Sample records for controlled interparticle interactions

  1. Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-06-01

    Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.

  2. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction.

    PubMed

    Gratale, Matthew D; Ma, Xiaoguang; Davidson, Zoey S; Still, Tim; Habdas, Piotr; Yodh, A G

    2016-10-01

    We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.

  3. Interparticle interactions mediated superspin glass to superferromagnetic transition in Ni-bacterial cellulose aerogel nanocomposites

    NASA Astrophysics Data System (ADS)

    Thiruvengadam, V.; Vitta, Satish

    2016-06-01

    The interparticle interactions in the magnetic nanocomposites play a dominant role in controlling phase transitions: superparamagnetic to superspin glass and to superferromagnetic. These interactions can be tuned by controlling the size and number density of nanoparticles. The aerogel composites, 0.3Ni-BC and 0.7Ni-BC, consisting of Ni nanoparticles distributed in the bacterial cellulose have been used as a model system to study these interactions. Contrary to conventional approach, size of Ni-nanoparticles is not controlled and allowed to form naturally in bacterial cellulose template. The uncontrolled growth of Ni results in the formation of nanoparticles with 3 different size distributions - <10 nm particles along the length of fibrils, 50 nm particles in the intermediate spaces between the fibrils, and >100 nm particles in voids formed by reticulate structure. At room temperature, the composites exhibit a weakly ferromagnetic behaviour with a coercivity of 40 Oe, which increases to 160 Oe at 10 K. The transition from weakly ferromagnetic state to superferromagnetic state at low temperatures is mediated by the superspin glass state at intermediate temperatures via the interparticle interactions aided by nanoparticles present along the length of fibres. A temperature dependent microstructural model has been developed to understand the magnetic behaviour of nanocomposite aerogels.

  4. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    NASA Astrophysics Data System (ADS)

    Song, Minseok

    The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly. We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles. Subsequently, the controlled mixing of complementary ssDNA functionality on individual particles ('multi-flavoring') as opposed to functionalization of particles with the same type of ssDNA ('uni-flavoring') is explored as a possible design handle for tuning interparticle interactions and, thereby, accessing diverse structures. We employ a combination of simulations, theory, and experimental validation toward establishing 'multi-flavoring' as a rational design strategy. Firstly, MD simulations are carried out using effective pair potentials to describe interparticle interactions that are representative of different degrees of ssDNA 'multi-flavoring'. These simulations reveal the template-free assembly of a diversity of 2D crystal polymorphs that is apparently tunable by controlling the relative attractive strengths between like and unlike functionalized particles. The resulting phase diagrams predict conditions (i.e., strengths of relative interparticle interactions) for obtaining crystalline phases with lattice symmetries ranging among square, alternating string hexagonal, random hexagonal, rhombic, honeycomb, and even kagome. Finally, these model findings are translated to experiments, in which binary microparticles are decorated with a tailored mixture of two different complementary ssDNA strands as a straight-forward means to realize tunable particle interactions. Guided by simple statistical mechanics and the detailed MD simulations, 'multi-flavoring' and control of solution phase particle stoichiometry resulted in experimental realization of structurally diverse 2D microparticle assemblies consistent with predictions, such as square, pentagonal and hexagonal lattices (honeycomb, kagome). The combined simulation, theory, and experimental findings reveal how control of interparticle interactions via DNA-functionalized particle "multi-flavoring" can lead to an even wider range of accessible colloidal crystal structures. The 2D experiments coupled with the model predictions may be used to provide new fundamental insight into nano- or microparticle assembly in three dimensions.

  5. Nanoscale Interparticle Distance within Dimers in Solution Measured by Light Scattering

    PubMed Central

    2017-01-01

    We demonstrate a novel approach to quantify the interparticle distance in colloidal dimers using Mie scattering. The interparticle distance is varied in a controlled way by changing the ionic strength of the solution and the magnetic attraction between the particles. The measured scaling behavior is interpreted using an energy–distance model that includes the repulsive electrostatic and attractive magnetic interactions. The center-to-center distances of particles with a 525 nm radius can be determined with a root-mean-square accuracy of 12 nm. The data show that the center-to-center distance is larger by 83 nm compared to perfect spheres. The underlying distance offset can be attributed to repulsion by charged protrusions caused by particle surface roughness. The measurement method accurately quantifies interparticle distances that can be used to study cluster formation and colloid aggregation in complex systems, e.g., in biosensing applications. PMID:29183122

  6. The dendritic effect and magnetic permeability in dendron coated nickel and manganese zinc ferrite nanoparticles.

    PubMed

    Jishkariani, Davit; Lee, Jennifer D; Yun, Hongseok; Paik, Taejong; Kikkawa, James M; Kagan, Cherie R; Donnio, Bertrand; Murray, Christopher B

    2017-09-28

    The collective magnetic properties of nanoparticle (NP) solid films are greatly affected by inter-particle dipole-dipole interactions and therefore the proximity of the neighboring particles. In this study, a series of dendritic ligands (generations 0 to 3, G0-G3) have been designed and used to cover the surface of magnetic NPs to control the spacings between the NP components in single lattices. The dendrons of different generations introduced here were based on the 2,2-bis(hydroxymethyl)propionic acid (Bis-MPA) scaffold and equipped with an appropriate surface binding group at one end and several fatty acid segments at the other extremity. The surface of the NPs was then modified by partial ligand exchange between the primary stabilizing surfactants and the new dendritic wedges. It was shown that this strategy permitted very precise tuning of inter-particle spacings in the range of 2.9-5.0 nm. As expected, the increase in the inter-particle spacings reduced the dipole-dipole interactions between magnetic NPs and therefore allowed changes in their magnetic permeability. The dendron size and inter-particle distance dependence was studied to reveal the dendritic effect and identify the optimal geometry and generation.

  7. Programming the Assembly of Unnatural Materials with Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Mirkin, Chad

    Nature directs the assembly of enormously complex and highly functional materials through an encoded class of biomolecules, nucleic acids. The establishment of a similarly programmable code for the construction of synthetic, unnatural materials would allow researchers to impart functionality by precisely positioning all material components. Although it is exceedingly difficult to control the complex interactions between atomic and molecular species in such a manner, interactions between nanoscale components can be directed through the ligands attached to their surface. Our group has shown that nucleic acids can be used as highly programmable surface ligands to control the spacing and symmetry of nanoparticle building blocks in structurally sophisticated and functional materials. These nucleic acids function as programmable ``bonds'' between nanoparticle ``atoms,'' analogous to a nanoscale genetic code for assembling materials. The sequence and length tunability of nucleic acid bonds has allowed us to define a powerful set of design rules for the construction of nanoparticle superlattices with more than 30 unique lattice symmetries, tunable defect structures and interparticle spacings, and several well-defined crystal habits. Further, the nature of the nucleic acid bond enables an additional level of structural control: temporal regulation of dynamic material response to external biomolecular and chemical stimuli. This control allows for the reversible transformation between thermodynamic states with different crystal symmetries, particle stoichiometries, thermal stabilities, and interparticle spacings on demand. Notably, our unique genetic approach affords functional nanoparticle architectures that, among many other applications, can be used to systematically explore and manipulate optoelectronic material properties, such as tunable interparticle plasmonic interactions, microstructure-directed energy emission, and coupled plasmonic and photonic modes.

  8. Microstructure and rheology of particle stabilized emulsions: Effects of particle shape and inter-particle interactions.

    PubMed

    Katepalli, Hari; John, Vijay T; Tripathi, Anubhav; Bose, Arijit

    2017-01-01

    Using fumed and spherical silica particles of similar hydrodynamic size, we investigated the effects of particle shape and inter-particle interactions on the formation, stability and rheology of bromohexadecane-in-water Pickering emulsions. The interparticle interactions were varied from repulsive to attractive by modifying the salt concentration in the aqueous phase. Optical microscope images revealed smaller droplet sizes for the fumed silica stabilized emulsions. All the emulsions remained stable for several weeks. Cryo-SEM images of the emulsion droplets showed a hexagonally packed single layer of particles at oil-water interfaces in emulsions stabilized with silica spheres, irrespective of the nature of the inter-particle interactions. Thus, entropic, excluded volume interactions dominate the fate of spherical particles at oil-water interfaces. On the other hand, closely packed layers of particles were observed at oil-water interfaces for the fumed silica stabilized emulsions for both attractive and repulsive interparticle interactions. At the high salt concentrations, attractive inter-particles interactions led to aggregation of fumed silica particles, and multiple layers of these particles were then observed on the droplet surfaces. A network of fumed silica particles was also observed between the emulsion droplets, suggesting that enthalpic interactions are responsible for the determining particle configurations at oil-water interfaces as well as in the aqueous phase. Steady shear viscosity measurements over a range of shear stresses, as well as oscillatory shear measurements at 1Hz confirm the presence of a network in fumed silica suspensions and emulsions, and the lack of such a network when spherical particles are used. The fractal structure of fumed silica leads to several contact points and particle interlocking in the water as well as on the bromohexadecane-water interfaces, with corresponding effects on the structure and rheology of the emulsions. The attenuation of droplet motion due to the formation of a particle network can be exploited for stabilizing emulsions and for modulating their rheology. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effective interactions and dynamics of small passive particles in an active bacterial medium

    NASA Astrophysics Data System (ADS)

    Semeraro, Enrico F.; Devos, Juliette M.; Narayanan, Theyencheri

    2018-05-01

    This article presents an investigation of the interparticle interactions and dynamics of submicron silica colloids suspended in a bath of motile Escherichia coli bacteria. The colloidal microstructure and dynamics were probed by ultra-small-angle x-ray scattering and multi-speckles x-ray photon correlation spectroscopy, respectively. Both static and hydrodynamic interactions were obtained for different colloid volume fractions and bacteria concentrations as well as when the interparticle interaction potential was modified by the motility buffer. Results suggest that motile bacteria reduce the effective attractive interactions between passive colloids and enhance their dynamics at high colloid volume fractions. The enhanced dynamics under different static interparticle interactions can be rationalized in terms of an effective viscosity of the medium and unified by means of an empirical effective temperature of the system. While the influence of swimming bacteria on the colloid dynamics is significantly lower for small particles, the role of motility buffer on the static and dynamic interactions becomes more pronounced.

  10. Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xu-Bing; Gao, Yu-Ji; Wang, Yang

    Colloidal quantum dots (QDs) have demonstrated great promise in artificial photosynthesis. However, the ultrasmall size hinders its controllable and effective interaction with cocatalysts. To improve the poor interparticle electronic communication between free QD and cocatalyst, we design here a self-assembled architecture of nanoparticles, QDs and Ptnanoparticles, simply jointed together by molecular polyacrylate to greatly enhance the rate and efficiency of interfacial electron transfer (ET). The enhanced interparticle electronic communication is confirmed by femtosecond transient absorption spectroscopy and X-ray transient absorption. Taking advantage of the enhanced interparticle ET with a time scale of ~65 ps, 5.0 mL assembled CdSe/CdS QDs/cocatalysts solutionmore » produces 94 ± 1.5 mL (4183 ± 67 µmol) molecular H 2 in 8 h, giving rise to an internal quantum yield of ~65% in the first 30 min and a total turnover number of >16,400,000 per Pt-nanoparticle. This study demonstrates that self-assembly is a promising way to improve the sluggish kinetics of interparticle ET process, which is the key step for advanced H 2 photosynthesis.« less

  11. Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution

    DOE PAGES

    Li, Xu-Bing; Gao, Yu-Ji; Wang, Yang; ...

    2017-03-10

    Colloidal quantum dots (QDs) have demonstrated great promise in artificial photosynthesis. However, the ultrasmall size hinders its controllable and effective interaction with cocatalysts. To improve the poor interparticle electronic communication between free QD and cocatalyst, we design here a self-assembled architecture of nanoparticles, QDs and Ptnanoparticles, simply jointed together by molecular polyacrylate to greatly enhance the rate and efficiency of interfacial electron transfer (ET). The enhanced interparticle electronic communication is confirmed by femtosecond transient absorption spectroscopy and X-ray transient absorption. Taking advantage of the enhanced interparticle ET with a time scale of ~65 ps, 5.0 mL assembled CdSe/CdS QDs/cocatalysts solutionmore » produces 94 ± 1.5 mL (4183 ± 67 µmol) molecular H 2 in 8 h, giving rise to an internal quantum yield of ~65% in the first 30 min and a total turnover number of >16,400,000 per Pt-nanoparticle. This study demonstrates that self-assembly is a promising way to improve the sluggish kinetics of interparticle ET process, which is the key step for advanced H 2 photosynthesis.« less

  12. Bioassay using blocking temperature: Interparticle interactions between biofunctionalized magnetic nanoparticles conjugated with biotargets

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Yang, T. W.; Shen, D.; Chen, K. L.; Chen, J. M.; Liao, S. H.; Chieh, J. J.; Yang, H. C.; Wang, L. M.

    2017-03-01

    This paper reports a bioassay of alpha-fetoprotein (AFP) concentration achieved via the measurement of blocking temperature (TB). Biofunctionalized magnetic nanoparticles (BMNs) consisting of anti-alpha-fetoprotein coated onto dextran-coated magnetic nanoparticles composed of Fe3O4 were prepared and then conjugated with AFP biotargets. It was found that both the saturation magnetization and value of TB increased with the concentration of the associated AFP. Furthermore, the dependence of TB of the samples on magnetic field agreed with the interparticle interaction model. Thus, this study demonstrated a platform to detect biomarkers by characterizing TB with a sensitivity limit of 20 ppb of AFP. The promising results obtained for this bioassay can be attributed to the interparticle interactions and Néel motions of magnetic moments in the BMNs.

  13. Interparticle interactions effects on the magnetic order in surface of FeO4 nanoparticles.

    PubMed

    Lima, E; Vargas, J M; Rechenberg, H R; Zysler, R D

    2008-11-01

    We report interparticle interactions effects on the magnetic structure of the surface region in Fe3O4 nanoparticles. For that, we have studied a desirable system composed by Fe3O4 nanoparticles with (d) = 9.3 nm and a narrow size distribution. These particles present an interesting morphology constituted by a crystalline core and a broad (approximately 50% vol.) disordered superficial shell. Two samples were prepared with distinct concentrations of the particles: weakly-interacting particles dispersed in a polymer and strongly-dipolar-interacting particles in a powder sample. M(H, T) measurements clearly show that strong dipolar interparticle interaction modifies the magnetic structure of the structurally disordered superficial shell. Consequently, we have observed drastically distinct thermal behaviours of magnetization and susceptibility comparing weakly- and strongly-interacting samples for the temperature range 2 K < T < 300 K. We have also observed a temperature-field dependence of the hysteresis loops of the dispersed sample that is not observed in the hysteresis loops of the powder one.

  14. Fluctuation-induced transport of two coupled particles: effect of the interparticle interaction.

    PubMed

    Makhnovskii, Yurii A; Rozenbaum, Viktor M; Sheu, Sheh-Yi; Yang, Dah-Yen; Trakhtenberg, Leonid I; Lin, Sheng Hsien

    2014-06-07

    We consider a system of two coupled particles fluctuating between two states, with different interparticle interaction potentials and particle friction coefficients. An external action drives the interstate transitions that induces reciprocating motion along the internal coordinate x (the interparticle distance). The system moves unidirectionally due to rectification of the internal motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input energy into net movement. We focus on how the law of interaction between the particles affects the dimer transport and, in particular, the role of thermal noise in the motion inducing mechanism. It is argued that if the interaction potential behaves at large distances as x(α), depending on the value of the exponent α, the thermal noise plays a constructive (α > 2), neutral (α = 2), or destructive (α < 2) role. In the case of α = 1, corresponding piecewise linear potential profiles, an exact solution is obtained and discussed in detail.

  15. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    PubMed Central

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph

    2015-01-01

    Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686

  16. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    DOE PAGES

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; ...

    2015-04-14

    Here, weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices,more » which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair’s zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm.« less

  17. Inter-particle interaction dependent evaporation-induced assembly in contact-free micro-colloidal droplets

    NASA Astrophysics Data System (ADS)

    Sen, Debasis; Biswas, Priyanka; Melo, J. S.

    2018-04-01

    Evaporation-induced assembly of constituent particles in tiny dispersion droplet allows an efficient way to realize nano-structured micro-granules with potential for various applications. Morphology of the granules, obtained by such one-step dispersion to granular transformation, is decided by several physicochemical conditions. Here we demonstrate that the inter-particle interaction plays a crucial role in deciding the assembled morphology. Resultant granules are investigated by complementary techniques, Electron microscopy and small-angle scattering.

  18. Interparticle interaction effects on magnetic behaviors of hematite (α-Fe2O3) nanoparticles

    NASA Astrophysics Data System (ADS)

    Can, Musa Mutlu; Fırat, Tezer; Özcan, Şadan

    2011-07-01

    The interparticle magnetic interactions of hematite (α-Fe2O3) nanoparticles were investigated by temperature and magnetic field dependent magnetization curves. The synthesis were done in two steps; milling metallic iron (Fe) powders in pure water (H2O), known as mechanical milling technique, and annealing at 600 °C. The crystal and molecular structure of prepared samples were determined by X-ray powder diffraction (XRD) spectra and Fourier transform infrared (FTIR) spectra results. The average particle sizes and the size distributions were figured out using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The magnetic behaviors of α-Fe2O3 nanoparticles were analyzed with a vibrating sample magnetometer (VSM). As a result of the analysis, it was observed that the prepared α-Fe2O3 nanoparticles did not perform a sharp Morin transition (the characteristic transition of α-Fe2O3) due to lack of unique particle size distribution. However, the transition can be observed in the wide temperature range as “a continuously transition”. Additionally, the effect of interparticle interaction on magnetic behavior was determined from the magnetization versus applied field (σ(M)) curves for 26±2 nm particles, dispersed in sodium oxalate matrix under ratios of 200:1, 300:1, 500:1 and 1000:1. The interparticle interaction fields, recorded at 5 K to avoid the thermal interactions, were found as ∼1082 Oe for 26±2 nm particles.

  19. Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering

    NASA Astrophysics Data System (ADS)

    Dan, Wang; Bingbing, Lin; Taipeng, Shen; Jun, Wu; Fuhua, Hao; Chunchao, Xia; Qiyong, Gong; Huiru, Tang; Bin, Song; Hua, Ai

    2016-07-01

    Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ɛ-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (M s) and T 2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).

  20. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.

    PubMed

    Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes

    2013-11-21

    Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.

  1. Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Michael B.; Fan, Hongyou; Brener, Igal

    2015-09-01

    QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. Duringmore » the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.« less

  2. Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Kim, Hae Koo; Lee, Sang Joon

    2010-07-27

    X-ray-based imaging is one of the most powerful and convenient methods in terms of versatility in applicable energy and high performance in use. Different from conventional nuclear medicine imaging, contrast agents are required in X-ray imaging especially for effectively targeted and molecularly specific functions. Here, in contrast to much reported static accumulation of the contrast agents in targeted organs, dynamic visualization in a living organism is successfully accomplished by the particle-traced X-ray imaging for the first time. Flow phenomena across perforated end walls of xylem vessels in rice are monitored by a gold nanoparticle (AuNP) (approximately 20 nm in diameter) as a flow tracing sensor working in nontransparent biofluids. AuNPs are surface-modified to control the hydrodynamic properties such as hydrodynamic size (DH), zeta-potential, and surface plasmonic properties in aqueous conditions. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray nanoscopy (XN), and X-ray microscopy (XM) are used to correlate the interparticle interactions with X-ray absorption ability. Cluster formation and X-ray contrast ability of the AuNPs are successfully modulated by controlling the interparticle interactions evaluated as flow-tracing sensors.

  3. High-temperature crystallization of nanocrystals into three-dimensional superlattices.

    PubMed

    Wu, Liheng; Willis, Joshua J; McKay, Ian Salmon; Diroll, Benjamin T; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J

    2017-08-10

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  4. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    NASA Astrophysics Data System (ADS)

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; Diroll, Benjamin T.; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J.

    2017-08-01

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  5. Parametric excitation and squeezing in a many-body spinor condensate

    PubMed Central

    Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.

    2016-01-01

    Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states. PMID:27044675

  6. Parametric excitation and squeezing in a many-body spinor condensate

    NASA Astrophysics Data System (ADS)

    Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.

    2016-04-01

    Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states.

  7. The effects of intraparticle and interparticle interactions on the magnetic hysteresis loop of frozen suspensions of bionized nanoferrite particles

    NASA Astrophysics Data System (ADS)

    Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi

    Bionized nano-ferrite (iron oxide/dextran) nanoparticles have been shown to have a large heating response in an alternating magnetic field, making them very promising for applications in magnetic nanoparticle hyperthermia cancer treatment. Magnetic hysteresis loop measurements of these particles provide insight into the magnetic reversal behavior of these particles, and thus their heating response. Measurements have been performed on frozen suspensions of nanoparticles dispersed in H2O, which have been frozen in a range of applied fields in order to tune the interparticle dipolar interactions through formation of linear chains. These experimental results are compared with micromagnetic models of both monolithic (single-domain) and internally structured (multi-grain) particles. It is found that the internal structure of the nanoparticles, which are made up of parallelepiped-shaped grains, is important for describing the magnetic reversal behavior of the particles and the resulting shape of the hysteresis loops. In addition to this, interparticle interactions between particles in a linear chain modify the reversal behavior and thus the shape of the hysteresis loop.

  8. Controlling the interparticle spacing of Au-salt loaded micelles and Au nanoparticles on flat surfaces.

    PubMed

    Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J

    2007-09-25

    The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru

    The interaction of two charged point macroparticles located in Wigner–Seitz cells of simple cubic (SC), body-centered cubic (BCC), or face-centered cubic (FCC) lattices in an equilibrium plasma has been studied within the Debye approximation or, more specifically, based on the linearized Poisson–Boltzmann model. The shape of the outer boundary is shown to exert a strong influence on the pattern of electrostatic interaction between the two macroparticles, which transforms from repulsion at small interparticle distances to attraction as the interparticle distance approaches half the length of the computational cell. The macroparticle pair interaction potential in an equilibrium plasma is shown tomore » be nevertheless the Debye one and purely repulsive for likely charged macroparticles.« less

  10. Anomalous temperature-dependent heat transport in one-dimensional momentum-conserving systems with soft-type interparticle interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Daxing

    2017-04-01

    We numerically investigate the heat transport problem in a one-dimensional momentum-conserving lattice with a soft-type (ST) anharmonic interparticle interaction. It is found that with the increase of the system's temperature, while the introduction of ST anharmonicity softens phonons and decreases their velocities, this type of nonlinearity like its hard type (HT) counterpart, can still not be able to fully damp the longest wavelength phonons. Therefore, a usual anomalous temperature dependence of heat transport with certain scaling properties similarly to those shown in the Fermi-Pasta-Ulam-β -like systems with HT interactions can be seen. Our detailed examination from simulations verifies this temperature-dependent behavior well.

  11. Topological Interaction by Entangled DNA Loops

    NASA Astrophysics Data System (ADS)

    Feng, Lang; Sha, Ruojie; Seeman, Nadrian. C.; Chaikin, Paul. M.

    2012-11-01

    We have discovered a new type of interaction between micro- or nanoscale particles that results from the entanglement of strands attached to their surfaces. Self-complementary DNA single strands on a particle can hybridize to form loops. A similar proximal particle can have its loops catenate with those of the first. Unlike conventional thermodynamic interparticle interactions, the catenation interaction is strongly history and protocol dependent, allowing for nonequilibrium particle assembly. The interactions can be controlled by an interesting combination of forces, temperature, light sensitive cross-linking and enzymatic unwinding of the topological links. This novel topological interaction may lead to new materials and phenomena such as particles strung on necklaces, confined motions on designed contours and surfaces, and colloidal Olympic gels.

  12. Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1990-01-01

    This report focuses on the effects of interparticle forces on the rheology and airblast atomization of micronized coal water slurry (CWS). We found that the CWS flow behavior index is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The former intensifies as the Hamaker constant increases and the interparticle distance reduces while the latter increases as the particle surface charge density increases. The interparticle attraction causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior. In contrast, the interparticle repulsion prevents particle aggregation andmore » thus leads to Newtonian behavior. Both atomized at low atomizing air pressures (less than 270 kPa) using twin-fluid jet atomizers of various distributor designs. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. The effects of coal volume fraction, coal particle surface charge, liquid composition and liquid viscosity on slurry atomization can be accounted for by their effects on slurry rheology. 26 refs.« less

  13. Influence of the flip-flop interaction on a single plasmon transport in 1D waveguide

    NASA Astrophysics Data System (ADS)

    Ko, Myong-Chol; Kim, Nam-Chol; Ho, Nam-Chol; Ryom, Ju-Song; Hao, Zhong-Hua; Li, Jian-Bo; Wang, Qu-Quan

    2017-12-01

    Transport of a single plasmon in the 1D waveguide coupled to two emitters with the flip-flop interaction is discussed theoretically via the real-space approach. We showed that the transmission and reflection of a single plasmon could be changeable by adjusting the flip-flop coupling strength of the QDs, the interaction of QDs with the metallic nanowaveguide, interparticle distance of the QDs and detuning. Setting the interparticle distances properly results in the switching between the complete transmission and the complete reflection. Especially, our results show that the QDs with the flip-flop interaction play important role in the transport of the propagating single plasmon, which is relevant to the Förster resonance energy transfer from donor QD to acceptor QD.

  14. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    DOE PAGES

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; ...

    2017-07-31

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single-and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) ofmore » micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. In conclusion, the rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.« less

  15. Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe–Al Mixtures: Current-Related or Kirkendall Effect?

    PubMed Central

    Dudina, Dina V.; Bokhonov, Boris B.; Mukherjee, Amiya K.

    2016-01-01

    A need to deeper understand the influence of electric current on the structure and properties of metallic materials consolidated by Spark Plasma Sintering (SPS) stimulates research on inter-particle interactions, bonding and necking processes in low-pressure or pressureless conditions as favoring technique-specific local effects when electric current passes through the underdeveloped inter-particle contacts. Until now, inter-particle interactions during pressureless SPS have been studied mainly for particles of the same material. In this work, we focused on the interactions between particles of dissimilar materials in mixtures of micrometer-sized Fe and Al powders forming porous compacts during pressureless SPS at 500–650 °C. Due to the chemical interaction between Al and Fe, necks of conventional shape did not form between the dissimilar particles. At the early interaction stages, the Al particles acquired shell morphology. It was shown that this morphology change was not related to the influence of electric current but was due to the Kirkendall effect in the Fe–Al system and particle rearrangement in a porous compact. No experimental evidence of melting or melt ejection during pressureless SPS of the Fe–Al mixtures or Fe and Al powders sintered separately was observed. Porous FeAl-based compacts could be obtained from Fe-40at.%Al mixtures by pressureless SPS at 650 °C. PMID:28773498

  16. Is the Pauli exclusion principle the origin of electron localisation?

    NASA Astrophysics Data System (ADS)

    Rincón, Luis; Torres, F. Javier; Almeida, Rafael

    2018-03-01

    In this work, we inquire into the origins of the electron localisation as obtained from the information content of the same-spin pair density, γσ, σ(r2∣r1). To this end, we consider systems of non-interacting and interacting identical Fermions contained in two simple 1D potential models: (1) an infinite potential well and (2) the Kronig-Penney periodic potential. The interparticle interaction is considered through the Hartree-Fock approximation as well as the configuration interaction expansion. Morover, the electron localisation is described through the Kullback-Leibler divergence between γσ, σ(r2∣r1) and its associated marginal probability. The results show that, as long as the adopted method properly includes the Pauli principle, the electronic localisation depends only modestly on the interparticle interaction. In view of the latter, one may conclude that the Pauli principle is the main responsible for the electron localisation.

  17. Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: numerical study.

    PubMed

    Nardecchia, Ilaria; Spinelli, Lionel; Preto, Jordane; Gori, Matteo; Floriani, Elena; Jaeger, Sebastien; Ferrier, Pierre; Pettini, Marco

    2014-08-01

    The dynamical properties and diffusive behavior of a collection of mutually interacting particles are numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental method to probe the activation of resonant electrodynamic interactions among biomolecules.

  18. Electrostatic interaction between dissimilar colloids at fluid interfaces

    NASA Astrophysics Data System (ADS)

    Majee, Arghya; Schmetzer, Timo; Bier, Markus

    2018-04-01

    The electrostatic interaction between two nonidentical, moderately charged colloids situated in close proximity of each other at a fluid interface is studied. By resorting to a well-justified model system, this problem is analytically solved within the framework of linearized Poisson-Boltzmann density functional theory. The resulting interaction comprises a surface and a line part, both of which, as functions of the interparticle separation, show a rich behavior including monotonic as well as nonmonotonic variations. In almost all cases, these variations cannot be captured correctly by using the superposition approximation. Moreover, expressions for the surface tensions, the line tensions and the fluid-fluid interfacial tension, which are all independent of the interparticle separation, are obtained. Our results are expected to be particularly useful for emulsions stabilized by oppositely charged particles.

  19. A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale

    NASA Astrophysics Data System (ADS)

    Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico

    2018-01-01

    A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.

  20. Tuning and synthesis of metallic nanostructures by mechanical compression

    DOEpatents

    Fan, Hongyou; Li, Binsong

    2015-11-17

    The present invention provides a pressure-induced phase transformation process to engineer metal nanoparticle architectures and to fabricate new nanostructured materials. The reversible changes of the nanoparticle unit cell dimension under pressure allow precise control over interparticle separation in 2D or 3D nanoparticle assemblies, offering unique robustness for interrogation of both quantum and classic coupling interactions. Irreversible changes above a threshold pressure of about 8 GPa enables new nanostructures, such as nanorods, nanowires, or nanosheets.

  1. Surface morphology of a modified ballistic deposition model.

    PubMed

    Banerjee, Kasturi; Shamanna, J; Ray, Subhankar

    2014-08-01

    The surface and bulk properties of a modified ballistic deposition model are investigated. The deposition rule interpolates between nearest- and next-nearest-neighbor ballistic deposition and the random deposition models. The stickiness of the depositing particle is controlled by a parameter and the type of interparticle force. Two such forces are considered: Coulomb and van der Waals type. The interface width shows three distinct growth regions before eventual saturation. The rate of growth depends more strongly on the stickiness parameter than on the type of interparticle force. However, the porosity of the deposits is strongly influenced by the interparticle force.

  2. Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions

    DOE PAGES

    Pollng-Skutvik, Ryan; Mongcopa, Katrina Irene S.; Faraone, Antonio; ...

    2016-08-17

    We investigate the structure and dynamics of silica nanoparticles and polymer chains in semidilute solutions of high molecular weight polystyrene in 2-butanone to determine the effect of long-range interparticle interactions on the coupling between particle and polymer dynamics. Particles at concentrations of 1–10 wt % are well dispersed in the semidilute polymer solutions and exhibit long-range electrostatic repulsions between particles. Because the particles are comparably sized to the radius of gyration of the polymer, the particle dynamics is predicted to couple to that of the polymer. We verify that the polymer structure and dynamics are not significantly affected by themore » particles, indicating that the particle–polymer coupling does not change with increasing particle loading. We find that the coupling between the dynamics of comparably sized particles and polymer results in subdiffusive particle dynamics, as expected. Over the interparticle distance, however, the particle dynamics is hindered and not fully described by the relaxation of the surrounding polymer chains. Instead, the particle dynamics is inversely related to the structure factor, suggesting that physical particle–polymer coupling on short length scales and interparticle interactions on long length scales both present energetic barriers to particle motion that lead to subdiffusive dynamics and de Gennes narrowing, respectively.« less

  3. Aggregation state and magnetic properties of magnetite nanoparticles controlled by an optimized silica coating

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Moya, C.; Tartaj, P.; Labarta, A.; Batlle, X.

    2017-01-01

    The control of magnetic interactions is becoming essential to expand/improve the applicability of magnetic nanoparticles (NPs). Here, we show that an optimized microemulsion method can be used to obtain homogenous silica coatings on even single magnetic nuclei of highly crystalline Fe3-xO4 NPs (7 and 16 nm) derived from a high-temperature method. We show that the thickness of this coating is controlled almost at will allowing much higher average separation among particles as compared to the oleic acid coating present on pristine NPs. Magnetic susceptibility studies show that the thickness of the silica coating allows the control of magnetic interactions. Specifically, as this effect is better displayed for the smallest particles, we show that dipole-dipole interparticle interactions can be tuned progressively for the 7 nm NPs, from almost non-interacting to strongly interacting particles at room temperature. The quantitative analysis of the magnetic properties unambiguously suggests that dipolar interactions significantly broaden the effective distribution of energy barriers by spreading the distribution of activation magnetic volumes.

  4. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals

    DOE PAGES

    Ye, Xingchen; Zhu, Chenhui; Ercius, Peter; ...

    2015-12-02

    Multicomponent nanocrystal superlattices represent an interesting class of material that derives emergent properties from mesoscale structure, yet their programmability can be limited by the alkyl-chain-based ligands decorating the surfaces of the constituent nanocrystals. Polymeric ligands offer distinct advantages, as they allow for more precise tuning of the effective size and ‘interaction softness’ through changes to the polymer’s molecular weight, chemical nature, architecture, persistence length and surrounding solvent. Here we show the formation of 10 different binary nanocrystal superlattices (BNSLs) with both two- and three-dimensional order through independent adjustment of the core size of spherical nanocrystals and the molecular weight ofmore » densely grafted polystyrene ligands. These polymer-brush-based ligands introduce new energetic contributions to the interparticle potential that stabilizes various BNSL phases across a range of length scales and interparticle spacings. In conclusion, our study opens the door for nanocrystals to become modular elements in the design of functional particle brush solids with controlled nanoscale interfaces and mesostructures.« less

  5. Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method

    NASA Astrophysics Data System (ADS)

    Bobadilla, L. F.; García, C.; Delgado, J. J.; Sanz, O.; Romero-Sarria, F.; Centeno, M. A.; Odriozola, J. A.

    2012-11-01

    The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution.

  6. Interparticle spacing and structural ordering in superlattice PbS nanocrystal solids undergoing ligand exchange

    DOE PAGES

    Weidman, Mark C.; Yager, Kevin G.; Tisdale, William A.

    2014-12-12

    Controlling the interparticle spacing in quantum dot (QD) thin films is the most readily accessible way to control transport rates between neighboring QDs and a critical component of device optimization. Here, we use X-ray scattering measurements to accurately measure the interparticle spacing in films of highly monodisperse lead sulfide (PbS) QDs that have undergone a variety of device-relevant ligand exchanges. We tabulate these values for use in simulations and data analysis. We find that monothiol and dithiol ligand species typically result in interparticle spacing values that are equal to the length of a single monothiol or dithiol ligand. Additionally, wemore » find that spin-coating a thick film of QDs followed by a long-duration ligand exchange results in a more complete ligand exchange than spin-coating many thin layers with short-duration ligand exchanges in between. The former method also preserves a remarkable degree of the long-range ordering that was present in the film prior to ligand exchange. These results shed light on ways to produce highly-ordered QD solids with compact and functional ligands, which could lead to enhanced interdot coupling and transport phenomena.« less

  7. Electron tomography provides a direct link between the Payne effect and the inter-particle spacing of rubber composites

    PubMed Central

    Staniewicz, Lech; Vaudey, Thomas; Degrandcourt, Christophe; Couty, Marc; Gaboriaud, Fabien; Midgley, Paul

    2014-01-01

    Rubber-filler composites are a key component in the manufacture of tyres. The filler provides mechanical reinforcement and additional wear resistance to the rubber, but it in turn introduces non-linear mechanical behaviour to the material which most likely arises from interactions between the filler particles, mediated by the rubber matrix. While various studies have been made on the bulk mechanical properties and of the filler network structure (both imaging and by simulations), there presently does not exist any work directly linking filler particle spacing and mechanical properties. Here we show that using STEM tomography, aided by a machine learning image analysis procedure, to measure silica particle spacings provides a direct link between the inter-particle spacing and the reduction in shear modulus as a function of strain (the Payne effect), measured using dynamic mechanical analysis. Simulations of filler network formation using attractive, repulsive and non-interacting potentials were processed using the same method and compared with the experimental data, with the net result being that an attractive inter-particle potential is the most accurate way of modelling styrene-butadiene rubber-silica composite formation. PMID:25487130

  8. Experimental study on inter-particle acoustic forces.

    PubMed

    Garcia-Sabaté, Anna; Castro, Angélica; Hoyos, Mauricio; González-Cinca, Ricard

    2014-03-01

    A method for the experimental measurement of inter-particle forces (secondary Bjerknes force) generated by the action of an acoustic field in a resonator micro-channel is presented. The acoustic radiation force created by an ultrasonic standing wave moves suspended particles towards the pressure nodes and the acoustic pressure induces particle volume oscillations. Once particles are in the levitation plane, transverse and secondary Bjerknes forces become important. Experiments were carried out in a resonator filled with a suspension composed of water and latex particles of different size (5-15 μm) at different concentrations. Ultrasound was generated by means of a 2.5 MHz nominal frequency transducer. For the first time the acoustic force generated by oscillating particles acting on other particles has been measured, and the critical interaction distance in various cases has been determined. Inter-particle forces on the order of 10(-14) N have been measured by using this method.

  9. Engineering matter interactions using squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zeytinoglu, Sina; Imamoglu, Atac; Huber, Sebastian

    Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by the quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the latter can be used to engineer the strength and the range of inter-particle interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or waveguides which modify the electromagnetic fluctuations. In this submission, we demonstrate theoretically that the enhanced fluctuations in the anti-squeezed quadrature of a squeezed vacuum state allows for engineering interactions between electric dipoles without the need for a photonic cavity or waveguide. Thus, the strength and range of the resulting dipole-dipole coupling can be engineered by dynamically changing the spatial profile of the squeezed vacuum in a travelling-wave geometry. ETH-Zurich.

  10. Engineering matter interactions using squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zeytinoglu, Sina; Imamoglu, Atac; Huber, Sebastian

    Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by the quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the latter can be used to engineer the strength and the range of inter-particle interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or waveguides which modify the electromagnetic fluctuations. In this talk, we demonstrate theoretically that the enhanced fluctuations in the anti-squeezed quadrature of a squeezed vacuum state allows for engineering interactions between electric dipoles without the need for a photonic cavity or waveguide. Thus, the strength and range of the resulting dipole-dipole coupling can be engineered by dynamically changing the spatial profile of the squeezed vacuum in a travelling-wave geometry. ETH Zurich.

  11. Asymmetric van der Waals Forces Drive Orientation of Compositionally Anisotropic Nanocylinders within Smectic Arrays: Experiment and Simulation

    PubMed Central

    Smith, Benjamin D.; Fichthorn, Kristen A.; Kirby, David J.; Quimby, Lisa M.; Triplett, Derek A.; González, Pedro; Hernández, Darimar; Keating, Christine D.

    2014-01-01

    Understanding how micro- and nanoparticles interact is important for achieving bottom-up assembly of desired structures. Here, we examine the self-assembly of two-component, compositionally asymmetric nanocylinders that sediment from solution onto a solid surface. These particles spontaneously formed smectic arrays. Within the rows of an array, nanocylinders tended to assemble such that neighboring particles had the same orientation of their segments. As a probe of interparticle interactions, we classified nanocylinder alignments by measuring the segment orientations of many sets of neighboring particles. Monte Carlo simulations incorporating an exact expression for the van der Waals (vdW) energy indicate that differences in the vdW interactions, even when small, are the key factor in producing observed segment alignment. These results point to asymmetrical vdW interactions as a potentially powerful means of controlling orientation in multicomponent cylinder arrays, and suggest that designing for these interactions could yield new ways to control self-assembly. PMID:24308771

  12. A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.

  13. An integrated study of thermal treatment effects on the microstructure and magnetic properties of Zn-ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antic, Bratislav; Perovic, Marija; Kremenovic, Aleksandar

    2015-09-30

    The evolution of the magnetic state, crystal structure and microstructure parameters of nanocrystalline zinc–ferrite, tuned by thermal annealing of ~4 nm nanoparticles, was systematically studied by complementary characterization methods. Structural analysis of neutron and synchrotron x-ray radiation data revealed a mixed cation distribution in the nanoparticle samples, with the degree of inversion systematically decreasing from 0.25 in an as-prepared nanocrystalline sample to a non-inverted spinel structure with a normal cation distribution in the bulk counterpart. The results of DC magnetization and Mossbauer spectroscopy experiments indicated a superparamagnetic relaxation in ~4 nm nanoparticles, albeit with different freezing temperatures T f ofmore » 27.5 K and 46 K, respectively. The quadrupole splitting parameter decreases with the annealing temperature due to cation redistribution between the tetrahedral and octahedral sites of the spinel structure and the associated defects. DC magnetization measurements indicated the existence of significant interparticle interactions among nanoparticles (‘superspins’). Additional confirmation for the presence of interparticle interactions was found from the fit of the T f(H) dependence to the AT line, from which a value of the anisotropy constant of K eff = 5.6 × 10 5 erg cm -3 was deduced. Further evidence for strong interparticle interactions was found from AC susceptibility measurements, where the frequency dependence of the freezing temperature T f(ƒ) was satisfactory described by both Vogel–Fulcher and dynamic scaling theory, both applicable for interacting systems. The parameters obtained from these fits suggest collective freezing of magnetic moments at T f .« less

  14. Pure dipolar-interacted CoFe{sub 2}O{sub 4} nanoparticles and their magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shi-tao; School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000; Ma, Yong-qing, E-mail: yqma@ahu.edu.cn

    2015-02-15

    Graphical abstract: The mono-dispersed CoFe{sub 2}O{sub 4} nanoparticles with the uniform size of 10.5 ± 2 nm were first synthesized and then they were embedded in amorphous SiO{sub 2} matrix with different CoFe{sub 2}O{sub 4} nanoparticles’ concentrations. The large coercivity (3056 Oe) and the remanence ratio (0.63) were obtained by suitably diluting CoFe{sub 2}O{sub 4} nanoparticles into the SiO{sub 2} matrix. The reciprocal of the absolute maximum of δm and the M{sub r}/M{sub s} ratio behave in the same trend (as shown in (e)), indicating that the M{sub r}/M{sub s} ratio was dominated by the interparticle dipolar interaction. The presentmore » work is meaningful for revealing the underlying mechanism in nano-scaled magnetic system and improving the magnetic performance. - Highlights: • The mono-dispersed CoFe{sub 2}O{sub 4} nanoparticles with the uniform size of 10.5 ± 2 nm were synthesized by the thermal decomposition of metals acetylacetonates in solvents with high boiling point. • The large coercivity (3056 Oe) and the remanence ratio (0.63) were obtained by diluting CoFe{sub 2}O{sub 4} nanoparticles into the SiO{sub 2} matrix with a suitable concentration. • The surface anisotropy and interparticle dipolar interaction affect the magnetic performance and magnetic ordering state. • It was observed that the M{sub r}/M{sub s} ratio was dominated by the interparticle dipolar interaction. - Abstract: The mono-dispersed and uniform CoFe{sub 2}O{sub 4} nanoparticles were synthesized by the thermal decomposition of Fe(acac){sub 3} and Co(acac){sub 2}. Then the CoFe{sub 2}O{sub 4} nanoparticles were diluted in amorphous SiO{sub 2} matrix with different CoFe{sub 2}O{sub 4} nanoparticles’ concentrations. All samples show the positive or negative exchange bias behavior, indicating the presence of canted spin layer at the CoFe{sub 2}O{sub 4} nanoparticles’ surface. The large effective anisotropy constant (3.38 × 10{sup 6} erg/cm{sup 3}) was observed, which can be attributed to the induced surface anisotropy by the canted surface spins. The reduced magnetization (M{sub r}/M{sub s}) was dominated by the interparticle dipolar interaction while the coercivity (H{sub c}) was determined by the synergistic effects of the surface anisotropy, interparticle dipolar interaction and interface effect. By suitably diluting CoFe{sub 2}O{sub 4} in the SiO{sub 2} matrix, the high H{sub c} (3056 Oe) and the M{sub r}/M{sub s} (0.63) can be obtained, which is larger than most of those reported before. The present work is meaningful for revealing the underlying mechanism in nano-scaled magnetic system and improving the magnetic performance.« less

  15. Nanoparticle heterodimers: The role of size and interparticle gap distance on the optical response

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-05-01

    Composite plasmonic nanostructures with controlled size, shape and relative arrangement is a subject of significant current research interest. Much of this is stimulated by the prospects by generating enormous near-field enhancements of the surface and interparticle gap regions for potential applications in surface-enhanced spectroscopies. In this manuscript, using time-dependent density functional theory (TDDFT) calculations, we investigate how the optical response in size matched homodimers and size mismatched heterodimers composed of Aluminum modify while varying the size and interparticle gap distances in the sub-nanometer range. Both systems show interesting optical response evolution. In particular, the size mismatched heterodimers show even more complex optical response evolution due to a symmetry-breaking in the system.

  16. Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases

    NASA Astrophysics Data System (ADS)

    Ding, Yijue

    This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.

  17. Quantum droplet of one-dimensional bosons with a three-body attraction

    NASA Astrophysics Data System (ADS)

    Sekino, Yuta; Nishida, Yusuke

    2018-01-01

    Ultracold atoms offer valuable opportunities where interparticle interactions can be controlled at will. In particular, by extinguishing the two-body interaction, one can realize unique systems governed by the three-body interaction, which is otherwise hidden behind the two-body interaction. Here we study one-dimensional bosons with a weak three-body attraction and show that they form few-body bound states as well as a many-body droplet stabilized by the quantum mechanical effect. Their binding energies relative to that of three bosons are all universal and the ground-state energy of the dilute droplet is found to grow exponentially as EN/E3→exp(8 N2/√{3 }π ) with increasing particle number N ≫1 . The realization of our system with coupled two-component bosons in an optical lattice is also discussed.

  18. MEASUREMENT OF NANOPARTICLES IN WATER

    EPA Science Inventory

    Measuring nanoparticles in water differs from traditional dissolved solute measurement in several ways. The most salient difference is that nanoparticles are colloids rather than solutes and therefore are subject to the interparticle interactions (mainly electrostatic and Van de...

  19. Quasi-molecular bosonic complexes-a pathway to SQUID with controlled sensitivity

    NASA Astrophysics Data System (ADS)

    Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara; Kuklov, Anatoly; Penna, Vittorio

    2016-02-01

    Recent experimental advances in realizing degenerate quantum dipolar gases in optical lattices and the flexibility of experimental setups in attaining various geometries offer the opportunity to explore exotic quantum many-body phases stabilized by anisotropic, long-range dipolar interaction. Moreover, the unprecedented control over the various physical properties of these systems, ranging from the quantum statistics of the particles, to the inter-particle interactions, allow one to engineer novel devices. In this paper, we consider dipolar bosons trapped in a stack of one-dimensional optical lattice layers, previously studied in (Safavi-Naini et al 2014 Phys. Rev. A 90 043604). Building on our prior results, we provide a description of the quantum phases stabilized in this system which include composite superfluids (CSFs), solids, and supercounterfluids, most of which are found to be threshold-less with respect to the dipolar interaction strength. We also demonstrate the effect of enhanced sensitivity to rotations of a SQUID-type device made of two CSF trapped in a ring-shaped optical lattice layer with weak links.

  20. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    PubMed

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  1. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.

    PubMed

    Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi

    2017-12-06

    We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

  2. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    PubMed

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.

  3. Hydrogen bonding and interparticle forces in platelet alpha-Al2O3 dispersions: yield stress and zeta potential.

    PubMed

    Khoo, Kay-Sen; Teh, E-Jen; Leong, Yee-Kwong; Ong, Ban Choon

    2009-04-09

    Adsorbed phosphate on smooth platelet alpha-Al2O3 particles at saturation surface coverage gives rise to strong interparticle attractive forces in dispersion. The maximum yield stress at the point of zero charge was increased by 2-fold. This was attributed to a high density of intermolecular hydrogen bonding between the adsorbed phosphate layers of the interacting particles. Adsorbed citrate at saturation surface coverage, however, reduced the maximum yield stress by 50%. It adsorbed to form a very effective steric barrier as intramolecular hydrogen bonding between -OH and the free terminal carboxylic group prevented strong interactions with other adsorbed citrate molecules residing on the second interacting particle. This steric barrier kept the interacting platelet particles further apart, thereby weakening the van der Waals attraction. The platelet alpha-Al2O3 dispersions were flocculated at all pH level. These dispersions displayed a maximum yield stress at the point of zero zeta potential at the pH approximately 8.0. They also obeyed the yield stress-DLVO force model as characterized by a linear decrease in the yield stress with the square of the zeta potential.

  4. DNA-mediated engineering of multicomponent enzyme crystals

    PubMed Central

    Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.

    2015-01-01

    The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. Herein, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique lattices composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. This study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials. PMID:25831510

  5. DNA-mediated engineering of multicomponent enzyme crystals

    DOE PAGES

    Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.

    2015-03-23

    The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. In this paper, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique latticesmore » composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. Finally, this study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials.« less

  6. Simulation of Liquid Droplet in Air and on a Solid Surface

    NASA Astrophysics Data System (ADS)

    Launglucknavalai, Kevin

    Although multiphase gas and liquid phenomena occurs widely in engineering problems, many aspects of multiphase interaction like within droplet dynamics are still not quantified. This study aims to qualify the Lattice Boltzmann (LBM) Interparticle Potential multiphase computational method in order to build a foundation for future multiphase research. This study consists of two overall sections. The first section in Chapter 2 focuses on understanding the LBM method and Interparticle Potential model. It outlines the LBM method and how it relates to macroscopic fluid dynamics. The standard form of LBM is obtained. The perturbation solution obtaining the Navier-Stokes equations from the LBM equation is presented. Finally, the Interparticle Potential model is incorporated into the numerical LBM method. The second section in Chapter 3 presents the verification and validation cases to confirm the behavior of the single-phase and multiphase LBM models. Experimental and analytical results are used briefly to compare with numerical results when possible using Poiseuille channel flow and flow over a cylinder. While presenting the numerical results, practical considerations like converting LBM scale variables to physical scale variables are considered. Multiphase results are verified using Laplaces law and artificial behaviors of the model are explored. In this study, a better understanding of the LBM method and Interparticle Potential model is gained. This allows the numerical method to be used for comparison with experimental results in the future and provides a better understanding of multiphase physics overall.

  7. Determining the interparticle force laws in amorphous solids from a visual image.

    PubMed

    Gendelman, Oleg; Pollack, Yoav G; Procaccia, Itamar

    2016-06-01

    We consider the problem of how to determine the force laws in an amorphous system of interacting particles. Given the positions of the centers of mass of the constituent particles we propose an algorithm to determine the interparticle force laws. Having n different types of constituents we determine the coefficients in the Laurent polynomials for the n(n+1)/2 possibly different force laws. A visual providing the particle positions in addition to a measurement of the pressure is all that is required. The algorithm proposed includes a part that can correct for experimental errors in the positions of the particles. Such a correction of unavoidable measurement errors is expected to benefit many experiments in the field.

  8. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions

    DOE PAGES

    Zhang, Yugang; Pal, Suchetan; Srinivasan, Babji; ...

    2015-05-25

    The rapid development of self-assembly approaches has enabled the creation of materials with desired organization of nanoscale components. However, achieving dynamic control, wherein the system can be transformed on demand into multiple entirely different states, is typically absent in atomic and molecular systems and has remained elusive in designed nanoparticle systems. Here, we demonstrate with in situ small-angle x-ray scattering that, by using DNA strands as inputs, the structure of a three-dimensional lattice of DNA-coated nanoparticles can be switched from an initial 'mother' phase into one of multiple 'daughter' phases. The introduction of different types of re-programming DNA strands modifiesmore » the DNA shells of the nanoparticles within the superlattice, thereby shifting interparticle interactions to drive the transformation into a particular daughter phase. We mapped quantitatively with free-energy calculations the selective re-programming of interactions onto the observed daughter phases.« less

  9. Supramolecular Control over the Interparticle Distance in Gold Nanoparticle Arrays by Cyclodextrin Polyrotaxanes

    PubMed Central

    Paulo Coelho, Joao; Osío Barcina, José; Aicart, Emilio; Tardajos, Gloria; Cruz-Gil, Pablo; Salgado, Cástor; Díaz-Núñez, Pablo

    2018-01-01

    Amphiphilic nonionic ligands, synthesized with a fixed hydrophobic moiety formed by a thiolated alkyl chain and an aromatic ring, and with a hydrophilic tail composed of a variable number of oxyethylene units, were used to functionalize spherical gold nanoparticles (AuNPs) in water. Steady-state and time-resolved fluorescence measurements of the AuNPs in the presence of α-cyclodextrin (α-CD) revealed the formation of supramolecular complexes between the ligand and macrocycle at the surface of the nanocrystals. The addition of α-CD induced the formation of inclusion complexes with a high apparent binding constant that decreased with the increasing oxyethylene chain length. The formation of polyrotaxanes at the surface of AuNPs, in which many α-CDs are trapped as hosts on the long and linear ligands, was demonstrated by the formation of large and homogeneous arrays of self-assembled AuNPs with hexagonal close packing, where the interparticle distance increased with the length of the oxyethylene chain. The estimated number of α-CDs per polyrotaxane suggests a high rigidization of the ligand upon complexation, allowing for nearly perfect control of the interparticle distance in the arrays. This degree of supramolecular control was extended to arrays formed by AuNPs stabilized with polyethylene glycol and even to binary arrays. Electromagnetic simulations showed that the enhancement and distribution of the electric field can be finely controlled in these plasmonic arrays. PMID:29547539

  10. Controlling Short-Range Interactions by Tuning Surface Chemistry in HDPE/Graphene Nanoribbon Nanocomposites.

    PubMed

    Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman

    2015-09-03

    Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.

  11. Self-organized magnetic particles to tune the mechanical behavior of a granular system

    NASA Astrophysics Data System (ADS)

    Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.

    2016-09-01

    Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.

  12. Optical binding of two microparticles levitated in vacuum

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Wright, Ewan M.; Dholakia, Kishan

    2017-04-01

    Optical binding refers to an optically mediated inter-particle interaction that creates new equilibrium positions for closely spaced particles [1-5]. Optical binding of mesoscopic particles levitated in vacuum can pave the way towards the realisation of a large scale quantum bound array in cavity-optomechanics [6-9]. Recently we have demonstrated trapping and rotation of two mesoscopic particles in vacuum using a spatial-light-modulator-based approach to trap more than one particle, induce controlled rotation of individual particles, and mediate interparticle separation [10]. By trapping and rotating two vaterite particles, we observe intensity modulation of the scattered light at the sum and difference frequencies with respect to the individual rotation rates. This first demonstration of optical interference between two microparticles in vacuum has lead to a platform to explore optical binding. Here we demonstrate for the first time optically bound two microparticles mediated by light scattering in vacuum. We investigate autocorrelations between the two normal modes of oscillation, which are determined by the centre-of-mass and the relative positions of the two-particle system. In situ determination of the optical restoring force acting on the bound particles are based on measurement of the oscillation frequencies of the autocorrelation functions of the two normal modes, thereby providing a powerful and original platform to explore multiparticle entanglement in cavity-optomechanics.

  13. State-of-the-art Nanofabrication in Catalysis.

    PubMed

    Karim, Waiz; Tschupp, Simon A; Herranz, Juan; Schmidt, Thomas J; Ekinci, Yasin; van Bokhovenac, Jeroen A

    2017-04-26

    We present recent developments in top-down nanofabrication that have found application in catalysis research. To unravel the complexity of catalytic systems, the design and use of models with control of size, morphology, shape and inter-particle distances is a necessity. The study of well-defined and ordered nanoparticles on a support contributes to the understanding of complex phenomena that govern reactions in heterogeneous and electro-catalysis. We review the strengths and limitations of different nanolithography methods such as electron beam lithography (EBL), photolithography, extreme ultraviolet (EUV) lithography and colloidal lithography for the creation of such highly tunable catalytic model systems and their applications in catalysis. Innovative strategies have enabled particle sizes reaching dimensions below 10 nm. It is now possible to create pairs of particles with distance controlled with an extremely high precision in the order of one nanometer. We discuss our approach to study these model systems at the single-particle level using X-ray absorption spectroscopy and show new ways to fabricate arrays of single nanoparticles or nanoparticles in pairs over a large area using EBL and EUV-achromatic Talbot lithography. These advancements have provided new insights into the active sites in metal catalysts and enhanced the understanding of the role of inter-particle interactions and catalyst supports, such as in the phenomenon of hydrogen spillover. We present a perspective on future directions for employing top-down nanofabrication in heterogeneous and electrocatalysis. The rapid development in nanofabrication and characterization methods will continue to have an impact on understanding of complex catalytic processes.

  14. Electrostatic 2D assembly of bionanoparticles on a cationic lipid monolayer.

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Wang, Suntao; Fukuto, Masafumi; Yang, Lin; Niu, Zhongwei; Nguyen, Giang; Wang, Qian

    2010-03-01

    We present a grazing-incidence small-angle X-ray scattering (GISAXS) study on 2D assembly of cowpea mosaic virus (CPMV) under a mixed cationic-zwitterionic (DMTAP^+-DMPC) lipid monolayer at the air-water interface. The inter-particle and particle-lipid electrostatic interactions were varied by controlling the subphase pH and the membrane charge density. GISAXS data show that 2D crystals of CPMV are formed above a threshold membrane charge density and only in a narrow pH range just above CPMV's isoelectric point, where the charge on CPMV is expected to be weakly negative. The particle density for the 2D crystals is similar to that for the densest lattice plane in the 3D crystals of CPMV. The results show that the 2D crystallization is achieved in the part of the phase space where the electrostatic interactions are expected to maximize the adsorption of CPMV onto the lipid membrane. This electrostatics-based strategy for controlling interfacial nanoscale assembly should be generally applicable to other nanoparticles.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radiom, Milad, E-mail: milad.radiom@unige.ch; Ducker, William, E-mail: wducker@vt.edu; Robbins, Brian

    The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm{sup −1}) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the firstmore » of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces.« less

  16. Electron tomography and nano-diffraction enabling the investigation of individual magnetic nanoparticles inside fibers of MR visible implants

    NASA Astrophysics Data System (ADS)

    Slabu, I.; Wirch, N.; Caumanns, T.; Theissmann, R.; Krüger, M.; Schmitz-Rode, T.; Weirich, T. E.

    2017-08-01

    Superparamagnetic iron oxide nanoparticles (SPIONPs) incorporated into the base material of implants are used as contrast agents in magnetic resonance imaging for the delineation of the implants from the surrounding tissue. However, the delineation quality is strongly related to the structural characteristics of the incorporated SPIONPs and their interparticle interaction as well as their interaction with the polymer matrix of the implant. Consequently, a profound knowledge of the formation of aggregates inside the polymer matrix, which are responsible for strong interparticle interactions, and of their structural characteristics, is required for controlling the magnetic resonance image quality of the implants. In this work, transmission electron microscopy methods such as electron tomography and nano-electron diffraction were used to depict SPIONP aggregates inside the melt-spin polyvinylidene fluoride fibers used for the assembly of implants and to determine the crystal structure of individual nanocrystals inside these aggregates, respectively. Using these techniques it was possible for the first time to characterize the aggregates inside the fibers of implants and to validate the magnetization measurements that have been previously used to assess the interaction phenomena inside the fibers of implants. With electron tomography, inhomogeneously sized distributed aggregates were delineated and 3D models of these aggregates were constructed. Furthermore, the distribution of the aggregates inside the fibers was verified by means of magnetic force microscopy. With nano-diffraction measurements, the SPIONP crystal structure inside the fibers of the implant could not be clearly assigned to that of magnetite (Fe3O4) or maghemite (γ-Fe2O3). Therefore, additional electron energy loss spectroscopy measurements were performed, which revealed the presence of both phases of Fe3O4 and γ-Fe2O3, probably caused by oxidation processes during the manufacture of the fibers by melt-spinning.

  17. Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures

    NASA Astrophysics Data System (ADS)

    Okuda, Mitsuhiro; Eloi, Jean-Charles; Jones, Sarah E. Ward; Sarua, Andrei; Richardson, Robert M.; Schwarzacher, Walther

    2012-10-01

    The synthesis of magnetic, monodisperse nanoparticles has attracted great interest in nanoelectronics and nanomedicine. Here we report the fabrication of pure magnetite nanoparticles, less than ten nanometers in size, using the cage-shaped protein apoferritin (Fe3O4-ferritin). Crystallizable proteins were obtained through careful successive separation methods, including a magnetic chromatography that enabled the effective separation of proteins, including a Fe3O4 nanoparticle (7.9 ± 0.8 nm), from empty ones. Macroscopic protein crystals allowed the fabrication of three-dimensional arrays of Fe3O4 nanoparticles with interparticle gaps controlled by dehydration, decreasing their magnetic susceptibilities and increasing their blocking temperatures through enhanced dipole-dipole interactions.

  18. Numerical and experimental analysis of the sedimentation of spherical colloidal suspensions under centrifugal force

    NASA Astrophysics Data System (ADS)

    Antonopoulou, Evangelia; Rohmann-Shaw, Connor F.; Sykes, Thomas C.; Cayre, Olivier J.; Hunter, Timothy N.; Jimack, Peter K.

    2018-03-01

    Understanding the sedimentation behaviour of colloidal suspensions is crucial in determining their stability. Since sedimentation rates are often very slow, centrifugation is used to expedite sedimentation experiments. The effect of centrifugal acceleration on sedimentation behaviour is not fully understood. Furthermore, in sedimentation models, interparticle interactions are usually omitted by using the hard-sphere assumption. This work proposes a one-dimensional model for sedimentation using an effective maximum volume fraction, with an extension for sedimentation under centrifugal force. A numerical implementation of the model using an adaptive finite difference solver is described. Experiments with silica suspensions are carried out using an analytical centrifuge. The model is shown to be a good fit with experimental data for 480 nm spherical silica, with the effects of centrifugation at 705 rpm studied. A conversion of data to Earth gravity conditions is proposed, which is shown to recover Earth gravity sedimentation rates well. This work suggests that the effective maximum volume fraction accurately captures interparticle interactions and provides insights into the effect of centrifugation on sedimentation.

  19. Study of Electron Gas on a Neutron-Rich Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Ramirez-Homs, Enrique

    This study used a classical molecular dynamics model to observe the role of electron gas on the formation of nuclear structures at subsaturation densities (rho < 0.015 fm-3) and low temperatures (T < 1MeV ). The simulations were performed by varying the Coulomb interaction strength on systems of isospin symmetric and asymmetric matter with periodic boundary conditions. The effect was quantified on the fragment size multiplicity, the inter-particle distance, the isospin content of the clusters, the nucleon mobility and cluster persistence, and on the nuclear structure shapes. The existence of the nuclear pasta structures was observed even with the absence of the Coulomb interaction but with a modication of the shapes formed. It was found that the presence of the electron gas tends to distribute matter more evenly, forms less compact objects, decreases the isospin content of clusters, modies the nucleon mobility, reduces the persistence and the fragment size multiplicity, but does not alter the inter-particle distance in clusters. The degree of these effects also varied on the nuclear structures and depended on their isospin content, temperature, and density.

  20. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering.

    PubMed

    Ho, Tuan Anh; Greathouse, Jeffery A; Wang, Yifeng; Criscenti, Louise J

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of the aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.

  1. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering

    DOE PAGES

    Ho, Tuan Anh; Greathouse, Jeffery A.; Wang, Yifeng; ...

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of themore » aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.« less

  2. Nonlinear waves in repulsive media supported by spatially localized parity-time-symmetric potentials

    NASA Astrophysics Data System (ADS)

    Devassy, Lini; Jisha, Chandroth P.; Alberucci, Alessandro; Kuriakose, V. C.

    2017-06-01

    We study the existence, stability and dynamics of solitons in a PT-symmetric potential in the presence of a local defocusing nonlinearity. For the sake of concreteness, we refer to Bose-Einstein condensates, where defocusing nonlinearity stems from a repulsive inter-particle interaction. Two kinds of transverse profiles for the gain-loss mechanism, i.e., the imaginary part of the potential, are considered. Differently from the attractive inter-particle interaction, solitons exist only inside a narrow band of chemical potential and particle number. The existence region shrinks as the magnitude of the gain-loss is increased, with the soliton ceasing to exist above the linear exceptional point, that is, the point at which PT symmetry is broken. Using linear stability analysis together with full numerical simulations of the Gross-Pitaevskii equation, we show that solitons survive on temporal scales much longer than the diffusion time. For magnitude of gain-loss close to the exceptional point, stability depends on the transverse profile of the gain-loss mechanism and the magnitude of the nonlinear excitation.

  3. Observation of number-density-dependent growth of plasmonic nanobubbles

    NASA Astrophysics Data System (ADS)

    Nakajima, Takashi; Wang, Xiaolong; Chatterjee, Souvik; Sakka, Tetsuo

    2016-06-01

    Interaction dynamics of laser pulses and nanoparticles are of great interest in recent years. In many cases, laser-nanoparticle interactions result in the formation of plasmonic nanobubbles, and the dynamics of nanoparticles and nanobubbles are inseparable. So far, very little attention has been paid to the number density. Here we report the first observation of number-density-dependent growth of plasmonic nanobubbles. Our results show that the nanobubbles growth depends (does not depend) on the number density at high (low) laser fluence, although the inter-particle distance in the solution is as long as 14-30 μm. This cannot be explained by the existing physical picture, and we propose a new model which takes into account the pressure waves arising from nanoparticles. The numerical results based on this model agree well with the experimental results. Our findings imply that the number density can be a new doorknob to control laser-nanobubble as well as laser-nanoparticle interactions.

  4. Observation of number-density-dependent growth of plasmonic nanobubbles.

    PubMed

    Nakajima, Takashi; Wang, Xiaolong; Chatterjee, Souvik; Sakka, Tetsuo

    2016-06-29

    Interaction dynamics of laser pulses and nanoparticles are of great interest in recent years. In many cases, laser-nanoparticle interactions result in the formation of plasmonic nanobubbles, and the dynamics of nanoparticles and nanobubbles are inseparable. So far, very little attention has been paid to the number density. Here we report the first observation of number-density-dependent growth of plasmonic nanobubbles. Our results show that the nanobubbles growth depends (does not depend) on the number density at high (low) laser fluence, although the inter-particle distance in the solution is as long as 14-30 μm. This cannot be explained by the existing physical picture, and we propose a new model which takes into account the pressure waves arising from nanoparticles. The numerical results based on this model agree well with the experimental results. Our findings imply that the number density can be a new doorknob to control laser-nanobubble as well as laser-nanoparticle interactions.

  5. Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis

    DOE PAGES

    Uchida, Masaki; McCoy, Kimberly; Fukuto, Masafumi; ...

    2017-11-13

    The assembly of individual molecules into hierarchical structures is a promising strategy for developing three-dimensional materials with properties arising from interaction between the individual building blocks. Virus capsids are elegant examples of biomolecular nanostructures, which are themselves hierarchically assembled from a limited number of protein subunits. Here, we demonstrate the bio-inspired modular construction of materials with two levels of hierarchy: the formation of catalytically active individual virus-like particles (VLPs) through directed self-assembly of capsid subunits with enzyme encapsulation, and the assembly of these VLP building blocks into three-dimensional arrays. The structure of the assembled arrays was successfully altered from anmore » amorphous aggregate to an ordered structure, with a face-centered cubic lattice, by modifying the exterior surface of the VLP without changing its overall morphology, to modulate interparticle interactions. The assembly behavior and resultant lattice structure was a consequence of interparticle interaction between exterior surfaces of individual particles and thus independent of the enzyme cargos encapsulated within the VLPs. These superlattice materials, composed of two populations of enzyme-packaged VLP modules, retained the coupled catalytic activity in a two-step reaction for isobutanol synthesis. As a result, this study demonstrates a significant step toward the bottom-up fabrication of functional superlattice materials using a self-assembly process across multiple length scales and exhibits properties and function that arise from the interaction between individual building blocks.« less

  6. Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis

    PubMed Central

    Uchida, Masaki; McCoy, Kimberly; Fukuto, Masafumi; Yang, Lin; Yoshimura, Hideyuki; Miettinen, Heini M.; LaFrance, Ben; Patterson, Dustin P.; Schwarz, Benjamin; Karty, Jonathan A.; Prevelige, Peter E.; Lee, Byeongdu; Douglas, Trevor

    2018-01-01

    The assembly of individual molecules into hierarchical structures is a promising strategy for developing three-dimensional materials with properties arising from interaction between the individual building blocks. Virus capsids are elegant examples of biomolecular nanostructures, which are themselves hierarchically assembled from a limited number of protein subunits. Here we demonstrate the bio-inspired modular construction of materials with two levels of hierarchy; the formation of catalytically active individual virus-like particles (VLPs) through directed self-assembly of capsid subunits with enzyme encapsulation, and the assembly of these VLP building blocks into three-dimensional arrays. The structure of the assembled arrays was successfully altered from an amorphous aggregate to an ordered structure, with a face-centered cubic lattice, by modifying the exterior surface of the VLP without changing its overall morphology, to modulate interparticle interactions. The assembly behavior and resultant lattice structure was a consequence of interparticle interaction between exterior surfaces of individual particles, and thus independent of the enzyme cargos encapsulated within the VLPs. These superlattice materials, composed of two populations of enzyme packaged VLP modules, retained the coupled catalytic activity in a two-step reaction for isobutanol synthesis. This study demonstrates a significant step toward the bottom-up fabrication of functional superlattice materials using a self-assembly process across multiple length scales, and exhibits properties and function that arise from the interaction between individual building blocks. PMID:29131580

  7. Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, Masaki; McCoy, Kimberly; Fukuto, Masafumi

    The assembly of individual molecules into hierarchical structures is a promising strategy for developing three-dimensional materials with properties arising from interaction between the individual building blocks. Virus capsids are elegant examples of biomolecular nanostructures, which are themselves hierarchically assembled from a limited number of protein subunits. Here, we demonstrate the bio-inspired modular construction of materials with two levels of hierarchy: the formation of catalytically active individual virus-like particles (VLPs) through directed self-assembly of capsid subunits with enzyme encapsulation, and the assembly of these VLP building blocks into three-dimensional arrays. The structure of the assembled arrays was successfully altered from anmore » amorphous aggregate to an ordered structure, with a face-centered cubic lattice, by modifying the exterior surface of the VLP without changing its overall morphology, to modulate interparticle interactions. The assembly behavior and resultant lattice structure was a consequence of interparticle interaction between exterior surfaces of individual particles and thus independent of the enzyme cargos encapsulated within the VLPs. These superlattice materials, composed of two populations of enzyme-packaged VLP modules, retained the coupled catalytic activity in a two-step reaction for isobutanol synthesis. As a result, this study demonstrates a significant step toward the bottom-up fabrication of functional superlattice materials using a self-assembly process across multiple length scales and exhibits properties and function that arise from the interaction between individual building blocks.« less

  8. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field.

    PubMed

    Guo, Qing-Hua; Zhang, Chen-Jie; Wei, Chao; Xu, Min-Min; Yuan, Ya-Xian; Gu, Ren-Ao; Yao, Jian-Lin

    2016-01-05

    A large surface-enhanced Raman scattering (SERS) effect is critically dependent on the gap distance of adjacent nanostructures, i.e., "hot spots". However, the fabrication of dynamically controllable hot spots still remains a remarkable challenge. In the present study, we employed an external magnetic field to dynamically control the interparticle spacing of a two-dimensional monolayer film of Fe3O4@Au nanoparticles at a hexane/water interface. SERS measurements were performed to monitor the expansion and shrinkage of the nanoparticles gaps, which produced an obvious effect on SERS activities. The balance between the electrostatic repulsive force, surface tension, and magnetic attractive force allowed observation of the magnetic-field-responsive SERS effect. Upon introduction of an external magnetic field, a very weak SERS signal appeared initially, indicating weak enhancement due to a monolayer film with large interparticle spacing. The SERS intensity reached maximum after 5s and thereafter remained almost unchanged. The results indicated that the observed variations in SERS intensities were fully reversible after removal of the external magnetic field. The reduction of interparticle spacing in response to a magnetic field resulted in about one order of magnitude of SERS enhancement. The combined use of the monolayer film and external magnetic field could be developed as a strategy to construct hot spots both for practical application of SERS and theoretical simulation of enhancement mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Roles of additives and surface control in slurry atomization. Final project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-12-31

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy atmore » 25{degrees}C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.« less

  10. Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-01-01

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy atmore » 25[degrees]C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.« less

  11. Collective interaction of microscale matters in natural analogy: human cancer cells vs. microspheres

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Lee, Sang Joon; Postech Team

    2014-11-01

    Collective behaviors have been considered both in living and lifeless things as a natural phenomenon. During the ordering process, a sudden and spontaneous transition is typically generated between an order and a disorder according to the population density of interacting elements. In a cellular level collective behavior, the cells are distributed in the characteristic patterns according to the population density and the mutual interaction of the individual cells undergo density-dependent diffusive motion. On the other hand, density-controlled surface-modified hollow microsphere suspension induces an overpopulation via buoyancy which provides a driving force to induce an assembly. The collective behaviors of the cells and microspheres in a designed liquid medium are explained in terms of the deviation from the interparticle distance distribution and the induced strength to organize the particle position in a specific distance range. as a result, microscale particulate matters exhibit high resemblance in their pair correlation and dynamical heterogeneity in the intermediate range between a single individual and an agglomerate. Therefore, it is suggested that biological systems are analogically explained to be dominated by physically interactive aspects.

  12. Thickness Dependence of Magnetic Blocking in Granular Metallic Thin Films

    NASA Astrophysics Data System (ADS)

    Wang, J.-Q.; Zhao, Z.-D.; Whittenburg, S. L.

    2002-03-01

    Inter-particle interaction among single domain nano-size magnetic particles embedded in nonmagnetic matrix was studied. Attention was paid to concentrated Cu-Co granular thin films with a fixed magnetic volume fraction. By analyzing theoretical models and comparing with experimental results, we studied a dimensional constraint on the magnetic properties and found that as the film thickness reduces toward thin limit the inter-particle interaction plays important roles in modifying magnetic behavior. Experimental evidence showed that the peak temperature of the susceptibility for Cu80Co20 granular thin films strongly depends on the film thickness in the range of 0 120 nm (1). It was also observed that the spontaneous magnetization of the Co phase varies with the thickness though particle size remains constant. We calculated the dipolar interaction energy among magnetic particles including far-neighbor interaction for films with different thickness values. The calculation revealed that the interaction energy varies across the film from edge to edge and the average interaction energy is strongly dependent on film thickness. Good quantitative agreement of the calculated energy curve with the experimental blocking curve was achieved after taking the magnetization variation into account. In the calculation it is assumed the existence of 100 nm sized domain structures in granular film as demonstrate (2) by previous studies. *supported by DoD/DARPA grant No. MDA972-97-1-003. (1) L. M. Malkinski, J.-Q. Wang, et al, Appl. Phys. Lett. 75, 844 (1999). (2) A. Gavrin, et al, Appl. Phys. Lett. 66, 1683 (1995); Y. J. Chen, et al, Appl. Phys. Lett. 72, 2472 (1998).

  13. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  14. Angle-adjustable density field formulation for the modeling of crystalline microstructure

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Le; Liu, Zhirong; Huang, Zhi-Feng

    2018-05-01

    A continuum density field formulation with particle-scale resolution is constructed to simultaneously incorporate the orientation dependence of interparticle interactions and the rotational invariance of the system, a fundamental but challenging issue in modeling the structure and dynamics of a broad range of material systems across variable scales. This generalized phase field crystal-type approach is based upon the complete expansion of particle direct correlation functions and the concept of isotropic tensors. Through applications to the modeling of various two- and three-dimensional crystalline structures, our study demonstrates the capability of bond-angle control in this continuum field theory and its effects on the emergence of ordered phases, and provides a systematic way of performing tunable angle analyses for crystalline microstructures.

  15. Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2009-08-17

    The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.

  16. Colorimetric monitoring of nanometer distance changes in DNA-templated plasmon rulers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lermusiaux, Laurent; Bidault, Sebastien

    2016-03-01

    The nanometer-scale sensitivity of plasmon coupling allows the translation of minute morphological changes in nanostructures into macroscopic optical signals. In particular, single nanostructure scattering spectroscopy provides a direct estimation of interparticle distances in gold nanoparticle (AuNP) dimers linked by a short DNA double-strand [M. P. Busson et al, Nano Lett. 11, 5060 (2011)]. We demonstrate here that this spectroscopic information can be inferred from simple widefield measurements on a calibrated color camera [L. Lermusiaux et al, ACS Nano 9, 978 (2015)]. This allows us to analyze the influence of electrostatic and steric interparticle interactions on the morphology of DNA-templated AuNP groupings. Furthermore, polarization-resolved measurements on a color CCD provide a parallel imaging of AuNP dimer orientations. We apply this spectroscopic characterization to identify dimers featuring two different conformations of the same DNA template. In practice, the biomolecular scaffold contains a hairpin-loop that opens after hybridization to a specific DNA sequence and increases the interparticle distance [L. Lermusiaux et al, ACS Nano 6, 10992 (2012)]. These results open exciting perspectives for the parallel sensing of single specific DNA strands using plasmon rulers. We discuss the limits of this approach in terms of the physicochemical stability and reactivity of these nanostructures and demonstrate the importance of engineering the AuNP surface chemistry, in particular using amphiphilic ligands [L. Lermusiaux and S. Bidault, Small (2015), in press].

  17. Investigation of structural, morphological, luminescent and thermal properties of combusted aluminium-based iron oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinde, S.S.; Rajpure, K.Y., E-mail: rajpure@yahoo.co

    Nanocomposites of aluminium integrated hematite {alpha}-Fe{sub 2}O{sub 3} are synthesized by combustion route using aqueous solutions of AR grade ferric trichloride and aluminium nitrate as precursors. The influence of aluminium incorporation on to the morphology, XPS, photoluminescence and thermal properties has been investigated. The FESEM and AFM micrographs depict that the samples are compact and have homogeneously distributed grains of varying sizes ({approx}20-60 nm). Chemical composition and valence states of constituent elements in hematite are analyzed by XPS. In room temperature photoluminescence (PL) study, we observed strong violet emission around 436 nm without any deep-level emission and a small PLmore » FWHM indicating that the concentrations of defects are responsible for deep-level emissions. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant. We studied interparticle interactions using complex impedance spectroscopy. We report a new potential candidate for its possible applications in optoelectronics and magnetic devices. -- Graphical abstract: Frequency and temperature dependent interparticle interactions like grains, grain boundary effects using complex impedance spectroscopy of pure and 10 at% Al:Fe{sub 2}O{sub 3} have been studied. Display Omitted« less

  18. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.

    PubMed

    Tian, Yuanyuan; Shuai, Zhenhua; Shen, Jingjing; Zhang, Lei; Chen, Shufen; Song, Chunyuan; Zhao, Baomin; Fan, Quli; Wang, Lianhui

    2018-06-01

    A novel plasmonic heterodimer nanostructure with a controllable self-assembled hot spot is fabricated by the conjugation of individual Au@Ag core-shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin-streptavidin interaction from the ensemble to the single-assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface-enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2

    PubMed Central

    Flatten, Lucas C.; Coles, David M.; He, Zhengyu; Lidzey, David G.; Taylor, Robert A.; Warner, Jamie H.; Smith, Jason M.

    2017-01-01

    Exciton-polaritons are quasiparticles consisting of a linear superposition of photonic and excitonic states, offering potential for nonlinear optical devices. The excitonic component of the polariton provides a finite Coulomb scattering cross section, such that the different types of exciton found in organic materials (Frenkel) and inorganic materials (Wannier-Mott) produce polaritons with different interparticle interaction strength. A hybrid polariton state with distinct excitons provides a potential technological route towards in situ control of nonlinear behaviour. Here we demonstrate a device in which hybrid polaritons are displayed at ambient temperatures, the excitonic component of which is part Frenkel and part Wannier-Mott, and in which the dominant exciton type can be switched with an applied voltage. The device consists of an open microcavity containing both organic dye and a monolayer of the transition metal dichalcogenide WS2. Our findings offer a perspective for electrically controlled nonlinear polariton devices at room temperature. PMID:28094281

  20. Layer-by-layer charging in non-volatile memory devices using embedded sub-2 nm platinum nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramalingam, Balavinayagam; Zheng, Haisheng; Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu

    In this work, we demonstrate multi-level operation of a non-volatile memory metal oxide semiconductor capacitor by controlled layer-by-layer charging of platinum nanoparticle (PtNP) floating gate devices with defined gate voltage bias ranges. The device consists of two layers of ultra-fine, sub-2 nm PtNPs integrated between Al{sub 2}O{sub 3} tunneling and separation layers. PtNP size and interparticle distance were varied to control the particle self-capacitance and associated Coulomb charging energy. Likewise, the tunneling layer thicknesses were also varied to control electron tunneling to the first and second PtNP layers. The final device configuration with optimal charging behavior and multi-level programming was attainedmore » with a 3 nm Al{sub 2}O{sub 3} initial tunneling layer, initial PtNP layer with particle size 0.54 ± 0.12 nm and interparticle distance 4.65 ± 2.09 nm, 3 nm Al{sub 2}O{sub 3} layer to separate the PtNP layers, and second particle layer with 1.11 ± 0.28 nm PtNP size and interparticle distance 2.75 ± 1.05 nm. In this device, the memory window of the first PtNP layer saturated over a programming bias range of 7 V to 14 V, after which the second PtNP layer starts charging, exhibiting a multi-step memory window with layer-by-layer charging.« less

  1. Ray-theory approach to electrical-double-layer interactions.

    PubMed

    Schnitzer, Ory

    2015-02-01

    A novel approach is presented for analyzing the double-layer interaction force between charged particles in electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields a simple asymptotic approximation limited to neither small zeta potentials nor the "close-proximity" assumption underlying Derjaguin's approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as superposed contributions conveyed by "rays" emanating normally from the boundary layers. On a special curve generated by the centers of all circles maximally inscribed between the two particles, the bulk stress-associated with the ray contributions interacting nonlinearly-decays exponentially with distance from the center of the smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace's method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin's approximation, with numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and Derjaguin's approximation, the interaction force is provided at arbitrary interparticle separations. Our theory can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical scenarios where exponentially decaying fields give rise to forces.

  2. Biomolecular recognition and detection using gold-based nanoprobes

    NASA Astrophysics Data System (ADS)

    Crew, Elizabeth

    The ability to control the biomolecular interactions is important for developing bioanalytical probes used in biomolecule and biomarker detections. This work aims at a fundamental understanding of the interactions and reactivities involving DNA, miRNA, and amino acids using gold-based nanoparticles as nanoprobes, which has implications for developing new strategies for the early detection of diseases, such as cancer, and controlled delivery of drugs. Surface modifications of the nanoprobes with DNA, miRNA, and amino acids and the nanoprobe directed biomolecular reactivities, such as complementary-strand binding, enzymatic cutting and amino acid interactions, have been investigated. Among various analytical techniques employed for the analysis of the biomolecule-nanoprobe interactions, surface enhanced Raman scattering spectroscopy (SERS) has been demonstrated to provide a powerful tool for real time monitoring of the DNA assembly and enzymatic cutting processes in solutions. This demonstration harnesses the "hot-spot" characteristic tuned by the interparticle biomolecular-regulated interactions and distances. The assembly of gold nanoparticles has also been exploited as sensing thin films on chemiresistor arrays for the detection of volatile organic compounds, including biomarker molecules associated with diabetes. Important findings of the nanoprobes in delivering miRNA to cells, detecting DNA hybridization kinetics, discerning chiral recognition with enantiomeric cysteines, and sensing biomarker molecules with the nanostructured thin films will be discussed, along with their implications to enhancing sensitivity, selectivity and limits of detection.

  3. Hierarchical self-assembly of nanoparticles in polymer matrix and the nature of the interparticle interaction

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chiao; Chen, Chun-Yu; Chen, Hsin-Lung; Hashimoto, Takeji; Chen, Show-An; Li, Yen-Cheng

    2015-06-01

    Using small angle X-ray scattering (SAXS), we elucidated the spatial organization of palladium (Pd) nanoparticles (NPs) in the polymer matrix of poly(2-vinylpyridine) (P2VP) and the nature of inter-nanoparticle interactions, where the NPs were synthesized in the presence of P2VP by the reduction of palladium acetylacetonate (Pd(acac)2). The experimental SAXS profiles were analysed on the basis of a hierarchical structure model considering the following two types of interparticle potential: (i) hard-core repulsion only (i.e., the hard-sphere interaction) and (ii) hard-core repulsion together with an attractive potential well (i.e., the sticky hard-sphere interaction). The corresponding theoretical scattering functions, which were used for analysing the experimental SAXS profiles, were obtained within the context of the Percus-Yevick closure and the Ornstein-Zernike equation in the fundamental liquid theory. The analyses revealed that existence of the attractive potential well is indispensable to account for the experimental SAXS profiles. Moreover, the morphology of the hybrids was found to be characterized by a hierarchical structure with three levels, where about six primary NPs with the diameter of ca. 1.8 nm (level one) formed local clusters (level two), and these clusters aggregated to build up a large-scale mass-fractal structure (level three) with the fractal dimension of ca. 2.3. The scattering function developed here is of general use for quantitatively characterizing the morphological structures of polymer/NP hybrids and, in particular, for exploring the interaction potential of the NPs on the basis of the fundamental liquid theory.

  4. Entropically Driven Self-Assembly of Colloidal Crystals on Templates in Space

    NASA Technical Reports Server (NTRS)

    Yodh, Arjun G.; Zimmerli, Gregory A.

    2002-01-01

    These experiments aim to create new colloidal crystalline materials, to study the assembly and thermodynamics of these materials, to measure the optical properties of these materials. and to fix the resulting structures so that they can be brought back and studied on earth. In microgravity, the elimination of particle sedimentation effects creates a purely "thermodynamic" environment for colloidal suspensions wherein particle size, volume fraction, and interparticle interactions are the primary determinants of the assembled structures. We will control the colloidal assembly process using attractive, entropic particle interactions brought about by the depletion effect. By using attractive interactions for colloidal assembly we create conditions for growth that resemble those associated with "conventional" microscopic systems such as atoms and molecules. This approach differs qualitatively from the more common "space-filling" mode of colloidal crystal growth that is driven purely by packing constraints. It is anticipated that at least some of the solidified structures will survive reentry to earth's gravitational field, and that their optical, magnetic, and electrical properties can then be studied in detail upon return.

  5. Understanding Radionuclide Interactions with Layered Materials

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  6. Dependence of average inter-particle distance upon the temperature of neutrals in dusty plasma crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. S.; Timofeev, A. V.

    2018-01-01

    It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1-8.0 mbar and for the currents range 0.1-1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.

  7. Light-assisted, templated self-assembly of gold nanoparticle chains.

    PubMed

    Jaquay, Eric; Martínez, Luis Javier; Huang, Ningfeng; Mejia, Camilo A; Sarkar, Debarghya; Povinelli, Michelle L

    2014-09-10

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS) to trap and assemble 200 nm diameter gold nanoparticles. We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. Unlike our previous demonstration of LATS with polystyrene particles, we find that the interparticle interactions play a significant role in the resulting particle patterns. Despite a two-dimensionally periodic intensity profile in the slab, the particles form one-dimensional chains whose orientations can be controlled by the incident polarization of the light. The formation of chains can be understood in terms of a competition between the gradient force due to the excitation of the mode in the slab and optical binding between particles.

  8. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.

    PubMed

    Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi

    2011-05-21

    In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles. © 2011 American Institute of Physics.

  9. Precise colloids with tunable interactions for confocal microscopy

    PubMed Central

    Kodger, Thomas E.; Guerra, Rodrigo E.; Sprakel, Joris

    2015-01-01

    Model colloidal systems studied with confocal microscopy have led to numerous insights into the physics of condensed matter. Though confocal microscopy is an extremely powerful tool, it requires a careful choice and preparation of the colloid. Uncontrolled or unknown variations in the size, density, and composition of the individual particles and interactions between particles, often influenced by the synthetic route taken to form them, lead to difficulties in interpreting the behavior of the dispersion. Here we describe the straightforward synthesis of copolymer particles which can be refractive index- and density-matched simultaneously to a non-plasticizing mixture of high dielectric solvents. The interactions between particles are accurately tuned by surface grafting of polymer brushes using Atom Transfer Radical Polymerization (ATRP), from hard-sphere-like to long-ranged electrostatic repulsion or mixed charge attraction. We also modify the buoyant density of the particles by altering the copolymer ratio while maintaining their refractive index match to the suspending solution resulting in well controlled sedimentation. The tunability of the inter-particle interactions, the low volatility of the solvents, and the capacity to simultaneously match both the refractive index and density of the particles to the fluid opens up new possibilities for exploring the physics of colloidal systems. PMID:26420044

  10. Modified Mason number for charged paramagnetic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Du, Di; Hilou, Elaa; Biswal, Sibani Lisa

    2016-06-01

    The dynamics of magnetorheological fluids have typically been described by the Mason number, a governing parameter defined as the ratio between viscous and magnetic forces in the fluid. For most experimental suspensions of magnetic particles, surface forces, such as steric and electrostatic interactions, can significantly influence the dynamics. Here we propose a theory of a modified Mason number that accounts for surface forces and show that this modified Mason number is a function of interparticle distance. We demonstrate that this modified Mason number is accurate in describing the dynamics of a rotating pair of paramagnetic colloids of identical or mismatched sizes in either high or low salt solutions. The modified Mason number is confirmed to be pseudoconstant for particle pairs and particle chains undergoing a stable-metastable transition during rotation. The interparticle distance term can be calculated using theory or can be measured experimentally. This modified Mason number is more applicable to magnetorheological systems where surface forces are not negligible.

  11. Elastic properties of magnetorheological elastomer: description with the two-particle mesoscopic model

    NASA Astrophysics Data System (ADS)

    Biller, A. M.; Stolbov, O. V.; Raikher, Yu L.

    2017-06-01

    A pair of magnetizable solid particles embedded in a cylinder made of high-elasticity material is considered as a model of a mesoscopic structure element of a magnetorheological elastomer. An applied magnetic field induces ponderomotive interaction of the particles making them to move relative to one another so as to balance the counteracting magnetic and elastic forces. In a certain parameter range, the system exhibits bistability due to which under the increase / decrease of the field, the interparticle distance changes in a hysteretic manner. This behavior has a significant effect on the ability of the mesoscopic element to resist external load. Using the developed two-particle model prone to the magnetomechanical hysteresis, we extend it to the case of a virtually macroscopic sample presenting the latter as a superposition of such elements with distributed interparticle distances. In spite of its simplicity, this scheme in a generally correct way describes the field-induced changes of the internal structure and elastic modulus of the magnetorheological composites.

  12. Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment

    DOE PAGES

    Zhang, X.; Shen, Z.; Liu, J.; ...

    2017-10-10

    Here, crystallization by particle attachment is impacting our understanding of natural mineralization processes and holds promise for novel materials design. When particles assemble in crystallographic registry, expulsion of the intervening solvent and particle coalescence is enabled by near-perfect co-alignment via interparticle forces that remain poorly quantified. Here we report measurement and simulation of these nanoscale aligning forces for the ZnO(0001)-ZnO(000¯1) system in aqueous solution. Dynamic force spectroscopy using nanoengineered single crystal probes reveals an attractive force with 60o rotational periodicity. Calculated distance and orientation-dependent potentials of mean force show several attractive free energy wells distinguished by numbers of intervening watermore » layers, which reach a minimum when aligned. The calculated activation energy to separate the attractively bound solvated interfaces perfectly reproduces the measured 60o periodicity, revealing the key role of intervening water structuring as a basis to generate the interparticle torque that completes alignment and enables coalescence.« less

  13. Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.; Shen, Z.; Liu, J.

    Here, crystallization by particle attachment is impacting our understanding of natural mineralization processes and holds promise for novel materials design. When particles assemble in crystallographic registry, expulsion of the intervening solvent and particle coalescence is enabled by near-perfect co-alignment via interparticle forces that remain poorly quantified. Here we report measurement and simulation of these nanoscale aligning forces for the ZnO(0001)-ZnO(000¯1) system in aqueous solution. Dynamic force spectroscopy using nanoengineered single crystal probes reveals an attractive force with 60o rotational periodicity. Calculated distance and orientation-dependent potentials of mean force show several attractive free energy wells distinguished by numbers of intervening watermore » layers, which reach a minimum when aligned. The calculated activation energy to separate the attractively bound solvated interfaces perfectly reproduces the measured 60o periodicity, revealing the key role of intervening water structuring as a basis to generate the interparticle torque that completes alignment and enables coalescence.« less

  14. [Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-06-01

    As reported in the quarterly report of March of 1992, the relative viscosity of a Newtonian Coal Water Slurry (CWS) in the presence of an anionic polymeric dispersant is an order of magnitude higher than the prediction of the well established Krieger-Dougherty Equation which describes the relative viscosity of a non-aggregated Newtonian suspension as a function of particle volume fraction. Note that the anionic dispersant is used in such a quantity that the resulting interparticle electrostatic repulsion counter-balances the interparticle van der Waals attraction. Investigation continues to determine the mechanisms of such excess energy dissipation under shear. New experimental resultsmore » are presented in this report to verify the role of the anionic polymeric dispersant in such excess energy dissipation of CWS.« less

  15. [Roles of additives and surface control in slurry atomization]. Quarterly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-06-01

    As reported in the quarterly report of March of 1992, the relative viscosity of a Newtonian Coal Water Slurry (CWS) in the presence of an anionic polymeric dispersant is an order of magnitude higher than the prediction of the well established Krieger-Dougherty Equation which describes the relative viscosity of a non-aggregated Newtonian suspension as a function of particle volume fraction. Note that the anionic dispersant is used in such a quantity that the resulting interparticle electrostatic repulsion counter-balances the interparticle van der Waals attraction. Investigation continues to determine the mechanisms of such excess energy dissipation under shear. New experimental resultsmore » are presented in this report to verify the role of the anionic polymeric dispersant in such excess energy dissipation of CWS.« less

  16. Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.

    PubMed

    Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A

    2016-02-14

    The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.

  17. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  18. Rheological Properties of Automorphic and Semihydromorphic Cryometamorphic Northern Taiga Soils in Northeastern European Russia (Komi Republic)

    NASA Astrophysics Data System (ADS)

    Kholopov, Yu. V.; Khaidapova, D. D.; Lapteva, E. M.

    2018-04-01

    Soil pastes at the water content corresponding to the maximum swelling of samples from different genetic horizons of cryometamorphic soils―surface-gleyic iron-illuvial svetlozem (Folic Albic Stagnosol) and peaty and peat humus-impregnated gleyic svetlozems (Histic Gleyic Stagnosols)―have been studied with an MCR-302 modular rheometer (Anton Paar, Austria). It has been found that the strongest interparticle bonds are formed in the horizons of cryometamorphic soils characterized by high contents of humic substances and organomineral Al-Fe-humus compounds. These are horizons of podzol microprofile (Eg and BHF) in iron-illuvial svetlozem and a humus-impregnated horizon (ELhi,g) in peaty and peat svetlozems. Organomineral Al-Fe-humus compounds, as well as the seasonal freezing of soils, determine the elastic-brittle character of interparticle interactions. The contents of clay fractions, exchangeable bases, and organic and organomineral substances impart viscoelastic properties to these contacts. An enhancement of elastic-brittle properties of soil is observed under the impact of gleying and freezing. The threefold decrease of the structural interaction parameter (∫ Z) when going from automorphic to semihydromorphic conditions indicates a decrease in the resistance of peaty and peat svetlozems to mechanical loads under increasing hydromorphism compared to iron-illuvial svetlozems.

  19. Experimental measurement of interparticle acoustic radiation force in the Rayleigh limit

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek Ray; Sepehrirahnama, Shahrokh; Lim, Kian-Meng

    2018-05-01

    Acoustophoresis is a form of contact-free particle manipulation in microfluidic devices. The precision of manipulation can be enhanced with better understanding of the acoustic radiation force. In this paper we present the measurements of interparticle radiation force between a pair of polystyrene beads in the Rayleigh limit. The study is conducted for three different sizes of beads and the experimental results are of the same order of magnitude when compared with theoretical predictions. However, the experimental values are larger than the theoretical values. The trend of a decrease in the magnitude of the interparticle radiation force with decreasing particle size and increasing center-to-center distance between the particles is also observed experimentally. The experiments are conducted in the specific scenario where the pair of beads are in close proximity, but not in contact with each other, and the beads are approaching the pressure nodal plane with the center-to-center line aligned perpendicular to the incident wave. This scenario minimizes the presence of the primary radiation force, allowing accurate measurement of the interparticle force. The attractive nature of the interparticle force is observed, consistent with theoretical predictions.

  20. Entropy-driven crystal formation on highly strained substrates

    PubMed Central

    Savage, John R.; Hopp, Stefan F.; Ganapathy, Rajesh; Gerbode, Sharon J.; Heuer, Andreas; Cohen, Itai

    2013-01-01

    In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate. PMID:23690613

  1. Dark-dark-soliton dynamics in two density-coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Morera, I.; Mateo, A. Muñoz; Polls, A.; Juliá-Díaz, B.

    2018-04-01

    We study the one-dimensional dynamics of dark-dark solitons in the miscible regime of two density-coupled Bose-Einstein condensates having repulsive interparticle interactions within each condensate (g >0 ). By using an adiabatic perturbation theory in the parameter g12/g , we show that, contrary to the case of two solitons in scalar condensates, the interactions between solitons are attractive when the interparticle interactions between condensates are repulsive g12>0 . As a result, the relative motion of dark solitons with equal chemical potential μ is well approximated by harmonic oscillations of angular frequency wr=(μ /ℏ ) √{(8 /15 ) g12/g } . We also show that, in finite systems, the resonance of this anomalous excitation mode with the spin-density mode of lowest energy gives rise to alternating dynamical instability and stability fringes as a function of the perturbative parameter. In the presence of harmonic trapping (with angular frequency Ω ) the solitons are driven by the superposition of two harmonic motions at a frequency given by w2=(Ω/√{2 }) 2+wr2 . When g12<0 , these two oscillators compete to give rise to an overall effective potential that can be either single well or double well through a pitchfork bifurcation. All our theoretical results are compared with numerical solutions of the Gross-Pitaevskii equation for the dynamics and the Bogoliubov equations for the linear stability. A good agreement is found between them.

  2. Sequential programmable self-assembly: Role of cooperative interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan D. Halverson; Tkachenko, Alexei V.

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenientmore » platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.« less

  3. Sequential programmable self-assembly: Role of cooperative interactions

    DOE PAGES

    Jonathan D. Halverson; Tkachenko, Alexei V.

    2016-03-04

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenientmore » platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.« less

  4. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites

    NASA Astrophysics Data System (ADS)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-10-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03069a

  5. Kinetic Assembly of Near-IR Active Gold Nanoclusters using Weakly Adsorbing Polymers to Control Size

    PubMed Central

    Tam, Jasmine M.; Murthy, Avinash K.; Ingram, Davis R.; Nguyen, Robin; Sokolov, Konstantin V.; Johnston, Keith P.

    2013-01-01

    Clusters of metal nanoparticles with an overall size less than 100 nm and high metal loadings for strong optical functionality, are of interest in various fields including microelectronics, sensors, optoelectronics and biomedical imaging and therapeutics. Herein we assemble ~5 nm gold particles into clusters with controlled size, as small as 30 nm and up to 100 nm, which contain only small amounts of polymeric stabilizers. The assembly is kinetically controlled with weakly adsorbing polymers, PLA(2K)-b-PEG(10K)-b-PLA(2K) or PEG (MW = 3350), by manipulating electrostatic, van der Waals (VDW), steric, and depletion forces. The cluster size and optical properties are tuned as a function of particle volume fractions and polymer/gold ratios to modulate the interparticle interactions. The close spacing between the constituent gold nanoparticles and high gold loadings (80–85% w/w gold) produce a strong absorbance cross section of ~9×10−15 m2 in the NIR at 700 nm. This morphology results from VDW and depletion attractive interactions that exclude the weakly adsorbed polymeric stabilizer from the cluster interior. The generality of this kinetic assembly platform is demonstrated for gold nanoparticles with a range of surface charges from highly negative to neutral, with the two different polymers. PMID:20361735

  6. Controlling coulomb interactions in infrared stereometamaterials for unity light absorption

    NASA Astrophysics Data System (ADS)

    Mudachathi, Renilkumar; Moritake, Yuto; Tanaka, Takuo

    2018-05-01

    We investigate the influence of near field interactions between the constituent 3D split ring resonators on the absorbance and resonance frequency of a stereo metamaterial based perfect light absorber. The experimental and theoretical analyses reveal that the magnetic resonance red shifts and broadens for both the decreasing vertical and lateral separations of the constituents within the metamaterial lattice, analogous to plasmon hybridization. The strong interparticle interactions for higher density reduce the effective cross-section per resonator, which results in weak light absorption observed in both experimental and theoretical analyses. The red shift of the magnetic resonance with increasing lattice density is an indication of the dominating electric dipole interactions and we analyzed the metamaterial system in an electrostatic point of view to explain the observed resonance shift and decreasing absorption peak. From these analyses, we found that the fill factor introduces two competing factors determining the absorption efficiency such as coulomb interactions between the constituent resonators and their number density in a given array structure. We predicted unity light absorption for a fill factor of 0.17 balancing these two opposing factors and demonstrate an experimental absorbance of 99.5% at resonance with our 3D device realized using residual stress induced bending of 2D patterns.

  7. Partial structure factors reveal atomic dynamics in metallic alloy melts

    NASA Astrophysics Data System (ADS)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Kordel, T.; Hansen, T. C.; Meyer, A.

    2017-07-01

    We investigate the dynamical decoupling of the diffusion coefficients of the different components in a metallic alloy melt, using a combination of neutron diffraction, isotopic substitution, and electrostatic levitation in Zr-Ni melts. We show that excess Ni atoms can diffuse more freely in a background of saturated chemical interaction, causing their dynamics to become much faster and thus decoupled than anticipated from the interparticle interactions. Based on the mode-coupling theory of the glass transition, the averaged structure as given by the partial static structure factors is able to explain the observed dynamical behavior.

  8. Discovery of a Frank-Kasper [sigma] Phase in Sphere-Forming Block Copolymer Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangwoo; Bluemle, Michael J.; Bates, Frank S.

    Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma ({sigma}) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the {sigma} phase in undiluted linear block copolymers (and certain branchedmore » dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.« less

  9. Bent dark soliton dynamics in two spatial dimensions beyond the mean field approximation

    NASA Astrophysics Data System (ADS)

    Mistakidis, Simeon; Katsimiga, Garyfallia; Koutentakis, Georgios; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2017-04-01

    The dynamics of a bented dark soliton embedded in two spatial dimensions beyond the mean-field approximation is explored. We examine the case of a single bented dark soliton comparing the mean-field approximation to a correlated approach that involves multiple orbitals. Fragmentation is generally present and significantly affects the dynamics, especially in the case of stronger interparticle interactions and in that of lower atom numbers. It is shown that the presence of fragmentation allows for the appearance of solitonic and vortex structures in the higher-orbital dynamics. In particular, a variety of excitations including dark solitons in multiple orbitals and vortex-antidark complexes is observed to arise spontaneously within the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  10. Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_

    NASA Astrophysics Data System (ADS)

    Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.

    This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.

  11. Oleate-based hydrothermal preparation of CoFe2O4 nanoparticles, and their magnetic properties with respect to particle size and surface coating

    NASA Astrophysics Data System (ADS)

    Repko, Anton; Vejpravová, Jana; Vacková, Taťana; Zákutná, Dominika; Nižňanský, Daniel

    2015-09-01

    We present a facile and high-yield synthesis of cobalt ferrite nanoparticles by hydrothermal hydrolysis of Co-Fe oleate in the presence of pentanol/octanol/toluene and water at 180 or 220 °C. The particle size (6-10 nm) was controlled by the composition of the organic solvent and temperature. Magnetic properties were then investigated with respect to the particle size and surface modification with citric acid or titanium dioxide (leading to hydrophilic particles). The as-prepared hydrophobic nanoparticles (coated by oleic acid) had a minimum inter-particle distance of 2.5 nm. Their apparent blocking temperature (estimated as a maximum of the zero-field-cooled magnetization) was 180 K, 280 K and 330 K for the particles with size of 6, 9 and 10.5 nm, respectively. Replacement of oleic acid on the surface by citric acid decreased inter-particle distance to less than 1 nm, and increased blocking temperature by ca. 10 K. On the other hand, coating with titanium dioxide, supported by nitrilotri(methylphosphonic acid), caused increase of the particle spacing, and lowering of the blocking temperature by ca. 20 K. The CoFe2O4@TiO2 nanoparticles were sufficiently stable in water, methanol and ethanol. The particles were also investigated by Mössbauer spectroscopy and alternating-current (AC) susceptibility measurements, and their analysis with Vögel-Fulcher and power law. Effect of different particle coating and dipolar interactions on the magnetic properties is discussed.

  12. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadat, M E; Patel, Ronak; Sookoor, Jason

    2014-09-01

    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while themore » unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.« less

  13. Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows

    NASA Astrophysics Data System (ADS)

    Njobuenwu, Derrick O.; Fairweather, Michael

    2017-08-01

    An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.

  14. Direct Measurement of Interparticle Forces of Titan Aerosol Analogs ("Tholin") Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; McGuiggan, Patricia; Bridges, Nathan T.

    2017-12-01

    To understand the origin of the dunes on Titan, it is important to investigate the material properties of Titan's organic sand particles on Titan. The organic sand may behave distinctively compared to the quartz/basaltic sand on terrestrial planets (Earth, Venus, and Mars) due to differences in interparticle forces. We measured the surface energy (through contact angle measurements) and elastic modulus (through Atomic Force Microscopy) of the Titan aerosol analog (tholin). We find that the surface energy of a tholin thin film is about 70.9 mN/m, and its elastic modulus is about 3.0 GPa (similar to hard polymers like PMMA and polystyrene). For two 20 μm diameter particles, the theoretical cohesion force is therefore 3.3 μN. We directly measured interparticle forces for relevant materials: tholin particles are 0.8 ± 0.6 μN, while the interparticle cohesion between walnut shell particles (a typical model materials for the Titan Wind Tunnel, TWT) is only 0.4 ± 0.1 μN. The interparticle cohesion forces are much larger for tholins and presumably Titan sand particles than materials used in the TWT. This suggests that we should increase the interparticle force in both analog experiments (TWT) and threshold models to correctly translate the results to real Titan conditions. The strong cohesion of tholins may also inform us how the small aerosol particles (˜1 μm) in Titan's atmosphere are transformed into large sand particles (˜200 μm). It may also support the cohesive sand formation mechanism suggested by Rubin and Hesp (2009), where only unidirectional wind is needed to form linear dunes on Titan.

  15. A discrete element model for the influence of surfactants on sedimentation characteristics of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Son, Kwon Joong

    2018-02-01

    Hindering particle agglomeration and re-dispersion processes, gravitational sedimentation of suspended particles in magnetorheological (MR) fluids causes inferior performance and controllability of MR fluids in response to a user-specified magnetic field. Thus, suspension stability is one of the principal factors to be considered in synthesizing MR fluids. However, only a few computational studies have been reported so far on the sedimentation characteristics of suspended particles under gravity. In this paper, the settling dynamics of paramagnetic particles suspended in MR fluids was investigated via discrete element method (DEM) simulations. This work focuses particularly on developing accurate fluid-particle and particle-particle interaction models which can account for the influence of stabilizing surfactants on the MR fluid sedimentation. Effect of the stabilizing surfactants on interparticle interactions was incorporated into the derivation of a reliable contact-impact model for DEM computation. Also, the influence of the stabilizing additives on fluid-particle interactions was considered by incorporating Stokes drag with shape and wall correction factors into DEM formulation. The results of simulations performed for model validation purposes showed a good agreement with the published sedimentation measurement data in terms of an initial sedimentation velocity and a final sedimentation ratio.

  16. Photo-ionization and modification of nanoparticles on transparent substrates by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Komolov, Vladimir; Li, Hao; Yu, Qingsong; Przhibel'skii, Sergey; Smirnov, Dmitry

    2011-02-01

    The objective of this combined experimental and theoretical research is to study the dynamics and mechanisms of nanoparticle interaction with ultrashort laser pulses and related modifications of substrate surface. For the experimental effort, metal (gold), dielectric (SiO2) and dielectric with metal coating (about 30 nm thick) spherical nanoparticles deposited on glass substrate are utilized. Size of the particles varies from 20 to 200 nm. Density of the particles varies from low (mean inter-particle distance 100 nm) to high (mean inter-particle distance less than 1 nm). The nanoparticle assemblies and the corresponding empty substrate surfaces are irradiated with single 130-fs laser pulses at wavelength 775 nm and different levels of laser fluence. Large diameter of laser spot (0.5-2 mm) provides gradient variations of laser intensity over the spot and allows observing different laser-nanoparticle interactions. The interactions vary from total removal of the nanoparticles in the center of laser spot to gentle modification of their size and shape and totally non-destructive interaction. The removed particles frequently form specific sub-micrometer-size pits on the substrate surface at their locations. The experimental effort is supported by simulations of the nanoparticle interactions with high-intensity ultrashort laser pulse. The simulation employs specific modification of the molecular dynamics approach applied to model the processes of non-thermal particle ablation following laser-induced electron emission. This technique delivers various characteristics of the ablation plume from a single nanoparticle including energy and speed distribution of emitted ions, variations of particle size and overall dynamics of its ablation. The considered geometry includes single isolated particle as well a single particle on a flat substrate that corresponds to the experimental conditions. The simulations confirm existence of the different regimes of laser-nanoparticle interactions depending on laser intensity and wavelength. In particular, implantation of ions departing from the nanoparticles towards the substrate is predicted.

  17. Self-Consistency of the Theory of Elementary Stage Rates of Reversible Processes and the Equilibrium Distribution of Reaction Mixture Components

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-06-01

    An analysis is presented of one of the key concepts of physical chemistry of condensed phases: the theory self-consistency in describing the rates of elementary stages of reversible processes and the equilibrium distribution of components in a reaction mixture. It posits that by equating the rates of forward and backward reactions, we must obtain the same equation for the equilibrium distribution of reaction mixture components, which follows directly from deducing the equation in equilibrium theory. Ideal reaction systems always have this property, since the theory is of a one-particle character. Problems arise in considering interparticle interactions responsible for the nonideal behavior of real systems. The Eyring and Temkin approaches to describing nonideal reaction systems are compared. Conditions for the self-consistency of the theory for mono- and bimolecular processes in different types of interparticle potentials, the degree of deviation from the equilibrium state, allowing for the internal motions of molecules in condensed phases, and the electronic polarization of the reagent environment are considered within the lattice gas model. The inapplicability of the concept of an activated complex coefficient for reaching self-consistency is demonstrated. It is also shown that one-particle approximations for considering intermolecular interactions do not provide a theory of self-consistency for condensed phases. We must at a minimum consider short-range order correlations.

  18. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE PAGES

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  19. Rearrangements and Yielding in Concentrated Suspensions of Hard and Soft Colloids

    NASA Astrophysics Data System (ADS)

    Petekidis, Georgios; Carrier, Vincent; Vlassoppoulos, Dimitris; Pusey, Peter; Ballauff, Matthias

    2004-03-01

    The rheology and microscopic particle rearrangements of concentrated colloidal suspensions were studied by a combination of conventional rheology and Light Scattering under shear (LS Echo). In particular we studied the rheological response and the microscopic particle dynamics under shear near and above the glass transitions concentration. Measurements were done in model hard and soft sphere particles (sterically stabilized PMMA and PS-PNIPA microgels respectively) to assess the effect of inter-particle interactions. Creep and recovery measurements and dynamic strain sweeps showed that glasses of hard particles can tolerate surprisingly large strains, up to at least 15probes the extent of irreversible particle rearrangement under oscillatory shear, verified that within their cage particles move reversibly at least up to such a strain. Such a behavior was attributed to 'cage elasticity', the ability of a particle and its neighbors to retain their relative positions within the cage under quite large distortion [1]. The onset of irreversible rearrangements measured by LS echo decreased with decreasing frequency revealing an interplay between shear and Brownian forces. The effects of interparticle interactions were studied using soft thermoreversible migrogel particles where a glass state may be reached either increasing the particle concentration or decreasing the temperature. Here, although particle rearrangements appear to be reversible up to strains as high as 100sweep is observed at much lower strains. [1] G. Petekidis, D. Vlassopoulos and P.N. Pusey, Faraday Discuss., 123, 287 (2003)

  20. Modeling and simulation of dielectrophoretic collective dynamics in a suspension of polarizable particles under the action of a gradient AC electric field.

    PubMed

    Tada, Shigeru; Shen, Yan; Qiu, Zhiyong

    2017-06-01

    When a suspension of polarizable particles is subjected to a gradient AC electric field, the particles exhibit collective motion due to an interaction between the dipole induced in the particles and the spatial gradient of the electric field; this is known as dielectrophoresis. In the present study, the collective dynamics of suspended particles in a parallel-plate electric chamber was investigated by simulating numerically the trajectories of individual particles under the action of combined dielectrophoretic and dipole-dipole interparticle forces. The particles were transported by the dielectrophoretic forces toward the grounded electrodes. Before long, when the particles approached the site of the minimum field strength, attractive/repulsive interparticle forces became dominant and acted among the particles attempting to form a column-like cluster, having the particles distribution in concentric circles in its cross-section, in line with the centerline of the grounded electrodes. Our results also well reproduced the transient particle aggregation that was observed experimentally. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The standard mean-field treatment of inter-particle attraction in classical DFT is better than one might expect

    NASA Astrophysics Data System (ADS)

    Archer, Andrew J.; Chacko, Blesson; Evans, Robert

    2017-07-01

    In classical density functional theory (DFT), the part of the Helmholtz free energy functional arising from attractive inter-particle interactions is often treated in a mean-field or van der Waals approximation. On the face of it, this is a somewhat crude treatment as the resulting functional generates the simple random phase approximation (RPA) for the bulk fluid pair direct correlation function. We explain why using standard mean-field DFT to describe inhomogeneous fluid structure and thermodynamics is more accurate than one might expect based on this observation. By considering the pair correlation function g(x) and structure factor S(k) of a one-dimensional model fluid, for which exact results are available, we show that the mean-field DFT, employed within the test-particle procedure, yields results much superior to those from the RPA closure of the bulk Ornstein-Zernike equation. We argue that one should not judge the quality of a DFT based solely on the approximation it generates for the bulk pair direct correlation function.

  2. Engineered disorder and light propagation in a planar photonic glass

    PubMed Central

    Romanov, Sergei G.; Orlov, Sergej; Ploss, Daniel; Weiss, Clemens K.; Vogel, Nicolas; Peschel, Ulf

    2016-01-01

    The interaction of light with matter strongly depends on the structure of the latter at wavelength scale. Ordered systems interact with light via collective modes, giving rise to diffraction. In contrast, completely disordered systems are dominated by Mie resonances of individual particles and random scattering. However, less clear is the transition regime in between these two extremes, where diffraction, Mie resonances and near-field interaction between individual scatterers interplay. Here, we probe this transitional regime by creating colloidal crystals with controlled disorder from two-dimensional self-assembly of bidisperse spheres. Choosing the particle size in a way that the small particles are transparent in the spectral region of interest enables us to probe in detail the effect of increasing positional disorder on the optical properties of the large spheres. With increasing disorder a transition from a collective optical response characterized by diffractive resonances to single particles scattering represented by Mie resonances occurs. In between these extremes, we identify an intermediate, hopping-like light transport regime mediated by resonant interactions between individual spheres. These results suggest that different levels of disorder, characterized not only by absence of long range order but also by differences in short-range correlation and interparticle distance, exist in colloidal glasses. PMID:27277521

  3. Observation of roton mode population in a dipolar quantum gas

    NASA Astrophysics Data System (ADS)

    Chomaz, L.; van Bijnen, R. M. W.; Petter, D.; Faraoni, G.; Baier, S.; Becher, J. H.; Mark, M. J.; Wächtler, F.; Santos, L.; Ferlaino, F.

    2018-05-01

    The concept of a roton, a special kind of elementary excitation forming a minimum of energy at finite momentum, has been essential for the understanding of the properties of superfluid 4He (ref. 1). In quantum liquids, rotons arise from the strong interparticle interactions, whose microscopic description remains debated2. In the realm of highly controllable quantum gases, a roton mode has been predicted to emerge due to magnetic dipole-dipole interactions despite their weakly interacting character3. This prospect has raised considerable interest4-12; yet roton modes in dipolar quantum gases have remained elusive to observations. Here we report experimental and theoretical studies of the momentum distribution in Bose-Einstein condensates of highly magnetic erbium atoms, revealing the existence of the long-sought roton mode. Following an interaction quench, the roton mode manifests itself with the appearance of symmetric peaks at well-defined finite momentum. The roton momentum follows the predicted geometrical scaling with the inverse of the confinement length along the magnetization axis. From the growth of the roton population, we probe the roton softening of the excitation spectrum in time and extract the corresponding imaginary roton gap. Our results provide a further step in the quest towards supersolidity in dipolar quantum gases13.

  4. Direct Measurements of Surface Energy, Elastic Modulus and Interparticle Forces of Titan Aerosol Analog (`Tholin') Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Yu, X.; Horst, S. M.; He, C.; McGuiggan, P.; Bridges, N. T.

    2017-12-01

    To understand the origin of the dunes on Titan, it is important to investigate the material properties of the sand particles on Titan, which are mainly made of organics deposited from the atmosphere [1]. The organic sand may behave differently compared to the quartz/basaltic sand on terrestrial planets (Earth, Venus, Mars) in terms of interparticle forces. We measured the surface energy (through contact angle measurements) and elastic modulus (through Atomic Force Microscopy, AFM) of Titan aerosol analog (tholins) produced in our lab. Tholins may be compositionally similar to sand on Titan. We directly measured the interparticle forces between a tholin particle adhered to an AFM cantilver and tholin particles on a substrate. We also measured the properties of walnut shells, a typical material used in the Titan Wind Tunnel (TWT, [2, 3]). We find the surface energy of a tholin thin film is about 70.9 mN/m and its elastic modulus is about 3.5 GPa (similar to hard polymers like PMMA and polystyrene). We used the two measured material properties of tholin to calculate its interparticle cohesion assuming simple sphere-sphere geometry [4]. For two 20 µm particles, the theoretical cohesion force is about 6682 nN. Under dry nitrogen (RH<1%), the directly measured interparticle forces using AFM was approximately 4000 nN, which is smaller than theoretical predictions but still relatively strong under dry conditions. The interparticle cohesion between walnut shell particles is only 200 nN, which is much lower than between tholin particles. The key finding of this study is that the interparticle cohesion forces are much larger for tholins and presumably Titan sand particles than for terrestrial sand and materials used in the wind tunnel. This suggests we should increase the interparticle force in both analog experiments (TWT) and threshold models (e.g. [5]) to correctly translate the results to real Titan conditions. The strong cohesion of tholins may also inform us how the small aerosol particles ( 1 µm) in Titan's atmosphere are transformed into large sand particles ( 200 µm). References: [1] J. W. Barnes et al. Icarus, 195, 400, 2008. [2] D. M. Burr, et al. Nat., 517, 60, 2015. [3] X. Yu et al., Icarus, 297, 97, 2017. [4] K. L. Johnson et al., Proc. R. Soc. Lond., A 324, 301, 1971. [5] Y. Shao & H. Lu, J. Geophys. Res., 105, 22437, 2000.

  5. Magnetic resonance studies of mixed chalcospinel CuCr2SxSe4-x (x = 0; 2) and CoxCu1-xCr2S4 (x = 0.1; 0.2) nanocrystals with strong interparticle interactions

    NASA Astrophysics Data System (ADS)

    Pankrats, A. I.; Vorotynov, A. M.; Tugarinov, V. I.; Zharkov, S. M.; Zeer, G. M.; Ramasamy, K.; Gupta, A.

    2018-04-01

    Magnetic resonance characteristics of mixed chalcospinel nanocrystals CuCr2SxSe4-x (x = 0 and 2) and CoxCu1-xCr2S4 (x = 0.1 and 0.2) have been investigated. It has been established based on TEM, SEM and resonance data that all the samples contain both blocks with sizes from 1 to 50 m of compacted nanosized crystallites and individual nanoparticles with sizes from 10 to 30 nm. The studies provide evidence of strong interparticle interaction in all the samples leading to high values of the blocking temperature. Magnetic dipolar field arise in the boundary regions of interacting adjacent nanocrystals below the blocking temperature. This results in inhomogeneous broadening of the magnetic resonance spectrum along with appearance of additional absorption lines. With increase in magnetic anisotropy at low temperatures, a shift of the resonance field along with line broadening are observed for all the studied compounds due to freezing of the moments in the nanoparticles, both in the individual and compacted ones. A gapped characteristic of the resonance spectrum is established below the freezing temperature Tfr, with the energy gap defined by the averaged magnetic anisotropy . Anionic substitution of sulfur by selenium results in a decrease in the magnetic anisotropy. In contrast, cationic substitution of copper by cobalt increases the magnetic anisotropy due to a strong contribution from the latter ion.

  6. Tunable interactions between paramagnetic colloidal particles driven in a modulated ratchet potential.

    PubMed

    Straube, Arthur V; Tierno, Pietro

    2014-06-14

    We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.

  7. Avoidance of stress corrosion susceptibility in high strength aluminum alloys by control of grain boundary and matrix microstructure

    NASA Technical Reports Server (NTRS)

    Adler, P.; Deiasi, R.

    1974-01-01

    The relation of microstructure to the mechanical strength and stress corrosion resistance of highest strength and overaged tempers of BAR and 7050 aluminum alloys was investigated. Comparison is made with previously studied 7075 aluminum alloy. Optical microscopy, transmission electron microscopy, and differential scanning calorimetry were used to characterize the grain morphology, matrix microstructure, and grain boundary microstructure of these tempers. Grain boundary interparticle spacing was significant to stress corrosion crack propagation for all three alloys; increasing interparticle spacing led to increased resistance to crack propagation. In addition, the fire grain size in Bar and 7050 appears to enhance crack propagation. The highest strength temper of 7050 has a comparatively high resistance to crack initiation. Overall stress corrosion behavior is dependent on environment pH, and evaluation over a range of pH is recommended.

  8. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia

    NASA Astrophysics Data System (ADS)

    Myrovali, E.; Maniotis, N.; Makridis, A.; Terzopoulou, A.; Ntomprougkidis, V.; Simeonidis, K.; Sakellari, D.; Kalogirou, O.; Samaras, T.; Salikhov, R.; Spasova, M.; Farle, M.; Wiedwald, U.; Angelakeris, M.

    2016-11-01

    In this work, we present the arrangement of Fe3O4 magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency.

  9. An on-chip colloidal magneto-optical grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikockis, M.; Wijesinghe, H.; Chen, A.

    2016-04-18

    Interacting nano- and micro-particles provide opportunities to create a wide range of useful colloidal and soft matter constructs. In this letter, we examine interacting superparamagnetic polymeric particles residing on designed permalloy (Ni{sub 0.8} Fe{sub 0.2}) shapes that are subject to weak time-orbiting magnetic fields. The precessing field and magnetic barriers that ensue along the outer perimeter of the shapes allow for containment concurrent with independent field-tunable ordering of the dipole-coupled particles. These remotely activated arrays with inter-particle spacing comparable to the wavelength of light yield microscopic on-chip surface gratings for beam steering and magnetically regulated light diffraction applications.

  10. Sign Reversal of Coulom Interaction Between Two Quasiparticles in Momentum Space

    NASA Astrophysics Data System (ADS)

    Fan, J. D.; Malozovsky, Yuriy M.

    2013-06-01

    The main misconception regarding the interaction between quasiparticles stems from the assertion that the interaction energy between two quasiparticles is exactly identical to that of the renormalized interaction between two particles due to interparticle interaction in the Fermi system. If the main concept regarding the definition of quasiparticle as a weakly excited state of the Fermi system with conservation of charge and spin is paramount (except for the charge and spin separation models), the concept of the interaction between quasiparticles is very different from the assumption in the common sense. In this paper, we will prove a general theorem that the interaction between two quasiparticles is very much different from the renormalized interaction between two particles. The major difference lies in two places: the interaction between two quasiparticles is just negative to the renormalized interaction between two particles, and the interaction energy between the two particles is proportional to the product of two Fermi liquid renormalization factors. The result shed light on the reinterpretation of Cooper's pairing without invoking electron-photon interaction.

  11. Periodic and quasiperiodic revivals in periodically driven interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Luitz, David J.; Lazarides, Achilleas; Bar Lev, Yevgeny

    2018-01-01

    Recently it has been shown that interparticle interactions generically destroy dynamical localization in periodically driven systems, resulting in diffusive transport and heating. In this Rapid Communication we rigorously construct a family of interacting driven systems which are dynamically localized and effectively decoupled from the external driving potential. We show that these systems exhibit tunable periodic or quasiperiodic revivals of the many-body wave function and thus of all physical observables. By numerically examining spinless fermions on a one-dimensional lattice we show that the analytically obtained revivals of such systems remain stable for finite systems with open boundary conditions while having a finite lifetime in the presence of static spatial disorder. We find this lifetime to be inversely proportional to the disorder strength.

  12. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.

    PubMed

    Roiter, Yuri; Minko, Iryna; Nykypanchuk, Dmytro; Tokarev, Ihor; Minko, Sergiy

    2012-01-07

    The mechanism of nanoparticle actuation by stimuli-responsive polymer brushes triggered by changes in the solution pH was discovered and investigated in detail in this study. The finding explains the high spectral sensitivity of the composite ultrathin film composed of a poly(2-vinylpyridine) (P2VP) brush that tunes the spacing between two kinds of nanoparticles-gold nanoislands immobilized on a transparent support and gold colloidal particles adsorbed on the brush. The optical response of the film relies on the phenomenon of localized surface plasmon resonances in the noble metal nanoparticles, giving rise to an extinction band in visible spectra, and a plasmon coupling between the particles and the islands that has a strong effect on the band position and intensity. Since the coupling is controlled by the interparticle spacing, the pH-triggered swelling-shrinking transition in the P2VP brush leads to pronounced changes in the transmission spectra of the hybrid film. It was not established in the previous publications how the actuation of gold nanoparticles within a 10-15 nm interparticle distance could result in the 50-60 nm shift in the absorbance maximum in contrast to the model experiments and theoretical estimations of several nanometer shifts. In this work, the extinction band was deconvoluted into four spectrally separated and overlapping contributions that were attributed to different modes of interactions between the particles and the islands. These modes came into existence due to variations in the thickness of the grafted polymeric layer on the profiled surface of the islands. In situ atomic force microscopy measurements allowed us to explore the behavior of the Au particles as the P2VP brush switched between the swollen and collapsed states. In particular, we identified an interesting, previously unanticipated regime when a particle position in a polymer brush was switched between two distinct states: the particle exposed to the surface of the collapsed layer and the particle engulfed by the swollen brush. On average, the characteristic distance between the particles and the islands increased upon the brush swelling. The observed behavior was a result of the anchoring of the particles to polymeric chains that limited the particles' vertical motion range. The experimental findings will be used to design highly sensitive optical nanosensors based on a polymer-brush-modulated interparticle plasmon coupling.

  13. Magnetically controlled ferromagnetic swimmers

    PubMed Central

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-01-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control. PMID:28276490

  14. Magnetically controlled ferromagnetic swimmers

    NASA Astrophysics Data System (ADS)

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-03-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.

  15. Dynamical density functional theory analysis of the laning instability in sheared soft matter.

    PubMed

    Scacchi, A; Archer, A J; Brader, J M

    2017-12-01

    Using dynamical density functional theory (DDFT) methods we investigate the laning instability of a sheared colloidal suspension. The nonequilibrium ordering at the laning transition is driven by nonaffine particle motion arising from interparticle interactions. Starting from a DDFT which incorporates the nonaffine motion, we perform a linear stability analysis that enables identification of the regions of parameter space where lanes form. We illustrate our general approach by applying it to a simple one-component fluid of soft penetrable particles.

  16. Energy dissipation of rigid dipoles in a viscous fluid under the action of a time-periodic field: The influence of thermal bath and dipole interaction

    NASA Astrophysics Data System (ADS)

    Lyutyy, T. V.; Reva, V. V.

    2018-05-01

    Ferrofluid heating by an external alternating field is studied based on the rigid dipole model, where the magnetization of each particle in a fluid is supposed to be firmly fixed in the crystal lattice. Equations of motion, employing Newton's second law for rotational motion, the condition of rigid body rotation, and the assumption that the friction torque is proportional to angular velocity are used. This oversimplification permits us to expand the model easily: to take into account the thermal noise and interparticle interaction that allows us to estimate from unified positions the role of thermal activation and dipole interaction in the heating process. Our studies are conducted in three stages. The exact expressions for the average power loss of a single particle are obtained within the dynamical approximation. Then, in the stochastic case, the power loss of a single particle is estimated analytically using the Fokker-Planck equation and numerically using the effective Langevin equation. Finally, the power loss for the particle ensemble is obtained using the molecular dynamics method. Here, the local dipole fields are calculated approximately based on the Barnes-Hut algorithm. The revealed trends in the behavior of both a single particle and the particle ensemble suggest the way of choosing the conditions for obtaining the maximum heating efficiency. The competitiveness character of the interparticle interaction and thermal noise is investigated in detail. Two situations, when the thermal noise rectifies the power loss reduction caused by the interaction, are described. The first of them is related to the complete destruction of dense clusters at high noise intensity. The second one originates from the rare switching of the particles in clusters due to thermal activation, when the noise intensity is relatively weak. In this way, the constructive role of noise appears in the system.

  17. Controlling Non-Equilibrium Structure Formation on the Nanoscale.

    PubMed

    Buchmann, Benedikt; Hecht, Fabian Manfred; Pernpeintner, Carla; Lohmueller, Theobald; Bausch, Andreas R

    2017-12-06

    Controlling the structure formation of gold nanoparticle aggregates is a promising approach towards novel applications in many fields, ranging from (bio)sensing to (bio)imaging to medical diagnostics and therapeutics. To steer structure formation, the DNA-DNA interactions of DNA strands that are coated on the surface of the particles have become a valuable tool to achieve precise control over the interparticle potentials. In equilibrium approaches, this technique is commonly used to study particle crystallization and ligand binding. However, regulating the structural growth processes from the nano- to the micro- and mesoscale remains elusive. Here, we show that the non-equilibrium structure formation of gold nanoparticles can be stirred in a binary heterocoagulation process to generate nanoparticle clusters of different sizes. The gold nanoparticles are coated with sticky single stranded DNA and mixed at different stoichiometries and sizes. This not only allows for structural control but also yields access to the optical properties of the nanoparticle suspensions. As a result, we were able to reliably control the kinetic structure formation process to produce cluster sizes between tens of nanometers up to micrometers. Consequently, the intricate optical properties of the gold nanoparticles could be utilized to control the maximum of the nanoparticle suspension extinction spectra between 525 nm and 600 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media.

    PubMed

    Zhou, L; Qu, Z G; Ding, T; Miao, J Y

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  19. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  20. Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows

    NASA Astrophysics Data System (ADS)

    Murphy, Eric

    Granular and multiphase flows are encountered in a number of industrial processes with particular emphasis in this manuscript given to the particular applications in cement pumping, pneumatic conveying, fluid catalytic cracking, CO2 capture, and fast pyrolysis of bio-materials. These processes are often modeled using averaged equations that may be simulated using computational fluid dynamics. Closure models are then required that describe the average forces that arise from both interparticle interactions, e.g. shear stress, and interphase interactions, such as mean drag. One of the biggest hurdles to this approach is the emergence of non-trivial spatio-temporal structures in the particulate phase, which can significantly modify the qualitative behavior of these forces and the resultant flow phenomenology. For example, the formation of large clusters in cohesive granular flows is responsible for a transition from solid-like to fluid-like rheology. Another example is found in gas-solid systems, where clustering at small scales is observed to significantly lower in the observed drag. Moreover, there remains the possibility that structure formation may occur at all scales, leading to a lack of scale separation required for traditional averaging approaches. In this context, several modeling problems are treated 1) first-principles based modeling of the rheology of cement slurries, 2) modeling the mean solid-solid drag experienced by polydisperse particles undergoing segregation, and 3) modeling clustering in homogeneous gas-solid flows. The first and third components are described in greater detail. In the study on the rheology of cements, several sub-problems are introduced, which systematically increase in the number and complexity of interparticle interactions. These interparticle interactions include inelasticity, friction, cohesion, and fluid interactions. In the first study, the interactions between cohesive inelastic particles was fully characterized for the first time. Next, kinetic theory was used to predict the cooling of a gas of such particles. DEM was then used to validate this approach. A study on the rheology of dry cohesive granules with and without friction was then carried out, where the physics of different flow phenomenology was exhaustively explored. Lastly, homogeneous cement slurry simulations were carried out, and compared with vane-rheometer experiments. Qualitative agreement between simulation and experiment were observed. Lastly, the physics of clustering in homogeneous gas-solid flows is explored in the hopes of gaining a mechanistic explanation of how particle-fluid interactions lead to clustering. Exact equations are derived, detailing the evolution of the two particle density, which may be closed using high-fidelity particle-resolved direct numerical simulation. Two canonical gas-solid flows are then addressed, the homogeneously cooling gas-solid flow (HCGSF) and sedimenting gas-solid flow (SGSF). A mechanism responsible for clustering in the HCGSF is identified. Clustering of plane-wave like structures is observed in the SGSF, and the exact terms are quantified. A method for modeling the dynamics of clustering in these systems is proposed, which may aid in the prediction of clustering and other correlation length-scales useful for less expensive computations.

  1. Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions.

    PubMed

    Eberle, Aaron P R; Castañeda-Priego, Ramón; Kim, Jung M; Wagner, Norman J

    2012-01-24

    We report an experimental study of the dynamical arrest transition for a model system consisting of octadecyl coated silica suspended in n-tetradecane from dilute to concentrated conditions spanning the state diagram. The dispersion's interparticle potential is tuned by temperature affecting the brush conformation leading to a thermoreversible model system. The critical temperature for dynamical arrest, T*, is determined as a function of dispersion volume fraction by small-amplitude dynamic oscillatory shear rheology. We corroborate this transition temperature by measuring a power-law decay of the autocorrelation function and a loss of ergodicity via fiber-optic quasi-elastic light scattering. The structure at T* is measured using small-angle neutron scattering. The scattering intensity is fit to extract the interparticle pair-potential using the Ornstein-Zernike equation with the Percus-Yevick closure approximation, assuming a square-well interaction potential with a short-range interaction (1% of particle diameter). (1) The strength of attraction is characterized using the Baxter temperature (2) and mapped onto the adhesive hard sphere state diagram. The experiments show a continuous dynamical arrest transition line that follows the predicted dynamical percolation line until ϕ ≈ 0.41 where it subtends the predictions toward the mode coupling theory attractive-driven glass line. An alternative analysis of the phase transition through the reduced second virial coefficient B(2)* shows a change in the functional dependence of B(2)* on particle concentration around ϕ ≈ 0.36. We propose this signifies the location of a gel-to-glass transition. The results presented herein differ from those observed for depletion flocculated dispersion of micrometer-sized particles in polymer solutions, where dynamical arrest is a consequence of multicomponent phase separation, suggesting dynamical arrest is sensitive to the physical mechanism of attraction.

  2. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    PubMed Central

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297

  3. Ferromagnetic Swimmers - Devices and Applications

    NASA Astrophysics Data System (ADS)

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  4. Recent Advances in Multi-component Particles Assembly.

    PubMed

    Guo, Dan; Song, Yanlin

    2018-03-09

    Particles assembly and co-assembly have been research frontiers in chemistry and material science in the past few decades. To achieve a large variety of intricate structures and functional materials, remarkable progress has been made in the particle assembly principles and strategies. It can be summarized that the particle assembly is driven by intrinsic interparticle interaction or the external control. In this article, we focus on binary or ternary particles co-assembly and review the principles and feasible strategies. These advances have led to new disciplines of microfabrication technology and material engineering. Although remarked achievement on particle-based structures has been made, it is still challenging to fully develop general and facile strategies to precisely control the one-dimensional (1D) co-assembly. This article reviews the recent development on multi-component particles co-assembly, which significantly increases structural complexity and functional diversity. In particular, we highlight the advances in the particles co-assembly of well-ordered 1D binary superstructures by liquid soft confinement. Finally, prospective outlook for future trends in this field is proposed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Flocculation and Settling Velocity Estimates for Reservoir Sedimentation Analysis

    DTIC Science & Technology

    2016-02-01

    viscosity ). Stokes’ law is commonly used to describe settling velocity of a single particle and is applicable when the particle Reynolds number (Rep...fluid viscosity , and ν is kinematic viscosity . Several researchers recognize that large, fast-settling particles disobey the laminar boundary...interparticle attraction caused by electrostatic and physiochemical forces. These properties give clays their stickiness and control essential

  6. How an interacting many-body system tunnels through a potential barrier to open space

    PubMed Central

    Lode, Axel U.J.; Streltsov, Alexej I.; Sakmann, Kaspar; Alon, Ofir E.; Cederbaum, Lorenz S.

    2012-01-01

    The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of α-decay, fusion and fission in nuclear physics, and photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constituent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a transparent and controllable physical system, an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schrödinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: The overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wave function in the respective processes. PMID:22869703

  7. Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage

    NASA Astrophysics Data System (ADS)

    Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.

    2014-11-01

    We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.

  8. Ion mediated targeting of cells with nanoparticles

    NASA Astrophysics Data System (ADS)

    Maheshwari, Vivek; Fu, Jinlong

    2010-03-01

    In eukaryotic cells, Ca^2+ ions are necessary for intracellular signaling, in activity of mitochondria and a variety of other cellular process that have been linked to cell apoptosis, proteins synthesis and cell-cycle regulation. Here we show that Ca^2+ ions, serving as the bio-compatible interface can be used to target Saccharomyces cerevisiae (SaC, baker's yeast), a model eukaryotic cell, with Au nanoparticles (10 nm). The Ca^2+ ions bind to the carboxylic acid groups in the citrate functionalized Au nanoparticles. This transforms the nanoparticles into micron long 1-D branched chain assemblies due to inter-particle dipole-dipole interaction and inter-particle bonding due to the divalent nature of the Ca^2+ ion. A similar transformation is observed with the use of divalent ions Mg^2+, Cd^2+ and Fe^2+. The 1-D assembly aids the interfacing of ion-nanoparticles on the cell by providing multiple contact points. Further monovalent ions such as Na^+ are also effective for the targeting of the cell with nanoparticles. However Na-Au nanoparticles are limited in their deposition as they exist in solution as single particles. The cells remain alive after the deposition process and their vitality is unaffected by the interfacing with ion-nanoparticles.

  9. Effects of gas interparticle interaction on dissipative wake-mediated forces.

    PubMed

    Kliushnychenko, O V; Lukyanets, S P

    2017-01-01

    We examine how the short-range repulsive interaction in a gas of Brownian particles affects behavior of the nonequilibrium depletion forces between obstacles embedded into the gas flow. It is shown that for an ensemble of small and widely separated obstacles the dissipative wake-mediated interaction belongs to the type of induced dipole-dipole interaction governed by an anisotropic screened Coulomb-like potential. For closely located obstacles, formation of a common density perturbation "coat" around them leads to enhancement of dissipative interaction, manifested by characteristic peaks in its dependence on both the bath fraction and the external driving field. Moreover, additional screening of the gas flow due to nonlinear blockade effect gives rise to generation of a pronounced step-like profile of gas density distribution around the obstacles. This can lead to additional enhancement of dissipative interaction between obstacles. The possibility of the dissipative pairing effect and dissipative interaction switching provoked by wake inversion is briefly discussed. All the results are obtained within the classical lattice-gas model.

  10. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles

    NASA Astrophysics Data System (ADS)

    Cigler, Petr; Lytton-Jean, Abigail K. R.; Anderson, Daniel G.; Finn, M. G.; Park, Sung Yong

    2010-11-01

    The formation of diamond structures from tailorable building blocks is an important goal in colloidal crystallization because the non-compact diamond lattice is an essential component of photonic crystals for the visible-light range. However, designing nanoparticle systems that self-assemble into non-compact structures has proved difficult. Although several methods have been proposed, single-component nanoparticle assembly of a diamond structure has not been reported. Binary systems, in which at least one component is arranged in a diamond lattice, provide alternatives, but control of interparticle interactions is critical to this approach. DNA has been used for this purpose in a number of systems. Here we show the creation of a non-compact lattice by DNA-programmed crystallization using surface-modified Qβ phage capsid particles and gold nanoparticles, engineered to have similar effective radii. When combined with the proper connecting oligonucleotides, these components form NaTl-type colloidal crystalline structures containing interpenetrating organic and inorganic diamond lattices, as determined by small-angle X-ray scattering. DNA control of assembly is therefore shown to be compatible with particles possessing very different properties, as long as they are amenable to surface modification.

  11. Controllable surface haptics via particle jamming and pneumatics.

    PubMed

    Stanley, Andrew A; Okamura, Allison M

    2015-01-01

    The combination of particle jamming and pneumatics allows the simultaneous control of shape and mechanical properties in a tactile display. A hollow silicone membrane is molded into an array of thin cells, each filled with coffee grounds such that adjusting the vacuum level in any individual cell rapidly switches it between flexible and rigid states. The array clamps over a pressure-regulated air chamber with internal mechanisms designed to pin the nodes between cells at any given height. Various sequences of cell vacuuming, node pinning, and chamber pressurization allow the surface to balloon into a variety of shapes. Experiments were performed to expand existing physical models of jamming at the inter-particle level to define the rheological characteristics of jammed systems from a macroscopic perspective, relevant to force-displacement interactions that would be experienced by human users. Force-displacement data show that a jammed cell in compression fits a Maxwell model and a cell deflected in the center while supported only at the edges fits a Zener model, each with stiffness and damping parameters that increase at higher levels of applied vacuum. This provides framework to tune and control the mechanical properties of a jamming haptic interface.

  12. Development and testing of a unique carousel wind tunnel to experimentally determine the effect of gravity and the interparticle force on the physics of wind-blown particles

    NASA Technical Reports Server (NTRS)

    Leach, R. N.; Greeley, Ronald; White, Bruce R.; Iversen, James D.

    1987-01-01

    In the study of planetary aeolian processes the effect of gravity is not readily modeled. Gravity appears in the equations of particle motion along with the interparticle forces but the two are not separable. A wind tunnel that perimits multiphase flow experiments with wind blown particles at variable gravity was built and experiments were conducted at reduced gravity. The equations of particle motion initiation (saltation threshold) with variable gravity were experimentally verified and the interparticle force was separated. A uniquely design Carousel Wind Tunnel (CWT) allows for the long flow distance in a small sized tunnel since the test section if a continuous loop and develops the required turbulent boundary layer. A prototype model of the tunnel where only the inner drum rotates was built and tested in the KC-135 Weightless Wonder 4 zero-g aircraft. Future work includes further experiments with walnut shell in the KC-135 which sharply graded particles of widely varying median sizes including very small particles to see how interparticle force varies with particle size, and also experiments with other aeolian material.

  13. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores a useful application of having thermally labile DNA duplexes bound to anisotropic nanoparticles -- the selective photothermal heating and release of hybridized oligonucleotides via a plasmon excitation-based mechanism. The final chapter presents a brief summary of the seminal findings of this thesis and provides an outlook covering future directions and remaining challenges for the field. A comprehensive review covering methods to synthesize and assemble noble metal nanostructures is included in the appendix as an additional resource. All experimental chapters are organized similarly; they begin with an abstract or introduction to motivate and contextualize the work, present the main results and discussion with brief experimental details, and conclude with more detailed, supplementary information for the interested reader. As a whole, this work establishes fundamental understanding and new experimental methods for exploiting nanoscale shape anisotropy to manipulate the chemical and physical properties of matter.

  14. Effect of the size of charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N.

    The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulasmore » are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.« less

  15. Measures for the Dynamics in a Few-Body Quantum System with Harmonic Interactions

    NASA Astrophysics Data System (ADS)

    Nagy, I.; Pipek, J.; Glasser, M. L.

    2018-01-01

    We determine the exact time-dependent non-idempotent one-particle reduced density matrix and its spectral decomposition for a harmonically confined two-particle correlated one-dimensional system when the interaction terms in the Schrödinger Hamiltonian are changed abruptly. Based on this matrix in coordinate space we derive a precise condition for the equivalence of the purity and the overlap-square of the correlated and non-correlated wave functions as the model system with harmonic interactions evolves in time. This equivalence holds only if the interparticle interactions are affected, while the confinement terms are unaffected within the stability range of the system. Under this condition we analyze various time-dependent measures of entanglement and demonstrate that, depending on the magnitude of the changes made in the Hamiltonian, periodic, logarithmically increasing or constant value behavior of the von Neumann entropy can occur.

  16. Recent Advances in the Theory and Simulation of Model Colloidal Microphase Formers.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2016-08-18

    This mini-review synthesizes our understanding of the equilibrium behavior of particle-based models with short-range attractive and long-range repulsive (SALR) interactions. These models, which can form stable periodic microphases, aim to reproduce the essence of colloidal suspensions with competing interparticle interactions. Ordered structures, however, have yet to be obtained in experiments. In order to better understand the hurdles to periodic microphase assembly, marked theoretical and simulation advances have been made over the past few years. Here, we present recent progress in the study of microphases in models with SALR interactions using liquid-state theory and density-functional theory as well as numerical simulations. Combining these various approaches provides a description of periodic microphases, and gives insights into the rich phenomenology of the surrounding disordered regime. Ongoing research directions in the thermodynamics of models with SALR interactions are also presented.

  17. A study on the distribution of adsorbed nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Ding

    2008-02-01

    We use Monte Carlo simulation to calculate the distributions of particles under adsorption force near planar and cylindrical surfaces, respectively. Both hard sphere interaction and repulsive Yukawa (screened coulomb) interaction are employed in our simulations. We study the influence of the inter-particle potentials. The difference between the MC simulation results and the analytical results of ideal gas model shows that the interaction between particles plays an important role in the density distribution under external fields. Moreover, the 2-dimensional constructions of particles close to the surface are studied and show relations of the interaction between particles. These results may indicate us how to improve the methods of building nanoparticle coatings and nano-scale patterns. Supported by 100 Persons Project of Chinese Academy of Sciences, National Natural Science Foundation of China (10474109, 10674146) and Major State Research Development Programme of China (2006CB933000, 2006CB708612)

  18. Solute-mediated interactions between active droplets

    NASA Astrophysics Data System (ADS)

    Moerman, Pepijn G.; Moyses, Henrique W.; van der Wee, Ernest B.; Grier, David G.; van Blaaderen, Alfons; Kegel, Willem K.; Groenewold, Jan; Brujic, Jasna

    2017-09-01

    Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F ˜1 /r2 . Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l =16 ±3 nm , which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.

  19. Fast Characterization of Magnetic Impurities in Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chen, Feng; Xue, Y. Y.; Hadijiev, Viktor G.; Chu, C. W.; Nikolaev, Pasha; Arepalli, Sivaram

    2003-01-01

    We have demonstrated that the magnetic susceptibility measurement is a non-destructive, fast and accurate method to determine the residual metal catalysts in a few microgram single-wall carbon nanotube (SWCNT) sample. We have studied magnetic impurities in raw and purified SWCNT by magnetic susceptibility measurements, transmission electron microscopy, and thermogravimetry. The data suggest that the saturation magnetic moment and the effective field, which is caused by the interparticle interactions, decreases and increases respectively with the decrease of the particle size. Methods are suggested to overcome the uncertainty associated.

  20. Identification of Mott insulators and Anderson insulators in self-assembled gold nanoparticles thin films

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng-Wei; Ni, I.-Chih; Tzeng, Shien-Der; Wu, Cen-Shawn; Kuo, Watson

    2014-05-01

    How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction.How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06627d

  1. Exobiological implications of dust aggregation in planetary atmospheres: An experiment for the gas-grain simulation facility

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.

    1991-01-01

    The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.

  2. Quantum simulation. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism.

    PubMed

    Zhang, X; Bishof, M; Bromley, S L; Kraus, C V; Safronova, M S; Zoller, P; Rey, A M; Ye, J

    2014-09-19

    SU(N) symmetry can emerge in a quantum system with N single-particle spin states when spin is decoupled from interparticle interactions. Taking advantage of the high measurement precision offered by an ultrastable laser, we report a spectroscopic observation of SU(N ≤ 10) symmetry in (87)Sr. By encoding the electronic orbital degree of freedom in two clock states while keeping the system open to as many as 10 nuclear spin sublevels, we probed the non-equilibrium two-orbital SU(N) magnetism via Ramsey spectroscopy of atoms confined in an array of two-dimensional optical traps; we studied the spin-orbital quantum dynamics and determined the relevant interaction parameters. This study lays the groundwork for using alkaline-earth atoms as testbeds for important orbital models. Copyright © 2014, American Association for the Advancement of Science.

  3. Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids

    NASA Astrophysics Data System (ADS)

    Krotscheck, E.

    1985-04-01

    We develop a general variational theory for inhomogeneous Fermi systems such as the electron gas in a metal surface, the surface of liquid 3He, or simple models of heavy nuclei. The ground-state wave function is expressed in terms of two-body correlations, a one-body attenuation factor, and a model-system Slater determinant. Massive partial summations of cluster expansions are performed by means of Born-Green-Yvon and hypernetted-chain techniques. An optimal single-particle basis is generated by a generalized Hartree-Fock equation in which the two-body correlations screen the bare interparticle interaction. The optimization of the pair correlations leads to a state-averaged random-phase-approximation equation and a strictly microscopic determination of the particle-hole interaction.

  4. Selective encapsulation by Janus particles

    NASA Astrophysics Data System (ADS)

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-01

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  5. Protein structure and interactions in the solid state studied by small-angle neutron scattering.

    PubMed

    Curtis, Joseph E; McAuley, Arnold; Nanda, Hirsh; Krueger, Susan

    2012-01-01

    Small-angle neutron scattering (SANS) is uniquely qualified to study the structure of proteins in liquid and solid phases that are relevant to food science and biotechnological applications. We have used SANS to study a model protein, lysozyme, in both the liquid and water ice phases to determine its gross-structure, interparticle interactions and other properties. These properties have been examined under a variety of solution conditions before, during, and after freezing. Results for lysozyme at concentrations of 50 mg mL(-1) and 100 mg mL(-1), with NaCl concentrations of 0.4 M and 0 M, respectively, both in the liquid and frozen states, are presented and implications for food science are discussed.

  6. A multilevel-skin neighbor list algorithm for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Zhao, Mingcan; Hou, Chaofeng; Ge, Wei

    2018-01-01

    Searching of the interaction pairs and organization of the interaction processes are important steps in molecular dynamics (MD) algorithms and are critical to the overall efficiency of the simulation. Neighbor lists are widely used for these steps, where thicker skin can reduce the frequency of list updating but is discounted by more computation in distance check for the particle pairs. In this paper, we propose a new neighbor-list-based algorithm with a precisely designed multilevel skin which can reduce unnecessary computation on inter-particle distances. The performance advantages over traditional methods are then analyzed against the main simulation parameters on Intel CPUs and MICs (many integrated cores), and are clearly demonstrated. The algorithm can be generalized for various discrete simulations using neighbor lists.

  7. Discrete Element Method Simulations of the Inter-Particle Contact Parameters for the Mono-Sized Iron Ore Particles.

    PubMed

    Li, Tongqing; Peng, Yuxing; Zhu, Zhencai; Zou, Shengyong; Yin, Zixin

    2017-05-11

    Aiming at predicting what happens in reality inside mills, the contact parameters of iron ore particles for discrete element method (DEM) simulations should be determined accurately. To allow the irregular shape to be accurately determined, the sphere clump method was employed in modelling the particle shape. The inter-particle contact parameters were systematically altered whilst the contact parameters between the particle and wall were arbitrarily assumed, in order to purely assess its impact on the angle of repose for the mono-sized iron ore particles. Results show that varying the restitution coefficient over the range considered does not lead to any obvious difference in the angle of repose, but the angle of repose has strong sensitivity to the rolling/static friction coefficient. The impacts of the rolling/static friction coefficient on the angle of repose are interrelated, and increasing the inter-particle rolling/static friction coefficient can evidently increase the angle of repose. However, the impact of the static friction coefficient is more profound than that of the rolling friction coefficient. Finally, a predictive equation is established and a very close agreement between the predicted and simulated angle of repose is attained. This predictive equation can enormously shorten the inter-particle contact parameters calibration time that can help in the implementation of DEM simulations.

  8. Drying paint: from micro-scale dynamics to mechanical instabilities

    NASA Astrophysics Data System (ADS)

    Goehring, Lucas; Li, Joaquim; Kiatkirakajorn, Pree-Cha

    2017-04-01

    Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities-shear-banding and fracture-can be controlled. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  9. Swelling, Structure, and Phase Stability of Soft, Compressible Microgels

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Urich, Matthew

    Microgels are soft colloidal particles that swell when dispersed in a solvent. The equilibrium particle size is governed by a delicate balance of osmotic pressures, which can be tuned by varying single-particle properties and externally controlled conditions, such as temperature, pH, ionic strength, and concentration. Because of their tunable size and ability to encapsulate dye or drug molecules, microgels have practical relevance for biosensing, drug delivery, carbon capture, and filtration. Using Monte Carlo simulation, we model suspensions of microgels that interact via Hertzian elastic interparticle forces and can expand or contract via trial size changes governed by the Flory-Rehner free energy of cross-linked polymer gels. We analyze the influence of particle compressibility and size fluctuations on bulk structural and thermal properties by computing swelling ratios, radial distribution functions, static structure factors, osmotic pressures, and freezing densities. With increasing density, microgels progressively deswell and their intrinsic polydispersity broadens, while compressibility acts to forestall crystallization. This work was supported by the National Science Foundation under Grant No. DMR- 1106331.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sule, Nishant; Yifat, Yuval; Gray, Stephen K.

    We examine the formation and concomitant rotation of electrodynamically bound dimers (EBD) of 150nm diameter Ag nanoparticles trapped in circularly polarized focused Gaussian beams. The rotation frequency of an EBD increases linearly with the incident beam power, reaching high mean values of ~ 4kHz for a relatively low incident power of 14mW. Using a coupled-dipole/effective polarizability model, we reveal that retardation of the scattered fields and electrodynamic interactions can lead to a “negative torque” causing rotation of the EBD in the direction opposite to that of the circular polarization. This intriguing opposite-handed rotation due to negative torque is clearly demonstratedmore » using electrodynamics-Langevin dynamics simulations by changing particle separations and thus varying the retardation effects. Finally, negative torque is also demonstrated in experiments from statistical analysis of the EBD trajectories. These results demonstrate novel rotational dynamics of nanoparticles in optical matter using circular polarization and open a new avenue to control orientational dynamics through coupling to interparticle separation.« less

  11. Melting of 2D colloidal crystals

    NASA Astrophysics Data System (ADS)

    Maret, G.; Eisenmann, C.; Gasser, U.; Vongruenberg, H. H.; Keim, P.; Zahn, K.

    2004-11-01

    We study melting of 2D crystals of super-paramagnetic colloidal particles confined by gravity to a flat air-water interface. The effective system temperature is given by the strength of the dipolar inter-particle interaction controlled by an external magnetic field B. Particle positions are obtained by video-microscopy. In vertical B-field crystals are hexagonal and we find all features of the 2-step melting scenario predicted by KTHNY-theory. In particular, quantitative agreement is found for the translational and orientational order parameters related to bound and isolated dislocations and disclinations. From particle position fluctuations wave-vector (q) dependent normal-mode spring constants are obtained in agreement with phonon band structure calculations. The elastic constants (q=0 limit) soften near melting in quantitative agreement with KTHNY. By tilting B away from vertical anisotropic 2D crystals are generated; at small tilting angles they melt through a quasi-hexatic phase, while at higher tilts a centered rectangular phase is found which melts into a 2D smectic-like phase through orientation-dependent dislocations.

  12. Dynamics of dissipative self-assembly of particles interacting through oscillatory forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliazucchi, M.; Szleifer, I.

    Dissipative self-assembly is the formation of ordered structures far from equilibrium, which continuously uptake energy and dissipate it into the environment. Due to its dynamical nature, dissipative self-assembly can lead to new phenomena and possibilities of self-organization that are unavailable to equilibrium systems. Understanding the dynamics of dissipative self-assembly is required in order to direct the assembly to structures of interest. In the present work, Brownian dynamics simulations and analytical theory were used to study the dynamics of self-assembly of a mixture of particles coated with weak acids and bases under continuous oscillations of the pH. The pH of themore » system modulates the charge of the particles and, therefore, the interparticle forces oscillate in time. This system produces a variety of self-assembled structures, including colloidal molecules, fibers and different types of crystalline lattices. The most important conclusions of our study are: (i) in the limit of fast oscillations, the whole dynamics (and not only those at the non-equilibrium steady state) of a system of particles interacting through time-oscillating interparticle forces can be described by an effective potential that is the time average of the time-dependent potential over one oscillation period; (ii) the oscillation period is critical to determine the order of the system. In some cases the order is favored by very fast oscillations while in others small oscillation frequencies increase the order. In the latter case, it is shown that slow oscillations remove kinetic traps and, thus, allow the system to evolve towards the most stable non-equilibrium steady state.« less

  13. Constitutive and Stability Behavior of Soils in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Sture, Stein; Costes, Nicholas

    2000-01-01

    All aspects of soil stability, bearing capacity, slope stability, the supporting capacity of deep foundations, and penetration resistance depend on soil strength. The stress-deformation and stress-deformation-time behavior of soils are of importance in any problem where ground movements are of interest. In most engineering materials, the strength is derived from internal chemical and physico-chemical forces of interaction, which bond the atoms, molecules, and particles together. In soils, the constitutive relations are mainly derived from interparticle friction between particles and particle groups and dilatancy, and to a lesser extent from particle bonding by weak electrostatic, physico-chemical, and coulomb forces. For engineering purposes, soils are classified as cohesive (clays and silts; typical particle sizes range from 10 nm to 10 micrometers) and cohesionless (sand and gravel; typical particle sizes range from 10 micrometers to 75 mm). The mechanical or constitutive properties of cohesionless soils or granular materials are highly fabric-dependent, highly non-linear, and non-conservative with engineering properties primarily depending on the effects of gravity through self-weight and on the tractions or forces applied to the soil mass. Under moderate-to-high stress levels, the influence of gravity on the behavior of laboratory test specimens may not be pronounced and, therefore, the test results in terrestrial (1-g) environment may be sufficiently conclusive. However at low interparticle stresses, which can result either from low applied (confining) stresses or from excess pore fluid pressures developed within the soil mass without corresponding changes in the applied stresses, the presence of gravitational body forces acting on solid particles and interstitial fluids exerts a pronounced influence on movement of individual particles or particle groups. Such motions, in turn, cause changes in soil fabric which results in significant changes in the interparticle friction forces contributing to the soil's strength and deformation characteristics.

  14. Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Setiawan, Widagdo

    Recent advances in using microscopes in ultracold atom experiment have allowed experimenters for the first time to directly observe and manipulate individual atoms in individual lattice sites. This technique enhances our capability to simulate strongly correlated systems such as Mott insulator and high temperature superconductivity. Currently, all ultracold atom experiments with high resolution imaging capability use bosonic atoms. In this thesis, I present our progress towards creating the fermionic version of the microscope experiment which is more suitable for simulating real condensed matter systems. Lithium is ideal due to the existence of both fermionic and bosonic isotopes, its light mass, which means faster experiment time scales that suppresses many sources of technical noise, and also due to the existence of a broad Feshbach resonance, which can be used to tune the inter-particle interaction strength over a wide range from attractive, non-interacting, and repulsive interactions. A high numerical aperture objective will be used to image and manipulate the atoms with single lattice site resolution. This setup should allow us to implement the Hubbard hamiltonian which could describe interesting quantum phases such as antiferromagnetism, d-wave superfluidity, and high temperature superconductivity. I will also discuss the feasibility of the Raman sideband cooling method for cooling the atoms during the imaging process. We have also developed a new electronic control system to control the sequence of the experiment. This electronic system is very scalable in order to keep up with the increasing complexity of atomic physics experiments. Furthermore, the system is also designed to be more precise in order to keep up with the faster time scale of lithium experiment.

  15. Plasticizing aqueous suspensions of concentrated alumina with maltodextrin sugar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilling, C.H.; Bellman, R.A.; Smith, R.M.

    1999-01-01

    Aqueous suspensions of submicrometer, 20 vol% Al{sub 2}O{sub 3} powder exhibited a transition from strongly flocculated, thixotropic behavior to a low-viscosity, Newtonian-like state upon adding small amounts of maltodextrin (0.03 g of maltodextrin/(g of Al{sub 2}O{sub 3})). These suspensions could be filter pressed to highly dense (57%) and extrudable pastes only when prepared with maltodextrin. The authors analyzed the interaction of maltodextrin with Al{sub 2}O{sub 3} powder surfaces and quantitatively measured the resulting claylike consolidation, rheological, and extrusion behaviors. Benbow extrusion parameters were comparable to, but higher than, those of kaolin at approximately the same packing density of 57 vol%.more » In contrast, Al{sub 2}O{sub 3} filter cakes without maltodextrin at 57 vol% density were too stiff to be extruded. Measurements of rheological properties, acoustophoresis, electrophoresis, sorption isotherms, and diffuse reflectance Fourier infrared spectroscopy supported the hypothesis that sorbate-mediated steric hindrance, rather than electrostatic, interparticle repulsion, is important to enhancing the consolidation and fluidity of maltodextrin-Al{sub 2}O{sub 3} suspensions. Viscosity measurements on aqueous maltodextrin solutions indicated that free maltodextrin in solution does not improve suspension fluidity by decreasing the viscosity of the interparticle solution.« less

  16. Impact of self-assembled surfactant structures on rheology of concentrated nanoparticle dispersions.

    PubMed

    Zaman, A A; Singh, P; Moudgil, B M

    2002-07-15

    Rheological behavior of surfactant-stabilized colloidal dispersions of silica particles under extreme conditions (low pH, high ionic strength) has been investigated in relation to interparticle forces and stability of the dispersion. The surfactant used as the dispersing agent was C(12)TAB, a cationic surfactant. Stability analysis through turbidity measurements indicated that there is a sharp increase in the stability of the dispersion when the surfactant concentration is in the range of 8 to 10 mM in the system. The state of the dispersion changes from an unstable regime to a stable regime above a critical concentration of C(12)TAB in the system. In the case of interaction forces measured between the silica substrate and AFM tip, no repulsive force was observed up to a surfactant concentration of 8 mM and a transition from no repulsive forces to steric repulsive forces occurred between 8 and 10 mM. Rheological measurements as a function of C(12)TAB concentration indicated a significant decrease in the viscosity and linear viscoelastic functions of the dispersion over the same range of surfactant concentration (8 to 10 mM C(12)TAB), showing a strong correlation between the viscosity behavior, interparticle forces, and structure development in the dispersion.

  17. Novel forms of colloidal self-organization in temporally and spatially varying external fields: from low-density network-forming fluids to spincoated crystals

    NASA Astrophysics Data System (ADS)

    Yethiraj, Anand

    2010-03-01

    External fields affect self-organization in Brownian colloidal suspensions in many different ways [1]. High-frequency time varying a.c. electric fields can induce effectively quasi-static dipolar inter-particle interactions. While dipolar interactions can provide access to multiple open equilibrium crystal structures [2] whose origin is now reasonably well understood, they can also give rise to competing interactions on short and long length scales that produce unexpected low-density ordered phases [3]. Farther from equilibrium, competing external fields are active in colloid spincoating. Drying colloidal suspensions on a spinning substrate produces a ``perfect polycrystal'' - tiny polycrystalline domains that exhibit long-range inter-domain orientational order [4] with resultant spectacular optical effects that are decoupled from single-crystallinity. High-speed movies of drying crystals yield insights into mechanisms of structure formation. Phenomena arising from multiple spatially- and temporally-varying external fields can give rise to further control of order and disorder, with potential application as patterned (photonic and magnetic) materials. [4pt] [1] A. Yethiraj, Soft Matter 3, 1099 (2007). [2] A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003). [3] A.K. Agarwal, A. Yethiraj, Phys. Rev. Lett ,102, 198301 (2009). [4] C. Arcos, K. Kumar, W. Gonz'alez-Viñas, R. Sirera, K. Poduska, A. Yethiraj, Phys. Rev. E ,77, 050402(R) (2008).

  18. Thermal properties of granulated materials.

    NASA Technical Reports Server (NTRS)

    Wechsler, A. E.; Glaser, P. E.; Fountain, J. A.

    1972-01-01

    Review of the thermophysical properties of granular materials or silicates believed to simulate the lunar surface layer. Emphasis is placed on thermal conductivity data and the effects of material and environmental variables on the thermal conductivity. There are three basic mechanisms of heat transfer in particulate materials: conduction by the gas contained in the void spaces between the particles; conduction within the solid particles and across the interparticle contacts; and thermal radiation within the particles, across the void spaces between particle surfaces, and between void spaces themselves. Gas and solid conduction, thermal radiation, and the interaction between conduction and radiation are considered.

  19. The origin of facet selectivity and alignment in anatase TiO 2 nanoparticles in electrolyte solutions: implications for oriented attachment in metal oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sushko, M. L.; Rosso, K. M.

    Atomic-to-mesoscale simulations were used to reveal the origin of oriented attachment between anatase TiO2 nanoparticles in aqueous HCl solutions. Analysis of the distance and pH dependence of interparticle interactions demonstrates that ion correlation forces are responsible for facet-specific attraction and rotation into lattice co-alignment at long-range. These forces give rise to a metastable solvent separated capture minimum on the disjoining pressure-distance curve, with the barrier to attachment largely due to steric hydration forces from structured intervening solvent.

  20. Liquid state isomorphism, Rosenfeld-Tarazona temperature scaling, and Riemannian thermodynamic geometry.

    PubMed

    Mausbach, Peter; Köster, Andreas; Vrabec, Jadran

    2018-05-01

    Aspects of isomorph theory, Rosenfeld-Tarazona temperature scaling, and thermodynamic geometry are comparatively discussed on the basis of the Lennard-Jones potential. The first two approaches approximate the high-density fluid state well when the repulsive interparticle interactions become dominant, which is typically the case close to the freezing line. However, previous studies of Rosenfeld-Tarazona scaling for the isochoric heat capacity and its relation to isomorph theory reveal deviations for the temperature dependence. It turns out that a definition of a state region in which repulsive interactions dominate is required for achieving consistent results. The Riemannian thermodynamic scalar curvature R allows for such a classification, indicating predominantly repulsive interactions by R>0. An analysis of the isomorphic character of the freezing line and the validity of Rosenfeld-Tarazona temperature scaling show that these approaches are consistent only in a small state region.

  1. Dark-field-based observation of single-nanoparticle dynamics on a supported lipid bilayer for in situ analysis of interacting molecules and nanoparticles.

    PubMed

    Lee, Young Kwang; Kim, Sungi; Nam, Jwa-Min

    2015-01-12

    Observation of single plasmonic nanoparticles in reconstituted biological systems allows us to obtain snapshots of dynamic processes between molecules and nanoparticles with unprecedented spatiotemporal resolution and single-molecule/single-particle-level data acquisition. This Concept is intended to introduce nanoparticle-tethered supported lipid bilayer platforms that allow for the dynamic confinement of nanoparticles on a two-dimensional fluidic surface. The dark-field-based long-term, stable, real-time observation of freely diffusing plasmonic nanoparticles on a lipid bilayer enables one to extract a broad range of information about interparticle and molecular interactions throughout the entire reaction period. Herein, we highlight important developments in this context to provide ideas on how molecular interactions can be interpreted by monitoring dynamic behaviors and optical signals of laterally mobile nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Toward lattice fractional vector calculus

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  3. Universal Features of the Fluid to Solid Transition for Attractive Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Cipelletti, L.; Prasad, V.; Dinsmore, A.; Segre, P. N.; Weitz, D. A.; Trappe, V.

    2002-01-01

    Attractive colloidal particles can exhibit a fluid to solid phase transition if the magnitude of the attractive interaction is sufficiently large, if the volume fraction is sufficiently high, and if the applied stress is sufficiently small. The nature of this fluid to solid transition is similar for many different colloid systems, and for many different forms of interaction. The jamming phase transition captures the common features of these fluid to solid translations, by unifying the behavior as a function of the particle volume fraction, the energy of interparticle attractions, and the applied stress. This paper describes the applicability of the jamming state diagram, and highlights those regions where the fluid to solid transition is still poorly understood. It also presents new data for gelation of colloidal particles with an attractive depletion interaction, providing more insight into the origin of the fluid to solid transition.

  4. Discrete Element Method Simulations of the Inter-Particle Contact Parameters for the Mono-Sized Iron Ore Particles

    PubMed Central

    Li, Tongqing; Peng, Yuxing; Zhu, Zhencai; Zou, Shengyong; Yin, Zixin

    2017-01-01

    Aiming at predicting what happens in reality inside mills, the contact parameters of iron ore particles for discrete element method (DEM) simulations should be determined accurately. To allow the irregular shape to be accurately determined, the sphere clump method was employed in modelling the particle shape. The inter-particle contact parameters were systematically altered whilst the contact parameters between the particle and wall were arbitrarily assumed, in order to purely assess its impact on the angle of repose for the mono-sized iron ore particles. Results show that varying the restitution coefficient over the range considered does not lead to any obvious difference in the angle of repose, but the angle of repose has strong sensitivity to the rolling/static friction coefficient. The impacts of the rolling/static friction coefficient on the angle of repose are interrelated, and increasing the inter-particle rolling/static friction coefficient can evidently increase the angle of repose. However, the impact of the static friction coefficient is more profound than that of the rolling friction coefficient. Finally, a predictive equation is established and a very close agreement between the predicted and simulated angle of repose is attained. This predictive equation can enormously shorten the inter-particle contact parameters calibration time that can help in the implementation of DEM simulations. PMID:28772880

  5. Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle-particle-surface interactions.

    PubMed

    Nepal, Dhriti; Onses, M Serdar; Park, Kyoungweon; Jespersen, Michael; Thode, Christopher J; Nealey, Paul F; Vaia, Richard A

    2012-06-26

    The synergy of self- and directed-assembly processes and lithography provides intriguing avenues to fabricate translationally ordered nanoparticle arrangements, but currently lacks the robustness necessary to deliver complex spatial organization. Here, we demonstrate that interparticle spacing and local orientation of gold nanorods (AuNR) can be tuned by controlling the Debye length of AuNR in solution and the dimensions of a chemical contrast pattern. Electrostatic and hydrophobic selectivity for AuNR to absorb to patterned regions of poly(2-vinylpyridine) (P2VP) and polystyrene brushes and mats was demonstrated for AuNR functionalized with mercaptopropane sulfonate (MS) and poly(ethylene glycol), respectively. For P2VP patterns of stripes with widths comparable to the length of the AuNR, single- and double-column arrangements of AuNR oriented parallel and perpendicular to the P2VP line were obtained for MS-AuNR. Furthermore, the spacing of the assembled AuNR was uniform along the stripe and related to the ionic strength of the AuNR dispersion. The different AuNR arrangements are consistent with predictions based on maximization of packing of AuNR within the confined strip.

  6. Nanomagnetism study of highly-ordered iron oxide nanocrystal assemblies fabricated by the Langmuir-Blodgett technique.

    PubMed

    Zhang, HaiTao; Bao, NiNa; Yuan, Du; Ding, Jun

    2013-09-21

    Iron oxide nanocrystals are ideal building blocks for the construction of flexible nanodevices whose performance can be modulated by controlling the morphology of isolated particles and their organizational form. This work demonstrates the fabrication of high quality Langmuir-Blodgett (LB) nanocrystal assemblies with limited overlapping and higher coverage by systemically and combinatorially optimizing the parameters of compression pressure and quantity of spread nanocrystals. Monodispersed iron oxide nanocrystals with a diameter of 11.8 nm were synthesized by thermal decomposition of Fe(CO)5 in trioctylamine with the presence of oleic acid. Multilayer nanocrystal assemblies were obtained through a layer-by-layer (LBL) process by repeating the transfer procedure after their hydrophilicity had been improved via treatment in a UV-ozone oven. The quality of nanocrystal assemblies was investigated by UV-vis spectrometry and scanning electron microscopy. The nanomagnetism for the nanostructures of different combination manners was studied systemically by a superconducting quantum interference device (SQUID). A lower superparamagnetic blocking temperature was found in the monolayer Fe3O4 nanocrystal assembly. The superparamagnetic blocking temperature in magnetic nanocrystal assemblies could be tuned through modifying the interparticle interactions among the interlayer and intralayers by controlling the layer number of the assemblies.

  7. Reconfigurable interactions and three-dimensional patterning of colloidal particles and defects in lamellar soft media

    PubMed Central

    Trivedi, Rahul P.; Klevets, Ivan I.; Senyuk, Bohdan; Lee, Taewoo; Smalyukh, Ivan I.

    2012-01-01

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena typically encountered in atomic crystals and glasses. New applications—such as nanoantennas, plasmonic sensors, and nanocircuits—pose a challenge of achieving sparse colloidal assemblies with tunable interparticle separations that can be controlled at will. We demonstrate reconfigurable multiscale interactions and assembly of colloids mediated by defects in cholesteric liquid crystals that are probed by means of laser manipulation and three-dimensional imaging. We find that colloids attract via distance-independent elastic interactions when pinned to the ends of cholesteric oily streaks, line defects at which one or more layers are interrupted. However, dislocations and oily streaks can also be optically manipulated to induce kinks, allowing one to lock them into the desired configurations that are stabilized by elastic energy barriers for structural transformation of the particle-connecting defects. Under the influence of elastic energy landscape due to these defects, sublamellar-sized colloids self-assemble into structures mimicking the cores of dislocations and oily streaks. Interactions between these defect-embedded colloids can be varied from attractive to repulsive by optically introducing dislocation kinks. The reconfigurable nature of defect–particle interactions allows for patterning of defects by manipulation of colloids and, in turn, patterning of particles by these defects, thus achieving desired colloidal configurations on scales ranging from the size of defect core to the sample size. This defect-colloidal sculpturing may be extended to other lamellar media, providing the means for optically guided self-assembly of mesoscopic composites with predesigned properties. PMID:22411822

  8. Selective encapsulation by Janus particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less

  9. Mesoporous Silica Matrix as a Tool for Minimizing Dipolar Interactions in NiFe2O4 and ZnFe2O4 Nanoparticles

    PubMed Central

    Virumbrales, Maider; Saez-Puche, Regino; Torralvo, María José; Blanco-Gutierrez, Veronica

    2017-01-01

    NiFe2O4 and ZnFe2O4 nanoparticles have been prepared encased in the MCM (Mobile Composition of Matter) type matrix. Their magnetic behavior has been studied and compared with that corresponding to particles of the same composition and of a similar size (prepared and embedded in amorphous silica or as bare particles). This study has allowed elucidation of the role exerted by the matrix and interparticle interactions in the magnetic behavior of each ferrite system. Thus, very different superparamagnetic behavior has been found in ferrite particles of similar size depending on the surrounding media. Also, the obtained results clearly provide evidence of the vastly different magnetic behavior for each ferrite system. PMID:28640197

  10. Recognition-Mediated Assembly of Quantum Dot Polymer Conjugates with Controlled Morphology

    PubMed Central

    Nandwana, Vikas; Subramani, Chandramouleeswaran; Eymur, Serkan; Yeh, Yi-Cheun; Tonga, Gulen Yesilbag; Tonga, Murat; Jeong, Youngdo; Yang, Boqian; Barnes, Michael D.; Cooke, Graeme; Rotello, Vincent M.

    2011-01-01

    We have demonstrated a polymer mediated “bricks and mortar” method for the self-assembly of quantum dots (QDs). This strategy allows QDs to self-assemble into structured aggregates using complementary three-point hydrogen bonding. The resulting nanocomposites have distinct morphologies and inter-particle distances based on the ratio between QDs and polymer. Time resolved photoluminescence measurements showed that the optical properties of the QDs were retained after self-assembly. PMID:22016664

  11. Monodisperse self-assembly in a model with protein-like interactions

    NASA Astrophysics Data System (ADS)

    Wilber, Alex W.; Doye, Jonathan P. K.; Louis, Ard A.; Lewis, Anna C. F.

    2009-11-01

    We study the self-assembly behavior of patchy particles with "proteinlike" interactions that can be considered as a minimal model for the assembly of viral capsids and other shell-like protein complexes. We thoroughly explore the thermodynamics and dynamics of self-assembly as a function of the parameters of the model and find robust assembly of all target structures considered. Optimal assembly occurs in the region of parameter space where a free energy barrier regulates the rate of nucleation, thus preventing the premature exhaustion of the supply of monomers that can lead to the formation of incomplete shells. The interactions also need to be specific enough to prevent the assembly of malformed shells, but while maintaining kinetic accessibility. Free energy landscapes computed for our model have a funnel-like topography guiding the system to form the target structure and show that the torsional component of the interparticle interactions prevents the formation of disordered aggregates that would otherwise act as kinetic traps.

  12. Confocal Imaging of Confined Quiescent and Flowing Colloid-polymer Mixtures

    PubMed Central

    Conrad, Jacinta C.

    2014-01-01

    The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9. Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37. In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow. PMID:24894062

  13. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal-Organic Framework Nanoparticles.

    PubMed

    Wang, Shunzhi; McGuirk, C Michael; Ross, Michael B; Wang, Shuya; Chen, Pengcheng; Xing, Hang; Liu, Yuan; Mirkin, Chad A

    2017-07-26

    Metal-organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle-inorganic particle core-satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid-nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes.

  14. An NMR Study of Biomimetic Fluorapatite – Gelatine Mesocrystals

    PubMed Central

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-01-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43− groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals. PMID:26515127

  15. Dilution effects on combined magnetic and electric dipole interactions: A study of ferromagnetic cobalt nanoparticles with tuneable interactions

    NASA Astrophysics Data System (ADS)

    Hod, M.; Dobroserdova, A.; Samin, S.; Dobbrow, C.; Schmidt, A. M.; Gottlieb, M.; Kantorovich, S.

    2017-08-01

    Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.

  16. Dilution effects on combined magnetic and electric dipole interactions: A study of ferromagnetic cobalt nanoparticles with tuneable interactions.

    PubMed

    Hod, M; Dobroserdova, A; Samin, S; Dobbrow, C; Schmidt, A M; Gottlieb, M; Kantorovich, S

    2017-08-28

    Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.

  17. Effect of Young's Modulus and Surface Roughness on the Inter-Particle Friction of Granular Materials.

    PubMed

    Sandeep, Chitta Sai; Senetakis, Kostas

    2018-01-31

    In the study we experimentally examine the influence of elastic properties and surface morphology on the inter-particle friction of natural soil grains. The experiments are conducted with a custom-built micromechanical apparatus and the database is enhanced by testing engineered-reference grains. Naturally-occurring geological materials are characterized by a wide spectrum of mechanical properties (e.g., Young's modulus) and surface morphology (e.g., roughness), whereas engineered grains have much more consistent characteristics. Comparing to engineered materials, geological materials are found to display more pronounced initial plastic behavior during compression. Under the low normal load range applied in the study, between 1 and 5 N, we found that the frictional force is linearly correlated with the applied normal load, but we acknowledge that the data are found more scattered for natural soil grains, especially for rough and weathered materials which have inconsistent characteristics. The inter-particle coefficient of friction is found to be inversely correlated with the Young's modulus and the surface roughness. These findings are important in geophysical and petroleum engineering contents, since a number of applications, such as landslides and granular flows, hydraulic fracturing using proppants, and weathering process of cliffs, among others, can be simulated using discrete numerical methods. These methods employ contact mechanics properties at the grain scale and the inter-particle friction is one of these critical components. It is stressed in our study that friction is well correlated with the elastic and morphological characteristics of the grains.

  18. Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays

    PubMed Central

    2014-01-01

    We present a versatile approach to produce macroscopic, substrate-supported arrays of plasmonic nanoparticles with well-defined interparticle spacing and a continuous particle size gradient. The arrays thus present a “plasmonic library” of locally noncoupling plasmonic particles of different sizes, which can serve as a platform for future combinatorial screening of size effects. The structures were prepared by substrate assembly of gold-core/poly(N-isopropylacrylamide)-shell particles and subsequent post-modification. Coupling of the localized surface plasmon resonance (LSPR) could be avoided since the polymer shell separates the encapsulated gold cores. To produce a particle array with a broad range of well-defined but laterally distinguishable particle sizes, the substrate was dip-coated in a growth solution, which resulted in an overgrowth of the gold cores controlled by the local exposure time. The kinetics was quantitatively analyzed and found to be diffusion rate controlled, allowing for precise tuning of particle size by adjusting the withdrawal speed. We determined the kinetics of the overgrowth process, investigated the LSPRs along the gradient by UV–vis extinction spectroscopy, and compared the spectroscopic results to the predictions from Mie theory, indicating the absence of local interparticle coupling. We finally discuss potential applications of these substrate-supported plasmonic particle libraries and perspectives toward extending the concept from size to composition variation and screening of plasmonic coupling effects. PMID:25137554

  19. Emergent interparticle interactions in thermal amorphous solids

    NASA Astrophysics Data System (ADS)

    Gendelman, Oleg; Lerner, Edan; Pollack, Yoav G.; Procaccia, Itamar; Rainone, Corrado; Riechers, Birte

    2016-11-01

    Amorphous media at finite temperatures, be them liquids, colloids, or glasses, are made of interacting particles that move chaotically due to thermal energy, continuously colliding and scattering off each other. When the average configuration in these systems relaxes only at long times, one can introduce effective interactions that keep the mean positions in mechanical equilibrium. We introduce a framework to determine the effective force laws that define an effective Hessian that can be employed to discuss stability properties and the density of states of the amorphous system. We exemplify the approach with a thermal glass of hard spheres; these experience zero forces when not in contact and infinite forces when they touch. Close to jamming we recapture the effective interactions that at temperature T depend on the gap h between spheres as T /h [C. Brito and M. Wyart, Europhys. Lett. 76, 149 (2006), 10.1209/epl/i2006-10238-x]. For hard spheres at lower densities or for systems whose binary bare interactions are longer ranged (at any density), the emergent force laws include ternary, quaternary, and generally higher-order many-body terms, leading to a temperature-dependent effective Hessian.

  20. Dynamics of charged particles in a Paul radio-frequency quadrupole trap

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Williams, A.; Maleki, L.; Djomehri, M. J.; Harabetian, E.

    1991-01-01

    A molecular-dynamics simulation of hundreds of ions confined in a Paul trap has been performed. The simulation includes the trapped particles' micromotion and interparticle Coulomb interactions. A random walk in velocity was implemented to bring the secular motion to a given temperature which was numerically measured. When the coupling Gamma is large the ions from concentric shells which undergo a quadrupole oscillation at the RF frequency, while the ions within a shell form a 2D hexagonal lattice. Ion clouds at 5 mK show no RF heating for q(z) less than about 0.6, whereas rapid heating is seen for qz = 0.8.

  1. Self-assembly of silica nanoparticles by tuning substrate-adsorbate interaction

    NASA Astrophysics Data System (ADS)

    Utsav, Khanna, Sakshum; Mukhopadhayay, Indrajit; Banerjee, Rupak

    2018-05-01

    We report on self-assembled nanodisc formations of silica nanoparticles on a surface modified silicon substrate using modified Langmuir-Schafer deposition technique (stamping). The size, inter-particle separation as well as the packing of the silica nanoparticles within the nanodiscs formed spontaneously can be tuned by the surface pressure applied on the water surface. We obtain self-assembled nanodiscs of silica nanoparticle arranged in a hexagonal symmetry. We also observe that by varying the surface pressure of deposition at the water-molecule-air interface we obtain such 2D disc-shaped structure with varying sizes and a packing ratio of the silica nanoparticle.

  2. Modeling of particle agglomeration in nanofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, K. Hari; Neti, S.; Oztekin, A.

    2015-03-07

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid wasmore » moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.« less

  3. Annealing cycles and the self-organization of functionalized colloids

    NASA Astrophysics Data System (ADS)

    Dias, Cristóvão S.; Araújo, Nuno A. M.; Telo da Gama, Margarida M.

    2018-01-01

    The self-assembly of functionalized (patchy) particles with directional interactions into target structures is still a challenge, despite the significant experimental advances in their synthesis. Self-assembly pathways are typically characterized by high energy barriers that hinder access to stable (equilibrium) structures. A possible strategy to tackle this challenge is to perform annealing cycles. By periodically switching on and off the inter-particle bonds, one expects to smooth-out the kinetic pathways and favor the assembly of targeted structures. Preliminary results have shown that the efficiency of annealing cycles depends strongly on their frequency. Here, we study numerically how this frequency-dependence scales with the strength of the directional interactions (size of the patch σ). We use analytical arguments to show that the scaling results from the statistics of a random walk in configurational space.

  4. Multiple dynamic regimes in colloid-polymer dispersions: New insight using X-ray photon correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Sunita; Kishore, Suhasini; Narayanan, Suresh

    We present an X-ray photon correlation spectros- copy (XPCS) study of dynamic transitions in an anisotropic colloid-polymer dispersion with multiple arrested states. The results provide insight into the mechanism for formation of repulsive glasses, attractive glasses, and networked gels of col- loids with weakly adsorbing polymer chains. In the presence of adsorbing polymer chains, we observe three distinct regimes: a state with slow dynamics consisting of finite particles and clusters, for which interparticle interactions are predominantly repulsive; a second dynamic regime occurring above the satu- ration concentration of added polymer, in which small clusters of nanoparticles form via a short-rangemore » depletion attraction; and a third regime above the overlap concentration in which dynamics of clusters are independent of polymer chain length. The observed complex dynamic state diagram is primarily gov- erned by the structural reorganization of a nanoparticle cluster and polymer chains at the nanoparticle-polymer surface and in the concentrated medium, which in turn controls the dynamics of the dispersion« less

  5. Atomistic minimal model for estimating profile of electrodeposited nanopatterns

    NASA Astrophysics Data System (ADS)

    Asgharpour Hassankiadeh, Somayeh; Sadeghi, Ali

    2018-06-01

    We develop a computationally efficient and methodologically simple approach to realize molecular dynamics simulations of electrodeposition. Our minimal model takes into account the nontrivial electric field due a sharp electrode tip to perform simulations of the controllable coating of a thin layer on a surface with an atomic precision. On the atomic scale a highly site-selective electrodeposition of ions and charged particles by means of the sharp tip of a scanning probe microscope is possible. A better understanding of the microscopic process, obtained mainly from atomistic simulations, helps us to enhance the quality of this nanopatterning technique and to make it applicable in fabrication of nanowires and nanocontacts. In the limit of screened inter-particle interactions, it is feasible to run very fast simulations of the electrodeposition process within the framework of the proposed model and thus to investigate how the shape of the overlayer depends on the tip-sample geometry and dielectric properties, electrolyte viscosity, etc. Our calculation results reveal that the sharpness of the profile of a nano-scale deposited overlayer is dictated by the normal-to-sample surface component of the electric field underneath the tip.

  6. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves

    DTIC Science & Technology

    2014-09-30

    marine sediments. New focus is on very fine- grained sediments (silt and clay ). OBJECTIVES 1) The scientific objective of the deep-water ambient...density, grain size and overburden pressure. A new focus is on the inter-particle cohesive forces in silts and clays and their role in controlling wave...algebraic expressions. The GS theory is the basis for new research on very fine-grained sediments (silts and clays ), in which inter-granular cohesion is

  7. Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2018-02-01

    The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their size parameters. This study provides a complete analytical method and computations for the longitudinal and transverse radiation force components in the multiple scattering of EM plane progressive waves with potential applications in particle manipulation, optically-engineered metamaterials with reconfigurable periodicities and cloaking devices to name a few examples.

  8. pH-programmable self-assembly of plasmonic nanoparticles: hydrophobic interaction versus electrostatic repulsion.

    PubMed

    Li, Weikun; Kanyo, Istvan; Kuo, Chung-Hao; Thanneeru, Srinivas; He, Jie

    2015-01-21

    We report a general strategy to conceptualize a new design for the pH-programmable self-assembly of plasmonic gold nanoparticles (AuNPs) tethered by random copolymers of poly(styrene-co-acrylic acid) (P(St-co-AA)). It is based on using pH as an external stimulus to reversibly change the surface charge of polymer tethers and to control the delicate balance of interparticle attractive and repulsive interactions. By incorporating -COOH moieties locally within PSt hydrophobic segments, the change in the ionization degree of -COOH moieties can dramatically disrupt the hydrophobic attraction within a close distance. pH acts as a key parameter to control the deprotonation of -COOH moieties and "programs" the assembled nanostructures of plasmonic nanoparticles in a stepwise manner. At a higher solution pH where -COOH groups of polymer tethers became highly deprotonated, electrostatic repulsion dominated the self-assembly and favored the formation of end-to-end, anisotropic assemblies, e.g. 1-D single-line chains. At a lower pH, the less deprotonated -COOH groups led to the decrease of electrostatic repulsion and the side-to-side aggregates, e.g. clusters and multi-line chains of AuNPs, became favorable. The pH-programmable self-assembly allowed us to engineer a "manual" program for a sequential self-assembly by changing the pH of the solution. We demonstrated that the two-step pH-programmable assembly could generate more sophisticated "multi-block" chains using two differently sized AuNPs. Our strategy offers a general means for the programmable design of plasmonic nanoparticles into the specific pre-ordained nanostructures that are potentially useful for the precise control over their plasmon coupling.

  9. In situ microscopy of the self-assembly of branched nanocrystals in solution

    DOE PAGES

    Sutter, Eli; Tkachenko, Alexei V.; Sutter, Peter; ...

    2016-04-04

    Here, solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifiesmore » the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.« less

  10. In situ microscopy of the self-assembly of branched nanocrystals in solution

    NASA Astrophysics Data System (ADS)

    Sutter, Eli; Sutter, Peter; Tkachenko, Alexei V.; Krahne, Roman; de Graaf, Joost; Arciniegas, Milena; Manna, Liberato

    2016-04-01

    Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.

  11. Photovoltaic properties of high efficiency plastic dye-sensitized solar cells employing interparticle binding agent "nanoglue".

    PubMed

    Li, Yuelong; Yoo, Kicheon; Lee, Doh-Kwon; Kim, Jin Young; Kim, Honggon; Kim, Bongsoo; Ko, Min Jae

    2013-06-07

    An interparticle binding agent, or nanoglue, was synthesized by a sol-gel process, which facilitated the preparation of well-interconnected TiO2 electrodes at low-temperatures for plastic dye-sensitized solar cells. The viscosity of the nanoglue-based pastes was seven times higher than that obtained in pastes without any nanoglue. The increased viscosity was sufficiently high enough for coating thick films to fabricate TiO2 electrodes. The structural and photovoltaic properties of the films were extensively investigated by varying the amounts of nanoglue. A reduced pore size and greatly enhanced surface area were observed in the nanoglue-based films. Improved interparticle connectivity, resulting in faster electron transport, was confirmed by photocurrent transient spectroscopy and electrochemical impedance measurements of the nanoglue-based films. The electron diffusion length and charge collection efficiency were also enhanced in these nanoglue-based films. A maximum conversion efficiency of 5.43% was achieved in films containing 20 wt% nanoglue fabricated on a plastic substrate under one-sun illumination, even without any additional treatment.

  12. Force-chain evolution in a two-dimensional granular packing compacted by vertical tappings

    NASA Astrophysics Data System (ADS)

    Iikawa, Naoki; Bandi, M. M.; Katsuragi, Hiroaki

    2018-03-01

    We experimentally study the statistics of force-chain evolution in a vertically-tapped two-dimensional granular packing by using photoelastic disks. In this experiment, the tapped granular packing is gradually compacted. During the compaction, the isotropy of grain configurations is quantified by measuring the deviator anisotropy derived from fabric tensor, and then the evolution of force-chain structure is quantified by measuring the interparticle forces and force-chain orientational order parameter. As packing fraction increases, the interparticle force increases and finally saturates to an asymptotic value. Moreover, the grain configurations and force-chain structures become isotropically random as the tapping-induced compaction proceeds. In contrast, the total length of force chains remains unchanged. From the correlations of those parameters, we find two relations: (i) a positive correlation between the isotropy of grain configurations and the disordering of force-chain orientations, and (ii) a negative correlation between the increasing of interparticle forces and the disordering of force-chain orientations. These relations are universally held regardless of the mode of particle motions with or without convection.

  13. Linking initial microstructure and local response during quasistatic granular compaction

    DOE PAGES

    Hurley, R. C.; Lind, J.; Pagan, D. C.; ...

    2017-07-24

    In this study, we performed experiments combining three-dimensional x-ray diffraction and x-ray computed tomography to explore the relationship between microstructure and local force and strain during quasistatic granular compaction. We found that initial void space around a grain and contact coordination number before compaction can be used to predict regions vulnerable to above-average local force and strain at later stages of compaction. We also found correlations between void space around a grain and coordination number, and between grain stress and maximum interparticle force, at all stages of compaction. Finally, we observed grains that fracture to have an above-average initial localmore » void space and a below-average initial coordination number. In conclusion, our findings provide (1) a detailed description of microstructure evolution during quasistatic granular compaction, (2) an approach for identifying regions vulnerable to large values of strain and interparticle force, and (3) methods for identifying regions of a material with large interparticle forces and coordination numbers from measurements of grain stress and local porosity.« less

  14. Dual aging behaviour in a clay-polymer dispersion.

    PubMed

    Zulian, Laura; Augusto de Melo Marques, Flavio; Emilitri, Elisa; Ruocco, Giancarlo; Ruzicka, Barbara

    2014-07-07

    Clay-polymer compounds have recently attracted increasing attention due to their intriguing physical properties in colloidal science and their rheological non-trivial behaviour in technological applications. Aqueous solutions of Laponite clay spontaneously age from a liquid up to an arrested state of different nature (gel or glass) depending on the colloidal volume fraction and ionic strength. We have investigated, through dynamic light scattering, how the aging dynamics of Laponite dispersions at fixed clay concentration (Cw = 2.0%) is modified by the addition of various amounts of poly(ethylene oxide) (PEO) (CPEO = (0.05 ÷ 0.50) %) at two different molecular weights (Mw = 100 kg mol(-1) and Mw = 200 kg mol(-1)). A surprising and intriguing phenomenon has been observed: the existence of a critical polymer concentration C that discriminates between two different aging dynamics. With respect to pure Laponite systems the aging will be assisted (faster) or hindered (slower) for PEO concentrations respectively lower (CPEO < C) or higher (CPEO > C) than the critical concentration. In this way a control on the aging dynamics of PEO-Laponite systems is obtained. A possible explanation based on the balance of competitive mechanisms related to the progressive saturation of the clay surface by polymers is proposed. This study shows how a real control on the aging speed of the PEO-Laponite system is at hand and renders possible a real control of the complex interparticle interaction potential.

  15. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sai, Ranajit, E-mail: ranajit@ecei.tohoku.ac.jp; Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore; Endo, Yasushi

    2015-05-07

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f{sub FMR}) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 °C. The nanocrystallites were found to possess highmore » degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f{sub FMR} has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.« less

  16. Rheological behavior of oxide nanopowder suspensions

    NASA Astrophysics Data System (ADS)

    Cinar, Simge

    Ceramic nanopowders offer great potential in advanced ceramic materials and many other technologically important applications. Because a material's rheological properties are crucial for most processing routes, control of the rheological behavior has drawn significant attention in the recent past. The control of rheological behavior relies on an understanding of how different parameters affect the suspension viscosities. Even though the suspension stabilization mechanisms are relatively well understood for sub-micron and micron size particle systems, this knowledge cannot be directly transferred to nanopowder suspensions. Nanopowder suspensions exhibit unexpectedly high viscosities that cannot be explained with conventional mechanisms and are still a topic of investigation. This dissertation aims to establish the critical parameters governing the rheological behavior of concentrated oxide nanopowder suspensions, and to elucidate the mechanisms by which these parameters control the rheology of these suspensions. Aqueous alumina nanopowders were chosen as a model system, and the findings were extrapolated to other oxide nanopowder systems such as zirconia, yttria stabilized zirconia, and titania. Processing additives such as fructose, NaCl, HCl, NaOH, and ascorbic acid were used in this study. The effect of solids content and addition of fructose on the viscosity of alumina nanopowder suspensions was investigated by low temperature differential scanning calorimetry (LT-DSC), rheological, and zeta potential measurements. The analysis of bound water events observed in LT-DSC revealed useful information regarding the rheological behavior of nanopowder suspensions. Because of the significance of interparticle interactions in nanopowder suspensions, the electrostatic stabilization was investigated using indifferent and potential determining ions. Different mechanisms, e.g., the effect of the change in effective volume fraction caused by fructose addition and electrostatic stabilization, were combined to optimize the viscosities and the ability to control the suspension viscosity. The intrinsic viscosities of nanopowder systems were estimated using the Krieger-Dougherty relation. Both the individual and the combined effects were evaluated using slip casting of green bodies. Also, ascorbic acid was used to disperse the alumina nanopowders (described here for the first time in the open literature). The mechanism of viscosity reduction was investigated by in situ Attenuated Total Reflectance Fourier Infrared Spectroscopy (ATR-FTIR), rheological, suspension pH, and zeta potential measurements. Lastly, the findings were extrapolated to several other oxide systems. The rheological behavior of zirconia, yttria stabilized zirconia, and titania nanopowder systems was investigated as a function of solids content, bound water, and intrinsic viscosity. The results indicated that nanopowder suspensions differ from sub-micron powder suspensions because of the higher bound water content and the short separation distances between particles causing increased interparticle interactions. The bound water event was associated with the powder surface. This layer differed from the electrostatic double layer in that it was modified by fructose molecules as well as by specifically adsorbed ions such as H+ and OH but not by indifferent electrolytes, such as NaCl. Because of the large surface area of nanopowders, this additional layer increased the effective solids content and led to higher viscosities. While the alumina suspensions were studied in detail, it was also shown that the bound water was not unique to the alumina nanopowder suspensions, but also present in other oxide systems. However, the bound water content was unique for each system and provided information about its origin. The presence of bound water resulted in lower the maximum achievable solids fractions for nanopowder systems. In order to achieve higher solids contents, the bound water layer had to be modified. Because of the limited separation distances and large surface areas of nanopowders, the electrostatic double layer has an amplified effect on the viscosity of the suspensions. The addition of NaCl decreased the viscosity of alumina nanopowder suspensions significantly by compressing the double layer hence limiting the repulsion length. We also discovered that ascorbic acid can be used to disperse the alumina nanopowder suspensions. By adding only 1 wt% of ascorbic acid, the viscosity of the suspensions decreased significantly. It was shown that ascorbic acid molecules adsorbed to the alumina surfaces and when the adsorption reached equilibrium, the lowest viscosities were observed. By lowering the viscosities, the maximum achievable solids content (where viscosity = 1 Pa at a shear rate of 100 s-1) could be increased up to about 0.35, which is the highest solids content achieved with readily available processing additives reported in the open literature. Even though it is almost impossible to isolate the individual effects, three dominant mechanisms were observed in nanopowder suspensions: (i) increase in effective volume fraction (bound water), (ii) interparticle interactions (electrostatic), and (iii) adsorption of organic molecules. It was shown that the understanding of the system's parameters enables the optimization of the rheological behavior of the suspensions and the prediction of the green body quality.

  17. A Printing-Centric Approach to the Electrostatic Modification of Polymer/Clay Composites for use in 3D Direct-Ink Writing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauzan, Brittany; Lehman, Sean; McCracken, Josell

    Polymer/clay composite inks are exceptionally useful materials for fabrication processes based on 3D direct-ink writing, however, there remains an insufficient understanding of how their physiochemical dynamics impact printability. Using a model system, N-isopropylacrylamide/Laponite, the electrostatic interactions between Laponite platelets are modified to tune critical rheological properties in order to improve printability. Rheological measurements and X-ray scattering experiments are carried out to monitor the nano/micro-structural dynamics and complex physicochemical interactions of Laponite as it impacts complex modulus in the linear region, flow behavior, thixotropy, and yield stress of the composite ink. Modification of the electrostatic interactions between platelets reduces the yieldmore » stress of the material, while maintaining a complex microstructure that allows for sufficient recovery times upon removal of stress to form stable, and thus printable, filaments. A printing-centric approach is established based on a fundamental understanding of electrostatic inter-particle interactions, harnessing the innate microstructure of Laponite in 3D direct-ink writing of composites.« less

  18. Symmetry-enriched Bose-Einstein condensates in a spin-orbit-coupled bilayer system

    NASA Astrophysics Data System (ADS)

    Cheng, Jia-Ming; Zhou, Xiang-Fa; Zhou, Zheng-Wei; Guo, Guang-Can; Gong, Ming

    2018-01-01

    We consider the fate of Bose-Einstein condensation with time-reversal symmetry and inversion symmetry in a spin-orbit-coupled bilayer system. When these two symmetry operators commute, all the single-particle bands are exactly twofold degenerate in the momentum space. The scattering in the twofold-degenerate rings can relax the spin-momentum locking effect from spin-orbit-coupling interaction and thus can realize the spin-polarized plane-wave phase even when the interparticle interaction dominates. When these two operators anticommute, the lowest two bands may have the same minimal energy, but with totally different spin structures. As a result, the competition between different condensates in these two energetically degenerate rings can give rise to different stripe phases with atoms condensed at two or four collinear momenta. We find that the crossover between these two cases is accompanied by the excited band condensation when the interference energy can overcome the increased single-particle energy in the excited band. This effect is not based on strong interaction and thus can be realized even with moderate interaction strength.

  19. Phase transitions, interparticle correlations, and elementary processes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Ichimaru, Setsuo

    2017-12-01

    Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant planets. Condensed plasmas in the laboratory settings include those in ultrahigh-pressure metal-physics experiments undertaken for realization of metallic hydrogen. We review basic physics issues studied in the past 60 some years on the phase transitions, the interparticle correlations, and the elementary processes in dense plasmas, through survey on scattering of electromagnetic waves, equations of state, phase diagrams, transport processes, stellar and planetary magnetisms, and thermo- and pycnonuclear reactions.

  20. The opposition and tilt effects of Saturn’s rings from HST observations

    NASA Astrophysics Data System (ADS)

    Salo, Heikki; French, Richard G.

    2010-12-01

    The two major factors contributing to the opposition brightening of Saturn's rings are (i) the intrinsic brightening of particles due to coherent backscattering and/or shadow hiding on their surfaces, and (ii) the reduced interparticle shadowing when the solar phase angle α → 0°. We utilize the extensive set of Hubble Space Telescope observations (Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 199-223) for different elevation angles B and wavelengths λ to disentangle these contributions. We assume that the intrinsic contribution is independent of B, so that any B dependence of the phase curves is due to interparticle shadowing, which must also act similarly for all λ's. Our study complements that of Poulet et al. (Poulet, F., Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 224), who used a subset of data for a single B ˜ 10°, and the French et al. (French, R.G., Verbiscer, A., Salo, H., McGhee, C.A., Dones, L. [2007b] PASP 119, 623-642) study for the B ˜ 23° data set that included exact opposition. We construct a grid of dynamical/photometric simulation models, with the method of Salo and Karjalainen (Salo and Karjalainen [2003]. Icarus 164, 428-460), and use these simulations to fit the elevation-dependent part of opposition brightening. Eliminating the modeled interparticle component yields the intrinsic contribution to the opposition effect: for the B and A rings it is almost entirely due to coherent backscattering; for the C ring, an intraparticle shadow hiding contribution may also be present. Based on our simulations, the width of the interparticle shadowing effect is roughly proportional to B. This follows from the observation that as B decreases, the scattering is primarily from the rarefied low filling factor upper ring layers, whereas at larger B's the dense inner parts are visible. Vertical segregation of particle sizes further enhances this effect. The elevation angle dependence of interparticle shadowing also explains most of the B ring tilt effect (the increase of brightness with elevation). From comparison of the magnitude of the tilt effect at different filters, we show that multiple scattering can account for at most a 10% brightness increase as B → 26°, whereas the remaining 20% brightening is due to a variable degree of interparticle shadowing. The negative tilt effect of the middle A ring is well explained by the the same self-gravity wake models that account for the observed A ring azimuthal brightness asymmetry (Salo, H., Karjalainen, R., French, R.G. [2004]. Icarus 170, 70-90; French, R.G., Salo, H., McGhee, C.A., Dones, L. [2007]. Icarus 189, 493-522).

  1. Polymer-Induced Depletion Interaction and Its Effect on Colloidal Sedimentation in Colloid-Polymer Mixtures

    NASA Technical Reports Server (NTRS)

    Tong, Penger

    1996-01-01

    In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.

  2. Gravity-driven, dry granular flows over a loose bed in stationary and homogeneous conditions

    NASA Astrophysics Data System (ADS)

    Meninno, Sabrina; Armanini, Aronne; Larcher, Michele

    2018-02-01

    Flows involving solid particulates have been widely studied in recent years, but their dynamics are still a complex issue to model because they strongly depend on the interaction with the boundary conditions. We report on laboratory investigations regarding homogeneous and steady flows of identical particles over a loose bed in a rectangular channel. Accurate measurements were carried out through imaging techniques to estimate profiles of the mean velocity, solid concentration, and granular temperature for a large set of flow rates and widths. Vertical and transversal structures observed in the flow change as interparticle interactions become more collisional, and they depend on the bottom over which the flow develops. The lateral confinement has a remarkable effect on the flow, especially for narrow channels compared with the grain size, and a hydraulic analogy is able to show how the walls influence the mechanisms of friction and energy dissipation.

  3. PowderSim: Lagrangian Discrete and Mesh-Free Continuum Simulation Code for Cohesive Soils

    NASA Technical Reports Server (NTRS)

    Johnson, Scott; Walton, Otis; Settgast, Randolph

    2013-01-01

    PowderSim is a calculation tool that combines a discrete-element method (DEM) module, including calibrated interparticle-interaction relationships, with a mesh-free, continuum, SPH (smoothed-particle hydrodynamics) based module that utilizes enhanced, calibrated, constitutive models capable of mimicking both large deformations and the flow behavior of regolith simulants and lunar regolith under conditions anticipated during in situ resource utilization (ISRU) operations. The major innovation introduced in PowderSim is to use a mesh-free method (SPH-based) with a calibrated and slightly modified critical-state soil mechanics constitutive model to extend the ability of the simulation tool to also address full-scale engineering systems in the continuum sense. The PowderSim software maintains the ability to address particle-scale problems, like size segregation, in selected regions with a traditional DEM module, which has improved contact physics and electrostatic interaction models.

  4. Universal rescaling of flow curves for yield-stress fluids close to jamming

    NASA Astrophysics Data System (ADS)

    Dinkgreve, M.; Paredes, J.; Michels, M. A. J.; Bonn, D.

    2015-07-01

    The experimental flow curves of four different yield-stress fluids with different interparticle interactions are studied near the jamming concentration. By appropriate scaling with the distance to jamming all rheology data can be collapsed onto master curves below and above jamming that meet in the shear-thinning regime and satisfy the Herschel-Bulkley and Cross equations, respectively. In spite of differing interactions in the different systems, master curves characterized by universal scaling exponents are found for the four systems. A two-state microscopic theory of heterogeneous dynamics is presented to rationalize the observed transition from Herschel-Bulkley to Cross behavior and to connect the rheological exponents to microscopic exponents for the divergence of the length and time scales of the heterogeneous dynamics. The experimental data and the microscopic theory are compared with much of the available literature data for yield-stress systems.

  5. Simulation of Orientation in Injection Molding of High Aspect Ratio Particle Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Vélez-García, Gregorio M.; Ortman, Kevin C.; Eberle, Aaron P. R.; Wapperom, Peter; Baird, Donald G.

    2008-07-01

    A 2D coupled Hele-Shaw flow approximation for predicting the flow-induced orientation of high aspect ratio particles in injection molded composite parts is presented. For a highly concentrated short glass fiber PBT suspension, the impact of inter-particle interactions and the orientation at the gate is investigated for a center-gated disk using material parameters determined from rheometry. Experimental orientation is determined from confocal laser micrographs using the methods of ellipses. The constitutive equations are discretized using discontinuous Galerkin Finite Elements. Model predictions are significantly improved by using a localized orientation measured experimentally at the gate region instead of random or averaged gapwise measured orientation assumed in previous studies. The predicted profile in different radial positions can be related to the layered structure along the gapwise direction. Model modifications including interactions have lower impact than the initial conditions.

  6. Enhancing nanoparticle electrodynamics with gold nanoplate mirrors.

    PubMed

    Yan, Zijie; Bao, Ying; Manna, Uttam; Shah, Raman A; Scherer, Norbert F

    2014-05-14

    Mirrors and optical cavities can modify and enhance matter-radiation interactions. Here we report that chemically synthesized Au nanoplates can serve as micrometer-size mirrors that enhance electrodynamic interactions. Because of their plasmonic properties, the Au nanoplates enhance the brightness of scattered light from Ag nanoparticles near the nanoplate surface in dark-field microscopy. More importantly, enhanced optical trapping and optical binding of Ag nanoparticles are demonstrated in interferometric optical traps created from a single laser beam and its reflection from individual Au nanoplates. The enhancement of the interparticle force constant is ≈20-fold more than expected from the increased intensity due to standing wave interference. We show that the additional stability for optical binding arises from the restricted axial thermal motion of the nanoparticles that couples to and reduces the fluctuations in the lateral plane. This new mechanism greatly advances the photonic synthesis of ultrastable nanoparticle arrays and investigation of their properties.

  7. {sup 85}Rb tunable-interaction Bose-Einstein condensate machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altin, P. A.; Robins, N. P.; Doering, D.

    We describe our experimental setup for creating stable Bose-Einstein condensates (BECs) of {sup 85}Rb with tunable interparticle interactions. We use sympathetic cooling with {sup 87}Rb in two stages, initially in a tight Ioffe-Pritchard magnetic trap and subsequently in a weak, large-volume, crossed optical dipole trap, using the 155 G Feshbach resonance to manipulate the elastic and inelastic scattering properties of the {sup 85}Rb atoms. Typical {sup 85}Rb condensates contain 4x10{sup 4} atoms with a scattering length of a=+200a{sub 0}. Many aspects of the design presented here could be adapted to other dual-species BEC machines, including those involving degenerate Fermi-Bose mixtures.more » Our minimalist apparatus is well suited to experiments on dual-species and spinor Rb condensates, and has several simplifications over the {sup 85}Rb BEC machine at JILA, which we discuss at the end of this article.« less

  8. Quantum phases of two-component bosons with spin-orbit coupling in optical lattices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Daisuke; Spielman, I. B.; Sá de Melo, C. A. R.

    2017-12-01

    Ultracold bosons in optical lattices are one of the few systems where bosonic matter is known to exhibit strong correlations. Here we push the frontier of our understanding of interacting bosons in optical lattices by adding synthetic spin-orbit coupling, and show that new kinds of density and chiral orders develop. The competition between the optical lattice period and the spin-orbit coupling length—which can be made comparable in experiments—along with the spin hybridization induced by a transverse field (i.e., Rabi coupling) and interparticle interactions create a rich variety of quantum phases including uniform, nonuniform, and phase-separated superfluids, as well as Mott insulators. The spontaneous symmetry-breaking phenomena at the transitions between them are explained by a two-order-parameter Ginzburg-Landau model with multiparticle umklapp processes. Finally, in order to characterize each phase, we calculated their experimentally measurable crystal momentum distributions.

  9. Effect of interparticle interactions on size determination of zirconia and silica based systems – A comparison of SAXS, DLS, BET, XRD and TEM

    PubMed Central

    Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig

    2012-01-01

    The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721

  10. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles

    PubMed Central

    2017-01-01

    Metal–organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle–inorganic particle core–satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid–nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes. PMID:28718644

  11. Magnetic and structural properties of nanoparticles of nickel oxide

    NASA Astrophysics Data System (ADS)

    Shim, Hyunja (Jenny)

    In this dissertation, magnetic properties of NiO nanoparticles (NP) prepared by the sol-gel method in the size range D = 5 nm to 20 nm, with and without oleic acid (OA) coating, are reported. Transmission electron microscopy (TEM) studies show the morphology of the smaller particles to be primarily rod-like, changing over to nearly spherical shapes for D >10 nm. Average sizes D of NP determined by x-ray diffraction (XRD) are compared with the results from TEM. From the analysis of the XRD line intensities, the particle size dependence of the Debye-Waller factors for Ni and O atoms are derived. It is found that the Debye-Waller factors of nickel and oxygen atoms in smaller particles are larger than those in bulk NiO. For the coated and uncoated NiO nanorods of 5 nm diameter, variations of the magnetization M with temperature T (5 K to 370 K) and temperature variations of the EMR (electron magnetic resonance) spectra were measured to determine the respective blocking temperatures TB(m) and TB(EMR). The following differences are noted: (1) TB(m) is reduced from 230 K (uncoated) to 85 K(coated) for H = 25 Oe; (2) Decrease of TB(m) with H is weaker and the ratio TB(EMR)/T B(m) is smaller for the uncoated particles. These differences are due to stronger interparticle interaction present in the uncoated particles. Temperature variation (5 K-300 K) of the AC magnetic susceptibilities (chi' and chi") at various frequencies f (0.1-10,000 Hz) are reported for the coated and uncoated 5 nm diameter nanorods of NiO. Using the peak in chi' as the blocking temperature TB, it is observed that TB increases with increasing f. The data for the two samples fit the Vogel-Fulcher law: f = f0exp[-Ea/k(TB-T0)] with f 0 = 9.2 x 1011 Hz, Ea/k = 1085 K and T0 = 162 K (0 K) for the uncoated (coated) particles. This shows that T0 provides a good measure of the effects of interparticle interactions on magnetic relaxation and that these interactions are essentially eliminated with the OA coating. For all the particles, measurements of M versus T (5 K-370 K) in the zero-field cooled (ZFC) and field-cooled (FC) modes are used to determine the average blocking temperature TP. For the OA coated particles, TP increases with increase in size D as expected for superparamagnetic particles. However for the uncoated NP, TP decreases initially with increase in size for D < 10 nm; but for D > 10 nm, TP follows the same trend as for the coated NP. These differences are interpreted in terms of significant interparticle interaction. The data of M vs. the applied field H for T > TP are fit to the modified Langevin function: M = M0 L (muPH/kBT) + chiaH, to determine the magnetic moment muP per particle as a function of size D. The variation of muP with size D is interpreted in terms of the fraction of spins on the surface layer of the particles which contribute to mu P. It is observed that this fraction varies as 1/D reaching nearly 100 % for the 5 nm particles. From the temperature dependence of M0 and extrapolating to M0 → 0, the Neel temperatures TN for various sizes are determined. TN for NiO nanoparticles is found to decreases rapidly with decrease in size for D < 10 nm.

  12. Self-Assembly of Heterogeneously Charged Particles under Confinement

    PubMed Central

    2013-01-01

    Self-assembly—the spontaneous organization of microscopic units into well-defined mesoscopic structures—is a fundamental mechanism for a broad variety of nanotechnology applications in material science. The central role played by the anisotropy resulting from asymmetric shapes of the units and/or well-defined bonding sites on the particle surface has been widely investigated, highlighting the importance of properly designing the constituent entities in order to control the resulting mesoscopic structures. Anisotropy driven self-assembly can also result from the multipolar interactions characterizing many naturally occurring systems, such as proteins and viral capsids, as well as experimentally synthesized colloidal particles. Heterogeneously charged particles represent a class of multipolar units that are characterized by a competitive interplay between anisotropic attractive and repulsive interactions, due to the repulsion/attraction between charged-like/oppositely charged regions on the particle surface. In the present work, axially symmetric quadrupolar colloids are considered in a confined planar geometry; the role of both the overall particle charge and the patch extension as well as the effect of the substrate charge are studied in thermodynamic conditions such that the formation of extended structures is favored. A general tendency to form quasi-two-dimensional aggregates where particles align their symmetry axes within the plane is observed; among these planar self-assembled scenarios, a clear distinction between the formation of microcrystalline gels—branched networks consisting of purely crystalline domains—as opposed to disordered aggregates can be observed based on the specific features of the particle–particle interaction. Additionally, the possible competition of interparticle and particle–substrate interactions affects the size and the internal structure of the aggregates and can possibly inhibit the aggregation process. PMID:23627740

  13. Equilibrium Phase Behavior of a Continuous-Space Microphase Former.

    PubMed

    Zhuang, Yuan; Zhang, Kai; Charbonneau, Patrick

    2016-03-04

    Periodic microphases universally emerge in systems for which short-range interparticle attraction is frustrated by long-range repulsion. The morphological richness of these phases makes them desirable material targets, but our relatively coarse understanding of even simple models hinders controlling their assembly. We report here the solution of the equilibrium phase behavior of a microscopic microphase former through specialized Monte Carlo simulations. The results for cluster crystal, cylindrical, double gyroid, and lamellar ordering qualitatively agree with a Landau-type free energy description and reveal the nontrivial interplay between cluster, gel, and microphase formation.

  14. Photonic polymer-blend structures and method for making

    DOEpatents

    Barnes, Michael D.

    2004-06-29

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  15. "Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow

    NASA Technical Reports Server (NTRS)

    Gorokhovski, M.; Chtab, A.

    2003-01-01

    The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.

  16. Interparticle collision of natural sediment grains in water

    USGS Publications Warehouse

    Schmeeckle, Mark W.; Nelson, Jonathan M.; Pitlick, John; Bennett, James P.

    2001-01-01

    Elastohydrodynamic theory and measurements of particle impacts on an inclined glass plane in water are used to investigate the mechanics of interparticle collisions in sediment‐transporting flows. A collision Stokes number is proposed as a measure of the momentum of an interparticle collision versus the viscous pressure force in the interstitial gap between colliding particles. The viscous pressure force opposes motion of the particles on approach and rebound. A Stokes number of between 39 and 105 is estimated as the critical range below which particle impacts are completely viscously damped and above which impacts are partially elastic. The critical Stokes number is shown to roughly coincide with the Bagnold number transition between macroviscous and grain inertial debris flows and the transition between damped and partially elastic bed load transport saltation impacts. The nonspherical nature of natural particles significantly alters the motion of the center of mass after a partially elastic collision. The normal to the point of contact between the particles does not necessarily go through the center of mass. Thus normal rebound of the center of mass may not occur. A model of particle motion after rebound for particles of arbitrary shape, conserving both linear and angular momentum, is proposed.

  17. Mapping the exciton diffusion in semiconductor nanocrystal solids.

    PubMed

    Kholmicheva, Natalia; Moroz, Pavel; Bastola, Ebin; Razgoniaeva, Natalia; Bocanegra, Jesus; Shaughnessy, Martin; Porach, Zack; Khon, Dmitriy; Zamkov, Mikhail

    2015-03-24

    Colloidal nanocrystal solids represent an emerging class of functional materials that hold strong promise for device applications. The macroscopic properties of these disordered assemblies are determined by complex trajectories of exciton diffusion processes, which are still poorly understood. Owing to the lack of theoretical insight, experimental strategies for probing the exciton dynamics in quantum dot solids are in great demand. Here, we develop an experimental technique for mapping the motion of excitons in semiconductor nanocrystal films with a subdiffraction spatial sensitivity and a picosecond temporal resolution. This was accomplished by doping PbS nanocrystal solids with metal nanoparticles that force the exciton dissociation at known distances from their birth. The optical signature of the exciton motion was then inferred from the changes in the emission lifetime, which was mapped to the location of exciton quenching sites. By correlating the metal-metal interparticle distance in the film with corresponding changes in the emission lifetime, we could obtain important transport characteristics, including the exciton diffusion length, the number of predissociation hops, the rate of interparticle energy transfer, and the exciton diffusivity. The benefits of this approach to device applications were demonstrated through the use of two representative film morphologies featuring weak and strong interparticle coupling.

  18. Particle Segregation in a Flowing Suspension Subject to High-Gradient Strong Electric Fields

    NASA Technical Reports Server (NTRS)

    Acrivos, Andreas; Qiu, Zhiyong; Khusid, Boris; Markarian, Nikolai

    2002-01-01

    The widespread use of electro-hydrodynamic devices and processes emphasizes a critical need for developing a comprehensive predictive theory capable of improving our fundamental understanding of the behavior of a suspension subject to an AC electric field and shear, and of facilitating the design and optimization of such devices. The currently favored approach to the qualitative interpretation of the AC field driven manipulation of suspensions is based on a model which considers only the force exerted on a single particle by an external field and neglects the field-induced and hydrodynamic interparticle interactions both being inversely proportional to the interparticle distance raised to the power three. On the other hand, the purpose of the field-induced separation is to concentrate particles in certain regions of a device. This clearly raises the fundamental question regarding the extent to which we can neglect these slow decaying electrical and hydrodynamic collective interactions and rely on the predictions of a single-particle model. Another important issue that still remains open is how to characterize the polarization of a particle exposed to a strong electric field. The presentation will address both these questions. Experiments were conducted in a parallel-plate channel in which a 10(exp -3) (v/v) suspension of heavy, positively polarized Al2O3 spheres was exposed to an AC field under conditions such that the field lines were arranged in the channel cross-section perpendicular to the streamlines of the main flow. To reduce the effects of the gravitational settling of the particles, the channel was slowly rotated (4 rpm) around a horizontal axis. Following the application of a high-gradient strong AC field (approx. kV/mm), the particles were found to move towards both the high-voltage (HV) and grounded (GR) electrodes and to form 'bristles' along their edges.

  19. Resolved simulations of a granular-fluid flow through a check dam with a SPH-DCDEM model

    NASA Astrophysics Data System (ADS)

    Birjukovs Canelas, Ricardo; Domínguez, Jose; Crespo, Alejandro; Gómez-Gesteira, Moncho; Ferreira, Rui M. L.

    2017-04-01

    Debris flows represent some of the most relevant phenomena in geomorphological events. Due to the potential destructiveness of such flows, they are the target of a vast amount of research. Experimental research in laboratory facilities or in the field is fundamental to characterize the fundamental rheological properties of these flows and to provide insights on its structure. However, characterizing interparticle contacts and the structure of the motion of the granular phase is difficult, even in controlled laboratory conditions, and possible only for simple geometries. This work addresses the need for a numerical simulation tool applicable to granular-fluid mixtures featuring high spatial and temporal resolution, thus capable of resolving the motion of individual particles, including all interparticle contacts and susceptible to complement laboratory research. The DualSPHysics meshless numerical implementation based on Smoothed Particle Hydrodynamics (SPH) is expanded with a Distributed Contact Discrete Element Method (DCDEM) in order to explicitly solve the fluid and the solid phase. The specific objective is to test the SPH-DCDEM approach by comparing its results with experimental data. An experimental set-up for stony debris flows in a slit check dam is reproduced numerically, where solid material is introduced through a hopper assuring a constant solid discharge for the considered time interval. With each sediment particle possibly undergoing several simultaneous contacts, thousands of time-evolving interactions are efficiently treated due to the model's algorithmic structure and the HPC implementation of DualSPHysics. The results, comprising mainly of retention curves, are in good agreement with the measurements, correctly reproducing the changes in efficiency with slit spacing and density. The encouraging results, coupled with the prospect of so far unique insights into the internal dynamics of a debris flow show the potential of high-performance resolved approaches to the description of the flow and the study of its mitigation strategies. This research as partially supported by Portuguese and European funds, within programs COMPETE2020 and PORL-FEDER, through project PTDC/ECM-HID/6387/2014 granted by the National Foundation for Science and Technology (FCT).

  20. Interfacial Properties and Mechanisms Dominating Gas Hydrate Cohesion and Adhesion in Liquid and Vapor Hydrocarbon Phases.

    PubMed

    Hu, Sijia; Koh, Carolyn A

    2017-10-24

    The interfacial properties and mechanisms of gas hydrate systems play a major role in controlling their interparticle and surface interactions, which is desirable for nearly all energy applications of clathrate hydrates. In particular, preventing gas hydrate interparticle agglomeration and/or particle-surface deposition is critical to the prevention of gas hydrate blockages during the exploration and transportation of oil and gas subsea flow lines. These agglomeration and deposition processes are dominated by particle-particle cohesive forces and particle-surface adhesive force. In this study, we present the first direct measurements on the cohesive and adhesive forces studies of the CH 4 /C 2 H 6 gas hydrate in a liquid hydrocarbon-dominated system utilizing a high-pressure micromechanical force (HP-MMF) apparatus. A CH 4 /C 2 H 6 gas mixture was used as the gas hydrate former in the model liquid hydrocarbon phase. For the cohesive force baseline test, it was found that the addition of liquid hydrocarbon changed the interfacial tension and contact angle of water in the liquid hydrocarbon compared to water in the gas phase, resulting in a force of 23.5 ± 2.5 mN m -1 at 3.45 MPa and 274 K for a 2 h annealing time period in which hydrate shell growth occurs. It was observed that the cohesive force was inversely proportional to the annealing time, whereas the force increased with increasing contact time. For a longer contact time (>12 h), the force could not be measured because the two hydrate particles adhered permanently to form one large particle. The particle-surface adhesive force in the model liquid hydrocarbon was measured to be 5.3 ± 1.1 mN m -1 under the same experimental condition. Finally, with a 1 h contact time, the hydrate particle and the carbon steel (CS) surface were sintered together and the force was higher than what could be measured by the current apparatus. A possible mechanism is presented in this article to describe the effect of contact time on the particle-particle cohesive force based on the capillary liquid bridge model. A model adapted from the capillary liquid bridge equation has been used to predict the particle-particle cohesive force as a function of contact time, showing close agreement with the experimental data. By comparing the cohesive forces results from gas hydrates for both gas and liquid bulk phases, the surface free energy of a hydrate particle was calculated and found to dominate the changes in the interaction forces with different continuous bulk phases.

  1. Microscopy of the interacting Harper-Hofstadter model in the few-body limit

    NASA Astrophysics Data System (ADS)

    Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Borgnia, Dan; Preiss, Philipp; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus

    2017-04-01

    The interplay of magnetic fields and interacting particles can lead to exotic phases of matter exhibiting topological order and high degrees of spatial entanglement. While these phases were discovered in a solid-state setting, recent techniques have enabled the realization of gauge fields in systems of ultracold neutral atoms, offering a new experimental paradigm for studying these novel states of matter. This complementary platform holds promise for exploring exotic physics in fractional quantum Hall systems due to the microscopic manipulation and precision possible in cold atom systems. However, these experiments thus far have mostly explored the regime of weak interactions. Here, we show how strong interactions can modify the propagation of particles in a 2 × N , real-space ladder governed by the Harper-Hofstadter model. We observe inter-particle interactions affect the populating of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate both bound and free-particle character. The novel form of interaction-induced chirality observed in these experiments demonstrates the essential ingredients for future investigations of highly entangled topological phases of many-body systems. We are supported by Grants from the National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, and the NSF GRFP (MNR).

  2. Erasing no-man’s land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Filion, Laura; Sciortino, Francesco

    2014-09-01

    One of the most controversial hypotheses for explaining the origin of the thermodynamic anomalies characterizing liquid water postulates the presence of a metastable second-order liquid-liquid critical point located in the `no-man’s land’. In this scenario, two liquids with distinct local structure emerge near the critical temperature. Unfortunately, as spontaneous crystallization is rapid in this region, experimental support for this hypothesis relies on significant extrapolations, either from the metastable liquid or from amorphous solid water. Although the liquid-liquid transition is expected to feature in many tetrahedrally coordinated liquids, including silicon, carbon and silica, even numerical studies of atomic and molecular models have been unable to conclusively prove the existence of this transition. Here we provide such evidence for a model in which it is possible to continuously tune the softness of the interparticle interaction and the flexibility of the bonds, the key ingredients controlling the existence of the critical point. We show that conditions exist where the full coexistence is thermodynamically stable with respect to crystallization. Our work offers a basis for designing colloidal analogues of water exhibiting liquid-liquid transitions in equilibrium, opening the way for experimental confirmation of the original hypothesis.

  3. An efficient method for the creation of tunable optical line traps via control of gradient and scattering forces.

    PubMed

    Tietjen, Gregory T; Kong, Yupeng; Parthasarathy, Raghuveer

    2008-07-07

    Interparticle interaction energies and other useful physical characteristics can be extracted from the statistical properties of the motion of particles confined by an optical line trap. In practice, however, the potential energy landscape, U(x), imposed by the line provides an extra, and in general unknown, influence on particle dynamics. We describe a new class of line traps in which both the optical gradient and scattering forces acting on a trapped particle are designed to be linear functions of the line coordinate and in which their magnitude can be counterbalanced to yield a flat U(x). These traps are formed using approximate solutions to general relations concerning non-conservative optical forces that have been the subject of recent investigations [Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602-4 (2008).]. We implement the lines using holographic optical trapping and measure the forces acting on silica microspheres, demonstrating the tunability of the confining potential energy landscape. Furthermore, we show that our approach efficiently directs available laser power to the trap, in contrast to other methods.

  4. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects.

    PubMed

    Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Baldomir, Daniel; Chubykalo-Fesenko, Oksana; Serantes, David

    2015-11-07

    An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications.

  5. Transport and selective chaining of bidisperse particles in a travelling wave potential.

    PubMed

    Tierno, Pietro; Straube, Arthur V

    2016-05-01

    We combine experiments, theory and numerical simulation to investigate the dynamics of a binary suspension of paramagnetic colloidal particles dispersed in water and transported above a stripe-patterned magnetic garnet film. The substrate generates a one-dimensional periodic energy landscape above its surface. The application of an elliptically polarized rotating magnetic field causes the landscape to translate, inducing direct transport of paramagnetic particles placed above the film. The ellipticity of the applied field can be used to control and tune the interparticle interactions, from net repulsive to net attractive. When considering particles of two distinct sizes, we find that, depending on their elevation above the surface of the magnetic substrate, the particles feel effectively different potentials, resulting in different mobilities. We exploit this feature to induce selective chaining for certain values of the applied field parameters. In particular, when driving two types of particles, we force only one type to condense into travelling parallel chains. These chains confine the movement of the other non-chaining particles within narrow colloidal channels. This phenomenon is explained by considering the balance of pairwise magnetic forces between the particles and their individual coupling with the travelling landscape.

  6. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Xiao, Heng; Sun, Honglei

    2018-01-01

    The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately. The results demonstrate that the cohesive behavior of silt in the settling process is attributed to both the cohesion among silt particles themselves and the particle polydispersity. To guide to the macro-scale modeling of cohesive silt sedimentation, the collision frequency functions obtained in the numerical simulations are also presented based on the micromechanics of particles. The results obtained by using CFD-DEM indicate that the binary collision theory over-estimated the particle collision frequency in the flocculation process at high solid volume fraction.

  7. Quantum Dynamics in the HMF Model

    NASA Astrophysics Data System (ADS)

    Plestid, Ryan; O'Dell, Duncan

    2017-04-01

    The Hamiltonian Mean Field (HMF) model represents a paradigm in the study of long-range interactions but has never been realized in a lab. Recently Shutz and Morigi (PRL 113) have come close but ultimately fallen short. Their proposal relied on cavity-induced interactions between atoms. If a design using cold atoms is to be successful, an understanding of quantum effects is essential. I will outline the natural quantum generalization of the HMF assuming a BEC by using a generalized Gross-Pitaevskii equation (gGPE). I will show how quantum effects modify features which are well understood in the classical model. More specifically, by working in the semi-classical regime (strong interparticle interactions) we can identify the universal features predicted by catastrophe theory dressed with quantum interference effects. The stationary states of gGPE can be solved exactly and are found to be described by self-consistent Mathieu functions. Finally, I will discuss the connection between the classical description of the dynamics in terms of the Vlassov equation, and the gGPE. We would like to thank the Government of Ontario's OGS program, NSERC, and the Perimeter Institute of Theoretical Physics.

  8. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Non-Maxwellian and magnetic field effects in complex plasma wakes★

    NASA Astrophysics Data System (ADS)

    Ludwig, Patrick; Jung, Hendrik; Kählert, Hanno; Joost, Jan-Philip; Greiner, Franko; Moldabekov, Zhandos; Carstensen, Jan; Sundar, Sita; Bonitz, Michael; Piel, Alexander

    2018-05-01

    In a streaming plasma, negatively charged dust particles create complex charge distributions on the downstream side of the particle, which are responsible for attractive forces between the like-charged particles. This wake phenomenon is studied by means of refined linear response theory and molecular dynamics simulations as well as in experiments. Particular attention is paid to non-Maxwellian velocity distributions that are found in the plasma sheath and to situations with strong magnetic fields, which are becoming increasingly important. Non-Maxwellian distributions and strong magnetic fields result in a substantial damping of the oscillatory wake potential. The interaction force in particle pairs is explored with the phase-resolved resonance method, which demonstrates the non-reciprocity of the interparticle forces in unmagnetized and magnetized systems.

  10. Simulations of electrically induced particle structuring on spherical drop surface

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Vlahovska, Petia; Miksis, Michael

    2016-11-01

    Recent experiments (Ouriemi and Vlahovska, 2014) show intriguing surface patterns when a uniform electric field is applied to a droplet covered with colloidal particles. Depending on the particle properties and the electrical field intensity, particles organize into an equatorial belt, pole-to-pole chains, or dynamic vortices. Here we present a model to simulate the collective particle dynamics, which accounts for the electrohydrodynamic flow and particle dielectrophoresis due to the non-uniformity of local electrical field. In stronger electric fields, particles are expected to undergo Quincke rotation, inducing rotating clusters through inter-particle hydrodynamical interaction. We discuss how the field intensity influences the width, orientation and periodicity of the particle clusters. Our results provide insight into the various particle assembles discovered in the experiments.

  11. A fluid-mechanic-based model for the sedimentation of flocculated suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhabra, R.P.; Prasad, D.

    1991-02-01

    Due to the wide occurrence of the suspensions of fine particles in mineral and chemical processing industries, considerable interest has been shown in modeling the hydrodynamic behavior of such systems. A fluid-mechanic-based analysis is presented for the settling behavior of flocculated4d suspensions. Flocs have been modeled as composite spheres consisting of a solid core embedded in a shell of homogeneous and isotropic porous medium. Theoretical estimates of the rates of sedimentation for flocculated suspensions are obtained by solving the equations of continuity and of motion. The interparticle interactions are incorporated into the analysis by employing the Happel free surface cellmore » model. The results reported embrace wide ranges of conditions of floc size and concentration.« less

  12. Dynamic contact angle of water-based titanium oxide nanofluid

    PubMed Central

    2013-01-01

    This paper presents an investigation into spreading dynamics and dynamic contact angle of TiO2-deionized water nanofluids. Two mechanisms of energy dissipation, (1) contact line friction and (2) wedge film viscosity, govern the dynamics of contact line motion. The primary stage of spreading has the contact line friction as the dominant dissipative mechanism. At the secondary stage of spreading, the wedge film viscosity is the dominant dissipative mechanism. A theoretical model based on combination of molecular kinetic theory and hydrodynamic theory which incorporates non-Newtonian viscosity of solutions is used. The model agreement with experimental data is reasonable. Complex interparticle interactions, local pinning of the contact line, and variations in solid–liquid interfacial tension are attributed to errors. PMID:23759071

  13. Theory of interparticle correlations in dense, high-temperature plasmas. V - Electric and thermal conductivities

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Tanaka, S.

    1985-01-01

    Ichimaru et al. (1985) have developed a general theory in which the interparticle correlations in dense, high-temperature multicomponent plasmas were formulated systematically over a wide range of plasma parameters. The present paper is concerned with an extension of this theory, taking into account the problems of the electronic transport in such high-density plasmas. It is shown that the resulting theory is capable of describing the transport coefficients accurately over a wide range of the density and temperature parameters. Attention is given to electric and thermal conductivities, generalized Coulomb logarithms, a comparison of the considered theory with other theories, and a comparison of the theory with experimental results.

  14. Polyelectrolyte properties of single stranded DNA measured using SAXS and single molecule FRET: beyond the wormlike chain model

    PubMed Central

    Meisburger, Steve P.; Sutton, Julie L.; Chen, Huimin; Pabit, Suzette A.; Kirmizialtin, Serdal; Elber, Ron; Pollack, Lois

    2013-01-01

    Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with worm like chain models, but non base-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and di-valent salt. We report measurements of the form factor and interparticle interactions using SAXS, end to end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent Molecular Dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers. PMID:23606337

  15. Fluctuation, dissipation, and a non-equilibrium ``equation of state'' via nonlinear microrheology of hydrodynamically interacting colloids

    NASA Astrophysics Data System (ADS)

    Chu, Henry; Zia, Roseanna

    2014-11-01

    In our recently developed non-equilibrium Stokes-Einstein relation for microrheology, we showed that, in the absence of hydrodynamic interactions, the stress in a suspension is given by a balance between fluctuation and dissipation. Here we generalize our theory to develop a simple analytical relation connecting diffusive fluctuation, viscous dissipation and suspension stress in systems of hydrodynamically interacting colloids. In active microrheology, a Brownian probe is driven through a complex medium. The strength of probe forcing compared to the entropic restoring force defines a Peclet number, Pe. In the absence of hydrodynamics, normal stress differences scale as Pe4 and Pe for weak and strong probe forcing, respectively. But as hydrodynamics become important, interparticle forces give way to lubrication interactions and the normal stresses scale as Pe2 and Peδln(Pe), where 0.773 <= δ <= 1 as hydrodynamics vary from strong to weak. The new phenomenological theory is shown to agree with standard micromechanical definitions of the stress. A connection is made between the stress and an effective temperature of the medium, prompting the interpretation of the particle stress as the energy density, and the expression for osmotic pressure as a ``non-equilibrium equation of state.''

  16. Progressive freezing of interacting spins in isolated finite magnetic ensembles

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kakoli; Dupuis, Veronique; Le-Roy, Damien; Deb, Pritam

    2017-02-01

    Self-organization of magnetic nanoparticles into secondary nanostructures provides an innovative way for designing functional nanomaterials with novel properties, different from the constituent primary nanoparticles as well as their bulk counterparts. Collective magnetic properties of such complex closed packing of magnetic nanoparticles makes them more appealing than the individual magnetic nanoparticles in many technological applications. This work reports the collective magnetic behaviour of magnetic ensembles comprising of single domain Fe3O4 nanoparticles. The present work reveals that the ensemble formation is based on the re-orientation and attachment of the nanoparticles in an iso-oriented fashion at the mesoscale regime. Comprehensive dc magnetic measurements show the prevalence of strong interparticle interactions in the ensembles. Due to the close range organization of primary Fe3O4 nanoparticles in the ensemble, the spins of the individual nanoparticles interact through dipolar interactions as realized from remnant magnetization measurements. Signature of super spin glass like behaviour in the ensembles is observed in the memory studies carried out in field cooled conditions. Progressive freezing of spins in the ensembles is corroborated from the Vogel-Fulcher fit of the susceptibility data. Dynamic scaling of relaxation reasserted slow spin dynamics substantiating cluster spin glass like behaviour in the ensembles.

  17. Small-Angle Neutron Scattering and Neutron Spin Echo Characterization of Monoclonal Antibody Self-Associations at High Concentrations

    NASA Astrophysics Data System (ADS)

    Yearley, Eric; Zarraga, Isidro (Dan); Godfrin, Paul (Doug); Perevozchikova, Tatiana; Wagner, Norman; Liu, Yun

    2013-03-01

    Concentrated therapeutic protein formulations offer numerous delivery and stability challenges. In particular, it has been found that several therapeutic proteins exhibit a large increase in viscosity as a function of concentration that may be dependent on the protein-protein interactions. Small-Angle Neutron Scattering (SANS) and Neutron Spin Echo (NSE) investigations have been performed to probe the protein-protein interactions and diffusive properties of highly concentrated MAbs. The SANS data demonstrate that the inter-particle interactions for a highly viscous MAb at high concentrations (MAb1) are highly attractive, anisotropic and change significantly with concentration while the viscosity and interactions do not differ considerably for MAb2. The NSE results furthermore indicate that MAb1 and MAb2 have strong concentration dependencies of dynamics at high Q that are correlated to the translational motion of the proteins. Finally, it has also been revealed that the individual MAb1 proteins form small clusters at high concentrations in contrast to the MAb2 proteins, which are well-dispersed. It is proposed that the formation of these clusters is the primary cause of the dramatic increase in viscosity of MAb1 in crowded or concentrated environments.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan

    Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here in this study, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO 2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the averagemore » NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Lastly, structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.« less

  19. Effect of nanoparticles size and polyelectrolyte on nanoparticles aggregation in a cellulose fibrous matrix

    DOE PAGES

    Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan; ...

    2017-09-18

    Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here in this study, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO 2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the averagemore » NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Lastly, structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.« less

  20. A Novel Optoelectronic Device Based on Correlated Two-Dimensional Fermions

    NASA Astrophysics Data System (ADS)

    Dianat, Pouya

    Conventional metallic contacts can be replicated by quantum two dimensional charge (of Fermion) systems (2DFS). Unlike metals, the particle concentration of these "unconventional" systems can be accurately controlled in an extensive range and by means of external electronic or optical stimuli. A 2DFS can, hence, transition from a high-density kinetic liquid into a dilute-but highly correlated-gas state, in which inter-particle Coulombic interactions are significant. Such interactions contribute negatively, by so-called exchange-correlation energies, to the overall energetics of the system, and are manifested as a series negative quantum capacitance. This dissertation investigates the capacitive performance of a class of unconventional devices based on a planar metal-semiconductor-metal structure with an embedded 2DFS. They constitute an opto-electronically controlled variable capacitor, with record breaking figures-of-merit in capacitance tuning ranges of up to 7000 and voltage sensitivities as large as 400. Internal eld manipulations by localized depletion of a dense 2DFS account for the enlarged maximum and reduced minimum capacitances. The capacitance-voltage characteristics of these devices incur an anomalous "Batman" shape capacitance enhancement (CE) of up to 200% that may be triggered optically. The CE is attributed to the release and storage of exchange-correlation energies; from the "unconventional" plate and in the dielectric, respectively. This process is enforced by density manipulation of the 2DFS by a hybrid of an external eld and light-generated carriers. Under moderate optical powers, the capacitance becomes 43 times greater than the dark value; thus a new capacitance-based photodetection method is offered. This new capacitance based photodetection method has a range of applications in optoelectronics, particularly in the next generation of photonic integrated systems.

  1. Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime.

    PubMed

    Scholl, Jonathan A; Garcia-Etxarri, Aitzol; Aguirregabiria, Garikoitz; Esteban, Ruben; Narayan, Tarun C; Koh, Ai Leen; Aizpurua, Javier; Dionne, Jennifer A

    2016-01-26

    Plasmonic multinanoparticle systems exhibit collective electric and magnetic resonances that are fundamental for the development of state-of-the-art optical nanoantennas, metamaterials, and surface-enhanced spectroscopy substrates. While electric dipolar modes have been investigated in both the classical and quantum realm, little attention has been given to magnetic and other "dark" modes at the smallest dimensions. Here, we study the collective electric, magnetic, and dark modes of colloidally synthesized silver nanosphere trimers with varying interparticle separation using scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). This technique enables direct visualization and spatially selective excitation of individual trimers, as well as manipulation of the interparticle distance into the subnanometer regime with the electron beam. Our experiments reveal that bonding electric and magnetic modes are significantly impacted by quantum effects, exhibiting a relative blueshift and reduced EELS amplitude compared to classical predictions. In contrast, the trimer's electric dark mode is not affected by quantum tunneling for even Ångström-scale interparticle separations. We employ a quantum-corrected model to simulate the effect of electron tunneling in the trimer which shows excellent agreement with experimental results. This understanding of classical and quantum-influenced hybridized modes may impact the development of future quantum plasmonic materials and devices, including Fano-like molecular sensors and quantum metamaterials.

  2. Driving morphological changes in magnetic nanoparticle structures through the application of acoustic waves and magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Ann; Miansari, Morteza; Friend, James

    The growing interest in acoustic manipulation of particles in micro to nanofluidics using surface acoustic waves (SAW), together with the many applications of magnetic nanoparticles-whether individual or in arrays-underpins our discovery of how these forces can be used to rapidly, easily, and irreversibly form 1D chains and 2D films. These films and chains are currently difficult to produce yet offer many advantages over individual nanoparticles in suspension. Making use of the scale of the structures formed, 10-9 to 10-5 m, and by taking a balance of the relevant external and interparticle forces, the underlying mechanisms responsible for the phenomena become apparent. For 1D chains, the magnetic field alone is sufficient, though applying an acoustic field drives a topology change from loosely connected chains to loops of 10 -100 particles. Adding the acoustic field drives a transition from these looped structures to dense 2D arrays via interparticle Bjerknes forces. Inter-particle drainage of the surrounding fluid leaves these structures intact after removal of the externally applied forces. Clear morphology transitions are present and depend on the relative amplitude of the incident Brownian, Bjerknes, and magnetic forces. UCSD: Frontiers of Innovation Scholars Program (U-1024).

  3. Mechanics of Granular Materials (MGM)

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Costes, Nicholas C.; Porter, Ronald F.

    1996-01-01

    The constitutive behavior of uncemented granular materials such as strength, stiffness, and localization of deformations are to a large extend derived from interparticle friction transmitted between solid particles and particle groups. Interparticle forces are highly dependent on gravitational body forces. At very low effective confining pressures, the true nature of the Mohr envelope, which defines the Mohr-Coulomb failure criterion for soils, as well as the relative contribution of each of non-frictional components to soil's shear strength cannot be evaluated in terrestrial laboratories. Because of the impossibility of eliminating gravitational body forces on earth, the weight of soil grains develops interparticle compressive stresses which mask true soil constitutive behavior even in the smallest samples of models. Therefore the microgravity environment induced by near-earth orbits of spacecraft provides unique experimental opportunities for testing theories related to the mechanical behavior of terrestrial granular materials. Such materials may include cohesionless soils, industrial powders, crushed coal, etc. This paper will describe the microgravity experiment, 'Mechanics of Granular Materials (MGM)', scheduled to be flown on Space Shuttle-MIR missions. The paper will describe the experiment's hardware, instrumentation, specimen preparation procedures, testing procedures in flight, as well as a brief summary of the post-mission analysis. It is expected that the experimental results will significantly improve the understanding of the behavior of granular materials under very low effective stress levels.

  4. Micro-rheology and interparticle interactions in aerosols probed with optical tweezers

    NASA Astrophysics Data System (ADS)

    Reid, Jonathan P.; Power, Rory M.; Cai, Chen; Simpson, Stephen H.

    2014-09-01

    Using optical tweezers for micro-rheological investigations of a surrounding fluid has been routinely demonstrated. In this work, we will demonstrate that rheological measurements of the bulk and surface properties of aerosol particles can be made directly using optical tweezers, providing important insights into the phase behavior of materials in confined environments and the rate of molecular diffusion in viscous phases. The use of holographic optical tweezers to manipulate aerosol particles has become standard practice in recent years, providing an invaluable tool to investigate particle dynamics, including evaporation/ condensation kinetics, chemical aging and phase transformation. When combined with non-linear Raman spectroscopy, the size and refractive index of a particle can be determined with unprecedented accuracy <+/- 0.05%). Active control of the relative positions of pairs of particles can allow studies of the coalescence of particles, providing a unique opportunity to investigate the bulk and surface properties that govern the hydrodynamic relaxation in particle shape. In particular, we will show how the viscosity and surface tension of particles can be measured directly in the under-damped regime at low viscosity. In the over-damped regime, we will show that viscosity measurements can extend close to the glass transition, allowing measurements over an impressive dynamic range of 12 orders of magnitude in relaxation timescale and viscosity. Indeed, prior to the coalescence event, we will show how the Brownian trajectories of trapped particles can yield important and unique insights into the interactions of aerosol particles.

  5. A pH-responsive emulsion stabilized by alginate-grafted anisotropic silica and its application in the controlled release of λ-cyhalothrin.

    PubMed

    Chen, Kai; Yu, Gaobo; He, Furui; Zhou, Qingfeng; Xiao, Dunchao; Li, Jiacheng; Feng, Yuhong

    2017-11-15

    Alginate (Alg) was grafted on the surface of anisotropic silica (SiO 2 -x) via the Ugi reaction (Alg-SiO 2 -1, Alg-SiO 2 -2, and Alg-SiO 2 -4). Compared with pristine SiO 2 -x, modified SiO 2 -x is more sensitive to pH. Three stable liquid paraffin-in-water emulsions were prepared with Alg-SiO2-1, Alg-SiO2-2, and Alg-SiO2-4. Alg-SiO 2 -2 exhibited satisfactory emulsification ability. The emulsions became more stable as emulsion pH varied from 2.0 to 6.2 because of polymer chain interactions that led to the formation of a three-dimensional network. When the emulsion pH varied from 6.2 to 8.0, the particle charge increased, in turn increasing interparticle the electrostatic interactions that increased emulsion stability. When the emulsion pH was 9.0, the subsequent decrease in particle charge, decreased the emulsion stability. The model drug λ-cyhalothrin was embedded in the emulsions. A sustained-release assay demonstrated that increasing emulsion pH from 3.0 to 8.0 decreased cumulative drug release from the emulsion from 99.7% to 13.5%. This result indicated that the emulsion is a pH triggered drug delivery system. The sustained-release curves of λ-cyhalothrin are describable by the Weibull model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of contact angle and contact angle hysteresis on the floatability of spheres at the air-water interface.

    PubMed

    Feng, Dong-Xia; Nguyen, Anh V

    2017-10-01

    The floatability of solid particles on the water surface governs many natural phenomena and industrial processes including film flotation and froth flotation separation of coal and valuable minerals. For many years, the contact angle (CA) has been postulated as the key factor in determining the particle floatability. Indeed, the maximum force (tenacity) supporting the flotation of fine spheres was conjectured to occur when the apical angle of the contact circle is equal to the contact angle. In this paper, the model predictions are reviewed and compared with experimental results. It is shown that CA can be affected by many physical and chemical factors such as surface roughness and chemical heterogeneity and can have a range of values known as the CA hysteresis. This multiple-valued CA invalidates the available theories on the floatability of spheres. Even the intuitive replacement of CA by the advancing (maximum) CA in the classical theories can be wrong. A few new examples are also reviewed and analyzed to demonstrate the significance of CA variation in controlling the particle floatability. They include the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, and the nearby interaction among floating particles, known as lateral inter-particle interaction. It is concluded that our quantitative understanding of the floatability of real particles being irregular and heterogeneous both morphologically and chemically is still far from being satisfactory. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.

    PubMed

    Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui

    2013-11-07

    We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.

  8. Non-equilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting suspensions

    NASA Astrophysics Data System (ADS)

    Chu, Henry; Zia, Roseanna

    In our recently developed non-equilibrium Stokes-Einstein relation, we showed that, in the absence of hydrodynamic interactions, the stress in a suspension is given by a balance between fluctuation and dissipation. Here, we generalize our theory for systems of hydrodynamically interacting colloids, via active microrheology, where motion of a Brownian probe through the medium reveals rheological properties. The strength of probe forcing compared to the entropic restoring force defines a Peclet number, Pe. In the absence of hydrodynamics, the first normal stress difference and the osmotic pressure scale as Pe4 and Pe2 respectively when probe forcing is weak, and uniformly as Pe for strong probe forcing. As hydrodynamics become important, interparticle forces give way to lubrication interactions. Hydrodynamic coupling leads to a new low-Pe scaling of the first normal stress difference and the osmotic pressure as Pe2, and high-Pe scaling as Peδ, where 0.799 <= δ <= 1 as hydrodynamics vary from strong to weak. For the entire range of the strength of hydrodynamic interactions and probe forcing, the new phenomenological theory is shown to agree with standard micromechanical definitions of the stress. We further draw a connection between the stress and the energy storage in a suspension, and the entropic nature of such storage is identified.

  9. Theoretical Studies of Strongly Interacting Fine Particle Systems

    NASA Astrophysics Data System (ADS)

    Fearon, Michael

    Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.

  10. Magnetic assembly route to colloidal responsive photonic nanostructures.

    PubMed

    He, Le; Wang, Mingsheng; Ge, Jianping; Yin, Yadong

    2012-09-18

    Responsive photonic structures can respond to external stimuli by transmitting optical signals. Because of their important technological applications such as color signage and displays, biological and chemical sensors, security devices, ink and paints, military camouflage, and various optoelectronic devices, researchers have focused on developing these functional materials. Conventionally, self-assembled colloidal crystals containing periodically arranged dielectric materials have served as the predominant starting frameworks. Stimulus-responsive materials are incorporated into the periodic structures either as the initial building blocks or as the surrounding matrix so that the photonic properties can be tuned. Although researchers have proposed various versions of responsive photonic structures, the low efficiency of fabrication through self-assembly, narrow tunability, slow responses to the external stimuli, incomplete reversibility, and the challenge of integrating them into existing photonic devices have limited their practical application. In this Account, we describe how magnetic fields can guide the assembly of superparamagnetic colloidal building blocks into periodically arranged particle arrays and how the photonic properties of the resulting structures can be reversibly tuned by manipulating the external magnetic fields. The application of the external magnetic field instantly induces a strong magnetic dipole-dipole interparticle attraction within the dispersion of superparamagnetic particles, which creates one-dimensional chains that each contains a string of particles. The balance between the magnetic attraction and the interparticle repulsions, such as the electrostatic force, defines the interparticle separation. By employing uniform superparamagnetic particles of appropriate sizes and surface charges, we can create one-dimensional periodicity, which leads to strong optical diffraction. Acting remotely over a large distance, magnetic forces drove the rapid formation of colloidal photonic arrays with a wide range of interparticle spacing. They also allowed instant tuning of the photonic properties because they manipulated the interparticle force balance, which changed the orientation of the colloidal assemblies or their periodicity. This magnetically responsive photonic system provides a new platform for chromatic applications: these colloidal particles assemble instantly into ordered arrays with widely, rapidly, and reversibly tunable structural colors, which can be easily and rapidly fixed in a curable polymer matrix. Based on these unique features, we demonstrated many applications of this system, such as structural color printing, the fabrication of anticounterfeiting devices, switchable signage, and field-responsive color displays. We also extended this idea to rapidly organize uniform nonmagnetic building blocks into photonic structures. Using a stable ferrofluid of highly charged magnetic nanoparticles, we created virtual magnetic moments inside the nonmagnetic particles. This "magnetic hole" strategy greatly broadens the scope of the magnetic assembly approach to the fabrication of tunable photonic structures from various dielectric materials.

  11. Rovibrational states of Wigner molecules in spherically symmetric confining potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cioslowski, Jerzy

    2016-08-07

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits.more » In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.« less

  12. Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanossi, A.; Ro''der, J.; Bishop, A. R.

    2001-01-01

    We consider the underdamped dynamics of a chain of atoms subject to a dc driving force and a quasiperiodic substrate potential. The system has three inherent length scales which we take to be mutually incommensurate. We find that when the length scales are related by the spiral mean (a cubic irrational) there exists a value of the interparticle interaction strength above which the static friction is zero. When the length scales are related by the golden mean (a quadratic irrational) the static friction is always nonzero. >From considerations based on the connection of this problem to standard map theory, wemore » postulate that zero static friction is generally possible for incommensurate ratios of the length scales involved. However, when the length scales are quadratic irrationals, or have some commensurability with each other, the static friction will be nonzero for all choices of interaction parameters. We also comment on the nature of the depinning mechanisms and the steady states achieved by the moving chain.« less

  13. Normal stresses in shear thickening granular suspensions.

    PubMed

    Pan, Zhongcheng; de Cagny, Henri; Habibi, Mehdi; Bonn, Daniel

    2017-05-24

    When subjected to shear, granular suspensions exhibit normal stresses perpendicular to the shear plane but the magnitude and sign of the different components of the normal stresses are still under debate. By performing both oscillatory and rotational rheology measurements on shear thickening granular suspensions and systematically varying the particle diameters and the gap sizes between two parallel-plates, we show that a transition from a positive to a negative normal stress can be observed. We find that frictional interactions which determine the shear thickening behavior of suspensions contribute to the positive normal stresses. Increasing the particle diameters or decreasing the gap sizes leads to a growing importance of hydrodynamic interactions, which results in negative normal stresses. We determine a relaxation time for the system, set by both the pore and the gap sizes, that governs the fluid flow through the inter-particle space. Finally, using a two-fluid model we determine the relative contributions from the particle phase and the liquid phase.

  14. Invoking Direct Exciton-Plasmon Interactions by Catalytic Ag Deposition on Au Nanoparticles: Photoelectrochemical Bioanalysis with High Efficiency.

    PubMed

    Ma, Zheng-Yuan; Xu, Fei; Qin, Yu; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-04-19

    In this work, direct exciton-plasmon interactions (EPI) between CdS quantum dots (QDs) and Ag nanoparticles (NPs) were invoked ingeniously by catalytic Ag deposition on Au NPs for the stimulation of high efficient damping effect toward the excitonic responses in CdS QDs, on the basis of which a novel photoelectrochemical (PEC) bioanalytical format was achieved for sensitive microRNA detection. Specifically, upon the configurational change from the hairpin probe DNA to the "Y"-shaped ternary conjugate consisting of the original probe DNA, assistant DNA, and the target microRNA, the alkaline phosphatase (ALP) catalytic chemistry would then trigger the transition of the interparticle interplay from the CdS QDs-Au NPs to the CdS QDs-Ag NPs systems for the microRNA detection due to the dependence of the photocurrent quenching on the target concentration. This work not only provided a unique method for EPI generation among the PEC nanosystems but also offered a versatile and general protocol for future PEC bioanalysis development.

  15. Thermodynamic scaling of glassy dynamics and dynamic heterogeneities in metallic glass-forming liquid

    NASA Astrophysics Data System (ADS)

    Hu, Yuan-Chao; Shang, Bao-Shuang; Guan, Peng-Fei; Yang, Yong; Bai, Hai-Yang; Wang, Wei-Hua

    2016-09-01

    A ternary metallic glass-forming liquid is found to be not strongly correlating thermodynamically, but its average dynamics, dynamic heterogeneities including the high order dynamic correlation length, and static structure are still well described by thermodynamic scaling with the same scaling exponent γ. This may indicate that the metallic liquid could be treated as a single-parameter liquid. As an intrinsic material constant stemming from the fundamental interatomic interactions, γ is theoretically predicted from the thermodynamic fluctuations of the potential energy and the virial. Although γ is conventionally understood merely from the repulsive part of the inter-particle potentials, the strong correlation between γ and the Grüneisen parameter up to the accuracy of the Dulong-Petit approximation demonstrates the important roles of anharmonicity and attractive force of the interatomic potential in governing glass transition of metallic glassformers. These findings may shed light on how to understand metallic glass formation from the fundamental interatomic interactions.

  16. Self-assembly of triangular particles via capillary interactions

    NASA Astrophysics Data System (ADS)

    Bedi, Deshpreet; Zhou, Shangnan; Ferrar, Joseph; Solomon, Michael; Mao, Xiaoming

    Colloidal particles adsorbed to a fluid interface deform the interface around them, resulting in either attractive or repulsive forces mediated by the interface. In particular, particle shape and surface roughness can produce an undulating contact line, such that the particles will assume energetically-favorable relative orientations and inter-particle distances to minimize the excess interfacial surface area. By expediently selecting specific particle shapes and associated design parameters, capillary interactions can be utilized to promote self-assembly of these particles into extended regular open structures, such as the kagome lattice, which have novel mechanical properties. We present the results of numerical simulations of equilateral triangle microprisms at an interface, including individually and in pairs. We show how particle bowing can yield two distinct binding events and connect it to theory in terms of a capillary multipole expansion and also to experiment, as presented in an accompanying talk. We also discuss and suggest design principles that can be used to create desirable open structures.

  17. Lipid membrane-assisted condensation and assembly of amphiphilic Janus particles

    DOE PAGES

    Chambers, Mariah; Mallory, Stewart Anthony; Malone, Heather; ...

    2016-01-01

    Amphiphilic Janus particles self-assemble into complex metastructures, but little is known about how their assembly might be modified by weak interactions with a nearby biological membrane surface. Here, we report an integrated experimental and molecular dynamics simulation study to investigate the self-assembly of amphiphilic Janus particles on a lipid membrane. We created an experimental system in which Janus particles are allowed to self-assemble in the same medium where zwitterionic lipids form giant unilamellar vesicles (GUVs). Janus particles spontaneously concentrated on the inner leaflet of the GUVs. They exhibited biased orientation and heterogeneous rotational dynamics as revealed by single particle rotationalmore » tracking. The combined experimental and simulation results show that Janus particles concentrate on the lipid membranes due to weak particle–lipid attraction, whereas the biased orientation of particles is driven predominantly by inter-particle interactions. Furthermore, this study demonstrates the potential of using lipid membranes to influence the self-assembly of Janus particles.« less

  18. New Advancements in the Study of the Uniform Electron Gas with Full Configuration Interaction Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ruggeri, Michele; Luo, Hongjun; Alavi, Ali

    Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is able to give remarkably accurate results in the study of atoms and molecules. The study of the uniform electron gas (UEG) on the other hand has proven to be much harder, particularly in the low density regime. The source of this difficulty comes from the strong interparticle correlations that arise at low density, and essentially forbid the study of the electron gas in proximity of Wigner crystallization. We extend a previous study on the three dimensional electron gas computing the energy of a fully polarized gas for N=27 electrons at high and medium density (rS = 0 . 5 to 5 . 0). We show that even when dealing with a polarized UEG the computational cost of the study of systems with rS > 5 . 0 is prohibitive; in order to deal with correlations and to extend the density range that to be studied we introduce a basis of localized states and an effective transcorrelated Hamiltonian.

  19. Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid

    NASA Astrophysics Data System (ADS)

    Metere, Alfredo; Oleynikov, Peter; Dzugutov, Mikhail; O'Keeffe, Michael

    2014-12-01

    We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process, can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction.

  20. Effective Field Theory of Surface-mediated Forces in Soft Matter

    NASA Astrophysics Data System (ADS)

    Yolcu, Cem

    We propose a field theoretic formalism for describing soft surfaces modified by the presence of inclusions. Examples include particles trapped at a fluid-fluid interface, proteins attached to (or embedded in) a biological membrane, etc. We derive the energy functional for near-flat surfaces by an effective field theory approach. The two disparate length scales, particle sizes and inter-particle separations, afford the expansion parameters for controlling the accuracy of the effective theory, which is arbitrary in principle. We consider the following two surface types: (i) one where tension determines the behavior, such as a fluid-fluid interface (referred to as a film), and (ii) one where bending-elasticity dominates (referred to as a membrane). We also restrict to rigid inclusions with a circular footprint, and discuss generalizations briefly. As a result of the localized constraints imposed on the surface by the inclusions, the free energy of the system depends on their spatial arrangement, i.e. forces arise between them. Such surface-mediated interactions are believed to play an important role in the aggregation behavior of colloidal particles at interfaces and proteins on membranes. The interaction free energy consists of two parts: (i) the ground-state of the surface determined by possible deformations imposed by the particles, and (ii) the fluctuation correction. The former is analogous to classical electrostatics with the height profile of the surface playing the role of the electrostatic potential, while the latter is analogous to the Casimir effect and originates from the mere presence of constraints. We compute both interactions in truncated expansions. The efficiency of the formalism allows us to predict, with remarkable ease, quite a few orders of subleading corrections to existing results which are only valid when the inclusions are infinitely far apart. We also found that the few previous studies on finite distance corrections were incomplete. In addition to pairwise additive interactions, we compute the leading behavior of several many-body interactions, as well as subleading corrections where the leading contribution was previously calculated.

  1. Nanoparticle interaction potentials constructed by multiscale computation

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.

    2010-06-01

    The van der Waals (vdW) potentials governing macroscopic objects have long been formulated in the context of classical theories, such as Hamaker's microscopic theory and Lifshitz's continuum theory. This work addresses the possibility of constructing the vdW interaction potentials of nanoparticle species using multiscale simulation schemes. Amorphous silica nanoparticles were considered as a benchmark example for which a series of (SiO2)n (n being an integer) has been systematically surveyed as the potential candidates of the packing units that reproduce known bulk material properties in atomistic molecular dynamics simulations. This strategy led to the identification of spherical Si6O12 molecules, later utilized as the elementary coarse-grained (CG) particles to compute the pair interaction potentials of silica nanoparticles ranging from 0.62 to 100 nm in diameter. The model nanoparticles so built may, in turn, serve as the children CG particles to construct nanoparticles assuming arbitrary sizes and shapes. Major observations are as follows. The pair interaction potentials for all the investigated spherical silica nanoparticles can be cast into a semiempirical, generalized Lennard-Jones 2α-α potential (α being a size-dependent, large integral number). In its reduced form, we discuss the implied universalities for the vdW potentials governing a certain range of amorphous nanoparticle species as well as how thermodynamic transferability can be fulfilled automatically. In view of future applications with colloidal suspensions, we briefly evaluated the vdW potential in the presence of a "screening" medium mimicking the effects of electrical double layers or grafting materials atop the nanoparticle core. The general observations shed new light on strategies to attain a microscopic control over interparticle attractions. In future perspectives, the proposed multiscale computation scheme shall help bridge the current gap between the modeling of polymer chains and macroscopic objects by introducing molecular models coarse-grained at a similar level so that the interactions between these two can be treated in a consistent and faithful way.

  2. Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods

    NASA Astrophysics Data System (ADS)

    Jadrich, Ryan; Schweizer, Kenneth S.

    2011-12-01

    The relationship between kinetic arrest, connectivity percolation, structure and phase separation in protein, nanoparticle, and colloidal suspensions is a rich and complex problem. Using a combination of integral equation theory, connectivity percolation methods, naïve mode coupling theory, and the activated dynamics nonlinear Langevin equation approach, we study this problem for isotropic one-component fluids of spheres and variable aspect ratio rigid rods, and also percolation in rod-sphere mixtures. The key control parameters are interparticle attraction strength and its (short) spatial range, total packing fraction, and mixture composition. For spherical particles, formation of a homogeneous one-phase kinetically stable and percolated physical gel is predicted to be possible, but depends on non-universal factors. On the other hand, the dynamic crossover to activated dynamics and physical bond formation, which signals discrete cluster formation below the percolation threshold, almost always occurs in the one phase region. Rods more easily gel in the homogeneous isotropic regime, but whether a percolation or kinetic arrest boundary is reached first upon increasing interparticle attraction depends sensitively on packing fraction, rod aspect ratio and attraction range. Overall, the connectivity percolation threshold is much more sensitive to attraction range than either the kinetic arrest or phase separation boundaries. Our results appear to be qualitatively consistent with recent experiments on polymer-colloid depletion systems and brush mediated attractive nanoparticle suspensions.

  3. In situ grain fracture mechanics during uniaxial compaction of granular solids

    NASA Astrophysics Data System (ADS)

    Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.

    2018-03-01

    Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.

  4. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.

    PubMed

    Kim, Deok-Soo; Heo, Jinhwa; Ahn, Sung-Hyun; Han, Sang Woo; Yun, Wan Soo; Kim, Zee Hwan

    2009-10-01

    We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.

  5. On the observation of the need for an unusually high concentration of cysteine and homocysteine to induce aggregation of polymer-stabilized gold nano particles

    NASA Astrophysics Data System (ADS)

    Radhakumary, C.; Sreenivasan, K.

    2013-02-01

    This study reports the interaction of chitosan-stabilized gold nanoparticles (CH-AuNPs) with cysteine (Cys) and homocysteine (Hcys) in aqueous media at pH 1.4. Since the polymer precipitates at higher pH, and the amino acids Cys and HCys are soluble at acidic pH, we kept the pH around 1.4 for stabilizing the particles. Zeta potential of CH-AuNPs was found to be positive and it is reasonable to assume that +ve Cys or Hcys at pH 1.4 will experience repulsive force. However, TEM images and absorption spectra indicated formation of aggregates including rod-like assembly. An interesting observation was the need for unusually high concentration of analytes (Cys and Hcys) to induce the assembly of CH-AuNPs. We also found time bound variation of the optical properties probably indicating the interaction is kinetically controlled and only a fraction of the analyte molecules having sufficient energy can bind onto the particles. We observed that at elevated temperature, the reaction was faster with a lower concentration of Cys or Hcys. These observations were supported by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory which describes the interparticle interaction and the colloidal stability in solution. Only molecules possessing enough energy to cross this force barrier can cause the aggregation. We also noted a time lag between Cys and Hcys to influence optical properties reflecting the possibility of using this simple approach to discriminate these two clinically relevant molecules. Our observation shows that simple sensing as well as generation of novel nanostructures could be manipulated by a judicious choice of conditions such as stabilizing agents, pH, etc.

  6. Influence of particle size distribution on nanopowder cold compaction processes

    NASA Astrophysics Data System (ADS)

    Boltachev, G.; Volkov, N.; Lukyashin, K.; Markov, V.; Chingina, E.

    2017-06-01

    Nanopowder uniform and uniaxial cold compaction processes are simulated by 2D granular dynamics method. The interaction of particles in addition to wide-known contact laws involves the dispersion forces of attraction and possibility of interparticle solid bridges formation, which have a large importance for nanopowders. Different model systems are investigated: monosized systems with particle diameter of 10, 20 and 30 nm; bidisperse systems with different content of small (diameter is 10 nm) and large (30 nm) particles; polydisperse systems corresponding to the log-normal size distribution law with different width. Non-monotone dependence of compact density on powder content is revealed in bidisperse systems. The deviations of compact density in polydisperse systems from the density of corresponding monosized system are found to be minor, less than 1 per cent.

  7. Superferromagnetic domain state of a discontinuous metal insulator multilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedanta, S.; Petracic, O.; Kleemann, W.

    2005-07-01

    Polarized neutron reflectivity (PNR) and magnetometry studies have been performed on the granular multilayer [Co{sub 80}Fe{sub 20}(1.3 nm)/Al{sub 2}O{sub 3}(3 nm)]{sub 10}. Due to strong interparticle interactions, a collective superferromagnetic state is encountered. Cole-Cole plots drawn from the complex ac susceptibility are measured as functions of frequency, temperature, and field amplitudes that hint at the relaxation, creep, sliding, and switching regimes of pinned domain walls that are in close agreement with results obtained from simulations. Very slow switching with exponential relaxation under near-coercive fields is confirmed by PNR measurements. The complete absence of spin-flip scattering confirms that the magnetization reversalmore » is achieved merely by domain nucleation and growth.« less

  8. Interactions in charged colloidal suspensions: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Padidela, Uday Kumar; Behera, Raghu Nath

    2017-07-01

    Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.

  9. Stability diagram for dense suspensions of model colloidal Al2O3 particles in shear flow.

    PubMed

    Hecht, Martin; Harting, Jens; Herrmann, Hans J

    2007-05-01

    In Al2O3 suspensions, depending on the experimental conditions, very different microstructures can be found, comprising fluidlike suspensions, a repulsive structure, and a clustered microstructure. For technical processing in ceramics, the knowledge of the microstructure is of importance, since it essentially determines the stability of a workpiece to be produced. To enlighten this topic, we investigate these suspensions under shear by means of simulations. We observe cluster formation on two different length scales: the distance of nearest neighbors and on the length scale of the system size. We find that the clustering behavior does not depend on the length scale of observation. If interparticle interactions are not attractive the particles form layers in the shear flow. The results are summarized in a stability diagram.

  10. Flow Function of Pharmaceutical Powders Is Predominantly Governed by Cohesion, Not by Friction Coefficients.

    PubMed

    Leung, Lap Yin; Mao, Chen; Srivastava, Ishan; Du, Ping; Yang, Chia-Yi

    2017-07-01

    The purpose of this study was to demonstrate that the flow function (FFc) of pharmaceutical powders, as measured by rotational shear cell, is predominantly governed by cohesion but not friction coefficients. Driven by an earlier report showing an inverse correlation between FFc and the cohesion divided by the corresponding pre-consolidation stress (Wang et al. 2016. Powder Tech. 294:105-112), we performed analysis on a large data set containing 1130 measurements from a ring shear tester and identified a near-perfect inverse correlation between the FFc and cohesion. Conversely, no correlation was found between FFc and friction angles. We also conducted theoretical analysis and estimated such correlations based on Mohr-Coulomb failure model. We discovered that the correlation between FFc and cohesion can sustain as long as the angle of internal friction at incipient flow is not significantly larger than the angle of internal friction at steady-state flow, a condition covering almost all pharmaceutical powders. The outcome of this study bears significance in pharmaceutical development. Because the cohesion value is strongly influenced by the interparticle cohesive forces, this study effectively shows that it is more efficient to improve the pharmaceutical powder flow by lowering the interparticle cohesive forces than by lowering the interparticle frictions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Selective Laser Sintering of Nano Al2O3 Infused Polyamide

    PubMed Central

    Warnakula, Anthony; Singamneni, Sarat

    2017-01-01

    Nano Al2O3 polyamide composites are evaluated for processing by selective laser sintering. A thermal characterization of the polymer composite powders allowed us to establish the possible initial settings. Initial experiments are conducted to identify the most suitable combinations of process parameters. Based on the results of the initial trials, more promising ranges of different process parameters could be identified. The post sintering characterization showed evidence of sufficient inter-particle sintering and intra-layer coalescence. While the inter-particle coalescence gradually improved, the porosity levels slightly decreased with increasing laser power. The nano-filler particles tend to agglomerate around the beads along the solid tracks, possibly due to Van der Walls forces. The tensile stress results showed an almost linear increase with increasing nano-filler content. PMID:28773220

  12. Theory of the classical electron gas

    NASA Technical Reports Server (NTRS)

    Guernsey, R. L.

    1978-01-01

    In a previous paper Cohen and Murphy (1969) used the Meeron resummation (1958) of the Mayer diagrams (1950) to calculate the pair correlation for the classical electron gas in thermal equilibrium. They found that successive terms in the expression for the pair correlation were more and more singular for small interparticle spacing, actually dominating the Debye-Hueckel result for sufficiently small distances. This led to apparent divergence in the higher order contributions to the internal energy. The present paper shows that the apparent anomalies in the Cohen-Murphy results can be removed without further resummation by a more careful treatment of the region of small interparticle spacing. It is shown that there is really no anomalous behavior at short range in any order and all integrals in the expression for the internal energy converge.

  13. Correlational approach to study interactions between dust Brownian particles in a plasma

    NASA Astrophysics Data System (ADS)

    Lisin, E. A.; Vaulina, O. S.; Petrov, O. F.

    2018-01-01

    A general approach to the correlational analysis of Brownian motion of strongly coupled particles in open dissipative systems is described. This approach can be applied to the theoretical description of various non-ideal statistically equilibrium systems (including non-Hamiltonian systems), as well as for the analysis of experimental data. In this paper, we consider an application of the correlational approach to the problem of experimental exploring the wake-mediated nonreciprocal interactions in complex plasmas. We derive simple analytic equations, which allows one to calculate the gradients of forces acting on a microparticle due to each of other particles as well as the gradients of external field, knowing only the information on time-averaged correlations of particles displacements and velocities. We show the importance of taking dissipative and random processes into account, without which consideration of a system with a nonreciprocal interparticle interaction as linearly coupled oscillators leads to significant errors in determining the characteristic frequencies in a system. In the examples of numerical simulations, we demonstrate that the proposed original approach could be an effective instrument in exploring the longitudinal wake structure of a microparticle in a plasma. Unlike the previous attempts to study the wake-mediated interactions in complex plasmas, our method does not require any external perturbations and is based on Brownian motion analysis only.

  14. Clustering and phase behaviour of attractive active particles with hydrodynamics.

    PubMed

    Navarro, Ricard Matas; Fielding, Suzanne M

    2015-10-14

    We simulate clustering, phase separation and hexatic ordering in a monolayered suspension of active squirming disks subject to an attractive Lennard-Jones-like pairwise interaction potential, taking hydrodynamic interactions between the particles fully into account. By comparing the hydrodynamic case with counterpart simulations for passive and active Brownian particles, we elucidate the relative roles of self-propulsion, interparticle attraction, and hydrodynamic interactions in determining clustering and phase behaviour. Even in the presence of an attractive potential, we find that hydrodynamic interactions strongly suppress the motility induced phase separation that might a priori have been expected in a highly active suspension. Instead, we find only a weak tendency for the particles to form stringlike clusters in this regime. At lower activities we demonstrate phase behaviour that is broadly equivalent to that of the counterpart passive system at low temperatures, characterized by regimes of gas-liquid, gas-solid and liquid-solid phase coexistence. In this way, we suggest that a dimensionless quantity representing the level of activity relative to the strength of attraction plays the role of something like an effective non-equilibrium temperature, counterpart to the (dimensionless) true thermodynamic temperature in the passive system. However there are also some important differences from the equilibrium case, most notably with regards the degree of hexatic ordering, which we discuss carefully.

  15. Plasmonic-Field Interactions at Nanoparticle Interfaces for Infrared Thermal-Shielding Applications Based on Transparent Oxide Semiconductors.

    PubMed

    Matsui, Hiroaki; Furuta, Shinya; Hasebe, Takayuki; Tabata, Hitoshi

    2016-05-11

    This paper describes infrared plasmonic responses in three-dimensional (3D) assembled films of In2O3:Sn nanoparticles (NPs). The introduction of surface modifications to NPs can facilitate the production of electric-field interactions between NPs due to the creation of narrow crevices in the NP interfaces. In particular, the electric-field interactions along the in-plane and out-of-plane directions in the 3D assembled NP films allow for resonant splitting of plasmon excitations to the quadrupole and dipole modes, thereby realizing selective high reflections in the near- and mid-infrared range, respectively. The origins of these plasmonic properties were revealed from electric-field distributions calculated by electrodynamic simulations that agreed well with experimental results. The interparticle gaps and their derived plasmon couplings play an important role in producing high reflective performances in assembled NP films. These 3D assemblies of NPs can be further extended to produce large-size flexible films with high infrared reflectance, which simultaneously exhibit microwave transmittance essential for telecommunications. This study provides important insights for harnessing infrared optical responses using plasmonic technology for the fabrication of infrared thermal-shielding applications.

  16. Application of relativistic distorted-wave method to electron-impact excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Zhanbin

    2018-05-01

    The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.

  17. Cosmology and the early universe

    NASA Astrophysics Data System (ADS)

    Joshi, Abhigna

    2017-01-01

    In the beginning the universe was in a hot dense state nearly 13.8 billion years ago. The thermal history of the universe was traced back to an era when the temperature was about 1012K. At this early time, the universe was filled with particles-mostly photons and leptons- whose interactions are hopefully weak enough to allow this medium to be treated as a more or less ideal gas. However, if we look back a little further, into the first 0.0001 second of cosmic history when the temperature was above 1012K. At such temperatures, there will be present in thermal equilibrium copious numbers of strongly interacting particles-mostly masons and baryons-with a mean interparticle distance less than a Compton wavelength. These particles will be in a state of continual mutual interaction, and cannot reasonably be expected to obey any simple equation of state. The inflationary epoch lasted from 10-36seconds after the Big Bang to sometime between 10-33and 10-32seconds. Matter and energy created in this time. Right after that space expanded exponentially with enormous rate of 74.3 +/-2.1Km per second per Mpc. Undergraduate student and researcher of the string theory, quantum gravity, cosmology and quantum biology.

  18. An adaptive extended finite element method for the analysis of agglomeration of colloidal particles in a flowing fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Jorshari, Razzi Movassaghi; Djilali, Ned

    2015-03-10

    Direct numerical simulations of the flow-nanoparticle interaction in a colloidal suspension are presented using an extended finite element method (XFEM) in which the dynamics of the nanoparticles is solved in a fully-coupled manner with the flow. The method is capable of accurately describing solid-fluid interfaces without the need of boundary-fitted meshes to investigate the dynamics of particles in complex flows. In order to accurately compute the high interparticle shear stresses and pressures while minimizing computing costs, an adaptive meshing technique is incorporated with the fluid-structure interaction algorithm. The particle-particle interaction at the microscopic level is modeled using the Lennard-Jones (LJ)more » potential and the corresponding potential parameters are determined by a scaling procedure. The study is relevant to the preparation of inks used in the fabrication of catalyst layers for fuel cells. In this paper, we are particularly interested in investigating agglomeration of the nanoparticles under external shear flow in a sliding bi-periodic Lees-Edwards frame. The results indicate that the external shear has a crucial impact on the structure formation of colloidal particles in a suspension.« less

  19. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution

    DOE PAGES

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; ...

    2017-02-24

    We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less

  20. Efficient light harvesting within a C153@Zr-based MOF embedded in a polymeric film: spectral and dynamical characterization.

    PubMed

    Gutiérrez, M; López-González, M; Sánchez, F; Douhal, A

    2017-07-21

    Light harvesting is a natural phenomenon that scientists try to mimic in artificial systems. Having this in mind, attention has been focused on using new smart-materials for photonics. Herein, we report on the photobehaviour of a Zr-NDC MOF (NDC = dimethyl 2,6-naphthalenedicarboxylate) and its composite material, Coumarin153@Zr-NDC, embedded within a polymeric membrane of poly[bisphenol A carbonate-co-4,4'-(3,3,5-trimethylcyclohexylidene)diphenol carbonate] (PC). For the mixed matrix membrane (MMM) Zr-NDC/PC, we observed interparticle excimer-like formation, taking place in times shorter than 15 ps and giving rise to a red-shifted broad emission band. The interparticle interactions are supported by the SEM images, as they reflect the contact between the MOF crystals. The C153@Zr-NDC/PC material presents an energy transfer (ET) process from the excited MOF to the trapped C153 molecules in 820 ps, with a 35 nm red-shifted emission band corresponding to C153 in PC. The fluorescence quantum yield, as a result of this ET from the MOF, is high enough (25%) to explore the possibility of using this new composite material in a LED device. To elucidate the observed photobehavior, we compared it with those of C153/PC and (2,6-NDC + C153)/PC films. These results shed light on the spectroscopic and dynamical properties of these new composite materials formed by a highly fluorescent molecule, and easily synthesized MOFs and polymeric matrices, opening the way for more research based on these mixed inorganic and organic compounds for possible applications in the fields of luminescence sensing and emitting devices.

  1. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution.

    PubMed

    Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Tsai, De-Hao; Ilavsky, Jan

    2017-03-21

    We present an experimental study of the structural and dynamical properties of bimodal, micrometer-sized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular-weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXS-based X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5% and systematically increased the volume fraction of the small particles from 0 to 5% to evaluate their effects on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can be satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard-sphere potential when the size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles did not exhibit a significant variation with increasing volume fraction of the small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of the small particles. The dynamics of single-component large-particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate a strong dependence on the fraction of small particles. We also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with the theoretical predictions, which suggest that the complex mutual interactions between the large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.

  2. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.

    We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less

  3. Thermally tunable grating using thermo-responsive magnetic fluid

    NASA Astrophysics Data System (ADS)

    Zaibudeen, A. W.; Philip, John

    2017-04-01

    We report a thermally tunable grating prepared using poly(N-isopropylacrylamide) and super paramagnetic iron oxide nanoparticles. The array spacing is reversibly tuned by varying the temperature between 5 and 38 °C. Here, the ability of thermo-responsive polymer brushes to alter their conformation at an interface is exploited to control the grating spacing in nanoscale. The underlying mechanism for the temperature dependent conformational changes are studied by measuring the subtle intermolecular forces between the polymer covered interfaces. It is observed that the interparticle forces are repulsive and exponentially decaying with distance. The thermo-responsive grating is simple to use and offers a wide range of applications.

  4. The Role of Repulsion in Colloidal Crystal Engineering with DNA

    DOE PAGES

    Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.; ...

    2017-10-24

    Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost a decade ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. In this paper, a comprehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson–Crickmore » base-pairing interactions and depletion interactions—and systematically varied the salt concentration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive interactions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. Finally, this model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less

  5. Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties

    NASA Astrophysics Data System (ADS)

    Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.

    2014-11-01

    We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1 /L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.

  6. Local thermodynamics and the generalized Gibbs-Duhem equation in systems with long-range interactions.

    PubMed

    Latella, Ivan; Pérez-Madrid, Agustín

    2013-10-01

    The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.

  7. The Role of Repulsion in Colloidal Crystal Engineering with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.

    Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost a decade ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. In this paper, a comprehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson–Crickmore » base-pairing interactions and depletion interactions—and systematically varied the salt concentration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive interactions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. Finally, this model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less

  8. The Role of Repulsion in Colloidal Crystal Engineering with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.

    Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost two decades ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. Here, a com-prehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson-Crick base pairingmore » interactions and depletion interactions—and systematically varied the salt concen-tration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive inter-actions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. This model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less

  9. Erasing no-man's land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles.

    PubMed

    Smallenburg, Frank; Filion, Laura; Sciortino, Francesco

    2014-09-01

    One of the most controversial hypotheses for explaining the origin of the thermodynamic anomalies characterizing liquid water postulates the presence of a metastable second-order liquid-liquid critical point [1] located in the "no-man's land" [2]. In this scenario, two liquids with distinct local structure emerge near the critical temperature. Unfortunately, since spontaneous crystallization is rapid in this region, experimental support for this hypothesis relies on significant extrapolations, either from the metastable liquid or from amorphous solid water [3, 4]. Although the liquid-liquid transition is expected to feature in many tetrahedrally coordinated liquids, including silicon [5], carbon [6] and silica, even numerical studies of atomic and molecular models have been unable to conclusively prove the existence of this transition. Here we provide such evidence for a model in which it is possible to continuously tune the softness of the interparticle interaction and the flexibility of the bonds, the key ingredients controlling the existence of the critical point. We show that conditions exist where the full coexistence is thermodynamically stable with respect to crystallization. Our work offers a basis for designing colloidal analogues of water exhibiting liquid-liquid transitions in equilibrium, opening the way for experimental confirmation of the original hypothesis.

  10. Simulation study of charged nanoparticles confined in a rectangular tube with discrete wall charges.

    PubMed

    Yuet, Pak K

    2006-03-28

    The development of novel nanomaterials has been a subject of intense interest in recent years. An interesting structure among these materials is the so-called "pea pods" (i.e., nanoparticles confined in nanotubes). To facilitate the development and commercialization of these materials, it is important that we have an in-depth understanding of their behavior. The study of confined charged particles is particularly challenging because of the long-ranged nature of electrostatic interaction, and both interparticle and particle-confinement interactions are likely to play a role in determining the system behavior. The primary objective of this study is to develop a better understanding of the behavior of charged nanoparticles in a charged tubular confinement using Monte Carlo simulation, with particular focus on the effect of electrostatic interactions on the structure of the particles. Simulation results have shown that (i) the structuring of confined particles is associated with the asymmetry of the long-ranged interaction and (ii) factors such as confinement geometry and particle charge and size asymmetry can be manipulated to produce different particle structures. The present study represents the first step in an attempt to gain further insight into the behavior of confined nanosystems, with the ultimate objective of exploiting these characteristics, particularly the interactions between the confined particles and their external environment, in developing novel nanomaterials.

  11. Superfluid drag in the two-component Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Sellin, Karl; Babaev, Egor

    2018-03-01

    In multicomponent superfluids and superconductors, co- and counterflows of components have, in general, different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be understood as a superflow of one component induced by phase gradients of the other component. Importantly, the drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors. Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.

  12. Resistance to densification, tensile strength and capsule-filling performance of some pharmaceutical diluents.

    PubMed

    Nikolakakis, I; Aragon, O B; Malamataris, S

    1998-07-01

    The purpose of this study was to compare some indicators of capsule-filling performance, as measured by tapped density under different conditions, and elucidate possible quantitative relationships between variation of capsule fill-weight (%CV) and gravitational and inter-particle forces (attractive or frictional) derived from measurements of particle size, true density, low compression and tensile strength. Five common pharmaceutical diluents (lactose, maize starch, talc, Emcocel and Avicel) were investigated and two capsule-filling methods (pouring powder and dosator nozzle) were employed. It was found that for the pouring-type method the appropriateness of Hausner's ratio (HR), Carr's compressibility index (CC%) and Kawakita's constant (alpha) as indicators of capsule fill-weight variation decreases in the order alpha > CC% > HR; the appropriateness of these indicators also decreases with increasing cylinder size and with impact velocity during tapping. For the dosator-type method the appropriateness of the indicators decreases in the order HR > CC% > alpha, the opposite of that for the pouring-type method; the appropriateness of the indicators increases with decreasing cylinder size and impact velocity. The relationship between %CV and the ratio of inter-particle attractive to gravitational forces calculated from measurements of particle size and true density (Fvdw/Wp) was more significant for the pouring-type capsule-filling method. For the dosator-type method a significant relationship (1% level) was found between %CV and the product of Fvdw/Wp and a function expressing the increase, with packing density (p(f)), in the ratio of frictional to attractive inter-particle forces derived from compression (P) and tensile-strength (T) testing, d(log(P/T))/d(p(f)). The value of tapped density in predictions of capsule-filling performance is affected by the testing conditions in a manner depending on the filling method applied. For the pouring-type method predictions can be based on the ratio of attractive (inter-particle) to gravitational forces, whereas for the dosator-type method the contribution of frictional and attractive forces should, because of packing density change, also be taken into account.

  13. Assembly of Nanowire Arrays: Exploring Interparticle Interactions, Particle Orientation, and Mixed Particle Arrays

    NASA Astrophysics Data System (ADS)

    Kirby, David J.

    This dissertation explores the fundamental interparticle and particle-substrate forces that contribute to nanowire assembly. Nanowires have a large aspect ratio which has made them favorable materials for applications in energy and sensing technologies. However, this anisotropy means that nanowires must be positioned and oriented during an assembly process. Within this work, the roles of gravity, van der Waals (VDW) attractions, and electrostatic repulsions are explored when different nanowire assemblies are created. Particles were synthesized by the template electrodeposition process so that stripes of different materials and therefore different VDW interactions could be patterned along the particle length. Electrostatic repulsions were provided by a small molecule coating or a porous silica shell to prevent aggregation during the assembly process. Chapters 2, 3, 5, 6, and 8 all used particles whose asymmetry was further adjusted by removal of a sacrificial segment to leave a partially etched nanowire (PEN), a rigid silica shell partially filled with a metal core. For these particles, the role of gravity was amplified due to the drastic density differences between the two segments. Topographic and high VDW surface interactions were patterned onto assembly substrates using photolithographic processing. These forces served as a passive template to direct nanowire assembly. The segment anisotropy of PENs allowed gravity to drive their sedimentation with the long axis perpendicular to the surface. The density difference between the two ends allowed them to convert between the horizontal and vertical orientation as they diffused on the substrate. Vertical arrays formed as particle concentrations increased while VDW attractions from neighboring PENs or the physical barrier of a microwell wall supported this structure. While vertical arrays were typically PENs, microwell walls were also able to enforce a vertical orientation on solid Au nanowires. These particles typically formed horizontal arrays on planar surfaces, but careful design of the microwell and nanowire dimensions enabled these particles to take on the vertical orientation. Solid nanowires and PENs with greater segment symmetry aligned parallel to the surface as gravity did not allow a conversion to the vertical orientation. When concentrated, these particles formed smectic row arrangements which were previously shown to originate from a balance of VDW attractions and electrostatic repulsions. Within rows of segmented particles, a preference was observed for like orientation of nearest neighbor particles (Chapter 6). With the aid of Monte Carlo simulations, it was determined that this observation was the result of small differences in VDW attractions between the two nanowire ends. Differences in VDW attraction were also applied to patterned surfaces (Chapter 7). Stripes of high VDW material (Au) were placed on a silica surface (a low VDW material). When relatively low surface concentrations were used, the high VDW regions collected Au nanowires and organized them into rows that were reminiscent of those observed on un-patterned surfaces at high particle concentrations. VDW and the gravitational force were explored as they combined to influence array orientation in binary PEN mixtures. Depending on the geometries of the particles combined, the contributions of gravity and interparticle interactions exhibited different balance in creating the final array. VDW and gravitational forces could also act as a force for reconfigurable nanowire assembly. In chapter 8, fluid flow was used to concentrate PENs and force them into horizontal arrangements. When fluid flow was stopped, van der Waals forces and gravity were responsible for a reorientation of the assembled particles into a standing array. These studies represent early steps into the future of nanowire assembly methods. I conclude this dissertation by discussing the implications of my work and providing perspective on their importance to the scientific community. I also offer suggestions for future work in nanowire assembly. These areas focus on the development of assembled nanowire devices, mixed nanowire assembly techniques, and potential stimuli responsive reconfigurable assemblies.

  14. Plasma Inter-Particle and Particle-Wall Interactions

    NASA Astrophysics Data System (ADS)

    Patino, Marlene Idy

    An improved understanding of plasma inter-particle and particle-wall interactions is critical to the advancement of plasma devices used for space electric propulsion, fusion, high-power communications, and next-generation energy systems. Two interactions of particular importance are (1) ion-atom collisions in the plasma bulk and (2) secondary electron emission from plasma-facing materials. For ion-atom collisions, interactions between fast ions and slow atoms are commonly dominated by charge-exchange and momentum-exchange collisions that are important to understanding the performance and behavior of many plasma devices. To investigate this behavior, this work developed a simple, well-characterized experiment that accurately measures the effects of high energy xenon ions incident on a background of xenon neutral atoms. By comparing these results to both analytical and computational models of ion-atom interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange collisions over all neutral background pressures, and (2) commonly overlooked interactions, including ion-induced electron emission and neutral-neutral ionization collisions, at high pressures. Data provide vital information on the angular scattering distributions of charge-exchange and momentum-exchange ions at 1.5 keV relevant for ion thrusters, and serve as canonical data for validation of plasma models. This work also investigates electron-induced secondary electron emission behavior relevant to materials commonly considered for plasma thrusters, fusion systems, and many other plasma devices. For such applications, secondary electron emission can alter the sheath potential, which can significantly affect device performance and life. Secondary electron emission properties were measured for materials that are critical to the efficient operation of many plasma devices, including: graphite (for tokamaks, ion thrusters, and traveling wave tubes), lithium (for tokamak walls), tungsten (the most promising material for future tokamaks such as ITER), and nickel (for plasma-enhanced chemistry). Measurements were made for incident electron energies up to 1.5 keV and angles between 0 and 78°. The most significant results from these measurements are as follows: (1) first-ever measurements of naturally-forming tungsten fuzz show a more than 40% reduction in secondary electron emission and an independence on incidence angle; (2) original measurements of lithium oxide show a 2x and 6x increase in secondary electron emission for 17% and 100% oxidation; and (3) unique measurements of Ni(110) single crystal show extrema in secondary electron emission when incidence angle is varied and an up to 36% increase at 0° over polycrystalline nickel. Each of these results are important discoveries for improving plasma devices. For example, from (1), the growth of tungsten fuzz in tokamaks is desirable for minimizing adverse secondary electron emission effects. From (2), the opposite is true for tokamaks with lithium coatings which are oxidized by typical residual gases. From (3), secondary electron emission from Ni(110) catalysts in plasma-enhanced chemistry may facilitate further reactions.

  15. Aqueous Colloid + Polymer Depletion System for Confocal Microscopy and Rheology

    NASA Astrophysics Data System (ADS)

    Park, Nayoung; Umanzor, Esmeralda J.; Conrad, Jacinta C.

    2018-05-01

    We developed a model depletion system with colloidal particles that were refractive index- and density-matched to 80 (w/w)% glycerol in water, and characterized the effect of interparticle interactions on the structure and dynamics of non-equilibrium phases. 2,2,2-trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles were synthesized following Kodger et al. (Sci. Rep. 5, 14635 (2015)). Particles were dispersed in glycerol/water solutions to generate colloidal suspensions with good control over electrostatic interactions and a moderately high background viscosity of 55 mPa-s. To probe the effects of charge screening and depletion attractions on the suspension phase behavior, we added NaCl and polyacrylamide (M_w = 186 kDa) at various concentrations to particle suspensions formulated at volume fractions of phi = 0.05 and 0.3 and imaged the suspensions using confocal microscopy. The particles were nearly hard spheres at a NaCl concentration of 20 mM, but aggregated when the concentration of NaCl was further increased. Changes in the particle structure and dynamics with increasing concentration of the depletant polyacrylamide followed the trends expected from earlier experiments on depletion-driven gelation. Additionally, we measured the viscosity and corrected first normal stress difference of suspensions formulated at phi = 0.4 with and without added polymer. The solvent viscosity was suitable for rheology measurements without the onset of instabilities such as secondary flows or edge fracture. These results validate this system as an alternative to one common model system, suspensions of poly(methyl methacrylate) particles and polystyrene depletants in organic solvents, for investigating phase behavior and flow properties in attractive colloidal suspensions.

  16. Entropic depletion in colloidal suspensions and polymer liquids: Role of nanoparticle surface topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debapriya; Yang, Jian; Schweizer, Kenneth S.

    2015-01-01

    Here, we employ a hybrid Monte Carlo plus integral equation theory approach to study how dense fluids of small nanoparticles or polymer chains mediate entropic depletion interactions between topographically rough particles where all interaction potentials are hard core repulsion. The corrugated particle surfaces are composed of densely packed beads which present variable degrees of controlled topographic roughness and free volume associated with their geometric crevices. This pure entropy problem is characterized by competing ideal translational and (favorable and unfavorable) excess entropic contributions. Surface roughness generically reduces particle depletion aggregation relative to the smooth hard sphere case. However, the competition betweenmore » ideal and excess packing entropy effects in the bulk, near the particle surface and in the crevices, results in a non-monotonic variation of the particle-monomer packing correlation function as a function of the two dimensionless length scale ratios that quantify the effective surface roughness. As a result, the inter-particle potential of mean force (PMF), second virial coefficient, and spinodal miscibility volume fraction vary non-monotonically with the surface bead to monomer diameter and particle core to surface bead diameter ratios. A miscibility window is predicted corresponding to an optimum degree of surface roughness that completely destroys depletion attraction resulting in a repulsive PMF. Variation of the (dense) matrix packing fraction can enhance or suppress particle miscibility depending upon the amount of surface roughness. Connecting the monomers into polymer chains destabilizes the system via enhanced contact depletion attraction, but the non-monotonic variations with surface roughness metrics persist.« less

  17. Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Bulchandani, Vir B.; Moore, Joel E.

    2018-04-01

    We study a one-dimensional gas of hard rods trapped in a harmonic potential, which breaks integrability of the hard-rod interaction in a nonuniform way. We explore the consequences of such broken integrability for the dynamics of a large number of particles and find three distinct regimes: initial, chaotic, and stationary. The initial regime is captured by an evolution equation for the phase-space distribution function. For any finite number of particles, this hydrodynamics breaks down and the dynamics becomes chaotic after a characteristic timescale determined by the interparticle distance and scattering length. The system fails to thermalize over the timescale studied (1 04 natural units), but the time-averaged ensemble is a stationary state of the hydrodynamic evolution. We close by discussing logical extensions of the results to similar systems of quantum particles.

  18. Luttinger theorem and imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Pieri, Pierbiagio; Strinati, Giancarlo Calvanese

    2017-04-01

    The proof of the Luttinger theorem, which was originally given for a normal Fermi liquid with equal spin populations formally described by the exact many-body theory at zero temperature, is here extended to an approximate theory given in terms of a "conserving" approximation also with spin imbalanced populations. The need for this extended proof, whose underlying assumptions are here spelled out in detail, stems from the recent interest in superfluid trapped Fermi atoms with attractive inter-particle interaction, for which the difference between two spin populations can be made large enough that superfluidity is destroyed and the system remains normal even at zero temperature. In this context, we will demonstrate the validity of the Luttinger theorem separately for the two spin populations for any "Φ-derivable" approximation, and illustrate it in particular for the self-consistent t-matrix approximation.

  19. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  20. Plasmon-mediated binding forces on gold or silver homodimer and heterodimer

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Kuo, Ting-Yu; Kuo, Mao-Kuen

    2016-02-01

    This study theoretically investigates plasmon-mediated optical binding forces, which are exerted on metal homo or heterodimers, induced by the normal illumination of a linearly polarized plane wave or Gaussian beam. Using the multiple multipole method, we analyzed the optical force in terms of Maxwell's stress tensor for various interparticle distance at some specific wavelengths. Numerical results show that for a given wavelength there are several stable equilibrium distances between two nanoparticles (NPs) of a homodimer, which are slightly shorter than some integer multiples of the wavelength in medium, such that metal dimer acts as bonded together. At these specific interparticle distances, the optical force between dimer is null and serves a restoring force, which is repulsive and attractive, respectively, as the two NPs are moving closer to and away from each other. The spring constant of the restoring force at the first stable equilibrium is always the largest, indicating that the first stable equilibrium distance is the most stable one. Moreover, the central line (orientation) of a dimer tends to be perpendicular to the polarization of light. For the cases of heterodimers, the phenomenon of stable equilibrium interparticle distance still exists, except there is an extra net photophoretic force drifting the heterodimer as one. Moreover, gradient force provided by a Gaussian beam may reduce the stability of these equilibriums, so larger NPs are preferred to stabilize a dimer under illumination of Gaussian beam. The finding may pave the way for using optical manipulation on the gold or silver colloidal self-assembly.

  1. Orthopositronium study of positron-irradiation-induced surface defects in alumina powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauwe, C.; Mbungu-Tsumbu

    1992-01-01

    Three-quantum-yield measurements and orthopositronium ({ital o}-Ps)-lifetime spectrometry at low temperatures are used to study the interaction of positronium with the surface in fine powders of aluminum oxide. It is found that electron and/or positron irradiation of the specimen induces surface defects which influence the positronium in three ways: (1) A surface positroniumlike bound state is created, (2) the fraction of {ital o}-Ps escaping from the particles is slightly inhibited, and (3) the escaped {ital o}-Ps is quenched into two-quantum decay upon collisions with the surface defects. It is found that the surface Ps state is not populated at the expensemore » of the interparticle Ps. The most likely surface defects are Al{sup 2+} or Al{sup 0} due to the migration of irradiation-induced interstitials. The techniques of long-lifetime spectrometry and of three-quantum-annihilation-rate measurement could be used to study both the diffusion of bulk defects to the surfaces, and the interactions of {ital o}-Ps to surface defects.« less

  2. Dynamic Electrorheological Effects of Rotating Particles:

    NASA Astrophysics Data System (ADS)

    Yu, K. W.; Gu, G. Q.; Huang, J. P.; Xiao, J. J.

    Particle rotation leads to a steady-state which is different from the equilibrium state in the absence of rotational motion. The change of the polarization of the particle due to the rotational motion is called the dynamic electrorheological effect (DER). There are three cases to be considered: rotating particles in a dc field, particle rotation due to a rotating field and spontaneous rotation of particle in dc field (Quincke rotation). In the DER of rotating particles, the particle rotational motion generally reduces the interparticle force between the particles. The effect becomes pronounced when the frequency is on the order of the relaxation rate of the surface charges. In the electrorotation of particles, the mutual interaction between approaching particles will change the electrorotation spectrum significantly. The electrorotation spectrum depends strongly on the medium conductivity as well as the conductivity contrast between the particle and the medium. In the collective behaviors of Quincke rotors, the mutual interactions between the individual rotors lead to the assembly of chain-like structures which make an angle with the applied field. This has an implication of a new class of material.

  3. Density Scaling of Glassy Dynamics and Dynamic Heterogeneities in Glass-forming Liquids.

    NASA Astrophysics Data System (ADS)

    Hu, Yuan-Chao; Yang, Yong; Wang, Wei-Hua

    The discovery of density scaling in strongly correlating systems is an important progress for understanding the dynamic behaviors of supercooled liquids. Here we found for a ternary metallic glass-forming liquid, it is not strongly correlating thermodynamically, but its average dynamics, dynamic heterogeneities and static structure are still well described by density scaling with the same scaling exponent γ. As an intrinsic material constant stemming from the fundamental interatomic interactions, γ is theoretically predicted from the thermodynamic fluctuations of potential energy and the virial. Although γ is conventionally understood merely from the repulsive part of the inter-particle potentials, the strong correlation between γ and the Grüneisen parameter up to the accuracy of the Dulong-Petit approximation demonstrates the important roles of anharmonicity and attractive force of the interatomic potential in governing glass transition of metallic glass-formers. The supercooled dynamics and density scaling behaviors will also be discussed in model glass-forming liquids with tunable attractive potentials to further quantify the nonperturbative roles of attractive interactions. We acknowledge the support from ''Peter Ho Conference Scholarships'' of City University of Hong Kong.

  4. Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows.

    PubMed

    Abe, Yu; Zhang, Bo; Gordillo, Leonardo; Karim, Alireza Mohammad; Francis, Lorraine F; Cheng, Xiang

    2017-02-22

    Colloidal particles can self-assemble into various ordered structures in fluid flows that have potential applications in biomedicine, materials synthesis and encryption. These dynamic processes are also of fundamental interest for probing the general principles of self-assembly under non-equilibrium conditions. Here, we report a simple microfluidic experiment, where charged colloidal particles self-assemble into flow-aligned 1D strings with regular particle spacing near a solid boundary. Using high-speed confocal microscopy, we systematically investigate the influence of flow rates, electrostatics and particle polydispersity on the observed string structures. By studying the detailed dynamics of stable flow-driven particle pairs, we quantitatively characterize interparticle interactions. Based on the results, we construct a simple model that explains the intriguing non-equilibrium self-assembly process. Our study shows that the colloidal strings arise from a delicate balance between attractive hydrodynamic coupling and repulsive electrostatic interaction between particles. Finally, we demonstrate that, with the assistance of transverse electric fields, a similar mechanism also leads to the formation of 2D colloidal walls.

  5. Pressure and compressibility factor of bidisperse magnetic fluids

    NASA Astrophysics Data System (ADS)

    Minina, Elena S.; Blaak, Ronald; Kantorovich, Sofia S.

    2018-04-01

    In this work, we investigate the pressure and compressibility factors of bidisperse magnetic fluids with relatively weak dipolar interactions and different granulometric compositions. In order to study these properties, we employ the method of diagram expansion, taking into account two possible scenarios: (1) dipolar particles repel each other as hard spheres; (2) the polymer shell on the surface of the particles is modelled through a soft-sphere approximation. The theoretical predictions of the pressure and compressibility factors of bidisperse ferrofluids at different granulometric compositions are supported by data obtained by means of molecular dynamics computer simulations, which we also carried out for these systems. Both theory and simulations reveal that the pressure and compressibility factors decrease with growing dipolar correlations in the system, namely with an increasing fraction of large particles. We also demonstrate that even if dipolar interactions are too weak for any self-assembly to take place, the interparticle correlations lead to a qualitative change in the behaviour of the compressibility factors when compared to that of non-dipolar spheres, making the dependence monotonic.

  6. Spin-dependent excitation of plasma modes in non-neutral ion plasmas

    NASA Astrophysics Data System (ADS)

    Sawyer, Brian C.; Britton, Joe W.; Bollinger, John J.

    2011-10-01

    We report on a new technique for exciting and sensitively detecting plasma modes in small, cold non-neutral ion plasmas. The technique uses an optical dipole force generated from laser beams to excite plasma modes. By making the force spin- dependent (i.e. depend on the internal state of the atomic ion) very small mode excitations (<100 nm) can be detected through spin-motion entanglement. Even when the optical dipole force is homogeneous throughout the plasma, short wavelength modes on the order of the interparticle spacing can in principle be excited and detected through the spin dependence of the force. We use this technique to study the drumhead modes of single plane triangular arrays of a few hundred Be+ ions. Spin-dependent mode excitation is interesting in this system because it provides a means of engineering an Ising interaction on a 2-D triangular lattice. For the case of an anti-ferromagnetic interaction, this system exhibits spin frustration on a scale that is at present computationally intractable. Work supported by the DARPA OLE program and NIST.

  7. Quantum Simulation

    NASA Astrophysics Data System (ADS)

    Orzel, Chad

    2017-06-01

    One of the most active areas in atomic, molecular and optical physics is the use of ultracold atomic gases in optical lattices to simulate the behaviour of electrons in condensed matter systems. The larger mass, longer length scale, and tuneable interactions in these systems allow the dynamics of atoms moving in these systems to be followed in real time, and resonant light scattering by the atoms allows this motion to be probed on a microscopic scale using site-resolved imaging. This book reviews the physics of Hubbard-type models for both bosons and fermions in an optical lattice, which give rise to a rich variety of insulating and conducting phases depending on the lattice properties and interparticle interactions. It also discusses the effect of disorder on the transport of atoms in these models, and the recently discovered phenomenon of many-body localization. It presents several examples of experiments using both density and momentum imaging and quantum gas microscopy to study the motion of atoms in optical lattices. These illustrate the power and flexibility of ultracold-lattice analogues for exploring exotic states of matter at an unprecedented level of precision.

  8. Hydrodynamic entrainment in micro-confined suspensions and its implications for two-point microrheology

    NASA Astrophysics Data System (ADS)

    Aponte-Rivera, Christian; Zia, Roseanna N.

    2017-11-01

    We study hydrodynamic entrainment in spherically confined colloidal suspensions of hydrodynamically interacting particles as a model system for intracellular and other micro-confined biophysical transport. Modeling of transport and rheology in such materials requires an accurate description of the microscopic forces driving particle motion and of particle interactions with nearby boundaries. We carry out dynamic simulations of concentrated, spherically confined colloids as a model system to study the effect of 3D confinement on entrainment and rheology. We show that entrainment between two tracer particles exhibits qualitatively different functional dependence on inter-particle separation as compared to an unbound suspension, and develop a scaling theory that collapses the concentrated mobility of spherically confined suspensions for all volume fractions and particle to cavity size ratios onto a master curve. For widely separated particles, the master curve can be predicted via a Green's function, which suggests a framework with which to conduct two-point microrheology measurements near confining boundaries. The implications of these results for experiments in micro-confined biophysical systems, such as the interior of eukaryotic cells, are discussed.

  9. In-situ USAXS/SAXS Investigation of Tunable Structural Color in Amorphous Photonic Crystals During Electrophoretic Deposition

    NASA Astrophysics Data System (ADS)

    Bukosky, Scott; Hammons, Joshua; Han, Jinkyu; Freyman, Megan; Lee, Elaine; Cook, Caitlyn; Kuntz, Joshua; Worsley, Marcus; Han, Thomas Yong; Ristenpart, William; Pascall, Andrew

    2017-11-01

    Amorphous photonic crystals (APCs) formed via electrophoretic deposition (EPD) exhibit non-iridescent, angle-independent, structural colors believed to arise from changes in the particle-particle interactions and inter-particle spacing, representing a potential new paradigm for display technologies. However, particle dynamics on nanometer length scales that govern the displayed color, crystallinity, and other characteristics of the photonic structures, are not well understood. In this work, in-situ USAXS/SAXS studies of three-dimensional colloidal particle arrays were performed in order to identify their structural response to applied external electric fields. These results were compared to simultaneously acquired UV-Vis spectra to tie the overall electrically induced structure of the APCs directly to the observed changes in visible color. The structural evolution of the APCs provides new information regarding the correlation between nano-scale particle-particle interactions and the corresponding optical response. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-736068.

  10. Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metere, Alfredo, E-mail: alfredo.metere@mmk.su.se; Oleynikov, Peter; Dzugutov, Mikhail

    2014-12-21

    We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process,more » can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction.« less

  11. Controlled gas-liquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro; Hatakeyama, Rikizo

    2018-01-01

    Plasmas generated in contact with a liquid have been recognized to be a novel reactive field in nano-bio-carbon conjugate creation because several new chemical reactions have been yielded at the gas-liquid interface, which were induced by the physical dynamics of non-equilibrium plasmas. One is the ion irradiation to a liquid, which caused the spatially selective dissociation of the liquid and the generation of additive reducing and oxidizing agents, resulting in the spatially controlled synthesis of nanostructures. The other is the electron irradiation to a liquid, which directly enhanced the reduction action at the plasma-liquid interface, resulting in temporally controlled nanomaterial synthesis. Using this novel reaction field, gold nanoparticles with controlled interparticle distance were synthesized using carbon nanotubes as a template. Furthermore, nanoparticle-biomolecule conjugates and nanocarbon-biomolecule conjugates were successfully synthesized by an aqueous-solution contact plasma and an electrolyte plasma, respectively, which were rapid and low-damage processes suitable for nano-bio-carbon conjugate materials.

  12. Nanoparticle Superlattice Engineering with DNA

    NASA Astrophysics Data System (ADS)

    Macfarlane, Robert J.; Lee, Byeongdu; Jones, Matthew R.; Harris, Nadine; Schatz, George C.; Mirkin, Chad A.

    2011-10-01

    A current limitation in nanoparticle superlattice engineering is that the identities of the particles being assembled often determine the structures that can be synthesized. Therefore, specific crystallographic symmetries or lattice parameters can only be achieved using specific nanoparticles as building blocks (and vice versa). We present six design rules that can be used to deliberately prepare nine distinct colloidal crystal structures, with control over lattice parameters on the 25- to 150-nanometer length scale. These design rules outline a strategy to independently adjust each of the relevant crystallographic parameters, including particle size (5 to 60 nanometers), periodicity, and interparticle distance. As such, this work represents an advance in synthesizing tailorable macroscale architectures comprising nanoscale materials in a predictable fashion.

  13. Pair interactions in polyelectrolyte-nanoparticle systems: Influence of dielectric inhomogeneities and the partial dissociation of polymers and nanoparticles.

    PubMed

    Pryamitsyn, Victor; Ganesan, Venkat

    2015-10-28

    We study the effective pair interactions between two charged spherical particles in polyelectrolyte solutions using polymer self-consistent field theory. In a recent study [V. Pryamitsyn and V. Ganesan, Macromolecules 47, 6095 (2015)], we considered a model in which the particles possess fixed charge density, the polymers contain a prespecified amount of dissociated charges and, the dielectric constant of the solution was assumed to be homogeneous in space and independent of the polymer concentration. In this article, we present results extending our earlier model to study situations in which either or both the particle and the polymers possess partially dissociable groups. Additionally, we also consider the case when the dielectric constant of the solution depends on the local concentration of the polymers and when the particle's dielectric constant is lower than that of the solvent. For each case, we quantify the polymer-mediated interactions between the particles as a function of the polymer concentrations and the degree of dissociation of the polymer and particles. Consistent with the results of our previous study, we observe that the polymer-mediated interparticle interactions consist of a short-range attraction and a long-range repulsion. The partial dissociablity of the polymer and particles was seen to have a strong influence on the strength of the repulsive portion of the interactions. Rendering the dielectric permittivity to be inhomogeneous has an even stronger effect on the repulsive interactions and results in changes to the qualitative nature of interactions in some parametric ranges.

  14. Multi-scale mechanics of granular solids from grain-resolved X-ray measurements

    NASA Astrophysics Data System (ADS)

    Hurley, R. C.; Hall, S. A.; Wright, J. P.

    2017-11-01

    This work discusses an experimental technique for studying the mechanics of three-dimensional (3D) granular solids. The approach combines 3D X-ray diffraction and X-ray computed tomography to measure grain-resolved strains, kinematics and contact fabric in the bulk of a granular solid, from which continuum strains, grain stresses, interparticle forces and coarse-grained elasto-plastic moduli can be determined. We demonstrate the experimental approach and analysis of selected results on a sample of 1099 stiff, frictional grains undergoing multiple uniaxial compression cycles. We investigate the inter-particle force network, elasto-plastic moduli and associated length scales, reversibility of mechanical responses during cyclic loading, the statistics of microscopic responses and microstructure-property relationships. This work serves to highlight both the fundamental insight into granular mechanics that is furnished by combined X-ray measurements and describes future directions in the field of granular materials that can be pursued with such approaches.

  15. Ostwald ripening and interparticle-diffraction effects for illite crystals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.

    1988-01-01

    The Warren-Averbach method, an X-ray diffraction (XRD) method used to measure mean particle thickness and particle-thickness distribution, is used to restudy sericite from the Silverton caldera. Apparent particle-thickness distributions indicate that the clays may have undergone Ostwald ripening and that this process has modified the K-Ar ages of the samples. The mechanism of Ostwald ripening can account for many of the features found for the hydrothermal alteration of illite. Expandabilities measured by the XRD peak-position method for illite/smectites (I/S) from various locations are smaller than expandabilities measured by transmission electron microscopy (TEM) and by the Warren-Averbach (W-A) method. This disparity is interpreted as being related to the presence of nonswelling basal surfaces that form the ends of stacks of illite particles (short-stack effect), stacks that, according to the theory of interparticle diffraction, diffract as coherent X-ray scattering domains. -from Authors

  16. Design principles for wave plate metasurfaces using plasmonic L-shaped nanoantennas

    NASA Astrophysics Data System (ADS)

    Tahir, Asad A.; Schulz, Sebastian A.; De Leon, Israel; Boyd, Robert W.

    2017-03-01

    Plasmonic L-shaped antennas are an important building block of metasurfaces and have been used to fabricate ultra-thin wave plates. In this work we present principles that can be used to design wave plates at a wavelength of choice and for diverse application requirements using arrays of L-shaped plasmonic antennas. We derive these design principles by studying the behavior of the vast parameter space of these antenna arrays. We show that there are two distinct regimes: a weak inter-particle coupling and a strong inter-particle coupling regime. We describe the behavior of the antenna array in each regime with regards to wave plate functionality, without resorting to approximate theoretical models. Our work is the first to explain these design principles and serves as a guide for designing wave plates for specific application requirements using plasmonic L-shaped antenna arrays.

  17. A microsphere assembly method with laser microwelding for fabrication of three-dimensional periodic structures

    NASA Astrophysics Data System (ADS)

    Takagi, Kenta; Omote, Masanori; Kawasaki, Akira

    2010-03-01

    The orderly build-up of monosized microspheres with sizes of hundreds of micrometres enabled us to develop three-dimensional (3D) photonic crystal devices for terahertz electromagnetic waves. We designed and manufactured an original 3D particle assembly system capable of fabricating arbitrary periodic structures from these spherical particles. This method employs a pick-and-place assembling approach with robotic manipulation and interparticle laser microwelding in order to incorporate a contrivance for highly accurate arraying: an operation that compensates the size deviation of raw monosized particles. Pre-examination of particles of various materials revealed that interparticle laser welding must be achieved with local melting by suppressing heat diffusion from the welding area. By optimizing the assembly conditions, we succeeded in fabricating an accurate periodic structure with a diamond lattice from 400 µm polyethylene composite particles. This structure demonstrated a photonic bandgap in the terahertz frequency range.

  18. Resource homogenization in degraded arid landscapes induced by fire - erosion interactions

    NASA Astrophysics Data System (ADS)

    Ravi, S.; D'Odorico, P.; Wang, L.; Collins, S. L.; White, C. S.; Okin, G. S.

    2007-12-01

    Hydrological and aeolian processes are major drivers in the dynamics of arid landscapes in that they redistribute soil resources with important implications on the composition and spatial patterns of dryland vegetation. These processes are thought to play a major role in the conversion of disturbed desert grasslands into shrublands, with possible impacts on regional climate and desertification. At its early stages the grassland-to-shrubland transition can be still reversible and fires have been shown to contribute to the reversibility of the system. Even though fires are know to interact both with wind and water erosion, an understanding of these interactions and of their effect on aridland degradation is still missing. Here we use field manipulation experiments in a grass-shrub transition zone in the Chihuahuan desert to show how the interaction of fires with erosion processes may affect the distribution of soil resources with consequent effects on the pace of land degradation processes. Using microtopography measurements and isotopic analyses, we provide experimental evidence for the occurrence of post-fire enhancement of soil erosion, and relate this effect to the weakening of interparticle bonding forces associated with the emergence of fire-induced soil hydrophobicity. We also show how this effect favors the reversibility of the early stages of shrub-to-grass transition through the redistribution of soil resources from the fertile shrub-dominated areas (or "fertility islands") to the bare soil interspaces.

  19. Insights into DNA-mediated interparticle interactions from a coarse-grained model

    NASA Astrophysics Data System (ADS)

    Ding, Yajun; Mittal, Jeetain

    2014-11-01

    DNA-functionalized particles have great potential for the design of complex self-assembled materials. The major hurdle in realizing crystal structures from DNA-functionalized particles is expected to be kinetic barriers that trap the system in metastable amorphous states. Therefore, it is vital to explore the molecular details of particle assembly processes in order to understand the underlying mechanisms. Molecular simulations based on coarse-grained models can provide a convenient route to explore these details. Most of the currently available coarse-grained models of DNA-functionalized particles ignore key chemical and structural details of DNA behavior. These models therefore are limited in scope for studying experimental phenomena. In this paper, we present a new coarse-grained model of DNA-functionalized particles which incorporates some of the desired features of DNA behavior. The coarse-grained DNA model used here provides explicit DNA representation (at the nucleotide level) and complementary interactions between Watson-Crick base pairs, which lead to the formation of single-stranded hairpin and double-stranded DNA. Aggregation between multiple complementary strands is also prevented in our model. We study interactions between two DNA-functionalized particles as a function of DNA grafting density, lengths of the hybridizing and non-hybridizing parts of DNA, and temperature. The calculated free energies as a function of pair distance between particles qualitatively resemble experimental measurements of DNA-mediated pair interactions.

  20. Surface Majorana fermions and bulk collective modes in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Park, YeJe; Chung, Suk Bum; Maciejko, Joseph

    2015-02-01

    The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.

  1. Dynamics of a suspension of interacting yolk-shell particles

    DOE PAGES

    Sánchez Díaz, L. E.; Cortes-Morales, E. C.; Li, X.; ...

    2014-12-01

    In this work we study the self-diusion properties of a liquid of hollow spherical particles (shells) bearing a smaller solid sphere in their interior (yolks). We model this system using purely repulsive hard-body interactions between all (shell and yolk) particles, but assume the presence of a background ideal solvent such that all the particles execute free Brownian motion between collisions, characterized by short-time self-diusion coecients D0 s for the shells and D0 y for the yolks. Using a softened version of these interparticle potentials we perform Brownian dynamics simulations to determine the mean squared displacement and intermediate scattering function ofmore » the yolk-shell complex. These results can be understood in terms of a set of eective Langevin equations for the N interacting shell particles, pre-averaged over the yolks' degrees of freedom, from which an approximate self-consistent description of the simulated self-diusion properties can be derived. Here we compare the theoretical and simulated results between them, and with the results for the same system in the absence of yolks. We nd that the yolks, which have no eect on the shell-shell static structure, in uence the dynamic properties in a predictable manner, fully captured by the theory.« less

  2. Influence of dipolar interactions on the angular-dependent coercivity of nickel nanocylinders

    NASA Astrophysics Data System (ADS)

    Bender, P.; Krämer, F.; Tschöpe, A.; Birringer, R.

    2015-04-01

    In this study the influence of dipolar interactions on the orientation-dependent magnetization behavior of an ensemble of single-domain nickel nanorods was investigated. The rods were synthesized by electrodeposition of nickel into porous alumina templates. Some of the rods were released from the oxide and embedded in gelatine hydrogels (ferrogel) at a sufficiently large average interparticle distance to suppress dipolar interactions. By comparing the orientation-dependent hystereses of the two ensembles in the template and the gel-matrix it could be shown that the dipolar interactions in the template considerably alter the functional form of the angular-dependent coercivity. Analysis of the magnetization curves for an angle of 60° between the rod-axes and the field revealed a significantly reduced coercivity of the template compared to the ferrogel, which could be directly attributed to a stray field induced magnetization reversal of a steadily increasing number of rods with increasing field strength. The magnetization curve of the template could be approximated by a weighted linear superposition of the hysteresis branches of the ferrogel. The magnetization reversal process of the rods was investigated by analyzing the angular-dependent coercivity of the non-interacting nanorods. Comparison of the functional form with analytical models and micromagnetic simulations emphasized the assumption of a localized magnetization reversal. Additionally, it could be shown that the nucleation field of rods with diameters in the range 18-29 nm tends to increase with increasing diameter.

  3. Photonic Architectures for Equilibrium High-Temperature Bose-Einstein Condensation in Dichalcogenide Monolayers

    PubMed Central

    Jiang, Jian-Hua; John, Sajeev

    2014-01-01

    Semiconductor-microcavity polaritons are composite quasiparticles of excitons and photons, emerging in the strong coupling regime. As quantum superpositions of matter and light, polaritons have much stronger interparticle interactions compared with photons, enabling rapid equilibration and Bose-Einstein condensation (BEC). Current realizations based on 1D photonic structures, such as Fabry-Pérot microcavities, have limited light-trapping ability resulting in picosecond polariton lifetime. We demonstrate, theoretically, above-room-temperature (up to 590 K) BEC of long-lived polaritons in MoSe2 monolayers sandwiched by simple TiO2 based 3D photonic band gap (PBG) materials. The 3D PBG induces very strong coupling of 40 meV (Rabi splitting of 62 meV) for as few as three dichalcogenide monolayers. Strong light-trapping in the 3D PBG enables the long-lived polariton superfluid to be robust against fabrication-induced disorder and exciton line-broadening. PMID:25503586

  4. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  5. Pickup Ion Mass Spectrometry for Surface Bounded Exospheres and Composition Mapping of Lunar and Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Zurbuchen, T. H.; Baragiola, R. A.; Cassidy, T. A.; Chornay, D. J.; Collier, M. R.; Hartle, R. E.; Johnson, R. E.; Killen, R. M.; Koehn, P.

    2005-01-01

    Many of the small to medium sized objects in the solar system can be characterized as having surface bounded exospheres, or atmospheres so tenuous that scale lengths for inter-particle collisions are much larger than the dimensions of the objects. The atmospheres of these objects are the product of their surfaces, both the surface composition and the interactions that occur on them and also their interiors when gases escape from there. Thus by studying surface bounded exospheres it is possible to develop insight into the composition and processes that are taking place on the surface and interiors of these objects. The Moon and Mercury are two examples of planetary bodies with surface bounded exospheres that have been studied through spectroscopic observations of sodium, potassium, and, on the moon, mass spectrometric measurements of lunar gases such as argon and helium.

  6. The rate of collisions due to Brownian or gravitational motion of small drops

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaoguang; Davis, Robert H.

    1991-01-01

    Quantitative predictions of the collision rate of two spherical drops undergoing Brownian diffusion or gravitational sedimentation are presented. The diffusion equation for relative Brownian motion of two drops is derived, and the relative motion of pairs of drops in gravitational sedimentation is traced via a trajectory analysis in order to develop theoretical models to determine the collision efficiencies, both with and without interparticle forces applied between the drops. It is concluded that finite collision rates between nondeforming fluid drops are possible for Brownian diffusion or gravitational sedimentation in the absence of attractive forces, in stark contrast to the prediction that lubrication forces prevent rigid spheres from contacting each other unless an attractive force that becomes infinite as the separation approaches zero is applied. Collision rates are shown to increase as the viscosity of the drop-phase decreases. In general, hydrodynamic interactions reduce the collision rates more for gravitational collisions than for Brownian collisions.

  7. Molecular dynamics study of the structure and interparticle interactions of polyethylene glycol-conjugated PAMAM dendrimers.

    PubMed

    Lee, Hwankyu; Larson, Ronald G

    2009-10-08

    We performed molecular dynamics (MD) simulations of one or two copies of polyethylene glycol of molecular weight 550 (PEG550) and 5000 (PEG5000) daltons, conjugated to generation 3 (G3) to 5 (G5) polyamidoamine (PAMAM) dendrimers with explicit water using a coarse-grained model. We found the radii of gyration of these dendrimer-PEG molecules to be close to those measured in experiments by Hedden and Bauer (Hedden , R. C. ; Bauer , B. J. Macromolecules 2003 , 36 , 1829.). Densely grafted PEG ligands (>50% of the dendrimer surface) extend like brushes, with layer thickness in agreement with theory for starlike polymers. Two dendrimer-PEG complexes in the box drift away from each other, indicating that no aggregation is induced by either short or long PEG chains, conflicting with a recent view that the cytotoxicity of some PEGylated particles might be due to particle aggregation for long PEG lengths.

  8. The effect of magnetic nanoparticle concentration on the structure organisation of a microferrogel

    NASA Astrophysics Data System (ADS)

    Ryzhkov, A. V.; Melenev, P. V.; Balasoiu, M.; Raikher, Yu L.

    2018-03-01

    Coarse-grained molecular dynamics simulation is applied to study the structural response of micro-sized magnetopolymer objects – microferrogels (MFG). The results for MFGs with different magnetic properties and concentrations of magnetic filler nanoparticles are analysed to detect the transition between non-aggregated configurations and the states with pronounced chains. The nanoparticles are assumed to be either magnetically isotropic or to possess infinite magnetic anisotropy. It is shown that, depending on the type of the particle anisotropy, an applied field in rather different ways affects the MFG structure and shape. Diagrams describing the degree of aggregation as a function of the parameter of the interparticle magnetodipolar interaction and concentration are presented. In particular, it is found that in the case of infinitely anisotropic nanoparticles the aggregation transitions undergoes via a non-trivial scenario. The effect of the structure transformations on the volume change of the MFG objects is studied as well.

  9. Thermodynamic properties of water in confined environments: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Gladovic, Martin; Bren, Urban; Urbic, Tomaž

    2018-05-01

    Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.L.; Lighty, R.G.

    Coral-rudist reefs of the Lower Cretaceous Mural limestone, southeastern Arizona, show a pronounced relationship between specific reef facies, primary porosity, and early submarine diagenesis. These large open-shelf reefs differ from the well-studied low-relief rudist buildups, and provide an alternate analog for many Cretaceous reef reservoirs. Arizona buildups have diverse corals, high depositional relief, and a well-developed facies zonation from fore reef to back reef: skeletal grainstone talus, muddy fore reef with branching and lamellar corals, massive reef crest with abundant lamellar corals and sandy matrix, protected thickets of delicate branching corals and large rudist mounds, and a wide sediment apronmore » of well-washed coral, rudist, and benthic foraminiferal sands. These well-exposed outcrops permit a detailed facies comparison of primary interparticle porosity. Porosity as high as 40% in grainstones was occluded by later subsurface cements. Reef-framework interparticle porosity was negligible because fore-reef coral and back-reef rudist facies were infilled by muds, and high-energy reef-crest frameworks were filled by peloidal submarine cement crusts and muddy skeletal sands. These thick crusts coated lamellar corals in cryptic and open reef-crest areas, and are laminated with ripple and draped bed forms that suggest current influence. Similar peloidal crusts and laminated textures are common magnesium-calcite submarine cement features in modern reefs. By documenting specific facies control on early cementation and textural variability, patterns of late-stage subsurface diagenesis and secondary porosity may be more easily explained for Cretaceous reef reservoirs. Significant primary porosity might be retained between sands in back-reef facies and within coral skeletons.« less

  11. Discrete elastic model for two-dimensional melting.

    PubMed

    Lansac, Yves; Glaser, Matthew A; Clark, Noel A

    2006-04-01

    We present a network model for the study of melting and liquid structure in two dimensions, the first in which the presence and energy of topological defects (dislocations and disclinations) and of geometrical defects (elemental voids) can be independently controlled. Interparticle interaction is via harmonic springs and control is achieved by Monte Carlo moves which springs can either be orientationally "flipped" between particles to generate topological defects, or can be "popped" in force-free shape, to generate geometrical defects. With the geometrical defects suppressed the transition to the liquid phase occurs via disclination unbinding, as described by the Kosterlitz-Thouless-Halperin-Nelson-Young model and found in soft potential two-dimensional (2D) systems, such as the dipole-dipole potential [H. H. von Grünberg, Phys. Rev. Lett. 93, 255703 (2004)]. By contrast, with topological defects suppressed, a disordering transition, the Glaser-Clark condensation of geometrical defects [M. A. Glaser and N. A. Clark, Adv. Chem. Phys. 83, 543 (1993); M. A. Glaser, (Springer-Verlag, Berlin, 1990), Vol. 52, p. 141], produces a state that accurately characterizes the local liquid structure and first-order melting observed in hard-potential 2D systems, such as hard disk and the Weeks-Chandler-Andersen (WCA) potentials (M. A. Glaser and co-workers, see above). Thus both the geometrical and topological defect systems play a role in melting. The present work introduces a system in which the relative roles of topological and geometrical defects and their interactions can be explored. We perform Monte Carlo simulations of this model in the isobaric-isothermal ensemble, and present the phase diagram as well as various thermodynamic, statistical, and structural quantities as a function of the relative populations of geometrical and topological defects. The model exhibits a rich phase behavior including hexagonal and square crystals, expanded crystal, dodecagonal quasicrystal, and isotropic liquid phases. In this system the geometrical defects effectively control the melting, reducing the solid-liquid transition temperature by a factor of relative to the topological-only case. The local structure of the dense liquid has been investigated and the results are compared to that from simulations of WCA systems.

  12. Extrinsic extinction cross-section in the multiple acoustic scattering by fluid particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-04-01

    Cross-sections (and their related energy efficiency factors) are physical parameters used in the quantitative analysis of different phenomena arising from the interaction of waves with a particle (or multiple particles). Earlier works with the acoustic scattering theory considered such quadratic (i.e., nonlinear) quantities for a single scatterer, although a few extended the formalism for a pair of scatterers but were limited to the scattering cross-section only. Therefore, the standard formalism applied to viscous particles is not suitable for the complete description of the cross-sections and energy balance of the multiple-particle system because both absorption and extinction phenomena arise during the multiple scattering process. Based upon the law of the conservation of energy, this work provides a complete comprehensive analysis for the extrinsic scattering, absorption, and extinction cross-sections (i.e., in the far-field) of a pair of viscous scatterers of arbitrary shape, immersed in a nonviscous isotropic fluid. A law of acoustic extinction taking into consideration interparticle effects in wave propagation is established, which constitutes a generalized form of the optical theorem in multiple scattering. Analytical expressions for the scattering, absorption, and extinction cross-sections are derived for plane progressive waves with arbitrary incidence. The mathematical expressions are formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. The analysis shows that the multiple scattering cross-section depends upon the expansion coefficients of both scatterers in addition to an interference factor that depends on the interparticle distance. However, the extinction cross-section depends on the expansion coefficients of the scatterer located in a particular system of coordinates, in addition to the interference term. Numerical examples illustrate the analysis for two viscous fluid circular cylindrical cross-sections immersed in a non-viscous fluid. Computations for the (non-dimensional) scattering, absorption, and extinction cross-section factors are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes, and the physical properties of the particles. A symmetric behavior is observed for the dimensionless multiple scattering cross-section, while asymmetries arise for both the dimensionless absorption and extinction cross-sections with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of cross-section and energy efficiency factors in multiple acoustic scattering of plane waves of arbitrary incidence by a pair of scatterers. The results can be used as a priori information in the direct or inverse characterization of multiple scattering systems such as acoustically engineered fluid metamaterials with reconfigurable periodicities, cloaking devices, liquid crystals, and other applications.

  13. Extrusion and rheology of fine particulate ceramic pastes

    NASA Astrophysics Data System (ADS)

    Mazzeo, Fred Anthony

    A rheological study was conducted on an extruded blend of two alumina powders, Alcoa A-3500-SG and Reynolds ERC. These extruded blends were mixed in four compositions, varying in distribution modulus. This work focuses on the interaction of the composition components, mainly particle size distribution and amount of water at a constant binder amount. The rheological parameters of extruded pastes, Sigma, Tau, alpha and beta, were determined by using capillary rheometry modeling by the methodology set forth by Benbow and Bridgwater. This methodology makes use of capillary rheometer to determine extrusion parameters, which describe the flow behavior of a paste. The parameter values are indirectly determined by extrapolating high shear rate information obtained by the extrusion process. A goal of this research was to determine fundamental rheological properties directly from fundamental rheological equations of state. This was accomplished by assessing the material properties by using a dynamic stress rheometer. The rheological parameters used in this study to characterize the paste are elastic modulus, viscosity, tan delta, and relaxation time. This technique approaches a step closer in understanding the microstructural influence on flow behavior of a paste. This method directly determines rheological properties by using linear viscoelastic theory, giving a quantitative analysis of material properties. A strong correlation between the elastic modulus and sigma, and viscosity and alpha is shown to exist, indicating a relationship between these two techniques. Predictive process control methodology, based on particle packing modeling, quantitatively determined structural parameters useful in evaluating a composition. The determined parameters are: distribution modulus, interparticle separation distance, porosity, and particle crowding index, which are important to understand the extrudates packed state. A connection between the physical structure of the extrudate and its rheological behavior, can lead to a better understanding of what conditions and parameters are necessary to characterize the extrusion process. This study shows how particle packing and particle size influences the rheological behavior of the paste. Results showed that an optimally packed system was found to occur at a distribution modulus of 0.51. This system was determined both experimentally and quantitatively to exhibit the lowest porosity at any water content. The 0.51 system required a lower amount of water to extrude and the parameters of both rheological techniques agreed well, in which all parameters are influenced by the packing state of the paste, and a consistent trend was generally found. The capillary rheometry results can be explained by the strong interaction of particles that occurs at high shear rates. The dynamic stress rheometer results can be explained by the particle packing characteristics, interparticle separation distance and particle-crowding index, and the capillary forces between particles. The excess amount of liquid that is present in the structure decreases the role of the capillary attraction between particles and an increase in the particle size role on the rheological behavior of the pastes occurs.

  14. A hybridized discontinuous Galerkin framework for high-order particle-mesh operator splitting of the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Maljaars, Jakob M.; Labeur, Robert Jan; Möller, Matthias

    2018-04-01

    A generic particle-mesh method using a hybridized discontinuous Galerkin (HDG) framework is presented and validated for the solution of the incompressible Navier-Stokes equations. Building upon particle-in-cell concepts, the method is formulated in terms of an operator splitting technique in which Lagrangian particles are used to discretize an advection operator, and an Eulerian mesh-based HDG method is employed for the constitutive modeling to account for the inter-particle interactions. Key to the method is the variational framework provided by the HDG method. This allows to formulate the projections between the Lagrangian particle space and the Eulerian finite element space in terms of local (i.e. cellwise) ℓ2-projections efficiently. Furthermore, exploiting the HDG framework for solving the constitutive equations results in velocity fields which excellently approach the incompressibility constraint in a local sense. By advecting the particles through these velocity fields, the particle distribution remains uniform over time, obviating the need for additional quality control. The presented methodology allows for a straightforward extension to arbitrary-order spatial accuracy on general meshes. A range of numerical examples shows that optimal convergence rates are obtained in space and, given the particular time stepping strategy, second-order accuracy is obtained in time. The model capabilities are further demonstrated by presenting results for the flow over a backward facing step and for the flow around a cylinder.

  15. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures

    PubMed Central

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-01-01

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121

  16. Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2017-10-01

    Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.

  17. Modeling of hot-mix asphalt compaction : a thermodynamics-based compressible viscoelastic model

    DOT National Transportation Integrated Search

    2010-12-01

    Compaction is the process of reducing the volume of hot-mix asphalt (HMA) by the application of external forces. As a result of compaction, the volume of air voids decreases, aggregate interlock increases, and interparticle friction increases. The qu...

  18. Colloidal isopressing: A new shaping method for ceramic suspensions

    NASA Astrophysics Data System (ADS)

    Yu, Benjamin Christopher

    Colloidal Isopressing is a new processing method for shaping compacts from particulate suspensions. The study of interparticle interactions within a suspension, and their effect on the overall slurry behavior, has led to the prior discovery of a plastic-to-brittle transition in powder compacts formed by pressure filtration. Colloidal Isopressing utilizes this pressure dependent behavior for slurries with a short-range repulsive potential to rapidly transform plastic consolidated bodies into more complex shapes. The first results are presented for aqueous alumina suspensions where electrostatic double layer repulsion is compressed to short interparticle separations by the addition of ammonium chloride. Consolidation at low pressures produces a high relative density slurry that is plastic and can be extruded into a rubber mold. The application of an hydrostatic pressure forces a small amount of liquid into a porous portion of the mold and pushes particles together into a rigid network. As the pressure is released, the newly formed powder compact will partially separate from the lower modulus rubber mold. The body can then be ejected from the mold, dried, and densified to produce the final ceramic component. Colloidal Isopressing has been successfully modeled as a special case of consolidation via pressure filtration. Theoretical analyses have accurately predicted the time required for the rapid transformation from plastic slurry to elastic powder compact. The effects of slurry composition on processing were studied. The electrolyte concentration, powder particle size, slurry pH, and polymer concentration were shown to alter the flow behavior of filter pressed and liquefied compacts. As the free volume of liquid decreased and/or the relative attraction between particles increased, the concentrated slurry became more difficult to process. Finally, drying of compacts formed by Colloidal Isopressing did not result in any shrinkage during drying, thus allowing for very rapid heating rates to be used. In fact, the drying, burnout, and densification could be combined into one step, with final densities approaching the theoretical limit.

  19. Correlated scattering states of N-body Coulomb systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berakdar, J.

    1997-03-01

    For N charged particles of equal masses moving in the field of a heavy residual charge, an approximate analytical solution of the many-body time-independent Schr{umlt o}dinger equation is derived at a total energy above the complete fragmentation threshold. All continuum particles are treated on equal footing. The proposed correlated wave function represents, to leading order, an exact solution of the many-body Schr{umlt o}dinger equation in the asymptotic region defined by large interparticle separations. Thus, in this asymptotic region the N-body Coulomb modifications to the plane-wave motion of free particles are rigorously estimated. It is shown that the Kato cusp conditionsmore » are satisfied by the derived wave function at all two-body coalescence points. An expression of the normalization of this wave function is also given. To render possible the calculations of scattering amplitudes for transitions leading to a four-body scattering state, an effective-charge method is suggested in which the correlations between the continuum particles are completely subsumed into effective interactions with the residual charge. Analytical expressions for these effective interactions are derived and discussed for physical situations. {copyright} {ital 1997} {ital The American Physical Society}« less

  20. Parametric instabilities in resonantly-driven Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Lellouch, S.; Goldman, N.

    2018-04-01

    Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper–Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose–Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory (Lellouch et al 2017 Phys. Rev. X 7 021015) to a variety of resonantly-driven band models, from a simple shaken Wannier–Stark ladder to the more intriguing driven-induced Harper–Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.

  1. Autonomous stabilizer for incompressible photon fluids and solids

    NASA Astrophysics Data System (ADS)

    Ma, Ruichao; Owens, Clai; Houck, Andrew; Schuster, David I.; Simon, Jonathan

    2017-04-01

    We suggest a simple approach to populate photonic quantum materials at nonzero chemical potential and near-zero temperature. Taking inspiration from forced evaporation in cold-atom experiments, the essential ingredients for our low-entropy thermal reservoir are (a) interparticle interactions and (b) energy-dependent loss. The resulting thermal reservoir may then be coupled to a broad class of Hamiltonian systems to produce low-entropy quantum phases. We present an idealized picture of such a reservoir, deriving the scaling of reservoir entropy with system parameters, and then propose several practical implementations using only standard circuit quantum electrodynamics tools, and extract the fundamental performance limits. Finally, we explore, both analytically and numerically, the coupling of such a thermalizer to the paradigmatic Bose-Hubbard chain, where we employ it to stabilize an n =1 Mott phase. In this case, the performance is limited by the interplay of dynamically arrested thermalization of the Mott insulator and finite heat capacity of the thermalizer, characterized by its repumping rate. This work explores an approach to preparation of quantum phases of strongly interacting photons, and provides a potential route to topologically protected phases that are difficult to reach through adiabatic evolution.

  2. The magnetic structure and palaeomagnetic recording fidelity of sub-micron greigite (Fe3S4)

    NASA Astrophysics Data System (ADS)

    Valdez-Grijalva, Miguel A.; Nagy, Lesleis; Muxworthy, Adrian R.; Williams, Wyn; Fabian, Karl

    2018-02-01

    We present the results of a finite-element micromagnetic model of 30nm to 300nm greigite (Fe3S4) grains with a variety of equant morphologies. This grain size range covers the magnetic single-domain (SD) to pseudo single-domain (PSD) transition, and possibly also the PSD to multi-domain (MD) transition. The SD-PSD threshold d0 is determined to be 50nm ≤d0 ≤ 56nm depending on grain shape. The nudged elastic-band method was used to determine the room temperature energy barriers between stable states and thus the blocking volumes. It is found that, in the absence of interparticle magnetostatic interactions, the magnetisation of equant SD greigite is not stable on a geological scale and only PSD grains ≥ 70nm can be expected to carry a stable magnetisation over billion-year timescales, i.e., all non-interacting SD particles are essentially superparamagnetic. We further identify a mechanism for the PSD to multi-domain (MD) transition, which is of a continuous nature from PSD nucleation up to 300nm, when structures typical of MD behaviour like closure domains begin to form.

  3. Effects of particle mixing and scattering in the dusty gas flow through moving and stationary cascades of airfoils

    NASA Astrophysics Data System (ADS)

    Tsirkunov, Yu. M.; Romanyuk, D. A.; Panfilov, S. V.

    2011-10-01

    Time-dependent two-dimensional (2D) flow of dusty gas through a set of two cascades of airfoils (blades) has been studied numerically. The first cascade was assumed to move (rotor) and the second one to be immovable (stator). Such a flow can be considered, in some sense, as a flow in the inlet stage of a turbomachine, for example, in the inlet compressor of an aircraft turbojet engine. Dust particle concentration was assumed to be very low, so that the interparticle collisions and the effect of the dispersed phase on the carrier gas were negligible. Flow of the carrier gas was described by full Navier-Stokes equations. In calculations of particle motion, the particles were considered as solid spheres. The particle drag force, transverse Magnus force, and damping torque were taken into account in the model of gas-particle interaction. The impact interaction of particles with blades was considered as frictional and partly elastic. The effects of particle size distribution and particle scattering in the course of particle-blade collisions were investigated. Flow fields of the carrier gas and flow patterns of the particle phase were obtained and discussed.

  4. Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles

    PubMed Central

    Wu, Liang; Jackson, George; Müller, Erich A.

    2013-01-01

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids. PMID:23965962

  5. Liquid crystal phase behaviour of attractive disc-like particles.

    PubMed

    Wu, Liang; Jackson, George; Müller, Erich A

    2013-08-08

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.

  6. Broadband Absorbing Exciton-Plasmon Metafluids with Narrow Transparency Windows.

    PubMed

    Yang, Jihua; Kramer, Nicolaas J; Schramke, Katelyn S; Wheeler, Lance M; Besteiro, Lucas V; Hogan, Christopher J; Govorov, Alexander O; Kortshagen, Uwe R

    2016-02-10

    Optical metafluids that consist of colloidal solutions of plasmonic and/or excitonic nanomaterials may play important roles as functional working fluids or as means for producing solid metamaterial coatings. The concept of a metafluid employed here is based on the picture that a single ballistic photon, propagating through the metafluid, interacts with a large collection of specifically designed optically active nanocrystals. We demonstrate water-based metafluids that act as broadband electromagnetic absorbers in a spectral range of 200-3300 nm and feature a tunable narrow (∼100 nm) transparency window in the visible-to-near-infrared region. To define this transparency window, we employ plasmonic gold nanorods. We utilize excitonic boron-doped silicon nanocrystals as opaque optical absorbers ("optical wall") in the UV and blue-green range of the spectrum. Water itself acts as an opaque "wall" in the near-infrared to infrared. We explore the limits of the concept of a "simple" metafluid by computationally testing and validating the effective medium approach based on the Beer-Lambert law. According to our simulations and experiments, particle aggregation and the associated decay of the window effect are one example of the failure of the simple metafluid concept due to strong interparticle interactions.

  7. From crystal chemistry to colloid stability

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Burrows, N.; Penn, R. L.

    2008-12-01

    Aqueous suspensions of ferrihydrite nanoparticles form a colloid with properties that can be understood using classical theories but which additionally exhibit the distinctive phenomenon of nanocluster formation. While use of in situ light and x-ray scattering methods permit the quantitative determination of colloid stability, interparticle interactions, and cluster or aggregate geometry, there are currently few approaches to predict the colloidal behavior of mineral nanoparticles. A longstanding goal of aqueous geochemistry is the rationalization and prediction of the chemical properties of hydrated mineral interfaces from knowledge of interface structure at the molecular scale. Because interfacial acid-base reactions typically lead to the formation of a net electrostatic charge at the surfaces of oxide, hydroxide, and oxyhydroxide mineral surfaces, quantitative descriptions of this behavior have the potential to permit the prediction of long-range interactions between mineral particles. We will evaluate the feasibility of this effort by constructing a model for surface charge formation for ferrihydrite that combines recent insights into the crystal structure of this phase and proposed methods for estimating the pKa of acidic surface groups. We will test the ability of this model to predict the colloidal stability of ferrihydrite suspensions as a function of solution chemistry.

  8. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  9. Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Joseph B.; Dandu, Naveen; Velizhanin, Kirill A.

    2015-10-27

    Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respectmore » to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.« less

  10. Small-angle neutron scattering study of the short-range organization of dispersed CsNi[Cr(CN){sub 6}] nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridier, Karl; Gillon, Béatrice; André, Gilles

    2015-09-21

    Prussian blue analogues magnetic nanoparticles (of radius R{sub 0} = 2.4–8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA{sup +} (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a “single-particle” spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective “mean-field” model. A newmore » length scale R{sup * }≈ 3R{sub 0}, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA{sup +}, electrostatic interactions play a crucial role and lead to a dense layer of CTA{sup +} around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA{sup +} are best described by a core-shell model without visible inter-particle structure factor.« less

  11. Small angle x ray scattering studies of reverse micelles in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Pfund, D. M.; Fulton, J. L.

    1994-10-01

    The nature of aggregates formed in a supercritical fluid determines its solvent power and selectivity. Small angle X ray scattering (SAXS) is a powerful tool for studying the properties of aggregates with sizes in the 10(angstrom) to 200(angstrom) range. It is also useful in studying those interparticle interactions which operate over a similar distance. The authors have used SAXS to examine the aggregates formed in pure fluids, in mixtures and in fluid/surfactant/water systems. The scattered intensity as a function of angle depends on the geometry, polydispersity, X ray contrast, and interaction strength of the particles as well as on the phase behavior of the system. In this paper the authors present the results of modeling the X-ray scattering from AOT/water reverse micelles in supercritical propane and in propane/carbon dioxide mixtures. They examine the effect of dilution with CO2 anti-solvent on the phase behavior of the system and on the strength of intermicellar attractions. A better understanding of these systems must be obtained before the applications of supercritical reverse micelle systems to extractions, reactions, and enhanced oil recovery can be fully developed.

  12. Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction

    NASA Astrophysics Data System (ADS)

    Harden, James L.; Guo, Hongyu; Bertrand, Martine; Shendruk, Tyler N.; Ramakrishnan, Subramanian; Leheny, Robert L.

    2018-01-01

    Colloidal suspensions transform between fluid and disordered solid states as parameters such as the colloid volume fraction and the strength and nature of the colloidal interactions are varied. Seemingly subtle changes in the characteristics of the colloids can markedly alter the mechanical rigidity and flow behavior of these soft composite materials. This sensitivity creates both a scientific challenge and an opportunity for designing suspensions for specific applications. In this paper, we report a novel mechanism of gel formation in mixtures of weakly attractive nanocolloids with modest size ratio. Employing a combination of x-ray photon correlation spectroscopy, rheometry, and molecular dynamics simulations, we find that gels are stable at remarkably weaker attraction in mixtures with size ratio near two than in the corresponding monodisperse suspensions. In contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures is triggered by microphase demixing of the species into dense regions of immobile smaller colloids surrounded by clusters of mobile larger colloids that is not predicted by mean-field thermodynamic considerations. These results point to a new route for tailoring nanostructured colloidal solids through judicious combination of interparticle interaction and size distribution.

  13. Sputtering-growth of seeded Au nanoparticles for nanogap-assisted surface-enhanced Raman scattering (SERS) biosensing

    NASA Astrophysics Data System (ADS)

    Fu, Chit Yaw; U. S., Dinish; Rautela, Shashi; Goh, Douglas Wenda; Olivo, Malini

    2011-12-01

    Gold-coated array patterned with tightly-packed nanospheres was developed as a substrate base for constructing SERSenriched nanogaps with Au-nanoparticles (GNPs). Using 1,2-ethanedithiol as a linker, Au-NPs (=17-40nm) were anchored covalently on the sphere-array. Thin Au layer was sputtered on the substrate to mask the citrate coating of GNPs that could demote the sensing mechanism. The negatively-charged GNP surface warrants the colloidal stability, but the resulting repulsive force keeps the immobilized NPs apart by about 40nm. The attained gap size is inadequately narrow to sustain any intense enhancement owing to the near-field nature of SERS. Minimal amount of NaCl was then added to slightly perturb the colloidal stability by reducing their surface charge. Notably, the interparticle-gap reduces at increasing amount of salt, giving rise to increased packing density of GNPs. The SERS enhancement is also found to exponentially increase at decreasing gap size. Nevertheless, the minimum gap achieved is limited to merely 7nm. Excessive addition of salt would eventually induce complete aggregation of particles, forming clustered NPs on the array. A simple sputtering-growth approach is therefore proposed to further minimize the interparticle gap by enlarging the seeded NPs based on mild sputtering. The SEM images confirm that the gap below 7nm is achievable. With advent of the colloidal chemistry, the combined salt-induced aggregation and sputtering-growth techniques can be applied to engineer interparticle gap that is crucial to realize an ultrasensitive SERS biosensor. The proposed two-step preparation can be potentially adopted to fabricate the SERS-enriched nanogaps on the microfluidics platform.

  14. Direct Visualization of Planar Assembly of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric Fields.

    PubMed

    Ferrick, Adam; Wang, Mei; Woehl, Taylor J

    2018-05-29

    Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.

  15. Systematic investigation of the SERS efficiency and SERS hotspots in gas-phase deposited Ag nanoparticle assemblies.

    PubMed

    He, L B; Wang, Y L; Xie, X; Han, M; Song, F Q; Wang, B J; Cheng, W L; Xu, H X; Sun, L T

    2017-02-15

    Gas-phase deposited Ag nanoparticle assemblies are one of the most commonly used plasmonic substrates benefiting from their remarkable advantages such as clean particle surface, tunable particle density, available inter-particle gaps, low-cost and scalable fabrication, and excellent industry compatibility. However, their performance efficiencies are difficult to optimize due to the lack of knowledge of the hotspots inside their structures. We here report a design of delicate rainbow-like Ag nanoparticle assemblies, based on which the hotspots can be revealed through a combinatorial approach. The findings show that the hotspots in gas-phase deposited Ag nanoparticle assemblies are uniquely entangled by the excitation energy and specific inter-particle gaps, differing from the matching conditions in periodic arrays. For Ag nanoparticle assemblies deposited on Formvar-filmed substrates, the mean particle size is maintained around 10 nm, while the particle density can be widely tuned. The one possessing the highest SERS efficiency (under 473 nm excitation) have a particle number density of around 7100 μm -2 . Gaps with an inter-particle spacing of around 3 nm are found to serve as SERS hotspots, and these hotspots contribute to 68% of the overall SERS intensity. For Ag nanoparticle assemblies fabricated on carbon-filmed substrates, the mean particle size can be feasibly tuned. The one possessing the highest SERS efficiency under 473 nm excitation has a particle number density of around 460 μm -2 and a mean particle size of around 42.1 nm. The construction of Ag-analyte-Ag sandwich-like nanoparticle assemblies by a two-step-deposition method slightly improves the SERS efficiency when the particle number density is low, but suppresses the SERS efficiency when the particle number density is high.

  16. Dynamic localization and shear-induced hopping of particles: A way to understand the rheology of dense colloidal dispersions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tianying; Zukoski, Charles F., E-mail: czukoski@illinois.edu

    2014-09-01

    For decades, attempts have been made to understand the formation of colloidal glasses and gels by linking suspension mechanics to particle properties where details of size, shape, and spatial dependencies of pair potentials present a bewildering array of variables that can be manipulated to achieve observed properties. Despite the range of variables that control suspension properties, one consistent observation is the remarkably similarity of flow properties observed as particle properties are varied. Understanding the underlying origins of the commonality in those behaviors (e.g., shear-thinning with increasing stress, diverging zero shear rate viscosity with increasing volume fraction, development of a dynamicmore » yield stress plateau with increases in volume faction or strength of attraction, development of two characteristic relaxation times probed in linear viscoelasticity, the creation of a rubbery plateau modulus at high strain frequencies, and shear-thickening) remains a challenge. Recently, naïve mode coupling and dynamic localization theories have been developed to capture collective behavior giving rise to formation of colloidal glasses and gels. This approach characterizes suspension mechanics of strongly interacting particles in terms of sluggish long-range particle diffusion modulated by varying particle interactions and volume fraction. These theories capture the scaling of the modulus with the volume fraction and strength of interparticle attraction, the frequency dependence of the moduli at the onset of the gel/glass transition, together with the divergence of the zero shear rate viscosity and cessation of diffusivity for hard sphere systems as close packing is approached. In this study, we explore the generality of the predictions of dynamic localization theory for systems of particles composed of bimodal particle size distributions experiencing weak interactions. We find that the mechanical properties of these suspensions are well captured within the framework of dynamic localization theory and that suspension mechanics can be understood in terms of a dynamical potential barrier, the magnitude of which governs the zero shear rate viscosity, and onset of a dynamic yield stress plateau as volume fraction or strength of interaction is raised.« less

  17. Enhanced phenol-photodegradation by particulate semiconductor mixtures: interparticle electron-jump.

    PubMed

    Karunakaran, C; Dhanalakshmi, R; Gomathisankar, P; Manikandan, G

    2010-04-15

    Degradation of phenol on suspended TiO(2), ZnO, CdO, Fe(2)O(3), CuO, ZnS and Nb(2)O(5) particles under UV-A light exhibit identical photokinetic behavior; follow first-order kinetics, display linear dependence on the photon flux and slowdown with increase of pH. All the semiconductors show sustainable photocatalytic activity. Dissolved O(2) is essential for the photodegradation and oxidizing agents like H(2)O(2), Na(2)BO(3), K(2)S(2)O(8), KBrO(3), KIO(3) and KIO(4), reducing agents such as NaNO(2) and Na(2)SO(3) and sacrificial electron donors like hydroquinone, diphenyl amine and trimethyl amine enhance the degradation. However, the photocatalysis is insensitive to pre-sonication. Two particulate semiconductors present together, under suspension and at continuous motion, enhance the photocatalytic degradation up to about four-fold revealing interparticle electron-jump. 2009 Elsevier B.V. All rights reserved.

  18. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    NASA Astrophysics Data System (ADS)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-10-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  19. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely-driven particles

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen

    Colloidal particles of two types, driven in opposite directions, can segregate into lanes. I will describe some results on this phenomenon obtained by simple physical arguments and computer simulations. Laning results from rectification of diffusion on the scale of a particle diameter: oppositely-driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with Peclet number, a prediction confirmed by our numerics. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely-driven colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  20. About improving efficiency of the P3 M algorithms when computing the inter-particle forces in beam dynamics

    NASA Astrophysics Data System (ADS)

    Kozynchenko, Alexander I.; Kozynchenko, Sergey A.

    2017-03-01

    In the paper, a problem of improving efficiency of the particle-particle- particle-mesh (P3M) algorithm in computing the inter-particle electrostatic forces is considered. The particle-mesh (PM) part of the algorithm is modified in such a way that the space field equation is solved by the direct method of summation of potentials over the ensemble of particles lying not too close to a reference particle. For this purpose, a specific matrix "pattern" is introduced to describe the spatial field distribution of a single point charge, so the "pattern" contains pre-calculated potential values. This approach allows to reduce a set of arithmetic operations performed at the innermost of nested loops down to an addition and assignment operators and, therefore, to decrease the running time substantially. The simulation model developed in C++ substantiates this view, showing the descent accuracy acceptable in particle beam calculations together with the improved speed performance.

  1. An investigation of localised surface plasmon resonance (LSPR) of Ag nanoparticles produced by pulsed laser deposition (PLD) technique

    NASA Astrophysics Data System (ADS)

    Gezgin, Serap Yiǧit; Kepceoǧlu, Abdullah; Kılıç, Hamdi Şükür

    2017-02-01

    Noble metal nano-structures such as Ag, Cu, Au are used commonly to increase power conversion efficiency of the solar cell by using their surface plasmons. The plasmonic metal nanoparticles of Ag among others that have strong LSPR in near UV range. They increase photon absorbance via embedding in the active semiconductor of the solar cell. Thin films of Ag are grown in the desired particle size and interparticle distance easily and at low cost by PLD technique. Ag nanoparticle thin films were grown on micro slide glass at 25-36 mJ laser pulse energies under by PLD using ns-Nd:YAG laser. The result of this work have been presented by carrying out UV-VIS and AFM analysis. It was concluded that a laser energy increases, the density and size of Ag-NPs arriving on the substrate increases, and the interparticle distance was decreases. Therefore, LSPR wavelength shifts towards to longer wavelength region.

  2. Jamming criticality revealed by removing localized buckling excitations.

    PubMed

    Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Zamponi, Francesco

    2015-03-27

    Recent theoretical advances offer an exact, first-principles theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small interparticle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the interparticle gaps is known to be constant in all spatial dimensions d-including the physically relevant d=2 and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.

  3. Formation and dissociation of dust molecules in dusty plasma

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng

    2016-09-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.

  4. Chain dynamics and nanoparticle motion in attractive polymer nanocomposites subjected to large deformations.

    PubMed

    Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath; Narayanan, Suresh; Faraone, Antonio

    2017-11-08

    The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasi-elastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. In addition, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that the level of chain-chain entanglements is not significantly affected. The shear-induced changes in the interparticle bridging reflect the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.

  5. Chain dynamics and nanoparticle motion in attractive polymer nanocomposites subjected to large deformations

    DOE PAGES

    Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath; ...

    2017-09-28

    The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasielastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. Additionally, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that themore » level of chain-chain entanglements is not significantly affected. The shearinduced changes in the interparticle bridging reflects on the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.« less

  6. Nanoparticle Superlattices: The Roles of Soft Ligands

    PubMed Central

    Si, Kae Jye; Chen, Yi; Shi, Qianqian

    2017-01-01

    Abstract Nanoparticle superlattices are periodic arrays of nanoscale inorganic building blocks including metal nanoparticles, quantum dots and magnetic nanoparticles. Such assemblies can exhibit exciting new collective properties different from those of individual nanoparticle or corresponding bulk materials. However, fabrication of nanoparticle superlattices is nontrivial because nanoparticles are notoriously difficult to manipulate due to complex nanoscale forces among them. An effective way to manipulate these nanoscale forces is to use soft ligands, which can prevent nanoparticles from disordered aggregation, fine‐tune the interparticle potential as well as program lattice structures and interparticle distances – the two key parameters governing superlattice properties. This article aims to review the up‐to‐date advances of superlattices from the viewpoint of soft ligands. We first describe the theories and design principles of soft‐ligand‐based approach and then thoroughly cover experimental techniques developed from soft ligands such as molecules, polymer and DNA. Finally, we discuss the remaining challenges and future perspectives in nanoparticle superlattices. PMID:29375958

  7. Chain dynamics and nanoparticle motion in attractive polymer nanocomposites subjected to large deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath

    The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasielastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. Additionally, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that themore » level of chain-chain entanglements is not significantly affected. The shearinduced changes in the interparticle bridging reflects on the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.« less

  8. Force measurements in stiff, 3D, opaque granular materials

    NASA Astrophysics Data System (ADS)

    Hurley, Ryan C.; Hall, Stephen A.; Andrade, José E.; Wright, Jonathan

    2017-06-01

    We present results from two experiments that provide the first quantification of inter-particle force networks in stiff, 3D, opaque granular materials. Force vectors between all grains were determined using a mathematical optimization technique that seeks to satisfy grain equilibrium and strain measurements. Quantities needed in the optimization - the spatial location of the inter-particle contact network and tensor grain strains - were found using 3D X-ray diffraction and X-ray computed tomography. The statistics of the force networks are consistent with those found in past simulations and 2D experiments. In particular, we observe an exponential decay of normal forces above the mean and a partition of forces into strong and weak networks. In the first experiment, involving 77 single-crystal quartz grains, we also report on the temporal correlation of the force network across two sequential load cycles. In the second experiment, involving 1099 single-crystal ruby grains, we characterize force network statistics at low levels of compression.

  9. Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and Mean-Field Properties

    NASA Astrophysics Data System (ADS)

    Klaiman, S.; Streltsov, A. I.; Alon, O. E.

    2018-04-01

    A solvable model of a generic trapped bosonic mixture, N 1 bosons of mass m 1 and N 2 bosons of mass m 2 trapped in an harmonic potential of frequency ω and interacting by harmonic inter-particle interactions of strengths λ 1, λ 2, and λ 12, is discussed. It has recently been shown for the ground state [J. Phys. A 50, 295002 (2017)] that in the infinite-particle limit, when the interaction parameters λ 1(N 1 ‑ 1), λ 2(N 2 ‑ 1), λ 12 N 1, λ 12 N 2 are held fixed, each of the species is 100% condensed and its density per particle as well as the total energy per particle are given by the solution of the coupled Gross-Pitaevskii equations of the mixture. In the present work we investigate properties of the trapped generic mixture at the infinite-particle limit, and find differences between the many-body and mean-field descriptions of the mixture, despite each species being 100%. We compute analytically and analyze, both for the mixture and for each species, the center-of-mass position and momentum variances, their uncertainty product, the angular-momentum variance, as well as the overlap of the exact and Gross-Pitaevskii wavefunctions of the mixture. The results obtained in this work can be considered as a step forward in characterizing how important are many-body effects in a fully condensed trapped bosonic mixture at the infinite-particle limit.

  10. The Role of Citric Acid in the Stabilization of Nanoparticles and Colloidal Particles in the Environment: Measurement of Surface Forces between Hafnium Oxide Surfaces in the Presence of Citric Acid.

    PubMed

    Shinohara, Shuhei; Eom, Namsoon; Teh, E-Jen; Tamada, Kaoru; Parsons, Drew; Craig, Vincent S J

    2018-02-27

    The interactions between colloidal particles and nanoparticles determine solution stability and the structures formed when the particles are unstable to flocculation. Therefore, knowledge of the interparticle interactions is important for understanding the transport, dissolution, and fate of particles in the environment. The interactions between particles are governed by the surface properties of the particles, which are altered when species adsorb to the surface. The important interactions in the environment are almost never those between the bare particles but rather those between particles that have been modified by the adsorption of natural organic materials. Citric acid is important in this regard not only because it is present in soil but also as a model of humic and fulvic acids. Here we have studied the surface forces between the model metal oxide surface hafnia in the presence of citric acid in order to understand the stability of colloidal particles and nanoparticles. We find that citric acid stabilizes the particles over a wide range of pH at low to moderate ionic strength. At high ionic strength, colloidal particles will flocculate due to a secondary minimum, resulting in aggregates that are dense and easily redispersed. In contrast, nanoparticles stabilized by citric acid remain stable at high ionic strengths and therefore exist in solution as individual particles; this will contribute to their dispersion in the environment and the uptake of nanoparticles by mammalian cells.

  11. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channelsmore » of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits of inertial focusing for technological applications.« less

  12. Computational analysis of electrical conduction in hybrid nanomaterials with embedded non-penetrating conductive particles

    NASA Astrophysics Data System (ADS)

    Cai, Jizhe; Naraghi, Mohammad

    2016-08-01

    In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.

  13. Magnetic Core-Shell Morphology of Structurally Uniform Magnetite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Krycka, Kathryn

    2011-03-01

    Magnetic nanoscale structures are intriguing, in part, because of the exotic properties that emerge compared with bulk. The reduction of magnetic moment per atom in magnetite with decreasing nanoparticle size, for example, has been hypothesized to originate from surface disordering to anisotropy-induced radial canting, which are difficult to distinguish using conventional magnetometry. Small-angle neutron scattering (SANS) is ideal for probing structure, both chemical and magnetic, from nm to microns across an ensemble of particles. Adding polarization analysis (PASANS) of the neutron spin orientation before and after interaction with the scattering particles allows the magnetic structure to be separated into its vector components. Application of this novel technique to 9 nm magnetite nanoparticles closed-packed into face-centered crystallites with order of a micron revealed that at nominal saturation the missing magnetic moments unexpectedly interacted to form well-ordered shells 1.0 to 1.5 nm thick canted perpendicular to their ferrimagnetic cores between 160 to 320 K. These shells additionally displayed intra-particle ``cross-talk'', selecting a common orientation over clusters of tens of nanoparticles. However, the shells disappeared when the external field was removed and interparticle magnetic interactions were negligible (300 K), confirming their magnetic origin. This work has been carried out in collaboration with Ryan Booth, Julie Borchers, Wangchun Chen, Liv Dedon, Thomas Gentile, Charles Hogg, Yumi Ijiri, Mark Laver, Sara Majetich, James Rhyne, and Shannon Watson.

  14. Molecular packing in virus crystals: geometry, chemistry, and biology.

    PubMed

    Natarajan, P; Johnson, J E

    1998-01-01

    An automated procedure was developed to determine the geometrical and chemical interactions of crystalline virus particles using the crystal parameters, particle position, orientation, and atomic coordinates for an icosahedral asymmetric unit. Two applications of the program are reported: (1) An analysis of a novel pseudo-rhombohedral (R32) symmetry present in the monoclinic crystal lattices of both Nodamura Virus (NOV) and Coxsackie virus B3 (CVB3). The study shows that in both cases the interactions between particles is substantially increased by minor deviations from exact R32 symmetry and that only particles with the proper ratio of dimensions along twofold and fivefold symmetry axes (such as southern bean mosaic virus) can achieve comparable buried surface area in the true R32 space group. (2) An attempt was made to correlate biological function with remarkably conserved interparticle contact regions found in different crystal forms of three members of the nodavirus family, NOV, Flock House Virus (FHV), and Black Beetle Virus (BBV). Mutational evidence implicates the quasi-threefold region on the viral surface in receptor binding in nodaviruses and this region is dominant in particle contacts in all three virus crystals. Examination of particle contacts in numerous crystal structures of viruses in the picornavirus super-family showed that portions of the capsid surface known to interact with a receptor or serve as an epitope for monoclonal antibodies frequently stabilize crystal contacts.

  15. Adhesion and volume constraints via nonlocal interactions determine cell organisation and migration profiles.

    PubMed

    Carrillo, José Antonio; Colombi, Annachiara; Scianna, Marco

    2018-05-14

    The description of the cell spatial pattern and characteristic distances is fundamental in a wide range of physio-pathological biological phenomena, from morphogenesis to cancer growth. Discrete particle models are widely used in this field, since they are focused on the cell-level of abstraction and are able to preserve the identity of single individuals reproducing their behavior. In particular, a fundamental role in determining the usefulness and the realism of a particle mathematical approach is played by the choice of the intercellular pairwise interaction kernel and by the estimate of its parameters. The aim of the paper is to demonstrate how the concept of H-stability, deriving from statistical mechanics, can have important implications in this respect. For any given interaction kernel, it in fact allows to a priori predict the regions of the free parameter space that result in stable configurations of the system characterized by a finite and strictly positive minimal interparticle distance, which is fundamental when dealing with biological phenomena. The proposed analytical arguments are indeed able to restrict the range of possible variations of selected model coefficients, whose exact estimate however requires further investigations (e.g., fitting with empirical data), as illustrated in this paper by series of representative simulations dealing with cell colony reorganization, sorting phenomena and zebrafish embryonic development. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Electric-field-driven Phenomena for Manipulating Particles in Micro-Devices

    NASA Technical Reports Server (NTRS)

    Khusid, Boris; Acrivos, Andreas

    2004-01-01

    Compared to other available methods, ac dielectrophoresis is particularly well-suited for the manipulation of minute particles in micro- and nano-fluidics. The essential advantage of this technique is that an ac field at a sufficiently high frequency suppresses unwanted electric effects in a liquid. To date very little has been achieved towards understanding the micro-scale field-and shear driven behavior of a suspension in that, the concepts currently favored for the design and operation of dielectrophoretic micro-devices adopt the approach used for macro-scale electric filters. This strategy considers the trend of the field-induced particle motions by computing the spatial distribution of the field strength over a channel as if it were filled only with a liquid and then evaluating the direction of the dielectrophoretic force, exerted on a single particle placed in the liquid. However, the exposure of suspended particles to a field generates not only the dielectrophoretic force acting on each of these particles, but also the dipolar interactions of the particles due to their polarization. Furthermore, the field-driven motion of the particles is accompanied by their hydrodynamic interactions. We present the results of our experimental and theoretical studies which indicate that, under certain conditions, these long-range electrical and hydrodynamic interparticle interactions drastically affect the suspension behavior in a micro-channel due to its small dimensions.

  17. Trace contaminant adsorption and sorbent regeneration in closed ecological systems

    NASA Technical Reports Server (NTRS)

    Arnold, C. R.; Kersels, G. J.; Merrill, R. P.; Robell, A. J.; Wheeler, A.

    1972-01-01

    Correlation was obtained for determining sorptive capacity of carbon for pure and mixed contaminants under dry and humid conditions at various temperatures. Vacuum desorption rates were investigated for single particles and for sorbent beds. For sorbent beds, rate-determining step is Knudsen diffusion through interparticle voids.

  18. Fabrication and characterization of thermo-responsive gold nanorod assemblies

    NASA Astrophysics Data System (ADS)

    Bustamante, Gilbert; Carrizales, Katherine; DeLuna, Frank; Large, Nicolas; Ye, Jing Yong

    2018-02-01

    Advancements in nanotechnology sensors have aided in the detection of subtle, but significant cellular deviations that may mark certain stages of diseases. Gold nanorods (GNRs) are often studied for this purpose due to their tunable optical properties and ease in surface functionalization. The absorption properties of GNRs are governed by the localized surface plasmon resonance (LSPR), which strongly depends on the GNR's aspect ratio and on interparticle interactions. By controlling the coupling of nearby rods, a sensor can be created to respond to temperature fluctuations in the local environment. Here, we fabricated thermo-responsive gold nanorod assemblies by conjugating GNRs in end-to-end or side-by-side configurations using Poly(N-isopropyl acrylamide) (PNIPAM). End-to-end assemblies were fabricated through mixture of GNRs and PNIPAM in DI water. GNRs and PNIPAM were combined in DI water and dimethylformamide (DMF) under sonication to achieve side-by-side configuration. The optical absorption of the assemblies was measured by UV-Visible spectroscopy at different temperatures. As the temperature increased, the polymer contracted and initiated plasmon coupling between the GNRs. The optical spectrum experienced a blue- or red-shift for side-by-side or end-to-end configurations, respectively. Spectral tunability reversal was observed when cooled. Experimental results were verified by finite-difference time-domain (FDTD) calculations, which demonstrated spectral shifts under similar parameters. We present methods for fabrication of thermo-responsive gold nanorods for use as a local thermal nanosensor.

  19. Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow.

    PubMed

    Thrift, William J; Nguyen, Cuong Q; Darvishzadeh-Varcheie, Mahsa; Zare, Siavash; Sharac, Nicholas; Sanderson, Robert N; Dupper, Torin J; Hochbaum, Allon I; Capolino, Filippo; Abdolhosseini Qomi, Mohammad Javad; Ragan, Regina

    2017-11-28

    Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm 2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

  20. Exploration and exploitation of water in colloidal crystals.

    PubMed

    Gallego-Gómez, Francisco; Blanco, Alvaro; López, Cefe

    2015-05-06

    Water on solid surfaces is ubiquitously found in nature, in most cases due to mere adsorption from ambient moisture. Because porous structures have large surfaces, water may significantly affect their characteristics. This is particularly obvious in systems formed by separate particles, whose interactions are strongly influenced by small amounts of liquid. Water/solid phenomena, like adsorption, condensation, capillary forces, or interparticle cohesion, have typically been studied at relatively large scales down to the microscale, like in wet granular media. However, much less is known about how water is confined and acts at the nanoscale, for example, in the interstices of divided systems, something of utmost importance in many areas of materials science nowadays. With novel approaches, in-depth investigations as to where and how water is placed in the nanometer-sized pores of self-assembled colloidal crystals have been made, which are employed as a well-defined, versatile model system with useful optical properties. In this Progress Report, knowledge gained in the last few years about water distribution in such nanoconfinements is gathered, along with how it can be controlled and the consequences it brings about to extract new or enhance existing material functionalities. New methods developed and new capabilities of standard techniques are described, and the water interplay with the optical, chemical, and mechanical properties of the ensemble are discussed. Some lines for applicability are also highlighted and aspects to be addressed in the near future are critically summarized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. DNA-mediated nanoparticle crystallization into Wulff polyhedra

    NASA Astrophysics Data System (ADS)

    Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.; Schmucker, Abrin L.; Pals, Bridget C.; de La Cruz, Monica Olvera; Mirkin, Chad A.

    2014-01-01

    Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also applies to nanoparticles: high-quality three-dimensional crystals are mostly produced using drying and sedimentation techniques that are often impossible to rationalize and control to give a desired crystal symmetry, lattice spacing and habit (crystal shape). In principle, DNA-mediated assembly of nanoparticles offers an ideal opportunity for studying nanoparticle crystallization: a well-defined set of rules have been developed to target desired lattice symmetries and lattice constants, and the occurrence of features such as grain boundaries and twinning in DNA superlattices and traditional crystals comprised of molecular or atomic building blocks suggests that similar principles govern their crystallization. But the presence of charged biomolecules, interparticle spacings of tens of nanometres, and the realization so far of only polycrystalline DNA-interconnected nanoparticle superlattices, all suggest that DNA-guided crystallization may differ from traditional crystal growth. Here we show that very slow cooling, over several days, of solutions of complementary-DNA-modified nanoparticles through the melting temperature of the system gives the thermodynamic product with a specific and uniform crystal habit. We find that our nanoparticle assemblies have the Wulff equilibrium crystal structure that is predicted from theoretical considerations and molecular dynamics simulations, thus establishing that DNA hybridization can direct nanoparticle assembly along a pathway that mimics atomic crystallization.

  2. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Zahraei, M.; Marciello, M.; Lazaro-Carrillo, A.; Villanueva, A.; Herranz, F.; Talelli, M.; Costo, R.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; Behdadfar, B.; Morales, M. P.

    2016-06-01

    Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml-1 after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.

  3. Generalized Faxén's theorem: Evaluating first-order (hydrodynamic drag) and second-order (acoustic radiation) forces on finite-sized rigid particles, bubbles and droplets in arbitrary complex flows

    NASA Astrophysics Data System (ADS)

    Annamalai, Subramanian; Balachandar, S.

    2016-11-01

    In recent times, study of complex disperse multiphase problems involving several million particles (e.g. volcanic eruptions, spray control etc.) is garnering momentum. The objective of this work is to present an accurate model (termed generalized Faxén's theorem) to predict the hydrodynamic forces on such inclusions (particles/bubbles/droplets) without having to solve for the details of flow around them. The model is developed using acoustic theory and the force obtained as a summation of infinite series (monopole, dipole and higher sources). The first-order force is the time-dependent hydrodynamic drag force arising from the dipole component due to interaction between the gas and the inclusion at the microscale level. The second-order force however is a time-averaged differential force (contributions arise both from monopole and dipole), also known as the acoustic radiation force primarily used to levitate particles. In this work, the monopole and dipole strengths are represented in terms of particle surface and volume averages of the incoming flow properties and therefore applicable to particle sizes of the order of fluid length scale and subjected to any arbitrary flow. Moreover, this model can also be used to account for inter-particle coupling due to neighboring particles. U.S. DoE, NNSA, Advanced Simulation and Computing Program, Cooperative Agreement under PSAAP-II, Contract No. DE-NA0002378.

  4. Nonharmonicity in vibrated granular solids

    NASA Astrophysics Data System (ADS)

    Schreck, Carl

    2012-02-01

    We have shown that granular packings composed of frictionless particles with repulsive contact interactions are strongly nonharmonic. When infinitesimally perturbed along linear response eigenmodes of the static packing, energy leaks from the original mode of vibration to a continuum of frequencies due solely to contact breaking even when the system is under significant compression. Further, vibrated packings possess well-defined equilibrium positions that are different than those of the unperturbed packing. The vibrational density of states obtained using the displacement matrix and velocity autocorrelation function methods exhibit an increase in the number of low-frequency modes over that obtained from linear response of the static packing. The form of the density of states in vibrated granular packings is reminiscent of the low-frequency behavior of the vibrational density of states in fluid systems. We also investigate the effects of inter-particle friction, dissipation, particle shape, and degree of positional order on the density of states and thermal transport properties in driven granular packings.

  5. Enhanced magnetization in VxFe3-xO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Pool, V. L.; Kleb, M. T.; Chorney, C. L.; Arenholz, E.; Idzerda, Y. U.

    2015-12-01

    Nanoparticles of VxFe3-xO4 with up to 33% vanadium doping (x=0 to 1) and a 9 nm diameter are investigated in order to determine the site preference of the vanadium and the magnetic behavior of the nanoparticles. The iron and vanadium L23-edge X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD) spectra are used to identify that vanadium initially substitutes into the tetrahedral iron site as V3+ and that the average iron moment is observed to increase with vanadium concentration up to 12.5% (x=.375). When the vanadium incorporation exceeds 12.5%, the XAS and MCD show that the vanadium begins substituting as V2+ in the octahedral coordination. This coincides with a rapid reduction of the average moment to zero by 25% (x=.75). The frequency-dependent alternating-current magnetic susceptibility (ACMS) displays a substantial increase in blocking temperature with vanadium concentration and indicated substantial variation in the strength of inter-particle interactions.

  6. Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozorov, Tanya; Almeida, Trevor P.; Kovacs, Andras

    Here, the mapping of electrostatic potentials and magnetic fields in liquids using electron holography has been considered to be unrealistic. Here, we show that hydrated cells of Magnetospirillum magneticum strain AMB-1 and assemblies of magnetic nanoparticles can be studied using off-axis electron holography in a fluid cell specimen holder within the transmission electron microscope. Considering that the holographic object and reference wave both pass through liquid, the recorded electron holograms show sufficient interference fringe contrast to permit reconstruction of the phase shift of the electron wave and mapping of the magnetic induction from bacterial magnetite nanocrystals. We assess the challengesmore » of performing in situ magnetization reversal experiments using a fluid cell specimen holder, discuss approaches for improving spatial resolution and specimen stability, and outline future perspectives for studying scientific phenomena, ranging from interparticle interactions in liquids and electrical double layers at solid–liquid interfaces to biomineralization and the mapping of electrostatic potentials associated with protein aggregation and folding.« less

  7. Strength and acoustic properties of Ottawa sand containing laboratory-formed methane gas hydrate

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Mason, David H.

    2004-01-01

    Although gas hydrate occurs in a wide variety of sediment types and is present and even pervasive at some locations on continental margins, little is known about how it forms naturally. Physical properties of the resultant gas hydrate-sediment mixtures, data needed for input into models that predict location and quantity of in situ hydrate are also lacking. Not only do properties of the host materials influence the type and quantity of hydrate formed and whether a particular deposit may be an economic resource or a geohazard, the properties of the natural sediment are also subsequently changed by the formation of gas hydrate in the pore space. The magnitude of the change is primarily related to the amount and the weighted inter-particle distribution of the hydrate deposits in relation to the actual sediment grains. Our goal is to understand the interaction between natural sediments and gas hydrate formation in order to quantify physical properties that are useful to predictive models.

  8. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  9. Peculiarities of the momentum distribution functions of strongly correlated charged fermions

    NASA Astrophysics Data System (ADS)

    Larkin, A. S.; Filinov, V. S.; Fortov, V. E.

    2018-01-01

    New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.

  10. Generalized formulation of the interactions between soft spheres

    NASA Astrophysics Data System (ADS)

    Alonso-Marroquín, F.; McNamara, S.

    2014-10-01

    The goal of this paper is to identify the most general formulation that consistently links the different degrees of freedom in a contact between spherical soft particles. These contact laws have two parts: a set of "generalized contact velocities" that characterize the relative motion of the two particles, and a set of "generalized contact forces" that characterize the interparticle forces. One well known constraint on contact models is that the contact velocities must be objective. This requirement fixes the number of linearly independent contact velocities. We also present a previously unnoticed (in this context) constraint, namely, that the velocities and forces must be related in such a way that the stiffness matrix is symmetric. This constraint also places restrictions on the coupling between the contact forces. Within our generalized contact model, we discuss the expression for rolling velocity that need to be used in the calculation of rolling resistance, and the risk or producing perpetual mobile when other expressions of rolling velocity are using instead.

  11. Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid

    DOE PAGES

    Prozorov, Tanya; Almeida, Trevor P.; Kovacs, Andras; ...

    2017-10-02

    Here, the mapping of electrostatic potentials and magnetic fields in liquids using electron holography has been considered to be unrealistic. Here, we show that hydrated cells of Magnetospirillum magneticum strain AMB-1 and assemblies of magnetic nanoparticles can be studied using off-axis electron holography in a fluid cell specimen holder within the transmission electron microscope. Considering that the holographic object and reference wave both pass through liquid, the recorded electron holograms show sufficient interference fringe contrast to permit reconstruction of the phase shift of the electron wave and mapping of the magnetic induction from bacterial magnetite nanocrystals. We assess the challengesmore » of performing in situ magnetization reversal experiments using a fluid cell specimen holder, discuss approaches for improving spatial resolution and specimen stability, and outline future perspectives for studying scientific phenomena, ranging from interparticle interactions in liquids and electrical double layers at solid–liquid interfaces to biomineralization and the mapping of electrostatic potentials associated with protein aggregation and folding.« less

  12. Impact of anticipation in dynamical systems

    NASA Astrophysics Data System (ADS)

    Gerlee, P.; Tunstrøm, K.; Lundh, T.; Wennberg, B.

    2017-12-01

    Many animals, including humans, have predictive capabilities and, presumably, base their behavioral decisions—at least partially—upon an anticipated state of their environment. We explore a minimal version of this idea in the context of particles that interact according to a pairwise potential. Anticipation enters the picture by calculating the interparticle forces from linear extrapolations of the particle positions some time τ in the future. Simulations show that for intermediate values of τ , compared to a transient time scale defined by the potential and the initial conditions, the particles form rotating clusters in which the particles are arranged in a hexagonal pattern. Analysis of the system shows that anticipation induces energy dissipation and we show that the kinetic energy asymptotically decays as 1 /t . Furthermore, we show that the angular momentum is not necessarily conserved for τ >0 , and that asymmetries in the initial condition therefore can cause rotational movement. These results suggest that anticipation could play an important role in collective behavior, since it may induce pattern formation and stabilizes the dynamics of the system.

  13. Localized transversal-rotational modes in linear chains of equal masses.

    PubMed

    Pichard, H; Duclos, A; Groby, J-P; Tournat, V; Gusev, V E

    2014-01-01

    The propagation and localization of transversal-rotational waves in a two-dimensional granular chain of equal masses are analyzed in this study. The masses are infinitely long cylinders possessing one translational and one rotational degree of freedom. Two dispersive propagating modes are predicted in this granular crystal. By considering the semi-infinite chain with a boundary condition applied at its beginning, the analytical study demonstrates the existence of localized modes, each mode composed of two evanescent modes. Their existence, position (either in the gap between the propagating modes or in the gap above the upper propagating mode), and structure of spatial localization are analyzed as a function of the relative strength of the shear and bending interparticle interactions and for different boundary conditions. This demonstrates the existence of a localized mode in a semi-infinite monatomic chain when transversal-rotational waves are considered, while it is well known that these types of modes do not exist when longitudinal waves are considered.

  14. Steady Shear Viscosities of Two Hard Sphere Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengdong; Chaikin, Paul M.; Phan, See-Eng; Russel, William B.; Zhu, Jixiang

    1996-03-01

    Though hard spheres have the simplest inter-particle potential, the many body hydrodynamic interactions are complex and the rheological properties of dispersions are not fully understood in the concentrated regime. We studied two model systems: colloidal poly-(Methyl Methacrylate) spheres with a grafted layer of poly-(12-hydroxy stearic acid) (PMMA/PHSA) and spherical Silica particles (PST-5, Nissan Chemical Industries, Ltd, Tokyo, Japan). Steady shear viscosities were measured by a Zimm viscometer. The high shear relative viscosity of the dispersions compares well with other hard sphere systems, but the low shear relative viscosity of PMMA/PHSA dispersions is η / η 0 = 50 at φ = 0.5 , higher than η / η 0 = 22 for other hard sphere systems, consistent with recently published data (Phys. Rev. Lett. 75(1995)958). Bare Silica spheres are used to clarify the effect of the grafted layer. With the silica spheres, volume fraction can be determined independent of intrinsic viscosity measurements; also, higher concentrated dispersions can be made.

  15. Surface-Enhanced Raman Spectroscopy: Substrates and Analyzers You Can Use

    NASA Astrophysics Data System (ADS)

    Inscore, Frank; Shende, Chetan; Sengupta, Atanu; Huang, Hermes; Farquharson, Stuart

    2010-08-01

    Following the recognition of the surface-enhanced Raman scattering effect in 1977, there was an explosion of research aimed at understanding this phenomenon of molecular interactions with nano-scale particles, and more than 1000 papers were published by 1982. Since the mid-1990's there has been a resurgence in SERS-based research with the detection of single-molecules and the acknowledgement of "hot-spots". These measurements provoked new examination of SERS theory with a focus on the structure of these hot spots: fractal clusters, edges, or inter-particle gaps. Meanwhile, Real-Time Analyzers has been developing SERS-active sample systems and analyzers to exploit this phenomenon for trace chemical analysis. This presentation reviews the analytical capabilities and limitations for many of the SERS-active substrates, as well as RTA's metal-doped sol-gels. The latter includes the use of the sol-gels in sample systems and analyzers, and their application to poisons in water supplies, food contamination, drug and explosives detection and proteomics.

  16. Selfbound quantum droplets

    NASA Astrophysics Data System (ADS)

    Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman

    2017-04-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.

  17. Shock Interaction of Metal Particles in Condensed Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2005-07-01

    For detonation propagation in a condensed explosive with metal particles, a macro-scale physical model describing the momentum transfer between the explosive and particles has yet to be completely established. Previous 1D and 2D meso-scale modeling studies indicated that significant momentum transfer from the explosive to the particles occurs as the leading shock front crosses the particles, thus influencing the initiation and detonation structure. In this work, 3D meso-scale modeling is conducted to further study the two-phase momentum transfer during the shock diffraction and subsequent detonation in liquid nitromethane containing packed metal particles. Detonation of the condensed explosive is computed using an Arrhenius reaction model and a hybrid EOS model that combines the Mie-Gruneisen equation for reactants and the JWL equation for products. The compressible particles are modeled using the Tait EOS, where the material strength is negligible. The effect of particle packing configuration and inter-particle spacing is shown by parametric studies. Finally, a physical description of the momentum transfer is discussed.

  18. Obtaining electrostatically bound CdS-SiO2 aggregates from electrophoretic concentrates of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Bulavchenko, A. I.; Sap'yanik, A. A.; Demidova, M. G.; Rakhmanova, M. I.; Popovetskii, P. S.

    2015-05-01

    Nonaqueous electrophoresis reveals that the electrokinetic potential of CdS nanoparticles increases slightly (85-120 mV) along with the concentration (0-5 × 10-3 M) of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in n-decane, while negatively charged SiO2 particles acquire positive charge (switching from -75 up to +135 mV). The energies of interparticle interactions in CdS-CdS and CdS-SiO2 systems are calculated from these parameters and the literature values of the Hamaker constants according to the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory. It is concluded that the presence of a minimum (2.5 k B T) on the potential dependences of the CdS-SiO2 system indicates the formation of CdS-SiO2 aggregates electrostatically bound by heterocoagulation at low concentrations of AOT. The luminescent properties of the obtained ultrafine CdS-SiO2 powders depend on the CdS content.

  19. Computational techniques for flows with finite-rate condensation

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.

    1993-01-01

    A computational method to simulate the inviscid two-dimensional flow of a two-phase fluid was developed. This computational technique treats the gas phase and each of a prescribed number of particle sizes as separate fluids which are allowed to interact with one another. Thus, each particle-size class is allowed to move through the fluid at its own velocity at each point in the flow field. Mass, momentum, and energy are exchanged between each particle class and the gas phase. It is assumed that the particles do not collide with one another, so that there is no inter-particle exchange of momentum and energy. However, the particles are allowed to grow, and therefore, they may change from one size class to another. Appropriate rates of mass, momentum, and energy exchange between the gas and particle phases and between the different particle classes were developed. A numerical method was developed for use with this equation set. Several test cases were computed and show qualitative agreement with previous calculations.

  20. Self-replication with magnetic dipolar colloids

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  1. Simple prescription for computing the interparticle potential energy for D-dimensional gravity systems

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Helayël-Neto, José; Barone, F. E.; Herdy, Wallace

    2015-02-01

    A straightforward prescription for computing the D-dimensional potential energy of gravitational models, which is strongly based on the Feynman path integral, is built up. Using this method, the static potential energy for the interaction of two masses is found in the context of D-dimensional higher-derivative gravity models, and its behavior is analyzed afterwards in both ultraviolet and infrared regimes. As a consequence, two new gravity systems in which the potential energy is finite at the origin, respectively, in D = 5 and D = 6, are found. Since the aforementioned prescription is equivalent to that based on the marriage between quantum mechanics (to leading order, i.e., in the first Born approximation) and the nonrelativistic limit of quantum field theory, and bearing in mind that the latter relies basically on the calculation of the nonrelativistic Feynman amplitude ({{M}NR}), a trivial expression for computing {{M}NR} is obtained from our prescription as an added bonus.

  2. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less

  3. Rotating states of self-propelling particles in two dimensions.

    PubMed

    Chen, Hsuan-Yi; Leung, Kwan-Tai

    2006-05-01

    We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small.

  4. Large area multi-channel plasmonic absorber based on the touching triangular dimers fabricated by angle controlled colloidal nanolithography

    NASA Astrophysics Data System (ADS)

    Hamidi, S. M.; Behjati, S.

    2018-02-01

    Here we introduce large area plasmonic touching triangular dimers by angle controlled colloidal nanolithography to use them as an efficient multi channel absorber and also high figure of merit sensors. For this purpose, we coated gold thin films onto nanometric and also micrometric polystyrene hexagonal closed packed masks in different deposition angles and also diverse substrate polar angles. Our prepared samples, after remove masks, show large area touching triangular pattern with different inter particle distances in greater polar angles. To get more sense about optical response of the samples such as transmittance and also electric field distribution, we use finite difference time domain method in simulation part. The transmittance plot shows one narrow or multi-channel adjustable deep depend on inter-particle distances which can be controlled by azimuthally angle in nano lithography process. Also, due to the isoelliptical points in the transmittance spectra; we can see the bright and dark plasmon modes coupling and thus the Fano like resonance takes place in the optical spectral region which is very useful for refractive index measurement.

  5. An experimental investigation of localised surface plasmon resonance (LSPR) for Cu nanoparticles depending as a function of laser pulse number in Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Gezgin, Serap Yiǧit; Kepceoǧlu, Abdullah; Kılıç, Hamdi Şükür

    2017-02-01

    Copper is a low cost metal and its nanoparticles have a unique optical properties such as LSPR. The location of LSPR wavelength can be tuned by controlling nanoparticles sizes and size distributions of nanoparticles, shapes and interparticle distances. This morphological changes are provided by controlling system parameters in PLD. For this work, 48000 and 36000 laser pulses from Nd:YAG laser were applied to produce Cu nanoparticle thin films. These thin films were characterised by performing UV-VIS absorption spectroscopy, Atomic Force Microscopy (AFM) analysis. When the number of laser pulse decreases, the size of Cu nanoparticles and the number of nanoparticles arriving on the substrate are reduced, and LSPR peak of thin films are red shifted depending on the geometrical shapes of the Cu nanoparticles. We have driven a conclusion in this work that LSPR properties of Cu nanoparticles can be tuned by proposed method.

  6. Tunable magnetic properties by interfacial manipulation of L1(0)-FePt perpendicular ultrathin film with island-like structures.

    PubMed

    Feng, C; Wang, S G; Yang, M Y; Zhang, E; Zhan, Q; Jiang, Y; Li, B H; Yu, G H

    2012-02-01

    Based on interfacial manipulation of the MgO single crystal substrate and non-magnetic AIN compound, a L1(0)-FePt perpendicular ultrathin film with the structure of MgO/FePt-AIN/Ta was designed, prepared, and investigated. The film is comprised of L1(0)-FePt "magnetic islands," which exhibits a perpendicular magnetic anisotropy (PMA), tunable coercivity (Hc), and interparticle exchange coupling (IEC). The MgO substrate promotes PMA of the film because of interfacial control of the FePt lattice orientation. The AIN compound is doped to increase the difference of surface energy between FePt layer and MgO substrate and to suppress the growth of FePt grains, which takes control of island growth mode of FePt atoms. The AIN compound also acts as isolator of L1(0)-FePt islands to pin the sites of FePt domains, resulting in the tunability of Hc and IEC of the films.

  7. Using Space for a Better Foundation on Earth: Mechanics of Granular Materials. Educational Brief. Grades 5-8.

    ERIC Educational Resources Information Center

    Alshibli, Khalid

    This publication presents a science activity and instructional information on mechanics of granular materials, interparticle friction and geometric interlocking between particles which is a fundamental concept in many fields like earthquakes. The activity described in this document focuses on the principal strength of granular materials,…

  8. Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite

    NASA Astrophysics Data System (ADS)

    Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong

    2018-04-01

    Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.

  9. Generating a stationary infinite range tractor force via a multimode optical fibre

    NASA Astrophysics Data System (ADS)

    Ebongue, C. A.; Holzmann, D.; Ostermann, S.; Ritsch, H.

    2017-06-01

    Optical fibres confine and guide light almost unattenuated and thus convey light forces to polarizable nano-particles over very long distances. Radiation pressure forces arise from scattering of guided photons into free space while gradient forces are based on coherent scattering between different fibre modes or propagation directions. Interestingly, even scattering between co-propagating modes induces longitudinal forces as the transverse confinement of the light modes creates mode dependent longitudinal wave-vectors and photon momenta. We generalize a proven scattering matrix based approach to calculate single as well as inter-particle forces to include several forward and backward propagating modes. We show that an injection of the higher order mode only in a two mode fibre will induce a stationary tractor force against the injection direction, when the mode coupling to the lower order mode dominates against backscattering and free space losses. Generically this arises for non-absorbing particles at the centre of a waveguide. The model also gives improved predictions for inter-particle forces in evanescent nanofibre fields as experimentally observed recently. Surprisingly strong tractor forces can also act on whole optically bound arrays.

  10. Antiproton-impact ionization of hydrogen atom with Yukawa interaction

    NASA Astrophysics Data System (ADS)

    Jakimovski, Dragan; Grozdanov, Tasko P.; Janev, Ratko K.

    2018-01-01

    The process of ionization of hydrogen atom by antiproton impact is studied when the interparticle interactions in the system are described by screened interactions of Yukawa type. The collision dynamics is described by the semiclassical atomic-orbital close-coupling method in which the bound atomic states and positive energy continuum pseudostates are determined by diagonalization of target Hamiltonian in a sufficiently large even-tempered basis to ensure convergence of the results at each value of the screening length λ of the interaction. With decreasing the screening length, the bound states in the Yukawa potential become unbound, thus increasing the number of continuum pseudostates. At low collision energies, this leads to the increase of the ionization cross section. It is observed that the energies of pseudostates, generated by the exit of nl bound states in the continuum, at certain critical values λ nl c exhibit series of avoided crossings when λ is varied. The avoided crossings appear between the ( n + k) l and ( n + k + 1) l ( n = 1, 2, 3, … ; k = 0, 1, 2, …) states at screening lengths close to the critical screening length λ nl c . The avoided crossings become increasingly less pronounced with increasing n, k and l. The matrix elements for the ( n + k) l - ( n + k + 1) l transitions at the avoided crossings λ x,(n+k)l (n+k+1)l exhibit maxima and are reflected in the structure of the cross sections for population of the lower nl pseudostates. These structures are, however, smeared out in the total ionization cross section.

  11. Dynamic simulations of the inhomogeneous sedimentation of rigid fibres

    NASA Astrophysics Data System (ADS)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2002-10-01

    We have simulated the dynamics of suspensions of fibres sedimenting in the limit of zero Reynolds number. In these simulations, the dominant inter-particle force arises from hydrodynamic interactions between the rigid, non-Brownian fibres. The simulation algorithm uses slender-body theory to model the linear and rotational velocities of each fibre. To include far-field interactions between the fibres, the line distribution of force on each fibre is approximated by making a Legendre polynomial expansion of the disturbance velocity on the fibre, where only the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution can be specified completely by a centre-of-mass force, a couple, and a stresslet. Short-range interactions between particles are included using a lubrication approximation, and an infinite suspension is simulated by using periodic boundary conditions. Our numerical results confirm that the sedimentation of these non-spherical, orientable particles differs qualitatively from the sedimentation of spherical particles. The simulations demonstrate that an initially homogeneous, settling suspension develops clusters, or streamers, which are particle rich surrounded by clarified fluid. The instability which causes the heterogeneous structure arises solely from hydrodynamic interactions which couple the particle orientation and the sedimentation rate in particle clusters. Depending upon the concentration and aspect ratio, the formation of clusters of particles can enhance the sedimentation rate of the suspension to a value in excess of the maximum settling speed of an isolated particle. The suspension of fibres tends to orient with gravity during the sedimentation process. The average velocities and orientations, as well as their distributions, compare favourably with previous experimental measurements.

  12. Noise characteristics of barium ferrite particulate rigid disks

    NASA Astrophysics Data System (ADS)

    Kodama, Naoki; Inoue, Hitoshi; Spratt, Geoffrey; Uesaka, Yasutaro; Katsumoto, Masayuki

    1991-04-01

    This paper discusses the relationship between the noise characteristics and magnetic properties of longitudinal barium ferrite (Ba-F) rigid disks with different switching field distributions (SFD). The magnetomotive force dependencies of reverse dc-erase (RDC) noise are measured and compared with SFD values. Coated disks with acicular magnetic particles have dips and thin-film disks peaks in the RDC. In Ba-F disks, both cases are observed depending on the SFD values, though the depths or heights of the RDC noise are much smaller than those of coated disks with acicular particles or thin-film disks. Disks with small SFD values have peaks, and disks with large SFD values have dips. In order to find the relationship between noise properties and magnetic properties, interparticle interactions in Ba-F disks are investigated. Reverse dc remanence Id(H) and ac-demagnetized isothermal remanence Ir(H) are measured. Both are normalized by the saturation remanence. The deviation from the noninteracting system, ΔM = Id(H) - [1ΔM=Id(H)-[1- 2Ir(H)] and an interaction field factor (IFF) given by (H'r - Hr)/Hc, are derived from these remanent properties. Here, H'r is the field corresponding to 50% of the remanent magnetization, Hr is remanence coercivity. In Ba-F disks, ΔM shows positive interactions, and the peak heights of ΔM increase and IFF decrease with decreasing SFD values. Positive interactions between Ba-F particles seem to be caused by particle stacking. Therefore, particle stacking results in small SFD values and peak-type RDC noise.

  13. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    PubMed Central

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  14. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.

    2014-09-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.

  15. Rice Starch Particle Interactions at Air/Aqueous Interfaces-Effect of Particle Hydrophobicity and Solution Ionic Strength.

    PubMed

    McNamee, Cathy E; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.

  16. Rice starch particle interactions at air/aqueous interfaces– effect of particle hydrophobicity and solution ionic strength

    NASA Astrophysics Data System (ADS)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-05-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e. the natural particle found inside the plant, at air/aqueous interfaces and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.

  17. Destabilization of Titania Nanosheet Suspensions by Inorganic Salts: Hofmeister Series and Schulze-Hardy Rule.

    PubMed

    Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan

    2017-07-13

    Ion specific effects on colloidal stability of titania nanosheets (TNS) were investigated in aqueous suspensions. The charge of the particles was varied by the pH of the solutions, therefore, the influence of mono- and multivalent anions on the charging and aggregation behavior could be studied when they were present either as counter or co-ions in the systems. The aggregation processes in the presence of inorganic salts were mainly driven by interparticle forces of electrostatic origin, however, chemical interactions between more complex ions and the surface led to additional attractive forces. The adsorption of anions significantly changed the surface charge properties and hence, the resistance of the TNS against salt-induced aggregation. On the basis of their ability in destabilization of the dispersions, the monovalent ions could be ordered according to the Hofmeister series in acidic solutions, where they act as counterions. However, the behavior of the biphosphate anion was atypical and its adsorption induced charge reversal of the particles. The multivalent anions destabilized the oppositely charged TNS more effectively and the aggregation processes followed the Schulze-Hardy rule. Only weak or negligible interactions were observed between the anions and the particles in alkaline suspensions, where the TNS possessed negative charge.

  18. Brownian dynamics simulations of simplified cytochrome c molecules in the presence of a charged surface

    NASA Astrophysics Data System (ADS)

    Gorba, C.; Geyer, T.; Helms, V.

    2004-07-01

    Simulations were performed for up to 150 simplified spherical horse heart cytochrome c molecules in the presence of a charged surface, which serves as an approximate model for a lipid membrane. Screened electrostatic and short-ranged attractive as well as repulsive van der Waals forces for interparticle and particle-membrane interactions are utilized in the simulations. At a distance from the membrane, where particle-membrane interactions are negligible, the simulation is coupled to a noninteraction continuum analogous to a heat bath [Geyer et al., J. Chem. Phys. 120, 4573 (2004)]. From the particles' density profiles perpendicular to the planar surface binding isotherms are derived and compared to experimental results [Heimburg et al. (1999)]. Using a negatively charged structureless membrane surface a saturation effect was found for relatively large particle concentrations. Since biological membranes often contain membrane proteins, we also studied the influence of additional charges on our model membrane mimicking bacterial reaction centers. We find that the onset of the saturation occurs for much lower concentrations and is sensitive to the detailed implementation. Therefore we suggest that local distortion of membrane planarity (undulation), or lipid demixing, or the presence of charged integral membrane proteins create preferential binding sites on the membrane. Only then do we observe saturation at physiological concentrations.

  19. Scattering of lattice solitons and decay of heat-current correlation in the Fermi-Pasta-Ulam-α -β model

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Yu, Jian; Zhang, Nan; Zhao, Hong

    2017-08-01

    As is well known, solitons can be excited in nonlinear lattice systems; however, whether, and if so, how, this kind of nonlinear excitation can affect the energy transport behavior is not yet fully understood. Here we study both the scattering dynamics of solitons and heat transport properties in the Fermi-Pasta-Ulam-α -β model with an asymmetric interparticle interaction. By varying the asymmetry degree of the interaction (characterized by α ), we find that (i) for each α there exists a momentum threshold for exciting solitons from which one may infer an α -dependent feature of probability of presentation of solitons at a finite-temperature equilibrium state and (ii) the scattering rate of solitons is sensitively dependent on α . Based on these findings, we conjecture that the scattering between solitons will cause the nonmonotonic α -dependent feature of heat conduction. Fortunately, such a conjecture is indeed verified by our detailed examination of the time decay behavior of the heat current correlation function, but it is only valid for an early time stage. Thus, this result may suggest that solitons can have only a relatively short survival time when exposed in a thermal environment, eventually affecting the heat transport in a short time.

  20. Many-body physics using cold atoms

    NASA Astrophysics Data System (ADS)

    Sundar, Bhuvanesh

    Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin, which have Feshbach-induced spin-dependent interactions, to produce a quantum dimer model. I propose an experiment to detect the ground state in this system. In a final project, I develop tools to simulate the dynamics of fermionic superfluids in which fermions interact via a short-range interaction.

  1. Acoustic attraction, repulsion and radiation force cancellation on a pair of rigid particles with arbitrary cross-sections in 2D: Circular cylinders example

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-11-01

    The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers. Potential applications concern the prediction of the forces used in acoustically-engineered metamaterials with reconfigurable periodicities, cloaking devices, and liquid crystals to name a few examples.

  2. The effect of adsorbed liquid and material density on saltation threshold: Insight from laboratory and wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; Bridges, Nathan T.; Burr, Devon M.; Sebree, Joshua A.; Smith, James K.

    2017-11-01

    Saltation threshold, the minimum wind speed for sediment transport, is a fundamental parameter in aeolian processes. Measuring this threshold using boundary layer wind tunnels, in which particles are mobilized by flowing air, for a subset of different planetary conditions can inform our understanding of physical processes of sediment transport. The presence of liquid, such as water on Earth or methane on Titan, may affect the threshold values to a great extent. Sediment density is also crucial for determining threshold values. Here we provide quantitative data on density and water content of common wind tunnel materials (including chromite, basalt, quartz sand, beach sand, glass beads, gas chromatograph packing materials, walnut shells, iced tea powder, activated charcoal, instant coffee, and glass bubbles) that have been used to study conditions on Earth, Titan, Mars, and Venus. The measured density values for low density materials are higher compared to literature values (e.g., ∼30% for walnut shells), whereas for the high density materials, there is no such discrepancy. We also find that low density materials have much higher water content and longer atmospheric equilibration timescales compared to high density sediments. We used thermogravimetric analysis (TGA) to quantify surface and internal water and found that over 80% of the total water content is surface water for low density materials. In the Titan Wind Tunnel (TWT), where Reynolds number conditions similar to those on Titan can be achieved, we performed threshold experiments with the standard walnut shells (125-150 μm, 7.2% water by mass) and dried walnut shells, in which the water content was reduced to 1.7%. The threshold results for the two scenarios are almost the same, which indicates that humidity had a negligible effect on threshold for walnut shells in this experimental regime. When the water content is lower than 11.0%, the interparticle forces are dominated by adsorption forces, whereas at higher values the interparticle forces are dominated by much larger capillary forces. For materials with low equilibrium water content, like quartz sand, capillary forces dominate. When the interparticle forces are dominated by adsorption forces, the threshold does not increase with increasing relative humidity (RH) or water content. Only when the interparticle forces are dominated by capillary forces does the threshold start to increase with increasing RH/water content. Since tholins have a low methane content (0.3% at saturation, [Curtis, D. B., Hatch, C. D., Hasenkopf, C. A., et al., 2008. Laboratory studies of methane and ethane adsorption and nucleation onto organic particles: Application to Titan's clouds. Icarus, 195, 792. http://dx.doi.org/10.1016/j.icarus.2008.02.003]), we believe tholins would behave similarly to quartz sand when subjected to methane moisture.

  3. Following in Real Time the Two-Step Assembly of Nanoparticles into Mesocrystals in Levitating Drops.

    PubMed

    Agthe, Michael; Plivelic, Tomás S; Labrador, Ana; Bergström, Lennart; Salazar-Alvarez, German

    2016-11-09

    Mesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops. Analysis of time-resolved small-angle X-ray scattering data and ex situ scanning electron microscopy together with interparticle potential calculations show that the substrate-free, particle-mediated crystallization process proceeds in two stages involving the formation and rapid transformation of a dense, structurally disordered phase into ordered mesocrystals. Controlling and tailoring the particle-mediated formation of mesocrystals could be utilized to assemble designed nanoparticles into new materials with unique functions.

  4. Communication: Programmable self-assembly of thin-shell mesostructures

    DOE PAGES

    Halverson, Jonathan D.; Tkachenko, Alexei V.

    2017-10-13

    For this article, we study numerically the possibility of programmable self-assembly of various thin-shell architectures. They include clusters isomorphic to fullerenes C 20 and C 60, finite and infinite sheets, tube-shaped and toroidal mesostructures. Our approach is based on the recently introduced directionally functionalized nanoparticle platform, for which we employ a hybrid technique of Brownian dynamics with stochastic bond formation. By combining a number of strategies, we were able to achieve a near-perfect yield of the desired structures with a reduced “alphabet” of building blocks. Among those strategies are the following: the use of bending rigidity of the interparticle bondmore » as a control parameter, programming the morphology with a seed architecture, use of chirality-preserving symmetries for reduction of the particle alphabet, and the hierarchic approach.« less

  5. Communication: Programmable self-assembly of thin-shell mesostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Jonathan D.; Tkachenko, Alexei V.

    For this article, we study numerically the possibility of programmable self-assembly of various thin-shell architectures. They include clusters isomorphic to fullerenes C 20 and C 60, finite and infinite sheets, tube-shaped and toroidal mesostructures. Our approach is based on the recently introduced directionally functionalized nanoparticle platform, for which we employ a hybrid technique of Brownian dynamics with stochastic bond formation. By combining a number of strategies, we were able to achieve a near-perfect yield of the desired structures with a reduced “alphabet” of building blocks. Among those strategies are the following: the use of bending rigidity of the interparticle bondmore » as a control parameter, programming the morphology with a seed architecture, use of chirality-preserving symmetries for reduction of the particle alphabet, and the hierarchic approach.« less

  6. Sedimentation field-flow fractionation for characterization of citric acid-modified Hβ zeolite particles: Effect of particle dispersion and carrier composition.

    PubMed

    Dou, Haiyang; Bai, Guoyi; Ding, Liang; Li, Yueqiu; Lee, Seungho

    2015-11-27

    In this study, sedimentation field-flow fractionation (SdFFF) was, for the first time, applied for determination of size distribution of Hβ zeolite particles modified by citric acid (CA-Hβ). Effects of the particle dispersion and the carrier liquid composition (type of dispersing reagent (surfactant) and salt added in the carrier liquid, ionic strength, and pH) on SdFFF elution behavior of CA-Hβ zeolite particles were systematically investigated. Also the SdFFF separation efficiency of the particles was discussed in terms of the forces such as van der Waals, hydrophobic, and induced-dipole interactions. Results reveal that the type of salt and pH of the carrier liquid significantly affect the SdFFF separation efficiency of the zeolite particles. It was found that addition of a salt (NaN3) into the carrier liquid affects the characteristic of the SdFFF channel surface. It was found that the use of an acidic medium (pH 3.2) leads to a particle-channel interaction, while the use of a basic medium (pH 10.6) promotes an inter-particle hydrophobic interaction. Result from SdFFF was compared with those from scanning electron microscopy (SEM) and dynamic light scattering (DLS). It seems that, once the experimental conditions are optimized, SdFFF becomes a valuable tool for size characterization of the zeolite particles. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A discrete model of Ostwald ripening based on multiple pairwise interactions

    NASA Astrophysics Data System (ADS)

    Di Nunzio, Paolo Emilio

    2018-06-01

    A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.

  8. Self diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The variation in experimental diffusion coefficients of integral membrane proteins is greater than that predicted by the theory, and may also reflect protein-induced perturbations in membrane viscosity. PMID:2720077

  9. Using Space for a Better Foundation on Earth: Mechanics of Granular Materials. Educational Brief. Grades 9-12.

    ERIC Educational Resources Information Center

    Alshibli, Khalid

    This publication presents a science activity and instructional information on the mechanics of granular materials, interparticle friction and geometric interlocking between particles which is a fundamental concept in many fields like in the study of earthquakes. This document describes the Mechanics of Granular Materials (MGM) experiments which…

  10. Ground-state energy of HeH+

    NASA Astrophysics Data System (ADS)

    Zhou, Bing-Lu; Zhu, Jiong-Ming; Yan, Zong-Chao

    2006-06-01

    The nonrelativistic ground-state energy of He4H+ is calculated using a variational method in Hylleraas coordinates. Convergence to a few parts in 1010 is achieved, which improves the best previous result of Pavanello [J. Chem. Phys. 123, 104306 (2005)]. Expectation values of the interparticle distances are evaluated. Similar results for He3H+ are also presented.

  11. Sensitive and Selective Plasmon Ruler Nanosensors for Monitoring the Apoptotic Drug Response in Leukemia

    PubMed Central

    2015-01-01

    Caspases are proteases involved in cell death, where caspase-3 is the chief executioner that produces an irreversible cutting event in downstream protein substrates and whose activity is desired in the management of cancer. To determine such activity in clinically relevant samples with high signal-to-noise, plasmon rulers are ideal because they are sensitively affected by their interparticle separation without ambiguity from photobleaching or blinking effects. A plasmon ruler is a noble metal nanoparticle pair, tethered in close proximity to one another via a biomolecule, that acts through dipole–dipole interactions and results in the light scattering to increase exponentially. In contrast, a sharp decrease in intensity is observed when the pair is confronted by a large interparticle distance. To align the mechanism of protease activity with building a sensor that can report a binary signal in the presence or absence of caspase-3, we present a caspase-3 selective plasmon ruler (C3SPR) composed of a pair of Zn0.4Fe2.6O4@SiO2@Au core–shell nanoparticles connected by a caspase-3 cleavage sequence. The dielectric core (Zn0.4Fe2.6O4@SiO2)-shell (Au) geometry provided a brighter scattering intensity versus solid Au nanoparticles, and the magnetic core additionally acted as a purification handle during the plasmon ruler assembly. By monitoring the decrease in light scattering intensity per plasmon ruler, we detected caspase-3 activity at single molecule resolution across a broad dynamic range. This was observed to be as low as 100 fM of recombinant material or 10 ng of total protein from cellular lysate. By thorough analyses of single molecule trajectories, we show caspase-3 activation in a drug-treated chronic myeloid leukemia (K562) cancer system as early as 4 and 8 h with greater sensitivity (2- and 4-fold, respectively) than conventional reagents. This study provides future implications for monitoring caspase-3 as a biomarker and efficacy of drugs. PMID:25166742

  12. Finite element meshing approached as a global minimization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within amore » charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested before this project ended. The primary complexity in the extension was in the connectivity problem formulation. Defining all of the interparticle interactions that occur in three-dimensions and expressing them in mathematical relationships is very difficult.« less

  13. In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mombrú, Dominique; Romero, Mariano, E-mail: mromero@fq.edu.uy; Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy

    In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. Inmore » addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.« less

  14. Physical properties of macromolecule-metal oxide nanoparticle complexes: Magnetophoretic mobility, sizes, and interparticle potentials

    NASA Astrophysics Data System (ADS)

    Mefford, Olin Thompson, IV

    Magnetic nanoparticles coated with polymers hold great promise as materials for applications in biotechnology. In this body of work, magnetic fluids for the treatment of retinal detachment are examined closely in three regimes; motion of ferrofluid droplets in aqueous media, size analysis of the polymer-iron oxide nanoparticles, and calculation of interparticle potentials as a means for predicting fluid stability. The macromolecular ferrofluids investigated herein are comprised of magnetite nanoparticles coated with tricarboxylate-functional polydimethylsiloxane (PDMS) oligomers. The nanoparticles were formed by reacting stoichiometric concentrations of iron chloride salts with base. After the magnetite particles were prepared, the functional PDMS oligomers were adsorbed onto the nanoparticle surfaces. The motion of ferrofluid droplets in aqueous media was studied using both theoretical modeling and experimental verification. Droplets (˜1-2 mm in diameter) of ferrofluid were moved through a viscous aqueous medium by an external magnet of measured field and field gradient. Theoretical calculations were made to approximate the forces on the droplet. Using the force calculations, the times required for the droplet to travel across particular distances were estimated. These estimated times were within close approximation of experimental values. Characterization of the sizes of the nanoparticles was particularly important, since the size of the magnetite core affects the magnetic properties of the system, as well as the long-term stability of the nanoparticles against flocculation. Transmission electron microscopy (TEM) was used to measure the sizes and size distributions of the magnetite cores. Image analyses were conducted on the TEM micrographs to measure the sizes of approximately 6000 particles per sample. Distributions of the diameters of the magnetite cores were determined from this data. A method for calculating the total particle size, including the magnetite core and the adsorbed polymer, in organic dispersions was established. These estimated values were compared to measurements of the entire complex utilizing dynamic light scattering (DLS). Better agreement was found for narrow particle size distributions as opposed to broader distribution. The stability against flocculation of the complexes over time in organic media were examined via modified Derjaguin-Landau-Verwey-Overbeek (DLVO) calculations. DLVO theory allows for predicting the total particle-particle interaction potentials, which include steric and electrostatic repulsions as well as van der Waals and magnetic attractions. The interparticle potentials can be determined as a function of separation of the particle surfaces. At a constant molecular weight of the polymer dispersion stabilizer, these calculations indicated that dispersions of smaller PDMS-magnetite particles should be more stable than those containing larger particles. The rheological characteristics of neat magnetite-PDMS complexes (i.e., no solvent or carrier fluid were present) were measured over time in the absence of an applied magnetic field to probe the expected properties upon storage. The viscosity of a neat ferrofluid increased over the course of a month, indicating that some aggregation occurred. However, this effect could be removed by shearing the fluids at a high rate. This suggests that the particles do not irreversibly flocculate under these conditions.

  15. In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications

    NASA Astrophysics Data System (ADS)

    Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Castiglioni, Jorge; Mombrú, Alvaro W.

    2017-06-01

    In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of 3-8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications.

  16. Colloidal Metamaterials at Optical Frequencies

    DTIC Science & Technology

    2014-07-18

    NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...optical constants from Johnson and Christy) with a 2 nm interparticle spacing. All calculations were performed assuming an aqueous embedding medium (n

  17. Particle force model effects in a shock-driven multiphase instability

    NASA Astrophysics Data System (ADS)

    Black, W. J.; Denissen, N.; McFarland, J. A.

    2018-05-01

    This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.

  18. The role of interparticle heterogeneities in the selenization pathway of Cu-Zn-Sn-S nanoparticle thin films: A real-time study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Nathaniel J.; Mainz, Roland; Walker, Bryce C.

    2015-06-10

    Real-time energy dispersive x-ray diffraction (EDXRD) analysis has been utilized to observe the selenization of Cu-Zn-Sn-S nanoparticle films coated from three nanoparticle populations: Cu- and Sn-rich particles roughly 5 nm in size, Zn-rich nanoparticles ranging from 10 to 20 nm in diameter, and a mixture of both types of nanoparticles (roughly 1:1 by mass), which corresponds to a synthesis recipe yielding CZTSSe solar cells with reported total-area efficiencies as high as 7.9%. The EDXRD studies presented herein show that the formation of copper selenide intermediates during the selenization of mixed-particle films can be primarily attributed to the small, Cu- andmore » Sn-rich particles. Moreover, the formation of these copper selenide phases represents the first stage of the CZTSSe grain growth mechanism. The large, Zn-rich particles subsequently contribute their composition to form micrometer-sized CZTSSe grains. In conclusion, these findings enable further development of a previously proposed selenization pathway to account for the roles of interparticle heterogeneities, which in turn provides a valuable guide for future optimization of processes to synthesize high quality CZTSSe absorber layers.« less

  19. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    PubMed

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  20. Ultrafast dynamics of photogenerated electrons in CdS nanocluster multilayers assembled on solid substrates: effects of assembly and electrode potential.

    PubMed

    Yagi, Ichizo; Mikami, Kensuke; Okamura, Masayuki; Uosaki, Kohei

    2013-07-22

    The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simulation and Implementation of a Morphology-Tuned Gold Nano-Islands Integrated Plasmonic Sensor

    PubMed Central

    Ozhikandathil, Jayan; Packirisamy, Muthukumaran

    2014-01-01

    This work presents simulation, analysis and implementation of morphology tuning of gold nano-island structures deposited by a novel convective assembly technique. The gold nano-islands were simulated using 3D Finite-Difference Time-Domain (FDTD) techniques to investigate the effect of morphological changes and adsorption of protein layers on the localized surface plasmon resonance (LSPR) properties. Gold nano-island structures were deposited on glass substrates by a novel and low-cost convective assembly process. The structure formed by an uncontrolled deposition method resulted in a nano-cluster morphology, which was annealed at various temperatures to tune the optical absorbance properties by transforming the nano-clusters to a nano-island morphology by modifying the structural shape and interparticle separation distances. The dependence of the size and the interparticle separation distance of the nano-islands on the LSPR properties were analyzed in the simulation. The effect of adsorption of protein layer on the nano-island structures was simulated and a relation between the thickness and the refractive index of the protein layer on the LSPR peak was presented. Further, the sensitivity of the gold nano-island integrated sensor against refractive index was computed and compared with the experimental results. PMID:24932868

  2. Saltation threshold on Mars - The effect of interparticle force, surface roughness, and low atmospheric density. [from wind-tunnel experiments

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.; White, B. R.; Pollack, J. B.; Greeley, R.

    1976-01-01

    Results are reported for wind-tunnel experiments performed to determine the threshold friction speed of particles with different densities. Experimentally determined threshold speeds are plotted as a function of particle diameter and in terms of threshold parameter vs particle friction Reynolds number. The curves are compared with those of previous experiments, and an A-B curve is plotted to show differences in threshold speed due to differences in size distributions and particle shapes. Effects of particle diameter are investigated, an expression for threshold speed is derived by considering the equilibrium forces acting on a single particle, and other approximately valid expressions are evaluated. It is shown that the assumption of universality of the A-B curve is in error at very low pressures for small particles and that only predictions which take account of both Reynolds number and effects of interparticle forces yield reasonable agreement with experimental data. Effects of nonerodible surface roughness are examined, and threshold speeds computed with allowance for this factor are compared with experimental values. Threshold friction speeds on Mars are then estimated for a surface pressure of 5 mbar, taking into account all the factors considered.

  3. Formation of iron metal and grain coagulation in the solar nebula

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Berg, Otto

    1994-01-01

    The interstellar grain population in the giant molecular cloud from which the sun formed contained little or no iron metal. However, thermal processing of individual interstellar silicates in the solar nebula is likely to result in the formation of a population of very small iron metal grains. If such grains are exposed to even transient magnetic fields, each will become a tiny dipole magnet capable of interacting with other such dipoles over spatial scale orders of magnitude larger than the radii of individual grains. Such interactions will greatly increase the coagulation cross-section for this grain population. Furthermore, the magnetic attraction between two iron dipoles will significantly increase both the collisional sticking coefficient and the strength of the interparticle binding energy for iron aggregates. Formation of iron metal may therefore be a key step in the aggregation of planetesimals in a protoplanetary nebula. Such aggregates may have already been observed in protoplanetary systems. The enhancement in the effective interaction distance between two magnetic dipoles is directly proportional to the strength of the magnetic dipoles and inversely proportional to the relative velocity. It is less sensitive to the reduced mass of the interacting particles (alpha M(exp -1/2)) and almost insensitive to the initial number density of magnetic dipoles (alpha n(sub o)(exp 1/6)). We are in the process of measuring the degree of coagulation in our condensation flow apparatus as a function of applied magnetic field and correlating these results by means of magnetic remanance acquisition measurements on our iron grains with the strength of the magnetic field to which the grains are exposed. Results of our magnetic remanance acquisition measurements and the magnetic-induced coagulation study will be presented as well as an estimate of the importance of such processes near the nebular midplane.

  4. On the role of adhesion in single-file dynamics

    NASA Astrophysics Data System (ADS)

    Fouad, Ahmed M.; Noel, John A.

    2017-08-01

    For a one-dimensional interacting system of Brownian particles with hard-core interactions (a single-file model), we study the effect of adhesion on both the collective diffusion (diffusion of the entire system with respect to its center of mass) and the tracer diffusion (diffusion of the individual tagged particles). For the case with no adhesion, all properties of these particle systems that are independent of particle labeling (symmetric in all particle coordinates and velocities) are identical to those of non-interacting particles (Lebowitz and Percus, 1967). We clarify this last fact twice. First, we derive our analytical predictions that show that the probability-density functions of single-file (ρsf) and ordinary (ρord) diffusion are identical, ρsf =ρord, predicting a nonanomalous (ordinary) behavior for the collective single-file diffusion, where the average second moment with respect to the center of mass, < x(t) 2 > , is calculated from ρ for both diffusion processes. Second, for single-file diffusion, we show, both analytically and through large-scale simulations, that < x(t) 2 > grows linearly with time, confirming the nonanomalous behavior. This nonanomalous collective behavior comes in contrast to the well-known anomalous sub-diffusion behavior of the individual tagged particles (Harris, 1965). We introduce adhesion to single-file dynamics as a second inter-particle interaction rule and, interestingly, we show that adding adhesion does reduce the magnitudes of both < x(t) 2 > and the mean square displacement per particle Δx2; but the diffusion behavior remains intact independent of adhesion in both cases. Moreover, we study the dependence of both the collective diffusion constant D and the tracer diffusion constant DT on the adhesion coefficient α.

  5. Structural evolution and mechanical behaviour of Pt nanoparticle superlattices at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinlong; Quan, Zewei; Wang, Chenyu

    High pressure is an effective means for tuning the interparticle distances of nanoparticle (NP) superlattice and thus for modifying their physical properties and functionalities. In this work, we determined the evolutio of inter-NP distances of a Pt NP superlattice with increasing pressure using an in situ synchrotro small-angle X-ray scattering (SAXS) technique in a diamond-anvil cell (DAC). Transmission electro microscopy (TEM) was used to characterize the microstructures of pre- and post-compression samples Our results demonstrate that the evolution of Pt NP assemblies with increasing pressure consists of fou stages: (1) ligand elastic response, (2) uniform compression, (3) ligand detachment frommore » NP surfaces, an (4) deviatoric compression of ligands between neighboring NPs. Lastly, by controlling the magnitudes of applie pressure and deviatoric stress, one can sinter NPs into novel architectures such as nanowires an nanoceramics.« less

  6. Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.

    PubMed

    Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand

    2016-08-24

    Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.

  7. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics.

    PubMed

    Tang, Longhua; Li, Jinghong

    2017-07-28

    Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.

  8. Electrotunable nanoplasmonic liquid mirror

    NASA Astrophysics Data System (ADS)

    Montelongo, Yunuen; Sikdar, Debabrata; Ma, Ye; McIntosh, Alastair J. S.; Velleman, Leonora; Kucernak, Anthony R.; Edel, Joshua B.; Kornyshev, Alexei A.

    2017-11-01

    Recently, there has been a drive to design and develop fully tunable metamaterials for applications ranging from new classes of sensors to superlenses among others. Although advances have been made, tuning and modulating the optical properties in real time remains a challenge. We report on the first realization of a reversible electrotunable liquid mirror based on voltage-controlled self-assembly/disassembly of 16 nm plasmonic nanoparticles at the interface between two immiscible electrolyte solutions. We show that optical properties such as reflectivity and spectral position of the absorption band can be varied in situ within +/-0.5 V. This observed effect is in excellent agreement with theoretical calculations corresponding to the change in average interparticle spacing. This electrochemical fully tunable nanoplasmonic platform can be switched from a highly reflective `mirror' to a transmissive `window' and back again. This study opens a route towards realization of such platforms in future micro/nanoscale electrochemical cells, enabling the creation of tunable plasmonic metamaterials.

  9. Steady state rheology from homogeneous and locally averaged simple shear simulations

    NASA Astrophysics Data System (ADS)

    Shi, Hao; Luding, Stefan; Magnanimo, Vanessa

    2017-06-01

    Granular materials and particulate matter are ubiquitous in our daily life and they display interesting bulk behaviors from static to dynamic, solid to fluid or gas like states, or even all these states together. To understand how the micro structure and inter-particle forces influence the macroscopic bulk behavior is still a great challenge today. This short paper presents stress controlled homogeneous simple shear results in a 3D cuboidal box using MercuryDPM software. An improved rheological model is proposed for macroscopic friction, volume fraction and coordination number as a function of inertial number and pressure. In addition, the results are compared with the locally averaged data from steady state shear bands in a split bottom ring shear cell and very good agreement is observed in low to intermediate inertia regime at various confining pressure but not for high inertia collisional granular flow.

  10. [Roles of additives and surface control in slurry atomization]. Quarterly report, March 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-08-01

    Our experimental results clearly demonstrate that the shape of particles with aspect ratio close to unity dictates the relative suspension viscosity. Suspensions of irregularly shaped particles have higher relative viscosities than suspensions of spherical particles at same volume fractions, in agreement with the reported results at high shear conditions. The relative viscosity of a Newtonian suspension is in excellent agreement with that predicted by the Krieger/Dougherty rigid sphere model using the maximum packing fraction determined from sedimentation as the sole parameter. The relative viscosity of a pseudoplastic suspension is independent of the particle density. It correlates well with the particlemore » Peclet number. The extent of particle diffusion at high shear rates decreases considerably as the particle size increases, and less energy is dissipated as a result. The interparticle electrostatic repulsion plays no significant role in the rheology of pseudoplastic nonaqueous and aqueous glycerol suspensions of noncolloidal particles.« less

  11. (Roles of additives and surface control in slurry atomization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Our experimental results clearly demonstrate that the shape of particles with aspect ratio close to unity dictates the relative suspension viscosity. Suspensions of irregularly shaped particles have higher relative viscosities than suspensions of spherical particles at same volume fractions, in agreement with the reported results at high shear conditions. The relative viscosity of a Newtonian suspension is in excellent agreement with that predicted by the Krieger/Dougherty rigid sphere model using the maximum packing fraction determined from sedimentation as the sole parameter. The relative viscosity of a pseudoplastic suspension is independent of the particle density. It correlates well with the particlemore » Peclet number. The extent of particle diffusion at high shear rates decreases considerably as the particle size increases, and less energy is dissipated as a result. The interparticle electrostatic repulsion plays no significant role in the rheology of pseudoplastic nonaqueous and aqueous glycerol suspensions of noncolloidal particles.« less

  12. Structural evolution and mechanical behaviour of Pt nanoparticle superlattices at high pressure

    DOE PAGES

    Zhu, Jinlong; Quan, Zewei; Wang, Chenyu; ...

    2016-02-05

    High pressure is an effective means for tuning the interparticle distances of nanoparticle (NP) superlattice and thus for modifying their physical properties and functionalities. In this work, we determined the evolutio of inter-NP distances of a Pt NP superlattice with increasing pressure using an in situ synchrotro small-angle X-ray scattering (SAXS) technique in a diamond-anvil cell (DAC). Transmission electro microscopy (TEM) was used to characterize the microstructures of pre- and post-compression samples Our results demonstrate that the evolution of Pt NP assemblies with increasing pressure consists of fou stages: (1) ligand elastic response, (2) uniform compression, (3) ligand detachment frommore » NP surfaces, an (4) deviatoric compression of ligands between neighboring NPs. Lastly, by controlling the magnitudes of applie pressure and deviatoric stress, one can sinter NPs into novel architectures such as nanowires an nanoceramics.« less

  13. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    NASA Astrophysics Data System (ADS)

    Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira

    2014-11-01

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound.

  14. Molecular dynamics studies of electron-ion temperature equilibration in hydrogen plasmas within the coupled-mode regime

    DOE PAGES

    Benedict, Lorin X.; Surh, Michael P.; Stanton, Liam G.; ...

    2017-04-10

    Here, we use classical molecular dynamics (MD) to study electron-ion temperature equilibration in two-component plasmas in regimes for which the presence of coupled collective modes has been predicted to substantively reduce the equilibration rate. Guided by previous kinetic theory work, we examine hydrogen plasmas at a density of n = 10 26cm –3, T i = 10 5K, and 10 7 K < Te < 10 9K. The nonequilibrium classical MD simulations are performed with interparticle interactions modeled by quantum statistical potentials (QSPs). Our MD results indicate (i) a large effect from time-varying potential energy, which we quantify by appealingmore » to an adiabatic two-temperature equation of state, and (ii) a notable deviation in the energy equilibration rate when compared to calculations from classical Lenard-Balescu theory including the QSPs. In particular, it is shown that the energy equilibration rates from MD are more similar to those of the theory when coupled modes are neglected. We suggest possible reasons for this surprising result and propose directions of further research along these lines.« less

  15. The accurate assessment of small-angle X-ray scattering data

    DOE PAGES

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; ...

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  16. Role of cell deformability in the two-dimensional melting of biological tissues

    NASA Astrophysics Data System (ADS)

    Li, Yan-Wei; Ciamarra, Massimo Pica

    2018-04-01

    The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.

  17. Convoluted Quasi Sturmian basis for the two-electron continuum

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo; Zaytsev, A. S.; Zaytsev, S. A.

    2016-09-01

    In the construction of solutions for the Coulomb three-body scattering problem one encounters a series of mathematical and numerical difficulties, one of which are the cumbersome boundary conditions the wave function should obey. We propose to describe a Coulomb three-body system continuum with a set of two-particle functions, named Convoluted Quasi Sturmian (CQS) in. They are built using recently introduced Quasi Sturmian (QS) functions which have the merit of possessing a closed form. Unlike a simple product of two one-particle functions, by construction, the CQS functions look asymptotically like a six-dimensional outgoing spherical wave. The proposed CQS basis is tested through the study of the double ionization of helium by high-energy electron impact in the framework of the Temkin-Poet model. An adequate logarithmic-like phase factor is further included in order to take into account the Coulomb interelectronic interaction and formally build the correct asymptotic behavior when all interparticle distances are large. With such a phase-factor (that can be easily extended to take into account higher partial waves) rapid convergence of the expansion can be obtained.

  18. Improvement of sticking in tablet compaction for tocopherol acetate.

    PubMed

    Sakata, Yukoh; Yamaguchi, Hiroyuki

    2011-09-01

    We have found that the addition of xylitol solution effectively improves the sticking observed in tablet compaction using a powder prescription including kneading mixtures comprising tocopherol acetate (TA)/Florite(®) RE (FLR) blends. The aim of the present study was to investigate the distribution states of TA and xylitol in kneaded mixtures comprising TA/FLR/xylitol blends and the particle states of these mixtures in order to derive an appropriate powder formulation for tablet compaction. Nitrogen gas adsorption analysis revealed that xylitol is distributed on the interparticle and intraparticle pores of FLR in the same manner as TA. Moreover, it was found that xylitol was distributed in an incomplete crystalline form because of its interaction with FLR particles in the kneaded mixtures comprising TA/FLR/xylitol blends. It was also observed that the surfaces of the particles of the kneaded mixtures comprising TA/FLR blends changed from rough to smooth because of kneading with xylitol. The occurrence of sticking can be prevented not only by the addition of xylitol but also by changing the particle states of TA/FLR/xylitol blends.

  19. The application of atomic force microscopy in mineral flotation.

    PubMed

    Xing, Yaowen; Xu, Mengdi; Gui, Xiahui; Cao, Yijun; Babel, Bent; Rudolph, Martin; Weber, Stefan; Kappl, Michael; Butt, Hans-Jürgen

    2018-06-01

    During the past years, atomic force microscopy (AFM) has matured to an indispensable tool to characterize nanomaterials in colloid and interface science. For imaging, a sharp probe mounted near to the end of a cantilever scans over the sample surface providing a high resolution three-dimensional topographic image. In addition, the AFM tip can be used as a force sensor to detect local properties like adhesion, stiffness, charge etc. After the invention of the colloidal probe technique it has also become a major method to measure surface forces. In this review, we highlight the advances in the application of AFM in the field of mineral flotation, such as mineral morphology imaging, water at mineral surface, reagent adsorption, inter-particle force, and bubble-particle interaction. In the coming years, the complementary characterization of chemical composition such as using infrared spectroscopy and Raman spectroscopy for AFM topography imaging and the synchronous measurement of the force and distance involving deformable bubble as a force sensor will further assist the fundamental understanding of flotation mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Origin of optical non-linear response in TiN owing to excitation dynamics of surface plasmon resonance electronic oscillations

    NASA Astrophysics Data System (ADS)

    Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2014-08-01

    TiN nanoparticles of average size 55 nm were investigated for their optical non-linear properties. During the experiment the irradiated laser wavelength coincided with the surface plasmon resonance (SPR) peak of the nanoparticle. The large non-linearity of the nanoparticle was attributed to the plasmon resonance, which largely enhanced the local field within the nanoparticle. Both open and closed aperture Z-scan experiments were performed and the corresponding optical constants were explored. The post-excitation absorption spectra revealed the interesting phenomenon of photo fragmentation leading to the blue shift in band gap and red shift in the SPR. The results are discussed in terms of enhanced interparticle interaction simultaneous with size reduction. Here, the optical constants being intrinsic constants for a particular sample change unusually with laser power intensity. The dependence of χ(3) is discussed in terms of the size variation caused by photo fragmentation. The studies proved that the TiN nanoparticles are potential candidates in photonics technology offering huge scope to study unexplored research for various expedient applications.

Top