week Maritime Festival in 33 CFR 165.1330 on August 1, 2012, from 8 a.m. until 8 p.m.; however, it...
DoD Capability Benefits from Preserving the Civil Reserve Air Fleet (CRAF)
2011-04-23
Master of Military Studies Research Paper September 2010- April 2011 4. TITLE AND SUBTITLE DoP capability benefits from preserving the Civil Reserve Air...capability benefits from preserving the Civil Reserve Air Fleet (CRAF) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER...1 Executive Summary Title: DOD capability benefits from preserving the Civil Reserve Air Fleet (CRAF) Author: Major Constantine E. Tsoukatos
Sperstad, Iver Bakken; Stålhane, Magnus; Dinwoodie, Iain; ...
2017-09-23
Optimising the operation and maintenance (O&M) and logistics strategy of offshore wind farms implies the decision problem of selecting the vessel fleet for O&M. Different strategic decision support tools can be applied to this problem, but much uncertainty remains regarding both input data and modelling assumptions. Our paper aims to investigate and ultimately reduce this uncertainty by comparing four simulation tools, one mathematical optimisation tool and one analytic spreadsheet-based tool applied to select the O&M access vessel fleet that minimizes the total O&M cost of a reference wind farm. The comparison shows that the tools generally agree on the optimalmore » vessel fleet, but only partially agree on the relative ranking of the different vessel fleets in terms of total O&M cost. The robustness of the vessel fleet selection to various input data assumptions was tested, and the ranking was found to be particularly sensitive to the vessels' limiting significant wave height for turbine access. Also the parameter with the greatest discrepancy between the tools, implies that accurate quantification and modelling of this parameter is crucial. The ranking is moderately sensitive to turbine failure rates and vessel day rates but less sensitive to electricity price and vessel transit speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperstad, Iver Bakken; Stålhane, Magnus; Dinwoodie, Iain
Optimising the operation and maintenance (O&M) and logistics strategy of offshore wind farms implies the decision problem of selecting the vessel fleet for O&M. Different strategic decision support tools can be applied to this problem, but much uncertainty remains regarding both input data and modelling assumptions. Our paper aims to investigate and ultimately reduce this uncertainty by comparing four simulation tools, one mathematical optimisation tool and one analytic spreadsheet-based tool applied to select the O&M access vessel fleet that minimizes the total O&M cost of a reference wind farm. The comparison shows that the tools generally agree on the optimalmore » vessel fleet, but only partially agree on the relative ranking of the different vessel fleets in terms of total O&M cost. The robustness of the vessel fleet selection to various input data assumptions was tested, and the ranking was found to be particularly sensitive to the vessels' limiting significant wave height for turbine access. Also the parameter with the greatest discrepancy between the tools, implies that accurate quantification and modelling of this parameter is crucial. The ranking is moderately sensitive to turbine failure rates and vessel day rates but less sensitive to electricity price and vessel transit speed.« less
Cost, Energy, and Environmental Impact of Automated Electric Taxi Fleets in Manhattan.
Bauer, Gordon S; Greenblatt, Jeffery B; Gerke, Brian F
2018-04-17
Shared automated electric vehicles (SAEVs) hold great promise for improving transportation access in urban centers while drastically reducing transportation-related energy consumption and air pollution. Using taxi-trip data from New York City, we develop an agent-based model to predict the battery range and charging infrastructure requirements of a fleet of SAEVs operating on Manhattan Island. We also develop a model to estimate the cost and environmental impact of providing service and perform extensive sensitivity analysis to test the robustness of our predictions. We estimate that costs will be lowest with a battery range of 50-90 mi, with either 66 chargers per square mile, rated at 11 kW or 44 chargers per square mile, rated at 22 kW. We estimate that the cost of service provided by such an SAEV fleet will be $0.29-$0.61 per revenue mile, an order of magnitude lower than the cost of service of present-day Manhattan taxis and $0.05-$0.08/mi lower than that of an automated fleet composed of any currently available hybrid or internal combustion engine vehicle (ICEV). We estimate that such an SAEV fleet drawing power from the current NYC power grid would reduce GHG emissions by 73% and energy consumption by 58% compared to an automated fleet of ICEVs.
NASA Technical Reports Server (NTRS)
1975-01-01
Cost and benefits of a fuel conservative aircraft technology program proposed by NASA are estimated. NASA defined six separate technology elements for the proposed program: (a) engine component improvement (b) composite structures (c) turboprops (d) laminar flow control (e) fuel conservative engine and (f) fuel conservative transport. There were two levels postulated: The baseline program was estimated to cost $490 million over 10 years with peak funding in 1980. The level two program was estimated to cost an additional $180 million also over 10 years. Discussions with NASA and with representatives of the major commercial airframe manufacturers were held to estimate the combinations of the technology elements most likely to be implemented, the potential fuel savings from each combination, and reasonable dates for incorporation of these new aircraft into the fleet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallbert, Bruce Perry; Thomas, Kenneth David
2015-10-01
Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.
Control method for high-pressure hydrogen vehicle fueling station dispensers
Kountz, Kenneth John; Kriha, Kenneth Robert; Liss, William E.
2006-06-13
A method for quick filling a vehicle hydrogen storage vessel with hydrogen, the key component of which is an algorithm used to control the fill process, which interacts with the hydrogen dispensing apparatus to determine the vehicle hydrogen storage vessel capacity.
Application of GPS data for benefits of air quality assessment and fleet management
NASA Astrophysics Data System (ADS)
Hao, Song; Fat Lam, Yun; Cheong Ying, Chi; Chan, Ka Lok
2017-04-01
In the modern digitizedsociety, traffic data can be easily collected for use in roadway development, urban planning and vehicle emission. These data are then further parameterized to support traffic simulation and roadside emission calculations. With the commercialization of AGPS/GPS technology, GPS data are widely utilized to study habit and travelling behaviors. GPS on franchised buses can provide not only positioning information for fleet management but also raw data to analyze traffic situations. In HK, franchised buses account for 6% of RSP and 20% of NOx emissions among the whole vehicle fleet. Being the most heavily means of public transport, the setting up of bus travelling trajectories and service frequency always raise concern from citizens. On this basis, there is an increasing interest and as well as to design and realize an effective cost benefit fleet management strategy. In this study, data collection analysis is carried out on all bus routes (i.e. 112) in Shatin district, one of the 18 districts in Hong Kong. The GPS/AGPS data through Esri ArcGIS investigate the potential benefit of GPS data in different emission scenarios (such as engine type over whole bus fleet). Building on the emission factors from EMFC-HK model, we accounted for factors like travelling distance, idling time, occupancy rate, service frequency, tire and break emissions. Through the simple emission developed model we demonstrate how GPS are data are utilized to assess bus fleet emissions. Further amelioration on the results involve tuning the model with field measurement so as to assess district level emission change after fleet optimization.
NASA Technical Reports Server (NTRS)
Burns, Ross A.; Danehy, Paul M.; Peters, Christopher J.
2016-01-01
Femtosecond laser electronic excitation tagging (FLEET) and Rayleigh scattering (RS) from a femtosecond laser are demonstrated in the NASA Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The measured signals from these techniques are examined for their thermodynamic dependencies in pure nitrogen. The FLEET signal intensity and signal lifetimes are found to scale primarily with the gas density, as does the RS signal. Several models are developed, which capture these physical behaviors. Notably, the FLEET and Rayleigh scattering intensities scale linearly with the flow density, while the FLEET signal decay rates are a more complex function of the thermodynamic state of the gas. The measurement of various flow properties are demonstrated using these techniques. While density was directly measured from the signal intensities and FLEET signal lifetime, temperature and pressure were measured using the simultaneous FLEET velocity measurements while assuming the flow had a constant total enthalpy. Measurements of density, temperature, and pressure from the FLEET signal are made with accuracies as high as 5.3 percent, 0.62 percent, and 6.2 percent, respectively, while precisions were approximately 10 percent, 0.26 percent, and 11 percent for these same quantities. Similar measurements of density from Rayleigh scattering showed an overall accuracy of 3.5 percent and a precision of 10.2 percent over a limited temperature range (T greater than 195 K). These measurements suggest a high degree of utility at using the femtosecond-laser based diagnostics for making multiparameter measurements in high-pressure, cryogenic environments such as large-scale TCT facilities.
A road safety performance indicator for vehicle fleet compatibility.
Christoph, Michiel; Vis, Martijn Alexander; Rackliff, Lucy; Stipdonk, Henk
2013-11-01
This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the 'relative severity' of individual collisions between different vehicle types, and the share of those vehicle types within a country's fleet. The relative severity is a measure for the personal damage that can be expected from a collision between two vehicles of any type, relative to that of a collision between passenger cars. It is shown how this number can be calculated using vehicle mass only. A sensitivity analysis is performed to study the dependence of the indicator on parameter values and basic assumptions made. The indicator is easy to apply and satisfies the requirements for appropriate safety performance indicators. It was developed in such a way that it specifically scores the intrinsic safety of a fleet due to its composition, without being influenced by other factors, like helmet wearing. For the sake of simplicity, and since the required data is available throughout Europe, the indicator was applied to the relative share of three of the main vehicle types: passenger cars, heavy goods vehicles and motorcycles. Using the vehicle fleet data from 13EU Member States and Norway, the indicator was used to rank the countries' safety performance. The UK was found to perform best in terms of its fleet composition (value is 1.07), while Greece has the worst performance with the highest indicator value (1.41). Copyright © 2013 Elsevier Ltd. All rights reserved.
Addressing the minimum fleet problem in on-demand urban mobility.
Vazifeh, M M; Santi, P; Resta, G; Strogatz, S H; Ratti, C
2018-05-01
Information and communication technologies have opened the way to new solutions for urban mobility that provide better ways to match individuals with on-demand vehicles. However, a fundamental unsolved problem is how best to size and operate a fleet of vehicles, given a certain demand for personal mobility. Previous studies 1-5 either do not provide a scalable solution or require changes in human attitudes towards mobility. Here we provide a network-based solution to the following 'minimum fleet problem', given a collection of trips (specified by origin, destination and start time), of how to determine the minimum number of vehicles needed to serve all the trips without incurring any delay to the passengers. By introducing the notion of a 'vehicle-sharing network', we present an optimal computationally efficient solution to the problem, as well as a nearly optimal solution amenable to real-time implementation. We test both solutions on a dataset of 150 million taxi trips taken in the city of New York over one year 6 . The real-time implementation of the method with near-optimal service levels allows a 30 per cent reduction in fleet size compared to current taxi operation. Although constraints on driver availability and the existence of abnormal trip demands may lead to a relatively larger optimal value for the fleet size than that predicted here, the fleet size remains robust for a wide range of variations in historical trip demand. These predicted reductions in fleet size follow directly from a reorganization of taxi dispatching that could be implemented with a simple urban app; they do not assume ride sharing 7-9 , nor require changes to regulations, business models, or human attitudes towards mobility to become effective. Our results could become even more relevant in the years ahead as fleets of networked, self-driving cars become commonplace 10-14 .
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
...) Federal motor vehicle control program; (2) fleet turnover of automobiles; (3) low reid vapor pressure of... vehicles standard; (6) large nonroad diesel engines rule; (7) nonroad spark ignition engines and recreational engines standard; (8) point source emission reductions; (9) Air Products and Chemicals -21-157...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... Fishery Conservation and Management Act (Magnuson- Stevens Act), to limit the accumulation of excessive..., restricted, or even nullified; and to discourage speculative behavior in the market for fishing privileges... ownership of fishing privileges, maintaining the diversity of the fleet, addressing impacts of market forces...
UFC advisor: An AI-based system for the automatic test environment
NASA Technical Reports Server (NTRS)
Lincoln, David T.; Fink, Pamela K.
1990-01-01
The Air Logistics Command within the Air Force is responsible for maintaining a wide variety of aircraft fleets and weapon systems. To maintain these fleets and systems requires specialized test equipment that provides data concerning the behavior of a particular device. The test equipment is used to 'poke and prod' the device to determine its functionality. The data represent voltages, pressures, torques, temperatures, etc. and are called testpoints. These testpoints can be defined numerically as being in or out of limits/tolerance. Some test equipment is termed 'automatic' because it is computer-controlled. Due to the fact that effective maintenance in the test arena requires a significant amount of expertise, it is an ideal area for the application of knowledge-based system technology. Such a system would take testpoint data, identify values out-of-limits, and determine potential underlying problems based on what is out-of-limits and how far. This paper discusses the application of this technology to a device called the Unified Fuel Control (UFC) which is maintained in this manner.
Set-Based Design: Fleet Architecture and Design 2030-2035
2017-12-01
choose any quantity between 250 - 350 HP for the final system design without suffering the same consequences in PBD. Figure 2 visually compares SBD... comparing the coverages in 2035 to those in 2017. This report does not advocate for a larger or smaller domain grid factor for overall fleet design , as...Distribution is unlimited. SET-BASED DESIGN : FLEET ARCHITECTURE AND DESIGN 2030–2035 by David Alessandria, Isa Al-Jawder, Eric Clow, Carlos
Maritime Coalitions: When is Unity of Command Required
2007-05-10
none. President Thomas Jefferson2 We are also guided by the conviction that no nation can build a safer, better world alone. Alliances and...Pacific Fleet ( BPF ) within the U.S. Pacific Fleet. Despite initial objections by Prime Minister Churchill earlier in the war, a Unity of Command...arrangement was ultimately established with the BPF placed under the operational command of the United States Pacific Fleet when at sea.14 The BPF
Harnessing the Transformative Tsunami: Fleet-wide 360-degree Feedback Revisited
2012-06-01
lavished Tailhook Scandal underscored the need for change in U.S. Navy culture—to the public, chauvinism appeared to be a core value of the organization...dichotomy presently exists between veteran personnel whose original fleet experience was shaped during an all- male era and millennial recruits for...initiative to the fleet (2009). 37 Dr. Bowman supports this argument by inferring that command leadership did little to ensure follow-through by mid-level
Deriving and Validating a Road Safety Performance Indicator for Vehicle Fleet Passive Safety
Page, Marianne; Rackliff, Lucy
2006-01-01
Road safety performance indicators (RSPI) are policy tools which describe the extent of insecure operational safety conditions within traffic systems. This study describes the production of an RSPI which represents the presence within a country’s vehicle fleet, of vehicles that may not effectively protect an occupant in a collision. This work is highly original, as it uses the entire vehicle database of European Union Member States in order to estimate the average level of passive safety offered by the entire fleet in each country. The EuroNCAP safety ratings and vehicle age of each vehicle in each fleet have been obtained to calculate the RSPI. The methodology used could be adopted as an international standard. PMID:16968645
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2014-01-01
Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists.
Impact of environmental constraints and aircraft technology on airline fleet composition
NASA Astrophysics Data System (ADS)
Moolchandani, Kushal A.
This thesis models an airline's decisions about fleet evolution in order to maintain economic and regulatory viability. The aim is to analyze the fleet evolution under different scenarios of environmental policy and technology availability in order to suggest an optimal fleet under each case. An understanding of the effect of aircraft technologies, fleet size and age distribution, and operational procedures on airline performance may improve the quality of policies to achieve environmental goals. Additionally, the effect of decisions about fleet evolution on air travel is assessed as the change in market demand and profits of an abstracted, benevolent monopolist airline. Attention to the environmental impact of aviation has grown, and this has prompted several organizations such as ICAO (and, in response, NASA) to establish emissions reduction targets to reduce aviation's global climate impact. The introduction of new technology, change in operational procedures, etc. are some of the proposed means to achieve these targets. Of these, this thesis studies the efficacy of implementation of environmental policies in form of emissions constraints as a means to achieve these goals and assesses their impact on an airline's fleet evolution and technology use (along with resulting effects on air travel demand). All studies in this thesis are conducted using the Fleet-level Environmental Evaluation Tool (FLEET), a NASA sponsored simulation tool developed at Purdue University. This tool models airline operational decisions via a resource allocation problem and uses a system dynamics type approach to mimic airline economics, their decisions regarding retirement and acquisition of aircraft and evolution of market demand in response to the economic conditions. The development of an aircraft acquisition model for FLEET is a significant contribution of the author. Further, the author conducted a study of various environmental policies using FLEET. Studies introduce constraints on maximum CO2 emissions that the airline can cause, taxes on airlines for excess emissions, and the use of biofuels. The results obtained indicate that implementation of very strict policies that place a heavy penalty on airlines for environmental inefficiency would lead to a drastic decline in market demand served as well as airline profits. For example, to achieve a 50% reduction of CO2 emissions by 2050 from the 2005 levels, the airlines would need to leave as much as 45% of predicted market demand unmet, thereby significantly reducing their profits. Taxing airlines for excess emissions would lead them to use large aircraft for short distance operations to reduce CO2 produced per seat mile, decreasing the total number of flights. Since taxation provides an economic motive for airlines to seek low emissions operations procedures, it can be an effective means of achieving emissions reduction goals. Finally the use of biofuels, under some assumption of biofuel availability and cost, helps reduce emissions without compromising market demand or airline profits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Schey; Jim Francfort
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operationalmore » characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.« less
Evaluation of Gear Condition Indicator Performance on Rotorcraft Fleet
NASA Technical Reports Server (NTRS)
Antolick, Lance J.; Branning, Jeremy S.; Wade, Daniel R.; Dempsey, Paula J.
2010-01-01
The U.S. Army is currently expanding its fleet of Health Usage Monitoring Systems (HUMS) equipped aircraft at significant rates, to now include over 1,000 rotorcraft. Two different on-board HUMS, the Honeywell Modern Signal Processing Unit (MSPU) and the Goodrich Integrated Vehicle Health Management System (IVHMS), are collecting vibration health data on aircraft that include the Apache, Blackhawk, Chinook, and Kiowa Warrior. The objective of this paper is to recommend the most effective gear condition indicators for fleet use based on both a theoretical foundation and field data. Gear diagnostics with better performance will be recommended based on both a theoretical foundation and results of in-fleet use. In order to evaluate the gear condition indicator performance on rotorcraft fleets, results of more than five years of health monitoring for gear faults in the entire HUMS equipped Army helicopter fleet will be presented. More than ten examples of gear faults indicated by the gear CI have been compiled and each reviewed for accuracy. False alarms indications will also be discussed. Performance data from test rigs and seeded fault tests will also be presented. The results of the fleet analysis will be discussed, and a performance metric assigned to each of the competing algorithms. Gear fault diagnostic algorithms that are compliant with ADS-79A will be recommended for future use and development. The performance of gear algorithms used in the commercial units and the effectiveness of the gear CI as a fault identifier will be assessed using the criteria outlined in the standards in ADS-79A-HDBK, an Army handbook that outlines the conversion from Reliability Centered Maintenance to the On-Condition status of Condition Based Maintenance.
2014-05-01
1 Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization David N. Ford...2014 4. TITLE AND SUBTITLE Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization 5a...Manufacturing ( 3D printing ) 2 Research Context Problem: Learning curve savings forecasted in SHIPMAIN maintenance initiative have not materialized
2014-03-01
difficulty in obtaining replacement parts, the Ai r Force has challenges in maintaining tbe KC-135 fleet (USAF 2005). Additionally this fleet has been...aircraft fleet wi ll remain within the Ai r Force inventory. Therefore, only the BNSF Rail Yard and DLA Infill were carried forward for further...surface water from C&D activities. In addition, existing Tinker AFB National Pollutant Discharge Elimination System permit, general permits (multi- sector
Impact of the Volkswagen emissions control defeat device on US public health
NASA Astrophysics Data System (ADS)
Barrett, Steven R. H.; Speth, Raymond L.; Eastham, Sebastian D.; Dedoussi, Irene C.; Ashok, Akshay; Malina, Robert; Keith, David W.
2015-11-01
The US Environmental Protection Agency (EPA) has alleged that Volkswagen Group of America (VW) violated the Clean Air Act (CAA) by developing and installing emissions control system ‘defeat devices’ (software) in model year 2009-2015 vehicles with 2.0 litre diesel engines. VW has admitted the inclusion of defeat devices. On-road emissions testing suggests that in-use NOx emissions for these vehicles are a factor of 10 to 40 above the EPA standard. In this paper we quantify the human health impacts and associated costs of the excess emissions. We propagate uncertainties throughout the analysis. A distribution function for excess emissions is estimated based on available in-use NOx emissions measurements. We then use vehicle sales data and the STEP vehicle fleet model to estimate vehicle distance traveled per year for the fleet. The excess NOx emissions are allocated on a 50 km grid using an EPA estimate of the light duty diesel vehicle NOx emissions distribution. We apply a GEOS-Chem adjoint-based rapid air pollution exposure model to produce estimates of particulate matter and ozone exposure due to the spatially resolved excess NOx emissions. A set of concentration-response functions is applied to estimate mortality and morbidity outcomes. Integrated over the sales period (2008-2015) we estimate that the excess emissions will cause 59 (95% CI: 10 to 150) early deaths in the US. When monetizing premature mortality using EPA-recommended data, we find a social cost of ˜450m over the sales period. For the current fleet, we estimate that a return to compliance for all affected vehicles by the end of 2016 will avert ˜130 early deaths and avoid ˜840m in social costs compared to a counterfactual case without recall.
Analysis of health data from 10 years of Polaris submarine patrols.
Tansey, W A; Wilson, J M; Schaefer, K E
1979-01-01
Medical reports from 885 Fleet Ballistic Missile (FBM) submarine patrols (7,650,000 man-days) were analyzed. The data were categorized and compared with data obtained by medical personnel from surface fleet personnel (1,215,918 man-days) during a continuous 7--8 months' deployment of surface vessels in 1973. Surface fleet personnel had a higher illness rate in the categories of respiratory, traumatic, gastrointestinal, dermal, infections, and miscellaneous illness, and a lower rate in genitourinary, systemic (including mononucleosis), cranial, and neuropsychiatric illness compared to submarine personnel. Because of improved atmosphere control, a sharp decline in the level of submarine contaminants occurred between 1965--67. Reports from the 1968--73 period showed a decrease in: 1) respiratory; 2) ear, nose, and throat; 3) gastrointestinal; 4) cardiovascular; 5) urologic; and 6) general medical illness categories; the number of general surgery, orthopedics, dental, and eye illness cases was not affected. Neurologic and psychiatric disease showed the only increases in incidence for this period. The overall decrease in illness can be attributed mainly to the fall in the incidence of respiratory disease, known to be affected by reduced air pollution, and the decline in gastrointestinal illness. This decline occurred in a period during which the incidence of both classes of illness went up in the general population, according to the Health Interview Survey published by DHEW. The improvement of atmosphere control in submarines caused a substantial reduction in contaminants (a decline in tobacco smoking also occurred in this period), which led to a decrease in incidence of illness, particularly respiratory disease. No direct causal relationship between reduction in air pollution and reduction in the incidence of disease could be proven within the framework of this study, however.
RuCool Operational Oceanography: Using a Fleet of Autonomous Ocean Gliders
NASA Astrophysics Data System (ADS)
Graver, J.; Jones, C.; Glenn, S.; Kohut, J.; Schofield, O.; Roarty, H.; Aragon, D.; Kerfoot, J.; Haldeman, C.; Yan, A.
2007-05-01
At the Rutgers University Coastal Ocean Observation Lab (RU-COOL), we have constructed a shelf-wide ocean observatory to characterize the physical forcing of continental shelf primary productivity in the New York Bight (NYB). The system is anchored by four enabling technologies, which include the international constellation of ocean color satellites, multi-static high frequency long-range surface current radar, real-time telemetry moorings, and long duration autonomous underwater vehicles (AUVs). Operation of the observatory is through a centralized computer network dedicated to receiving, processing and visualizing the real-time data and then disseminating results to both field scientists and ocean forecasters over the World Wide Web. The system was designed to conduct cutting edge research requiring the addition of rapidly evolving technologies, and to serve society by providing sustained data delivered in real-time. Rutgers COOL continues to work closely with Webb Research Corporation (WRC) in testing and development of the Slocum underwater gliders and continues to apply Slocum gliders in field operations spanning the globe. The continued strong collaboration between WRC and Rutgers has led to advances in glider operations and applications. These include deployment/recovery techniques, improvements in durability and reliability, integrated sensors suites, salinity spike removal, and adaptive controls utilized to optimize mission goals and data return. The gliders have gathered numerous data sets including salt intrusions as seen off of New Jersey, plume tracking, biological water sample matching, and operation through Hurricane Ernesto in 2006. This talk will detail recent oceanographic experiments in which the fleet has been deployed and improvements in the operation of these novel robotic vehicles. These experiments, in locations around the world, have resulted in significant new work in operation of underwater gliders and have gathered new and unique data sets. Recent accomplishments include deployment of a glider in Antarctica for LTER, control of a fleet of gliders during the ONR sponsored Shallow Water 06, RIMPAC, LATTE, ASAP, and the continuation of long-term observation at the LEO-15 New Jersey site Endurance Line. To date Rutgers has flown close to 100 glider missions, with over 27,000 km flown over 760 calendar days and 1,350 glider days in the water. Operations around the world are orchestrated remotely from COOL at Rutgers. Computer networking allows for command and control of the glider fleet from the COOL Lab or remotely via the internet. This system has enabled new oceanographic experiments at significantly reduced cost, with increased reliability, and with extended continuous operational deployments in the global oceans since 2003.
Vehicle lightweighting energy use impacts in U.S. light-duty vehicle fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sujit; Graziano, Diane; Upadhyayula, Venkata K. K.
In this article, we estimate the potential energy benefits of lightweighting the light-duty vehicle fleet from both vehicle manufacturing and use perspectives using plausible lightweight vehicle designs involving several alternative lightweight materials, low- and high-end estimates of vehicle manufacturing energy, conventional and alternative powertrains, and two different market penetration scenarios for alternative powertrain light-duty vehicles at the fleet level. Cumulative life cycle energy savings (through 2050) across the nine material scenarios based on the conventional powertrain in the U.S. vehicle fleet range from -29 to 94 billion GJ, with the greatest savings achieved by multi-material vehicles that select different lightweightmore » materials to meet specific design purposes. Lightweighting alternative-powertrain vehicles could produce significant energy savings in the U.S. vehicle fleet, although their improved powertrain efficiencies lessen the energy savings opportunities for lightweighting. A maximum level of cumulative energy savings of lightweighting the U.S. light-duty vehicle through 2050 is estimated to be 66.1billion GJ under the conventional-vehicle dominated business-as-usual penetration scenario.« less
77 FR 59596 - Procurement List; Proposed Additions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... within the authority of Naval Supply Systems Command (NAVSUP) Fleet Logistics Center in Jacksonville, FL, as aggregated by the Naval Supply Systems Command (NAVSUP) Fleet Logistics Center, Jacksonville, FL...
Pacific Fleet Regional Inventory Stocking Model (PRISM)
2003-06-01
Fleet Inventory Management Form ..........................................................................99 19. Master Parts List Input Form...100 20. Master Parts List Update Form...107 26. Master Parts List by APL Report..............................................................................109 27. Master
Fleet Purchase and Pricing Agreement Requirements The Colorado state fleet and the Colorado Department of Transportation (CDOT) must purchase natural gas vehicles (NGVs) where natural gas fueling is
Barwood CNG Cab Fleet Study: Final Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, P.; Kelly, K.; John, M.
1999-05-03
This report describes a fleet study conducted over a 12-month period to evaluate the operation of dedicated compress natural gas (CNG) Ford Crown Victoria sedans in a taxicab fleet. In the study, we assess the performance and reliability of the vehicles and the cost of operating the CNG vehicles compared to gasoline vehicles. The study results reveal that the CNG vehicles operated by this fleet offer both economic and environmental advantages. The total operating costs of the CNG vehicles were about 25% lower than those of the gasoline vehicles. The CNG vehicles performed as well as the gasoline vehicles, andmore » were just as reliable. Barwood representatives and drivers have come to consider the CNG vehicles an asset to their business and to the air quality of the local community.« less
Space transportation architecture: Reliability sensitivities
NASA Technical Reports Server (NTRS)
Williams, A. M.
1992-01-01
A sensitivity analysis is given of the benefits and drawbacks associated with a proposed Earth to orbit vehicle architecture. The architecture represents a fleet of six vehicles (two existing, four proposed) that would be responsible for performing various missions as mandated by NASA and the U.S. Air Force. Each vehicle has a prescribed flight rate per year for a period of 31 years. By exposing this fleet of vehicles to a probabilistic environment where the fleet experiences failures, downtimes, setbacks, etc., the analysis involves determining the resiliency and costs associated with the fleet of specific vehicle/subsystem reliabilities. The resources required were actual observed data on the failures and downtimes associated with existing vehicles, data based on engineering judgement for proposed vehicles, and the development of a sensitivity analysis program.
EERE: Alternative Fuels Data Center Home Page
facility safe with a first-of-its-kind CNG Maintenance Facility Modifications Handbook. Find Fleet & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Locate Stations Search
The Great Green Fleet: The U.S. Navy and Fossil-Fuel Alternatives
2011-01-01
Tennessee at Chattanooga. She has served as a member of the Bataan Expeditionary Strike Group and U.S. Joint Forces Com- mand, completing deployments to...excess energy to the civilian grid. Third, by 2012 the Navy is to have developed a “green” strike group, made up of nuclear- powered carriers, hybrid...first strike group of a future “green fleet.” Fourth, by 2015 the Navy is to cut by half the use of petroleum in its fifty-thousand-vehicle fleet of
ASTRAL Model. Volume 2: Software Implementation
1979-01-01
Commander Fleet Air, Mediterranean Commander, Antisubmarine War Force U.S. Sixth Fleet Commanding Officer FPO New York 09521 1 Fleet Weather Central...Technology, Inc. I Attn: Dr. S. C. Daubin Route 2 North Stonington, Connecticut 06359 Attn: S. Elam 1 I *--4-- I I Ocean Data Systems, Inc. TRACOR, Inc...APPLICATIONS, INC. 8400 Westpark Drive, McLean, Virginia 22101 Telephone 703/821-4300 S 29082-21227 ’Id _9 0 8i•i•F:• • I U CONTENTS Page 1 1 INTRODUCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim; Nienhueser, Ian
This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.
Cash Management Improvement in the Navy Stock Fund.
1986-03-01
Command, Aviation Supply Office, Fisca.l Ya 1,985 Material Budget Execution Plan , September 1984. 44 Naval Supply Systems Command, Code 60... Material . .. .. .. ... 57 3. Inventory Augmentation Appropriated Funds. .. .. ... 57 I V. CURRENT NAVY STOCK FUND CASH MANAGEMENT PRACTICES . ..59 A...Control Center, Mechanicsburg, Pennsylvania 13 * Fleet Material Support Office, Mechanicsburg, Pennsylvania Aviation Supply Off Ice, Philadelphia
The Impact of Changes in Dominant U.S. Threat Perception on the Cohesion of the U.S.-ROK Alliance
2014-12-01
in the Pacific Ocean. The U.S. Third Fleet planned and supervised this exercise, and the ROK, Australia, Canada, Chile , England, and Japan...September 11, 2001, the U.S. could not prioritize many foreign policy agendas, such as controlling immigration and stopping illicit trafficking in drugs
OVERVIEW OF DIVE TRAINER SIMULATOR AT SECOND FLOOR LEVEL SHOWING ...
OVERVIEW OF DIVE TRAINER SIMULATOR AT SECOND FLOOR LEVEL SHOWING CONTROL CENTER CAB. VIEW FACING WEST/NORTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI
33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Island of Oahu, Hawaii; restricted area. 334.1400 Section 334.1400 Navigation and Navigable Waters CORPS... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area... the Officer in Charge, Fleet Area Control and Surveillance Facility, Pearl Harbor, Hawaii 96860-7625...
1985-09-01
BSTRACT This study uses a systems analysis approach to determine the communications technical control needs of the Fleet Marine Force as the transition...subsequent analysis and decision. In the acquisi- tion of military systems, it is typical to find these assumptions used to construct various measures of...relatively free from the typical underlying estimates used in cost and operational effective- ness analysis (COEA) type studies which are designed to compare
The Development of Vocational Vehicle Drive Cycles and Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Adam W.; Phillips, Caleb T.; Konan, Arnaud M.
Under a collaborative interagency agreement between the U.S. Environmental Protection Agency and the U.S Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) performed a series of in-depth analyses to characterize the on-road driving behavior including distributions of vehicle speed, idle time, accelerations and decelerations, and other driving metrics of medium- and heavy-duty vocational vehicles operating within the United States. As part of this effort, NREL researchers segmented U.S. medium- and heavy-duty vocational vehicle driving characteristics into three distinct operating groups or clusters using real world drive cycle data collected at 1 Hz and stored in NREL's Fleet DNAmore » database. The Fleet DNA database contains millions of miles of historical real-world drive cycle data captured from medium- and heavy vehicles operating across the United States. The data encompass data from existing DOE activities as well as contributions from valued industry stakeholder participants. For this project, data captured from 913 unique vehicles comprising 16,250 days of operation were drawn from the Fleet DNA database and examined. The Fleet DNA data used as a source for this analysis has been collected from a total of 30 unique fleets/data providers operating across 22 unique geographic locations spread across the United States. This includes locations with topology ranging from the foothills of Denver, Colorado, to the flats of Miami, Florida. The range of fleets, geographic locations, and total number of vehicles analyzed ensures results that include the influence of these factors. While no analysis will be perfect without unlimited resources and data, it is the researchers understanding that the Fleet DNA database is the largest and most thorough publicly accessible vocational vehicle usage database currently in operation. This report includes an introduction to the Fleet DNA database and the data contained within, a presentation of the results of the statistical analysis performed by NREL, review of the logistic model developed to predict cluster membership, and a discussion and detailed summary of the development of the vocational drive cycle weights and representative transient drive cycles for testing and simulation. Additional discussion of known limitations and potential future work are also included in the report content.« less
NASA Astrophysics Data System (ADS)
Alanis Pena, Antonio Alejandro
Major commercial electricity generation is done by burning fossil fuels out of which coal-fired power plants produce a substantial quantity of electricity worldwide. The United States has large reserves of coal, and it is cheaply available, making it a good choice for the generation of electricity on a large scale. However, one major problem associated with using coal for combustion is that it produces a group of pollutants known as nitrogen oxides (NO x). NOx are strong oxidizers and contribute to ozone formation and respiratory illness. The Environmental Protection Agency (EPA) regulates the quantity of NOx emitted to the atmosphere in the United States. One technique coal-fired power plants use to reduce NOx emissions is Selective Catalytic Reduction (SCR). SCR uses layers of catalyst that need to be added or changed to maintain the required performance. Power plants do add or change catalyst layers during temporary shutdowns, but it is expensive. However, many companies do not have only one power plant, but instead they can have a fleet of coal-fired power plants. A fleet of power plants can use EPA cap and trade programs to have an outlet NOx emission below the allowances for the fleet. For that reason, the main aim of this research is to develop an SCR management mathematical optimization methods that, with a given set of scheduled outages for a fleet of power plants, minimizes the total cost of the entire fleet of power plants and also maintain outlet NO x below the desired target for the entire fleet. We use a multi commodity network flow problem (MCFP) that creates edges that represent all the SCR catalyst layers for each plant. This MCFP is relaxed because it does not consider average daily NOx constraint, and it is solved by a binary integer program. After that, we add the average daily NOx constraint to the model with a schedule elimination constraint (MCFPwSEC). The MCFPwSEC eliminates, one by one, the solutions that do not satisfy the average daily NOx constraint and the worst NH 3 slip until it finds the solution that satisfies that requirement. We introduce an algorithm called heuristic MCFPwSEC (HMCFPwSEC). When HMCFPwSEC algorithm starts, we calculate the cost of the edges estimating the average NH3 slip level, but after we have a schedule that satisfies the average daily NOx constraint and the worst NH3 slip, we update the cost of the edges with the average NH3 slip for this schedule. We repeat this process until we have the solution. Because HMCFPwSEC does not guarantee optimality, we compare its results with SGO, which is optimal, using computational experiments. The results between both models are very similar, the only important difference is the time to solve each model. Then, a fleet HMCFPwSEC (FHMCFPwSEC) uses HMCFPwSEC to create the SCR management plan for each plant of the fleet, with a discrete NOx emissions value for each plant. FHMCFPwSEC repeats this process with different discrete levels of NOx emissions, for each plant, in order to create a new problem with schedules with different cost and NO x emissions for each plant of the fleet. Finally, FHMCFPwSEC solves this new problem with a binary integer program, in order to satisfy a NO x emission value for the fleet that also minimizes the total cost for the fleet, and using each plant once. FHMCFPwSEC can work with single cut and also with multi-cut methods. Because FHMCFPwSEC does not guarantee optimality, we compare its results with fleet SGO (FSGO) using computational experiments. The results between both models are very similar, the only important difference is the time to solve each model. In the experiments, FHMCFPwSEC multi-cut targeting new layer always uses less time than FSGO.
NASA Astrophysics Data System (ADS)
Frommer, Joshua B.
This work develops and implements a solution framework that allows for an integrated solution to a resource allocation system-of-systems problem associated with designing vehicles for integration into an existing fleet to extend that fleet's capability while improving efficiency. Typically, aircraft design focuses on using a specific design mission while a fleet perspective would provide a broader capability. Aspects of design for both the vehicles and missions may be, for simplicity, deterministic in nature or, in a model that reflects actual conditions, uncertain. Toward this end, the set of tasks or goals for the to-be-planned system-of-systems will be modeled more accurately with non-deterministic values, and the designed platforms will be evaluated using reliability analysis. The reliability, defined as the probability of a platform or set of platforms to complete possible missions, will contribute to the fitness of the overall system. The framework includes building surrogate models for metrics such as capability and cost, and includes the ideas of reliability in the overall system-level design space. The concurrent design and allocation system-of-systems problem is a multi-objective mixed integer nonlinear programming (MINLP) problem. This study considered two system-of-systems problems that seek to simultaneously design new aircraft and allocate these aircraft into a fleet to provide a desired capability. The Coast Guard's Integrated Deepwater System program inspired the first problem, which consists of a suite of search-and-find missions for aircraft based on descriptions from the National Search and Rescue Manual. The second represents suppression of enemy air defense operations similar to those carried out by the U.S. Air Force, proposed as part of the Department of Defense Network Centric Warfare structure, and depicted in MILSTD-3013. The two problems seem similar, with long surveillance segments, but because of the complex nature of aircraft design, the analysis of the vehicle for high-speed attack combined with a long loiter period is considerably different from that for quick cruise to an area combined with a low speed search. However, the framework developed to solve this class of system-of-systems problem handles both scenarios and leads to a solution type for this kind of problem. On the vehicle-level of the problem, different technology can have an impact on the fleet-level. One such technology is Morphing, the ability to change shape, which is an ideal candidate technology for missions with dissimilar segments, such as the aforementioned two. A framework, using surrogate models based on optimally-sized aircraft, and using probabilistic parameters to define a concept of operations, is investigated; this has provided insight into the setup of the optimization problem, the use of the reliability metric, and the measurement of fleet level impacts of morphing aircraft. The research consisted of four phases. The two initial phases built and defined the framework to solve system-of-systems problem; these investigations used the search-and-find scenario as the example application. The first phase included the design of fixed-geometry and morphing aircraft for a range of missions and evaluated the aircraft capability using non-deterministic mission parameters. The second phase introduced the idea of multiple aircraft in a fleet, but only considered a fleet consisting of one aircraft type. The third phase incorporated the simultaneous design of a new vehicle and allocation into a fleet for the search-and-find scenario; in this phase, multiple types of aircraft are considered. The fourth phase repeated the simultaneous new aircraft design and fleet allocation for the SEAD scenario to show that the approach is not specific to the search-and-find scenario. The framework presented in this work appears to be a viable approach for concurrently designing and allocating constituents in a system, specifically aircraft in a fleet. The research also shows that new technology impact can be assessed at the fleet level using conceptual design principles.
Portable Multigas Monitors for International Space Station
NASA Technical Reports Server (NTRS)
Mudgett, Paul D.; Pilgrim, Jeffrey S.; Ruff, Gary A.
2011-01-01
The Environmental Health System (EHS) on International Space Station (ISS) includes portable instruments to measure various cabin gases that acutely impact crew health. These hand-held devices measure oxygen, carbon dioxide, carbon monoxide, hydrogen chloride and hydrogen cyanide. The oxygen and carbon dioxide units also serve to back up key functions of the Major Constituent Analyzers. Wherever possible, commercial off-the-shelf (COTS) devices are employed by EHS to save development and sustaining costs. COTS hardware designed for general terrestrial applications however has limitations such as no pressure compensation, limited life of the active sensor, calibration drift, battery issues, unpredictable vendor support and obsolescence. The EHS fleet (inflight and ground inventory) of instruments is both aging and dwindling in number. With the retirement of the US Space Shuttle, maintenance of on-orbit equipment becomes all the more difficult. A project is underway to search for gas monitoring technology that is highly reliable and stable for years. Tunable Diode Laser Spectroscopy (TDLS) seems to be the front-runner technology, but generally is not yet commercially available in portable form. NASA has fostered the development of TDLS through the Small Business Innovative Research (SBIR) program. A number of gases of interest to the aerospace and submarine communities can be addressed by TDLS including the list mentioned above plus hydrogen fluoride, ammonia and water (humidity). There are several different forms of TDLS including photoacoustic and direct absorption spectroscopy using various multipass cell geometries. This paper describes the history of portable gas monitoring on NASA spacecraft and provides a status of the development of TDLS based instruments. Planned TDLS flight experiments on ISS could lead both to operational use on ISS and important roles in future Exploration spacecraft and habitats.
Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C
2014-06-01
The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.
Alternative Fuels Data Center: Mass Transit
traveled and fuel used by private vehicles. Vehicle fleet managers, corporate decision makers, and public effective incentives for fleet managers and corporate decision makers to build mass transit ridership
U.S. Naval Base, Pearl Harbor, Retail Warehouse, Fleet Landing Halawa, ...
U.S. Naval Base, Pearl Harbor, Retail Warehouse, Fleet Landing Halawa, near Kamehameha Highway between Richardson Recreation Center & USS Arizona Memorial Visitor Center, Pearl City, Honolulu County, HI
NASA Technical Reports Server (NTRS)
Repas, G. A.
1971-01-01
Blender supplies hydrogen at temperatures from 289 deg K to 367 deg K. Hydrogen temperature is controlled by using blender to combine flow from liquid hydrogen tank /276 deg K/ and gaseous hydrogen cylinder /550 deg K/. Blenders are applicable where flow of controlled low-temperature fluid is desired.
Fleet management performance monitoring.
DOT National Transportation Integrated Search
2013-05-01
The principle goal of this project was to enhance and expand the analytical modeling methodology previously developed as part of the Fleet Management Criteria: Disposal Points and Utilization Rates project completed in 2010. The enhanced and ex...
CleanFleet final report : executive summary
DOT National Transportation Integrated Search
1995-12-01
CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, : was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily : commercial service. Between April 1992 and September 1994, five alternative fuels were t...
2015-03-01
wine warfare NCC naval component commander NFC numbered fleet commander NM nautical mile NMP Navy mission planner NOP Navy...principles for naval component commanders ( NCCs ), numbered fleet commanders (NFCs) or joint force maritime component commanders (JFMCCs) and their
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... State of Oklahoma Employment Security Commission requested administrative reconsideration of the... workers, stated ``aircraft maintenance has been outsourced to China'' and that the fleet services clerks...
Sustainable Technologies: Finding Success the Second Time Around
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walkowicz, Kevin
2016-03-03
Presentation provides background on how to identify and quantify improvements for advanced vehicle technology and commercial fleet operations. It gives examples of next generation technology improvements that have been implemented within commercial fleets.
[The head of the medical service must be the person...(To the 70th anniversary of N.G. Ryzhman)].
Val'skiĭ, V V; Butikov, V P; Rybakov, S M; Chernikov, O G
2014-09-01
The article is devoted to contribution of major general (rear Admiral. - navy) of medical service Nikolay Grigoryevich Ryzhman (1944-2005), the chief of the medical service of the Northern fleet (1991-1999), to development of naval medicine, who would have turn 70 years this September. The constant analysis, and experience generalization of the medical services of the fleet connections and associations and aspiration to provide fighting capacity for the fleet crew - were a keynote of Ryzhman's activity concerned development and deployment of the new forms and methods of medical support and searching of ways to increase crew efficiency. The implemented methods and forms of organization of the medical support and scientific development of the medical support are used even now in the practical activities of the medical service of the Northern fleet.
Methodology for fleet deployment decisions. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, J.; Matousek, M.
1995-01-01
In today`s more competitive energy market, selecting investment and operating plans for a generating system, specific plants, and major plant components is becoming increasingly critical and complex. As utilities consider off-system sales, the key factor for fleet deployment decisions is no longer simply minimizing revenue requirements. Rather, system-level value dominates. This is a measure that can be difficult to determine in the context of traditional decision making methods. Selecting the best fleet deployment option requires the ability to account for multiple sources of value under uncertain conditions for multiple utility stakeholders. The object of this paper was to develope andmore » test an approach for assessing the system-wide value of alternative fleet deployment decisions. This was done, and the approach was tested at Consolidated Edison and at Central Illinois Public Service Company.« less
Fleet Sizing of Automated Material Handling Using Simulation Approach
NASA Astrophysics Data System (ADS)
Wibisono, Radinal; Ai, The Jin; Ratna Yuniartha, Deny
2018-03-01
Automated material handling tends to be chosen rather than using human power in material handling activity for production floor in manufacturing company. One critical issue in implementing automated material handling is designing phase to ensure that material handling activity more efficient in term of cost spending. Fleet sizing become one of the topic in designing phase. In this research, simulation approach is being used to solve fleet sizing problem in flow shop production to ensure optimum situation. Optimum situation in this research means minimum flow time and maximum capacity in production floor. Simulation approach is being used because flow shop can be modelled into queuing network and inter-arrival time is not following exponential distribution. Therefore, contribution of this research is solving fleet sizing problem with multi objectives in flow shop production using simulation approach with ARENA Software
Energy use and taxation policy in the New Zealand car fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-02-01
The report describes the composition of the New Zealand car fleet and the relationship between design factors, fleet composition, vehicle useage and fuel consumption. The indirect energy content of the vehicle and roadway are discussed. Existing and potential Government policy instruments for promoting fuel economy in the car fleet are discussed and evaluated. The report conclusions favor flat rate sales tax on vehicles regardless of engine size together with an appropriate level of petrol tax in preference to taxation that varies with vehicle size or engine capacity. A review of hire purchase regulations is proposed. Prior to publication of thismore » report the Industries Development Commission Plan for the motor vehicle industry was released which proposes changes to the tariff, taxation and credit purchase regime applying to motor vehicles. These changes are summarized.« less
General aviation activity and avionics survey. Annual summary report, CY 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
This report presents the results and a description of the 1985 General Aviation Activity and Avionics Survey. The survey was conducted during 1986 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 10.3 percent of the general aviation fleet. A responses rate of 63.7 percent was obtained. Survey results based upon response but are expanded upward to represent the total population. Survey results revealed that during 1985 an estimatedmore » 34.1 million hours of flying time were logged and 88.7 million operations were performed by the 210,654 active general aviation aircraft in the U.S. fleet. The mean annual flight time per aircraft was 158.2 hours. The active aircraft represented about 77.9 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, engine hours, and miles flown estimates, as well as tables for detailed analysis of the avionics capabilities of the general aviation fleet. New to the report this year are estimates of the number of landings, IFR hours flown, and the cost and grade of fuel consumed by the GA fleet.« less
NASA Technical Reports Server (NTRS)
Peters, Christopher J.; Miles, Richard B.; Burns, Ross A.; Bathel, Brett F.; Jones, Gregory S.; Danehy, Paul M.
2016-01-01
A sweeping jet (SWJ) actuator operating over a range of nozzle pressure ratios (NPRs) was characterized with femtosecond laser electronic excitation tagging (FLEET), single hot-wire anemometry (HWA) and high-speed/phase-averaged schlieren. FLEET velocimetry was successfully demonstrated in a highly unsteady, oscillatory flow containing subsonic through supersonic velocities. Qualitative comparisons between FLEET and HWA (which measured mass flux since the flow was compressible) showed relatively good agreement in the external flow profiles. The spreading rate was found to vary from 0.5 to 1.2 depending on the pressure ratio. The precision of FLEET velocity measurements in the external flow field was poorer (is approximately equal to 25 m/s) than reported in a previous study due to the use of relatively low laser fluences, impacting the velocity fluctuation measurements. FLEET enabled velocity measurements inside the device and showed that choking likely occurred for NPR = 2.0, and no internal shockwaves were present. Qualitative oxygen concentration measurements using FLEET were explored in an effort to gauge the jet's mixing with the ambient. The jet was shown to mix well within roughly four throat diameters and mix fully within roughly eight throat diameters. Schlieren provided visualization of the internal and external flow fields and showed that the qualitative structure of the internal flow does not vary with pressure ratio and the sweeping mechanism observed for incompressible NPRs also probably holds for compressible NPRs.
Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross
Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Podnar, Gregg W.; Dolan, John M.; Stancliff, Stephen; Lin, Ellie; Hosler, Jeffrey C.; Ames, Troy J.; Higinbotham, John; Moisan, John R.; Moisan, Tiffany A.;
2008-01-01
Earth science research must bridge the gap between the atmosphere and the ocean to foster understanding of Earth s climate and ecology. Ocean sensing is typically done with satellites, buoys, and crewed research ships. The limitations of these systems include the fact that satellites are often blocked by cloud cover, and buoys and ships have spatial coverage limitations. This paper describes a multi-robot science exploration software architecture and system called the Telesupervised Adaptive Ocean Sensor Fleet (TAOSF). TAOSF supervises and coordinates a group of robotic boats, the OASIS platforms, to enable in-situ study of phenomena in the ocean/atmosphere interface, as well as on the ocean surface and sub-surface. The OASIS platforms are extended deployment autonomous ocean surface vehicles, whose development is funded separately by the National Oceanic and Atmospheric Administration (NOAA). TAOSF allows a human operator to effectively supervise and coordinate multiple robotic assets using a sliding autonomy control architecture, where the operating mode of the vessels ranges from autonomous control to teleoperated human control. TAOSF increases data-gathering effectiveness and science return while reducing demands on scientists for robotic asset tasking, control, and monitoring. The first field application chosen for TAOSF is the characterization of Harmful Algal Blooms (HABs). We discuss the overall TAOSF architecture, describe field tests conducted under controlled conditions using rhodamine dye as a HAB simulant, present initial results from these tests, and outline the next steps in the development of TAOSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, David L
2013-06-30
The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuelmore » Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.« less
Future orbital transfer vehicle technology study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Davis, E. E.
1982-01-01
Reusable space and ground based LO2/LH2 OTV's, both advanced space engines and aero assist capability were compared. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. An all LO2/LH2 OTV fleet was also compared with a fleet of LO2/.H2 OTV's and electric OTV's. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. In this case, the LO2/LH2 OTV fleet provided a 23% advantage in total transportation cost. An accelerated technology LF2/LH2 OTV provided improvements in performance relative to LO2/.H2 OTV but has higher DDT&E cost which negated its cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but still did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on orbit propellant storage and transfer and on orbit maintenance capability.
Functional Quality Criterion of Rock Handling Mechanization at Open-pit Mines
NASA Astrophysics Data System (ADS)
Voronov, Yuri; Voronov, Artyoni
2017-11-01
Overburden and mining operations at open-pit mines are performed mainly by powerful shovel-truck systems (STSs). One of the main problems of the STSs is a rather low level of their operating quality, mainly due to unjustified over-trucking. In this article, a functional criterion for assessing the qualify of the STS operation at open-pit mines is formulated, derived and analyzed. We introduce the rationale and general principles for the functional criterion formation, its general form, as well as variations for various STS structures: a mixed truck fleet and a homogeneous shovel fleet, a mixed shove! fleet and a homogeneous truck fleet, mixed truck and shovel fleets. The possibility of assessing the quality of the STS operation is of great importance for identifying the main directions for improving their operational performance and operating quality, optimizing the main performance indicators by the qualify criterion, and. as a result, for possible saving of material and technical resources for open-pit mining. Improvement of the quality of the STS operation also allows increasing the mining safety and decreasing the atmosphere pollution - by means of possible reducing of the number of the operating trucks.
Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine
NASA Astrophysics Data System (ADS)
Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.
2011-10-01
The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.
Fleet replacement modeling : final report, July 2009.
DOT National Transportation Integrated Search
2009-07-01
This project focused on two interrelated areas in equipment replacement modeling for fleets. The first area was research-oriented and addressed a fundamental assumption in engineering economic replacement modeling that all assets providing a similar ...
41 CFR 101-39.101 - Notice of intention to begin a study.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., will ascertain the possibilities of economies to be derived through the establishment of a fleet... develop data and justification as to the feasibility of establishing a fleet management system. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.
Medium- and Heavy-Duty Vehicles | Transportation Research | NREL
. May 19, 2014 Fleet DNA Tool Provides Real-World "Genetics" for Commercial Fleets Vehicle performance demands of today's commercial vehicles. This clearinghouse of medium- and heavy-duty commercial
Hydrogen-water vapor mixtures: Control of hydrothermal atmospheres by hydrogen osmosis
Shaw, H.R.
1963-01-01
Experiments at 700??C and 800 bars total pressure demonstrate positive deviations from ideality for mixtures of hydrogen and H2O gases. The deviations are greater than predicted with Stockmayer's method. The composition of the mixture and the fugacity of hydrogen are controlled by diffusing hydrogen through metallic membranes. The results give the fugacities of both H 2O and oxygen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Schey; Jim Francfort
2014-10-01
This report focuses on the Department of Veterans Affairs, VA Manhattan Campus (VA- Manhattan) fleet to identify the daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support successful introduction of plug-in electric vehicles (PEVs) into the agency’s fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively called PEVs) can fulfill the mission requirements.
Lessons from cross-fleet/cross-airline observations - Evaluating the impact of CRM/LOFT training
NASA Technical Reports Server (NTRS)
Butler, Roy E.
1991-01-01
A review is presented of the crew resource management/line oriented flight training (CRM/LOFT) program to help determine the level of standardization across fleets and airlines in the critical area of evaluating crew behavior and performance. One of the goals of the project is to verify that check airmen and LOFT instructors within organizations are evaluating CRM issues consistently and that differences observed between fleets are not a function of idiosyncracies on the part of observers. Attention is given to the research tools for crew evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2014-11-01
This report focuses on the National Institute of Health (NIH) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Steve; Francfort, Jim
2015-06-01
This report focuses on the Department of Health and Human Services, Assistant Secretary for Preparedness and Response fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agency’s fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.
Naval Postgraduate School Research. Volume 10, Number 2, June 2000
2000-06-01
Associate Provost and Dean of Research Dr. David W. Netzer R E S E A R C H N A V A L P O S T G R A D U A T E S C H O O L Introduction The past two...capture during the execution phase of Fleet Battle Experiment Golf (FBE- G ). Fleet Battle Experiment Golf was conducted by Sixth Fleet and the Maritime...in FBE- G . The National Security Telecommunications and Information Systems Security Committee (NSTISSC) and the National Security Agency has certified
Flair-fleet location and information reporting
NASA Technical Reports Server (NTRS)
Norman, E. R.; Dunlap, M. E.
1974-01-01
The FLAIR system, as now produced, automatically updates each vehicle's location and corresponding officer's status once each two seconds and presents this information to police dispatchers in the command and control center. The position of all vehicles available for assignment is displayed on a color video map at each dispatcher's console to an accuracy of 50 feet. This gives the dispatcher a continuous picture of the deployment of the total available force and thus complete command and control of all police under his responsibility.
Navy Command Control and Communications System: Layered Analytic Model.
1981-09-27
of these persons can be prescribed in terms of the model. Thus the Fleet, CINC, OTC, CO, TAO , Operations Officer, Air Intercept Controller, Supply...04 o-r 4 400 0n 0.14 to r WQ I 0 tvm 9 u 3t~ *w 0)o) 04 P40U u w) 4) 4- 0 4- -4()04) .4.) 41 41 41 0 r 0 4 > 4 4)(L 4 L tw 0 M 4 4J 04 $4 (a-3 4)J 40
Missouri Soybean Association Biodiesel Demonstration Project: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, Dale; Hamilton, Jill
The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry educationmore » program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to support ongoing industry efforts to collect existing data and to increase awareness and knowledge among school district fleet managers. However, three years into the project, the original intent of the engine verification was no longer deemed by equipment manufacturers to be of sufficient economic interest to enter into a partnership. In response, MSA requested a project extension and re-scope to eliminate the aftermarket equipment verification and replace it with a petroleum education program. The revised project maintained four task areas with the following modifications. The first component was directed at increasing national compliance with newly initiated state level fuel blend mandates through a distributor education program. Component two was modified to eliminate the verification element and, instead, document operational data from biodiesel use in a district school bus fleet. Components three and four were unchanged and maintained their purpose of expanding upon the existing knowledge base of biodiesel use in school bus fleets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Schey; Jim Francfort
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify dailymore » operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel« less
Cai, Hua; Xu, Ming
2013-08-20
Environmental implications of fleet electrification highly depend on the adoption and utilization of electric vehicles at the individual level. Past research has been constrained by using aggregated data to assume all vehicles with the same travel pattern as the aggregated average. This neglects the inherent heterogeneity of individual travel behaviors and may lead to unrealistic estimation of environmental impacts of fleet electrification. Using "big data" mining techniques, this research examines real-time vehicle trajectory data for 10,375 taxis in Beijing in one week to characterize the travel patterns of individual taxis. We then evaluate the impact of adopting plug-in hybrid electric vehicles (PHEV) in the taxi fleet on life cycle greenhouse gas emissions based on the characterized individual travel patterns. The results indicate that 1) the largest gasoline displacement (1.1 million gallons per year) can be achieved by adopting PHEVs with modest electric range (approximately 80 miles) with current battery cost, limited public charging infrastructure, and no government subsidy; 2) reducing battery cost has the largest impact on increasing the electrification rate of vehicle mileage traveled (VMT), thus increasing gasoline displacement, followed by diversified charging opportunities; 3) government subsidies can be more effective to increase the VMT electrification rate and gasoline displacement if targeted to PHEVs with modest electric ranges (80 to 120 miles); and 4) while taxi fleet electrification can increase greenhouse gas emissions by up to 115 kiloton CO2-eq per year with the current grid in Beijing, emission reduction of up to 36.5 kiloton CO2-eq per year can be achieved if the fuel cycle emission factor of electricity can be reduced to 168.7 g/km. Although the results are based on a specific public fleet, this study demonstrates the benefit of using large-scale individual-based trajectory data (big data) to better understand environmental implications of fleet electrification and inform better decision making.
Major Impact of Fleet Renewal Over Airports Located in the Most Important Region of Brazil
NASA Technical Reports Server (NTRS)
Maters, Rafael Waltz; deRoodeTorres, Roberta; Santo, Respicio A. Espirito, Jr.
2003-01-01
The present article discusses and analyses the major impacts of the Brazilian carriers fleet renewal regarding Brazilian airport infrastructure in the most important region of the country, the Southeast (SE). A brief historical overview of the country's airline fleet will be presented, demonstrating the need for its renewal (m fact, Brazilian carriers started a major fleet renewal program m the last five years), while analyzing the periods in which a new breed of aircraft was put into service by the major carriers operating in the SE region. The trend of operating the classic regional jets plus the forthcoming entry into service of the "large regional jets" (LRJ, 70-115 seaters) in several point-to-point routes are presented along with the country's carriers" reality of operating these former aircraft in several high-capacity and medium-range routes. The article will focus on the ability of four of the major Southeast's airports to cope with the fleet modernization, mainly due to the fact that the region studied is the most socioeconomic developed, by far, with the largest demand for air transportation, thus making the impacts much more perceptible for the communities and the airport management involved. With the emergence of these impacts, several new projects and investments are being discussed and pushed forward, despite budgetary constrains being a reality in almost every Brazilian city, even in the SE region. In view of this, the paper presents how the general planning could be carried out in order to adapt the airports' infrastructures in function of the proposed (and in some cases, necessary) fleet renewal. Ultimately, we will present the present picture and two future scenarios m order to determine the level of service in the existent passenger terminal facilities in the wake of the possible operation of several new aircraft. Keywords: Airline fleet planning, Airport planning, Regional development, Regional Jets.
VIEW OF SECOND LEVEL OF MISSILE LAB WITH MISSILE TUBE ...
VIEW OF SECOND LEVEL OF MISSILE LAB WITH MISSILE TUBE WITH HATCH ON LEFT AND CONTROL PANEL ON RIGHT. VIEW FACING SOUTHEAST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI
1987-10-01
departures); and (3) departures-only. A fleet mix typical of most majur airports was selected consisting of 15 percent small aircraft (e.g., Swearingen SW-4...schedules predicated on VFR operations can result in substantial delays when weather conditions force the use of IFR operations. 5.1 Difference Between
2004-06-01
Mark Adkins Director of Research Ph.D Human Communication adkins@arizona.edu Dr. John Kruse Director of Programming Ph.D Management Information Systems...Theory • Network Centric Warfare • Technology Adoption – Technology Adoption Model – Technology Transition Model • Human Communication – Social Context
ERIC Educational Resources Information Center
Steinemann, John H.
The investigation is part of continuing Navy research on the Trainability of Group IV (low ability) personnel intended to maximize the utilization and integration of marginal personnel in the fleet. An experimental Training Methods Development School (TMDS) was initiated to provide an experimental training program, with research controls, for…
From Self-Flying Helicopters to Classrooms of the Future
ERIC Educational Resources Information Center
Young, Jeffrey R.
2012-01-01
On a summer day four years ago, a Stanford University computer-science professor named Andrew Ng held an unusual air show on a field near the campus. His fleet of small helicopter drones flew under computer control, piloted by artificial-intelligence software that could teach itself to fly after watching a human operator. By the end of the day,…
NASA Astrophysics Data System (ADS)
Klebe, D. I.; Colorado College Student Astronomy Instrument Team; Pikes Peak Observatory Team
1999-12-01
The Colorado College Student Astronomy Instrument Team (CCSAIT) and the Pikes Peak Observatory (PPO) present preliminary optical and mechanical designs as well as discussion on a fleet of small research-class 0.4-0.5-meter telescopes. Each telescope is being designed to accommodate a variety of visible and near-infrared instrumentation, ranging from wide-field imaging cameras to moderate resolution spectrometers. The design of these telescopes is predicated on the use of lightweight primary mirrors, which will enable the entire optical telescope assembly (OTA) including instrumentation to come in under 50 kilograms. The lightweight OTA’s will further allow the use of inexpensive high-quality off-the-shelf robotic telescope mounts for future access and computer control of these telescopes over the Internet. The basic idea is to provide astronomers with a comprehensive arsenal of modest instrumentation at their fingertips in order to conduct a wide variety of interesting scientific research programs. Some of these research programs are discussed and input from the astronomical community is strongly encouraged. Connectivity and Internet control issues are also briefly discussed as development in this area is already underway through a collaborative effort between the PPO and the Cowan-Fouts Foundation of Woodland Park, Colorado.
Development and Preliminary Results of CTAS on Airline Operational Control Center Operations
NASA Technical Reports Server (NTRS)
Zelenka, Richard; Beatty, Roger; Falcone, Richard; Engelland, Shawn; Tobias, Leonard (Technical Monitor)
1998-01-01
Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go" decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.
Development and Preliminary Results of CTAS on Airline Operational Control Center Operations
NASA Technical Reports Server (NTRS)
Zelenka, Richard; Beatty, Roger; Engelland, Shawn
2004-01-01
Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.
FleetForward evaluation : final report
DOT National Transportation Integrated Search
2000-10-01
This document is the final report for the evaluation of the I-95 Corridor Coalitions FleetForward operational test. The objective of this test was to evaluate the usefulness of traffic flow data to motor carrier operations. Cambridge Systematics, in ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
This annual report of the Alternative Fuel Transportation Program, which ensures compliance with DOE regulations covering state government and alternative fuel provider fleets pursuant to the Energy Policy Act of 1992 (EPAct), as amended, provides fleet compliance results for manufacturing year 2014 / fiscal year 2015.
CleanFleet final report. Volume 1, summary
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
75 FR 16229 - Urbanized Area Formula Program: Notice of Final Circular
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
... revision. A. Chapter I--Introduction and Background Chapter I of the revised circular is the introductory... comprehensive fleet age and condition statistics are necessary for FTA to estimate fleet condition on a national...
Transportation Electrification Beyond Light Duty: Technology and Market Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartaglia, Katie; Birky, Alicia; Laughlin, Michael
Commercial fleets form the backbone of the nation’s economy, getting people and the things they need to the places they need to go and performing services necessary to keep public and private physical infrastructure in working order. Commercial fleets include a wide range of vehicle and equipment types, typical uses, and sizes, and involve millions of on-road and offroad vehicles. This diversity means there is no single solution to the challenges these vehicles pose for reducing petroleum dependence, impact on air quality, and emission of greenhouse gases. This document focuses on electrification of government, commercial, and industrial fleets. These fleetsmore » have been divided into three market segments based on equipment use: service fleets, goods movement, and people movement. In particular, it addresses highway vehicles not used for personal transport; non-highway modes, including air, rail, and water; and non-road equipment used directly or in support of these uses.« less
Gas-controlled dynamic vacuum insulation with gas gate
Benson, David K.; Potter, Thomas F.
1994-06-07
Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.
Gas-controlled dynamic vacuum insulation with gas gate
Benson, D.K.; Potter, T.F.
1994-06-07
Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.
NASA Astrophysics Data System (ADS)
Toyoda, H.; Sugai, H.; Kato, K.; Yoshida, A.; Okuda, T.
1986-06-01
The composition of particle flux to deposit hydrogenated amorphous silicon films in a glow discharge is controlled by a combined electrostatic-magnetic deflection technique. As a result, the films are formed firstly without hydrogen ion flux, secondly by neutral flux only, and thirdly by all species fluxes. Comparison of these films reveals the significant role of hydrogen in the surface reactions. Hydrogen breaks the Si-Si bond, decreases the sticking probability of the Si atom, and replaces the SiH bond by a SiH2 bond to increase the hydrogen content of the films.
Trenkel, Verena M.; Daurès, Fabienne; Rochet, Marie-Joëlle; Lorance, Pascal
2013-01-01
According to portfolio theory applied to fisheries management, economic returns are stabilised by harvesting in a portfolio stocks of species whose returns are negatively correlated and for which the portfolio economic return variance is smaller than the sum of stock specific return variances. Also, variability is expected to decrease with portfolio width. Using a range of indicators, these predictions were tested for the French fishing fleets in the Bay of Biscay (Northeast Atlantic) during the period 2001–2009. For this, vessels were grouped into eight fishing fleets based on the gears used and exploited species were grouped into five functional groups. The portfolio width of fleets ranged from 1–3 functional groups, or 4–19 species. Economic fleet returns (sale revenues minus fishing costs) varied strongly between years; the interannual variability was independent of portfolio width (species or functional groups). Energy ratio expressed by the ratio between fuel energy used for fishing and energy contained in landings varied from 0.3 for purse seines to 9.7 for trawlers using bottom trawls alone or in combination with pelagic trawls independent of portfolio width. Interannual variability in total sale revenues was larger than the sum of species specific sales revenue variability, except for fleets using hooks and pelagic trawlers; it increased with the number of species exploited. In conclusion, the interannual variability of economic returns or energy ratios of French fisheries in the Bay of Biscay did not decrease with the number of species or functional groups exploited, though it varied between fleets. PMID:23922951
NASA Astrophysics Data System (ADS)
Michael, P. E.; Wilcox, C.; Tuck, G. N.; Hobday, A. J.; Strutton, P. G.
2017-06-01
Climate change is projected to continue shifting the distribution of marine species, leading to changes in local assemblages and different interactions with human activities. With regard to fisheries, understanding the relationship between fishing fleets, target species catch per unit effort (CPUE), and the environment enhances our ability to anticipate fisher response and is an essential step towards proactive management. Here, we explore the potential impact of climate change in the southern Indian Ocean by modelling Japanese and Taiwanese pelagic longline fleet dynamics. We quantify the mean and variability of target species CPUE and the relative value and cost of fishing in different areas. Using linear mixed models, we identify fleet-specific effort allocation strategies most related to observed effort and predict the future distribution of effort and tuna catch under climate change for 2063-2068. The Japanese fleet's strategy targets high-value species and minimizes the variability in CPUE of the primary target species. Conversely, the Taiwanese strategy indicated flexible targeting of a broad range of species, fishing in areas of high and low variability in catch, and minimizing costs. The projected future mean and variability in CPUE across species suggest a slight increase in CPUE in currently high CPUE areas for most species. The corresponding effort projections suggest a slight increase in Japanese effort in the western and eastern study area, and Taiwanese effort increasing east of Madagascar. This approach provides a useful method for managers to explore the impacts of different fishing and fleet management strategies for the future.
CleanFleet final report. Volume 4, fuel economy
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
Uncertainties in Estimates of Fleet Average Fuel Economy : A Statistical Evaluation
DOT National Transportation Integrated Search
1977-01-01
Research was performed to assess the current Federal procedure for estimating the average fuel economy of each automobile manufacturer's new car fleet. Test vehicle selection and fuel economy estimation methods were characterized statistically and so...
CleanFleet final report. Volume 6, occupational hygiene
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
Alternative Fuels Data Center: Illinois Transportation Data for Alternative
Version More Illinois Videos on YouTube Video thumbnail for Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks Nov. 2, 2013
Coordination of Pupil and Non-Pupil Transportation.
DOT National Transportation Integrated Search
1982-03-31
At present, home-to-school student transportation and general public transit services are provided almost entirely by separate vehicle fleets. The fact that both of these fleets are not fully utilized throughout the day indicates that there may be th...
CleanFleet final report. Volume 5, employee attitude assessment
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
Electric vehicle fleet implications and analysis : final research project report.
DOT National Transportation Integrated Search
2016-11-01
The objective of this project was to evaluate the implementation and effectiveness of : electric vehicles (EVs) used in fleet operations. The study focuses on Battery-Electric : Vehicles (BEVs) and Plug-In Hybrid Electric Vehicles (PHEVs); collective...
CleanFleet final report. Volume 3, vehicle maintenance and durability
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
10 CFR 490.200 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...
10 CFR 490.200 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...
10 CFR 490.200 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...
10 CFR 490.200 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...
10 CFR 490.200 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...
Mechanical properties of tank car steels retired from the fleet
DOT National Transportation Integrated Search
2008-08-31
As a consequence of several recent tank car accidents, the structural integrity of railroad tank cars has come under greater scrutiny, especially the older portion of the fleet fabricated prior to steel normalization requirements. The purpose of this...
Forecasting Trade and the Merchant Fleet.
DOT National Transportation Integrated Search
1987-04-01
This report presents the results of an effort to develop a forecast of the ships required for U.S. oceanborne foreign trade. The ability to accurately identify trends that affect the fleet can provide important information to the U.S. maritime indust...
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET... responsible for the operation of General Services Administration (GSA) Interagency Fleet Management System... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true General. 101-39.400...
Converted vessel swells Exxon fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-06-19
Newport News Shipbuilding and Drydock Co. has converted a tug/barge unit to a tanker with a 27,240 dwt displacement. The ship increases the ocean fleet of Exxon Co. U.S.A. to 18 vessels. Special mooring and cargo-handling systems are used.
33 CFR 138.90 - Individual and Fleet Certificates.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION FINANCIAL RESPONSIBILITY FOR WATER POLLUTION (VESSELS) AND OPA 90 LIMITS OF LIABILITY (VESSELS AND DEEPWATER PORTS) Financial Responsibility for Water Pollution (Vessels) § 138.90 Individual and Fleet Certificates. (a) The Director, NPFC...
33 CFR 138.90 - Individual and Fleet Certificates.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION FINANCIAL RESPONSIBILITY FOR WATER POLLUTION (VESSELS) AND OPA 90 LIMITS OF LIABILITY (VESSELS AND DEEPWATER PORTS) Financial Responsibility for Water Pollution (Vessels) § 138.90 Individual and Fleet Certificates. (a) The Director, NPFC...