Sample records for controlled ignition engine

  1. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Controls and Accessories § 23.1165 Engine ignition systems. Link to an amendment published at 76 FR 75759... discharge of any battery used for engine ignition. (e) Each turbine engine ignition system must be... ignition systems. (f) In addition, for commuter category airplanes, each turbine engine ignition system...

  2. 14 CFR 25.1145 - Ignition switches.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  3. 14 CFR 25.1145 - Ignition switches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  4. 14 CFR 25.1145 - Ignition switches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  5. 14 CFR 25.1145 - Ignition switches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  6. 14 CFR 25.1145 - Ignition switches.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  7. Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes

    DTIC Science & Technology

    2014-01-15

    in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition , and Reactivity Controlled Compression Ignition ...Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion...LTC) regimes, including reactivity controlled compression ignition (RCCI), partially premixed combustion (PPC), and homogenous charge compression

  8. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... ignition. (e) Each turbine engine ignition system must be independent of any electrical circuit that is not... commuter category airplanes, each turbine engine ignition system must be an essential electrical load. [Doc...

  9. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine ignition systems. 23.1165 Section 23... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... allow continued engine operation if any battery becomes depleted. (b) The capacity of batteries and...

  10. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine ignition systems. 23.1165 Section 23... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... allow continued engine operation if any battery becomes depleted. (b) The capacity of batteries and...

  11. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine ignition systems. 23.1165 Section 23... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... allow continued engine operation if any battery becomes depleted. (b) The capacity of batteries and...

  12. 14 CFR 27.1145 - Ignition switches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...

  13. 14 CFR 27.1145 - Ignition switches.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...

  14. 14 CFR 27.1145 - Ignition switches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...

  15. 14 CFR 27.1145 - Ignition switches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...

  16. 14 CFR 27.1145 - Ignition switches.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...

  17. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  18. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    NASA Astrophysics Data System (ADS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  19. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  20. 14 CFR 29.1145 - Ignition switches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  1. 14 CFR 29.1145 - Ignition switches.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  2. 14 CFR 29.1145 - Ignition switches.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  3. 14 CFR 29.1145 - Ignition switches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  4. 14 CFR 29.1145 - Ignition switches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  5. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  6. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or...

  7. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  8. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  9. Variable valve timing in a homogenous charge compression ignition engine

    DOEpatents

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  10. Spark ignition timing control system for internal combustion engine with feature of suppression of jerking during engine acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomisawa, N.

    1989-07-04

    This patent describes a spark ignition timing control system for an internal combustion engine, it comprises: sensor means monitoring preselected parameters for producing a sensor signal; first means for deriving a spark ignition timing on the basis of data contained in the sensor signal; second means for detecting an engine acceleration demand for producing an accelerating condition indicative signal; and third means, responsive to the accelerating condition indicative signal, for modifying the spark ignition timing derived by the first means after expiration of a first predetermined period of time of occurence of the accelerating condition indicative signal, in such amore » manner that the spark ignition timing is advanced and retarded for suppressing cycle-to-cycle fluctuation of engine speed and for smoothly increasing engine speed.« less

  11. 78 FR 50412 - California State Nonroad Engine Pollution Control Standards; Amendments to Spark Ignition Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Engine Pollution Control Standards; Amendments to Spark Ignition Marine Engine and Boat Regulations... Marine Engine and Boat Regulations (2008 Marine SI Amendments or 2008 Amendments). CARB requested EPA... the 2008 Marine SI Amendments. DATES: EPA has tentatively scheduled a public hearing concerning CARB's...

  12. 40 CFR 1045.1 - Does this part apply for my products?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview... exhaust emissions apply to new, spark-ignition propulsion marine engines beginning with the 2010 model...

  13. 40 CFR 1045.1 - Does this part apply for my products?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview... exhaust emissions apply to new, spark-ignition propulsion marine engines beginning with the 2010 model...

  14. 40 CFR 1045.1 - Does this part apply for my products?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview... exhaust emissions apply to new, spark-ignition propulsion marine engines beginning with the 2010 model...

  15. 40 CFR 1045.1 - Does this part apply for my products?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview... exhaust emissions apply to new, spark-ignition propulsion marine engines beginning with the 2010 model...

  16. 40 CFR 1045.1 - Does this part apply for my products?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview... exhaust emissions apply to new, spark-ignition propulsion marine engines beginning with the 2010 model...

  17. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  18. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  19. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  20. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...

  1. Homogenous charge compression ignition engine having a cylinder including a high compression space

    DOEpatents

    Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

    2003-12-30

    The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

  2. Virtual engine management simulator for educational purposes

    NASA Astrophysics Data System (ADS)

    Drosescu, R.

    2017-10-01

    This simulator was conceived as a software program capable of generating complex control signals, identical to those in the electronic management systems of modern spark ignition or diesel engines. Speed in rpm and engine load percentage defined by throttle opening angle represent the input variables in the simulation program and are graphically entered by two-meter instruments from the simulator central block diagram. The output signals are divided into four categories: synchronization and position of each cylinder, spark pulses for spark ignition engines, injection pulses and, signals for generating the knock window for each cylinder in the case of a spark ignition engine. The simulation program runs in real-time so each signal evolution reflects the real behavior on a physically thermal engine. In this way, the generated signals (ignition or injection pulses) can be used with additionally drivers to control an engine on the test bench.

  3. 77 FR 52323 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ...- Ignition Engines (Renewal). ICR Numbers: EPA ICR No. 1695.10, OMB Control No. 2060-0338. ICR Status: This... Engines and Equipment, OMB Control Number 2060-0603) were incorporated into ICR 1695.10. This action was... Requirements for Nonroad Spark-Ignition Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION...

  4. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOEpatents

    Flowers, Daniel L.

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  5. 75 FR 37310 - Control of Emissions From New and In-Use Nonroad Compression-Ignition Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1039 Control of Emissions From New and In-Use Nonroad Compression- Ignition Engines CFR Correction In Title 40 of the Code of Federal Regulations, Part 1000 to End... for my engines in model year 2014 and earlier? * * * * * Table 2 of Sec. 1039.102--Interim Tier 4...

  6. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  7. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  8. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  9. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  10. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  11. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  12. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  13. 40 CFR 91.1001 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1001 Applicability. The requirements of this subpart K are applicable to all marine spark-ignition propulsion engines...

  14. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  15. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  16. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  17. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  18. 40 CFR 89.124 - Record retention, maintenance, and submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construction, including a general description of the origin and buildup of the engine, steps taken to ensure... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission... manufacturer of any nonroad compression-ignition engine must maintain the following adequately organized...

  19. Contactless electric igniter for vehicle to lower exhaust emission and fuel consumption.

    PubMed

    Shen, Chih-Lung; Su, Jye-Chau

    2014-01-01

    An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  20. Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption

    PubMed Central

    Su, Jye-Chau

    2014-01-01

    An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well. PMID:24672372

  1. Extended temperature range ACPS thruster investigation

    NASA Technical Reports Server (NTRS)

    Blubaugh, A. L.; Schoenman, L.

    1974-01-01

    The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.

  2. Final Rule for Phase 2 Emission Standards for New Nonroad Spark-Ignition Nonhandheld Engines At or Below 19 Kilowatts

    EPA Pesticide Factsheets

    Emission regulations to control emissions from new nonroad spark-ignition nonhandheld engines at or below 19 kilowatts (25 horsepower). These engines are used principally in lawn and garden equipment in applications such as lawnmowers and garden tractors.

  3. Fuel quantity modulation in pilot ignited engines

    DOEpatents

    May, Andrew

    2006-05-16

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  4. Engine Valve Actuation For Combustion Enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  5. Engine valve actuation for combustion enhancement

    DOEpatents

    Reitz, Rolf Deneys [Madison, WI; Rutland, Christopher J [Madison, WI; Jhavar, Rahul [Madison, WI

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  6. High load operation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Liechty, Michael P [Chillicothe, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  7. Crank angle detecting system for engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuzawa, H.; Nishiyama, M.; Nakamura, K.

    1988-05-31

    An ignition system for a multi-cylinder internal combustion engine is described comprising: (a) engine cylinders in which spark plugs are installed respectively, (b) indicating means disposed so as to synchronize with an engine crankshaft and formed with a large number of slits and a small number of slits, the large number of slits being provided for indicating crankshaft angular positions and the small number of slits being provided for indicating predetermined piston strokes and wherein the small number of slits have mutually different widths from each other to distinguish between piston strokes of at least the groups of cylinders; (c)more » sensing means for sensing crankshaft angular positions in cooperation with the large number of slits of the indicating means and outputting a crank angle signal representing the crankshaft angular position and for sensing the predetermined piston strokes in cooperation with the small number of slits and outputting different width piston stroke signals corresponding to the different width slits; (d) discriminating means for identifying each cylinder group and outputting cylinder group identification signals on the basis of the different width stroke signals derived from the sensing means; (e) ignition timing determining means for generating an ignition timing signal on the basis of the crank angle signal; (f) ignition coil controlling means for generating ignition coil current signals corresponding to the cylinder group identification signals; and (g) ignition timing controlling means for generating cylinder group ignition signals in response to the ignition coil current signals and ignition timing signal so that the spark plugs of each cylinder group are ignited at a proper time.« less

  8. 40 CFR 94.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.1 Applicability. (a) Except as noted in paragraphs (b) and (c) of...

  9. 76 FR 25246 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule document 2011-8794 appearing on pages 20550-20551 in the issue of Wednesday, April 13, 2011, make the following correction: Sec. 1042...

  10. 40 CFR 94.10 - Warranty period.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.10 Warranty period. (a)(1) Warranties imposed by § 94.1107 for...

  11. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  12. Method for operating a spark-ignition, direct-injection internal combustion engine

    DOEpatents

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  13. 40 CFR 94.4 - Treatment of confidential information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 94.4 Section 94.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.4 Treatment of confidential information. (a) Any...

  14. 40 CFR 1048.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Certifying Engine...'s specifications and other basic parameters of the engine's design and emission controls. List the... each distinguishable engine configuration in the engine family. (b) Explain how the emission control...

  15. 40 CFR 1048.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Certifying Engine...'s specifications and other basic parameters of the engine's design and emission controls. List the... each distinguishable engine configuration in the engine family. (b) Explain how the emission control...

  16. 40 CFR 1042.230 - Engine families.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...

  17. 40 CFR 1042.230 - Engine families.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...

  18. 40 CFR 1042.230 - Engine families.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...

  19. 40 CFR 1042.230 - Engine families.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...

  20. 76 FR 26620 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule correction document C1-2011-8794 appearing on page 25246 in the issue of Wednesday, May 4, 2011, make the following correction: Sec. 1042.901...

  1. 40 CFR 1045.5 - Which engines are excluded from this part's requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...

  2. 40 CFR 1045.5 - Which engines are excluded from this part's requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...

  3. 40 CFR 1045.5 - Which engines are excluded from this part's requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...

  4. 40 CFR 1045.5 - Which engines are excluded from this part's requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...

  5. 40 CFR 1045.5 - Which engines are excluded from this part's requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...

  6. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  7. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    NASA Astrophysics Data System (ADS)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  8. Potential of spark ignition engine, electronic engine and transmission control : final report

    DOT National Transportation Integrated Search

    1980-03-01

    This report identifies, evaluates, and documents the characteristics and functions of significant electronic engine and powertrain control systems. Important considerations in the assessment are the powertrain variables controlled, the technology uti...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehl, M; Kukkadapu, G; Kumar, K

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history duringmore » ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.« less

  10. Dynamic control of a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  11. 40 CFR 1039.230 - How do I select engine families?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying... configurations). This applies for engines with aftertreatment devices only. (8) Method of control for engine... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I select engine families? 1039...

  12. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  13. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Aleksandrov, Nikolay

    2016-09-01

    Nonequilibrium plasma demonstrates ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions. A new, validated mechanism for high-temperature hydrocarbon plasma assisted combustion was built and allows to qualitatively describe plasma-assisted combustion close and above the self-ignition threshold. The principal mechanisms of plasma-assisted ignition and combustion have been established and validated for a wide range of plasma and gas parameters. These results provide a basis for improving various energy-conversion combustion systems, from automobile to aircraft engines, using nonequilibrium plasma methods.

  14. 40 CFR 1039.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...

  15. 40 CFR 1039.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...

  16. 40 CFR 1039.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...

  17. 40 CFR 1039.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...

  18. Laser ignition - Spark plug development and application in reciprocating engines

    NASA Astrophysics Data System (ADS)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.

  19. 40 CFR 1042.835 - Certification of remanufactured engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...

  20. 40 CFR 1042.835 - Certification of remanufactured engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...

  1. 40 CFR 1042.835 - Certification of remanufactured engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...

  2. 40 CFR 1042.835 - Certification of remanufactured engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...

  3. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    NASA Astrophysics Data System (ADS)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  4. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  5. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  6. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  7. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  8. On the assessment of performance and emissions characteristics of a SI engine provided with a laser ignition system

    NASA Astrophysics Data System (ADS)

    Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.

    2017-10-01

    Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

  9. 40 CFR 1048.301 - When must I test my production-line engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines? 1048.301 Section 1048.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.301 When must I test my production-line engines? (a) If you produce engines...

  10. 40 CFR 1042.635 - National security exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... CONTROL INFORMATION”. (2) Your corporate name and trademark. (3) Engine displacement, family... prohibitions in § 1068.101(a)(1) do not apply to engines exempted under this section. (a) An engine is exempt...

  11. 40 CFR 1042.635 - National security exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... CONTROL INFORMATION”. (2) Your corporate name and trademark. (3) Engine displacement, family... prohibitions in § 1068.101(a)(1) do not apply to engines exempted under this section. (a) An engine is exempt...

  12. 40 CFR 1042.635 - National security exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... CONTROL INFORMATION”. (2) Your corporate name and trademark. (3) Engine displacement, family... prohibitions in § 1068.101(a)(1) do not apply to engines exempted under this section. (a) An engine is exempt...

  13. 40 CFR 1042.635 - National security exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... CONTROL INFORMATION”. (2) Your corporate name and trademark. (3) Engine displacement, family... prohibitions in § 1068.101(a)(1) do not apply to engines exempted under this section. (a) An engine is exempt...

  14. 40 CFR 1042.635 - National security exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... CONTROL INFORMATION”. (2) Your corporate name and trademark. (3) Engine displacement, family... prohibitions in § 1068.101(a)(1) do not apply to engines exempted under this section. (a) An engine is exempt...

  15. Combustion dynamics in liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Mclain, W. H.

    1971-01-01

    A chemical analysis of the emission and absorption spectra in the combustion chamber of a nitrogen tetroxide/aerozine-50 rocket engine was conducted. Measurements were made under conditions of preignition, ignition, and post combustion operating periods. The cause of severe ignition overpressures sporadically observed during the vacuum startup of the Apollo reaction control system engine was investigated. The extent to which residual propellants or condensed intermediate reaction products remain after the engine has been operated in a pulse mode duty cycle was determined.

  16. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    NASA Astrophysics Data System (ADS)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  17. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  18. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  19. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  20. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  1. 40 CFR 1042.235 - Emission testing related to certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...

  2. 40 CFR 1048.425 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048... after you complete all the testing required for an engine family in a model year. You may use any...

  3. 40 CFR 1048.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... label to identify other emission standards that the engine meets or does not meet (such as California...

  4. 40 CFR 1048.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... label to identify other emission standards that the engine meets or does not meet (such as California...

  5. 40 CFR 1048.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... label to identify other emission standards that the engine meets or does not meet (such as California...

  6. 40 CFR 1048.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... label to identify other emission standards that the engine meets or does not meet (such as California...

  7. The effectiveness of a double-stem injection valve in controlling combustion in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1931-01-01

    An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion.

  8. 40 CFR 1048.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...

  9. 40 CFR 1048.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...

  10. 40 CFR 1048.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...

  11. 40 CFR 1048.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...

  12. Development of an instantaneous local fuel-concentration measurement probe: an engine application

    NASA Astrophysics Data System (ADS)

    Guibert, P.; Boutar, Z.; Lemoyne, L.

    2003-11-01

    This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.

  13. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  14. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  15. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  16. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...

  17. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...

  18. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...

  19. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...

  20. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  1. The third-generation turbocharged engine for the Audi 5000 CS and 5000 CS Quattro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stock, D.

    In September 1985 the new Audi 5000 CS Quattro was introduced to the American market. This luxurious high performance touring sedan has been equipped with a more advanced turbocharged engine with intercooler and electronic engine management giving improved performance, excellent torque, faster response and better fuel economy. The basic engine is the tried-and-tested Audi 5-cylinder unit. The turbocharged engine's ancillary systems, the electronic ignition control and fuel injection have all been newly developed, carefully optimized and well matched in the special demands of a turbocharged engine. The ignition system controls the engine and fuel injection and delivers analog and digitalmore » signals to the car's instrument panel display. The system also has an integrated self-diagnostic function.« less

  2. Performance and operational improvements made to the Waukesha AT27-GL engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbold, E.O.

    1996-12-31

    This paper presents the results of combustion and engine performance studies performed on the AT27GL lean burn engine. One study was to evaluate the effect of the pre-combustion chamber cup geometry on engine performance under several operating conditions including: Air-Fuel Ratio (AFR), ignition timing, and engine load. The study examined several combustion parameters; including IMEP, coefficient of variation of IMEP, heat release rates, and maximum combustion pressures. The study also examined engine thermal efficiency, and brake specific emissions of Oxides of Nitrogen, Carbon Monoxide, and Total Hydrocarbons (gaseous). Studies were also performed on different spark plug designs, comparing firing voltages,more » and electrode temperatures while operating under conditions of varying AFR, and ignition timing. In addition an Air-Fuel-Ratio controller was recently tested and released on the engine. The controller was tested under conditions of varying fuel quality, along with a detonation control system.« less

  3. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    NASA Astrophysics Data System (ADS)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  4. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  5. 77 FR 42724 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Nonroad Spark-Ignited Engines, New Nonroad Compression-Ignited Engines, and New On-Road Heavy Duty Engines... Compression-ignited Engines, and New On-road Heavy Duty Engines (Renewal). ICR numbers: EPA ICR No. 1852.05... engines, new nonroad compression-ignited engines, and new on- road heavy duty engines. Estimated Number of...

  6. 40 CFR 1054.230 - How do I select emission families?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control for engine operation, other than governing (mechanical or electronic). (9) The numerical level of... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT..., divide your product line into families of engines that are expected to have similar emission...

  7. 40 CFR 1054.230 - How do I select emission families?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control for engine operation, other than governing (mechanical or electronic). (9) The numerical level of... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT..., divide your product line into families of engines that are expected to have similar emission...

  8. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...

  9. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...

  10. 40 CFR 1054.230 - How do I select emission families?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control for engine operation, other than governing (mechanical or electronic). (9) The numerical level of... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT..., divide your product line into families of engines that are expected to have similar emission...

  11. 40 CFR 1054.230 - How do I select emission families?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control for engine operation, other than governing (mechanical or electronic). (9) The numerical level of... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT..., divide your product line into families of engines that are expected to have similar emission...

  12. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...

  13. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc.more » in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business« less

  14. Effect of Hydrogen Addition on Methane HCCI Engine Ignition Timing and Emissions Using a Multi-zone Model

    NASA Astrophysics Data System (ADS)

    Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming

    2009-06-01

    Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.

  15. 40 CFR 94.205 - Prohibited controls, adjustable parameters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...

  16. 40 CFR 94.205 - Prohibited controls, adjustable parameters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...

  17. 40 CFR 94.205 - Prohibited controls, adjustable parameters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...

  18. 40 CFR 94.205 - Prohibited controls, adjustable parameters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...

  19. 40 CFR 94.205 - Prohibited controls, adjustable parameters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...

  20. 40 CFR 1042.615 - Replacement engine exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Replacement engine exemption. 1042.615... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Compliance Provisions § 1042.615 Replacement engine exemption. For Category 1 and Category 2 replacement...

  1. 40 CFR 1042.615 - Replacement engine exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Replacement engine exemption. 1042.615... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Compliance Provisions § 1042.615 Replacement engine exemption. For Category 1 and Category 2 replacement...

  2. 40 CFR 89.117 - Test fleet selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and... establishing deterioration factors, the manufacturer shall select the engines, subsystems, or components to be used to determine exhaust emission deterioration factors for each engine-family control system...

  3. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    NASA Astrophysics Data System (ADS)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  4. Influence of several factors on ignition lag in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Voss, Fred

    1932-01-01

    This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.

  5. Aircraft Engine Sump Fire Mitigation

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1973-01-01

    An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.

  6. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  7. Final Rule for Gasoline Spark-Ignition Marine Engines; Exemptions for New Nonroad Compression-Ignition Engines at or Above 37 Kilowatts and New Nonroad Spark-Ignition Engines at or Below 19 Kilowatts

    EPA Pesticide Factsheets

    These standards apply for outboard engines, personal watercraft engines, and jet boat engines. This rule also adds a national security exemption for Nonroad Compression-Ignition (CI) and Small SI sectors.

  8. 40 CFR 1048.401 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines that have gone into service? 1048.401 Section 1048.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.401 What testing requirements apply to my engines that have...

  9. 40 CFR 1042.845 - Remanufactured engine families.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...

  10. 40 CFR 1042.845 - Remanufactured engine families.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...

  11. 40 CFR 1042.845 - Remanufactured engine families.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...

  12. 40 CFR 1042.845 - Remanufactured engine families.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...

  13. 40 CFR 1042.845 - Remanufactured engine families.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...

  14. 40 CFR 1048.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I select engines for... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.310 How must I select engines for production-line testing? (a) Use...

  15. 40 CFR 1048.330 - May I sell engines from an engine family with a suspended certificate of conformity?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I sell engines from an engine... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.330 May I sell engines from an engine...

  16. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  17. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  18. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  19. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  20. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  1. 40 CFR 1054.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...

  2. 40 CFR 1054.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...

  3. 40 CFR 1054.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...

  4. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.101 What exhaust emission standards must my engines meet...

  5. Knock detection system to improve petrol engine performance, using microphone sensor

    NASA Astrophysics Data System (ADS)

    Sujono, Agus; Santoso, Budi; Juwana, Wibawa Endra

    2017-01-01

    An increase of power and efficiency of spark ignition engines (petrol engines) are always faced with the problem of knock. Even the characteristics of the engine itself are always determined from the occurrence of knock. Until today, this knocking problem has not been solved completely. Knock is caused by principal factors that are influenced by the engine rotation, the load or opening the throttle and spark advance (ignition timing). In this research, the engine is mounted on the engine test bed (ETB) which is equipped with the necessary sensors. Knock detection using a new method, which is based on pattern recognition, which through the knock sound detection by using a microphone sensor, active filter, the regression of the normalized envelope function, and the calculation of the Euclidean distance is used for identifying knock. This system is implemented with a microcontroller which uses fuzzy logic controller ignition (FLIC), which aims to set proper spark advance, in accordance with operating conditions. This system can improve the engine performance for approximately 15%.

  6. 40 CFR 1042.301 - General provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1042.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.301 General provisions. (a) If you produce engines that are subject to the...

  7. V-TECS Guide for Automobile Engine Performance Technician.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide is intended to assist teachers responsible for instructing future auto engine performance technicians. The following topics are covered: diagnosing engine performance problems, ignition system problems, fuel system problems, mechanically related performance problems, emission control system problems, and electronic control systems;…

  8. 40 CFR 94.219 - Durability data engine selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.219... this section. (c) Durability data engines shall be built from subsystems and components that are...

  9. Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  10. 40 CFR 1045.330 - May I sell engines from an engine family with a suspended certificate of conformity?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I sell engines from an engine... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.330 May I sell engines from an...

  11. 40 CFR 1042.815 - Demonstrating availability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...

  12. 40 CFR 1042.815 - Demonstrating availability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...

  13. 40 CFR 1042.815 - Demonstrating availability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...

  14. 40 CFR 1042.815 - Demonstrating availability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...

  15. 40 CFR 1042.815 - Demonstrating availability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...

  16. 40 CFR 1042.250 - Recordkeeping and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... buildup, steps you took to ensure that it represents production engines, any components you built... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.250 Recordkeeping and reporting. (a) Send the Designated Compliance Officer...

  17. 75 FR 47520 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Extension of... for stationary compression ignition and spark ignition internal combustion engines. In this [[Page... combustion engines. After publication of the proposed rule, EPA received requests from the American Petroleum...

  18. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.; Blarigan, P. Van

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end themore » authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.« less

  19. 40 CFR 1048.405 - How does this program work?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.405 How does this program work? (a) You must test in-use engines, for exhaust emissions, from the families we select. We may select up to 25 percent of your engine families in any model year—or one engine...

  20. 40 CFR 1048.415 - What happens if in-use engines do not meet requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.415 What happens if in-use engines do not meet requirements? (a) Determine... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What happens if in-use engines do not...

  1. 14 CFR 33.37 - Ignition system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ignition system. 33.37 Section 33.37... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.37 Ignition system. Each spark ignition engine must have a dual ignition system with at least two spark plugs for each...

  2. 40 CFR 1045.120 - What emission-related warranty requirements apply to me?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... purchaser that the new engine, including all parts of its emission control system, meets two conditions: (1... generous than we require. The emission-related warranty for an engine may not be shorter than any published...

  3. 40 CFR 1039.230 - How do I select engine families?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...

  4. 40 CFR 1039.230 - How do I select engine families?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...

  5. 40 CFR 1039.230 - How do I select engine families?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...

  6. 40 CFR 1039.230 - How do I select engine families?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...

  7. The spark-ignition aircraft piston engine of the future

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    Areas of advanced technology appropriate to the design of a spark-ignition aircraft piston engine for the late 1980 time period were investigated and defined. Results of the study show that significant improvements in fuel economy, weight and size, safety, reliability, durability and performance may be achieved with a high degree of success, predicated on the continued development of advances in combustion systems, electronics, materials and control systems.

  8. 14 CFR 29.1165 - Engine ignition systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine ignition systems. 29.1165 Section 29... Engine ignition systems. (a) Each battery ignition system must be supplemented with a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if any...

  9. 14 CFR 29.1165 - Engine ignition systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine ignition systems. 29.1165 Section 29... Engine ignition systems. (a) Each battery ignition system must be supplemented with a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if any...

  10. 14 CFR 29.1165 - Engine ignition systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine ignition systems. 29.1165 Section 29... Engine ignition systems. (a) Each battery ignition system must be supplemented with a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if any...

  11. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine ignition systems. 25.1165 Section 25... Engine ignition systems. (a) Each battery ignition system must be supplemented by a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if any...

  12. 40 CFR 1045.601 - What compliance provisions apply to these engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What compliance provisions apply to these engines? 1045.601 Section 1045.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  13. 40 CFR 1045.230 - How do I select engine families?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Certifying...

  14. 40 CFR 1045.601 - What compliance provisions apply to these engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What compliance provisions apply to these engines? 1045.601 Section 1045.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  15. 40 CFR 1045.230 - How do I select engine families?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Certifying...

  16. 40 CFR 1045.110 - How must my engines diagnose malfunctions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must my engines diagnose malfunctions? 1045.110 Section 1045.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  17. 40 CFR 1045.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  18. 40 CFR 1045.110 - How must my engines diagnose malfunctions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How must my engines diagnose malfunctions? 1045.110 Section 1045.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  19. 40 CFR 1045.230 - How do I select engine families?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Certifying...

  20. 40 CFR 1045.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  1. 40 CFR 1045.601 - What compliance provisions apply to these engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What compliance provisions apply to these engines? 1045.601 Section 1045.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  2. 40 CFR 1045.601 - What compliance provisions apply to these engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What compliance provisions apply to these engines? 1045.601 Section 1045.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  3. 40 CFR 1045.601 - What compliance provisions apply to these engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What compliance provisions apply to these engines? 1045.601 Section 1045.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  4. 40 CFR 1045.230 - How do I select engine families?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Certifying...

  5. 40 CFR 1045.230 - How do I select engine families?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Certifying...

  6. 40 CFR 1045.110 - How must my engines diagnose malfunctions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How must my engines diagnose malfunctions? 1045.110 Section 1045.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  7. 40 CFR 1045.110 - How must my engines diagnose malfunctions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How must my engines diagnose malfunctions? 1045.110 Section 1045.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  8. 40 CFR 1045.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  9. 40 CFR 1045.110 - How must my engines diagnose malfunctions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How must my engines diagnose malfunctions? 1045.110 Section 1045.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  10. 40 CFR 1045.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  11. 40 CFR 91.1006 - Manufacturer-owned exemption and precertification exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1006 Manufacturer-owned exemption and precertification exemption. (a... “Emission Control Information;” (B) Full corporate name and trademark of manufacturer; (C) Engine...

  12. 40 CFR 94.913 - Staged-assembly exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions... complete production of your engines at different facilities, as long as you maintain control of the engines until they are in their certified configuration. We may require you to take specific steps to ensure...

  13. 40 CFR 89.915 - Staged-assembly exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to complete production of your engines at different facilities, as long as you maintain control of the engines until they are in their certified configuration. We may require you to take specific steps... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption...

  14. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  15. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  16. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  17. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  18. Regulatory impact analysis and regulatory support document: Control of air pollution; determination of significance for nonroad sources and emission standards for new nonroad compression-ignition engines at or above 37 kilowatts (50 horsepower). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trimble, T.; North, D.R.; Green, K.A.H.

    1994-05-27

    The regulatory impact analysis and support document provides additional information in support of the Final Rulemaking (FRM). This FRM will regulate all new nonroad compression-ignition engines greater than or equal to 37 kilowatts (50 hp), except engines which propel or are used on marine vessels, aircraft engines, engines which propel locomotives, and engines regulated by the Mining, Safety, and Health Administration. The regulated engines are hereafter referred to as nonroad large CI engines. The goal of this regulation is to substantially reduce NOx emission and smoke from nonroad large CI engines beginning in the 1996 model year.

  19. 40 CFR 1045.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... applicable dates shown in paragraph (5) of the definition of new propulsion marine engine in § 1045.801. (2...

  20. 40 CFR 1045.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... applicable dates shown in paragraph (5) of the definition of new propulsion marine engine in § 1045.801. (2...

  1. 40 CFR 1045.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... applicable dates shown in paragraph (5) of the definition of new propulsion marine engine in § 1045.801. (2...

  2. 40 CFR 1045.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... applicable dates shown in paragraph (5) of the definition of new propulsion marine engine in § 1045.801. (2...

  3. 78 FR 4195 - Petition for Exemption From the Vehicle Theft Prevention Standard; Mercedes-Benz

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ..., transmitter key, electronic ignition starter switch control unit (EIS), the engine control module (ECM) and... immobilizer function. The interlinked system includes the engine, EIS, transmitter key, TCM and ECM (including...

  4. 40 CFR 1045.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... California standards). You may include this information by adding it to the statement we specify or by...

  5. 77 FR 65767 - Petition for Exemption From the Federal Motor Vehicle Theft Prevention Standard; Chrysler

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... (RFHM), Ignition Node Module (IGNM), Engine Control Module, Body Controller Module, Sentry Key... disable engine operation and immobilize the vehicle after two seconds of running. This process is also...

  6. 40 CFR 1042.345 - Reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procedures for test engines in a way that might affect emission controls. All the information in this report... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line...

  7. 40 CFR 1042.345 - Reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... procedures for test engines in a way that might affect emission controls. All the information in this report... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line...

  8. 40 CFR 1042.345 - Reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... procedures for test engines in a way that might affect emission controls. All the information in this report... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line...

  9. 40 CFR 1042.345 - Reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... procedures for test engines in a way that might affect emission controls. All the information in this report... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line...

  10. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less

  11. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE PAGES

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less

  12. 40 CFR 1045.301 - When must I test my production-line engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false When must I test my production-line engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  13. 40 CFR 1045.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  14. 40 CFR 1045.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  15. 40 CFR 1045.301 - When must I test my production-line engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false When must I test my production-line engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  16. 40 CFR 1045.301 - When must I test my production-line engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false When must I test my production-line engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  17. 40 CFR 1045.301 - When must I test my production-line engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false When must I test my production-line engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  18. 40 CFR 1045.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  19. 40 CFR 1045.301 - When must I test my production-line engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false When must I test my production-line engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  20. 40 CFR 1045.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  1. 40 CFR 1045.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  2. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1...

  3. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... those engines from in-use testing or deny a warranty claim. Do not take these maintenance steps during... maintenance steps during service accumulation on your emission-data engines, as long as they are reasonable... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission...

  4. 40 CFR 1048.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... instructions if we determine that you have specified special maintenance steps to address engine operation that... these inspection or maintenance steps during service accumulation on your emission-data engines, as long... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...

  5. 40 CFR 1042.220 - Amending maintenance instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.220 Amending maintenance instructions. You may amend your emission-related... Officer a written request to amend your application for certification for an engine family if you want to...

  6. 40 CFR 91.702 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Importation of Nonconforming Marine Engines § 91.702... 213 and section 206(a) of the Act. Nonconforming marine engine. A marine SI engine which is not...

  7. 40 CFR 94.805 - Prohibited acts; penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.805 Prohibited acts; penalties. (a) The importation of an engine (including an engine... otherwise permitted by this subpart, during a period of conditional admission, the importer of an engine may...

  8. 76 FR 68260 - Petition for Exemption From the Federal Motor Vehicle Theft Prevention Standard; Chrysler

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ...), Ignition Node Module (IGNM), Engine Control Module (ECM), Body Controller Module (BCM), Sentry Key..., Chrysler stated that the RFHM sends an invalid key message to the ECM, which will disable engine operation...

  9. 40 CFR 1054.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... meet (such as California standards). You may include this information by adding it to the statement we...

  10. 40 CFR 1054.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... meet (such as California standards). You may include this information by adding it to the statement we...

  11. 40 CFR 1054.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... meet (such as California standards). You may include this information by adding it to the statement we...

  12. 40 CFR 1054.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... meet (such as California standards). You may include this information by adding it to the statement we...

  13. 40 CFR 1054.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... meet (such as California standards). You may include this information by adding it to the statement we...

  14. 40 CFR 1054.5 - Which nonroad engines are excluded from this part's requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION... described in § 1054.20. (d) Engines used in reduced-scale models of vehicles that are not capable of...

  15. 40 CFR 1042.115 - Other requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... and electronic control modules. If you broadcast a surrogate parameter for torque values, you must... that is necessary for proper operation of the engine. (e) Prohibited controls. You may not design your...

  16. 40 CFR 1042.115 - Other requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... and electronic control modules. If you broadcast a surrogate parameter for torque values, you must... that is necessary for proper operation of the engine. (e) Prohibited controls. You may not design your...

  17. 40 CFR 1042.115 - Other requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... and electronic control modules. If you broadcast a surrogate parameter for torque values, you must... that is necessary for proper operation of the engine. (e) Prohibited controls. You may not design your...

  18. 40 CFR 1042.115 - Other requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... and electronic control modules. If you broadcast a surrogate parameter for torque values, you must... that is necessary for proper operation of the engine. (e) Prohibited controls. You may not design your...

  19. 40 CFR 1054.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... 1054. We have not changed production processes or quality-control procedures for test engines in a way...) Describe any facility used to test production-line engines and state its location. (2) State the total U.S...

  20. 40 CFR 1048.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.345 What production-line testing records must I send to EPA? (a... procedures for test engines in a way that might affect emission controls. All the information in this report...

  1. 40 CFR 1054.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... 1054. We have not changed production processes or quality-control procedures for test engines in a way...) Describe any facility used to test production-line engines and state its location. (2) State the total U.S...

  2. 40 CFR 1054.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... 1054. We have not changed production processes or quality-control procedures for test engines in a way...) Describe any facility used to test production-line engines and state its location. (2) State the total U.S...

  3. 40 CFR 1054.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... 1054. We have not changed production processes or quality-control procedures for test engines in a way...) Describe any facility used to test production-line engines and state its location. (2) State the total U.S...

  4. 40 CFR 1048.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.345 What production-line testing records must I send to EPA? (a... procedures for test engines in a way that might affect emission controls. All the information in this report...

  5. 40 CFR 1048.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.345 What production-line testing records must I send to EPA? (a... procedures for test engines in a way that might affect emission controls. All the information in this report...

  6. 40 CFR 1048.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.345 What production-line testing records must I send to EPA? (a... procedures for test engines in a way that might affect emission controls. All the information in this report...

  7. 40 CFR 1048.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.345 What production-line testing records must I send to EPA? (a... procedures for test engines in a way that might affect emission controls. All the information in this report...

  8. 40 CFR 1054.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... 1054. We have not changed production processes or quality-control procedures for test engines in a way...) Describe any facility used to test production-line engines and state its location. (2) State the total U.S...

  9. 40 CFR 1054.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... remedial steps required under § 1054.320. (i) You may elect to test more randomly chosen engines than we... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I select engines for... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND...

  10. 40 CFR 1039.801 - What definitions apply to this part?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation in water. Auxiliary emission-control device means any element of design that senses temperature... element of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...

  11. 40 CFR 1039.801 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation in water. Auxiliary emission-control device means any element of design that senses temperature... element of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...

  12. 40 CFR 1039.801 - What definitions apply to this part?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operation in water. Auxiliary emission-control device means any element of design that senses temperature... element of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...

  13. 40 CFR 89.106 - Prohibited controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Prohibited controls. 89.106 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.106 Prohibited controls. (a) An engine may not be equipped with an emission...

  14. 40 CFR 89.106 - Prohibited controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Prohibited controls. 89.106 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.106 Prohibited controls. (a) An engine may not be equipped with an emission...

  15. 40 CFR 89.106 - Prohibited controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Prohibited controls. 89.106 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.106 Prohibited controls. (a) An engine may not be equipped with an emission...

  16. 40 CFR 89.106 - Prohibited controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Prohibited controls. 89.106 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.106 Prohibited controls. (a) An engine may not be equipped with an emission...

  17. 40 CFR 89.106 - Prohibited controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Prohibited controls. 89.106 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.106 Prohibited controls. (a) An engine may not be equipped with an emission...

  18. 40 CFR 1045.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... sensors, electronic control units, superchargers, or turbochargers, except as specified in paragraph (a)(3...

  19. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöberg, Carl-Magnus G.

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness ofmore » combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.« less

  20. 40 CFR 91.307 - Engine cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine cooling system. 91.307 Section...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient capacity to maintain the engine at...

  1. 40 CFR 91.307 - Engine cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 91.307 Section...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient capacity to maintain the engine at...

  2. Investigation of ecological parameters of four-stroke SI engine, with pneumatic fuel injection system

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    The publication presents the results of tests to determine the impact of using waste fuels, alcohol, to power the engine, on the ecological parameters of the combustion engine. Alternatively fuelled with a mixture of iso- and n-butanol, indicated with "X" and "END, and gasoline and a mixture of fuel and alcohol. The object of the study was a four-stroke engine with spark ignition designed to work with a generator. Motor power was held by the modified system of pneumatic injection using hot exhaust gases developed by Prof. Stanislaw Jarnuszkiewicz, controlled by modern mechatronic systems. Tests were conducted at a constant speed for the intended use of the engine. The subject of the research was to determine the control parameters such as ignition timing, mixture composition and the degree of exhaust gas recirculation on the ecological parameters of the engine. Tests were carried out using partially quality power control. In summary we present the findings of this phase of the study.

  3. 40 CFR 91.706 - Treatment of confidential information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Importation of Nonconforming Marine Engines § 91.706 Treatment of confidential information. The provisions for treatment of...

  4. Los Alamos National Security, LLC Request for Information on how industry may partner with the Laboratory on KIVA software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcdonald, Kathleen Herrera

    2016-02-29

    KIVA is a family of Fortran-based computational fluid dynamics software developed by LANL. The software predicts complex fuel and air flows as well as ignition, combustion, and pollutant-formation processes in engines. The KIVA models have been used to understand combustion chemistry processes, such as auto-ignition of fuels, and to optimize diesel engines for high efficiency and low emissions. Fuel economy is heavily dependent upon engine efficiency, which in turn depends to a large degree on how fuel is burned within the cylinders of the engine. Higher in-cylinder pressures and temperatures lead to increased fuel economy, but they also create moremore » difficulty in controlling the combustion process. Poorly controlled and incomplete combustion can cause higher levels of emissions and lower engine efficiencies.« less

  5. 40 CFR 94.804 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.804 Exemptions...) Notwithstanding other requirements of this subpart, a nonconforming engine that qualifies for a temporary...

  6. 40 CFR 94.801 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.801 Applicability. (a) Except where otherwise indicated, this subpart is applicable to importers of engines (and...

  7. 40 CFR 94.1107 - Warranty provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... were in general use with engines prior to 1999. For diesel engines, this would generally include...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and Prohibited Acts § 94.1107 Warranty provisions. (a) The manufacturer of each engine must warrant to the...

  8. 40 CFR 94.1107 - Warranty provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... were in general use with engines prior to 1999. For diesel engines, this would generally include...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and Prohibited Acts § 94.1107 Warranty provisions. (a) The manufacturer of each engine must warrant to the...

  9. 40 CFR 94.1107 - Warranty provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... were in general use with engines prior to 1999. For diesel engines, this would generally include...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and Prohibited Acts § 94.1107 Warranty provisions. (a) The manufacturer of each engine must warrant to the...

  10. 40 CFR 94.1107 - Warranty provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... were in general use with engines prior to 1999. For diesel engines, this would generally include...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and Prohibited Acts § 94.1107 Warranty provisions. (a) The manufacturer of each engine must warrant to the...

  11. 40 CFR 94.1107 - Warranty provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... were in general use with engines prior to 1999. For diesel engines, this would generally include...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and Prohibited Acts § 94.1107 Warranty provisions. (a) The manufacturer of each engine must warrant to the...

  12. 40 CFR 90.121 - Certification procedure-recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the engine, steps taken to insure that it is representative of production engines, description of... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS... engine manufacturer must maintain the following adequately organized records: (1) Copies of all...

  13. Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine

    DOE PAGES

    Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.; ...

    2017-06-06

    Market demands for lower fueling costs and higher specific powers in stationary natural gas engines has engine designs trending towards higher in-cylinder pressures and leaner combustion operation. However, Ignition remains as the main limiting factor in achieving further performance improvements in these engines. Addressing this concern, while incorporating various recent advances in optics and laser technologies, laser igniters were designed and developed through numerous iterations. Final designs incorporated water-cooled, passively Q-switched, Nd:YAG micro-lasers that were optimized for stable operation under harsh engine conditions. Subsequently, the micro-lasers were installed in the individual cylinders of a lean-burn, 350 kW, inline 6-cylinder, open-chamber,more » spark ignited engine and tests were conducted. To the best of our knowledge, this is the world’s first demonstration of a laser ignited multi-cylinder natural gas engine. The engine was operated at high-load (298 kW) and rated speed (1800 rpm) conditions. Ignition timing sweeps and excess-air ratio (λ) sweeps were performed while keeping the NOx emissions below the USEPA regulated value (BSNOx < 1.34 g/kW-hr), and while maintaining ignition stability at industry acceptable values (COV_IMEP <5 %). Through such engine tests, the relative merits of (i) standard electrical ignition system, and (ii) laser ignition system were determined. In conclusion, a rigorous combustion data analysis was performed and the main reasons leading to improved performance in the case of laser ignition were identified.« less

  14. Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.

    Market demands for lower fueling costs and higher specific powers in stationary natural gas engines has engine designs trending towards higher in-cylinder pressures and leaner combustion operation. However, Ignition remains as the main limiting factor in achieving further performance improvements in these engines. Addressing this concern, while incorporating various recent advances in optics and laser technologies, laser igniters were designed and developed through numerous iterations. Final designs incorporated water-cooled, passively Q-switched, Nd:YAG micro-lasers that were optimized for stable operation under harsh engine conditions. Subsequently, the micro-lasers were installed in the individual cylinders of a lean-burn, 350 kW, inline 6-cylinder, open-chamber,more » spark ignited engine and tests were conducted. To the best of our knowledge, this is the world’s first demonstration of a laser ignited multi-cylinder natural gas engine. The engine was operated at high-load (298 kW) and rated speed (1800 rpm) conditions. Ignition timing sweeps and excess-air ratio (λ) sweeps were performed while keeping the NOx emissions below the USEPA regulated value (BSNOx < 1.34 g/kW-hr), and while maintaining ignition stability at industry acceptable values (COV_IMEP <5 %). Through such engine tests, the relative merits of (i) standard electrical ignition system, and (ii) laser ignition system were determined. In conclusion, a rigorous combustion data analysis was performed and the main reasons leading to improved performance in the case of laser ignition were identified.« less

  15. 40 CFR 86.016-1 - General applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...) of this section. (h) Turbine engines. Turbine engines are deemed to be compression-ignition engines... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...

  16. 40 CFR 94.219 - Durability data engine selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Durability data engine selection. 94... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.219 Durability data engine selection. (a) For Category 1 and Category 2 engines, the manufacturer shall select...

  17. 40 CFR 1042.350 - Recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.350 Recordkeeping. (a) Organize and maintain your records as described in this...

  18. 40 CFR 1042.350 - Recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.350 Recordkeeping. (a) Organize and maintain your records as described in this...

  19. 40 CFR 1042.350 - Recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.350 Recordkeeping. (a) Organize and maintain your records as described in this...

  20. 40 CFR 1042.350 - Recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.350 Recordkeeping. (a) Organize and maintain your records as described in this...

  1. 40 CFR 1045.415 - What happens if in-use engines do not meet requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What happens if in-use engines do not meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  2. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...

  3. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I prepare and test my production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  4. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How must I prepare and test my production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  5. 40 CFR 1045.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I label and identify the engines I produce? 1045.135 Section 1045.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  6. 40 CFR 1045.415 - What happens if in-use engines do not meet requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What happens if in-use engines do not meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  7. 40 CFR 1045.415 - What happens if in-use engines do not meet requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What happens if in-use engines do not meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  8. 40 CFR 1045.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How must I label and identify the engines I produce? 1045.135 Section 1045.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  9. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...

  10. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...

  11. 40 CFR 1045.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How must I label and identify the engines I produce? 1045.135 Section 1045.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  12. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How must I prepare and test my production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  13. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...

  14. 40 CFR 1045.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How must I label and identify the engines I produce? 1045.135 Section 1045.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  15. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How must I prepare and test my production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  16. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How must I prepare and test my production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  17. 40 CFR 1045.415 - What happens if in-use engines do not meet requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What happens if in-use engines do not meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  18. 40 CFR 1048.335 - How do I ask EPA to reinstate my suspended certificate?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.335 How do I ask EPA to reinstate my suspended certificate? (a... the reason for noncompliance, propose a remedy for the engine family, and commit to a date for...

  19. 76 FR 24872 - California State Nonroad Engine and Vehicle Pollution Control Standards; Authorization of Tier II...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Pollution Control Standards; Authorization of Tier II Marine Inboard/Sterndrive Spark Ignition Engine... for its second tier (``Tier II'') of emission standards for new marine inboard/sterndrive spark... record of this Marine Engine Authorization Request docket. Although a part of the official docket, the...

  20. 40 CFR 1048.250 - What records must I keep and make available to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construction, including its origin and buildup, steps you took to ensure that it represents production engines... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Certifying Engine Families § 1048.250 What records must I keep and make available to EPA? (a) Send the...

  1. 40 CFR 1045.415 - What happens if in-use engines do not meet requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What happens if in-use engines do not meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  2. 40 CFR 91.1012 - Treatment of confidential information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1012 Treatment of confidential information. The provisions for treatment of...

  3. 40 CFR 94.803 - Admission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.803 Admission. (a) A nonconforming engine offered for importation may be admitted into the United States pursuant to...

  4. 40 CFR 91.701 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Importation of Nonconforming Marine Engines § 91.701 Applicability. (a) Except where otherwise indicated, this subpart is applicable to marine SI engines for which...

  5. 14 CFR 33.37 - Ignition system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ignition system. 33.37 Section 33.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.37 Ignition system. Each spark ignition engine must have a...

  6. 40 CFR 91.1013 - Exemption for certified Small SI engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines. 91.1013 Section 91.1013 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1013 Exemption for certified Small SI engines. The provisions of 40 CFR 1045.605...

  7. 40 CFR 91.1007 - Display exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1007 Display exemption. An uncertified marine SI engine is a display engine when it is to be used... will not be sold unless an applicable certificate of conformity has been received or the engine has...

  8. 40 CFR 90.307 - Engine cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  9. 40 CFR 90.307 - Engine cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  10. 40 CFR 89.329 - Engine cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  11. 40 CFR 89.329 - Engine cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  12. 40 CFR 89.329 - Engine cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  13. 40 CFR 91.506 - Engine sample selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine sample selection. 91.506... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Manufacturer Production Line Testing Program § 91.506 Engine sample selection. (a) At the start of each model year, the marine SI engine...

  14. 40 CFR 94.217 - Emission data engine selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Emission data engine selection. 94.217... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.217 Emission data engine selection. (a) The manufacturer must select for testing, from each engine family, the...

  15. 40 CFR 91.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 91.410 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.410 Engine... in dynamometer operation tests of marine engines. (b) During each non-idle mode the specified speed...

  16. 40 CFR 90.307 - Engine cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  17. 40 CFR 89.329 - Engine cooling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  18. 40 CFR 89.902 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89.902 Definitions... an exemption granted under § 89.1004(b) for the purpose of exporting new nonroad engines. National... security. Manufacturer-owned nonroad engine means an uncertified nonroad engine owned and controlled by a...

  19. 40 CFR 89.902 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89.902 Definitions... an exemption granted under § 89.1004(b) for the purpose of exporting new nonroad engines. National... security. Manufacturer-owned nonroad engine means an uncertified nonroad engine owned and controlled by a...

  20. 40 CFR 89.902 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89.902 Definitions... an exemption granted under § 89.1004(b) for the purpose of exporting new nonroad engines. National... security. Manufacturer-owned nonroad engine means an uncertified nonroad engine owned and controlled by a...

  1. 40 CFR 89.902 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exemption Provisions § 89.902 Definitions... an exemption granted under § 89.1004(b) for the purpose of exporting new nonroad engines. National... security. Manufacturer-owned nonroad engine means an uncertified nonroad engine owned and controlled by a...

  2. 40 CFR 94.214 - Production engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Production engines. 94.214 Section 94...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.214 Production engines. Any manufacturer obtaining certification under this part shall supply to the Administrator, upon...

  3. 40 CFR 94.214 - Production engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Production engines. 94.214 Section 94...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.214 Production engines. Any manufacturer obtaining certification under this part shall supply to the Administrator, upon...

  4. 40 CFR 94.214 - Production engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Production engines. 94.214 Section 94...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.214 Production engines. Any manufacturer obtaining certification under this part shall supply to the Administrator, upon...

  5. 40 CFR 94.214 - Production engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Production engines. 94.214 Section 94...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.214 Production engines. Any manufacturer obtaining certification under this part shall supply to the Administrator, upon...

  6. 40 CFR 94.214 - Production engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Production engines. 94.214 Section 94...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.214 Production engines. Any manufacturer obtaining certification under this part shall supply to the Administrator, upon...

  7. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions atmore » full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.« less

  8. Combustion and operating characteristics of spark-ignition engines

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  9. 40 CFR 1042.110 - Recording reductant use and other diagnostic functions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... all the information broadcast by an engine's onboard computers and electronic control units. (d) For Category 3 engines equipped with on-off NOX controls (as allowed by § 1042.115(g)), you must also equip... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION...

  10. 40 CFR 1042.110 - Recording reductant use and other diagnostic functions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... all the information broadcast by an engine's onboard computers and electronic control units. (d) For Category 3 engines equipped with on-off NOX controls (as allowed by § 1042.115(g)), you must also equip... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION...

  11. 40 CFR 1042.110 - Recording reductant use and other diagnostic functions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... all the information broadcast by an engine's onboard computers and electronic control units. (d) For Category 3 engines equipped with on-off NOX controls (as allowed by § 1042.115(g)), you must also equip... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION...

  12. 40 CFR 1042.110 - Recording reductant use and other diagnostic functions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... all the information broadcast by an engine's onboard computers and electronic control units. (d) For Category 3 engines equipped with on-off NOX controls (as allowed by § 1042.115(g)), you must also equip... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION...

  13. 40 CFR 91.803 - Manufacturer in-use testing program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall... failing engine, two more engines shall be tested until the total number of engines equals ten (10). (2... the total number of engines equals ten (10). (3) If an engine family was certified using carry over...

  14. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each engine must be equipped with an ignition system for starting the engine on the ground and in flight. An...

  15. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each engine must be equipped with an ignition system for starting the engine on the ground and in flight. An...

  16. 76 FR 67184 - California State Nonroad Engine Pollution Control Standards; Large Spark-Ignition (LSI) Engines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... are applicable to fleets comprised of four or more pieces of equipment powered by LSI engines... comment. If you send an email comment directly to EPA without going through http://www.regulations.gov...

  17. 40 CFR 91.703 - Admission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Importation of Nonconforming Marine Engines § 91.703 Admission. (a) A nonconforming marine SI engine offered for importation may only be imported into the United...

  18. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sample NMHC downstream of the cooling for compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW. (3) If cooling causes aqueous condensation, do not...

  19. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sample NMHC downstream of the cooling for compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW. (3) If cooling causes aqueous condensation, do not...

  20. 40 CFR 91.705 - Prohibited acts; penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Importation of Nonconforming Marine Engines § 91.705 Prohibited acts; penalties. (a) The importation of a marine SI engine, including a marine engine incorporated into marine vessels or equipment, which is not covered by a certificate of conformity...

  1. 40 CFR 90.114 - Requirement of certification-engine information label.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Standards and Certification Provisions § 90.114 Requirement of certification—engine... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Requirement of certification-engine...

  2. 40 CFR 90.114 - Requirement of certification-engine information label.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Standards and Certification Provisions § 90.114 Requirement of certification—engine... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Requirement of certification-engine...

  3. 40 CFR 90.114 - Requirement of certification-engine information label.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Standards and Certification Provisions § 90.114 Requirement of certification—engine... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Requirement of certification-engine...

  4. 40 CFR 90.114 - Requirement of certification-engine information label.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Standards and Certification Provisions § 90.114 Requirement of certification—engine... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Requirement of certification-engine...

  5. 40 CFR 89.125 - Production engines, annual report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Production engines, annual report. 89... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.125 Production engines, annual report. (a) Upon the Administrator's...

  6. 40 CFR 89.125 - Production engines, annual report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Production engines, annual report. 89... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.125 Production engines, annual report. (a) Upon the Administrator's...

  7. 40 CFR 89.125 - Production engines, annual report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Production engines, annual report. 89... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.125 Production engines, annual report. (a) Upon the Administrator's...

  8. 40 CFR 89.125 - Production engines, annual report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Production engines, annual report. 89... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Certification Provisions § 89.125 Production engines, annual report. (a) Upon the Administrator's...

  9. Very Low Thrust Gaseous Oxygen-hydrogen Rocket Engine Ignition Technology

    NASA Technical Reports Server (NTRS)

    Bjorklund, Roy A.

    1983-01-01

    An experimental program was performed to determine the minimum energy per spark for reliable and repeatable ignition of gaseous oxygen (GO2) and gaseous hydrogen (GH2) in very low thrust 0.44 to 2.22-N (0.10 to 0.50-lb sub f) rocket engines or spacecraft and satellite attitude control systems (ACS) application. Initially, the testing was conducted at ambient conditions, with the results subsequently verified under vacuum conditions. An experimental breadboard electrical exciter that delivered 0.2 to 0.3 mj per spark was developed and demonstrated by repeated ignitions of a 2.22-N (0.50-lb sub f) thruster in a vacuum chamber with test durations up to 30 min.

  10. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.

    1983-01-01

    Two different engines were studied. The advantages of a diesel to general aviation were reduced to fuel consumption, reduced operating costs, and reduced fire and explosion hazard. There were no ignition mixture control or inlet icing problems. There are fewer controls and no electrical interference problems.

  11. A New Concept of Dual Fuelled SI Engines Run on Gasoline and Alcohol

    NASA Astrophysics Data System (ADS)

    Stelmasiak, Zdzisław

    2011-06-01

    The paper discusses tests results of dual-fuel spark ignition engine with multipoint injection of alcohol and gasoline, injected in area of inlet valve. Fuelling of the engine was accomplished via prototype inlet system comprising duplex injectors controlled electronically. Implemented system enables feeding of the engine with gasoline only or alcohol only, and simultaneous combustion of a mixture of the both fuels with any fraction of alcohol. The tests were performed on four cylinders, spark ignition engine of Fiat 1100 MPI type. The paper presents comparative results of dual-fuel engine test when the engine runs on changing fraction of methyl alcohol. The tests have demonstrated an advantageous effect of alcohol additive on efficiency and TCH and NOx emission of the engine, especially in case of bigger shares of the alcohol and higher engine loads.

  12. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sample NMHC downstream of the cooling for compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or below 19 kW. (3) The cooling must not cause aqueous...

  13. 40 CFR 1048.420 - What in-use testing information must I report to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.420 What in-use testing information must I report to EPA? (a) In a report to us within three months after you finish testing an engine family, do all the following: (1) Identify...

  14. 40 CFR 1048.420 - What in-use testing information must I report to EPA?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.420 What in-use testing information must I report to EPA? (a) In a report to us within three months after you finish testing an engine family, do all the following: (1) Identify...

  15. 40 CFR 1048.420 - What in-use testing information must I report to EPA?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.420 What in-use testing information must I report to EPA? (a) In a report to us within three months after you finish testing an engine family, do all the following: (1) Identify...

  16. 40 CFR 1048.420 - What in-use testing information must I report to EPA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.420 What in-use testing information must I report to EPA? (a) In a report to us within three months after you finish testing an engine family, do all the following: (1) Identify...

  17. 40 CFR 1048.420 - What in-use testing information must I report to EPA?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.420 What in-use testing information must I report to EPA? (a) In a report to us within three months after you finish testing an engine family, do all the following: (1) Identify...

  18. 40 CFR 89.1009 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION... branded engines? A manufacturer identifying the name and trademark of another company on the emission...

  19. 40 CFR 89.1009 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION... branded engines? A manufacturer identifying the name and trademark of another company on the emission...

  20. 40 CFR 89.1009 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION... branded engines? A manufacturer identifying the name and trademark of another company on the emission...

  1. 40 CFR 89.1009 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION... branded engines? A manufacturer identifying the name and trademark of another company on the emission...

  2. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    NASA Astrophysics Data System (ADS)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines. Low-Temperature Heat Release significantly enhances the auto-ignition process, which limits the conditions under which advanced combustion strategies may operate. As these advanced combustion strategies are required to meet emissions and fuel-economy regulations, the findings of this dissertation may benefit and be incorporated into future engine design toolkits, such as detailed chemical kinetic mechanisms.

  3. 40 CFR 91.1008 - National security exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1008 National security exemption. (a)(1) Any marine SI engine, otherwise subject to this part... request a national security exemption for any marine SI engine, otherwise subject to this part, which does...

  4. 40 CFR 90.114 - Requirement of certification-engine information label.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nomenclature and abbreviations provided in the Society of Automotive Engineers procedure J1930, “Electrical... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Requirement of certification-engine...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19...

  5. 40 CFR 90.706 - Engine sample selection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine sample selection. 90.706 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Manufacturer Production Line Testing Program § 90.706 Engine sample selection. (a) At the start of each model year, the small...

  6. 40 CFR 90.706 - Engine sample selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine sample selection. 90.706... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Manufacturer Production Line Testing Program § 90.706 Engine sample selection. (a) At the start of each model year, the...

  7. 40 CFR 91.121 - Certification procedure-recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... description of the origin and buildup of the engine, steps taken to insure that it is representative of... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Standards and Certification Provisions § 91.121 Certification procedure—recordkeeping. (a) The engine manufacturer must...

  8. Potential of Spark Ignition Engine, 1979 Summary Source Document

    DOT National Transportation Integrated Search

    1980-03-01

    This report provides an assessment of the potential for spark ignition engines passenger cars and light trucks. The assessment includes: tradeoffs between fuel economy and emissions; improvements in spark ignition engine efficiency; improvements in e...

  9. LOX/Methane Main Engine Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.; Ajmani, Kumund

    2008-01-01

    The LOX/methane propellant combination is being considered for the Lunar Surface Access Module ascent main engine propulsion system. The proposed switch from the hypergolic propellants used in the Apollo lunar ascent engine to LOX/methane propellants requires the development of igniters capable of highly reliable performance in a lunar surface environment. An ignition test program was conducted that used an in-house designed LOX/methane spark torch igniter. The testing occurred in Cell 21 of the Research Combustion Laboratory to utilize its altitude capability to simulate a space vacuum environment. Approximately 750 ignition test were performed to evaluate the effects of methane purity, igniter body temperature, spark energy level and frequency, mixture ratio, flowrate, and igniter geometry on the ability to obtain successful ignitions. Ignitions were obtained down to an igniter body temperature of approximately 260 R with a 10 torr back-pressure. The data obtained is also being used to anchor a CFD based igniter model.

  10. 40 CFR 1045.650 - Do delegated-assembly provisions apply for marine engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Do delegated-assembly provisions apply for marine engines? 1045.650 Section 1045.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...

  11. 40 CFR 1045.650 - Do delegated-assembly provisions apply for marine engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Do delegated-assembly provisions apply for marine engines? 1045.650 Section 1045.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...

  12. 40 CFR 1045.650 - Do delegated-assembly provisions apply for marine engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Do delegated-assembly provisions apply for marine engines? 1045.650 Section 1045.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...

  13. 40 CFR 1045.650 - Do delegated-assembly provisions apply for marine engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Do delegated-assembly provisions apply for marine engines? 1045.650 Section 1045.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...

  14. 40 CFR 1045.650 - Do delegated-assembly provisions apply for marine engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Do delegated-assembly provisions apply for marine engines? 1045.650 Section 1045.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...

  15. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reducemore » fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.« less

  16. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  17. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  18. Shakedown and Preliminary Calibration Tests for the Fuel Engine Evaluation System Using the KM914A Sachs Rotary Combustion Engine.

    DTIC Science & Technology

    1981-12-01

    obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of...Thermometer T W OF Temperature Web Bulb Sling Psychrometer % Relative Humidity Psychrometric chart mm Hg Vapor Pressure Vapor Pressure chart - Correction...results obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of

  19. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  20. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  1. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  2. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  3. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  4. 40 CFR 91.1005 - Testing exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...

  5. 40 CFR 91.1005 - Testing exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...

  6. 40 CFR 91.1104 - General enforcement provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement... manufacturer of new marine SI engines and other persons subject to the requirements of this part must establish... the activity. (b) Exemption provision. The Administrator may exempt a new marine engine from...

  7. 40 CFR 91.1005 - Testing exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...

  8. 40 CFR 91.1005 - Testing exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...

  9. 40 CFR 91.1005 - Testing exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...

  10. 40 CFR 91.1104 - General enforcement provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement... manufacturer of new marine SI engines and other persons subject to the requirements of this part must establish... the activity. (b) Exemption provision. The Administrator may exempt a new marine engine from...

  11. 40 CFR 91.1104 - General enforcement provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement... manufacturer of new marine SI engines and other persons subject to the requirements of this part must establish... the activity. (b) Exemption provision. The Administrator may exempt a new marine engine from...

  12. 40 CFR 91.1104 - General enforcement provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement... manufacturer of new marine SI engines and other persons subject to the requirements of this part must establish... the activity. (b) Exemption provision. The Administrator may exempt a new marine engine from...

  13. 40 CFR 91.1104 - General enforcement provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement... manufacturer of new marine SI engines and other persons subject to the requirements of this part must establish... the activity. (b) Exemption provision. The Administrator may exempt a new marine engine from...

  14. 40 CFR 91.1011 - Submission of exemption requests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1011 Submission of exemption requests. Requests for exemption or further information concerning exemptions and/or the exemption request review procedure should be addressed to: Manager, Engine...

  15. 40 CFR 90.119 - Certification procedure-testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., removal, disassembly, cleaning, or replacement on a test engine without the advance approval of the... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission.... The manufacturer must test the test engine using the specified test procedures and appropriate test...

  16. 40 CFR 90.119 - Certification procedure-testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., removal, disassembly, cleaning, or replacement on a test engine without the advance approval of the... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission.... The manufacturer must test the test engine using the specified test procedures and appropriate test...

  17. 40 CFR 90.119 - Certification procedure-testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., removal, disassembly, cleaning, or replacement on a test engine without the advance approval of the... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission.... The manufacturer must test the test engine using the specified test procedures and appropriate test...

  18. 40 CFR 90.119 - Certification procedure-testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., removal, disassembly, cleaning, or replacement on a test engine without the advance approval of the... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission.... The manufacturer must test the test engine using the specified test procedures and appropriate test...

  19. 40 CFR 89.203 - General provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...

  20. 40 CFR 89.203 - General provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...

  1. 40 CFR 89.203 - General provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...

  2. 40 CFR 89.203 - General provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...

  3. 40 CFR 89.203 - General provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...

  4. 40 CFR 91.1301 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1301 Applicability. Marine SI engines subject to the provisions of subpart A of this part 91 are eligible to...

  5. 40 CFR 90.128 - Installation instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an engine will be installed in its certified configuration. In particular, describe the steps needed... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Standards and Certification Provisions § 90.128 Installation instructions. (a) If you sell an engine for...

  6. 40 CFR 90.404 - Test procedure overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust... engine operating conditions to be conducted on an engine dynamometer or equivalent load and speed... also designed to determine the brake-specific emissions of non-methane hydrocarbons. The test consists...

  7. 40 CFR 90.404 - Test procedure overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust... engine operating conditions to be conducted on an engine dynamometer or equivalent load and speed... also designed to determine the brake-specific emissions of non-methane hydrocarbons. The test consists...

  8. 40 CFR 90.404 - Test procedure overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust... engine operating conditions to be conducted on an engine dynamometer or equivalent load and speed... also designed to determine the brake-specific emissions of non-methane hydrocarbons. The test consists...

  9. 40 CFR 90.404 - Test procedure overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust... engine operating conditions to be conducted on an engine dynamometer or equivalent load and speed... also designed to determine the brake-specific emissions of non-methane hydrocarbons. The test consists...

  10. X-33 Combustion-Wave Ignition System Tested

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1999-01-01

    The NASA Lewis Research Center, in cooperation with Rocketdyne, the Boeing Company, tested a novel rocket engine ignition system, called the combustion-wave ignition system, in its Research Combustion Laboratory. This ignition system greatly simplifies ignition in rocket engines that have a large number of combustors. The particular system tested was designed and fabricated by Rocketdyne for the national experimental spacecraft, X-33, which uses Rocketdyne s aerospike rocket engines. The goal of the tests was to verify the system design and define its operational characteristics. Results will contribute to the eventual successful flight of X-33. Furthermore, the combustion-wave ignition system, after it is better understood and refined on the basis of the test results and, later, flight-proven onboard X-33, could become an important candidate engine ignition system for our Nation s next-generation reusable launch vehicle.

  11. 40 CFR 1054.115 - What other requirements apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT... § 1054.145(c), engines must meet applicable emission standards at all specified atmospheric pressures, except that for atmospheric pressures below 94.0 kPa you may rely on an altitude kit for all testing if...

  12. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...

  13. 40 CFR 1045.635 - What special provisions apply for small-volume engine manufacturers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What special provisions apply for small-volume engine manufacturers? 1045.635 Section 1045.635 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  14. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...

  15. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...

  16. 40 CFR 1045.635 - What special provisions apply for small-volume engine manufacturers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What special provisions apply for small-volume engine manufacturers? 1045.635 Section 1045.635 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  17. 40 CFR 1045.635 - What special provisions apply for small-volume engine manufacturers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply for small-volume engine manufacturers? 1045.635 Section 1045.635 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  18. 40 CFR 1045.635 - What special provisions apply for small-volume engine manufacturers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What special provisions apply for small-volume engine manufacturers? 1045.635 Section 1045.635 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  19. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...

  20. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...

  1. 40 CFR 1048.635 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... apply if you identify the name and trademark of another company instead of your own on your emission... the other company that obligates that company to take the following steps: (1) Meet the emission...

  2. 40 CFR 1048.635 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... apply if you identify the name and trademark of another company instead of your own on your emission... the other company that obligates that company to take the following steps: (1) Meet the emission...

  3. 40 CFR 1048.635 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... apply if you identify the name and trademark of another company instead of your own on your emission... the other company that obligates that company to take the following steps: (1) Meet the emission...

  4. 40 CFR 1048.635 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... apply if you identify the name and trademark of another company instead of your own on your emission... the other company that obligates that company to take the following steps: (1) Meet the emission...

  5. 40 CFR 1045.635 - What special provisions apply for small-volume engine manufacturers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What special provisions apply for small-volume engine manufacturers? 1045.635 Section 1045.635 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  6. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    PubMed

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  7. Laser-induced breakdown ignition in a gas fed two-stroke engine

    NASA Astrophysics Data System (ADS)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  8. Ignition study of a petrol/CNG single cylinder engine

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Benefits of laser ignition over the electrical ignition system for Compressed Natural Gas (CNG) engines have fuelled automobile industry and led to an extensive research on basic characteristics to switch over to the emerging technologies. This study was undertaken to determine the electrical and physical characteristics of the electric spark ignition of single cylinder petrol/CNG engine to determine minimum ignition requirements and timeline of ignition events to use in subsequent laser ignition study. This communication briefly reviews the ongoing research activities and reports the results of this experimental study. The premixed petrol and CNG mixtures were tested for variation of current and voltage characteristics of the spark with speed of engine. The current magnitude of discharge circuit was found to vary linearly over a wide range of speed but the stroke to stroke fire time was found to vary nonlinearly. The DC voltage profiles were observed to fluctuate randomly during ignition process and staying constant in rest of the combustion cycle. Fire to fire peaks of current amplitudes fluctuated up to 10% of the peak values at constant speed but increased almost linearly with increase in speed. Technical barriers of laser ignition related to threshold minimum ignition energy, inter-pulse durations and firing sequence are discussed. Present findings provide a basic initiative and background information for designing suitable timeline algorithms for laser ignited leaner direct injected CNG engines.

  9. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    NASA Astrophysics Data System (ADS)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  10. Signal Analysis of Automotive Engine Spark Ignition System using Case-Based Reasoning (CBR) and Case-based Maintenance (CBM)

    NASA Astrophysics Data System (ADS)

    Huang, H.; Vong, C. M.; Wong, P. K.

    2010-05-01

    With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenance (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.

  11. Photoignition Torch Applied to Cryogenic H2/O2 Coaxial Jet

    DTIC Science & Technology

    2016-12-06

    suitable for certain thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas ...turbines, gas generators, liquid rocket engines, and multi grain solid rocket motors. photoignition, fuel spray ignition, high pressure ignition...thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas turbines, gas

  12. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.; Li, H.; Neill, S.

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  13. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...

  14. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...

  15. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...

  16. A Comparative Study of Cycle Variability of Laser Plug Ignition vs Classical Spark Plug Ignition in Combustion Engines

    NASA Astrophysics Data System (ADS)

    Done, Bogdan

    2017-10-01

    Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

  17. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  18. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    NASA Astrophysics Data System (ADS)

    Dumitrache, Ciprian

    Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the gas temperature is suitable for combustion (T=2000-3000 K). This technique is demonstrated by attempting ignition of various mixtures of propane-air and it is shown to have distinct advantages when compared to the classical approach: lower ignition energy for given stoichiometry than conventional laser ignition ( 20% lower), extension of the lean limit ( 15% leaner) and improvement in combustion efficiency. Moreover, it is demonstrated that careful alignment of the two pulses influences the fluid dynamics of the early flame kernel growth. This finding has a number of implications for practical uses as it demonstrates that the flame kernel dynamics can be tailored using various combinations of laser pulses and opens the door for implementing such a technique to applications such as: flame holding and flame stabilization in high speed flow combustors (such as ramjet and scramjet engines), reducing flame stretching in highly turbulent combustion devices and increasing combustion efficiency for stationary natural gas engines. As such, the work presented in this dissertation should be of interest to a broad audience including those interested in combustion research, engine operation, chemically reacting flows, plasma dynamics and laser diagnostics.

  19. 40 CFR 94.1104 - General enforcement provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and... manufacturer of new engines and other persons subject to the requirements of this part must establish and... requirements of subpart E of this part. (ii) Every manufacturer or owner of engines exempted from the standards...

  20. 40 CFR 94.1104 - General enforcement provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and... manufacturer of new engines and other persons subject to the requirements of this part must establish and... requirements of subpart E of this part. (ii) Every manufacturer or owner of engines exempted from the standards...

  1. 40 CFR 94.1104 - General enforcement provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and... manufacturer of new engines and other persons subject to the requirements of this part must establish and... requirements of subpart E of this part. (ii) Every manufacturer or owner of engines exempted from the standards...

  2. 40 CFR 94.1104 - General enforcement provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and... manufacturer of new engines and other persons subject to the requirements of this part must establish and... requirements of subpart E of this part. (ii) Every manufacturer or owner of engines exempted from the standards...

  3. 40 CFR 94.1104 - General enforcement provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Enforcement Provisions and... manufacturer of new engines and other persons subject to the requirements of this part must establish and... requirements of subpart E of this part. (ii) Every manufacturer or owner of engines exempted from the standards...

  4. 77 FR 20848 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... labeled marine diesel engines in their respective operations. The Consent Decree requires Settling...-ignition engine manufacturer, and National Steel and Shipbuilding Company, a marine vessel manufacturer... Selective Catalytic Reduction emissions control technology at a marine engine test stand operated at...

  5. Distributed ignition method and apparatus for a combustion engine

    DOEpatents

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  6. 77 FR 40879 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... Compression Ignition Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA....regulations.gov . Title: NSPS for Stationary Source Compression Ignition Internal Combustion Engines (Renewal... Performance Standards (NSPS) for Stationary Source Compression Ignition Internal Combustion Engines (40 CFR...

  7. Final Rule for Phase 2 Emission Standards for New Nonroad Spark-Ignition Handheld Engines At or Below 19 Kilowatts and Minor Amendments to Emission Requirements Applicable to Small Spark-Ignition Engines and Marine Spark-Ignition Engines

    EPA Pesticide Factsheets

    Rule summary, rule history, CFR citations and additional resources concerning emissions standards for engines principally used in handheld lawn and garden equipment such as trimmers, leaf blowers, and chainsaws.

  8. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azer Yalin; Bryan Willson

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies andmore » approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.« less

  9. Some aspects of the CI engine modification aimed at operation on LPG with the application of spark ignition

    NASA Astrophysics Data System (ADS)

    Kaparuk, J.; Luft, S.; Skrzek, T.; Wojtyniak, M.

    2016-09-01

    A lot of investigation on modification of the compression ignition engine aimed at operation on LPG with the application of spark ignition has been carried out in the Laboratory of Vehicles and Combustion Engines at Kazimierz Pulaski University of Technology and Humanities in Radom. This paper presents results of investigation on establishment of the proper ignition advance angle in the modified engine. Within the framework of this investigation it was assessed the effect of this regulation on basic engine operating parameters, exhaust emission as well as basic combustion parameters.

  10. Laser ignition of engines: a realistic option!

    NASA Astrophysics Data System (ADS)

    Weinrotter, M.; Srivastava, D. K.; Iskra, K.; Graf, J.; Kopecek, H.; Klausner, J.; Herdin, G.; Wintner, E.

    2006-01-01

    Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NO x emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.

  11. Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels

    NASA Astrophysics Data System (ADS)

    Vandersickel, A.; Wright, Y. M.; Boulouchos, K.

    2013-12-01

    Compact reaction schemes capable of predicting auto-ignition are a prerequisite for the development of strategies to control and optimise homogeneous charge compression ignition (HCCI) engines. In particular for full boiling range fuels exhibiting two stage ignition a tremendous demand exists in the engine development community. The present paper therefore meticulously assesses a previous 7-step reaction scheme developed to predict auto-ignition for four hydrocarbon blends and proposes an important extension of the model constant optimisation procedure, allowing for the model to capture not only ignition delays, but also the evolutions of representative intermediates and heat release rates for a variety of full boiling range fuels. Additionally, an extensive validation of the later evolutions by means of various detailed n-heptane reaction mechanisms from literature has been presented; both for perfectly homogeneous, as well as non-premixed/stratified HCCI conditions. Finally, the models potential to simulate the auto-ignition of various full boiling range fuels is demonstrated by means of experimental shock tube data for six strongly differing fuels, containing e.g. up to 46.7% cyclo-alkanes, 20% napthalenes or complex branched aromatics such as methyl- or ethyl-napthalene. The good predictive capability observed for each of the validation cases as well as the successful parameterisation for each of the six fuels, indicate that the model could, in principle, be applied to any hydrocarbon fuel, providing suitable adjustments to the model parameters are carried out. Combined with the optimisation strategy presented, the model therefore constitutes a major step towards the inclusion of real fuel kinetics into full scale HCCI engine simulations.

  12. 40 CFR 90.1004 - General enforcement provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Prohibited Acts... collection provisions. (1) Every manufacturer of new nonroad engines and other persons subject to the... nonroad engine from § 90.1003 upon such terms and conditions as the Administrator may find necessary for...

  13. 40 CFR 90.1004 - General enforcement provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Prohibited Acts... collection provisions. (1) Every manufacturer of new nonroad engines and other persons subject to the... nonroad engine from § 90.1003 upon such terms and conditions as the Administrator may find necessary for...

  14. 40 CFR 89.1004 - General enforcement provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES General Enforcement... provisions. (1) Every manufacturer of new nonroad engines and other persons subject to the requirements of... nonroad engine from § 89.1003 upon such terms and conditions as the Administrator may find necessary for...

  15. 40 CFR 90.1004 - General enforcement provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Prohibited Acts... collection provisions. (1) Every manufacturer of new nonroad engines and other persons subject to the... nonroad engine from § 90.1003 upon such terms and conditions as the Administrator may find necessary for...

  16. 40 CFR 89.1004 - General enforcement provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES General Enforcement... provisions. (1) Every manufacturer of new nonroad engines and other persons subject to the requirements of... nonroad engine from § 89.1003 upon such terms and conditions as the Administrator may find necessary for...

  17. 40 CFR 90.1004 - General enforcement provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Prohibited Acts... collection provisions. (1) Every manufacturer of new nonroad engines and other persons subject to the... nonroad engine from § 90.1003 upon such terms and conditions as the Administrator may find necessary for...

  18. 40 CFR 89.1004 - General enforcement provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES General Enforcement... provisions. (1) Every manufacturer of new nonroad engines and other persons subject to the requirements of... nonroad engine from § 89.1003 upon such terms and conditions as the Administrator may find necessary for...

  19. 40 CFR 89.1004 - General enforcement provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES General Enforcement... provisions. (1) Every manufacturer of new nonroad engines and other persons subject to the requirements of... nonroad engine from § 89.1003 upon such terms and conditions as the Administrator may find necessary for...

  20. 40 CFR 89.1004 - General enforcement provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES General Enforcement... provisions. (1) Every manufacturer of new nonroad engines and other persons subject to the requirements of... nonroad engine from § 89.1003 upon such terms and conditions as the Administrator may find necessary for...

Top