Advancements in tailored hot stamping simulations: Cooling channel and distortion analyses
NASA Astrophysics Data System (ADS)
Billur, Eren; Wang, Chao; Bloor, Colin; Holecek, Martin; Porzner, Harald; Altan, Taylan
2013-12-01
Hot stamped components have been widely used in the automotive industry in the last decade where ultra high strength is required. These parts, however, may not provide sufficient toughness to absorb crash energy. Therefore, these components are "tailored" by controlling the microstructure at various locations. Simulation of tailored hot stamped components requires more detailed analysis of microstructural changes. Furthermore, since the part is not uniformly quenched, severe distortion can be observed. CPF, together with ESI have developed a number of techniques to predict the final properties of a tailored part. This paper discusses the recent improvements in modeling distortion and die design with cooling channels.
Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence
NASA Astrophysics Data System (ADS)
Yang, Liusai; Li, Guangshe; Zhao, Minglei; Zheng, Jing; Guan, Xiangfeng; Li, Liping
2012-06-01
Chemically tailoring microstructures for an optimum red luminescence is a subject at the forefront of many disciplines, which still remains a challenge due to a poor knowledge about the roles of defects in structures. In this work, GdVO4 :Eu3+ nano/microstructures of different morphologies, including tomato-like, cookie-circle-like, and ellipsoidal-like nanoparticles, and microspheroids were synthesized via a simple hydrothermal route using trisodium citrate as a capping agent. During the growth processes, the types of vanadyl ions were adjusted by varying pH value to control the morphologies and nano/microstructures with the help of trisodium citrate. The possible mechanisms for the growth processes into diverse morphologies are presented. Further, a systematic study on defect characteristics pertinent to these diverse morphologies has been explored to achieve an optimum red luminescence. The ability is clearly shown to generate different nano/microstructures of diverse morphologies and varied defect concentrations, which provides a great opportunity for morphological control in tailoring the red luminescence property for many technological applications.
Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence.
Yang, Liusai; Li, Guangshe; Zhao, Minglei; Zheng, Jing; Guan, Xiangfeng; Li, Liping
2012-06-22
Chemically tailoring microstructures for an optimum red luminescence is a subject at the forefront of many disciplines, which still remains a challenge due to a poor knowledge about the roles of defects in structures. In this work, GdVO(4) :Eu(3+) nano/microstructures of different morphologies, including tomato-like, cookie-circle-like, and ellipsoidal-like nanoparticles, and microspheroids were synthesized via a simple hydrothermal route using trisodium citrate as a capping agent. During the growth processes, the types of vanadyl ions were adjusted by varying pH value to control the morphologies and nano/microstructures with the help of trisodium citrate. The possible mechanisms for the growth processes into diverse morphologies are presented. Further, a systematic study on defect characteristics pertinent to these diverse morphologies has been explored to achieve an optimum red luminescence. The ability is clearly shown to generate different nano/microstructures of diverse morphologies and varied defect concentrations, which provides a great opportunity for morphological control in tailoring the red luminescence property for many technological applications.
Tailoring the Microstructure of Sol–Gel Derived Hydroxyapatite/Zirconia Nanocrystalline Composites
2011-01-01
In this study, we tailor the microstructure of hydroxyapatite/zirconia nanocrystalline composites by optimizing processing parameters, namely, introducing an atmosphere of water vapor during sintering in order to control the thermal stability of hydroxyapatite, and a modified sol–gel process that yields to an excellent intergranular distribution of zirconia phase dispersed intergranularly within the hydroxyapatite matrix. In terms of mechanical behavior, SEM images of fissure deflection and the presence of monoclinic ZrO2 content on cracked surface indicate that both toughening mechanisms, stress-induced tetragonal to monoclinic phase transformation and deflection, are active for toughness enhancement. PMID:24764458
The continuing battle against defects in nickel-base superalloys
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.
1986-01-01
In the six decades since the identification of age hardenable nickel-base superalloys their compositions and microstructures have changed markedly. Current alloys are tailored for specific applications. Thus their microstructures are defined for that application. This paper briefly reviews the evolution of superalloy microstructures and comments on the appearance and implications of microstructural defects in high performance superalloys. It is seen that new alloys and proceses have generated new types of defects. Thus as the industry continues to develop new alloys and processes it must remain vigilant toward the identification and control of new types of defects.
Anisotropic and Hierarchical Porosity in Multifunctional Ceramics
NASA Astrophysics Data System (ADS)
Lichtner, Aaron Zev
The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.
Damage-tolerant metallic composites via melt infiltration of additively manufactured preforms
Pawlowski, Alexander E.; Cordero, Zachary C.; French, Matthew R.; ...
2017-04-22
A facile two-step approach for 3D printing metal-metal composites with precisely controlled microstructures is described. Composites made with this approach exhibit tailorable thermal and mechanical properties as well as exceptional damage tolerance.
Damage-tolerant metallic composites via melt infiltration of additively manufactured preforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowski, Alexander E.; Cordero, Zachary C.; French, Matthew R.
A facile two-step approach for 3D printing metal-metal composites with precisely controlled microstructures is described. Composites made with this approach exhibit tailorable thermal and mechanical properties as well as exceptional damage tolerance.
Chen, Cheng-Meng; Zhang, Qiang; Huang, Chun-Hsien; Zhao, Xiao-Chen; Zhang, Bing-Sen; Kong, Qing-Qiang; Wang, Mao-Zhang; Yang, Yong-Gang; Cai, Rong; Sheng Su, Dang
2012-07-21
A three-dimensional bubble graphene film, with controllable and uniform macropores and tailorable microstructure, was fabricated by a facile hard templating strategy and exhibit extraordinary electrochemical capacitance with high rate capability (1.0 V s(-1)).
Computation of Bragg Reflection for Layered Microstructures
NASA Technical Reports Server (NTRS)
Underwood, J. W.; Barbee, T. W.
1984-01-01
Bragg diffractors analyzed for use in X-ray mirrors and other applications. SLM tailored to specific applications by varying layer thicknesses and number of layers to control reflectivity diffraction width, and wavelength resolution. Applications as glancing incidence mirrors or filters for wavelengths of few to few hundred angstroms.
Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R.
1995-01-01
A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.
NASA Astrophysics Data System (ADS)
Sun, Qingping; Yu, Chao; Kang, Guozheng
2018-03-01
We report recent progress in tailoring the thermal expansion (TE) of nanocrystalline (NC) NiTi by microstructure hierarchical design and control without composition change. Fabrication and characterization methods are outlined and preliminary results of both experiment and mechanism-based modeling are presented to understand and get insight into the unusual TE phenomena. The important roles of the intrinsic thermal expansion anisotropy of B19' lattice and the suppression of phase transition by the extrinsic fabricated microstructure (cold rolling and annealing, grain size, defects, textures and volume fractions of nanoscaled B2 and B19' lattices) in the overall macroscopic TE behaviors of the superelastic NC NiTi polycrystal SMAs are emphasized.
Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research
2008-11-04
working on tailoring the nano- and meso-porosity, and the microstructure of geopolymers and their composites . This grant was used to procure equipment...and tailor the nano and meso-porosity and microstructure of geopolymers and their composites is part of an ongoing research project in the Pis...purchased to improve the synthesis and processing of geopolymers and geopolymer composites . The attritor mill enables synthesis Technical Report of
The Microstructural Design of Trimodal Aluminum Composites
NASA Astrophysics Data System (ADS)
Jiang, Lin; Ma, Kaka; Yang, Hanry; Li, Meijuan; Lavernia, Enrique J.; Schoenung, Julie M.
2014-06-01
Trimodal composites, consisting of nanocrystalline or ultrafine grains (UFGs), coarse grains (CGs), and ceramic particles, were originally formulated to achieve combinations of physical and mechanical properties that are unattainable with the individual phases, such as strength, ductility, and high-strain-rate deformation. The concept of a trimodal structure is both scientifically novel as well as technologically promising because it provides multiple controllable degrees of freedom that allow for extensive microstructure design. The UFGs provide efficient obstacles for dislocation movement, such as grain boundaries and other crystalline defects. The size, distribution, and spatial arrangement of the CGs can be controlled to provide plasticity during deformation. The size, morphology, and distribution of the reinforcement particles can be tailored to attain various engineering and physical properties. Moreover, the interfaces that form among the various phases also help determine the overall behavior of the trimodal composites. In this article, a review is provided to discuss the selection and design of each component in trimodal Al composites. The toughening and strengthening mechanisms in the trimodal composite structure are discussed, paying particular attention to strategies that can be implemented to tailor microstructures for optimal mechanical behavior. Recent results obtained with high-performance trimodal Al composites that contain nanometric reinforcements are also discussed to highlight the ability to control particle-matrix interface characteristics. Finally, a perspective is provided on potential approaches that can be explored to develop the next generation of trimodal composites, and interesting scientific paradigms that evolve from the proposed design strategies are discussed.
NASA Astrophysics Data System (ADS)
Fan, Jinghong; Hao, Su
2004-01-01
Material heterogeneities and discontinuities such as porosity, second phase particles, and other defects at meso/micro/nano scales, determine fatigue life, strength, and fracture behavior of aluminum castings. In order to achieve better performance of these alloys, a design-centered computer-aided renovative approach is proposed. Here, the term “design-centered” is used to distinguish the new approach from the traditional trial-and-error design approach by formulating a clear objective, offering a scientific foundation, and developing a computer-aided effective tool for the alloy development. A criterion for tailoring “child” microstructure, obtained by “parent” microstructure through statistical correlation, is proposed for the fatigue design at the initial stage. A dislocations pileup model has been developed. This dislocation model, combined with an optimization analysis, provides an analytical-based solution on a small scale for silicon particles and dendrite cells to enhance both fatigue performance and strength for pore-controlled castings. It can also be used to further tailor microstructures. In addition, a conceptual damage sensitivity map for fatigue life design is proposed. In this map there are critical pore sizes, above which fatigue life is controlled by pores; otherwise it is controlled by other mechanisms such as silicon particles and dendrite cells. In the latter case, the proposed criteria and the dislocation model are the foundations of a guideline in the design-centered approach to maximize both the fatigue life and strength of Al-Si-based light-weight alloy.
Li, Qing; Jin, Wang; Chu, Manman; Zhang, Wei; Gu, Jianmin; Shahid, Bilal; Chen, Aibing; Yu, Yifeng; Qiao, Shanlin; Zhao, Yong Sheng
2018-03-08
Low-dimensional organic materials have given rise to tremendous interest in optoelectronic applications, owing to their controllable photonic properties. However, the controlled-synthesis approaches for organic nano-/micro-architectures are very difficult to attain, because the weak interaction (van der Waals force) between the organic molecules cannot dominate the kinetic process of crystal growth. We report a simple method, which involves selective adhesion to the organic crystal plane by hydrogen-bonding interaction for modulating the crystal growth process, which leads either to the self-assembly of one organic molecule into two-dimensional (2D) microsheets with an obvious asymmetric light propagation or one-dimensional (1D) microrods with low propagation loss. The method of tailoring the structures and photonic properties for fabricating different micro-structures would provide enlightenment for the development of tailor-made mini-sized devices for photonic integrated circuits.
NASA Astrophysics Data System (ADS)
Abdollahifar, Mozaffar; Huang, Sheng-Siang; Lin, Yu-Hsiang; Lin, Yan-Cheng; Shih, Bing-Yi; Sheu, Hwo-Shuenn; Liao, Yen-Fa; Wu, Nae-Lih
2018-02-01
Although ZnMn2O4 is widely studied as Li-ion battery anodes, it remains a challenge to tailor suitable microstructures of the oxide for supercapacitor applications. Carbon-coated ZnMn2O4 (C@ZMO) nanocrystallites showing high-performance pseudocapacitor behaviours in neutral aqueous electrolyte are for the first time successfully synthesised via a novel solution combustion process using polyethylene glycol as a multifunctional microstructure-directing agent. Controlling the molecular weight and amount of the polymer in the combustion solution enables the formation of highly-crystalline C@ZMO having substantially higher, by more than 5 folds, specific surface areas with mesoporous structures and conformal carbon coating via the one-pot synthesis process. The resulting C@ZMO supercapacitor electrodes in Na2SO4(aq) electrolyte exhibit ideal capacitive behaviours with specific capacitances up to 150 F g-1 and cycle stability showing no capacitance fade after 10,000 cycles at 60% of full capacity and >99% Coulombic efficiency. This study not only illustrates a new powerful synthesis route capable of producing conductive mesoporous crystalline oxide-based nanomaterials for energy storage applications but also reveals a new class of high-performance pseudocapacitive materials for neutral aqueous electrolytes.
Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter
2016-06-22
Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.
Manufacturing of tailored tubes with a process integrated heat treatment
NASA Astrophysics Data System (ADS)
Hordych, Illia; Boiarkin, Viacheslav; Rodman, Dmytro; Nürnberger, Florian
2017-10-01
The usage of work-pieces with tailored properties allows for reducing costs and materials. One example are tailored tubes that can be used as end parts e.g. in the automotive industry or in domestic applications as well as semi-finished products for subsequent controlled deformation processes. An innovative technology to manufacture tubes is roll forming with a subsequent inductive heating and adapted quenching to obtain tailored properties in the longitudinal direction. This processing offers a great potential for the production of tubes with a wide range of properties, although this novel approach still requires a suited process design. Based on experimental data, a process simulation is being developed. The simulation shall be suitable for a virtual design of the tubes and allows for gaining a deeper understanding of the required processing. The model proposed shall predict microstructural and mechanical tube properties by considering process parameters, different geometries, batch-related influences etc. A validation is carried out using experimental data of tubes manufactured from various steel grades.
Vertical electrostatic actuator with extended digital range via tailored topology
NASA Astrophysics Data System (ADS)
Zhang, Yanhang; Dunn, Martin L.
2002-07-01
We describe the design, fabrication, and testing of an electrostatic vertical actuator that exhibits a range of motion that covers the entire initial gap between the actuator and substrate and provides controllable digital output motion. This is obtained by spatially tailoring the electrode arrangement and the stiffness characteristics of the microstructure to control the voltage-deflection characteristics. The concept is based on the electrostatic pull down of bimaterial beams, via a series of electrodes attached to the beams by flexures with tailored stiffness characteristics. The range of travel of the actuator is defined by the post-release deformed shape of the bilayer beams, and can be controlled by a post-release heat-treat process combined with a tailored actuator topology (material distribution and geometry, including spatial geometrical patterning of the individual layers of the bilayer beams). Not only does this allow an increase in the range of travel to cover the entire initial gap, but it also permits digital control of the tip of the actuator which can be designed to yield linear displacement - pull in step characteristics. We fabricated these actuators using the MUMPs surface micromachining process, and packaged them in-house. We measured, using an interferometric microscope, full field deformed shapes of the actuator at each pull in step. The measurements compare well with companion simulation results, both qualitatively and quantitatively.
Kwon, Jeong; Kim, Sung June; Park, Jong Hyoek
2015-06-28
We fabricated a perovskite solar cell with enhanced device efficiency based on the tailored inner space of the TiO2 electrode by utilizing a very short chemical etching process. It was found that the mesoporous TiO2 photoanode treated with a HF solution exhibited remarkably enhanced power conversion efficiencies under simulated AM 1.5G one sun illumination. The controlled inner space and morphology of the etched TiO2 electrode provide an optimized space for perovskite sensitizers and infiltration of a hole transport layer without sacrificing its original electron transport ability, which resulted in higher JSC, FF and VOC values. This simple platform provides new opportunities for tailoring the microstructure of the TiO2 electrode and has great potential in various optoelectronic devices utilizing metal oxide nanostructures.
Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.
Han, Zhao Jun; Ostrikov, Kostya
2012-04-04
Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.
NASA Astrophysics Data System (ADS)
Bardelcik, Alexander; Vowles, Caryn J.; Worswick, Michael J.
2018-04-01
This paper examines the mechanical, microstructural, and damage characteristics of five different material conditions that were created using the tailored hot stamping process with in-die heating. The tailored material conditions, TMC1 to TMC5 (softest-hardest), were created using die temperatures ranging from 700 °C to 400 °C, respectively. The tensile strength (and total elongation) ranged from 615 MPa (0.24) for TMC1 to 1122 MPa (0.11) for TMC5. TMC3 and TMC4 exhibited intermediate strength levels, with almost no increase in total elongation relative to TMC5. FE-SEM microscopy was used to quantify the mixed-phase microstructures, which ranged in volume fractions of ferrite, pearlite, bainite, and martensite. High-resolution optical microscopy was used to quantify void accumulation and showed that the total void area fraction at 0.60 thickness strain was low for TMC1 and TMC5 ( 0.09 pct) and highest for TMC3 (0.31 pct). Damage modes were characterized and revealed that the poor damage behavior of TMC3 (martensite/bainite/ferrite composition) was a result of small martensitic grains forming at grain boundaries and grain boundary junctions, which facilitated void nucleation as shown by the highest measured void density for this particular material condition. The excellent ductility of TMC1 was a result of a large grained ferritic/pearlitic microstructure that was less susceptible to void nucleation and growth. Large titanium nitride (TiN) inclusions were observed in all of the tailored material conditions and it was shown that they noticeably contributed to the total void accumulation, specifically for the TMC3 and TMC4 material conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.
In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less
Automatic hammering of nano-patterns on special polymer film by using a vibrating AFM tip
2012-01-01
Complicated nano-patterns with linewidth less than 18 nm can be automatically hammered by using atomic force microscopy (AFM) tip in tapping mode with high speed. In this study, the special sample was thin poly(styrene-ethylene/butylenes-styrene) (SEBS) block copolymer film with hexagonal spherical microstructures. An ordinary silicon tip was used as a nano-hammer, and the entire hammering process is controlled by a computer program. Experimental results demonstrate that such structure-tailored thin films enable AFM tip hammering to be performed on their surfaces. Both imprinted and embossed nano-patterns can be generated by using a vibrating tip with a larger tapping load and by using a predefined program to control the route of tip movement as it passes over the sample’s surface. Specific details for the fabrication of structure-tailored SEBS film and the theory for auto-hammering patterns were presented in detail. PMID:22889045
NASA Technical Reports Server (NTRS)
Singh, M.
2002-01-01
Environment-conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that can be produced with renewable resources (wood) and wood wastes (wood sawdust). These materials have tailorable properties with numerous potential applications. Silicon carbide-based ecoceramics have been fabricated by the infiltration of wood-derived carbonaceous preforms with oxide and silicon based materials. The wood-derived carbonaceous preforms have been shown to be quite useful in producing porous or dense materials with different microstructures and compositions. The microstructure and mechanical properties (flexural strength, fracture toughness, elastic modulus, and compressive strength) of a wide variety of Sic-based ecoceramics have been measured. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. In this presentation the fabrication approach, microstructure, and thermomechanical properties of a wide variety of Sic-based Ecoceramics will be reported.
NASA Astrophysics Data System (ADS)
Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi
2018-04-01
When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.
NASA Astrophysics Data System (ADS)
Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi
2018-06-01
When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.
Surface Coating of Oxide Powders: A New Synthesis Method to Process Biomedical Grade Nano-Composites
Palmero, Paola; Montanaro, Laura; Reveron, Helen; Chevalier, Jérôme
2014-01-01
Composite and nanocomposite ceramics have achieved special interest in recent years when used for biomedical applications. They have demonstrated, in some cases, increased performance, reliability, and stability in vivo, with respect to pure monolithic ceramics. Current research aims at developing new compositions and architectures to further increase their properties. However, the ability to tailor the microstructure requires the careful control of all steps of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering. This review aims at deepening understanding of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on the key role of the synthesis methods to develop homogeneous and tailored microstructures. In this frame, the authors have developed an innovative method, named “surface-coating process”, in which matrix oxide powders are coated with inorganic precursors of the second phase. The method is illustrated into two case studies; the former, on Zirconia Toughened Alumina (ZTA) materials for orthopedic applications, and the latter, on Zirconia-based composites for dental implants, discussing the advances and the potential of the method, which can become a valuable alternative to the current synthesis process already used at a clinical and industrial scale. PMID:28788117
Manipulating Semicrystalline Polymers in Confinement.
Shingne, Nitin; Geuss, Markus; Thurn-Albrecht, Thomas; Schmidt, Hans-Werner; Mijangos, Carmen; Steinhart, Martin; Martín, Jaime
2017-08-17
Because final properties of nanoscale polymeric structures are largely determined by the solid-state microstructure of the confined polymer, it is imperative not only to understand how the microstructure of polymers develops under nanoscale confinement but also to establish means to manipulate it. Here we present a series of processing strategies, adapted from methods used in bulk polymer processing, that allow us to control the solidification of polymer nanostructures. First, we show that supramolecular nucleating agents can be readily used to modify the crystallization kinetics of confined poly(vinylidene fluoride) (PVDF). In addition, we demonstrate that microstructural features that are not traditionally affected by nucleating agents, such as the orientation of crystals, can be tuned with the crystallization temperature applied. Interestingly, we also show that high crystallization temperatures and long annealing periods induce the formation of the γ modification of PVDF, hence enabling the simple production of ferro/piezoelectric nanostructures. We anticipate that the approaches presented here can open up a plethora of new possibilities for the processing of polymer-based nanostructures with tailored properties and functionalities.
NASA Astrophysics Data System (ADS)
Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo
2018-04-01
We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.
NASA Astrophysics Data System (ADS)
Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo
2018-06-01
We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.
NASA Astrophysics Data System (ADS)
Czapski, M.; Stora, T.; Tardivat, C.; Deville, S.; Santos Augusto, R.; Leloup, J.; Bouville, F.; Fernandes Luis, R.
2013-12-01
New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLUKA codes.
Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; ...
2014-11-11
In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less
Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G
2015-05-18
Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.
Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine
2017-01-18
Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.
NASA Technical Reports Server (NTRS)
Pineda, Evan Jorge; Bednarcyk, Brett A.; Arnold, Steven M.
2014-01-01
Integrated computational materials engineering (ICME) is a useful approach for tailoring the performance of a material. For fiber-reinforced composites, not only do the properties of the constituents of the composite affect the performance, but so does the architecture (or microstructure) of the constituents. The generalized method of cells is demonstrated to be a viable micromechanics tool for determining the effects of the microstructure on the performance of laminates. The micromechanics is used to predict the inputs for a macroscale model for a variety of different fiber volume fractions, and fiber architectures. Using this technique, the material performance can be tailored for specific applications by judicious selection of constituents, volume fraction, and architectural arrangement given a particular manufacturing scenario
Processing and properties of Titanium alloy based materials with tailored porosity and composition
NASA Astrophysics Data System (ADS)
Cabezas-Villa, Jose Luis; Olmos, Luis; Lemus-Ruiz, Jose; Bouvard, Didier; Chavez, Jorge; Jimenez, Omar; Manuel Solorio, Victor
2017-06-01
This paper deals with powder processing of Ti6Al4V titanium alloy based materials with tailored porosity and composition. Ti6Al4V powder was mixed either with salt particles acting as space holder, so as to provide two-scale porosity, or with hard TiN particles that significantly modified the microstructure of the material and increased its hardness. Finally an original three-layer component was produced. Sample microstructure was observed by SEM and micro-tomography with special interest in pore size and shape, inclusion distribution and connectivity. Compression tests provided elastic modulus and yield stress as functions of density. These materials are representative of bone implants subjected to complex biological and mechanical conditions. These results thus open avenues for processing personalized implants by powder metallurgy.
Mechanical Properties and Microstructure of High-Strength Steel Controlled by Hot Stamping Process
NASA Astrophysics Data System (ADS)
Ou, Hang; Zhang, Xu; Xu, Junrui; Li, Guangyao; Cui, Junjia
2018-03-01
A novel design and manufacturing method, dubbed "precast," of the cooling system and tools for a hot forming process was proposed in this paper. The integrated structures of the punch and blank holder were determined by analyzing the bending and reverse-bending deformation of the forming parts. The desired crashworthiness performance of an automotive front bumper constructed with this process was obtained by a tailored phase transformation, which generated martensite-bainite in the middle and full martensite transformation in the corner areas. Varying cooling effects in the formed parts caused the highest temperature to be located in the bottom and the lowest on the end of the formed parts. Moreover, the microstructural distributions demonstrated that the bottom possessed a relatively lower content of martensite, while, conversely, the end possessed a higher content. This was precisely the most desired phase distributions for the hot formed parts. For the six-process cycle stamping, the temperatures reached a stable status after an initial rapid increase in the first three process cycles. The microstructural results verified the feasibility of the hot forming tools under multiprocess cycles.
Microstructural and techno-functional properties of cassava starch modified by ultrasound.
Monroy, Yuliana; Rivero, Sandra; García, María A
2018-04-01
This work was focused on the correlation between the structural and techno-functional properties of ultrasound treated cassava starch for the preparation of tailor-made starch-based ingredients and derivatives. Furthermore, the effect of treatment time, sample conditioning and ultrasound amplitude was studied. Ultrasonic treatment of cassava starch induced structural disorganization and microstructural changes evidenced mainly in the morphological characteristics of the granules and in their degrees of crystallinity. These structural modifications were supported by ATR-FTIR and SEM and CSLM studies as well as DRX and thermal analysis. The selection of the processing conditions is critical due to the complete gelatinization of the starch was produced with the maximum amplitude tested and without temperature control. Rheological dynamical analysis indicated changes at the molecular level in starch granules due to the ultrasound treated, revealing the paste stability under refrigeration condition. PCA allow to establish the interrelationships between microstructural and techno-functional properties. In summary, different starch derivatives could be obtained by adjusting the ultrasound treatment conditions depending on their potential applications. Copyright © 2018 Elsevier B.V. All rights reserved.
2008-07-01
Tailoring the Properties of Aluminum and Titanium Alloys", Deformation, Processing, and Structure , G. Krauss, ed., ASM International, Materials Park, OH...1984, pp. 279-354. 51. G.W. Kuhlman, "A Critical Appraisal of Thermomechanical Processing of Structural Titanium Alloys", Microstructure/ Property ... titanium alloys is heavily dependent on the allotropic transformation from a hexagonal-close-packed crystal structure (denoted as alpha phase) found at
Identification of a process window for tailored carburization of sheet metals in hot stamping
NASA Astrophysics Data System (ADS)
Horn, Alexander; Merklein, Marion
2018-05-01
Due to governmental regulations concerning the reduction of CO2 emissions and increasing safety standards, hot stamping of high strength boron manganese steel sheets has evolved into a state of the art process for manufacturing structural car body parts. The combined forming and in-die quenching process enables the formation of a fully martensitic microstructure. Therefore, press hardened steels offer high strength, but low ductility. In order to further improve passenger safety, a tailored configuration of mechanical properties is desired. Besides state of the art methods, like the application of locally different heat treatment temperatures or varying quenching rates, the adjustment of mechanical properties of sheet metals by a tailored carburization is a novel approach. For the carburization process, the specimens are first coated with graphite and subsequently heat treated. Within this contribution, different coating strategies as well as heat treatment temperatures and dwell times are investigated. For the determination of a process window, mechanical properties such as tensile strength and microhardness will be analyzed and correlated with the resulting microstructure.
NASA Astrophysics Data System (ADS)
Shayesteh Moghaddam, Narges; Saedi, Soheil; Amerinatanzi, Amirhesam; Saghaian, Ehsan; Jahadakbar, Ahmadreza; Karaca, Haluk; Elahinia, Mohammad
2018-03-01
Material and mechanical properties of NiTi shape memory alloys strongly depend on the fabrication process parameters and the resulting microstructure. In selective laser melting, the combination of parameters such as laser power, scanning speed, and hatch spacing determine the microstructural defects, grain size and texture. Therefore, processing parameters can be adjusted to tailor the microstructure and mechanical response of the alloy. In this work, NiTi samples were fabricated using Ni50.8Ti (at.%) powder via SLM PXM by Phenix/3D Systems and the effects of processing parameters were systematically studied. The relationship between the processing parameters and superelastic properties were investigated thoroughly. It will be shown that energy density is not the only parameter that governs the material response. It will be shown that hatch spacing is the dominant factor to tailor the superelastic response. It will be revealed that with the selection of right process parameters, perfect superelasticity with recoverable strains of up to 5.6% can be observed in the as-fabricated condition.
Phase transformations in steels: Processing, microstructure, and performance
Gibbs, Paul J.
2014-04-03
In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.
Biomimetic microstructures for photonic and fluidic synergies
NASA Astrophysics Data System (ADS)
Vasileiou, Maria; Mpatzaka, Theodora; Alexandropoulos, Dimitris; Vainos, Nikolaos A.
2017-08-01
Nature-inspired micro- and nano-structures offer a unique platform for the development of novel synergetic systems combining photonic and microfluidic functionalities. In this context, we examine the paradigm of butterfly Vanessa cardui and develop artificial diffractive microstructures inspired by its natural designs. Softlithographic and nanoimprint protocols are developed to replicate surfaces of natural specimens. Further to their optical behavior, interphases tailored by such microstructures exhibit enhanced hydrophobic properties, as compared to their planar counterparts made of the same materials. Such synergies exploited by new design approaches pave the way to prospective optofluidic, lab-on-chip and sensing applications.
Palmero, Paola; Fornabaio, Marta; Montanaro, Laura; Reveron, Helen; Esnouf, Claude; Chevalier, Jérôme
2015-05-01
In order to fulfill the clinical requirements for strong, tough and stable ceramics used in dental applications, we designed and developed innovative zirconia-based composites, in which equiaxial α-Al2O3 and elongated SrAl12O19 phases are dispersed in a ceria-stabilized zirconia matrix. The composite powders were prepared by an innovative surface coating route, in which commercial zirconia powders were coated by inorganic precursors of the second phases, which crystallize on the zirconia particles surface under proper thermal treatment. Samples containing four different ceria contents (in the range 10.0-11.5 mol%) were prepared by carefully tailoring the amount of the cerium precursor during the elaboration process. Slip cast green bodies were sintered at 1450 °C for 1 h, leading to fully dense materials. Characterization of composites by SEM and TEM analyses showed highly homogeneous microstructures with an even distribution of both equiaxial and elongated-shape grains inside a very fine zirconia matrix. Ce content plays a major role on aging kinetics, and should be carefully controlled: sample with 10 mol% of ceria were transformable, whereas above 10.5 mol% there is negligible or no transformation during autoclave treatment. Thus, in this paper we show the potential of the innovative surface coating route, which allows a perfect tailoring of the microstructural, morphological and compositional features of the composites; moreover, its processing costs and environmental impacts are limited, which is beneficial for further scale-up and real use in the biomedical field. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Shuying; Ladani, Raj B; Zhang, Jin; Ghorbani, Kamran; Zhang, Xuehua; Mouritz, Adrian P; Kinloch, Anthony J; Wang, Chun H
2016-09-21
Strain sensors with high elastic limit and high sensitivity are required to meet the rising demand for wearable electronics. Here, we present the fabrication of highly sensitive strain sensors based on nanocomposites consisting of graphene aerogel (GA) and polydimethylsiloxane (PDMS), with the primary focus being to tune the sensitivity of the sensors by tailoring the cellular microstructure through controlling the manufacturing processes. The resultant nanocomposite sensors exhibit a high sensitivity with a gauge factor of up to approximately 61.3. Of significant importance is that the sensitivity of the strain sensors can be readily altered by changing the concentration of the precursor (i.e., an aqueous dispersion of graphene oxide) and the freezing temperature used to process the GA. The results reveal that these two parameters control the cell size and cell-wall thickness of the resultant GA, which may be correlated to the observed variations in the sensitivities of the strain sensors. The higher is the concentration of graphene oxide, then the lower is the sensitivity of the resultant nanocomposite strain sensor. Upon increasing the freezing temperature from -196 to -20 °C, the sensitivity increases and reaches a maximum value of 61.3 at -50 °C and then decreases with a further increase in freezing temperature to -20 °C. Furthermore, the strain sensors offer excellent durability and stability, with their piezoresistivities remaining virtually unchanged even after 10 000 cycles of high-strain loading-unloading. These novel findings pave the way to custom design strain sensors with a desirable piezoresistive behavior.
Ultrasonic cavitation erosion-corrosion behavior of friction stir processed stainless steel.
Selvam, Karthikeyan; Mandal, Priya; Grewal, Harpreet Singh; Arora, Harpreet Singh
2018-06-01
Cavitation erosion remains the primary cause of material degradation in fluid machinery components operating at high speed. Micro-jets/shock waves caused by implosion of bubbles on material surface results in significant material loss and premature failure of the components. The presence of corrosive medium further exuberates this effect, causing rapid degradation. Here, we demonstrate a novel pathway to control cavitation erosion-corrosion by tailoring the surface properties using submerged friction stir processing (FSP), a severe plastic deformation process. FSP parameters were varied over wide range of strain-rates to generate tailored microstructures. High strain-rate processing resulted in nearly single phase fine grained structure while low strain-rate processing resulted in phase transformation in addition to grain refinement. As-received and processed samples were subjected to ultrasonic cavitation in distilled water as well as in corrosive environment of 3.5% NaCl solution. Individual roles of cavitation erosion, corrosion and their synergistic effects were analyzed. Depending on the microstructure, processed samples showed nearly 4-6 times higher cavitation erosion resistance compared to as-received alloy. Superior cavitation erosion-corrosion resistance of processed samples was attributed to surface strengthening, higher strain-hardening ability and quick passivation kinetics. The results of current study could be potentially transformative in designing robust materials for hydro-dynamic applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Vertically grown nanowire crystals of dibenzotetrathienocoronene (DBTTC) on large-area graphene
Kim, B.; Chiu, C. -Y.; Kang, S. J.; ...
2016-06-01
Here we demonstrate controlled growth of vertical organic crystal nanowires on single layer graphene. Using Scanning Electron Microscopy (SEM), high-resolution transition electron microscopy (TEM), and Grazing Incidence X-ray Diffraction (GIXD), we probe the microstructure and morphology of dibenzotetrathienocoronene (DBTTC) nanowires epitaxially grown on graphene. The investigation is performed at both the ensemble and single nanowire level, and as function of growth parameters, providing insight of and control over the formation mechanism. Finally, the size, density and height of the nanowires can be tuned via growth conditions, opening new avenues for tailoring three-dimensional (3-D) nanostructured architectures for organic electronics with improvedmore » functional performance.« less
Role of Microstructure on the Performance of UHTC's
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matthew J.; Stackpoole, Mairead; Gusman, Mike; Thornton, Jeremy
2009-01-01
UHTCs, because of their refractory nature and high thermal conductivity, are candidates for use on sharp leading edges of hypersonic vehicles. NASA Ames has been investigating the use of UHTCs in the HfB2/SiC family under NASA's Fundamental Aeronautics Program. The goal of this work has been to tailor the microstructure to improve mechanical properties and the performance in reentry conditions, as determined by arcjet testing. This talk discusses results of mechanical evaluation and arcjet testing of various materials with different microstructures, including the incorporation of high-temperature fibers in these materials to improve fracture toughness. Some preliminary information on UHTC composites will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu
Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasingmore » trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.« less
NASA Astrophysics Data System (ADS)
Rahman, Md Taibur; McCloy, John; Ramana, C. V.; Panat, Rahul
2016-08-01
Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24-500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.
Tailorable Burning Behavior of Ti14 Alloy by Controlling Semi-Solid Forging Temperature.
Chen, Yongnan; Yang, Wenqing; Zhan, Haifei; Zhang, Fengying; Huo, Yazhou; Zhao, Yongqing; Song, Xuding; Gu, Yuantong
2016-08-16
Semi-solid processing (SSP) is a popular near-net-shape forming technology for metals, while its application is still limited in titanium alloy mainly due to its low formability. Recent works showed that SSP could effectively enhance the formability and mechanical properties of titanium alloys. The processing parameters such as temperature and forging rate/ratio, are directly correlated with the microstructure, which endow the alloy with different chemical and physical properties. Specifically, as a key structural material for the advanced aero-engine, the burn resistant performance is a crucial requirement for the burn resistant titanium alloy. Thus, this work aims to assess the burning behavior of Ti14, a kind of burn resistant alloy, as forged at different semi-solid forging temperatures. The burning characteristics of the alloy are analyzed by a series of burning tests with different burning durations, velocities, and microstructures of burned sample. The results showed that the burning process is highly dependent on the forging temperature, due to the fact that higher temperatures would result in more Ti₂Cu precipitate within grain and along grain boundaries. Such a microstructure hinders the transport of oxygen in the stable burning stage through the formation of a kind of oxygen isolation Cu-enriched layer under the burn product zone. This work suggests that the burning resistance of the alloy can be effectively tuned by controlling the temperature during the semi-solid forging process.
Capability of X-ray diffraction for the study of microstructure of metastable thin films
Rafaja, David; Wüstefeld, Christina; Dopita, Milan; Motylenko, Mykhaylo; Baehtz, Carsten
2014-01-01
Metastable phases are often used to design materials with outstanding properties, which cannot be achieved with thermodynamically stable compounds. In many cases, the metastable phases are employed as precursors for controlled formation of nanocomposites. This contribution shows how the microstructure of crystalline metastable phases and the formation of nanocomposites can be concluded from X-ray diffraction experiments by taking advantage of the high sensitivity of X-ray diffraction to macroscopic and microscopic lattice deformations and to the dependence of the lattice deformations on the crystallographic direction. The lattice deformations were determined from the positions and from the widths of the diffraction lines, the dependence of the lattice deformations on the crystallographic direction from the anisotropy of the line shift and the line broadening. As an example of the metastable system, the supersaturated solid solution of titanium nitride and aluminium nitride was investigated, which was prepared in the form of thin films by using cathodic arc evaporation of titanium and aluminium in a nitrogen atmosphere. The microstructure of the (Ti,Al)N samples under study was tailored by modifying the [Al]/[Ti] ratio in the thin films and the surface mobility of the deposited species. PMID:25485125
Computational Design for Multifunctional Microstructural Composites
NASA Astrophysics Data System (ADS)
Chen, Yuhang; Zhou, Shiwei; Li, Qing
As an important class of natural and engineered materials, periodic microstructural composites have drawn substantial attention from the material research community for their excellent flexibility in tailoring various desirable physical behaviors. To develop periodic cellular composites for multifunctional applications, this paper presents a unified design framework for combining stiffness and a range of physical properties governed by quasi-harmonic partial differential equations. A multiphase microstructural configuration is sought within a periodic base-cell design domain using topology optimization. To deal with conflicting properties, e.g. conductivity/permeability versus bulk modulus, the optimum is sought in a Pareto sense. Illustrative examples demonstrate the capability of the presented procedure for the design of multiphysical composites and tissue scaffolds.
NASA Astrophysics Data System (ADS)
Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping
2018-05-01
In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.
Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping
2018-05-04
In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.
Marras-Marquez, T; Peña, J; Veiga-Ochoa, M D
2014-03-15
Anionic or non-ionic surfactants have been introduced in agarose-based hydrogels aiming to tailor the release of drugs with different solubility. The release of a hydrophilic model drug, Theophylline, shows the predictable release enhancement that varies depending on the surfactant. However, when the hydrophobic Tolbutamide is considered, an unexpected retarded release is observed. This effect can be explained not only considering the interactions established between the drug loaded micelles and agarose but also to the alteration of the freeze-dried hydrogels microstructure. It has been observed that the modification of the porosity percentage as well as the pore size distribution during the lyophilization plays a critical role in the different phenomena that take place as soon as desiccated hydrogel is rehydrated. The possibility of tailoring the pore architecture as a function of the surfactant nature and percentage can be applied from drug control release to the widespread and growing applications of materials based on hydrogel matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon
1997-04-01
The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets thatmore » can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.« less
Stainless steel valves with enhanced performance through microstructure optimization
NASA Astrophysics Data System (ADS)
Barani, A. A.; Boukhattam, M.; Haggeney, M.; Güler, S.
2017-08-01
Compressor valves are made of hardened and tempered martensitic steels. The main design criterion for the material selection is the fatigue performance of the material under bending loads. In some cases impact loads and corrosive atmospheres additionally act on the part. For the first time, the microstructure of the most commonly used stainless steel and its influence on the properties relevant for flapper valves is presented and described in this paper. It is demonstrated how the tensile properties of a martensitic stainless steel can be enhanced by tailoring the microstructure. Electron back scatter diffraction method is carried out to explain the changes in monotonic mechanical properties. Through a modified heat treatment the martensite microstructure is refined resulting in an increase of yield and ultimate tensile strength and at the same time a significant increase of elongation.
Absence of dynamic strain aging in an additively manufactured nickel-base superalloy.
Beese, Allison M; Wang, Zhuqing; Stoica, Alexandru D; Ma, Dong
2018-05-25
Dynamic strain aging (DSA), observed macroscopically as serrated plastic flow, has long been seen in nickel-base superalloys when plastically deformed at elevated temperatures. Here we report the absence of DSA in Inconel 625 made by additive manufacturing (AM) at temperatures and strain rates where DSA is present in its conventionally processed counterpart. This absence is attributed to the unique AM microstructure of finely dispersed secondary phases (carbides, N-rich phases, and Laves phase) and textured grains. Based on experimental observations, we propose a dislocation-arrest model to elucidate the criterion for DSA to occur or to be absent as a competition between dislocation pipe diffusion and carbide-carbon reactions. With in situ neutron diffraction studies of lattice strain evolution, our findings provide a new perspective for mesoscale understanding of dislocation-solute interactions and their impact on work-hardening behaviors in high-temperature alloys, and have important implications for tailoring thermomechanical properties by microstructure control via AM.
Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits
NASA Astrophysics Data System (ADS)
Gundlach, D. J.; Royer, J. E.; Park, S. K.; Subramanian, S.; Jurchescu, O. D.; Hamadani, B. H.; Moad, A. J.; Kline, R. J.; Teague, L. C.; Kirillov, O.; Richter, C. A.; Kushmerick, J. G.; Richter, L. J.; Parkin, S. R.; Jackson, T. N.; Anthony, J. E.
2008-03-01
The use of organic materials presents a tremendous opportunity to significantly impact the functionality and pervasiveness of large-area electronics. Commercialization of this technology requires reduction in manufacturing costs by exploiting inexpensive low-temperature deposition and patterning techniques, which typically lead to lower device performance. We report a low-cost approach to control the microstructure of solution-cast acene-based organic thin films through modification of interfacial chemistry. Chemically and selectively tailoring the source/drain contact interface is a novel route to initiating the crystallization of soluble organic semiconductors, leading to the growth on opposing contacts of crystalline films that extend into the transistor channel. This selective crystallization enables us to fabricate high-performance organic thin-film transistors and circuits, and to deterministically study the influence of the microstructure on the device characteristics. By connecting device fabrication to molecular design, we demonstrate that rapid film processing under ambient room conditions and high performance are not mutually exclusive.
Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V
2015-07-13
We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication and secondary-phase crystallization of rare-earth disilicate-silicon nitride ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinibulk, M.K.; Thomas, G.; Johnson, S.M.
1992-08-01
In this paper, the fabrication and intergranular-phase devitrification of silicon nitride densified with rare-earth (RE) oxide additives is investigated. The additions of the oxides of Sm, Gd, Dy, Er, and Yb, having high melting points and behaving similarly to Y[sub 2]O[sub 3], were compositionally controlled to tailor a microstructure with a crystalline secondary phase of RE[sub 2]Si[sub 2]O[sub 7]. The lanthanide oxides were found to be ass effective as Y[sub 2]O[sub 3] in densifying Si[sub 3]N[sub 4], resulting in identical microstructures and densities of 98-99% of theoretical density. The crystallization behavior of all six disilicates was similar, characterized by amore » limited nucleation and rapid growth mechanism resulting in large single crystals. Complete crystallization of the intergranular phase was obtained with the exception of a thin residual amorphous film which was observed at interfaces and believed to be rich in impurities, the cause of incomplete devitrification.« less
NASA Astrophysics Data System (ADS)
Nguyen Thi, H.; Jamgotchian, H.; Gastaldi, J.; Härtwig, J.; Schenk, T.; Klein, H.; Billia, B.; Baruchel, J.; Dabo, Y.
2003-05-01
During directional solidification of a binary alloy, the solid-liquid interface exhibits a variety of patterns that are due to the Mullins-Sekerka instability and governed by the growth conditions. It is well known that properties of the grown material are largely controlled by the microstructures left in the solid during processing. Thus, a precise mastering of the solidification is essential to tailor products in a reproducible fashion to a specified quality. One major difficulty for this study is the real-time and in situ observation of the interface, especially for metallic alloys. A possibility is to use an intense and coherent third generation x-ray beam. By combining different x-ray imaging techniques (absorption/phase contrast radiography and diffraction topography), we have studied the directional melting and solidification of aluminium-based alloys. The preliminary results show the great potential of these techniques for the study of the coupling between stress effects and microstructure formation in solidification processing.
Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng
2014-08-07
Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips.
Tailorable Burning Behavior of Ti14 Alloy by Controlling Semi-Solid Forging Temperature
Chen, Yongnan; Yang, Wenqing; Zhan, Haifei; Zhang, Fengying; Huo, Yazhou; Zhao, Yongqing; Song, Xuding; Gu, Yuantong
2016-01-01
Semi-solid processing (SSP) is a popular near-net-shape forming technology for metals, while its application is still limited in titanium alloy mainly due to its low formability. Recent works showed that SSP could effectively enhance the formability and mechanical properties of titanium alloys. The processing parameters such as temperature and forging rate/ratio, are directly correlated with the microstructure, which endow the alloy with different chemical and physical properties. Specifically, as a key structural material for the advanced aero-engine, the burn resistant performance is a crucial requirement for the burn resistant titanium alloy. Thus, this work aims to assess the burning behavior of Ti14, a kind of burn resistant alloy, as forged at different semi-solid forging temperatures. The burning characteristics of the alloy are analyzed by a series of burning tests with different burning durations, velocities, and microstructures of burned sample. The results showed that the burning process is highly dependent on the forging temperature, due to the fact that higher temperatures would result in more Ti2Cu precipitate within grain and along grain boundaries. Such a microstructure hinders the transport of oxygen in the stable burning stage through the formation of a kind of oxygen isolation Cu-enriched layer under the burn product zone. This work suggests that the burning resistance of the alloy can be effectively tuned by controlling the temperature during the semi-solid forging process. PMID:28773820
NASA Astrophysics Data System (ADS)
Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo
2012-02-01
Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (-150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.
Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf
2012-08-07
Composites consist by definition of at least two materials (Gibbsian phases) with rather different properties. They exhibit a heterogeneous microstructure and possess improved properties with respect to their components. Furthermore, the design of their microstructure allows for tailoring their overall properties. In the last decades, intense work was performed on the synthesis of nanocomposites, which have the feature that at least one of their components is nanoscaled. However, the microstructure-property relationship of nanocomposite materials is still a challenging topic. This tutorial review paper deals with a special class of nanocomposites, i.e. polymer-derived ceramic nanocomposites (PDC-NCs), which have been shown to be promising materials for various structural and functional applications. Within this context, different preparative approaches for PDC-NCs as well as some of their properties will be presented and discussed. Furthermore, recent results concerning the relationship between the nano/microstructure of PDC-NCs and their properties will be highlighted.
NASA Astrophysics Data System (ADS)
Musalek, Radek; Medricky, Jan; Tesar, Tomas; Kotlan, Jiri; Pala, Zdenek; Lukac, Frantisek; Illkova, Ksenia; Hlina, Michal; Chraska, Tomas; Sokolowski, Pawel; Curry, Nicholas
2017-12-01
Introduction of suspension and solution plasma spraying led to a breakthrough in the deposition of yttria-stabilized zirconia (YSZ) coatings and enabled preparation of new types of layers. However, their deposition with high feed rates needed, for example, for the deposition of thermal barrier coatings (TBCs) on large-scale components, is still challenging. In this study, possibility of high-throughput plasma spraying of YSZ coatings is demonstrated for the latest generation of high-enthalpy hybrid water-stabilized plasma (WSP-H) torch technology. The results show that microstructure of the coatings prepared by WSP-H may be tailored for specific applications by the choice of deposition conditions, in particular formulation of the liquid feedstock. Porous and columnar coatings with low thermal conductivity (0.5-0.6 W/mK) were prepared from commercial ethanol-based suspension. Dense vertically cracked coatings with higher thermal conductivity but also higher internal cohesion were deposited from suspension containing ethanol/water mixture and coarser YSZ particles. Spraying of solution formulated from diluted zirconium acetate and yttrium nitrate hexahydrate led also to the successful deposition of YSZ coating combining regions of porous and denser microstructure and providing both low thermal conductivity and improved cohesion of the coating. Enthalpy content, liquid-plasma interaction and coating buildup mechanisms are also discussed.
The effect of laser pulse tailored welding of Inconel 718
NASA Technical Reports Server (NTRS)
Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.
1990-01-01
Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.
Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang
2015-04-29
The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the mechanical properties and bioactivities of the scaffolds, might have great potential in vascular tissue engineering application.
Xu, Yingjie; Gao, Tian
2016-01-01
Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343
Sušec, Maja; Ligon, Samuel Clark; Stampfl, Jürgen; Liska, Robert; Krajnc, Peter
2013-06-13
A combination of high internal phase emulsion (HIPE) templating and additive manufacturing technology (AMT) is applied for creating hierarchical porosity within an acrylate and acrylate/thiol-based polymer network. The photopolymerizable formulation is optimized to produce emulsions with a volume fraction of droplet phase greater than 80 vol%. Kinetic stability of the emulsions is sufficient enough to withstand in-mold curing or computer-controlled layer-by-layer stereolithography without phase separation. By including macroscale cellular cavities within the build file, a level of controlled porosity is created simultaneous to the formation of the porous microstructure of the polyHIPE. The hybrid HIPE-AMT technique thus provides hierarchically porous materials with mechanical properties tailored by the addition of thiol chain transfer agent. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls
NASA Astrophysics Data System (ADS)
Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana
2016-02-01
A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor.
Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R.; Castillo, Gabriel R.; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng
2014-01-01
Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561
Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls
Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana
2016-01-01
A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor. PMID:26860367
Yield Asymmetry Design of Magnesium Alloys by Integrated Computational Materials Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Joshi, Vineet V.; Lavender, Curt A.
2013-11-01
Deformation asymmetry of magnesium alloys is an important factor on machine design in automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to microstructure, characterized by texture and grain size. Modified intermediate phi-model, a polycrystalline viscoplasticity model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry by thermomechanical processing. In some texture, for example, rolled texture, CYS/TYS is smaller than 1 under different loadingmore » directions. In some texture, for example, extruded texture, asymmetry is large along normal direction. Starting from rolled texture, the asymmetry will increased to close to 1 along rolling direction after compressed to a strain of 0.2. Our model shows that grain refinement increases CYS/TYS. Besides texture control, grain refinement can also optimize the yield asymmetry. After the grain size decreased to a critical value, CYS/TYS reaches to 1 since CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.; Hester, R.
Advanced polymer systems that possess microstructural features that are responsive to temperature, electrolyte concentration, and shear conditions are being synthesized which will be superior to polymers presently used for mobility control in enhanced oil recovery. Improved polymer performance is accomplished by controlling hydrophobic or ampholytic interactions between individual polymer chains in solution. Of special interest to our group have been (1) the elucidation of the mechanism of associative thickening and (2) the tailoring of thickeners with reversible associations responsive to changes in pH, ionic strength, temperature, or shear stress. A polymerization technique, termed ``micellar`` polymerization utilizes a surfactant to solubilizemore » a relatively low mole percent of a hydrophobic monomer in water for copolymerization with a hydrophilic monomer. In this report, we examine the role of surfactant-to-monomer ratio (SMR) in the reaction medium on microstructure utilizing the N-[(1- pyrenylsulfonamido)ethyl] acrylamide (APS) monomer as a fluorescent label. Comparison is made with previously reported terpolymers of identical AM/AA compositions with N-(4-decyl)phenylacrylamide as the hydrophobic monomer. Unlike the uncharged copolymer of AM/APS, however, the AM/AA/APS terpolymers of this study do not show intermolecular associative thickening, apparently due to insufficient liaisons of hydrophobic microdomains even at high concentrations of terpolymer.« less
Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.
2012-01-01
Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.
NASA Technical Reports Server (NTRS)
Lemsky, Joe; Gayda, John (Technical Monitor)
2005-01-01
The intent of this investigation was to demonstrate the NASA DMHT method with a tailored Ladish SuperCool(Trademark) cooling method on a Rolls-Royce AE2100, stage 3 disk shape. One disk each of two alloys, LSHR and ME3, were successfully converted as shown by macrostructure. DMHT heating time selection and cooling rate was aided by finite element modeling analysis. Residual stresses were also predicted and reported. Detailed microstructural analysis was performed by NASA and included in this report. Mechanical property characterization, also planned by NASA, is incomplete at this time and not part of this report.
Tailoring Magnetic Properties in Bulk Nanostructured Solids
NASA Astrophysics Data System (ADS)
Morales, Jason Rolando
Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally applied magnetic field to the sample. Third, a dense magneto-optical material (rare earth oxide) was produced that rotates transmitted polarized light under an externally applied magnetic field, called the Faraday Effect. The magnitude of the rare earth oxide Faraday Effect surpasses that of the current market leader (terbium gallium garnet) in Faraday isolators by ˜2.24x.
NASA Astrophysics Data System (ADS)
Sharpe, Heather Joan
2007-05-01
Engineers constantly seek advancements in the performance of aircraft and power generation engines, including, lower costs and emissions, and improved fuel efficiency. Nickel-base superalloys are the material of choice for turbine discs, which experience some of the highest temperatures and stresses in the engine. Engine performance is proportional to operating temperatures. Consequently, the high-temperature capabilities of disc materials limit the performance of gas-turbine engines. Therefore, any improvements to engine performance necessitate improved alloy performance. In order to take advantage of improvements in high-temperature capabilities through tailoring of alloy microstructure, the overall objectives of this work were to establish relationships between alloy processing and microstructure, and between microstructure and mechanical properties. In addition, the projected aimed to demonstrate the applicability of neural network modeling to the field of Ni-base disc alloy development and behavior. The first phase of this work addressed the issue of how microstructure varies with heat treatment and by what mechanisms these structures are formed. Further it considered how superalloy composition could account for microstructural variations from the same heat treatment. To study this, four next-generation Ni-base disc alloys were subjected to various controlled heat-treatments and the resulting microstructures were then quantified. These quantitative results were correlated to chemistry and processing, including solution temperature, cooling rate, and intermediate hold temperature. A complex interaction of processing steps and chemistry was found to contribute to all features measured; grain size, precipitate distribution, grain boundary serrations. Solution temperature, above a certain threshold, and cooling rate controlled grain size, while cooling rate and intermediate hold temperature controlled precipitate formation and grain boundary serrations. Diffusion, both intergranular and grain boundary, was identified as the most pertinent mechanism. Variations in chemistry between alloys created different amounts of gamma/gamma' misfit strain, which affected precipitate size and morphology. Next the question of how a disc alloy with differing microstructures would respond to constant or cyclic stresses as a function of time was addressed. To this end, mechanical testing at elevated temperatures was conducted, including tensile, hardness, creep deformation, creep crack growth and fatigue crack growth. Overall, mechanical properties were primarily related to the cooling rate during processing with hold temperatures being secondary. Whether the impact was positive or negative depended on the behavior under consideration. Fast cooling rates improved yield strength and creep resistance, but were detrimental to creep crack growth rates. The ability of precipitate particles to impede dislocation motion was the most frequently cited mechanism behind structure-property interaction. Neural network models were successfully generated for processing-structure predictions, as well as for structure-property predictions. Training data was limited, none-the-less models were able to predict outputs with minimal relative errors. This was achieved through careful balance between the number of inputs and amount of training data. Despite the demonstrated correlation between microstructure and yield strength, microstructural quantities did not need to be directly inputted. Neural networks were sufficiently sensitive as to infer these effects from processing and chemistry inputs. This result improves the efficiency of this technique, while also demonstrating the capability of neural network techniques. A full program of heat-treatment, microstructure quantification, mechanical testing, and neural network modeling was successfully applied to next generation Ni-base disc alloys. From this work the mechanisms of processing-structure and structure-property relationships were studied. Further, testing results were used to demonstrate the applicability of machine-learning techniques to the development and optimization of this family of superalloys.
Tailoring Selective Laser Melting Process Parameters for NiTi Implants
NASA Astrophysics Data System (ADS)
Bormann, Therese; Schumacher, Ralf; Müller, Bert; Mertmann, Matthias; de Wild, Michael
2012-12-01
Complex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined micro-architecture and advanced performance.
Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer
A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...
2015-04-10
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials.
Zhao, Kunpeng; Duan, Haozhi; Raghavendra, Nunna; Qiu, Pengfei; Zeng, Yi; Zhang, Wenqing; Yang, Jihui; Shi, Xun; Chen, Lidong
2017-11-01
High-performance thermoelectric materials require ultralow lattice thermal conductivity typically through either shortening the phonon mean free path or reducing the specific heat. Beyond these two approaches, a new unique, simple, yet ultrafast solid-state explosive reaction is proposed to fabricate nanoporous bulk thermoelectric materials with well-controlled pore sizes and distributions to suppress thermal conductivity. By investigating a wide variety of functional materials, general criteria for solid-state explosive reactions are built upon both thermodynamics and kinetics, and then successfully used to tailor material's microstructures and porosity. A drastic decrease in lattice thermal conductivity down below the minimum value of the fully densified materials and enhancement in thermoelectric figure of merit are achieved in porous bulk materials. This work demonstrates that controlling materials' porosity is a very effective strategy and is easy to be combined with other approaches for optimizing thermoelectric performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuzhan; Pruitt, Cole; Rios, Orlando
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Lens and dendrite formation during colloidal solidification
NASA Astrophysics Data System (ADS)
Worster, Grae; You, Jiaxue
2017-11-01
Colloidal particles in suspension are forced into a variety of morphologies when the suspending fluid medium is frozen: soil is compacted between ice lenses during frost heave; ice templating is a recent and growing technology to produce bio-inspired, micro-porous materials; cells and tissue can be damaged during cryosurgery; and metal-matrix composites with tailored microstructure can be fabricated by controlled casting. Various instabilities that affect the microscopic morphology are controlled by fluid flow through the compacted layer of particles that accumulates ahead of the solidification front. By analysing the flow in connection with equilibrium phase relationships, we develop a theoretical framework that identifies two different mechanisms for ice-lens formation, with and without a frozen fringe, identifies the external parameters that differentiates between them and the possibility of dendritic formations, and unifies a range of apparently disparate conclusions drawn from previous experimental studies. China Scholarship Council and the British Council.
NASA Astrophysics Data System (ADS)
Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; Jin, Ke; Yang, Taini; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Shi, Shi; He, Mo-Rigen; Robertson, Ian M.; Weber, William J.; Wang, Lumin
2016-12-01
A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. The results suggest design criteria for next generation radiation tolerant structural alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartzentruber, Phillip D.; John Balk, Thomas, E-mail: john.balk@uky.edu; Effgen, Michael P.
2014-07-01
Osmium-ruthenium films with different microstructures were deposited onto dispenser cathodes and subjected to 1000 h of close-spaced diode testing. Tailored microstructures were achieved by applying substrate biasing during deposition, and these were evaluated with scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy before and after close-spaced diode testing. Knee temperatures determined from the close-spaced diode test data were used to evaluate cathode performance. Cathodes with a large (10-11) Os-Ru film texture possessed comparatively low knee temperatures. Furthermore, a low knee temperature correlated with a low effective work function as calculated from the close-spaced diode data. It is proposedmore » that the formation of strong (10-11) texture is responsible for the superior performance of the cathode with a multilayered Os-Ru coating.« less
Towards a metadata scheme for the description of materials - the description of microstructures
NASA Astrophysics Data System (ADS)
Schmitz, Georg J.; Böttger, Bernd; Apel, Markus; Eiken, Janin; Laschet, Gottfried; Altenfeld, Ralph; Berger, Ralf; Boussinot, Guillaume; Viardin, Alexandre
2016-01-01
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
Towards a metadata scheme for the description of materials - the description of microstructures.
Schmitz, Georg J; Böttger, Bernd; Apel, Markus; Eiken, Janin; Laschet, Gottfried; Altenfeld, Ralph; Berger, Ralf; Boussinot, Guillaume; Viardin, Alexandre
2016-01-01
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
NASA Astrophysics Data System (ADS)
Tang, Bingtao; Wang, Qiaoling; Wei, Zhaohui; Meng, Xianju; Yuan, Zhengjun
2016-05-01
Ultra-high-strength in sheet metal parts can be achieved with hot stamping process. To improve the crash performance and save vehicle weight, it is necessary to produce components with tailored properties. The use of tailor-welded high-strength steel is a relatively new hot stamping process for saving weight and obtaining desired local stiffness and crash performance. The simulation of hot stamping boron steel, especially tailor-welded blanks (TWBs) stamping, is more complex and challenging. Information about thermal/mechanical properties of tools and sheet materials, heat transfer, and friction between the deforming material and the tools is required in detail. In this study, the boron-manganese steel B1500HS and high-strength low-alloy steel B340LA are tailor welded and hot stamped. In order to precisely simulate the hot stamping process, modeling and simulation of hot stamping tailor-welded high-strength steels, including phase transformation modeling, thermal modeling, and thermal-mechanical modeling, is investigated. Meanwhile, the welding zone of tailor-welded blanks should be sufficiently accurate to describe thermal, mechanical, and metallurgical parameters. FE simulation model using TWBs with the thickness combination of 1.6 mm boron steel and 1.2 mm low-alloy steel is established. In order to evaluate the mechanical properties of the hot stamped automotive component (mini b-pillar), hardness and microstructure at each region are investigated. The comparisons between simulated results and experimental observations show the reliability of thermo-mechanical and metallurgical modeling strategies of TWBs hot stamping process.
Competing mechanisms in the wear resistance behavior of biomineralized rod-like microstructures
NASA Astrophysics Data System (ADS)
Escobar de Obaldia, Enrique; Herrera, Steven; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo
2016-11-01
The remarkable mechanical properties observed in biological composite materials relative to those of their individual constituents distinguish them from common engineering materials. Some naturally occurring high-performance ceramics, like the external veneer of the Chiton (Cryptochiton stelleri) tooth, have been shown to have superior hardness and impressive abrasion resistance properties. The mechanical performance of the chiton tooth has been attributed to a hierarchical arrangement of nanostructured magnetite rods surrounded with organic material. While nanoindentation tests provide useful information about the overall performance of this biological composite, understanding the key microstructural features and energy dissipation mechanisms at small scales remains a challenging task. We present a combined experimental/numerical approach to elucidate the role of material deformation in the rods, debonding at the rod interfaces and the influence of energy dissipation mechanisms on the ability of the microstructure to distribute damage under extreme loading conditions. We employ a 3D finite element-based micromechanical model to simulate the nanoindentation tests performed in geological magnetite and cross-sections of the chiton tooth. This proposed model is capable of capturing the inelastic deformation of the rods and the failure of their interfaces, while damage, fracture and fragmentation of the mineralized rods is assessed using a probabilistic function. Our results show that these natural materials achieve their abrasion resistant properties by controlling the interface strength between rods, alleviating the tensile stress on the rods near the indentation tip and therefore decreasing the probability of catastrophic failure without significantly sacrificing resistance to penetration. The understanding of these competing energy dissipating mechanisms provides a path to the prediction of new combination of materials. In turns, these results suggest certain guidelines for abrasion resistance rod-like microstructures in composites with high volume fraction of brittle minerals or ceramics with tailored performance for specific applications.
Zong, Chuanyong; Zhao, Yan; Ji, Haipeng; Xie, Jixun; Han, Xue; Wang, Juanjuan; Cao, Yanping; Lu, Conghua; Li, Hongfei; Jiang, Shichun
2016-08-01
Here, a simple combined strategy of surface wrinkling with visible light irradiation to fabricate well tunable hierarchical surface patterns on azo-containing multilayer films is reported. The key to tailor surface patterns is to introduce a photosensitive poly(disperse orange 3) intermediate layer into the film/substrate wrinkling system, in which the modulus decrease is induced by the reversible photoisomerization. The existence of a photoinert top layer prevents the photoisomerization-induced stress release in the intermediate layer to some extent. Consequently, the as-formed wrinkling patterns can be modulated over a large area by light irradiation. Interestingly, in the case of selective exposure, the wrinkle wavelength in the exposed region decreases, while the wrinkles in the unexposed region are evolved into highly oriented wrinkles with the orientation perpendicular to the exposed/unexposed boundary. Compared with traditional single layer-based film/substrate systems, the multilayer system consisting of the photosensitive intermediate layer offers unprecedented advantages in the patterning controllability/universality. As demonstrated here, this simple and versatile strategy can be conveniently extended to functional multilayer systems for the creation of prescribed hierarchical surface patterns with optically tailored microstructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lasagni, Andrés Fabián
2017-06-01
Fabrication of two- and three-dimensional (2D and 3D) structures in the micro- and nano-range allows a new degree of freedom to the design of materials by tailoring desired material properties and, thus, obtaining a superior functionality. Such complex designs are only possible using novel fabrication techniques with high resolution, even in the nanoscale range. Starting from a simple concept, transferring the shape of an interference pattern directly to the surface of a material, laser interferometric processing methods have been continuously developed. These methods enable the fabrication of repetitive periodic arrays and microstructures by irradiation of the sample surface with coherent beams of light. This article describes the capabilities of laser interference lithographic methods for the treatment of both photoresists and solid materials. Theoretical calculations are used to calculate the intensity distributions of patterns that can be realized by changing the number of interfering laser beams, their polarization, intensity and phase. Finally, different processing systems and configurations are described and, thus, demonstrating the possibility for the fast and precise tailoring of material surface microstructures and topographies on industrial relevant scales as well as several application cases for both methods.
Simulations of Precipitate Microstructure Evolution during Heat Treatment
NASA Astrophysics Data System (ADS)
Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul
Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, John S.; Beese, Allison M.; Bourell, David L.
Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less
Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...
2015-06-26
Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less
Li, Zi-Long; Zeng, Fu-Rong; Ma, Ji-Mei; Sun, Lin-Hao; Zeng, Zhen; Jiang, Hong
2017-06-01
Sequence-regulated polymerization is realized upon sequential cross-metathesis polymerization (CMP) and exhaustive hydrogenation to afford precision aliphatic polyesters with alternating sequences. This strategy is particularly suitable for the arrangement of well-known monomer units including glycolic acid, lactic acid, and caprolactic acid on polymer chain in a predetermined sequence. First of all, structurally asymmetric monomers bearing acrylate and α-olefin terminuses are generated in an efficient and straightforward fashion. Subsequently, cross-metathesis (co)polymerization of M1 and M2 using the Hoveyda-Grubbs second-generation catalyst (HG-II) furnishes P1-P3, respectively. Finally, hydrogenation yields the desired saturated polyesters HP1-HP3. It is noteworthy that the ε-caprolactone-derived unit is generated in situ rather than introduced to tailor-made monomers prior to CMP. NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results verify the microstructural periodicity of these precision polyesters. Differential scanning calorimetry (DSC) results reflect that polyesters without methyl side groups exhibit crystallinity, and unsaturated polyester samples show higher glass transition temperatures than their hydrogenated counterparts owing to structural rigidity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sol-gel applications for ceramic membrane preparation
NASA Astrophysics Data System (ADS)
Erdem, I.
2017-02-01
Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Woolstenhulme, Nicolas E.; Ewh, Ashley
2011-12-01
Low-enriched uranium-molybdenum (U-Mo) alloy particles dispersed in aluminum alloy (e.g., dispersion fuels) are being developed for application in research and test reactors. To achieve the best performance of these fuels during irradiation, optimization of the starting microstructure may be required by utilizing a heat treatment that results in the formation of uniform, Si-rich interaction layers between the U-Mo particles and Al-Si matrix. These layers behave in a stable manner under certain irradiation conditions. To identify the optimum heat treatment for producing these kinds of layers in a dispersion fuel plate, a systematic annealing study has been performed using actual dispersion fuel samples, which were fabricated at relatively low temperatures to limit the growth of any interaction layers in the samples prior to controlled heat treatment. These samples had different Al matrices with varying Si contents and were annealed between 450 and 525 °C for up to 4 h. The samples were then characterized using scanning electron microscopy (SEM) to examine the thickness, composition, and uniformity of the interaction layers. Image analysis was performed to quantify various attributes of the dispersion fuel microstructures that related to the development of the interaction layers. The most uniform layers were observed to form in fuel samples that had an Al matrix with at least 4 wt.% Si and a heat treatment temperature of at least 475 °C.
Site-Specific Colloidal Crystal Nucleation by Template-enhanced Particle Transport
NASA Astrophysics Data System (ADS)
Mishra, Chandan K.; Sood, A. K.; Ganapathy, Rajesh
The deliberate positioning of nano- and microstructures on surfaces is often a prerequisite for fabricating functional devices. While template-assisted nucleation is a promising route to self-assemble these structures, its success hinges on particles reaching target sites prior to nucleation and for nano/microscale particles, this is hampered by their small surface mobilities. We tailored surface features, which in the presence of attractive depletion interactions not only directed micrometer-sized colloids to specific sites but also subsequently guided their growth into ordered crystalline arrays of well-defined size and symmetry. By following the nucleation kinetics with single-particle resolution, we demonstrate control over nucleation density in a growth regime that has hitherto remained inaccessible. Our findings pave the way towards realizing non-trivial surface architectures composed of complex colloids/nanoparticles as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.; Hester, R.
The purpose of this study is to extend the concept of micellar polymerization to more complex systems, and to explore the responsive nature of hydrophobically modified polyelectrolytes by tailoring the microstructure. The synthesis of hydrophobically modified acrylamide/acrylic acid copolymer is described. These types of polymers are of interest as thickening agents utilized in enhanced oil recovery.
New World Vistas: Air and Space Power for the 21st Century, Materials Volume.
1996-06-01
derivatives from niche (non-silicon) materials: IR sensors, radars, lasers, and high - temperature , adverse-environment electronics. Investment in these...Develop metastable interstitial composites to create extremely high temperatures for destroying chemical biological warfare agents. " Explosives: 1...synthesize of high temperature materials that will be tailored for specific applications/ components. These materials will tend to have microstructures on
Femtosecond laser fabricated spike structures for selective control of cellular behavior.
Schlie, Sabrina; Fadeeva, Elena; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris N
2010-09-01
In this study we investigate the potential of femtosecond laser generated micrometer sized spike structures as functional surfaces for selective cell controlling. The spike dimensions as well as the average spike to spike distance can be easily tuned by varying the process parameters. Moreover, negative replications in soft materials such as silicone elastomer can be produced. This allows tailoring of wetting properties of the spike structures and their negative replicas representing a reduced surface contact area. Furthermore, we investigated material effects on cellular behavior. By comparing human fibroblasts and SH-SY5Y neuroblastoma cells we found that the influence of the material was cell specific. The cells not only changed their morphology, but also the cell growth was affected. Whereas, neuroblastoma cells proliferated at the same rate on the spike structures as on the control surfaces, the proliferation of fibroblasts was reduced by the spike structures. These effects can result from the cell specific adhesion patterns as shown in this work. These findings show a possibility to design defined surface microstructures, which could control cellular behavior in a cell specific manner.
Temperature and Microstructural Effects on the Superconducting Properties of Niobium Thin Films
Beebe, Melissa R.; Valente-Feliciano, Anne -Marie; Beringer, Douglas B.; ...
2016-11-23
Here, superconducting thin films have a wide range of dc and RF applications, from detectors to superconducting radio frequency. Amongst the most used materials, niobium (Nb) has the highest critical temperature (TC) and highest lower critical field (HC1) of the elemental superconductors and can be deposited on a variety of substrates, making Nb thin films very appealing for such applications. Here, we present temperature-dependent dc studies on the critical temperature and critical fields of Nb thin films grown on copper and r-plane sapphire surfaces. Additionally, we correlate the dc superconducting properties of these films with their microstructure, which allows formore » the possibility of tailoring future films for a specific application.« less
Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; ...
2016-04-26
The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less
2013-09-01
637 2. S.V. Prasad and R. Asthana, "Aluminum Metal-Matrix Composites for Automotive Applications : Tribological Considerations," Tribology Leiters, 11...seeing widespread use in thermal management, precision equipment, and automotive applications where composition and microstructure are tailored to...Key applications include high specific stiffuess panels and beams, fluid flow structures, thermal management substrates, and blast wave mitigation
Lilja, Mirjam; Genvad, Axel; Astrand, Maria; Strømme, Maria; Enqvist, Håkan
2011-12-01
Functionalisation of biomedical implants via surface modifications for tailored tissue response is a growing field of research. Crystalline TiO(2) has been proven to be a bone bioactive, non-resorbable material. In contact with body fluids a hydroxyapaptite (HA) layer forms on its surface facilitating the bone contact. Thus, the path of improving biomedical implants via deposition of crystalline TiO(2) on the surface is interesting to follow. In this study we have evaluated the influence of microstructure and chemical composition of sputter deposited titanium oxide thin films on the in vitro bioactivity. We find that both substrate bias, topography and the flow ratio of the gases used during sputtering affect the HA layer formed on the films after immersion in simulated body fluid at 37°C. A random distribution of anatase and rutile crystals, formed at negative substrate bias and low Ar to O(2) gas flow ratios, are shown to favor the growth of flat HA crystal structures whereas higher flow ratios and positive substrate bias induced growth of more spherical HA structures. These findings should provide valuable information when optimizing the bioactivity of titanium oxide coatings as well as for tailoring process parameters for sputtered-based production of bioactive titanium oxide implant surfaces.
Electrolyte transport in neutral polymer gels embedded with charged inclusions
NASA Astrophysics Data System (ADS)
Hill, Reghan
2005-11-01
Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.
Current trends in the design of scaffolds for computer-aided tissue engineering.
Giannitelli, S M; Accoto, D; Trombetta, M; Rainer, A
2014-02-01
Advances introduced by additive manufacturing have significantly improved the ability to tailor scaffold architecture, enhancing the control over microstructural features. This has led to a growing interest in the development of innovative scaffold designs, as testified by the increasing amount of research activities devoted to the understanding of the correlation between topological features of scaffolds and their resulting properties, in order to find architectures capable of optimal trade-off between often conflicting requirements (such as biological and mechanical ones). The main aim of this paper is to provide a review and propose a classification of existing methodologies for scaffold design and optimization in order to address key issues and help in deciphering the complex link between design criteria and resulting scaffold properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization.
Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu
2016-03-23
Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp(3) bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale.
Control of crystallite orientation and size in Fe and FeCo nanoneedles.
Mendoza-Reséndez, Raquel; Luna, Carlos; Barriga-Castro, Enrique Diaz; Bonville, Pierre; Serna, Carlos J
2012-06-08
Uniform magnetic nanoneedles have been prepared by hydrogen reduction of elongated nanoarchitectures. These precursors are as-prepared or cobalt-coated aggregates of highly oriented haematite nanocrystals (∼5 nm). The final materials are flattened nanoneedles formed by chains of assembled Fe or FeCo single-domain nanocrystals. The microstructural properties of such nanoneedles were tailored using renewed and improved synthetic strategies. In this fashion, the needle elongation and composition, the crystallite size (from 15 up to 30 nm), the nanocrystal orientation (with the 〈110〉 or 〈001〉 directions roughly along the long axis of the nanoneedle) and their type of arrangement (single chains, frustrated double chains and double chains) were controlled by modifying the reduction time, the axial ratio of the precursor haematite and the presence of additional coatings of aluminum or yttrium compounds. The values of the coercivity H(C) found for these nanoneedles are compared with the values predicted by the chain of spheres model assuming a symmetric fanning mechanism for magnetization reversal.
Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; ...
2016-12-15
A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhancedmore » swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. Finally, the results suggest design criteria for next generation radiation tolerant structural alloys.« less
Magnesia tuned multi-walled carbon nanotubes–reinforced alumina nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Iftikhar, E-mail: ifahmad@ksu.edu.sa; Islam, Mohammad; Dar, Mushtaq Ahmad
2015-01-15
Magnesia tuned alumina ceramic nanocomposites, reinforced with multi-walled carbon nanotubes, were condensed using pressureless and hot-press sintering processes. Densification, microstructure and mechanical properties of the produced nanocomposites were meticulously investigated. Electron microscopy studies revealed the homogenous carbon nanotube dispersion within the alumina matrix and confirmed the retention of carbon nanotubes' distinctive tubular morphology and nanoscale features during the extreme mixing/sintering processes. Pressureless sintered nanocomposites showed meagre mechanical responses due to the poorly-integrated microstructures with a slight improvement upon magnesia addition. Conversely, both the magnesia addition and application of hot-press sintering technique resulted in the nanocomposite formation with near-theoretical densities (~more » 99%), well-integrated microstructures and superior mechanical properties. Hot-press sintered nanocomposites incorporating 300 and 600 ppm magnesia exhibited an increase in hardness (10 and 11%), flexural strength (5 and 10%) and fracture toughness (15 and 20%) with respect to similar magnesia-free samples. Compared to monolithic alumina, a decent rise in fracture toughness (37%), flexural strength (22%) and hardness (20%) was observed in the hot-press sintered nanocomposites tuned with merely 600 ppm magnesia. Mechanically superior hot-press sintered magnesia tailored nanocomposites are attractive for several load-bearing structural applications. - Highlights: • MgO tailored Al{sub 2}O{sub 3}–2 wt.% CNT nanocomposites are presented. • The role of MgO and sintering on nanocomposite structures and properties was studied. • Well-dispersed CNTs maintained their morphology/structure after harsh sintering. • Hot-pressing and MgO led nanocomposites to higher properties/unified structures. • MgO tuned composites showed higher toughness (37%) and strength (22%) than Al{sub 2}O{sub 3}.« less
Matsuhashi, Aki; Nam, Kwangwoo; Kimura, Tsuyoshi; Kishida, Akio
2015-04-14
Microspheres using artificial or natural materials have been widely applied in the field of tissue engineering and drug delivery systems. Collagen is being widely used for microspheres because of its abundancy in the extracellular matrix (ECM), and its good biocompatibility. The purpose of this study is to establish the appropriate condition for preparing collagen microspheres (CMS) and fibrillized collagen microspheres (fCMS) using water-in-oil (W/O) emulsion. Collagen can be tailored to mimic the native cell environment possessing a similar microstructure to that of the ECM by conditioning the aqueous solution. We focused on the preparation of stable and injectable CMS and fCMS which is stable and would promote the healing response. Controlling the interfacial properties of hydrophilic-lipophilic balance (HLB), we obtained CMS and fCMS with various sizes and various morphologies. The microsphere prepared with wetting agents showed good microsphere formation, but too low or too high HLB value caused low yield and uncontrollable size distribution. The change in the surfactant amount and the rotor speed also affected the formation of the CMS and fCMS, where the low surfactant amount and fast rotor speed produced smaller CMS and fCMS. In the case of fCMS, the presence of NaCl made it possible to prepare stable fCMS without using any cross-linker due to fibrillogenesis and gelling of collagen molecules. The microstructure of fCMS was similar to that of the native tissue indicating that the fCMS would replicate its function in vivo.
Bioactive and thermally compatible glass coating on zirconia dental implants.
Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H
2015-02-01
The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58 · 10(-6) K(-1)) than that of the zirconia (11.67 · 10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. © International & American Associations for Dental Research 2014.
Bioactive and Thermally Compatible Glass Coating on Zirconia Dental Implants
Kirsten, A.; Hausmann, A.; Weber, M.; Fischer, J.
2015-01-01
The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58·10–6 K–1) than that of the zirconia (11.67·10–6 K–1). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. PMID:25421839
Architected cellular ceramics with tailored stiffness via direct foam writing
NASA Astrophysics Data System (ADS)
Muth, Joseph T.; Dixon, Patrick G.; Woish, Logan; Gibson, Lorna J.; Lewis, Jennifer A.
2017-02-01
Hierarchical cellular structures are ubiquitous in nature because of their low-density, high-specific properties, and multifunctionality. Inspired by these systems, we created lightweight ceramic architectures composed of closed-cell porous struts patterned in the form of hexagonal and triangular honeycombs by direct foam writing. The foam ink contains bubbles stabilized by attractive colloidal particles suspended in an aqueous solution. The printed and sintered ceramic foam honeycombs possess low relative density (˜6%). By tailoring their microstructure and geometry, we created honeycombs with different modes of deformation, exceptional specific stiffness, and stiffness values that span over an order of magnitude. This capability represents an important step toward the scalable fabrication of hierarchical porous materials for applications, including lightweight structures, thermal insulation, tissue scaffolds, catalyst supports, and electrodes.
Architected cellular ceramics with tailored stiffness via direct foam writing
Muth, Joseph T.; Dixon, Patrick G.; Woish, Logan; Gibson, Lorna J.; Lewis, Jennifer A.
2017-01-01
Hierarchical cellular structures are ubiquitous in nature because of their low-density, high-specific properties, and multifunctionality. Inspired by these systems, we created lightweight ceramic architectures composed of closed-cell porous struts patterned in the form of hexagonal and triangular honeycombs by direct foam writing. The foam ink contains bubbles stabilized by attractive colloidal particles suspended in an aqueous solution. The printed and sintered ceramic foam honeycombs possess low relative density (∼6%). By tailoring their microstructure and geometry, we created honeycombs with different modes of deformation, exceptional specific stiffness, and stiffness values that span over an order of magnitude. This capability represents an important step toward the scalable fabrication of hierarchical porous materials for applications, including lightweight structures, thermal insulation, tissue scaffolds, catalyst supports, and electrodes. PMID:28179570
Li, Zhiqi; Liu, Chunyu; Zhang, Xinyuan; Li, Shujun; Zhang, Xulin; Guo, Jiaxin; Guo, Wenbin; Zhang, Liu; Ruan, Shengping
2017-09-20
Recent advances in the interfacial modification of inverted-type polymer solar cells (PSCs) have resulted from controlling the surface energy of the cathode-modified layer (TiO 2 or ZnO) to enhance the short-circuit current (J sc ) or optimizing the contact morphology of the cathode (indium tin oxide or fluorine-doped tin oxide) and active layer to increase the fill factor. Herein, we report that the performance enhancement of PSCs is achieved by incorporating a donor macromolecule copper phthalocyanine (CuPc) as an anode modification layer. Using the approach based on orienting the microstructure evolution, uniformly dispersed island-shaped CuPc spot accumulations are built on the top of PTB7:PC 71 BM blend film, leading to an efficient spectral absorption and photogenerated exciton splitting. The best power conversion efficiency of PSCs is increased up to 9.726%. In addition to the enhanced light absorption, the tailored anode energy level alignment and optimized boundary morphology by incorporating the CuPc interlayer boost charge extraction efficiency and suppress the interfacial molecular recombination. These results demonstrate that surface morphology induction through molecular deposition is an effective method to improve the performance of PSCs, which reveals the potential implications of the interlayer between the organic active layer and the electrode buffer layer.
NASA Astrophysics Data System (ADS)
Park, Jonghwa; Kim, Jinyoung; Hong, Jaehyung; Lee, Hochan; Lee, Youngoh; Cho, Seungse; Kim, Sung-Woo; Kim, Jae Joon; Kim, Sung Youb; Ko, Hyunhyub
2018-04-01
Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa-1 in the range of <1 kPa, 90,657 kPa-1 in the range of 1-10 kPa, and 30,214 kPa-1 in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins.
NASA Technical Reports Server (NTRS)
Underwood, J. H.; Barbee, T. W., Jr.
1981-01-01
The theory of X-ray diffraction by periodic structures is applied to the layered synthetic microstructures (LSMs) made possible by recent developments in thin film technology, and approximate formulas for estimating their performance are presented. A more complete computation scheme based on optical multilayer theory is also described, and it is shown that the diffracting properties may be tailored to specific applications by adjusting the refractive indices and thicknesses of the component layers. The theory may be modified to take account of imperfections in the LMS structure, and the properties of nonperiodic structures thereby computed. Structures with high integrated reflectivity constructed according to the methods defined have potential application in many areas of X-ray or EUV research and instrumentation.
Tailoring properties of reticulated vitreous carbon foams with tunable density
NASA Astrophysics Data System (ADS)
Smorygo, Oleg; Marukovich, Alexander; Mikutski, Vitali; Stathopoulos, Vassilis; Hryhoryeu, Siarhei; Sadykov, Vladislav
2016-06-01
Reticulated vitreous carbon (RVC) foams were manufactured by multiple replications of a polyurethane foam template structure using ethanolic solutions of phenolic resin. The aims were to create an algorithm of fine tuning the precursor foam density and ensure an open-cell reticulated porous structure in a wide density range. The precursor foams were pyrolyzed in inert atmospheres at 700°C, 1100°C and 2000°C, and RVC foams with fully open cells and tunable bulk densities within 0.09-0.42 g/cm3 were synthesized. The foams were characterized in terms of porous structure, carbon lattice parameters, mechanical properties, thermal conductivity, electric conductivity, and corrosive resistance. The reported manufacturing approach is suitable for designing the foam microstructure, including the strut design with a graded microstructure.
Tailoring of Nano- and Microstructure in Biomimetically Synthesized Ceramic Films
2006-11-01
Eq. 5 where the Hamaker constant (A) for a flat and infinitely large substrate (subscript 1) and a spherical particle...is determined as (Israelachvili 1985): 232 12a A RV x = − Eq. 7 where the Hamaker constant for two like spherical particle (2) in a medium...close enough to be attracted to the equilibrium separation (0.3 nm). The Hamaker constants and the minimal interaction energies for substrate-solution
Serial sectioning of grain microstructures under junction control: An old problem in a new guise
NASA Astrophysics Data System (ADS)
Zöllner, D.; Streitenberger, P.
2015-04-01
In the present work the importance of 3D and 4D microstructure analyses are shown. To that aim, we study polycrystalline grain microstructures obtained by grain growth under grain boundary, triple line and quadruple point control. The microstructures themselves are obtained by mesoscopic computer simulations, which enjoy a far greater control over the kinetic and thermodynamic parameters affecting grain growth than can be realized experimentally. In extensive simulation studies we find by 3D respectively 4D microstructure analyses that metrical and topological properties of the microstructures depend strongly on the microstructural feature controlling the growth kinetics. However, the differences between the growth kinetics vanish when we look at classical 2D sections of the 3D ensembles making a differentiation of the controlling grain feature near impossible.
Tubular inverse opal scaffolds for biomimetic vessels
NASA Astrophysics Data System (ADS)
Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze
2016-07-01
There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03173k
Setting Mechanical Properties of High Strength Steels for Rapid Hot Forming Processes
Löbbe, Christian; Hering, Oliver; Hiegemann, Lars; Tekkaya, A. Erman
2016-01-01
Hot stamping of sheet metal is an established method for the manufacturing of light weight products with tailored properties. However, the generally-applied continuous roller furnace manifests two crucial disadvantages: the overall process time is long and a local setting of mechanical properties is only feasible through special cooling techniques. Hot forming with rapid heating directly before shaping is a new approach, which not only reduces the thermal intervention in the zones of critical formability and requested properties, but also allows the processing of an advantageous microstructure characterized by less grain growth, additional fractions (e.g., retained austenite), and undissolved carbides. Since the austenitization and homogenization process is strongly dependent on the microstructure constitution, the general applicability for the process relevant parameters is unknown. Thus, different austenitization parameters are analyzed for the conventional high strength steels 22MnB5, Docol 1400M, and DP1000 in respect of the mechanical properties. In order to characterize the resulting microstructure, the light optical and scanning electron microscopy, micro and macro hardness measurements, and the X-ray diffraction are conducted subsequent to tensile tests. The investigation proves not only the feasibility to adjust the strength and ductility flexibly, unique microstructures are also observed and the governing mechanisms are clarified. PMID:28773354
Imaging electric field dynamics with graphene optoelectronics.
Horng, Jason; Balch, Halleh B; McGuire, Allister F; Tsai, Hsin-Zon; Forrester, Patrick R; Crommie, Michael F; Cui, Bianxiao; Wang, Feng
2016-12-16
The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena.
Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization
Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu
2016-01-01
Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp3 bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale. PMID:27004752
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chenyang; Niu, Liangliang; Chen, Nanjun
A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhancedmore » swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. Finally, the results suggest design criteria for next generation radiation tolerant structural alloys.« less
Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.
Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin
2016-07-01
Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tailoring of Microstructure and Properties of Titanium Parts with Local Rapid Heat Treatment
2010-07-19
an approximate approach. Specifically, the temperature at the surface was measured using a two-color pyrometer (IMPAC IGA100) having a 0.2 μs...with pyrometer are shown in Fig. 34. It is necessary to underline, that due to very small diameter of spot measured by pyrometer every temperature...special surface vibro- acoustic treatment (of shot peening type) [19]. So, application of LRHT, from one hand – forming small-grained beta-transformed
NASA Astrophysics Data System (ADS)
Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.
2009-03-01
Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.
NASA Astrophysics Data System (ADS)
Rangel, R.; Cedeño, V.; Ramos-Corona, A.; Gutiérrez, R.; Alvarado-Gil, J. J.; Ares, O.; Bartolo-Pérez, P.; Quintana, P.
2017-08-01
Microwave hydrothermal synthesis, using an experimental 23 factorial design, was used to produce tunable ZnO nano- and microstructures, and their potential as photocatalysts was explored. Photocatalytic reactions were conducted in a microreactor batch system under UV and visible light irradiation, while monitoring methylene blue degradation, as a model system. The variables considered in the microwave reactor to produce ZnO nano- or microstructures, were time, NaOH concentration and synthesis temperature. It was found that, specific surface area and volume/surface area ratio were affected as a consequence of the synthesis conditions. In the second stage, the samples were plasma treated in a nitrogen atmosphere, with the purpose of introducing nitrogen into the ZnO crystalline structure. The central idea is to induce changes in the material structure as well as in its optical absorption, to make the plasma-treated material useful as photocatalyst in the visible region of the electromagnetic spectrum. Pristine ZnO and nitrogen-doped ZnO compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (BET), XPS, and UV-Vis diffuse reflectance spectroscopy. The results show that the methodology presented in this work is effective in tailoring the specific surface area of the ZnO compounds and incorporation of nitrogen into their structure, factors which in turn, affect its photocatalytic behavior.
Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.
Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P
2016-08-01
In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, L.; Gao, J. H.; Xiao, J. Q.; Wen, L. S.; Gong, J.; Sun, C.
2012-01-01
Hydrogenated nanocrystalline silicon (nc-Si:H) films were prepared using diluted tetrachlorosilane (SiCl4) with various hydrogen flow rates (Hf) by plasma enhanced chemical vapor deposition (PECVD) at a constant substrate temperature (Ts) as low as 120 °C. Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), infrared spectra (IR) and spectroscopic ellipsometry (SE) were employed to investigate the microstructure and hydrogen bonding of the nc-Si:H films. Our results showed that the microstructure and hydrogen content of the films could be effectively tailored by the hydrogen flow rates, and a distinct transition from amorphous to nanocrystalline phase was observed with an increase of Hf. At an optimal preparation condition, a deposition rate was as high as 3.7 nm/min and the crystallinity reached up to 64.1%. In addition, the effect of hydrogen on the low-temperature growth of nc-Si:H film was proposed in relation to the surface reaction of radicals and the hydrogen diffusion in the surface growing region.
Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review.
Martinez Sanchez, Adela Helvia; Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit, Regine
2015-02-01
Due to their biodegradability, magnesium and magnesium-based alloys could represent the third generation of biomaterials. However, their mechanical properties and time of degradation have to match the needs of applications. Several approaches, such as choice of alloying elements or tailored microstructure, are employed to tailor corrosion behaviour. Due to the high electrochemical activity of Mg, numerous environmental factors (e.g. temperature and surrounding ion composition) influence its corrosion behaviour, making it unpredictable. Nevertheless, the need of reliable in vitro model(s) to predict in vivo implant degradation is increasing. In an attempt to find a correlation between in vitro and vivo corrosion rates, this review presents a systematic literature survey, as well as an attempt to correlate the different results. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Web-based tailored nutrition education: results of a randomized controlled trial.
Oenema, A; Brug, J; Lechner, L
2001-12-01
There is ample evidence that printed, computer-tailored nutrition education is a more effective tool for motivating people to change to healthier diets than general nutrition education. New technology is now providing more advanced ways of delivering tailored messages, e.g. via the World Wide Web (WWW). Before disseminating a tailored intervention via the web, it is important to investigate the potential of web-based tailored nutrition education. The present study investigated the immediate impact of web-based computer-tailored nutrition education on personal awareness and intentions related to intake of fat, fruit and vegetables. A randomized controlled trial, with a pre-test-post-test control group design was conducted. Significant differences in awareness and intention to change were found between the intervention and control group at post-test. The tailored intervention was appreciated better, was rated as more personally relevant, and had more subjective impact on opinion and intentions to change than the general nutrition information. Computer literacy had no effect on these ratings. The results indicate that interactive, web-based computer-tailored nutrition education can lead to changes in determinants of behavior. Future research should be aimed at longer-term (behavioral) effects and the practicability of distributing tailored interventions via the WWW.
Cha, Pil-Ryung; Han, Hyung-Seop; Yang, Gui-Fu; Kim, Yu-Chan; Hong, Ki-Ha; Lee, Seung-Cheol; Jung, Jae-Young; Ahn, Jae-Pyeong; Kim, Young-Yul; Cho, Sung-Youn; Byun, Ji Young; Lee, Kang-Sik; Yang, Seok-Jo; Seok, Hyun-Kwang
2013-01-01
Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg. Furthermore, effective grain refinement induced by the extrusion allowed the achievement of much lower corrosion rate than high purity Mg. Animal studies confirmed the large reduction in hydrogen evolution and revealed good tissue compatibility with increased bone deposition around the newly developed Mg alloy implants. Thus, high strength Mg-Ca-Zn alloys with medically acceptable corrosion rate were developed and showed great potential for use in a new generation of biodegradable implants. PMID:23917705
Organic Micro/Nanoscale Lasers.
Zhang, Wei; Yao, Jiannian; Zhao, Yong Sheng
2016-09-20
Micro/nanoscale lasers that can deliver intense coherent light signals at (sub)wavelength scale have recently captured broad research interest because of their potential applications ranging from on-chip information processing to high-throughput sensing. Organic molecular materials are a promising kind of ideal platform to construct high-performance microlasers, mainly because of their superiority in abundant excited-state processes with large active cross sections for high gain emissions and flexibly assembled structures for high-quality microcavities. In recent years, ever-increasing efforts have been dedicated to developing such organic microlasers toward low threshold, multicolor output, broadband tunability, and easy integration. Therefore, it is increasingly important to summarize this research field and give deep insight into the structure-property relationships of organic microlasers to accelerate the future development. In this Account, we will review the recent advances in organic miniaturized lasers, with an emphasis on tunable laser performances based on the tailorable microcavity structures and controlled excited-state gain processes of organic materials toward integrated photonic applications. Organic π-conjugated molecules with weak intermolecular interactions readily assemble into regular nanostructures that can serve as high-quality optical microcavities for the strong confinement of photons. On the basis of rational material design, a series of optical microcavities with different structures have been controllably synthesized. These microcavity nanostructures can be endowed with effective four-level dynamic gain processes, such as excited-state intramolecular charge transfer, excited-state intramolecular proton transfer, and excimer processes, that exhibit large dipole optical transitions for strongly active gain behaviors. By tailoring these excited-state processes with molecular/crystal engineering and external stimuli, people have effectively modulated the performances of organic micro/nanolasers. Furthermore, by means of controlled assembly and tunable laser performances, efficient outcoupling of microlasers has been successfully achieved in various organic hybrid microstructures, showing considerable potential for the integrated photonic applications. This Account starts by presenting an overview of the research evolution of organic microlasers in terms of microcavity resonators and energy-level gain. Then a series of strategies to tailor the microcavity structures and excited-state dynamics of organic nanomaterials for the modulation of lasing performances are highlighted. In the following part, we introduce the construction and advanced photonic functionalities of organic-microlaser-based hybrid structures and their applications in integrated nanophotonics. Finally, we provide our outlook on the current challenges as well as the future development of organic microlasers. It is anticipated that this Account will provide inspiration for the development of miniaturized lasers with desired performances by tailoring of excited-state processes and microcavity structures toward integrated photonic applications.
Higher-Order Theory for Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
1999-01-01
This paper presents the full generalization of the Cartesian coordinate-based higher-order theory for functionally graded materials developed by the authors during the past several years. This theory circumvents the problematic use of the standard micromechanical approach, based on the concept of a representative volume element, commonly employed in the analysis of functionally graded composites by explicitly coupling the local (microstructural) and global (macrostructural) responses. The theoretical framework is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense between the subvolumes used to characterize the composite's functionally graded microstructure. The generalization outlined herein involves extension of the theoretical framework to enable the analysis of materials characterized by spatially variable microstructures in three directions. Specialization of the generalized theoretical framework to previously published versions of the higher-order theory for materials functionally graded in one and two directions is demonstrated. In the applications part of the paper we summarize the major findings obtained with the one-directional and two-directional versions of the higher-order theory. The results illustrate both the fundamental issues related to the influence of microstructure on microscopic and macroscopic quantities governing the response of composites and the technologically important applications. A major issue addressed herein is the applicability of the classical homogenization schemes in the analysis of functionally graded materials. The technologically important applications illustrate the utility of functionally graded microstructures in tailoring the response of structural components in a variety of applications involving uniform and gradient thermomechanical loading.
Development in laser peening of advanced ceramics
NASA Astrophysics Data System (ADS)
Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan
2015-07-01
Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.
Yibole, H.; Pathak, A. K.; Mudryk, Y.; ...
2018-05-24
A first-order magnetoelastic transition (FOMT) is found near the triple point between ferromagnetic, antiferromagnetic and paramagnetic phases in the magneto-chemical phase diagram of (Hf1-xNbx)Fe2 Laves phase system. We show that bringing different magnetic states to the edge of stability, both as a function of the chemical composition and under the influence of external stimuli, such as temperature, pressure and magnetic field, is essential to obtain and control FOMTs. Temperature dependent X-ray diffraction experiments reveal a discontinuity in the lattice parameter a and the unit cell volume without the change in the crystal symmetry at the FOMT. Under applied pressure, themore » transition temperature drastically shifts downward at a remarkable rate of –122 K/GPa. It is this first-order magnetic transition that leads to a negative thermal expansion (NTE) with average ΔV/(VΔT) ≈ –15 × 10 –6 K –1 observed over a 90 K broad temperature range, which is uncommon for magnetoelastic NTE materials. Density functional theory calculations and microstructural analyses demonstrate that the unusual broadness of the FOMT originates from phase separation between ferro- and antiferromagnetic phases, which in turn is rooted in partial segregation of Hf and Nb and a peculiar microstructure. In conclusion, this new understanding of the composition-structure-property relationships in transition metal based Laves phases is an essential step toward a better control and more precise tailoring of rich functionalities in this group of material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yibole, H.; Pathak, A. K.; Mudryk, Y.
A first-order magnetoelastic transition (FOMT) is found near the triple point between ferromagnetic, antiferromagnetic and paramagnetic phases in the magneto-chemical phase diagram of (Hf1-xNbx)Fe2 Laves phase system. We show that bringing different magnetic states to the edge of stability, both as a function of the chemical composition and under the influence of external stimuli, such as temperature, pressure and magnetic field, is essential to obtain and control FOMTs. Temperature dependent X-ray diffraction experiments reveal a discontinuity in the lattice parameter a and the unit cell volume without the change in the crystal symmetry at the FOMT. Under applied pressure, themore » transition temperature drastically shifts downward at a remarkable rate of –122 K/GPa. It is this first-order magnetic transition that leads to a negative thermal expansion (NTE) with average ΔV/(VΔT) ≈ –15 × 10 –6 K –1 observed over a 90 K broad temperature range, which is uncommon for magnetoelastic NTE materials. Density functional theory calculations and microstructural analyses demonstrate that the unusual broadness of the FOMT originates from phase separation between ferro- and antiferromagnetic phases, which in turn is rooted in partial segregation of Hf and Nb and a peculiar microstructure. In conclusion, this new understanding of the composition-structure-property relationships in transition metal based Laves phases is an essential step toward a better control and more precise tailoring of rich functionalities in this group of material.« less
Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, M.
2001-01-01
Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.
Enhanced magnetoimpedance and field sensitivity in microstructure controlled FeSiCuNbB ribbons
NASA Astrophysics Data System (ADS)
Sahoo, Trilochan; Chandra Mishra, Amaresh; Srinivas, V.; Nath, T. K.; Srinivas, M.; Majumdar, B.
2011-10-01
Fe73.5Si13.5Cu1Nb3B9 and Fe77.2Si11.2Cu0.8Nb3.3B7.5 nanocomposite materials consisting of nanocrystalline phase in an amorphous matrix were obtained by heat-treatment of their precursor amorphous ribbons. The influence of structural modifications induced during the heat-treatment on soft magnetic properties and magnetoimpedance (MI) effect have been studied. The structural investigations on both these ribbons revealed the presence of two phases, fine grained Fe3Si phase and a residual amorphous phase on heat-treatment. The maximum MI ratio obtained in the present study is 95% at f = 4 MHz, for the optimized heat-treated Fe77.2Si11.2Cu0.8Nb3.3B7.5 ribbon. This is ascribed to the increase in magnetic permeability and decrease in coercive force and intrinsic resistivity. Moreover, a maximum magnetic field sensitivity (ξ) of 8.3%/Oe at f = 2.5 MHz is obtained, for the optimized nanocrystalline Fe73.5Si13.5Cu1Nb3B9 ribbon. This suggests that tailoring of the nanocrystalline microstructures induced by optimum heat-treatment conditions can result in obtaining excellent combinations of the magnetic permeability and resistivity. Our results indicate that these Fe-based nanocrystalline materials can be ideally used for low magnetic field and high frequency sensor applications.
Shockwave dynamics: a comparison between stochastic and periodic porous architectures
NASA Astrophysics Data System (ADS)
Branch, Brittany; Ionite, Axinte; Clements, Bradford; Montgomery, David; Schmalzer, Andrew; Patterson, Brian; Mueller, Alexander; Jensen, Brian; Dattelbaum, Dana
Polymeric foams are used extensively as structural supports and load mitigating materials in which they are subjected to compressive loading at a range of strain rates, up to the high strain rates encountered in blast and shockwave loading. To date, there have been few insights into compaction phenomena in porous structures at the mesoscale, and the influence of structure on shockwave localization. Of particular interest is when the properties of the inherent mesoscopic, periodic structure begin to emerge, versus the discrete behavior of the individual cell. Here, we illustrate, for the first time, modulation of shockwave dynamics controlled at micron-length scales in additively manufactured periodic porous structures measured using in situ, time-resolved x-ray phase contrast imaging at the Advanced Photon Source. Further, we demonstrate how the shockwave dynamics in periodic structures differ from stochastic foams of similar density and we conclude that microstructural control in elastomer foams has a dramatic effect on shockwave dynamics and can be tailored towards a variety of applications. Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory (project# 20160103DR) and DOE/NNSA Campaign 2.
An efficient method for supercontinuum generation in dispersion-tailored Lead-silicate fiber taper
NASA Astrophysics Data System (ADS)
Chen, Z.; Ma, S.; Dutta, N. K.
2010-08-01
In this paper we theoretically study the broadband mid-IR supercontinuum generation (SCG) in a lead-silicate microstructured fiber (the glass for simulation is SF57). The total dispersion of the fiber can be tailored by changing the core diameter of the fiber so that dispersion profiles with two zero dispersion wavelengths (ZDWs) can be obtained. Numerical simulations of the SCG process in a 4 cm long SF57 fiber/fiber taper seeded by femto-second pulses at telecommunications wavelength of 1.55 µm are presented. The results show that a fiber taper features a continuous shift of the longer zero dispersion wavelength. This extends the generated continuum to a longer wavelength region compared to fibers with fixed ZDWs. The phase-matching condition (PMC) is continuously modified in the fiber taper and the bandwidth of the generated dispersive waves (DWs) is significantly broadened.
Enhanced magnetocaloric effect tuning efficiency in Ni-Mn-Sn alloy ribbons
NASA Astrophysics Data System (ADS)
Quintana-Nedelcos, A.; Sánchez Llamazares, J. L.; Daniel-Perez, G.
2017-11-01
The present work was undertaken to investigate the effect of microstructure on the magnetic entropy change of Ni50Mn37Sn13 ribbon alloys. Unchanged sample composition and cell parameter of austenite allowed us to study strictly the correlation between the average grain size and the total magnetic field induced entropy change (ΔST). We found that a size-dependent martensitic transformation tuning results in a wide temperature range tailoring (>40 K) of the magnetic entropy change with a reasonably small variation on the peak value of the total field induced entropy change. The peak values varied from 6.0 J kg-1 K-1 to 7.7 J kg-1 K-1 for applied fields up to 2 T. Different tuning efficiencies obtained by diverse MCE tailoring approaches are compared to highlight the advantages of the herein proposed mechanism.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.
2016-01-01
Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.
Ji, Chen-Chen; Xu, Mao-Wen; Bao, Shu-Juan; Cai, Chang-Jun; Lu, Zheng-Jiang; Chai, Hui; Yang, Fan; Wei, Hua
2013-10-01
Homogeneously distributed self-assembling hybrid graphene-based aerogels with 3D interconnected pores, employing three types of carbohydrates (glucose, β-cyclodextrin, and chitosan), have been fabricated by a simple hydrothermal route. Using three types of carbohydrates as morphology oriented agents and reductants can effectively tailor the microstructures, physical properties, and electrochemical performances of the products. The effects of different carbohydrates on graphene oxide reduction to form graphene-based aerogels with different microcosmic morphologies and physical properties were also systemically discussed. The electrochemical behaviors of all graphene-based aerogel samples showed remarkably strong and stable performances, which indicated that all the 3D interpenetrating microstructure graphene-based aerogel samples with well-developed porous nanostructures and interconnected conductive networks could provide fast ionic channels for electrochemical energy storage. These results demonstrate that this strategy would offer an easy and effective way to fabricate graphene-based materials. Copyright © 2013 Elsevier Inc. All rights reserved.
Role of Cellulose Nanocrystals on the Microstructure of Maleic Anhydride Plasma Polymer Thin Films.
Brioude, Michel M; Roucoules, Vincent; Haidara, Hamidou; Vonna, Laurent; Laborie, Marie-Pierre
2015-07-01
Recently, it was shown that the microstructure of a maleic anhydride plasma polymer (MAPP) could be tailored ab initio by adjusting the plasma process parameters. In this work, we aim to investigate the ability of cellulose nanocrystals (CNCs) to induce topographical structuration. Thus, a new approach was designed based on the deposition of MAPP on CNCs model surfaces. The nanocellulosic surfaces were produced by spin-coating the CNC suspension on a silicon wafer substrate and on a hydrophobic silicon wafer substrate patterned with circular hydrophilic microsized domains (diameter of 86.9 ± 4.9 μm), resulting in different degrees of CNC aggregation. By depositing the MAPP over these surfaces, it was possible to observe that the surface fraction of nanostructures increased from 20% to 35%. This observation suggests that CNCs can act as nucleation points resulting in more structures, although a critical density of the CNCs is required.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Hu, Xiaoyong; Gao, Wei; Song, Hanfa; Chu, Saisai; Yang, Hong; Gong, Qihuang
2018-06-01
Two-dimensional van der Waals materials are interesting for fundamental physics exploration and device applications because of their attractive physical properties. Here, we report a strategy to realize photoluminescence (PL) enhancement of two-dimensional transition-metal dichalcogenides (TMDCs) in the visible range using a plasmonic microstructure with patterned gold nanoantennas and a metal-insulator-semiconductor-insulator-metal structure. The PL intensity was enhanced by a factor of two under Y-polarization due to the increased radiative decay rate by the surface plasmon radiation channel in the gold nanoantennas and the decreased nonradiative decay rate by suppressing exciton quenching in the SiO2 isolation layer. The fluorescence lifetime of monolayer tungsten disulfide in this structure was shorter than that of a sample without patterned gold nanoantennas. Tailoring the light-matter interactions between two-dimensional TMDCs and plasmonic nanostructures may provide highly efficient optoelectronic devices such as TMDC-based light emitters.
Role of Microstructure on the Performance of UHTCs
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead
2010-01-01
We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.
Preparation and Reactivity of Gasless Nanostructured Energetic Materials
Manukyan, Khachatur V.; Shuck, Christopher E.; Rogachev, Alexander S.; Mukasyan, Alexander S.
2015-01-01
High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites. PMID:25868065
Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties.
Warren, Maya M; Hartel, Richard W
2018-03-01
Ice cream is a multiphase frozen food containing ice crystals, air cells, fat globules, and partially coalesced fat globule clusters dispersed in an unfrozen serum phase (sugars, proteins, and stabilizers). This microstructure is responsible for ice cream's melting characteristics. By varying both formulation (emulsifier content and overrun) and processing conditions (dasher speed), the effects of different microstructural elements, particularly air cells and fat globule clusters, on ice cream melt-down properties were studied. Factors that caused an increase in shear stress within the freezer, namely increasing dasher speed and overrun, caused a decrease in air cell size and an increase in extent of fat destabilization. Increasing emulsifier content, especially of polysorbate 80, caused an increase in extent of fat destabilization. Both overrun and fat destabilization influenced drip-through rates. Ice creams with a combination of low overrun and low fat destabilization had the highest drip-through rates. Further, the amount of remnant foam left on the screen increased with reduced drip-through rates. These results provide a better understanding of the effects of microstructure components and their interactions on drip-through rate. Manipulating operating and formulation parameters in ice cream manufacture influences the microstructure (air cells, ice crystals, and fat globule clusters). This work provides guidance on which parameters have most effect on air cell size and fat globule cluster formation. Further, the structural characteristics that reduce melt-down rate were determined. Ice cream manufacturers will use these results to tailor their products for the desired quality attributes. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Li, Xifei; Hu, Yuhai; Liu, Jian; Lushington, Andrew; Li, Ruying; Sun, Xueliang
2013-11-01
How to tune graphene nanosheets (GNSs) with various morphologies has been a significant challenge for lithium ion batteries (LIBs). In this study, three types of GNSs with varying size, edge sites, defects and layer numbers have been successfully achieved. It was demonstrated that controlling GNS morphology and microstructure has important effects on its cyclic performance and rate capability in LIBs. Diminished GNS layer number, decreased size, increased edge sites and increased defects in the GNS anode can be highly beneficial to lithium storage and result in increased electrochemical performance. Interestingly, GNSs treated with a hydrothermal approach delivered a high reversible discharge capacity of 1348 mA h g-1. This study demonstrates that the controlled design of high performance GNS anodes is an important concept in LIB applications.How to tune graphene nanosheets (GNSs) with various morphologies has been a significant challenge for lithium ion batteries (LIBs). In this study, three types of GNSs with varying size, edge sites, defects and layer numbers have been successfully achieved. It was demonstrated that controlling GNS morphology and microstructure has important effects on its cyclic performance and rate capability in LIBs. Diminished GNS layer number, decreased size, increased edge sites and increased defects in the GNS anode can be highly beneficial to lithium storage and result in increased electrochemical performance. Interestingly, GNSs treated with a hydrothermal approach delivered a high reversible discharge capacity of 1348 mA h g-1. This study demonstrates that the controlled design of high performance GNS anodes is an important concept in LIB applications. Electronic supplementary information (ESI) available: SEM morphologies of GNS-I-III at low magnification, the TEM image of GNSs hydrothermally treated with urea in a ratio of 1 : 0, XPS survey, and SEM morphology changes of the three GNS anodes at low magnification after 100 charge-discharge cycles. See DOI: 10.1039/c3nr04823c
NASA Astrophysics Data System (ADS)
Paul, Partha P.; Fortman, Margaret; Paranjape, Harshad M.; Anderson, Peter M.; Stebner, Aaron P.; Brinson, L. Catherine
2018-04-01
Porous NiTi shape memory alloys have applications in the biomedical and aerospace fields. Recent developments in metal additive manufacturing have made fabrication of near-net-shape porous products with complicated geometries feasible. There have also been developments in tailoring site-specific microstructures in metals using additive manufacturing. Inspired by these developments, we explore two related mechanistic phenomena in a simplified representation of porous shape memory alloys. First, we computationally elucidate the connection between pore geometry, stress concentration around pores, grain orientation, and strain-band formation during tensile loading of NiTi. Using this, we present a method to engineer local crystal orientations to mitigate the stress concentrations around the pores. Second, we experimentally document the growth of cracks around pores in a cyclically loaded superelastic NiTi specimen. In the areas of stress concentration around holes, cracks are seen to grow in large grains with [1 1 0] oriented along the tensile axis. This combined work shows the potential of local microstructural engineering in reducing stress concentration and increasing resistance to propagation of cracks in porous SMAs, potentially increasing the fatigue life of porous SMA components.
Emulation of reactor irradiation damage using ion beams
Was, G. S.; Jiao, Z.; Getto, E.; ...
2014-06-14
The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less
Microfluidic production of polymeric functional microparticles
NASA Astrophysics Data System (ADS)
Jiang, Kunqiang
This dissertation focuses on applying droplet-based microfluidics to fabricate new classes of polymeric microparticles with customized properties for various applications. The integration of microfluidic techniques with microparticle engineering allows for unprecedented control over particle size, shape, and functional properties. Specifically, three types of microparticles are discussed here: (1) Magnetic and fluorescent chitosan hydrogel microparticles and their in-situ assembly into higher-order microstructures; (2) Polydimethylsiloxane (PDMS) microbeads with phosphorescent properties for oxygen sensing; (3) Macroporous microparticles as biological immunosensors. First, we describe a microfluidic approach to generate monodisperse chitosan hydrogel microparticles that can be further connected in-situ into higher-order microstructures. Microparticles of the biopolymer chitosan are created continuously by contacting an aqueous solution of chitosan at a microfluidic T-junction with a stream of hexadecane containing a nonionic detergent, followed by downstream crosslinking of the generated droplets by a ternary flow of glutaraldehyde. Functional properties of the microparticles can be easily varied by introducing payloads such as magnetic nanoparticles and/or fluorescent dyes into the chitosan solution. We then use these prepared microparticles as "building blocks" and assemble them into high ordered microstructures, i.e. microchains with controlled geometry and flexibility. Next, we describe a new approach to produce monodisperse microbeads of PDMS using microfluidics. Using a flow-focusing configuration, a PDMS precursor solution is dispersed into microdroplets within an aqueous continuous phase. These droplets are collected and thermally cured off-chip into soft, solid microbeads. In addition, our technique allows for direct integration of payloads, such as an oxygen-sensitive porphyrin dye, into the PDMS microbeads. We then show that the resulting dye-bearing beads can function as non-invasive and real-time oxygen micro-sensors. Finally, we report a co-flow microfluidic method to prepare uniform polymer microparticles with macroporous texture, and investigate their application as discrete immunological biosensors for the detection of biological species. The matrix of such microparticles is based on macroporous polymethacrylate polymers configured with tailored pores ranging from hundreds of nanometers to a few microns. Subsequently, we immobilize bioactive antibodies on the particle surface, and demonstrate the immunological performance of these functionalized porous microbeads over a range of antigen concentrations.
2006-11-26
vapor species, formed over tungsten trioxide powder, is 1.25xl0Ŗ atm at 1400°C and 1 atm total pressure (assuming an oxygen partial pressure greater...with CO(g). ■19- These hollow tungsten fibers were then carburized via reaction with CO(g) to generate the polycrystalline WC-based fibers shown in...of tungsten carbide via reaction with a hafnium-copper melt," Ada Mater., 57(13), 3924-3931 (2009).) The kinetic mechanism of incongruent reduction
Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shi-Jie; Li, Yan, E-mail: li@pku.edu.cn; Liu, Zhao-Pei
The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.
Metathesis depolymerizable surfactants
Jamison, Gregory M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM; Loy, Douglas A [Tucson, AZ; Simmons, Blake A [San Francisco, CA; Long, Timothy M [Evanston, IL; McElhanon, James R [Manteca, CA; Rahimian, Kamyar [Albuquerque, NM; Staiger, Chad L [Albuquerque, NM
2008-04-15
A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.
Alley, Stephanie; Jennings, Cally; Plotnikoff, Ronald C; Vandelanotte, Corneel
2016-08-12
Web-based physical activity interventions that apply computer tailoring have shown to improve engagement and behavioral outcomes but provide limited accountability and social support for participants. It is unknown how video calls with a behavioral expert in a Web-based intervention will be received and whether they improve the effectiveness of computer-tailored advice. The purpose of this study was to determine the feasibility and effectiveness of brief video-based coaching in addition to fully automated computer-tailored advice in a Web-based physical activity intervention for inactive adults. Participants were assigned to one of the three groups: (1) tailoring + video-coaching where participants received an 8-week computer-tailored Web-based physical activity intervention ("My Activity Coach") including 4 10-minute coaching sessions with a behavioral expert using a Web-based video-calling program (eg, Skype; n=52); (2) tailoring-only where participants received the same intervention without the coaching sessions (n=54); and (3) a waitlist control group (n=45). Demographics were measured at baseline, intervention satisfaction at week 9, and physical activity at baseline, week 9, and 6 months by Web-based self-report surveys. Feasibility was analyzed by comparing intervention groups on retention, adherence, engagement, and satisfaction using t tests and chi-square tests. Effectiveness was assessed using linear mixed models to compare physical activity changes between groups. A total of 23 tailoring + video-coaching participants, 30 tailoring-only participants, and 30 control participants completed the postintervention survey (83/151, 55.0% retention). A low percentage of tailoring + video-coaching completers participated in the coaching calls (11/23, 48%). However, the majority of those who participated in the video calls were satisfied with them (5/8, 71%) and had improved intervention adherence (9/11, 82% completed 3 or 4 modules vs 18/42, 43%, P=.01) and engagement (110 minutes spent on the website vs 78 minutes, P=.02) compared with other participants. There were no overall retention, adherence, engagement, and satisfaction differences between tailoring + video-coaching and tailoring-only participants. At 9 weeks, physical activity increased from baseline to postintervention in all groups (tailoring + video-coaching: +150 minutes/week; tailoring only: +123 minutes/week; waitlist control: +34 minutes/week). The increase was significantly higher in the tailoring + video-coaching group compared with the control group (P=.01). No significant difference was found between intervention groups and no significant between-group differences were found for physical activity change at 6 months. Only small improvements were observed when video-coaching was added to computer-tailored advice in a Web-based physical activity intervention. However, combined Web-based video-coaching and computer-tailored advice was effective in comparison with a control group. More research is needed to determine whether Web-based coaching is more effective than stand-alone computer-tailored advice. Australian New Zealand Clinical Trials Registry (ACTRN): 12614000339651; http://www.anzctr.org.au/TrialSearch.aspx?searchTxt=ACTRN12614000339651+&isBasic=True (Archived by WebCite at http://www.webcitation.org/6jTnOv0Ld).
Jennings, Cally; Plotnikoff, Ronald C; Vandelanotte, Corneel
2016-01-01
Background Web-based physical activity interventions that apply computer tailoring have shown to improve engagement and behavioral outcomes but provide limited accountability and social support for participants. It is unknown how video calls with a behavioral expert in a Web-based intervention will be received and whether they improve the effectiveness of computer-tailored advice. Objective The purpose of this study was to determine the feasibility and effectiveness of brief video-based coaching in addition to fully automated computer-tailored advice in a Web-based physical activity intervention for inactive adults. Methods Participants were assigned to one of the three groups: (1) tailoring + video-coaching where participants received an 8-week computer-tailored Web-based physical activity intervention (“My Activity Coach”) including 4 10-minute coaching sessions with a behavioral expert using a Web-based video-calling program (eg, Skype; n=52); (2) tailoring-only where participants received the same intervention without the coaching sessions (n=54); and (3) a waitlist control group (n=45). Demographics were measured at baseline, intervention satisfaction at week 9, and physical activity at baseline, week 9, and 6 months by Web-based self-report surveys. Feasibility was analyzed by comparing intervention groups on retention, adherence, engagement, and satisfaction using t tests and chi-square tests. Effectiveness was assessed using linear mixed models to compare physical activity changes between groups. Results A total of 23 tailoring + video-coaching participants, 30 tailoring-only participants, and 30 control participants completed the postintervention survey (83/151, 55.0% retention). A low percentage of tailoring + video-coaching completers participated in the coaching calls (11/23, 48%). However, the majority of those who participated in the video calls were satisfied with them (5/8, 71%) and had improved intervention adherence (9/11, 82% completed 3 or 4 modules vs 18/42, 43%, P=.01) and engagement (110 minutes spent on the website vs 78 minutes, P=.02) compared with other participants. There were no overall retention, adherence, engagement, and satisfaction differences between tailoring + video-coaching and tailoring-only participants. At 9 weeks, physical activity increased from baseline to postintervention in all groups (tailoring + video-coaching: +150 minutes/week; tailoring only: +123 minutes/week; waitlist control: +34 minutes/week). The increase was significantly higher in the tailoring + video-coaching group compared with the control group (P=.01). No significant difference was found between intervention groups and no significant between-group differences were found for physical activity change at 6 months. Conclusions Only small improvements were observed when video-coaching was added to computer-tailored advice in a Web-based physical activity intervention. However, combined Web-based video-coaching and computer-tailored advice was effective in comparison with a control group. More research is needed to determine whether Web-based coaching is more effective than stand-alone computer-tailored advice. Trial Registration Australian New Zealand Clinical Trials Registry (ACTRN): 12614000339651; http://www.anzctr.org.au/TrialSearch.aspx?searchTxt=ACTRN12614000339651+&isBasic=True (Archived by WebCite at http://www.webcitation.org/6jTnOv0Ld) PMID:27520283
NASA Astrophysics Data System (ADS)
Zavala, Mitchel
Metal-matrix composites (MMCs) are engineered combinations of two or more materials. Tailored properties are achieved by systematic combinations of different constituents. Specialized design and synthesis procedures allow unique sets of material properties in composites. Covetics are a new type of metal-matrix nano-composite (MMnC) material. These materials are formed from FCC metals which are super-saturated with up to 10 wt. % of activated nano-carbon powder. The idea is that the nano-carbon particles will enhance the material properties of the base metal matrix, however most of the physical and mechanical properties of covetics have not been well characterized. The foci of this study are to optimize the covetic casting synthesis process under controlled conditions, to understand and analyze the microstructures of the synthesized copper and aluminum covetic, to provide a thorough analysis of the chemical composition of the synthesized covetic materials, and to characterize physical and mechanical properties of both of these materials using meticulously prepared samples and test procedures.
Imaging electric field dynamics with graphene optoelectronics
Horng, Jason; Balch, Halleh B.; McGuire, Allister F.; ...
2016-12-16
The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts,more » a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena.« less
Ignition Prediction of Pressed HMX based on Hotspot Analysis Under Shock Pulse Loading
NASA Astrophysics Data System (ADS)
Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min
The ignition behavior of pressed HMX under shock pulse loading with a flyer is analyzed using a cohesive finite element method (CFEM) which accounts for large deformation, microcracking, frictional heating, and thermal conduction. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.7 and 4.0 km/s. The study focuses on the computational prediction of ignition threshold using James criterion which involves loading intensity and energy imparted to the material. The predicted thresholds are in good agreement with measurements from shock experiments. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. In addition, significant stress attenuation is observed in high intensity pulse loading as compared to low intensity pulse loading, which affects density of hotspot distribution. The microstructure-performance relations obtained can be used to design explosives with tailored attributes and safety envelopes.
Imaging electric field dynamics with graphene optoelectronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horng, Jason; Balch, Halleh B.; McGuire, Allister F.
The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts,more » a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena.« less
Improved Rhenium Thrust Chambers
NASA Technical Reports Server (NTRS)
O'Dell, John Scott
2015-01-01
Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Z.L., E-mail: zhilihuhit@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology
Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that themore » tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming.« less
NASA Astrophysics Data System (ADS)
Alubaidy, Mohammed-Amin
A new method has been introduced for the formation of microfeatures made of nanofibers reinforced polymer, using femtosecond laser material processing. The Femtosecond laser is used for the generation of three-dimensional interweaved nanofibers and the construction of microfeatures, like microchannels and voxels, through multi photon polymerization of nanofiber dispersed polymer resin. A new phenomenon of multiphoton polymerization induced by dual wavelength irradiation was reported for the first time. A significant improvement in the spatial resolution, compared to the two photon absorption (2PA) and the three photon absorption (3PA) processes has been achieved. Conductive polymer microstructures and magnetic polymer microstructures have been fabricated through this method. The mechanical properties of nanofiber reinforced polymer microstructures has been investigated by means of nanoindentation and the volume fraction of the generated nanofibers in the nanocomposite was calculated by using nanoindentation analysis. The results showed significant improvement in strength of the material. The electrical conductivity of the two photon polymerization (TPP) generated microfeatures was measured by a two-probe system at room temperature and the conductivity-temperature relationship was measured at a certain temperature range. The results suggest that the conductive polymer microstructure is reproducible and has a consistent conductivity-temperature relation. The magnetic strength has been characterized using Guassmeter. To demonstrate the potential application of the new fabrication method, a novel class of DNA-functionalized three-dimensional (3D), stand-free, and nanostructured electrodes were fabricated. The developed nanofibrous DNA biosensor has been characterized by cyclic voltammetry with the use of ferrocyanide as an electrochemical redox indicator. Results showed that the probe--target recognition has been improved. This research demonstrated that femtosecond laser materials processing is a viable tool of the construction of naomaterial- reinforced polymer microfeatures with tailored properties.
Franzoni, Elisa; Sassoni, Enrico
2011-12-15
The correlation between stone microstructural characteristics and material degradation (in terms of weight loss), in given environmental conditions, was investigated. Seven lithotypes, having very different microstructural characteristics, were used. Four acidic aqueous solutions were prepared to simulate acid rain (two adding H(2)SO(4) and two adding HNO(3) to deionized water, in order to reach, for each acid, pH values of 5.0 and 4.0), and deionized water at pH=5.6 was used to simulate clean rain. Stone samples were then immersed in such aqueous solutions, the surface alteration being periodically inspected and the weight loss periodically measured. After 14 days of immersion, a good correlation was found between weight loss and the product of carbonate content and specific surface area in the starting materials. This was explained considering that this product accounts for the weight loss owing to the sample's fraction actually composed of calcite (the most soluble fraction) and the effective surface area exposed to dissolving solution (which depends on stone porosity and pore size distribution). Such correlation between stone microstructure and degradation may be useful for comparing the durability of different lithotypes, in given environmental conditions, and quantitatively predicting the weight loss of a lithotype, compared to another one. Hence, the correlation found in this study may be used to specifically tailor to various stone types, with different microstructural characteristics, some results that have been calculated in literature for specific stone types and then proposed as possibly representative for a broad category of stones with similar characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojacz, H., E-mail: rojacz@ac2t.at
2016-08-15
Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocitymore » leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.« less
eHealth and the use of individually tailored information: A systematic review.
Conway, Nicholas; Webster, Clare; Smith, Blair; Wake, Deborah
2017-09-01
Tailored messages are those that specifically target individuals following an assessment of their unique characteristics. This systematic review assesses the evidence regarding the effectiveness of tailoring within eHealth interventions aimed at chronic disease management. OVID Medline/Embase databases were searched for randomised control trials, controlled clinical, trials, before -after studies, and time series analyses from inception - May 2014. Objectively measured clinical processes/outcomes were considered. Twenty-two papers were eligible for inclusion: 6/22 used fully tailored messaging and 16/22 used partially tailored messages. Two studies isolated tailoring as the active component. The remainder compared intervention with standard care. In all, 12/16 studies measuring clinical processes and 2/6 studies reporting clinical outcomes showed improvements, regardless of target group. Study quality was low and design did not allow for identification of interventions' active component. Heterogeneity precluded meta-analysis. This review has demonstrated that there is a lack of evidence to suggest that tailoring within an eHealth context confers benefit over non-tailored eHealth interventions.
The Effects of Tailoring Knowledge Acquisition on Colorectal Cancer Screening Self-Efficacy
Jerant, Anthony; To, Patricia; Franks, Peter
2015-01-01
Interventions tailored to psychological factors such as personal and vicarious behavioral experiences can enhance behavioral self-efficacy, but are complex to develop and implement. Information seeking theory suggests tailoring acquisition of health knowledge (without concurrent psychological factor tailoring) could enhance self-efficacy, simplifying the design of tailored behavior change interventions. To begin to examine this issue, the authors conducted exploratory analyses of data from a randomized controlled trial, comparing the effects of an experimental colorectal cancer (CRC) screening intervention tailoring knowledge acquisition with the effects of a non-tailored control on CRC screening knowledge and self-efficacy in 1159 patients comprising three ethnicity/language strata (Hispanic/Spanish 23.4%, Hispanic/English 27.2%, non-Hispanic/English 49.3%) and five recruitment center strata. Adjusted for study strata, the mean post-intervention knowledge score was significantly higher in the experimental group versus control. Adjusted experimental intervention exposure (B = 0.22, 95% CI [0.14, 0.30]), pre-intervention knowledge (B = 0.11, 95% CI [0.05, 0.16]), and post-intervention knowledge (B = 0.03, 95% CI [0.01, 0.05]) were independently associated with subsequent CRC screening self-efficacy (p < .001 all associations). These exploratory findings suggest tailoring knowledge acquisition may enhance self-efficacy, with potential implications for tailored intervention design, but require confirmation in studies specifically designed to examine this issue. PMID:25928315
NASA Astrophysics Data System (ADS)
Montealegre Rubio, Wilfredo; Paulino, Glaucio H.; Nelli Silva, Emilio Carlos
2011-02-01
Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.
Lay Health Influencers: How They Tailor Brief Tobacco Cessation Interventions
ERIC Educational Resources Information Center
Yuan, Nicole P.; Castaneda, Heide; Nichter, Mark; Nichter, Mimi; Wind, Steven; Carruth, Lauren; Muramoto, Myra
2012-01-01
Interventions tailored to individual smoker characteristics have increasingly received attention in the tobacco control literature. The majority of tailored interventions are generated by computers and administered with printed materials or web-based programs. The purpose of this study was to examine the tailoring activities of community lay…
Sol-gel Technology and Advanced Electrochemical Energy Storage Materials
NASA Technical Reports Server (NTRS)
Chu, Chung-tse; Zheng, Haixing
1996-01-01
Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.
Tailoring the index of refraction of nanocrystalline hafnium oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Mirella; Murphy, N. R.; Ramana, C. V., E-mail: rvchintalapalle@utep.edu
2014-03-10
Hafnium oxide (HfO{sub 2}) films were grown by sputter-deposition by varying the growth temperature (T{sub s} = 25–700 °C). HfO{sub 2} films grown at T{sub s} < 200 °C were amorphous, while those grown at T{sub s} ≥ 200 °C were monoclinic, nanocrystalline with (1{sup ¯}11) texturing. X-ray reflectivity (XRR) analyses indicate that the film-density (ρ) increases with increasing T{sub s}. The index of refraction (n) profiles derived from spectroscopic ellipsometry analyses follow the Cauchy dispersion relation. Lorentz-Lorenz analysis (n{sub (λ)} = 550 nm) and optical-model adopted agree well with the XRR data/analyses. A direct T{sub s}-ρ-n relationship suggests that tailoring the optical quality is possible by tuning T{sub s} and themore » microstructure of HfO{sub 2} films.« less
NASA Astrophysics Data System (ADS)
Yaakob, K. I.; Ishak, M.; Idris, S. R. A.; Aiman, M. H.; Khalil, N. Z.
2017-09-01
Recent car manufacturer requirement in lightweight and optimum safety lead to utilization of boron steel with tailor welded blank approach. Laser welding process in tailor welded blank (TWB) production can be applied in continuous wave (CW) of pulse wave (PW) which produce different thermal experience in welded area. Instead of microstructure identification, hardness properties also can determine the behavior of weld area. In this paper, hardness variation of welded boron steel using PW and CW mode is investigated. Welding process is conducted using similar average power for both welding mode. Hardness variation across weld area is observed. The result shows similar hardness pattern across weld area for both welding mode. Hardness degradation at fusion zone (FZ) is due to ferrite formation existence from high heat input applied. With additional slower cooling rate for CW mode, the hardness degradation is become obvious. The normal variation of hardness behavior with PW mode might lead to good strength.
Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods
Palmero, Paola
2015-01-01
Ceramic nanocomposites are attracting growing interest, thanks to new processing methods enabling these materials to go from the research laboratory scale to the commercial level. Today, many different types of nanocomposite structures are proposed in the literature; however, to fully exploit their exceptional properties, a deep understanding of the materials’ behavior across length scales is necessary. In fact, knowing how the nanoscale structure influences the bulk properties enables the design of increasingly performing composite materials. A further key point is the ability of tailoring the desired nanostructured features in the sintered composites, a challenging issue requiring a careful control of all stages of manufacturing, from powder synthesis to sintering. This review is divided into four parts. In the first, classification and general issues of nanostructured ceramics are reported. The second provides basic structure–property relations, highlighting the grain-size dependence of the materials properties. The third describes the role of nanocrystalline second-phases on the mechanical properties of ordinary grain sized ceramics. Finally, the fourth part revises the mainly used synthesis routes to produce nanocomposite ceramic powders, underlining when possible the critical role of the synthesis method on the control of microstructure and properties of the sintered ceramics. PMID:28347029
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer
A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.
Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion
Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.
2015-01-01
Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896
Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.
Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K
2015-11-30
Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.
Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion
NASA Astrophysics Data System (ADS)
Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.
2015-11-01
Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.
A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure.
Zhang, Dongjie; Cheng, Zhongjun; Kang, Hongjun; Yu, Jianxin; Liu, Yuyan; Jiang, Lei
2018-03-26
Recently, smart surfaces with switchable wettability have aroused much attention. However, only single surface chemistry or the microstructure can be changed on these surfaces, which significantly limits their wetting performances, controllability, and applications. A new surface with both tunable surface microstructure and chemistry was prepared by grafting poly(N-isopropylacrylamide) onto the pillar-structured shape memory polymer on which multiple wetting states from superhydrophilicity to superhydrophobicity can be reversibly and precisely controlled by synergistically regulating the surface microstructure and chemistry. Meanwhile, based on the excellent controllability, we also showed the application of the surface as a rewritable platform, and various gradient wettings can be obtained. This work presents for the first time a surface with controllability in both surface chemistry and microstructure, which starts some new ideas for the design of novel superwetting materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of Advanced Processed Single-Crystal Turbine Blade Alloys
NASA Technical Reports Server (NTRS)
Peters, B. J.; Biondo, C. M.; DeLuca, D. P.
1995-01-01
This investigation studied the influence of thermal processing and microstructure on the mechanical properties of the single-crystal, nickel-based superalloys PWA 1482 and PWA 1484. The objective of the program was to develop an improved single-crystal turbine blade alloy that is specifically tailored for use in hydrogen fueled rocket engine turbopumps. High-gradient casting, hot isostatic pressing (HIP), and alternate heat treatment (HT) processing parameters were developed to produce pore-free, eutectic-free microstructures with different (gamma)' precipitate morphologies. Test materials were cast in high thermal gradient solidification (greater than 30 C/cm (137 F/in.)) casting furnaces for reduced dendrite arm spacing, improved chemical homogeneity, and reduced interdendritic pore size. The HIP processing was conducted in 40 cm (15.7 in.) diameter production furnaces using a set of parameters selected from a trial matrix study. Metallography was conducted on test samples taken from each respective trial run to characterize the as-HIP microstructure. Post-HIP alternate HT processes were developed for each of the two alloys. The goal of the alternate HT processing was to fully solution the eutectic gamma/(gamma)' phase islands and to develop a series of modified (gamma)' morphologies for subsequent characterization testing. This was accomplished by slow cooling through the (gamma)' solvus at controlled rates to precipitate volume fractions of large (gamma)'. Post-solution alternate HT parameters were established for each alloy providing additional volume fractions of finer precipitates. Screening tests included tensile, high-cycle fatigue (HCF), smooth and notched low-cycle fatigue (LCF), creep, and fatigue crack growth evaluations performed in air and high pressure (34.5 MPa (5 ksi)) hydrogen at room and elevated temperature. Under the most severe embrittling conditions (HCF and smooth and notched LCF in 34.5 MPa (5 ksi) hydrogen at 20 C (68 F), screening test results showed increases in fatigue life typically on the order of 1OX, when compared to the current Space Shuttle Main Engine (SSME) Alternate Turbopump (AT) blade alloy (PWA 1480).
Grid-enhanced X-ray coded aperture microscopy with polycapillary optics
Sowa, Katarzyna M.; Last, Arndt; Korecki, Paweł
2017-01-01
Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10–100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy. PMID:28322316
Grid-enhanced X-ray coded aperture microscopy with polycapillary optics.
Sowa, Katarzyna M; Last, Arndt; Korecki, Paweł
2017-03-21
Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10-100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy.
Combination of experimental and numerical methods for mechanical characterization of Al-Si alloys
NASA Astrophysics Data System (ADS)
Kruglova, A.; Roland, M.; Diebels, S.; Mücklich, F.
2017-10-01
In general, mechanical properties of Al-Si alloys strongly depend on the morphology and arrangement of microconstituents, such as primary aluminium dendrites, silicon particles, etc. Therefore, a detailed characterization of morphological and mechanical properties of the alloys is necessary to better understand the relations between the underlined properties and to tailor the material’s microstructure to the specific application needs. The mechanical characterization usually implies numerical simulations and mechanical tests, which allow to investigate the influence of different microstructural aspects on different scales. In this study, the uniaxial tension and compression tests have been carried out on Al-Si alloys having different microstructures. The mechanical behavior of the alloys has been interpreted with respect to the morphology of the microconstituents and has been correlated with the results of numerical simulations. The advantages and limitations of the experimental and numerical methods have been disclosed and the importance of combining both techniques for the interpretation of the mechanical behavior of Al-Si alloys has been shown. Thereby, it has been suggested that the density of Si particles and the size of Al dendrites are more important for the strengthening of the alloys than the size-shape features of the eutectic Si induced by the modification.
NASA Astrophysics Data System (ADS)
Ellis, Brett; Zhou, Min; McDowell, David
2011-06-01
As part of a hierarchy-based computational materials design program, a fully dynamic 3D mesoscale model is developed to quantify the effects of energy storage and dissipation mechanisms in Fiber-Reinforced Ultra-High Performance Concretes (FRUHPCs) subjected to blast loading. This model accounts for three constituent components: reinforcement fibers, cementitious matrix, and fiber-matrix interfaces. Microstructure instantiations encompass a range of fiber volume fraction (0-2%), fiber length (10-15 mm), and interfacial bonding strength (1-100 MPa). Blast loading with scaled distances between 5 and 10 m/kg1/3 are considered. Calculations have allowed the delineation and characterization of the evolutions of kinetic energy, strain energy, work expended on interfacial damage and failure, frictional dissipation along interfaces, and bulk dissipation through granular flow as functions of microstructure, loading and constituent attributes. The relations obtained point out avenues for designing FRUHPCs with properties tailored for specific load environments and reveal trade-offs between various design scenarios.
Coucheron, David A.; Fokine, Michael; Patil, Nilesh; Breiby, Dag Werner; Buset, Ole Tore; Healy, Noel; Peacock, Anna C.; Hawkins, Thomas; Jones, Max; Ballato, John; Gibson, Ursula J.
2016-01-01
Glass fibres with silicon cores have emerged as a versatile platform for all-optical processing, sensing and microscale optoelectronic devices. Using SiGe in the core extends the accessible wavelength range and potential optical functionality because the bandgap and optical properties can be tuned by changing the composition. However, silicon and germanium segregate unevenly during non-equilibrium solidification, presenting new fabrication challenges, and requiring detailed studies of the alloy crystallization dynamics in the fibre geometry. We report the fabrication of SiGe-core optical fibres, and the use of CO2 laser irradiation to heat the glass cladding and recrystallize the core, improving optical transmission. We observe the ramifications of the classic models of solidification at the microscale, and demonstrate suppression of constitutional undercooling at high solidification velocities. Tailoring the recrystallization conditions allows formation of long single crystals with uniform composition, as well as fabrication of compositional microstructures, such as gratings, within the fibre core. PMID:27775066
Tubular inverse opal scaffolds for biomimetic vessels.
Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze
2016-07-14
There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.
A single-phase elastic hyperbolic metamaterial with anisotropic mass density.
Zhu, R; Chen, Y Y; Wang, Y S; Hu, G K; Huang, G L
2016-06-01
Wave propagation can be manipulated at a deep subwavelength scale through the locally resonant metamaterial that possesses unusual effective material properties. Hyperlens due to metamaterial's anomalous anisotropy can lead to superior-resolution imaging. In this paper, a single-phase elastic metamaterial with strongly anisotropic effective mass density has been designed. The proposed metamaterial utilizes the independently adjustable locally resonant motions of the subwavelength-scale microstructures along the two principal directions. High anisotropy in the effective mass densities obtained by the numerical-based effective medium theory can be found and even have opposite signs. For practical applications, shunted piezoelectric elements are introduced into the microstructure to tailor the effective mass density in a broad frequency range. Finally, to validate the design, an elastic hyperlens made of the single-phase hyperbolic metamaterial is proposed with subwavelength longitudinal wave imaging illustrated numerically. The proposed single-phase hyperbolic metamaterial has many promising applications for high resolution damage imaging in nondestructive evaluation and structural health monitoring.
NASA Astrophysics Data System (ADS)
Coucheron, David A.; Fokine, Michael; Patil, Nilesh; Breiby, Dag Werner; Buset, Ole Tore; Healy, Noel; Peacock, Anna C.; Hawkins, Thomas; Jones, Max; Ballato, John; Gibson, Ursula J.
2016-10-01
Glass fibres with silicon cores have emerged as a versatile platform for all-optical processing, sensing and microscale optoelectronic devices. Using SiGe in the core extends the accessible wavelength range and potential optical functionality because the bandgap and optical properties can be tuned by changing the composition. However, silicon and germanium segregate unevenly during non-equilibrium solidification, presenting new fabrication challenges, and requiring detailed studies of the alloy crystallization dynamics in the fibre geometry. We report the fabrication of SiGe-core optical fibres, and the use of CO2 laser irradiation to heat the glass cladding and recrystallize the core, improving optical transmission. We observe the ramifications of the classic models of solidification at the microscale, and demonstrate suppression of constitutional undercooling at high solidification velocities. Tailoring the recrystallization conditions allows formation of long single crystals with uniform composition, as well as fabrication of compositional microstructures, such as gratings, within the fibre core.
Walking Works Wonders: a tailored workplace intervention evaluated over 24 months.
Haslam, Cheryl; Kazi, Aadil; Duncan, Myanna; Clemes, Stacy; Twumasi, Ricardo
2018-06-22
This article presents longitudinal data from 1120 participants across 10 worksites enrolled in Walking Works Wonders, a tailored intervention designed to increase physical activity and reduce sedentary behaviour. The intervention was evaluated over 2 years, using a quasi-experimental design comprising 3 conditions: tailored information; standard information and control. This study explored the impact of the intervention on objective measures (BMI, %Fat, waist circumference, blood pressure and heart rate) and self-reported measures of physical activity, sedentary behaviour, physical and psychological health. Interventions tailored to employees' stage of change significantly reduced BMI and waist circumference compared to standard and control conditions. Employees who received either a standard or tailored intervention demonstrated significantly higher work ability, organizational commitment, job motivation, job satisfaction, and a reduction in intention to quit the organization. The results suggest that adopting a tailored approach to interventions.
Evaluating Psychosocial and Behavioral Mechanisms of Change in a Tailored Communication Intervention
ERIC Educational Resources Information Center
Elder, John P.; Ayala, Guadalupe X.; Slymen, Donald J.; Arredondo, Elva M.; Campbell, Nadia R.
2009-01-01
This study examined the impact of a tailored nutrition intervention at 3 and 6 months postintervention. In all, 357 Latinas were randomly assigned to one of three conditions: (1) a control condition comprised of previously developed Spanish language targeted materials, (2) tailored print materials, or (3) tailored print materials accompanied by…
Hirai, Kei; Ishikawa, Yoshiki; Fukuyoshi, Jun; Yonekura, Akio; Harada, Kazuhiro; Shibuya, Daisuke; Yamamoto, Seiichiro; Mizota, Yuri; Hamashima, Chisato; Saito, Hiroshi
2016-05-24
The purpose of this study was to examine the effectiveness and cost-efficiency of a tailored message intervention compared with a non-tailored message intervention for increasing colorectal cancer (CRC) screening rates among a non-adherent population, in a community-based client reminder program. After a baseline survey for psychological segmentation, 2140 eligible individuals were randomly assigned either to a group with a tailored matched-message condition (N = 356), a group with a non-tailored unmatched-message condition (N = 355), or to two control groups, one using a typical message with a professional design (N = 717) and one without a professional design (N = 712). The main outcome measure was attendance rates in a community-organized CRC screening program within five months of receiving a print reminder. There was a significant difference in fecal occult blood test (FOBT) attendance rates at follow-up assessments between the tailored matched-message condition (14.0 %) and the control (9.9 %; OR = 1.48, p = 0.026), while there was no significant difference between the unmatched-message condition (11.0 %) and the control (OR = 1.12, p = 0.558), and between the matched-message condition and the unmatched-message condition (OR = 1.32, p = 0.219). The cost of a one-person increase in FOBT screening was 3,740 JPY for the tailored matched-message condition, while it was 2,747 JPY for the control. A tailored-message intervention for segmented individuals designed to increase CRC screening rates in a community-based client reminder program was significantly effective compared to a usual reminder, but not more effective than an unmatched message in a randomized controlled trial, and was not sufficiently effective to highlight its value from a cost perspective. Therefore, the tailored intervention including target segmentation needs to be improved for future implementation in a CRC screening program for a non-adherent population. UMIN Clinical Trials Registry UMIN000004384 . Date of Registration: March 2011.
Singh, Alok
2014-01-01
The occurrence of a stable icosahedral (i-) phase, which is quasicrystalline with an icosahedral (fivefold) symmetry, on the equilibrium phase diagram of Mg–Zn–RE (RE = Y, Gd, Tb, Dy, Ho or Er) alloys opened up an interesting possibility of developing a new series of magnesium alloys for structural applications. Alloys based on the i-phase have been studied for the past 14 years. Ultra-high strengths combined with good ductility have been shown. Here we show two strategies for tailoring microstructures for very high strengths in Mg–Zn–Y alloys. One of them involves strengthening by a fine distribution of rod-like precipitates, where the matrix grain size is not critical. The alloy is solutionized at a high temperature of 480 °C to dissolve a large part of the i-phase, followed by a high temperature extrusion (∼430 °C) and a low temperature ageing to reprecipitate phases with fine size distribution. At first, phase transformations involved in this procedure are described. The closeness of the structure of the precipitates to the i-phase is brought out. By this procedure, tensile yield strengths of over 370 MPa are obtained in grain sizes of 20 μm. In another strategy, the alloys are chill cast and then extruded at low temperatures of about 250 °C. Ultra-fine grains are produced by enhanced recrystallization due to presence of the i-phase. At the same time nano-sized precipitates are precipitated dynamically during extrusion from the supersaturated matrix. Ultra-high tensile strengths of up to 400 MPa are obtained in combination with ductility of 12 to 16%. Analysis of the microstructure shows that strengthening by the i-phase occurs by enhanced recrystallization during extrusion. It produces ultra-fine grain sizes to give very high strengths, and moderate texture for good ductility. Fine distribution of the i-phase and precipitates contribute to strengthening and provide microstructre stability. Ultra-high strength over a very wide range of grain sizes is thus demonstrated, by utilizing different strengthening effects. PMID:27877701
NASA Astrophysics Data System (ADS)
Dutt, S.; Sharma, R.
2017-10-01
Microstructures of polypyrrole (PPy) with different morphology were synthesized using swollen liquid crystals (SLCs) as soft structure directing agents and confinement effect on the control of PPy microstructures have been thoroughly investigated. SLCs are the quaternary mixtures of aqueous phase: oil phase: surfactant: co-surfactant. Mesophases of PPy were synthesized by trapping small amount of pyrrole in the oil phase of SLCs. Spherical, fiber and rod-like microstructures of PPy were synthesized by adding ammonium persulphate (APS) as an oxidant under different synthesis conditions using SLCs. The possible mechanism for the formation of different PPy microstructures also proposed in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.
Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less
Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.
2010-01-01
Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.
NASA Astrophysics Data System (ADS)
Lopes, Éder Sócrates Najar; Salvador, Camilo Augusto Fernandes; Andrade, Denis Renato; Cremasco, Alessandra; Campo, Kaio Niitsu; Caram, Rubens
2016-06-01
New β metastable Ti alloys based on Ti-30Nb alloy with the addition of 1, 3, or 5 wt pct Fe have been developed using the bond order and the metal d-orbital energy level ( overline{{Bo}} {-} overline{{Md}} ) design theory. The samples were prepared by arc melting, hot working, and solution heat treatment above the β transus followed by water quenching (WQ) or furnace cooling (FC). The effect of the cooling rate on the microstructure of Ti-30Nb-3Fe wt pct was investigated in detail using a modified Jominy end quench test. The results show that Fe acts as a strong β-stabilizing alloying element. The addition of Fe also leads to a reduction in the ω and α phases volumetric fractions, although the ω phase was still detected in the WQ Ti-30Nb-5Fe samples, as shown by TEM, and α phase clusters were detected by SEM in the FC Ti-30Nb-3Fe samples. Among the WQ samples, the addition of 5 wt pct Fe improves the ultimate tensile strength (from 601 to 689 MPa), reduces the final elongation (from 28 to 16 pct), and impairs the electrochemical corrosion resistance, as evaluated by potentiodynamic polarization tests in Ringer's solution. The microstructural variation arising from the addition of Fe did not change the elastic modulus (approximately 80 GPa for all experimental WQ samples). This study shows that small Fe additions can tailor the microstructure of Ti-Nb alloys, modifying α and ω phase precipitation and improving mechanical strength.
Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.; ...
2017-11-20
Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less
TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louthan, M
2007-07-17
Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the propertiesmore » of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.« less
X-ray imaging and controlled solidification of Al-Cu alloys toward microstructures by design
Clarke, Amy J.; Tourret, Damien; Imhoff, Seth D.; ...
2015-01-30
X-ray imaging, which permits the microscopic visualization of metal alloy solidification dynamics, can be coupled with controlled solidification to create microstructures by design. In this study, this x-ray image shows a process-derived composite microstructure being made from a eutectic Al-17.1 at.%Cu alloy by successive solidification and remelting steps.
Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry
NASA Astrophysics Data System (ADS)
Pederson, Erik Norman
Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.
Microstructure of Matrix in UHTC Composites
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan
2011-01-01
Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.
Strecher, Victor J; Shiffman, Saul; West, Robert
2005-05-01
To assess the efficacy of World Wide Web-based tailored behavioral smoking cessation materials among nicotine patch users. Two-group randomized controlled trial. World Wide Web in England and Republic of Ireland. A total of 3971 subjects who purchased a particular brand of nicotine patch and logged-on to use a free web-based behavioral support program. Web-based tailored behavioral smoking cessation materials or web-based non-tailored materials. Twenty-eight-day continuous abstinence rates were assessed by internet-based survey at 6-week follow-up and 10-week continuous rates at 12-week follow-up. Using three approaches to the analyses of 6- and 12-week outcomes, participants in the tailored condition reported clinically and statistically significantly higher continuous abstinence rates than participants in the non-tailored condition. In our primary analyses using as a denominator all subjects who logged-on to the treatment site at least once, continuous abstinence rates at 6 weeks were 29.0% in the tailored condition versus 23.9% in the non-tailored condition (OR = 1.30; P = 0.0006); at 12 weeks continuous abstinence rates were 22.8% versus 18.1%, respectively (OR = 1.34; P = 0.0006). Moreover, satisfaction with the program was significantly higher in the tailored than in the non-tailored condition. The results of this study demonstrate a benefit of the web-based tailored behavioral support materials used in conjunction with nicotine replacement therapy. A web-based program that collects relevant information from users and tailors the intervention to their specific needs had significant advantages over a web-based non-tailored cessation program.
Size-dependent microstructures in rapidly solidified uranium-niobium powder particles
McKeown, Joseph T.; Hsiung, Luke L.; Park, Jong M.; ...
2016-06-14
The microstructures of rapidly solidified U-6wt%Nb powder particles synthesized by centrifugal atomization were characterized using scanning electron microscopy and transmission electron microscopy. Observed variations in microstructure are related to particle sizes. All of the powder particles exhibited a two-zone microstructure. The formation of this two-zone microstructure is described by a transition from solidification controlled by internal heat flow and high solidification rate during recalescence (micro-segregation-free or partitionless growth) to solidification controlled by external heat flow with slower solidification rates (dendritic growth with solute redistribution). The extent of partitionless solidification increased with decreasing particle size due to larger undercoolings in smallermore » particles prior to solidification. The metastable phases that formed are related to variations in Nb concentration across the particles. Lastly, the microstructures of the powders were heavily twinned.« less
The challenge of developing structural materials for fusion power systems
NASA Astrophysics Data System (ADS)
Bloom, Everett E.
1998-10-01
Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Central in the goal of designing a safe, environmentally benign, and economically competitive fusion power system is the requirement for high performance, low activation materials. The general performance requirements for such materials have been defined and it is clear that materials developed for other applications (e.g. aerospace, nuclear fission, fossil energy systems) will not fully meet the needs of fusion. Advanced materials, with composition and microstructure tailored to yield properties that will satisfy the specific requirements of fusion must be developed. The international fusion programs have made significant progress towards this goal. Compositional requirements for low activation lead to a focus of development efforts on silicon carbide composites, vanadium alloys, and advanced martensitic steels as candidate structural material systems. Control of impurities will be critically important in actually achieving low activation but this appears possible. Neutron irradiation produces significant changes in the mechanical and physical properties of each of these material systems raising feasibility questions and design limitations. A focus of the research and development effort is to understand these effects, and through the development of specific compositions and microstructures, produce materials with improved and adequate performance. Other areas of research that are synergistic with the development of radiation resistant materials include fabrication, joining technology, chemical compatibility with coolants and tritium breeders and specific questions relating to the unique characteristics of a given material (e.g. coatings to reduce gas permeation in SiC composites) or design concept (e.g. electrical insulator coatings for liquid metal concepts).
Cheng, Huhu; Huang, Yaxin; Shi, Gaoquan; Jiang, Lan; Qu, Liangti
2017-07-18
Graphene, with large delocalized π electron cloud on a two-dimensional (2D) atom-thin plane, possesses excellent carrier mobility, large surface area, high light transparency, high mechanical strength, and superior flexibility. However, the lack of intrinsic band gap, poor dispersibility, and weak reactivity of graphene hinder its application scope. Heteroatom-doping regulation and surface modification of graphene can effectively reconstruct the sp 2 bonded carbon atoms and tailor the surface chemistry and interfacial interaction, while microstructure mediation on graphene can induce the special chemical and physical properties because of the quantum confinement, edge effect, and unusual mass transport process. Based on these regulations on graphene, series of methods and techniques are developed to couple the promising characters of graphene into the macroscopic architectures for potential and practical applications. In this Account, we present our effort on graphene regulation from chemical modification to microstructure control, from the morphology-designed macroassemblies to their applications in functional systems excluding the energy-storage devices. We first introduce the chemically regulative graphene with incorporated heteroatoms into the honeycomb lattice, which could open the intrinsic band gap and provide many active sites. Then the surface modification of graphene with functional components will improve dispersibility, prevent aggregation, and introduce new functions. On the other hand, microstructure mediation on graphene sheets (e.g., 0D quantum dots, 1D nanoribbons, and 2D nanomeshes) is demonstrated to induce special chemical and physical properties. Benefiting from the effective regulation on graphene sheets, diverse methods including dimension-confined strategy, filtration assembly, and hydrothermal treatment have been developed to assemble individual graphene sheets to macroscopic graphene fibers, films, and frameworks. These rationally regulated graphene sheets and well-constructed assemblies present promising applications in energy-conversion materials and device systems focusing on actuators that can convert different energy forms (e.g., electric, chemical, photonic, thermal, etc.) to mechanical actuation and electrical generators that can directly transform environmental energy to electric power. These results reveal that graphene sheets with surface chemistry and microstructure regulations as well as their rationally designed assemblies provide a promising and abundant platform for development of diverse functional devices. We hope that this Account will promote further efforts toward fundamental research on graphene regulation and the wide applications of advanced designed assemblies in new types of energy-conversion materials/devices and beyond.
Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials
NASA Technical Reports Server (NTRS)
Varma, A.; Lau, C.; Mukasyan, A. S.
2001-01-01
Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between reactants occurs within each particle, and mixtures of elemental powders, where interparticle contacts are important for the reaction; and 3) Mechanistic Studies of Phase Separation in Combustion of Thermite Systems. Studies are devoted to experiments on thermite systems (metal oxide-reducing metal) where phase separation processes occur to produce alloys with tailored compositions and properties. The separation may be either gravity-driven or due to surface forces, and systematic studies to elucidate the true mechanism are being conducted. The knowledge obtained will be used to find the most promising ways of controlling the microstructure and properties of combustion-synthesized materials. Low-gravity experiments are essential to create idealized an environment for insights into the physics and chemistry of advanced material synthesis processes.
Gasson, Natalie; Johnson, Andrew R.; Booth, Leon; Loftus, Andrea M.
2018-01-01
This study examined whether standard cognitive training, tailored cognitive training, transcranial direct current stimulation (tDCS), standard cognitive training + tDCS, or tailored cognitive training + tDCS improved cognitive function and functional outcomes in participants with PD and mild cognitive impairment (PD-MCI). Forty-two participants with PD-MCI were randomized to one of six groups: (1) standard cognitive training, (2) tailored cognitive training, (3) tDCS, (4) standard cognitive training + tDCS, (5) tailored cognitive training + tDCS, or (6) a control group. Interventions lasted 4 weeks, with cognitive and functional outcomes measured at baseline, post-intervention, and follow-up. The trial was registered with the Australian New Zealand Clinical Trials Registry (ANZCTR: 12614001039673). While controlling for moderator variables, Generalized Linear Mixed Models (GLMMs) showed that when compared to the control group, the intervention groups demonstrated variable statistically significant improvements across executive function, attention/working memory, memory, language, activities of daily living (ADL), and quality of life (QOL; Hedge's g range = 0.01 to 1.75). More outcomes improved for the groups that received standard or tailored cognitive training combined with tDCS. Participants with PD-MCI receiving cognitive training (standard or tailored) or tDCS demonstrated significant improvements on cognitive and functional outcomes, and combining these interventions provided greater therapeutic effects. PMID:29780572
Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk
2015-01-01
Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.
Testing a Dutch web-based tailored lifestyle programme among adults: a study protocol.
Schulz, Daniela N; Kremers, Stef Pj; van Osch, Liesbeth Adm; Schneider, Francine; van Adrichem, Mathieu Jg; de Vries, Hein
2011-02-16
Smoking, high alcohol consumption, unhealthy eating habits and physical inactivity often lead to (chronic) diseases, such as cardiovascular diseases and cancer. Tailored online interventions have been proven to be effective in changing health behaviours. The aim of this study is to test and compare the effectiveness of two different tailoring strategies for changing lifestyle compared to a control group using a multiple health behaviour web-based approach. In our Internet-based tailored programme, the five lifestyle behaviours of smoking, alcohol intake, fruit consumption, vegetable consumption, and physical activity are addressed. This randomized controlled trial, conducted among Dutch adults, includes two experimental groups (i.e., a sequential behaviour tailoring condition and a simultaneous behaviour tailoring condition) and a control group. People in the sequential behaviour tailoring condition obtain feedback on whether their lifestyle behaviours meet the Dutch recommendations. Using a step-by-step approach, they are stimulated to continue with a computer tailored module to change only one unhealthy behaviour first. In the course of the study, they can proceed to change a second behaviour. People in the simultaneous behaviour tailoring condition receive computer tailored feedback about all their unhealthy behaviours during their first visit as a stimulation to change all unhealthy behaviours. The experimental groups can re-visit the website and can then receive ipsative feedback (i.e., current scores are compared to previous scores in order to give feedback about potential changes). The (difference in) effectiveness of the different versions of the programme will be tested and compared to a control group, in which respondents only receive a short health risk appraisal. Programme evaluations will assess satisfaction with and appreciation and personal relevance of the intervention among the respondents. Finally, potential subgroup differences pertaining to gender, age and socioeconomic status regarding the behaviour effects and programme evaluation will be assessed. Research regarding multiple behaviour change is in its infancy. We study how to offer multiple behaviour change interventions optimally. Using these results could strengthen the effectiveness of web-based computer-tailoring lifestyle programmes. This study will yield new results about the need for differential lifestyle approaches using Internet-based expert systems and potential differences in subgroups concerning the effectiveness and appreciation. Dutch Trial Register NTR2168.
Sulmasy, Daniel P; Hughes, Mark T; Yenokyan, Gayane; Kub, Joan; Terry, Peter B; Astrow, Alan B; Johnson, Julie A; Ho, Grace; Nolan, Marie T
2017-10-01
Patients with terminal illnesses often require surrogate decision makers. Prior research has demonstrated high surrogate stress, and that despite standards promoting substituted judgment, most patients do not want their surrogates to make pure substituted judgments for them. It is not known how best to help loved ones fulfill the surrogate role. To test the effectiveness of an intervention to help surrogate decision makers. One hundred sixty-six patients (41% with amyotrophic lateral sclerosis and 59% with gastrointestinal cancers) and their surrogates at two university medical centers were randomized to an intensive nurse-directed discussion of the end-of-life decision control preferences of the patient (TAILORED) or a discussion of nutrition (CONTROL); 163 completed baseline interviews and underwent the intervention. Twelve patients died during follow-up and 137 dyads completed the study. Post-intervention, using all available data, TAILORED patients and surrogates became more likely to endorse mutual surrogate decision making, that is, a balance of their own wishes and what the surrogate thinks best (adjusted odds compared with baseline for patients = 1.78, P = 0.04; adjusted odds for surrogates = 2.05, P = 0.03). CONTROL patients became 40% less likely to endorse mutual surrogate decision making (P = 0.08), and CONTROL surrogates did not change significantly from baseline (adjusted odds = 1.44, P = 0.28). Stress levels decreased for TAILORED surrogates (impact of events scale = 23.1 ± 14.6 baseline, 20.8 ± 15.3 f/u, P = 0.046), but not for CONTROL (P = 0.85), and post-intervention stress was lower for TAILORED than CONTROL (P = 0.04). Surrogates' confidence was uniformly high at baseline and did not change. Caregiver burden (Zarit) increased from 12.5 ± 6.5 to 14.7 ± 8.1 for TAILORED (P < 0.01), while not changing for CONTROL, yet satisfaction with involvement in decision making was higher at follow-up for TAILORED than for CONTROL (71% vs. 52%, P = 0.03). TAILORED patients and surrogates who completed the study adopted a more mutual decision-making style, balancing their own wishes with what the surrogate thinks would be best for them. Surrogates reported less stress and more satisfaction. Confidence was high at baseline and did not change. There was a modest increase in caregiver burden. These findings suggest that interventions like TAILORED might positively impact surrogate decision making. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Lustria, Mia Liza A; Cortese, Juliann; Gerend, Mary A; Schmitt, Karla; Kung, Ying Mai; McLaughlin, Casey
2016-11-01
This study explores the mechanisms of tailoring within the context of RU@Risk a brief Web-based intervention designed to promote sexually transmitted disease (STD) testing among young adults. This is one of a few studies to empirically examine theorized message processing mechanisms of tailoring and persuasion outcomes in a single model. Sexually active college students (N = 1065) completed a pretest, were randomly assigned to explore a tailored or nontailored website, completed a posttest, and were offered the opportunity to order a free at-home STD test kit. As intervention effects were hypothesized to work via increases in perceived risk, change in perceived risk from pretest to posttest by condition was examined. Hypothesized mechanisms of tailoring (perceived personal relevance, attention, and elaboration) were examined using structural equation modeling (SEM). All analyses controlled for demographic variables and sexual history. As predicted, perceived risk of STDs increased from pretest to posttest, but only in the tailored condition. Results revealed that exposure to the tailored (vs. nontailored) website increased perceived personal relevance, attention to, and elaboration of the message. These effects in turn were associated with greater perceived risk of STDs and intentions to get tested. Additionally, participants in the tailored condition were more likely to order a test kit. Findings provide insight into the mechanisms of tailoring with important implications for optimizing message design. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.
2017-03-01
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.
Ultrathin Fluidic Laminates for Large‐Area Façade Integration and Smart Windows
Heiz, Benjamin P. V.; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias
2016-01-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass–glass fluidic devices are presented for large‐area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat‐panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state‐of‐the‐art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid. PMID:28331790
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignmentmore » within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Moreover, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.« less
Rao, X; Chu, C L; Zheng, Y Y
2014-06-01
Porous Ti-Nb-Zr alloys with different porosities from 6.06 to 62.8% are prepared by a two-step foaming powder metallurgy method using TiH2, Nb, and Zr powders together with 0 to 50wt% of NH4HCO3. The effects of the amounts of Nb and Zr as well as the sintering temperature (1473 to 1673K) on their phase composition, porosity, morphology, and mechanical characteristics are investigated. By controlling the porosity, Nb and Zr concentrations as well as the sintering temperature, porous Ti-Nb-Zr alloys with different mechanical properties can be obtained, for example, the hardness between 290 and 63HV, the compressive strength between 1530.5 and 73.4MPa, and the elastic modulus between 10.8 and 1.2GPa. The mechanical properties of the sintered porous Ti-Nb-Zr alloys can be tailored to match different requirements for the human bones and are thus potentially useful in the hard tissue implants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; ...
2017-03-06
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignmentmore » within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Moreover, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.« less
Lewicki, James P; Rodriguez, Jennifer N; Zhu, Cheng; Worsley, Marcus A; Wu, Amanda S; Kanarska, Yuliya; Horn, John D; Duoss, Eric B; Ortega, Jason M; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A; King, Michael J
2017-03-06
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.
2017-01-01
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response. PMID:28262669
Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique
NASA Astrophysics Data System (ADS)
Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie
2014-01-01
The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn-Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn1-xZnxFe2O4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol-gel combustion method. The microstructure and surface morphology of Mn-Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field.
Ultrathin Fluidic Laminates for Large-Area Façade Integration and Smart Windows.
Heiz, Benjamin P V; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias; Wondraczek, Lothar
2017-03-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO 2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass-glass fluidic devices are presented for large-area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat-panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state-of-the-art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid.
Molecular-Level Processing of Si-(B)-C Materials with Tailored Nano/Microstructures.
Schmidt, Marion; Durif, Charlotte; Acosta, Emanoelle Diz; Salameh, Chrystelle; Plaisantin, Hervé; Miele, Philippe; Backov, Rénal; Machado, Ricardo; Gervais, Christel; Alauzun, Johan G; Chollon, Georges; Bernard, Samuel
2017-12-01
The design of Si-(B)-C materials is investigated, with detailed insight into the precursor chemistry and processing, the precursor-to-ceramic transformation, and the ceramic microstructural evolution at high temperatures. In the early stage of the process, the reaction between allylhydridopolycarbosilane (AHPCS) and borane dimethyl sulfide is achieved. This is investigated in detail through solid-state NMR and FTIR spectroscopy and elemental analyses for Si/B ratios ranging from 200 to 30. Boron-based bridges linking AHPCS monomeric fragments act as crosslinking units, extending the processability range of AHPCS and suppressing the distillation of oligomeric fragments during the low-temperature pyrolysis regime. Polymers with low boron contents display appropriate requirements for facile processing in solution, leading to the design of monoliths with hierarchical porosity, significant pore volume, and high specific surface area after pyrolysis. Polymers with high boron contents are more appropriate for the preparation of dense ceramics through direct solid shaping and pyrolysis. We provide a comprehensive study of the thermal decomposition mechanisms, and a subsequent detailed study of the high-temperature behavior of the ceramics produced at 1000 °C. The nanostructure and microstructure of the final SiC-based ceramics are intimately linked to the boron content of the polymers. B 4 C/C/SiC nanocomposites can be obtained from the polymer with the highest boron content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.
2017-08-01
Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.
Characterisation of pore structures of pharmaceutical tablets: A review.
Markl, Daniel; Strobel, Alexa; Schlossnikl, Rüdiger; Bøtker, Johan; Bawuah, Prince; Ridgway, Cathy; Rantanen, Jukka; Rades, Thomas; Gane, Patrick; Peiponen, Kai-Erik; Zeitler, J Axel
2018-03-01
Traditionally, the development of a new solid dosage form is formulation-driven and less focus is put on the design of a specific microstructure for the drug delivery system. However, the compaction process particularly impacts the microstructure, or more precisely, the pore architecture in a pharmaceutical tablet. Besides the formulation, the pore structure is a major contributor to the overall performance of oral solid dosage forms as it directly affects the liquid uptake rate, which is the very first step of the dissolution process. In future, additive manufacturing is a potential game changer to design the inner structures and realise a tailor-made pore structure. In pharmaceutical development the pore structure is most commonly only described by the total porosity of the tablet matrix. Yet it is of great importance to consider other parameters to fully resolve the interplay between microstructure and dosage form performance. Specifically, tortuosity, connectivity, as well as pore shape, size and orientation all impact the flow paths and play an important role in describing the fluid flow in a pharmaceutical tablet. This review presents the key properties of the pore structures in solid dosage forms and it discusses how to measure these properties. In particular, the principles, advantages and limitations of helium pycnometry, mercury porosimetry, terahertz time-domain spectroscopy, nuclear magnetic resonance and X-ray computed microtomography are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui
2016-01-01
Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions. PMID:27087704
NASA Astrophysics Data System (ADS)
Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui
2016-05-01
Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions.
Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A; Huang, Yonggang; Zhang, Yihui
2016-05-01
Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions.
Freeze Tape Casting of Functionally Graded Porous Ceramics
NASA Technical Reports Server (NTRS)
Sofie, Stephen W.
2007-01-01
Freeze tape casting is a means of making preforms of ceramic sheets that, upon subsequent completion of fabrication processing, can have anisotropic and/or functionally graded properties that notably include aligned and graded porosity. Freeze tape casting was developed to enable optimization of the microstructures of porous ceramic components for use as solid oxide electrodes in fuel cells: Through alignment and grading of pores, one can tailor surface areas and diffusion channels for flows of gas and liquid species involved in fuel-cell reactions. Freeze tape casting offers similar benefits for fabrication of optimally porous ceramics for use as catalysts, gas sensors, and filters.
Yield asymmetry design of magnesium alloys by integrated computational materials engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Joshi, Vineet; Lavender, Curt
2013-11-01
Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate Φ-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures,more » such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified Φ-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less
Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters
NASA Technical Reports Server (NTRS)
Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline;
2007-01-01
Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.
NASA Astrophysics Data System (ADS)
Ivanova, Anna A.; Surmeneva, Maria A.; Surmenev, Roman A.; Depla, Diederik
2017-12-01
The structural features of RF-magnetron sputter-deposited hydroxyapatite (HA) coatings are investigated in order to reveal the effect of the working gas composition and the sample position of the substrate relative to the target erosion zone. The film properties were observed to change as a result of bombardment with energetic ions. XRD analysis of the coated substrates indicates that with the increase of the ion-to-atom ratio, the fiber texture changes from a mixed (11 2 bar 2) + (0002) over (0002) orientation, finally reaching a (30 3 bar 0) out-of-plane orientation at high ion-to-atom ratios. TEM reveals that the microstructure of the HA coating consists of columnar grains and differs with the coating texture. The contribution of Ji/Ja to the development of microstructure and texture of the HA coating is schematically represented and discussed. The obtained results may contribute substantially to the progress of research into the development of HA coatings with tailored properties, and these coatings may be applied on the surfaces of metal implants used in bone surgery.
Joining and Integration of Silicon Carbide-Based Materials for High Temperature Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2016-01-01
Advanced joining and integration technologies of silicon carbide-based ceramics and ceramic matrix composites are enabling for their implementation into wide scale aerospace and ground-based applications. The robust joining and integration technologies allow for large and complex shapes to be fabricated and integrated with the larger system. Potential aerospace applications include lean-direct fuel injectors, thermal actuators, turbine vanes, blades, shrouds, combustor liners and other hot section components. Ground based applications include components for energy and environmental systems. Performance requirements and processing challenges are identified for the successful implementation different joining technologies. An overview will be provided of several joining approaches which have been developed for high temperature applications. In addition, various characterization approaches were pursued to provide an understanding of the processing-microstructure-property relationships. Microstructural analysis of the joint interfaces was conducted using optical, scanning electron, and transmission electron microscopy to identify phases and evaluate the bond quality. Mechanical testing results will be presented along with the need for new standardized test methods. The critical need for tailoring interlayer compositions for optimum joint properties will also be highlighted.
Bergström, Jörgen S; Hayman, Danika
2016-02-01
This article provides an overview of the connection between the microstructural state and the mechanical response of various bioresorbable polylactide (PLA) devices for medical applications. PLLA is currently the most commonly used material for bioresorbable stents and sutures, and its use is increasing in many other medical applications. The non-linear mechanical response of PLLA, due in part to its low glass transition temperature (T g ≈ 60 °C), is highly sensitive to the molecular weight and molecular orientation field, the degree of crystallinity, and the physical aging time. These microstructural parameters can be tailored for specific applications using different resin formulations and processing conditions. The stress-strain, deformation, and degradation response of a bioresorbable medical device is also strongly dependent on the time history of applied loads and boundary conditions. All of these factors can be incorporated into a suitable constitutive model that captures the multiple physics that are involved in the device response. Currently developed constitutive models already provide powerful computations simulation tools, and more progress in this area is expected to occur in the coming years.
Tailored laser beam shaping for efficient and accurate microstructuring
NASA Astrophysics Data System (ADS)
Häfner, T.; Strauß, J.; Roider, C.; Heberle, J.; Schmidt, M.
2018-02-01
Large-area processing with high material removal rates by ultrashort pulsed (USP) lasers is coming into focus by the development of high-power USP laser systems. However, currently the bottleneck for high-rate production is given by slow and inefficient beam manipulation. On the one hand, slow beam deflection with regard to high pulse repetition rates leads to heat accumulation and shielding effects, on the other hand, a conventional focus cannot provide the optimum fluence due to the Gaussian intensity profile. In this paper, we emphasize on two approaches of dynamic laser beam shaping with liquid crystal on silicon spatial light modulation and acousto-optic beam shaping. Advantages and limitations of dynamic laser beam shaping with regard to USP laser material processing and methods for reducing the influence of speckle are discussed. Additionally, the influence of optics induced aberrations on speckle characteristics is evaluated. Laser material processing results are presented correlating the achieved structure quality with the simulated and measured beam quality. Experimental and analytical investigations show a certain fluence dependence of the necessary number of alternative holograms to realize homogeneous microstructures.
Role of refractory inclusions in the radiation-induced microstructure of APMT
NASA Astrophysics Data System (ADS)
Zhang, Dalong; Briggs, Samuel A.; Field, Kevin G.
2018-07-01
Kanthal APMT is a promising FeCrAl-based alloy for accident-tolerant fuel cladding because of its excellent high-temperature oxidation resistance. In this study, powder metallurgy Kanthal APMT alloy, neutron irradiated to 1.8 dpa at nominally 382 °C, was characterized. On-zone STEM imaging revealed that radiation-induced dislocation loops with Burgers vectors of a/2<111> or a < 100 > and black dots tended to agglomerate in the vicinity of refractory inclusions. The densities and sizes of these loops decreased with distance from the inclusion-matrix interfaces. In addition, high-resolution energy-dispersive X-ray spectroscopy mapping was used to determine the inclusions to be either yttrium- or silicon-rich, as well as to detect the radial distribution of radiation-enhanced α‧ phase near these inclusions. A high density of randomly distributed Cr-rich α‧ phase was found, regardless of the presence of inclusions. Results from this study provide insights into how microstructural features can locally tailor the radiation-induced defects in FeCrAl-based alloys.
Hollow glass for insulating layers
NASA Astrophysics Data System (ADS)
Merticaru, Andreea R.; Moagar-Poladian, Gabriel
1999-03-01
Common porous materials, some of which will be considered in the chapters of this book, include concrete, paper, ceramics, clays, porous semiconductors, chromotography materials, and natural materials like coral, bone, sponges, rocks and shells. Porous materials can also be reactive, such as in charcoal gasification, acid rock dissolution, catalyst deactivation and concrete. This study continues the investigations about the properties of, so-called, hollow glass. In this paper is presented a computer simulation approach in which the thermo-mechanical behavior of a 3D microstructure is directly computed. In this paper a computer modeling approach of porous glass is presented. One way to test the accuracy of the reconstructed microstructures is to computed their physical properties and compare to experimental measurement on equivalent systems. In this view, we imagine a new type of porous type of glass designed as buffer layer in multilayered printed boards in ICs. Our glass is a variable material with a variable pore size and surface area. The porosity could be tailored early from the deposition phases that permitting us to keep in a reasonable balance the dielectric constant and thermal conductivity.
Effects of tailoring health messages on physical activity.
Smeets, Tamara; Brug, J; de Vries, H
2008-06-01
Computer-tailored printed education can be a promising way of promoting physical activity. The present study tested whether computer-tailored feedback on physical activity is effective and whether there are differences between respondents with low and high motivation to change. Respondents (n = 487) were randomly assigned to a tailored intervention group or a no information control group. Physical activity and determinants were measured at baseline and after 3 months. At post-test, the motivated respondents in the control group were more likely not to meet the recommendation for physical activity than to meet it, and motivated respondents in the experimental group were more likely to engage in transport-related activities and showed more improvement over time for the total activity score than respondents in the control group (beta = 0.24, P = 0.02). Both groups improved their behaviour over time. No group differences in physical activity were found for the unmotivated respondents. The results showed that the effects of the tailored feedback were restricted to respondents who had a positive motivation to change at baseline. Possible explanations could be that unmotivated respondents were unwilling to read and process the information because they felt 'no need to change'. Alternatively, one tailored feedback letter may not have been sufficient for this unmotivated group.
Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis.
Bonzano, Laura; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Dessypris, Adriano; Feraco, Paola; Lopes De Carvalho, Maria L; Battaglia, Mario A; Mancardi, Giovanni L; Bove, Marco
2014-04-15
Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects. This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis. Thirty patients (18 females and 12 males; age=43.3 ± 8.7 years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers. Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove. In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi. The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p=0.002). Further, in the treatment group white matter integrity in the corpus callosum and corticospinal tracts was preserved while a microstructural integrity worsening was found in the control group (fractional anisotropy of the corpus callosum and corticospinal tracts: p=0.033 and p=0.022; radial diffusivity of the corpus callosum and corticospinal tracts: p=0.004 and p=0.008). Conversely, a significant increase of radial diffusivity was observed in the superior longitudinal fasciculi in both groups (p=0.02), indicating lack of treatment effects on this structure, showing damage progression likely due to a demyelination process. All these findings indicate the importance of administering, when possible, a rehabilitation treatment consisting of voluntary movements. We also demonstrated that the beneficial effects of a rehabilitation treatment are task-dependent and selective in their target; this becomes crucial towards the implementation of tailored rehabilitative approaches. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Effects of microstructures on the performance of rare-earth-free MnBi magnetic materials and magnets
NASA Astrophysics Data System (ADS)
Nguyen, Vuong Van; Nguyen, Truong Xuan
2018-03-01
Since the solidification of MnBi alloys is peritectic, their microstructures always consist of the starting phases of Mn and Bi and the productive phase MnBi. The high performance of MnBi bulk magnets requires appropriate routes of preparing MnBi powders of high spontaneous magnetization Ms and large coercivity iHc as well a route of producing bulk magnets thereof. In these routes, the microstructures of arc-melted alloys, annealed alloys and magnets strongly related to the quality of powders and the performance of magnets. The paper proves that: i) The microstructure of fine Mn-inclusions embedded in the matrix of Bi is preferred for arc-melted alloys to realize the rapid evolution of the ferromagnetic phase inside them during their sequent annealing process; ii) The time-controlled annealing process plays a key role in controlling the microstructure with the main ferromagnetic phase matrix, in which the rest of Mn and the Bi accumulations are embedded; iii) The cold (in-liquid-nitrogen) ball milling annealed alloys is required for preparing a high quality powders with the preferred sub-micrometer microstructure without a Bi-decomposition; iv) The short-time warm compaction is crucial to fabricate dense, highly textured bulk magnets with the micrometer microstructure. The realization and control of these preferred microstructures figured in these routes enhance the chance of preparing MnBi bulk magnets with the energy product (BH)max larger than 8 MGOe.
Multi-Phase Field Models and Microstructural Evolution with Applications in Fuel Cell Technology
NASA Astrophysics Data System (ADS)
Davis, Ryan Scott
The solid oxide fuel cell (SOFC) has shown tremendous potential as an efficient energy conversion device that may be instrumental in the transition to renewable resources. However, commercialization is hindered by many degradation mechanisms that plague long term stability. In this dissertation, computation methods are used to explore the relationship between the microstructure of the fuel cell anode and performance critical metrics. The phase field method and standard modeling procedures are introduced using a classic model of spinodal decomposition. This is further developed into a complete, multi-phase modeling framework designed for the complex microstructural evolution of SOFC anode systems. High-temperature coarsening of the metallic phase in the state-of-the-art SOFC cermet anode is investigated using our phase field model. A systematic study into the effects of interface properties on microstructural evolution is accomplished by altering the contact angle between constituent phases. It is found that metrics of catalytic activity and conductivity display undesirable minima near the contact angle of conventional SOFC materials. These results suggest that tailoring the interface properties of the constituent phases could lead to a significant increase in the performance and lifetime of SOFCs. Supported-metal catalyst systems are investigated in the first detailed study of their long-term stability and application to SOFC anode design. Porous support structures are numerically sintered to mimic specific fabrication techniques, and these structures are then infiltrated with a nanoscale catalyst phase ranging from 2% to 21% loading. Initially, these systems exhibit enhanced potential for catalytic activity relative to conventional cells. However, extended evolution results in severe degradation, and we show that Ostwald ripening and particle migration are key kinetic processes. Strong geometric heterogeneity in the support structure via a novel approach to nanopore formation is proposed as a potential solution for catalyst stabilization.
Zhai, Zu Wei; Yip, Sarah W; Morie, Kristen P; Sinha, Rajita; Mayes, Linda C; Potenza, Marc N
2018-04-01
While childhood stress may contribute risk to substance-use initiation and differences in brain white-matter development, understanding of the potential impact of substance-use initiation on the relationship between experienced stress and white-matter microstructure remains limited. This study examined whether substance-use initiation moderated the effect of perceived stress on white-matter differences using measures of primary white-matter fiber anisotropy. Forty adolescents (age 14.75 ± .87 years) were assessed on the Perceived Stress Scale, and 50% were determined to have presence of substance-use initiation. White-matter microstructure was examined using primary-fiber orientations anisotropy, which may reflect white-matter integrity, modeled separately from other fiber orientations in the same voxels. Analyses were conducted on regions of interest previously associated with childhood stress and substance use. Lower perceived stress and presence of substance-use initiation were related to greater right cingulum primary-fiber measures. Substance-use-initiation status moderated the association between perceived stress and right cingulum primary-fiber measures, such that higher perceived stress was associated with lower right cingulum primary-fiber anisotropy in adolescents without substance-use initiation, but not in those with substance-use initiation. Findings in primary-fiber anisotropy suggest differences in right cingulum white-matter integrity is associated with substance-use initiation in higher-stress adolescents. This reflects a possible pre-existing risk factor, an impact of early substance use, or a combination thereof. Examination of potential markers associated with substance-use initiation in white-matter microstructure among stress-exposed youth warrant additional investigation as such biomarkers may inform efforts relating to tailored interventions. (Am J Addict 2018;27:217-224). © 2018 American Academy of Addiction Psychiatry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.
2008-03-03
Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified asmore » open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renteria, A. F.; Saruhan, B.; Ilavsky, J.
2007-01-01
Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified asmore » open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.« less
Elder, John P; Ayala, Guadalupe X; Slymen, Donald J; Arredondo, Elva M; Campbell, Nadia R
2009-04-01
This study examined the impact of a tailored nutrition intervention at 3 and 6 months postintervention. In all, 357 Latinas were randomly assigned to one of three conditions: (1) a control condition comprised of previously developed Spanish language targeted materials, (2) tailored print materials, or (3) tailored print materials accompanied by personalized dietary counseling via lay heath advisors (promotoras). At 6 months postintervention, significant group by time interactions were observed on the dietary behavioral strategies scales. The promotora condition resulted in significant behavior change initially; however, receipt of tailored and control materials was instrumental in continued behavior change after intervention activities had ceased. Group main effects suggested that the promotora condition was superior at reducing barriers and improving family interactions supporting healthy behaviors. The promotora model is an effective method for changing important dietary behaviors and psychosocial determinants, but longer term behavior change is achievable with less expensive intervention methods.
Direct metal writing: Controlling the rheology through microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wen; Thornley, Luke; Coe, Hannah G.
Most metal additive manufacturing approaches are based on powder-bed melting techniques such as laser selective melting or electron beam melting, which often yield uncontrolled microstructures with defects (e.g., pores or microcracks) and residual stresses. Here, we introduce a proof-of-concept prototype of a 3D metal freeform fabrication process by direct writing of metallic alloys in the semi-solid regime. This process is achieved through controlling the particular microstructure and the rheological behavior of semi-solid alloy slurries, which demonstrate a well suited viscosity and a shear thinning property to retain the shape upon printing. Furthermore, the ability to control the microstructure through thismore » method yields a flexible manufacturing route to fabricating 3D metal parts with full density and complex geometries.« less
Direct metal writing: Controlling the rheology through microstructure
Chen, Wen; Thornley, Luke; Coe, Hannah G.; ...
2017-02-27
Most metal additive manufacturing approaches are based on powder-bed melting techniques such as laser selective melting or electron beam melting, which often yield uncontrolled microstructures with defects (e.g., pores or microcracks) and residual stresses. Here, we introduce a proof-of-concept prototype of a 3D metal freeform fabrication process by direct writing of metallic alloys in the semi-solid regime. This process is achieved through controlling the particular microstructure and the rheological behavior of semi-solid alloy slurries, which demonstrate a well suited viscosity and a shear thinning property to retain the shape upon printing. Furthermore, the ability to control the microstructure through thismore » method yields a flexible manufacturing route to fabricating 3D metal parts with full density and complex geometries.« less
Yardley, Lucy; Nyman, Samuel R
2007-06-01
Falls are very common in older persons and can result in substantial disability and distress. By undertaking strength and balance training (SBT) exercises, older people can reduce their risk of falling. The Internet offers a potentially cost-effective means of disseminating information about SBT to older people and their carers. A particular advantage of using the Internet for this purpose is that the advice given can be 'tailored' to the needs of the individual. This study used a randomized controlled design to evaluate an interactive web-based program that tailored advice about undertaking SBT activities. The participants were 280 people with an age range of 65-97 years recruited by advertising the website by email and the Internet. Those randomized to the tailored advice were presented with advice tailored to their personal self-rated balance capabilities, health problems and activity preferences. Those in the control group were presented with all the advice from which the tailored advice was selected. After reading the advice, those in the tailored advice group (n = 144) had more positive attitudes (p < 0.01) than those in the control group (n = 136), reporting greater perceived relevance of the SBT activities, greater confidence in the ability to carry them out, and hence stronger intentions to undertake the activities. This study provides an initial indication that an interactive website might offer a cost-effective way to provide personalized advice to some older people. Further research is required to determine whether website-based advice on falls prevention changes behavior as well as intentions and whether the advice needs to be supplemented by other forms of support.
Ellis, Rebecca J Bartlett; Connor, Ulla; Marshall, James
2014-01-01
Purpose This study evaluated the feasibility of developing linguistically tailored educational messages designed to match the linguistic styles of patients segmented into types with the Descriptor™, and to determine patient preferences for tailored or standard messages based on their segments. Patients and methods Twenty patients with type 2 diabetes (T2DM) were recruited from a diabetes health clinic. Participants were segmented using the Descriptor™, a language-based questionnaire, to identify patient types based on their control orientation (internal/external), agency (high/low), and affect (positive/negative), which are well studied constructs related to T2DM self-management. Two of the seven self-care behaviors described by the American Association of Diabetes Educators (healthy eating and taking medication) were used to develop standard messages and then linguistically tailored using features of the six different construct segment types of the Descriptor™. A subset of seven participants each provided feedback on their preference for standard or linguistically tailored messages; 12 comparisons between standard and tailored messages were made. Results Overall, the tailored messages were preferred to the standard messages. When the messages were matched to specific construct segment types, the tailored messages were preferred over the standard messages, although this was not statistically significant. Conclusion Linguistically tailoring messages based on construct segments is feasible. Furthermore, tailored messages were more often preferred over standard messages. This study provides some preliminary evidence for tailoring messages based on the linguistic features of control orientation, agency, and affect. The messages developed in this study should be tested in a larger more representative sample. The present study did not explore whether tailored messages were better understood. This research will serve as preliminary evidence to develop future studies with the ultimate goal to design intervention studies to investigate if linguistically tailoring communication within the context of patient education influences patient knowledge, motivation, and activation toward making healthy behavior changes in T2DM self-management. PMID:25336928
Randomized controlled trial of an online mother-daughter body image and well-being intervention.
Diedrichs, Phillippa C; Atkinson, Melissa J; Garbett, Kirsty M; Williamson, Heidi; Halliwell, Emma; Rumsey, Nichola; Leckie, George; Sibley, Chris G; Barlow, Fiona Kate
2016-09-01
Poor body image is a public health issue. Mothers are a key influence on adolescent girls' body image. This study evaluated an accessible, scalable, low-intensity internet-based intervention delivered to mothers (Dove Self Esteem Project Website for Parents) on mothers' and their adolescent daughters' body image and psychosocial well-being. British mother-daughter dyads (N = 235) participated in a cluster randomized controlled trial (assessment-only control; mothers viewed the website without structured guidance [website-unstructured]; mothers viewed the website via a tailored pathway [website-tailored]). Dyads completed standardized self-report measures of body image, related risk factors, and psychosocial outcomes at baseline, 2 weeks post-exposure, 6-week, and 12-month follow-up. Dyadic models showed that relative to the control, mothers who viewed the website reported significantly higher self-esteem at post-exposure (website-tailored), higher weight esteem at 6-week follow-up (website-tailored), lower negative affect at 12-month follow-up (website-tailored), engaged in more self-reported conversations with their daughters about body image at post-exposure and 6-week follow-up, and were 3-4.66 times more likely to report seeking additional support for body image issues at post-exposure (website-tailored), 6-week, and 12-month (website-tailored) follow-up. Daughters whose mothers viewed the website had higher self-esteem and reduced negative affect at 6-week follow-up. There were no differences on daughters' body image, and risk factors among mothers or daughters, at post-exposure or follow-up. Tailoring website content appeared beneficial. This intervention offers a promising 'first-step' toward improving psychosocial well-being among mothers and daughters. In order to further optimize the intervention, future research to improve body image-related outcomes and to understand mechanisms for change would be beneficial. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Vandelanotte, C; Short, C; Plotnikoff, R C; Hooker, C; Canoy, D; Rebar, A; Alley, S; Schoeppe, S; Mummery, W K; Duncan, M J
2015-10-05
Physical inactivity levels are unacceptably high and effective interventions that can increase physical activity in large populations at low cost are urgently needed. Web-based interventions that use computer-tailoring have shown to be effective, though people tend to 'skim' and 'scan' text on the Internet rather than thoroughly read it. The use of online videos is, however, popular and engaging. Therefore, the aim of this 3-group randomised controlled trial is to examine whether a web-based physical activity intervention that provides personally-tailored videos is more effective when compared with traditional personally-tailored text-based intervention and a control group. In total 510 Australians will be recruited through social media advertisements, e-mail and third party databases. Participants will be randomised to one of three groups: text-tailored, video-tailored, or control. All groups will gain access to the same web-based platform and a library containing brief physical activity articles. The text-tailored group will additionally have access to 8 sessions of personalised physical activity advice that is instantaneously generated based on responses to brief online surveys. The theory-based advice will be provided over a period of 3 months and address constructs such as self-efficacy, motivation, goal setting, intentions, social support, attitudes, barriers, outcome expectancies, relapse prevention and feedback on performance. Text-tailored participants will also be able to complete 7 action plans to help them plan what, when, where, who with, and how they will become more active. Participants in the video-tailored group will gain access to the same intervention content as those in the text-tailored group, however all sessions will be provided as personalised videos rather than text on a webpage. The control group will only gain access to the library with generic physical activity articles. The primary outcome is objectively measured physical activity. Secondary outcomes include website engagement and retention, quality of life, depression, anxiety, stress, sitting time, sleep and psychosocial correlates of physical activity. Outcomes will be measured at baseline, 3, and 9 months. This study presents an ideal opportunity to study the effectiveness of an isolated feature within a web-based physical activity intervention and the knowledge generated from this study will help to increase intervention effectiveness. Australian New-Zealand Clinical Trial Registry: ACTRN12615000057583 . Registered 22 January 2015. CQUniversity Ethics Project Number: H14/07-163.
Cheung, Kei Long; Schwabe, Inga; Walthouwer, Michel J. L.; Oenema, Anke; de Vries, Hein
2017-01-01
Computer-tailored programs may help to prevent overweight and obesity, which are worldwide public health problems. This study investigated (1) the 12-month effectiveness of a video- and text-based computer-tailored intervention on energy intake, physical activity, and body mass index (BMI), and (2) the role of educational level in intervention effects. A randomized controlled trial in The Netherlands was conducted, in which adults were allocated to a video-based condition, text-based condition, or control condition, with baseline, 6 months, and 12 months follow-up. Outcome variables were self-reported BMI, physical activity, and energy intake. Mixed-effects modelling was used to investigate intervention effects and potential interaction effects. Compared to the control group, the video intervention group was effective regarding energy intake after 6 months (least squares means (LSM) difference = −205.40, p = 0.00) and 12 months (LSM difference = −128.14, p = 0.03). Only video intervention resulted in lower average daily energy intake after one year (d = 0.12). Educational role and BMI did not seem to interact with this effect. No intervention effects on BMI and physical activity were found. The video computer-tailored intervention was effective on energy intake after one year. This effect was not dependent on educational levels or BMI categories, suggesting that video tailoring can be effective for a broad range of risk groups and may be preferred over text tailoring. PMID:29065545
Microstructural Aspects of Localized Corrosion Behavior of Mg Alloys
NASA Astrophysics Data System (ADS)
Chu, Peng-Wei
Combining high specific strength and unique electrochemical properties, magnesium (Mg) alloys are promising lightweight materials for various applications from automotive, consumer electronics, biomedical body implant, to battery electrodes. Engineering solutions such as coatings have enabled the use of Mg alloys, despite their intrinsic low corrosion resistance. Consequently, the fundamental mechanisms responsible for the unique localized corrosion behavior of bare Mg alloys, the associated abnormal hydrogen evolution response, and the relationships between corrosion behavior and alloy microstructure are still unsolved. This thesis aims to uncover the specificities of Mg corrosion and the roles of alloy chemistry and microstructure. To this end, multiscale site-specific microstructure characterization techniques, including in situ optical microscopy, scanning electron microscopy with focused ion beam milling, and transmission electron microscopy, combined with electrochemical analysis and hydrogen evolution rate monitoring, were performed on pure Mg and selected Mg alloys under free corrosion and anodic polarization, revealing key new information on the propagation mode of localized corrosion and the role of alloy microstructures, thereby confirming or disproving the validity of previously proposed corrosion models. Uniform surface corrosion film on Mg alloys immersed in NaCl solution consisted a bi-layered structure, with a porous Mg(OH)2 outer layer on top of a MgO inner layer. Presence of fine scale precipitates in Mg alloys interacted with the corrosion reaction front, reducing the corrosion rate and surface corrosion film thickness. Protruding hemispherical dome-like corrosion products, accompanied by growing hydrogen bubbles, formed on top of the impurity particles in Mg alloys by deposition of Mg(OH)2 via a microgalvanic effect. Localized corrosion on Mg alloys under both free immersion and anodic polarization was found to be governed by a common mechanism, with the corrosion front propagating laterally a few mum inside the alloy and underneath the surface corrosion film, with finger-like features aligned with (0001) Mg basal planes at the localized corrosion/alloy interface. Rising streams of hydrogen bubbles were found to follow the anodic dissolution of Mg and formation of Mg(OH)2 corrosion products at the propagating localized corrosion fronts. Alloying elements segregation to the grain boundaries showed the ability to stop localized corrosion propagation momentarily. By revealing the microstructure of corrosion features on Mg alloys, a descriptive model was proposed. Relationships between the corrosion behavior and alloy microstructures were also identified. This microscopic information can serve as a guideline for future development of Mg alloys by tailoring the microstructure to achieve proper corrosion responses for applications under different environments.
Wangberg, Silje C; Nilsen, Olav; Antypas, Konstantinos; Gram, Inger Torhild
2011-12-15
Studies suggest that tailored materials are superior to nontailored materials in supporting health behavioral change. Several trials on tailored Internet-based interventions for smoking cessation have shown good effects. There have, however, been few attempts to isolate the effect of the tailoring component of an Internet-based intervention for smoking cessation and to compare it with the effectiveness of the other components. The study aim was to isolate the effect of tailored emails in an Internet-based intervention for smoking cessation by comparing two versions of the intervention, with and without tailored content. We conducted a two-arm, randomized controlled trial of the open and free Norwegian 12-month follow-up, fully automated Internet-based intervention for smoking cessation, slutta.no. We collected information online on demographics, smoking, self-efficacy, use of the website, and participant evaluation at enrollment and subsequently at 1, 3, and 12 months. Altogether, 2298 self-selected participants aged 16 years or older registered at the website between August 15, 2006 and December 7, 2007 and were randomly assigned to either a multicomponent, nontailored Internet-based intervention for smoking cessation (control) or a version of the same Internet-based intervention with tailored content delivered on the website and via email. Of the randomly assigned participants, 116 (of 419, response rate = 27.7%) in the intervention group and 128 (of 428, response rate = 29.9%) in the control group had participated over the 12 months and responded at the end of follow-up. The 7-day intention-to-treat abstinence rate at 1 month was 15.2% (149/982) among those receiving the tailored intervention, compared with 9.4% (94/999) among those who received the nontailored intervention (P < .001). The corresponding figures at 3 months were 13.5% (122/902) and 9.4% (84/896, P =.006) and at 12 months were 11.2% (47/419) and 11.7% (50/428, P = .91). Likewise, the intervention group had higher self-efficacy and perceived tailoring at 1 and 3 months. Self-efficacy was found to partially mediate the effect of the intervention. Tailoring an Internet-based intervention for smoking cessation seems to increase the success rates in the short term, but not in the long term.
Lennox, A Scott; Osman, Liesl M; Reiter, Ehud; Robertson, Roma; Friend, James; McCann, Ian; Skatun, Diane; Donnan, Peter T
2001-01-01
Objectives To develop and evaluate, in a primary care setting, a computerised system for generating tailored letters about smoking cessation. Design Randomised controlled trial. Setting Six general practices in Aberdeen, Scotland. Participants 2553 smokers aged 17 to 65. Interventions All participants received a questionnaire asking about their smoking. Participants subsequently received either a computer tailored or a non-tailored, standard letter on smoking cessation, or no letter. Main outcome measures Prevalence of validated abstinence at six months; change in intention to stop smoking in the next six months. Results The validated cessation rate at six months was 3.5% (30/857) (95% confidence interval 2.3% to 4.7%) for the tailored letter group, 4.4% (37/846) (3.0% to 5.8%) for the non-tailored letter group, and 2.6% (22/850) (1.5% to 3.7%) for the control (no letter) group. After adjustment for significant covariates, the cessation rate was 66% greater (−4% to 186%; P=0.07) in the non-tailored letter group than that in the no letter group. Among participants who smoked <20 cigarettes per day, the cessation rate in the non-tailored letter group was 87% greater (0% to 246%; P=0.05) than that in the no letter group. Among heavy smokers who did not quit, a 76% higher rate of positive shift in “stage of change” (intention to quit within a particular period of time) was seen compared with those who received no letter (11% to 180%; P=0.02). The increase in cost for each additional quitter in the non-tailored letter group compared with the no letter group was £89. Conclusions In a large general practice, a brief non-tailored letter effectively increased cessation rates among smokers. A tailored letter was not effective in increasing cessation rates but promoted shift in movement towards cessation (“stage of change”) in heavy smokers. As a pragmatic tool to encourage cessation of smoking, a mass mailing of non-tailored letters from general practices is more cost effective than computer tailored letters or no letters. What is already known on this topicBrief opportunistic advice on stopping smoking that is given face to face by health professionals increases rates of cessation by 2-3%Intensive, expert-led interventions increase cessation rates by up to 20% or more but are expensive and reach only a small proportion of smokersWritten advice tailored to an individual's “stage of change” (intention to stop in a particular period of time) has been claimed to be as effective as intensive interventions, but previous studies of tailored written advice did not biochemically validate cessationWhat this paper addsA simple standard letter sent to patients of general practices that gave brief advice on stopping smoking increased the biochemically validated rate of cessation by 2%A letter tailored to the individual's “stage of change” was not more effective than the non-tailored standard letterAlthough the increase in cessation resulting from the non-tailored standard letter was small, this intervention was highly cost effective PMID:11397745
Microstructurally tailored ceramics for advanced energy applications by thermoreversible gelcasting
NASA Astrophysics Data System (ADS)
Shanti, Noah Omar
Thermoreversible gelcasting (TRG) is an advantageous technique for rapidly producing bulk, net-shape ceramics and laminates. In this method, ceramic powder is suspended in warm acrylate triblock copolymer/alcohol solutions that reversibly gel upon cooling by the formation of endblock aggregates, to produce slurries which are cast into molds. Gel properties can be tailored by controlling the endblock and midblock lengths of the copolymer network-former and selecting an appropriate alcohol solvent. This research focuses on expanding and improving TRG techniques, focusing specifically on advanced energy applications including the solid oxide fuel cell (SOFC). Rapid drying of filled gels can lead to warping and cracking caused by high differential capillary stresses. A new drying technique using concentrated, alcohol-based solutions as liquid desiccants (LDs) to greatly reduce warping is introduced. The optimal LD is a poly(tert-butyl acrylate)/isopropyl alcohol solution with 5 mol% tert-butyl acrylate units. Alcohol emissions during drying are completely eliminated by combining initial drying in an LD with final stage drying in a vacuum oven having an in-line solvent trap. Porous ceramics are important structures for many applications, including SOFCs. Pore network geometries are tailored by the addition of fugitive fillers to TRG slurries. Uniform spherical, bimodal spherical and uniform fibrous fillers are used. Three-dimensional pore structures are visualized by X-ray computed tomography, allowing for direct measurements of physical parameters such as concentration and morphology as well as transport properties such as tortuosity. Tortuosity values as low as 1.52 are achieved when 60 vol% of solids are uniform spherical filler. Functionally graded laminates with layers ranging from 10 mum to > 1 mm thick are produced with a new technique that combines TRG with tape casting. Gels used for bulk casting are not suitable for use with tape casting, and appropriate base gels are selected for this technique. Each layer is cast in a single pass, and the layers are directly laminated. The anode support, anode functional layer, and electrolyte of anode-supported SOFCs are produced using this technique. The performance of SOFCs produced this way is not yet equal to that of traditionally processed cells, but shows the promise of this technique.
Antypas, Konstantinos; Wangberg, Silje C
2014-03-11
An increase in physical activity for secondary prevention of cardiovascular disease and cardiac rehabilitation has multiple therapeutic benefits, including decreased mortality. Internet- and mobile-based interventions for physical activity have shown promising results in helping users increase or maintain their level of physical activity in general and specifically in secondary prevention of cardiovascular diseases and cardiac rehabilitation. One component related to the efficacy of these interventions is tailoring of the content to the individual. Our trial assessed the effect of a longitudinally tailored Internet- and mobile-based intervention for physical activity as an extension of a face-to-face cardiac rehabilitation stay. We hypothesized that users of the tailored intervention would maintain their physical activity level better than users of the nontailored version. The study population included adult participants of a cardiac rehabilitation program in Norway with home Internet access and a mobile phone. The participants were randomized in monthly clusters to a tailored or nontailored (control) intervention group. All participants had access to a website with information regarding cardiac rehabilitation, an online discussion forum, and an online activity calendar. Those using the tailored intervention received tailored content based on models of health behavior via the website and mobile fully automated text messages. The main outcome was self-reported level of physical activity, which was obtained using an online international physical activity questionnaire at baseline, at discharge, and at 1 month and 3 months after discharge from the cardiac rehabilitation program. Included in the study were 69 participants. One month after discharge, the tailored intervention group (n=10) had a higher median level of overall physical activity (median 2737.5, IQR 4200.2) than the control group (n=14, median 1650.0, IQR 2443.5), but the difference was not significant (Kolmogorov-Smirnov Z=0.823, P=.38, r=.17). At 3 months after discharge, the tailored intervention group (n=7) had a significantly higher median level of overall physical activity (median 5613.0, IQR 2828.0) than the control group (n=12, median 1356.0, IQR 2937.0; Kolmogorov-Smirnov Z=1.397, P=.02, r=.33). The median adherence was 45.0 (95% CI 0.0-169.8) days for the tailored group and 111.0 (95% CI 45.1-176.9) days for the control group; however, the difference was not significant (P=.39). There were no statistically significant differences between the 2 groups in stage of change, self-efficacy, social support, perceived tailoring, anxiety, or depression. Because of the small sample size and the high attrition rate at the follow-up visits, we cannot make conclusions regarding the efficacy of our approach, but the results indicate that the tailored version of the intervention may have contributed to the long-term higher physical activity maintained after cardiac rehabilitation by participants receiving the tailored intervention compared with those receiving the nontailored intervention. ClinicalTrials.gov: NCT01223170; http://clinicaltrials.gov/show/NCT01223170 (Archived by WebCite at http://www.webcitation.org/6Nch4ldcL).
Control of microfabricated structures powered by flagellated bacteria using phototaxis
NASA Astrophysics Data System (ADS)
Steager, Edward; Kim, Chang-Beom; Patel, Jigarkumar; Bith, Socheth; Naik, Chandan; Reber, Lindsay; Kim, Min Jun
2007-06-01
Flagellated bacteria have been employed as microactuators in low Reynolds number fluidic environments. SU-8 microstructures have been fabricated and released on the surface of swarming Serratia marcescens, and the flagella propel the structures along the swarm surface. Phototactic control of these structures is demonstrated by exposing the localized regions of the swarm to ultraviolet light. The authors additionally discuss the control of microstructures in an open channel powered by bacteria which have been docked through a blotting technique. A tracking algorithm has been developed to analyze swarming patterns of the bacteria as well as the kinematics of the microstructures.
2014-06-01
for industrial control systems ,” in Proceedings of the VDE Kongress, 2004. [15] K. Stouffer et al., “Special publication 800-82: Guide to industrial...TAILORED METHODOLOGY AND FORENSIC TOOLKIT FOR INDUSTRIAL CONTROL SYSTEMS INCIDENT RESPONSE by Nicholas B. Carr June 2014 Thesis Co...CONTROL SYSTEMS INCIDENT RESPONSE 5. FUNDING NUMBERS 6. AUTHOR(S) Nicholas B. Carr 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval
2017-06-18
olefins at a much slower rate than its non -reduced analogue which can be harnessed to control polyolefin comonomer incorporation percentages and thus its...opportunities for mechanistic understanding, catalyst control , and polyolefin synthesis that are impossible using heterogeneous 1. REPORT DATE (DD-MM...Advanced Tool for Catalyst Control and Tailored Polyolefin Synthesis The views, opinions and/or findings contained in this report are those of the
NASA Astrophysics Data System (ADS)
Shuba, Roman
The aim of this thesis was to improve the mechanical properties of Y-alpha-SiAlON ceramics by controlling microstructure and tailoring grain boundary composition. Three properties of importance for engineering applications were targeted: strength retention and oxidation resistance at high temperature, fracture toughness at room temperature, and machinability. As a result of this work, several ceramics with one or more of the above properties optimized have been developed. The performance of Si3N4/SiAlON-based ceramics at high (>1000 degree C) temperature is generally limited by the softening of grain-boundary glass. Refractory alpha-SiAlONs was obtained by three methods: reducing residual liquid by minimizing nitride powder oxidation during processing, promoting liquid/SiAlON conversion by adding excess AlN, and improving refractoriness by incorporating La2O3 into glass. Ceramics thus, obtained featured excellent room-temperature strength (1050 MPa) and high-temperature strength (650 MPa at 1300 degree C), as well as good oxidation resistance. In all cases grain growth was inhibited, which resulted in a relatively low toughness (5--7 MPa x m1/2). In-situ toughened Y-alpha-SiAlON (9 MPa x m1/2) was obtained through growth of large elongated grains with low debonding strength. This was achieved by introducing seed crystals to the starting powder mixtures, in addition to using sintering aids and dopants. Additives modified the properties of grain boundary glass, while dopants lowered the strength of glass/grain interface. Through the use of nanosized turbostratic BN precursor obtained via pyrolysis of melamine borate salt, which yielded finely dispersed hexagonal BN particles in alpha-SiAlON, high-strength (800 MPa) Y-alpha-SiAlON/BN composites, machinable using WC/Co tools, were also fabricated.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
Effectiveness of a Smoking Cessation Intervention in Dutch Pharmacies and General Practices
ERIC Educational Resources Information Center
Hoving, Ciska; Mudde, Aart N.; Dijk, Froukje; de Vries, Hein
2010-01-01
Purpose: The purpose of this paper is to test the effectiveness of a computer-tailored smoking cessation intervention, distributed through 75 Dutch general practices (GP) and 65 pharmacies (PH) in a randomised control trial. Design/methodology/approach: Respondents receive a tailored letter or a thank you letter (control condition). Main outcome…
1994-06-10
RPeport PROPERTY CONTROL OF ( PERFLUORINATED IONOMER)/(INORGANIC OXIDE) COMPOSITES BY TAILORING THE NANOSCALE MORPHOLOGY Kenneth A. Mauritz and Robert...Concept ......................................... 45 B. [Si0 2 -TiO2 (mixed)]/Nafion Nanocomposites: Sorption of Pre-Mixed Alkoxides...Nanocomposites: Sorption of Pre- Mixed Alkoxides ......................................... 49 A. Experimental Procedure ............................. 49 B
Tailored interphase structure for improved strength and energy absorption of composites
NASA Astrophysics Data System (ADS)
Gao, Xiao
Fiber reinforced polymeric composites are lightweight, high-strength and high impact-resistant materials used widely for various applications. It has been shown that the mechanical performance of composites are dependent on the interphase, a three-dimensional region of nanometer size in the vicinity of the fiber-matrix boundary that possesses properties different from those of either the fiber reinforcement or the matrix resin and governs the load transfer from matrix to fiber. This research conducts a systematic study on glass fiber-epoxy interphase structure by tailoring adhesion between constituents and the creation of textures to control strength and energy absorption through mechanical interlocking between glass fiber and epoxy matrix. Our objective is to establish the foundation for microstructural design and optimization of the composite's structural and impact performance. Two ways of roughening the glass fiber surface have been studied to create the mechanical interlocking between fiber and resin; the first technique involves forming in-situ islands on the glass fiber surface by using silane blends of Glycidoxypropyltrimethoxy silane (GPS) and Tetraethoxy silane (TEOS); the second technique applies a silane coupling agents based sizing with the incorporation of silica nanoparticles (Ludox TMA, 22 nm) onto the fiber surface. The microdroplet test was selected to characterize the influence of adhesion and mechanical interlocking effects on interphase properties of different sizing sized glass fiber reinforced epoxy systems. A suitable data reduction scheme enables the strength and specified energy absorbed due to debonding, dynamic sliding, and quasi-static sliding to be quantified. In order to validate the effect of tailored interphase structure, which is induced by creating mechanical interlocking between fiber and resin, on macroscopic composite properties, composite panels were made from these four different sizing sized glass fibers and tested using the punch shear test. The composite panel made from the hybrid sizing sized glass fiber exhibited improved strength and energy absorption consistent with the trends in micromechanical measurements. Through all failure stages under macromechanical testing, hybrid sizing sized glass fiber/epoxyamine composite panel shows an increase in the strength and total energy absorption by 13% and 26%, respectively, compared to the compatible sizing sized baseline. Both micromechanical and macromechanical tests demonstrate the significant influence of tailoring the interphase structure on improving the impact performance of the composites. The hybrid sizing with the incorporation of nanoparticles, in particular, can greatly improve the impact resistance (i.e. energy absorption) of composites without sacrificing its structural performance (i.e. strength).
Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su
2014-01-01
Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778
Fabrication of micro-lens array on convex surface by meaning of micro-milling
NASA Astrophysics Data System (ADS)
Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin
2014-08-01
In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.
NASA Astrophysics Data System (ADS)
Wang, Baoming; Haque, M. A.
2015-08-01
With atomic-scale imaging and analytical capabilities such as electron diffraction and energy-loss spectroscopy, the transmission electron microscope has allowed access to the internal microstructure of materials like no other microscopy. It has been mostly a passive or post-mortem analysis tool, but that trend is changing with in situ straining, heating and electrical biasing. In this study, we design and demonstrate a multi-functional microchip that integrates actuators, sensors, heaters and electrodes with freestanding electron transparent specimens. In addition to mechanical testing at elevated temperatures, the chip can actively control microstructures (grain growth and phase change) of the specimen material. Using nano-crystalline aluminum, nickel and zirconium as specimen materials, we demonstrate these novel capabilities inside the microscope. Our approach of active microstructural control and quantitative testing with real-time visualization can influence mechanistic modeling by providing direct and accurate evidence of the fundamental mechanisms behind materials behavior.
Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
Halverson, Danny C.; Landingham, Richard L.
1988-01-01
A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.
A highly efficient 3D level-set grain growth algorithm tailored for ccNUMA architecture
NASA Astrophysics Data System (ADS)
Mießen, C.; Velinov, N.; Gottstein, G.; Barrales-Mora, L. A.
2017-12-01
A highly efficient simulation model for 2D and 3D grain growth was developed based on the level-set method. The model introduces modern computational concepts to achieve excellent performance on parallel computer architectures. Strong scalability was measured on cache-coherent non-uniform memory access (ccNUMA) architectures. To achieve this, the proposed approach considers the application of local level-set functions at the grain level. Ideal and non-ideal grain growth was simulated in 3D with the objective to study the evolution of statistical representative volume elements in polycrystals. In addition, microstructure evolution in an anisotropic magnetic material affected by an external magnetic field was simulated.
Linn, Annemiek J; van Dijk, Liset; van Weert, Julia C M; Gebeyehu, Beniam G; van Bodegraven, Ad A; Smit, Edith G
2018-03-17
Improving adherence is a challenge and multiple barriers are likely to explain non-adherence. These barriers differ per patient and over course of the regimen. Hence, personalized interventions tailored to the specific barriers are needed. In a theoretical and evidence-based Tailored Multimedia Intervention, technology (online preparatory assessment, text messaging) was used as an add-on to a tailored counseling session (learned during a communication skills training), with the expectation of synergistic effects. A cluster randomized controlled trial was conducted in six hospitals, eight nurses and 160 chronic patients. Patient satisfaction with communication, beliefs about medication, self-efficacy and medication adherence were assessed at initiation of the treatment and after six months. Intervention effects were found for patient satisfaction with nurses' affective communication and self-efficacy at the initiation of treatment. The effect on self-efficacy remained after six months. By combining tailored counseling with technology, this intervention resulted in positive changes in important prerequisites of medication adherence. Technology can contribute significantly to health care providers' ability to tailor information to the patients' needs. Copyright © 2018. Published by Elsevier B.V.
2014-01-01
Background This article describes the systematic development of the I Move intervention: a web-based computer tailored physical activity promotion intervention, aimed at increasing and maintaining physical activity among adults. This intervention is based on the theoretical insights and practical applications of self-determination theory and motivational interviewing. Methods/design Since developing interventions in a systemically planned way increases the likelihood of effectiveness, we used the Intervention Mapping protocol to develop the I Move intervention. In this article, we first describe how we proceeded through each of the six steps of the Intervention Mapping protocol. After that, we describe the content of the I Move intervention and elaborate on the planned randomized controlled trial. Discussion By integrating self-determination theory and motivational interviewing in web-based computer tailoring, the I Move intervention introduces a more participant-centered approach than traditional tailored interventions. Adopting this approach might enhance computer tailored physical activity interventions both in terms of intervention effectiveness and user appreciation. We will evaluate this in an randomized controlled trial, by comparing the I Move intervention to a more traditional web-based computer tailored intervention. Trial registration NTR4129 PMID:24580802
2011-01-01
Background Cigarette smoking is the number one cause of preventable death among American Indian and Alaska Natives, AI/ANs. Two out of every five AI/AN will die from tobacco-related diseases if the current smoking rates of AI/ANs (40.8%) persist. Currently, there is no proven, effective culturally-tailored smoking cessation program designed specifically for a heterogeneous population of AI. The primary aim of this group randomized clinical trial is to test the efficacy of "All Nations Breath of Life" (ANBL) program compared to a non-tailored "Current Best Practices" smoking cessation program among AI smokers. Methods We will randomize 56 groups (8 smokers per group) to the tailored program or non-tailored program for a total sample size of 448 American Indian smokers. All participants in the proposed study will be offered pharmacotherapy, regardless of group assignment. This study is the first controlled trial to examine the efficacy of a culturally-tailored smoking cessation program for American Indians. If the intervention is successful, the potential health impact is significant because the prevalence of smoking is the highest in this population. Trial Registration ClinicalTrials.gov: NCT01106456 PMID:21592347
Individual differences in white matter microstructure predict semantic control.
Nugiel, Tehila; Alm, Kylie H; Olson, Ingrid R
2016-12-01
In everyday conversation, we make many rapid choices between competing concepts and words in order to convey our intent. This process is termed semantic control, and it is thought to rely on information transmission between a distributed semantic store in the temporal lobes and a more discrete region, optimized for retrieval and selection, in the left inferior frontal gyrus. Here, we used diffusion tensor imaging in a group of neurologically normal young adults to investigate the relationship between semantic control and white matter tracts that have been implicated in semantic memory retrieval. Participants completed a verb generation task that taps semantic control (Snyder & Munakata, 2008; Snyder et al., 2010) and underwent a diffusion imaging scan. Deterministic tractography was performed to compute indices representing the microstructural properties of the inferior fronto-occipital fasciculus (IFOF), the uncinate fasciculus (UF), and the inferior longitudinal fasciculus (ILF). Microstructural measures of the UF failed to predict semantic control performance. However, there was a significant relationship between microstructure of the left IFOF and ILF and individual differences in semantic control. Our findings support the view put forth by Duffau (2013) that the IFOF is a key structural pathway in semantic retrieval.
NASA Astrophysics Data System (ADS)
Khanikar, Prasenjit
Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite. These microstructural features, such as precipitates, dispersed particles, and GB orientations and distributions can be optimized for desired behavior of metallic composites.
Li, Na; Yang, Qiao; Liu, Xing; Huang, Xuankai; Zhang, Haiyan; Wang, Chengxin
2017-12-06
Three-dimensional (3D) microstructured building units have replaced layer-to-layer stacked designs in transparent graphene films to fully exploit the advantages of two-dimensional graphene. However, it is still challenging to precisely control the size and microstructures of these building blocks to develop multifunctional graphene-based materials that satisfy the performance requirements of diverse applications. In this study, we propose a controllable method to regulate the microstructures of building units to form structures ranging from opened bubbles and cubes, while the size decreased from 20 to 3 μm, via an in situ template-modulating technology. NaCl was used as either a liquid or solid template by changing the dc bias. The reduced size and dense arrangement of the building units not only provide an improved mass loading for the transparent films but also build multiple pathways for fast ion/electron transmission, enhancing their promise for various practical applications. Generally, we provide a convenient protocol for finely regulating the microstructure and size of these building units, resulting in multifunctional films with a controllable transmittance, which enables the use of these graphene-based architectures as transparent electrodes in various applications and extends the family of multifunctional materials that will present new possibilities for electronics and other devices.
Schumann, Anja; John, Ulrich; Ulbricht, Sabina; Rüge, Jeannette; Bischof, Gallus; Meyer, Christian
2008-11-01
This study examines tailored feedback letters of a smoking cessation intervention that is conceptually based on the transtheoretical model, from a content-based perspective. Data of 2 population-based intervention studies, both randomized controlled trials, with total N=1044 were used. The procedure of the intervention, the tailoring principle for the feedback letters, and the content of the intervention materials are described in detail. Theoretical and empirical frequencies of unique feedback letters are presented. The intervention system was able to generate a total of 1040 unique letters with normative feedback only, and almost half a million unique letters with normative and ipsative feedback. Almost every single smoker in contemplation, preparation, action, and maintenance had an empirically unique combination of tailoring variables and received a unique letter. In contrast, many smokers in precontemplation shared a combination of tailoring variables and received identical letters. The transtheoretical model provides an enormous theoretical and empirical variability of tailoring. However, tailoring for a major subgroup of smokers, i.e. those who do not intend to quit, needs improvement. Conceptual ideas for additional tailoring variables are discussed.
ERIC Educational Resources Information Center
Travis, Heather E.; Lawrance, Kelli-an G.
2009-01-01
Objective: Between September 2002 and February 2003, the authors assessed the effectiveness of a new, age-tailored, self-help smoking-cessation program for college students. Participants: College student smokers (N = 216) from 6 Ontario universities participated. Methods: The researchers used a randomized controlled trial with a 3-month telephone…
Ultrashort polarization-tailored bichromatic fields from a CEP-stable white light supercontinuum.
Kerbstadt, Stefanie; Timmer, Daniel; Englert, Lars; Bayer, Tim; Wollenhaupt, Matthias
2017-05-29
We apply ultrafast polarization shaping to an ultrabroadband carrier envelope phase (CEP) stable white light supercontinuum to generate polarization-tailored bichromatic laser fields of low-order frequency ratio. The generation of orthogonal linearly and counter-rotating circularly polarized bichromatic fields is achieved by introducing a composite polarizer in the Fourier plane of a 4 f polarization shaper. The resulting Lissajous- and propeller-type polarization profiles are characterized experimentally by cross-correlation trajectories. The scheme provides full control over all bichromatic parameters and allows for individual spectral phase modulation of both colors. Shaper-based CEP control and the generation of tailored bichromatic fields is demonstrated. These bichromatic CEP-stable polarization-shaped ultrashort laser pulses provide a versatile class of waveforms for coherent control experiments.
De Cocker, Katrien; De Bourdeaudhuij, Ilse; Cardon, Greet; Vandelanotte, Corneel
2016-05-31
Effective interventions to influence workplace sitting are needed, as office-based workers demonstrate high levels of continued sitting, and sitting too much is associated with adverse health effects. Therefore, we developed a theory-driven, Web-based, interactive, computer-tailored intervention aimed at reducing and interrupting sitting at work. The objective of our study was to investigate the effects of this intervention on objectively measured sitting time, standing time, and breaks from sitting, as well as self-reported context-specific sitting among Flemish employees in a field-based approach. Employees (n=213) participated in a 3-group randomized controlled trial that assessed outcomes at baseline, 1-month follow-up, and 3-month follow-up through self-reports. A subsample (n=122) were willing to wear an activity monitor (activPAL) from Monday to Friday. The tailored group received an automated Web-based, computer-tailored intervention including personalized feedback and tips on how to reduce or interrupt workplace sitting. The generic group received an automated Web-based generic advice with tips. The control group was a wait-list control condition, initially receiving no intervention. Intervention effects were tested with repeated-measures multivariate analysis of variance. The tailored intervention was successful in decreasing self-reported total workday sitting (time × group: P<.001), sitting at work (time × group: P<.001), and leisure time sitting (time × group: P=.03), and in increasing objectively measured breaks at work (time × group: P=.07); this was not the case in the other conditions. The changes in self-reported total nonworkday sitting, sitting during transport, television viewing, and personal computer use, objectively measured total sitting time, and sitting and standing time at work did not differ between conditions. Our results point out the significance of computer tailoring for sedentary behavior and its potential use in public health promotion, as the effects of the tailored condition were superior to the generic and control conditions. Clinicaltrials.gov NCT02672215; http://clinicaltrials.gov/ct2/show/NCT02672215 (Archived by WebCite at http://www.webcitation.org/6glPFBLWv).
De Bourdeaudhuij, Ilse; Cardon, Greet; Vandelanotte, Corneel
2016-01-01
Background Effective interventions to influence workplace sitting are needed, as office-based workers demonstrate high levels of continued sitting, and sitting too much is associated with adverse health effects. Therefore, we developed a theory-driven, Web-based, interactive, computer-tailored intervention aimed at reducing and interrupting sitting at work. Objective The objective of our study was to investigate the effects of this intervention on objectively measured sitting time, standing time, and breaks from sitting, as well as self-reported context-specific sitting among Flemish employees in a field-based approach. Methods Employees (n=213) participated in a 3-group randomized controlled trial that assessed outcomes at baseline, 1-month follow-up, and 3-month follow-up through self-reports. A subsample (n=122) were willing to wear an activity monitor (activPAL) from Monday to Friday. The tailored group received an automated Web-based, computer-tailored intervention including personalized feedback and tips on how to reduce or interrupt workplace sitting. The generic group received an automated Web-based generic advice with tips. The control group was a wait-list control condition, initially receiving no intervention. Intervention effects were tested with repeated-measures multivariate analysis of variance. Results The tailored intervention was successful in decreasing self-reported total workday sitting (time × group: P<.001), sitting at work (time × group: P<.001), and leisure time sitting (time × group: P=.03), and in increasing objectively measured breaks at work (time × group: P=.07); this was not the case in the other conditions. The changes in self-reported total nonworkday sitting, sitting during transport, television viewing, and personal computer use, objectively measured total sitting time, and sitting and standing time at work did not differ between conditions. Conclusions Our results point out the significance of computer tailoring for sedentary behavior and its potential use in public health promotion, as the effects of the tailored condition were superior to the generic and control conditions. Trial Registration Clinicaltrials.gov NCT02672215; http://clinicaltrials.gov/ct2/show/NCT02672215 (Archived by WebCite at http://www.webcitation.org/6glPFBLWv) PMID:27245789
Freyer-Adam, Jennis; Baumann, Sophie; Schnuerer, Inga; Haberecht, Katja; Bischof, Gallus; John, Ulrich; Gaertner, Beate
2014-11-01
To investigate whether or not a stage tailored intervention is more effective than a non-stage tailored intervention of the same intensity in reducing alcohol use among job-seekers with unhealthy alcohol use, and whether initial motivation to change is a moderator of efficacy. A three-group randomized controlled trial with 3-, 6- and 15-month follow-ups. Three job agencies in Germany. A total of 1243 job-seekers with unhealthy alcohol use were randomized to (i) stage tailored intervention based on the transtheoretical model of change (ST), (ii) non-stage tailored intervention based on the theory of planned behaviour (NST) and (iii) assessment only (controls). Participants received feedback letters and manuals at baseline and 3 months later. Piecewise latent growth models were calculated measuring change in 'alcohol use' from baseline to month 3 (active intervention phase) and from months 3 to 15 (post-intervention phase, primary outcome). Motivation to change was included as a 4-point continuous measure. All groups reduced alcohol use from months 0 to 3 (controls: mean = -0.866, NST: mean = -0.883, ST: mean = -0.718, Ps ≤ 0.001). Post-intervention (months 3-15), low-motivated individuals in the ST group showed a greater reduction than those in the control group (β = 0.135, P = 0.039, Cohen's d = 0.42) and in the NST group (β = 0.180, P = 0.009, Cohen's d = 0.55). In contrast, compared to the ST group (β = 0.030, P = 0.361), alcohol use decreased more strongly with higher initial motivation in the NST group (β = -0.118, P = 0.010). Among job-seekers with high levels of alcohol consumption, an intervention tailored to motivational 'stage of change' was more effective than a non-stage tailored intervention for reducing alcohol use 15 months after baseline assessment in participants with low initial motivation to change. © 2014 Society for the Study of Addiction.
Gans, Kim M; Risica, Patricia M; Strolla, Leslie O; Fournier, Leanne; Kirtania, Usree; Upegui, David; Zhao, Julie; George, Tiffiney; Acharyya, Suddhasatta
2009-01-01
Background Computer-tailored written nutrition interventions have been shown to be more effective than non-tailored materials in changing diet, but continued research is needed. Your Healthy Life/Su Vida Saludable (YHL-SVS) was an intervention study with low income, ethnically diverse, English and Spanish-speaking participants to determine which methods of delivering tailored written nutrition materials were most effective in lowering fat and increasing fruit and vegetable (F&V) intake. Methods YHL-SVS was a randomized controlled trial with four experimental conditions: 1) Nontailored (NT) comparison group; 2) Single Tailored (ST) packet; 3) Multiple Tailored (MT) packet mailed in four installments; 4) Multiple Re-Tailored (MRT) MT packets re-tailored between mailings via brief phone surveys. A baseline telephone survey collected information for tailoring as well as evaluation. Follow-up evaluation surveys were collected 4- and 7-months later. Primary outcomes included F&V intake and fat related behaviors. Descriptive statistics, paired t-test and ANOVA were used to examine the effectiveness of different methods of delivering tailored nutrition information. Results Both the ST and MT groups reported significantly higher F&V intake at 4-months than the NT and MRT groups. At 7 months, only the MT group still had significantly higher F&V intake compared to the NT group. For changes in fat-related behaviors, both the MT and MRT groups showed more change than NT at 4 months, but at 7 months, while these differences persisted, they were no longer statistically significant. There was a significant interaction of experimental group by education for change in F&V intake (P = .0085) with the lowest educational group demonstrating the most change. Conclusion In this study, tailored interventions were more effective than non-tailored interventions in improving the short-term dietary behaviors of low income, ethnically diverse participants. Delivery of information in multiple smaller doses over time appeared to improve effectiveness. Future studies should determine which variables are mediators of dietary change and whether these differ by participant demographics. Moreover, future research should differentiate the effects of tailoring vs. cultural adaptation in ethnically diverse populations and study the dissemination of tailored interventions into community-based settings. Trial registration Current Controlled Trials # NCT00301691. PMID:19416525
idRHa+ProMod - Rail Hardening Control System
NASA Astrophysics Data System (ADS)
Ferro, L.
2016-03-01
idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl
Lagisetty, Pooja A.; Priyadarshini, Shubadra; Terrell, Stephanie; Hamati, Mary; Landgraf, Jessica; Chopra, Vineet; Heisler, Michele
2017-01-01
Purpose The purpose of this study is to (a) assess the effectiveness of culturally tailored diabetes prevention interventions in minority populations and (b) develop a novel framework to characterize four key domains of culturally tailored interventions. Prevention strategies specifically tailored to the culture of ethnic minority patients may help reduce the incidence of diabetes. Methods We searched PubMed, EMBASE, and CINAHL for English-language, randomized controlled trials (RCTs) or quasi-experimental (QE) trials testing culturally tailored interventions to prevent diabetes in minority populations. Two reviewers independently extracted data and assessed risk of bias. Inductive thematic analysis was used to develop a framework with four domains (FiLLM: Facilitating [i.e., delivering] Interventions through Language, Location and Message). The framework was used to assess the overall effectiveness of culturally tailored interventions. Results Thirty-four trials met eligibility criteria. Twelve studies were randomized controlled trials, and 22 were quasi-experimental trials. Twenty-five out of 34 studies (74%) that used cultural tailoring demonstrated significantly improved Hemoglobin A1C, fasting glucose, and/or weight loss. Of the 25 successful interventions, 21 (84%) incorporated at least three culturally targeted domains. Seven studies used all four domains and were all successful. The least utilized domain was delivery (4/34) of the intervention’s key educational message. Conclusions Culturally tailoring interventions across the four domains of facilitators, language, location, and messaging can be effective in improving risk factors for progression to diabetes among ethnic minority groups. Future studies should evaluate how specific tailoring approaches work compared to usual care as well as comparative effectiveness of each tailoring domain. Registration (PROSPERO registration: CRD42015016914) PMID:28118127
Jerant, Anthony; Kravitz, Richard L; Sohler, Nancy; Fiscella, Kevin; Romero, Raquel L; Parnes, Bennett; Tancredi, Daniel J; Aguilar-Gaxiola, Sergio; Slee, Christina; Dvorak, Simon; Turner, Charles; Hudnut, Andrew; Prieto, Francisco; Franks, Peter
2014-01-01
Interventions tailored to sociopsychological factors associated with health behaviors have promise for reducing colorectal cancer screening disparities, but limited research has assessed their impact in multiethnic populations. We examined whether an interactive multimedia computer program (IMCP) tailored to expanded health belief model sociopsychological factors could promote colorectal cancer screening in a multiethnic sample. We undertook a randomized controlled trial, comparing an IMCP tailored to colorectal cancer screening self-efficacy, knowledge, barriers, readiness, test preference, and experiences with a nontailored informational program, both delivered before office visits. The primary outcome was record-documented colorectal cancer screening during a 12-month follow-up period. Secondary outcomes included postvisit sociopsychological factor status and discussion, as well as clinician recommendation of screening during office visits. We enrolled 1,164 patients stratified by ethnicity and language (49.3% non-Hispanic, 27.2% Hispanic/English, 23.4% Hispanic/Spanish) from 26 offices around 5 centers (Sacramento, California; Rochester and the Bronx, New York; Denver, Colorado; and San Antonio, Texas). Adjusting for ethnicity/language, study center, and the previsit value of the dependent variable, compared with control patients, the IMCP led to significantly greater colorectal cancer screening knowledge, self-efficacy, readiness, test preference specificity, discussion, and recommendation. During the followup period, 132 (23%) IMCP and 123 (22%) control patients received screening (adjusted difference = 0.5 percentage points, 95% CI -4.3 to 5.3). IMCP effects did not differ significantly by ethnicity/language. Sociopsychological factor tailoring was no more effective than nontailored information in encouraging colorectal cancer screening in a multiethnic sample, despite enhancing sociopsychological factors and visit behaviors associated with screening. The utility of sociopsychological tailoring in addressing screening disparities remains uncertain.
de Ruijter, D; Smit, E S; de Vries, H; Hoving, C
2016-05-01
Dutch practice nurses sub-optimally adhere to evidence-based smoking cessation guidelines. Web-based computer-tailoring could be effective in improving their guideline adherence. Therefore, this paper aims to describe the development of a web-based computer-tailored program and the design of a randomized controlled trial testing its (cost-)effectiveness. Theoretically grounded in the I-Change Model and Self-Determination Theory, and based on the results of a qualitative needs assessment among practice nurses, a web-based computer-tailored program was developed including three modules with tailored advice, an online forum, modules with up-to-date information about smoking cessation, Frequently Asked Questions (FAQs) and project information, and a counseling checklist. The program's effects are assessed by comparing an intervention group (access to all modules) with a control group (access to FAQs, project information and counseling checklist only). Smoking cessation guideline adherence and behavioral predictors (i.e. intention, knowledge, attitude, self-efficacy, social influence, action and coping planning) are measured at baseline and at 6- and 12-month follow-up. Additionally, the program's indirect effects on smokers' quit rates and the number of quit attempts are assessed after 6 and 12months. This paper describes the development of a web-based computer-tailored adherence support program for practice nurses and the study design of a randomized controlled trial testing its (cost-)effectiveness. This program potentially contributes to improving the quality of smoking cessation care in Dutch general practices. If proven effective, the program could be adapted for use by other healthcare professionals, increasing the public health benefits of improved smoking cessation counseling for smokers. Copyright © 2016 Elsevier Inc. All rights reserved.
2013-01-01
Background Chronic Obstructive Pulmonary Disease (COPD) is a major cause of morbidity and mortality. Effective self-management support interventions are needed to improve the health and functional status of people with COPD or at risk for COPD. Computer-tailored technology could be an effective way to provide this support. Methods/Design This paper presents the protocol of a randomised controlled trial testing the effectiveness of a web-based, computer-tailored self-management intervention to change health behaviours of people with or at risk for COPD. An intervention group will be compared to a usual care control group, in which the intervention group will receive a web-based, computer-tailored self-management intervention. Participants will be recruited from an online panel and through general practices. Outcomes will be measured at baseline and at 6 months. The primary outcomes will be smoking behaviour, measuring the 7-day point prevalence abstinence and physical activity, measured in minutes. Secondary outcomes will include dyspnoea score, quality of life, stages of change, intention to change behaviour and alternative smoking behaviour measures, including current smoking behaviour, 24-hour point prevalence abstinence, prolonged abstinence, continued abstinence and number of quit attempts. Discussion To the best of our knowledge, this will be the first randomised controlled trial to test the effectiveness of a web-based, computer-tailored self-management intervention for people with or at risk for COPD. The results will be important to explore the possible benefits of computer-tailored interventions for the self-management of people with or at risk for COPD and potentially other chronic health conditions. Dutch trial register NTR3421 PMID:23742208
Palmero, Paola; Kern, Frank; Sommer, Frank; Lombardi, Mariangela; Gadow, Rainer; Montanaro, Laura
2014-12-30
Ceramic nanocomposites, containing at least one phase in the nanometric dimension, have received special interest in recent years. They have, in fact, demonstrated increased performance, reliability and lifetime with respect to monolithic ceramics. However, a successful approach to the production of tailored composite nanostructures requires the development of innovative concepts at each step of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering.This review aims to deepen understanding of some of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on alumina-based composite systems. Two case studies are presented and briefly discussed. The former illustrates the benefits, in terms of sintered microstructure and related mechanical properties, resulting from the application of an engineering approach to a laboratory-scale protocol for the elaboration of nanocomposites in the system alumina-ZrO2-YAG (yttrium aluminium garnet). The latter illustrates the manufacturing of alumina-based composites for large-scale applications such as cutting tools, carried out by an injection molding process. The need for an engineering approach to be applied in all processing steps is demonstrated also in this second case study, where a tailored manufacturing process is required to obtain the desired results.
Hinton, Kendra E; Lahey, Benjamin B; Villalta-Gil, Victoria; Boyd, Brian D; Yvernault, Benjamin C; Werts, Katherine B; Plassard, Andrew J; Applegate, Brooks; Woodward, Neil D; Landman, Bennett A; Zald, David H
2018-01-01
Go/no-go tasks are widely used to index cognitive control. This construct has been linked to white matter microstructure in a circuit connecting the right inferior frontal gyrus (IFG), subthalamic nucleus (STN), and pre-supplementary motor area. However, the specificity of this association has not been tested. A general factor of white matter has been identified that is related to processing speed. Given the strong processing speed component in successful performance on the go/no-go task, this general factor could contribute to task performance, but the general factor has often not been accounted for in past studies of cognitive control. Further, studies on cognitive control have generally employed small unrepresentative case-control designs. The present study examined the relationship between go/no-go performance and white matter microstructure in a large community sample of 378 subjects that included participants with a range of both clinical and subclinical nonpsychotic psychopathology. We found that white matter microstructure properties in the right IFG-STN tract significantly predicted task performance, and remained significant after controlling for dimensional psychopathology. The general factor of white matter only reached statistical significance when controlling for dimensional psychopathology. Although the IFG-STN and general factor tracts were highly correlated, when both were included in the model, only the IFG-STN remained a significant predictor of performance. Overall, these findings suggest that while a general factor of white matter can be identified in a young community sample, white matter microstructure properties in the right IFG-STN tract show a specific relationship to cognitive control. The findings highlight the importance of examining both specific and general correlates of cognition, especially in tasks with a speeded component.
Damanik, Febriyani F R; Rothuizen, Tonia C; van Blitterswijk, Clemens; Rotmans, Joris I; Moroni, Lorenzo
2014-09-19
Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiinflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.
Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia
Fiume, Elisa; Miola, Marta; Leone, Federica; Onida, Barbara; Laviano, Francesco; Gerbaldo, Roberto; Verné, Enrica
2018-01-01
This work deals with the synthesis and characterization of novel Fe-containing sol-gel materials obtained by modifying the composition of a binary SiO2-CaO parent glass with the addition of Fe2O3. The effect of different processing conditions (calcination in air vs. argon flowing) on the formation of magnetic crystalline phases was investigated. The produced materials were analyzed from thermal (hot-stage microscopy, differential thermal analysis, and differential thermal calorimetry) and microstructural (X-ray diffraction) viewpoints to assess both the behavior upon heating and the development of crystalline phases. N2 adsorption–desorption measurements allowed determining that these materials have high surface area (40–120 m2/g) and mesoporous texture with mesopore size in the range of 18 to 30 nm. It was assessed that the magnetic properties can actually be tailored by controlling the Fe content and the environmental conditions (oxidant vs. inert atmosphere) during calcination. The glasses and glass-ceramics developed in this work show promise for applications in bone tissue healing which require the use of biocompatible magnetic implants able to elicit therapeutic actions, such as hyperthermia for bone cancer treatment. PMID:29361763
NASA Astrophysics Data System (ADS)
Damanik, Febriyani F. R.; Rothuizen, Tonia C.; van Blitterswijk, Clemens; Rotmans, Joris I.; Moroni, Lorenzo
2014-09-01
Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.
Enhanced gamma ray sensitivity in bismuth triiodide sensors through volumetric defect control
Johns, Paul M.; Baciak, James E.; Nino, Juan C.
2016-09-02
In some of the more attractive semiconducting compounds for ambient temperature radiation detector applications are impacted by low charge collection efficiency due to the presence of point and volumetric defects. This has been particularly true in the case of BiI 3, which features very attractive properties (density, atomic number, band gap, etc.) to serve as a gamma ray detector, but has yet to demonstrate its full potential. Here, we show that by applying growth techniques tailored to reduce defects, the spectral performance of this promising semiconductor can be realized. Gamma ray spectra from >100 keV source emissions are now obtainedmore » from high quality Sb:BiI 3 bulk crystals with limited concentrations of defects (point and extended). The spectra acquired in these high quality crystals feature photopeaks with resolution of 2.2% at 662 keV. Infrared microscopy is used to compare the local microstructure between radiation sensitive and non-responsive crystals. Our work demonstrates that BiI 3 can be prepared in melt-grown detector-grade samples with superior quality and can acquire the spectra from a variety of gamma ray sources.« less
Early stages of zeolite growth
NASA Astrophysics Data System (ADS)
Kumar, Sandeep
Zeolites are crystalline nonporous aluminosilicates with important applications in separation, purification, and adsorption of liquid and gaseous molecules. However, an ability to tailor the zeolite microstructure, such as particle size/shape and pore-size, to make it benign for specific application requires control over nucleation and particle growth processes. But, the nucleation and crystallization mechanisms of zeolites are not fully understood. In this context, the synthesis of an all-silica zeolite with MFI-type framework has been studied extensively as a model system. Throughout chapters 2, 4 and 5, MFI growth process has been investigated by small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Of fundamental importance is the role of nanoparticles (~5 nm), which are present in the precursor sol, in MFI nucleation and crystallization. Formation of amorphous aggregates and their internal restructuring are concluded as essential steps in MFI nucleation. Early stage zeolite particles have disordered and less crystalline regions within, which indicates the role of structurally distributed population of nanoparticles in growth. Faceting occurs after the depletion of nanoparticles. The chapter 6 presents growth studies in silica sols prepared by using a dimer of tertaprpylammonium (TPA) and reports that MFI nucleation and crystallization are delayed with a more pronounced delay in crystal growth.
NASA Astrophysics Data System (ADS)
Sarakinos, Kostas
2016-09-01
Synthesis of multicomponent thin films using vapor fluxes with a modulated deposition pattern is a potential route for accessing a wide gamut of atomic arrangements and morphologies for property tuning. In the current study, we present a research concept that allows for understanding the combined effect of flux modulation, kinetics and thermodynamics on the growth of multinary thin films. This concept entails the combined use of thin film synthesis by means of multiatomic vapor fluxes modulated with sub-monolayer resolution, deterministic growth simulations and nanoscale microstructure probes. Using this research concept we study structure formation within the archetype immiscible Ag-Cu binary system showing that atomic arrangement and morphology at different length scales is governed by diffusion of near-surface Ag atoms to encapsulate 3D Cu islands growing on 2D Ag layers. Moreover, we explore the relevance of the mechanism outlined above for morphology evolution and structure formation within the miscible Ag-Au binary system. The knowledge generated and the methodology presented herein provides the scientific foundation for tailoring atomic arrangement and physical properties in a wide range of miscible and immiscible multinary systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J.S.; Miyamoto, Y.
The fracture behavior of graded Al{sub 2}O{sub 3}/TiC/Ni materials with a symmetric structure was investigated using single-edge notch-bend (SENB) specimens with surface compression. The fracture toughness of the graded materials was determined according to ASTM Standard E399. The results show that the effective fracture toughness increases with an increase in notch depth in the compressive stress zone, and reaches the maximum of 39.2 MPa m{sup 1/2} at the interface of compressive/tensile stress zones. Finite elements analysis reveals that the surface compression will be intensified at the notch root once the specimen is edge-notched because of the stress concentration, and themore » digress of the compressive stress intensification increases with an increase in notch depth. The dependence of the effective fracture toughness of the graded materials on the notch depth shows a behavior similar to the R-curve that is usually associated with microstructural toughening mechanisms. This toughening behavior is caused by the intensification of the compressive stress concentration with the increase of the notch depth. A theoretical analysis based on fracture mechanics verifies that the mechanical reliability of brittle ceramics can be improved effectively by tailoring and controlling the internal stresses.« less
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Tainger, Karen M.
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
NASA Astrophysics Data System (ADS)
Ellerby, Donald Thomas
1999-12-01
Compared to monolithic ceramics, metal-reinforced ceramic composites offer the potential for improved toughness and reliability in ceramic materials. As such, there is significant scientific and commercial interest in the microstructure and properties of metal-ceramic composites. Considerable work has been conducted on modeling the toughening behavior of metal reinforcements in ceramics; however, there has been limited application and testing of these concepts on real systems. Composites formed by newly developed reactive processes now offer the flexibility to systematically control metal-ceramic composite microstructure, and to test some of the property models that have been proposed for these materials. In this work, the effects of metal-ceramic composite microstructure on resistance curve (R-curve) behavior, strength, and reliability were systematically investigated. Al/Al2O3 composites were formed by reactive metal penetration (RMP) of aluminum metal into aluminosilicate ceramic preforms. Processing techniques were developed to control the metal content, metal composition, and metal ligament size in the resultant composite microstructure. Quantitative stereology and microscopy were used to characterize the composite microstructures, and then the influence of microstructure on strength, toughness, R-curve behavior, and reliability, was investigated. To identify the strength limiting flaws in the composite microstructure, fractography was used to determine the failure origins. Additionally, the crack bridging tractions produced by the metal ligaments in metal-ceramic composites formed by the RMP process were modeled. Due to relatively large flaws and low bridging stresses in RMP composites, no dependence of reliability on R-curve behavior was observed. The inherent flaws formed during reactive processing appear to limit the strength and reliability of composites formed by the RMP process. This investigation has established a clear relationship between processing, microstructure, and properties in metal-ceramic composites formed by the RMP process. RMP composite properties are determined by the metal-ceramic composite microstructure (e.g., metal content and ligament size), which can be systematically varied by processing. Furthermore, relative to the ceramic preforms used to make the composites, metal-ceramic composites formed by RMP generally have improved properties and combinations of properties that make them more desirable for advanced engineering applications.
From micro- to nanostructured implantable device for local anesthetic delivery
Zorzetto, Laura; Brambilla, Paola; Marcello, Elena; Bloise, Nora; De Gregori, Manuela; Cobianchi, Lorenzo; Peloso, Andrea; Allegri, Massimo; Visai, Livia; Petrini, Paola
2016-01-01
Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies could involve specific binding between the drug and the material chosen for the device, and a multiscale approach to reach a tailored, prolonged drug release. PMID:27354799
Processing conditions and microstructural features of porous 316L stainless steel components by DMLS
NASA Astrophysics Data System (ADS)
Gu, Dongdong; Shen, Yifu
2008-12-01
Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, would be especially interesting to produce complex shaped porous metallic components. In the present work, processing conditions and microstructural characteristics of direct laser sintered porous 316L stainless steel components were studied. It was found that a partial melting mechanism of powders gave a high feasibility in obtaining porous sintered structures possessing porosities of ˜21-˜55%. Linear energy density (LED), which was defined by the ratio of laser power to scan speed, was used to tailor the laser sintering mechanism. A moderate LED of ˜3400-˜6000 J/m and a lower scan speed less than 0.06 m/s proved to be feasible. With the favorable sintering mechanism prevailed, lowering laser power or increasing scan speed, scan line spacing, and powder layer thickness generally led to a higher porosity. Metallurgical mechanisms of pore formation during DMLS were addressed. It showed that the presence of pores was through: (i) the formation of liquid bridges between partially melted particles during laser irradiation; and (ii) the growth of sintering necks during solidification, leaving residual pores between solidified metallic agglomerates.
Melt-processed polymeric cellular dosage forms for immediate drug release.
Blaesi, Aron H; Saka, Nannaji
2015-12-28
The present immediate-release solid dosage forms, such as the oral tablets and capsules, comprise granular matrices. While effective in releasing the drug rapidly, they are fraught with difficulties inherent in processing particulate matter. By contrast, liquid-based processes would be far more predictable; but the standard cast microstructures are unsuited for immediate-release because they resist fluid percolation and penetration. In this article, we introduce cellular dosage forms that can be readily prepared from polymeric melts by incorporating the nucleation, growth, and coalescence of microscopic gas bubbles in a molding process. We show that the cell topology and formulation of such cellular structures can be engineered to reduce the length-scale of the mass-transfer step, which determines the time of drug release, from as large as the dosage form itself to as small as the thickness of the cell wall. This allows the cellular dosage forms to achieve drug release rates over an order of magnitude faster compared with those of cast matrices, spanning the entire spectrum of immediate-release and beyond. The melt-processed polymeric cellular dosage forms enable predictive design of immediate-release solid dosage forms by tailoring microstructures, and could be manufactured efficiently in a single step.
Bråthen, Anne Cecilie Sjøli; Rohani, Darius A.; Grydeland, Håkon; Fjell, Anders M.; Walhovd, Kristine B.
2017-01-01
Abstract Age differences in human brain plasticity are assumed, but have not been systematically investigated. In this longitudinal study, we investigated changes in white matter (WM) microstructure in response to memory training relative to passive and active control conditions in 183 young and older adults. We hypothesized that (i) only the training group would show improved memory performance and microstructural alterations, (ii) the young adults would show larger memory improvement and a higher degree of microstructural alterations as compared to the older adults, and (iii) changes in memory performance would relate to microstructural alterations. The results showed that memory improvement was specific to the training group, and that both the young and older participants improved their performance. The young group improved their memory to a larger extent compared to the older group. In the older sample, the training group showed less age‐related decline in WM microstructure compared to the control groups, in areas overlapping the corpus callosum, the cortico‐spinal tract, the cingulum bundle, the superior longitudinal fasciculus, and the anterior thalamic radiation. Less microstructural decline was related to a higher degree of memory improvement. Despite individual adaptation securing sufficient task difficulty, no training‐related group differences in microstructure were found in the young adults. The observed divergence of behavioral and microstructural responses to memory training with age is discussed within a supply‐demand framework. The results demonstrate that plasticity is preserved into older age, and that microstructural alterations may be part of a neurobiological substrate for behavioral improvements in older adults. Hum Brain Mapp 38:5666–5680, 2017. © 2018 The Authors Human Brain Mapping Published byWiley Periodicals, Inc. PMID:28782901
Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr
NASA Astrophysics Data System (ADS)
Jensen, Jacob
High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the nanoscale interpenetrating microstructure was discovered to form via a conditional spinodal reaction pathway involving a congruent ordering transformation preceding spinodal decomposition. In order to gain a comprehensive understanding of the true morphology of these phases and obtain a novel perspective of 3D elemental segregation in the HEA, STEM-high angle annular darkfield (HAADF) micrographs and XEDS spectral images were utilized in the tomographic reconstruction of the microstructure, which was inherently difficult to observe through conventional characterization techniques. The microstructure of the alloy was ultimately refined by incremental variations to the base alloy composition in an effort to remove deleterious intermetallic phases adversely affecting ductility. Despite the excellent compressive strength across a wide range of temperatures and the ability to tailor the microstructure by compositional modifications, microstructural and phase transformations in the desired operating temperature range indicate that the AlMo0.5NbTa0.5TiZr alloy may not be a suitable material for high temperature aerospace structural components.
Method to control artifacts of microstructural fabrication
Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.
2006-09-12
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.
Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy
Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth; ...
2018-03-30
Here, we demonstrate here that locally stabilized structure and compositional segregation at grain boundaries in a complex multicomponent alloy can be modified using high temperature homogenization treatment to influence the kinetics of phase transformations initiating from grain boundaries during subsequent low temperature annealing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography of a model multicomponent metallic alloy —uranium-10 wt% molybdenum (U-10Mo) a nuclear fuel, that is highly relevant to worldwide nuclear non-proliferation efforts, we demonstrate the ability to change the structure and compositional segregation at grain boundary, which then controls the subsequent discontinuous precipitation kinetics during sub-eutectoid annealing.more » A change in grain boundary from one characterized by segregation of Mo and impurities at grain boundary to a phase boundary with a distinct U 2MoSi 2C wetting phase precipitates introducing Ni and Al rich interphase complexions caused a pronounced reduction in area fraction of subsequent discontinuous precipitation. The broader implication of this work is in highlighting the role of grain boundary structure and composition in metallic alloys on dictating the fate of grain boundary initiated phase transformations like discontinuous precipitation or cellular transformation. This work highlights a new pathway to tune the grain boundary structure and composition to tailor the final microstructure of multicomponent metallic alloys.« less
Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth
Here, we demonstrate here that locally stabilized structure and compositional segregation at grain boundaries in a complex multicomponent alloy can be modified using high temperature homogenization treatment to influence the kinetics of phase transformations initiating from grain boundaries during subsequent low temperature annealing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography of a model multicomponent metallic alloy —uranium-10 wt% molybdenum (U-10Mo) a nuclear fuel, that is highly relevant to worldwide nuclear non-proliferation efforts, we demonstrate the ability to change the structure and compositional segregation at grain boundary, which then controls the subsequent discontinuous precipitation kinetics during sub-eutectoid annealing.more » A change in grain boundary from one characterized by segregation of Mo and impurities at grain boundary to a phase boundary with a distinct U 2MoSi 2C wetting phase precipitates introducing Ni and Al rich interphase complexions caused a pronounced reduction in area fraction of subsequent discontinuous precipitation. The broader implication of this work is in highlighting the role of grain boundary structure and composition in metallic alloys on dictating the fate of grain boundary initiated phase transformations like discontinuous precipitation or cellular transformation. This work highlights a new pathway to tune the grain boundary structure and composition to tailor the final microstructure of multicomponent metallic alloys.« less
NASA Astrophysics Data System (ADS)
Zhan, Zhigang; Han, Yuge
2018-01-01
Controlling the spectral characteristics by regulating the geometry of microstructure has become an effective method to meet the requirements of various applications. To mediate the spectral characteristics, metallic subwavelength slits with different structures and color filters consisting of diverse materials were discussed, and then a designed microstructure composed of color filter and metallic slits, which were surrounded by grooves, was put forward for a compatible effect of controlling the spectral characteristics. Afterward, the spectral characteristics of the proposed structure were simulated by finite-difference time-domain method in the wavelength range of 300 to 10,000 nm. Additionally, the effects of geometric parameters on the spectral characteristics were studied. The results show that the presented microstructure can reflect a monochromatic color at the wavelength of 600 nm and its reflectance is ˜40%. The average absorptance near the wavelength of 1060 nm is more than 95%, and the average reflectance in the infrared band exceeds 80%. In conclusion, the compatible spectrum control in three bands (i.e., visible, near-infrared, and mid-infrared) was realized.
Controlling wetting and self-assembly dynamics by tailored hydrophobic and oleophobic surfaces.
Miele, Ermanno; Malerba, Mario; Dipalo, Michele; Rondanina, Eliana; Toma, Andrea; De Angelis, Francesco
2014-06-25
Tailored hydrophobic and oleophobic surfaces are exploited for controlling the wetting behaviour and evaporation process of solution dropped on them. This enables molecules and nano-objects that are dissolved in water or organic solvents to be delivered and arranged in a well-defined 2D layout. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Klesges, Robert C.; DeBon, Margaret; Vander Weg, Mark W.; Haddock, C. Keith; Lando, Harry A.; Relyea, George E.; Peterson, Alan L.; Talcott, G. Wayne
2006-01-01
The authors evaluated the effect of a brief tailored smoking control intervention delivered during basic military training on tobacco use in a population of military personnel (N = 33,215). Participants were randomized to either a tobacco use intervention (smoking cessation, smokeless tobacco use cessation, or prevention depending on tobacco…
Tailored Excitation for Frequency Response Measurement Applied to the X-43A Flight Vehicle
NASA Technical Reports Server (NTRS)
Baumann, Ethan
2007-01-01
An important aspect of any flight research project is assessing aircraft stability and flight control performance. In some programs this assessment is accomplished through the estimation of the in-flight vehicle frequency response. This estimation has traditionally been a lengthy task requiring separate swept sine inputs for each control axis at a constant flight condition. Hypersonic vehicles spend little time at any specific flight condition while they are decelerating. Accordingly, it is difficult to use traditional methods to calculate the vehicle frequency response and stability margins for this class of vehicle. A technique has been previously developed to significantly reduce the duration of the excitation input by tailoring the input to excite only the frequency range of interest. Reductions in test time were achieved by simultaneously applying tailored excitation signals to multiple control loops, allowing a quick estimate of the frequency response of a particular aircraft. This report discusses the flight results obtained from applying a tailored excitation input to the X-43A longitudinal and lateral-directional control loops during the second and third flights. The frequency responses and stability margins obtained from flight data are compared with preflight predictions.
Weymann, Nina; Dirmaier, Jörg; von Wolff, Alessa; Kriston, Levente; Härter, Martin
2015-03-03
The prevalence of chronic diseases such as type 2 diabetes and chronic low back pain is rising. Patient empowerment is a key strategy in the management of chronic diseases. Patient empowerment can be fostered by Web-based interactive health communication applications (IHCAs) that combine health information with decision support, social support, and/or behavioral change support. Tailoring the content and tone of IHCAs to the needs of individual patients might improve their effectiveness. The main objective was to test the effectiveness of a Web-based, tailored, fully automated IHCA for patients with type 2 diabetes or chronic low back pain against a standard website with identical content without tailoring (control condition) on patients' knowledge and empowerment. We performed a blinded randomized trial with a parallel design. In the intervention group, the content was delivered in dialogue form, tailored to relevant patient characteristics. In the control group, the sections of the text were presented in a content tree without any tailoring. Participants were recruited online and offline and were blinded to their group assignments. Measurements were taken at baseline (t0), directly after the first visit (t1), and at 3-month follow-up (t2). The primary hypothesis was that the tailored IHCA would have larger effects on knowledge and patient empowerment (primary outcomes) than the control website. The secondary outcomes were decisional conflict and preparation for decision making. All measurements were conducted by online self-report questionnaires. Intention-to-treat (ITT) and available cases (AC) analyses were performed for all outcomes. A total of 561 users agreed to participate in the study. Of these, 179 (31.9%) had type 2 diabetes and 382 (68.1%) had chronic low back pain. Usage was significantly higher in the tailored system (mean 51.2 minutes) than in the control system (mean 37.6 minutes; P<.001). Three months after system use, 52.4% of the sample was retained. There was no significant intervention effect in the ITT analysis. In the AC analysis, participants using the tailored system displayed significantly more knowledge at t1 (P=.02) and more emotional well-being (subscale of empowerment) at t2 (P=.009). The estimated mean difference between the groups was 3.9 (95% CI 0.5-7.3) points for knowledge and 25.4 (95% CI 6.3-44.5) points for emotional well-being on a 0-100 points scale. The primary analysis did not support the study hypothesis. However, content tailoring and interactivity may increase knowledge and reduce health-related negative effects in persons who use IHCAs. There were no main effects of the intervention on other dimensions of patient empowerment or decision-related outcomes. This might be due to our tailored IHCA being, at its core, an educational intervention offering health information in a personalized, empathic fashion that merely additionally provides decision support. Tailoring and interactivity may not make a difference with regard to these outcomes. International Clinical Trials Registry: DRKS00003322; http://apps.who.int/trialsearch/Trial2.aspx?TrialID=DRKS00003322 (Archived by WebCite at http://www.webcitation.org/6WPO0lJwE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu Fengyu; Chemistry and Pharmaceutical College, Jiamusi University, Jiamusi 154007; Zhu Guangshan
2006-07-15
A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N{sub 2} adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drugmore » release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N{sub 2} adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers.« less
LPWA using supersonic gas jet with tailored density profile
NASA Astrophysics Data System (ADS)
Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras
2016-10-01
Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.
Synthesis and microstructural control of flower-like cadmium germanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.Z., E-mail: lzpei@ahut.edu.cn; Yang, Y.; Pei, Y.Q.
Flower-like Cd{sub 2}Ge{sub 2}O{sub 6} have been synthesized using a facile hydrothermal process with ethylenediamine. The roles of hydrothermal conditions on the size and morphology of the flower-like Cd{sub 2}Ge{sub 2}O{sub 6} were investigated. The research results show that the obtained Cd{sub 2}Ge{sub 2}O{sub 6} presents a flower-like microstructures composed by radial nanorods with diameter of 50-100 nm and length of 0.5-2 {mu}m, respectively. The formation mechanism of the flower-like Cd{sub 2}Ge{sub 2}O{sub 6} is explained according to the ethylenediamine-assisted nucleation-'Ostwald ripening' process. - Highlights: {yields}Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures were synthesized using ethylenediamine. {yields}Cd{sub 2}Ge{sub 2}O{sub 6} flower-likemore » microstructures can be controlled by growth conditions. {yields}Ethylenediamine induces the growth of the Cd{sub 2}Ge{sub 2}O{sub 6} flower-like microstructures.« less
NASA Astrophysics Data System (ADS)
Zhao, Yu; Xu, Songsong; Zou, Yun; Li, Jinhui; Zhang, Z. W.
High strength low alloy (HSLA) steels with high strength, high toughness, good corrosion resistance and weldability, can be widely used in shipbuilding, automobile, construction, bridging industry, etc. The microstructure evolution and mechanical properties can be influenced by thermomechanical processing. In this study, themomechanical processing is optimized to control the matrix microstructure and nano-scale precipitates in the matrix simultaneously. It is found that the low-temperature toughness and ductility of the steels are significantly the matrix microstructure during enhancing the strength by introducing the nano-scale precipitates. The effects of alloying elements on the microstructure evolution and nano-scale precipitation are also discussed.
Lay Health Influencers: How They Tailor Brief Tobacco Cessation Interventions
Yuan, Nicole P.; Castañeda, Heide; Nichter, Mark; Nichter, Mimi; Wind, Steven; Carruth, Lauren; Muramoto, Myra
2014-01-01
Interventions tailored to individual smoker characteristics have increasingly received attention in the tobacco control literature. The majority of tailored interventions are generated by computers and administered with printed materials or Web-based programs. The purpose of this study was to examine the tailoring activities of community lay health influencers who were trained to perform face-to-face brief tobacco cessation interventions. Eighty participants of a large-scale, randomized controlled trial completed a 6-week qualitative follow-up interview. A majority of participants (86%) reported that they made adjustments in their intervention behaviors based on individual smoker characteristics, their relationship with the smoker, and/or setting. Situational contexts (i.e., location and timing) primarily played a role after targeted smokers were selected. The findings suggest that lay health influencers benefit from a training curriculum that emphasizes a motivational, person-centered approach to brief cessation interventions. Recommendations for future tobacco cessation intervention trainings are presented. PMID:21986244
Lay health influencers: how they tailor brief tobacco cessation interventions.
Yuan, Nicole P; Castañeda, Heide; Nichter, Mark; Nichter, Mimi; Wind, Steven; Carruth, Lauren; Muramoto, Myra
2012-10-01
Interventions tailored to individual smoker characteristics have increasingly received attention in the tobacco control literature. The majority of tailored interventions are generated by computers and administered with printed materials or web-based programs. The purpose of this study was to examine the tailoring activities of community lay health influencers who were trained to perform face-to-face brief tobacco cessation interventions. Eighty participants of a large-scale, randomized controlled trial completed a 6-week qualitative follow-up interview. A majority of participants (86%) reported that they made adjustments in their intervention behaviors based on individual smoker characteristics, their relationship with the smoker, and/or setting. Situational contexts (i.e., location and timing) primarily played a role after targeted smokers were selected. The findings suggest that lay health influencers benefit from a training curriculum that emphasizes a motivational, person-centered approach to brief cessation interventions. Recommendations for future tobacco cessation intervention trainings are presented.
Rasotto, Chiara; Bergamin, Marco; Sieverdes, John C; Gobbo, Stefano; Alberton, Cristine L; Neunhaeuserer, Daniel; Maso, Stefano; Zaccaria, Marco; Ermolao, Andrea
2015-02-01
The aim of this study was to evaluate a tailored physical activity protocol performed in a work environment with a group of female workers employed in manual precision tasks to reduce upper limb pain. Sixty female subjects were randomly assigned to an intervention group or a control group. The IG was administered of a 6-month, twice-a-week, tailored exercise program, whereas the CG received no intervention. The IG showed a reduction on shoulder pain accompanied by increases on the range of motion measures. In addition, reductions in upper limb pain and neck disability were detected with concomitant increases in grip strength. This study indicated positive effects of a tailored workplace exercise protocol in female workers exposed to moderate risk for work-related musculoskeletal disorders, showing clinically meaningful reductions of pain symptoms and disability on upper limb and neck regions.
Bartholomew, Leona K.; McQueen, Amy; Bettencourt, Judy L.; Greisinger, Anthony; Coan, Sharon P.; Lairson, David; Chan, Wenyaw; Hawley, S. T.; Myers, R. E.
2012-01-01
Background There have been few studies of tailored interventions to promote colorectal cancer (CRC) screening. Purpose We conducted a randomized trial of a tailored, interactive intervention to increase CRC screening. Methods Patients 50–70 years completed a baseline survey, were randomized to one of three groups, and attended a wellness exam after being exposed to a tailored intervention about CRC screening (tailored group), a public web site about CRC screening (web site group), or no intervention (survey-only group). The primary outcome was completion of any recommended CRC screening by 6 months. Results There was no statistically significant difference in screening by 6 months: 30%, 31%, and 28% of the survey-only, web site, and tailored groups were screened. Exposure to the tailored intervention was associated with increased knowledge and CRC screening self-efficacy at 2 weeks and 6 months. Family history, prior screening, stage of change, and physician recommendation moderated the intervention effects. Conclusions A tailored intervention was not more effective at increasing screening than a public web site or only being surveyed. PMID:21271365
NASA Technical Reports Server (NTRS)
Gandin, Charles-Andre; Ratke, Lorenz
2008-01-01
The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.
Microstructural design in low alloy steels
NASA Technical Reports Server (NTRS)
Honeycombe, R. W. K.
1982-01-01
The evolution of microalloyed steels from plain carbon steels is examined with emphasis on grain size control by use of Nb, Ti and V additions and by the application of controlled rolling. The structural changes during controlled rolling are described as well as the influence of alloying elements on these changes, and on the final microstructure. The achievement of high strength and toughness is discussed including the role of inclusions.
Context, confidentiality, and consent in tailored health communications: a cautionary note.
Orleans, C T
1999-01-01
This article highlights key contextual factors that emerge when the evolution of tailored health communications is viewed against the backdrop of dynamic changes in the nation's health care system--including the shift from fee-for-service medicine to managed care and the proliferation of direct-to-consumer and tailored marketing strategies in the pharmaceutical industry. It focuses on contextual variables with potential to significantly mediate the impact of personally tailored health advice--including those related to confidentiality, privacy, and informed consent and to the perceived aims, intents, and sources of tailored health messages. To protect the future of tailored health messages, more research attention must be given to defining these contextual factors and understanding the roles that they play and the ways in which they can be controlled to assure the best outcomes. Such research could point the way towards a set of empirical and ethical "best practices" based on a scientific understanding of how to maximize the benefits, and minimize the potential harms, of the widescale use of tailored health communications.
NASA Technical Reports Server (NTRS)
Jutte, Christine; Stanford, Bret K.
2014-01-01
This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrite irritator control for the EDSE in the Microgravity Development Lab (MDL).
ERIC Educational Resources Information Center
Kroeze, Willemieke; Oenema, Anke; Campbell, Marci; Brug, Johannes
2008-01-01
Objective: To test and compare the efficacy of interactive- and print-delivered computer-tailored nutrition education targeting saturated fat intake reduction. Design: A 3-group randomized, controlled trial (2003-2005) with posttests at 1 and 6 months post-intervention. Setting: Worksites and 2 neighborhoods in the urban area of Rotterdam.…
ERIC Educational Resources Information Center
Kroeze, Willemieke; Oenema, Anke; Dagnelie, Pieter C.; Brug, Johannes
2008-01-01
This study investigated the minimally required feedback elements of a computer-tailored dietary fat reduction intervention to be effective in improving fat intake. In all 588 Healthy Dutch adults were randomly allocated to one of four conditions in an randomized controlled trial: (i) feedback on dietary fat intake [personal feedback (P feedback)],…
Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang
2017-04-27
Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.
Solidification microstructures in single-crystal stainless steel melt pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sipf, J.B.; Boatner, L.A.; David, S.A.
1994-03-01
Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. Thesemore » results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.« less
2012-01-01
Background A major problem with rehabilitation interventions for neck pain is that the condition may have multiple causes, thus a single treatment approach is seldom efficient. The present study protocol outlines a single blinded randomised controlled trial evaluating the effect of tailored treatment for neck-shoulder pain. The treatment is based on a decision model guided by standardized clinical assessment and functional tests with cut-off values. Our main hypothesis is that the tailored treatment has better short, intermediate and long-term effects than either non-tailored treatment or treatment-as-usual (TAU) on pain and function. We sub-sequentially hypothesize that tailored and non-tailored treatment both have better effect than TAU. Methods/Design 120 working women with minimum six weeks of nonspecific neck-shoulder pain aged 20–65, are allocated by minimisation with the factors age, duration of pain, pain intensity and disability in to the groups tailored treatment (T), non-tailored treatment (NT) or treatment-as-usual (TAU). Treatment is given to the groups T and NT for 11 weeks (27 sessions evenly distributed). An extensive presentation of the tests and treatment decision model is provided. The main treatment components are manual therapy, cranio-cervical flexion exercise and strength training, EMG-biofeedback training, treatment for cervicogenic headache, neck motor control training. A decision algorithm based on the baseline assessment determines the treatment components given to each participant of T- and NT-groups. Primary outcome measures are physical functioning (Neck Disability Index) and average pain intensity last week (Numeric Rating Scale). Secondary outcomes are general improvement (Patient Global Impression of Change scale), symptoms (Profile Fitness Mapping neck questionnaire), capacity to work in the last 6 weeks (quality and quantity) and pressure pain threshold of m. trapezius. Primary and secondary outcomes will be reported for each group with effect size and its precision. Discussion We have chosen not to include women with psychological ill-health and focus on biomedical aspects of neck pain. Future studies should aim at including psychosocial aspects in a widened treatment decision model. No important adverse events or side-effects are expected. Trial registration Current Controlled Trials registration ISRCTN49348025. PMID:22607546
NASA Astrophysics Data System (ADS)
Tang, Jun; Hong, Mengqing; Wang, Yongqiang; Qin, Wenjing; Ren, Feng; Dong, Lan; Wang, Hui; Hu, Lulu; Cai, Guangxu; Jiang, Changzhong
2018-03-01
High-performance radiation tolerance materials are crucial for the success of future advanced nuclear reactors. In this paper, we present a further investigation that the "vein-like" nanochannel films can enhance radiation tolerance under ion irradiation at high temperature and post-irradiation annealing. The chromium nitride (CrN) nanochannel films with different nanochannel densities and the compact CrN film are chosen as a model system for these studies. Microstructural evolution of these films were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Elastic Recoil Detection (ERD) and Grazing Incidence X-ray Diffraction (GIXRD). Under the high fluence He+ ion irradiation at 500 °C, small He bubbles with low bubble densities are observed in the irradiated nanochannel CrN films, while the aligned large He bubbles, blistering and texture reconstruction are found in the irradiated compact CrN film. For the heavy Ar2+ ion irradiation at 500 °C, the microstructure of the nanochannel CrN RT film is more stable than that of the compact CrN film due to the effective releasing of defects via the nanochannel structure. Under the He+ ion irradiation and subsequent annealing, compared with the compact film, the nanochannel films have excellent performance for the suppression of He bubble growth and possess the strong microstructural stability. Basing on the analysis on the sizes and number densities of bubbles as well as the concentrations of He retained in the nanochannel CrN films and the compact CrN film under different experimental conditions, potential mechanism for the enhanced radiation tolerance are discussed. Nanochannels play a crucial role on the release of He/defects under ion irradiation. We conclude that the tailored "vein-like" nanochannel structure may be used as advanced radiation tolerance materials for future nuclear reactors.
NASA Astrophysics Data System (ADS)
Lin, Wenhu; Li, Fang; Wu, Dongsheng; Chen, Xiaoguan; Hua, Xueming; Pan, Hua
2018-03-01
22MnB5 hot stamping steels are gradually being used in tailor-welded blank applications. In this experiment, 1-mm-thick Al-Si coated and de-coated 22MnB5 steels were laser-welded and then hot-stamped. The chemical compositions, solidification process, microstructure and mechanical properties were investigated to reveal the effect of Al-Si coating and heat treatment. In the welded condition, the coated joints had an Al content of approximately 2.5 wt.% in the fusion zone and the de-coated joints had 0.5 wt.% Al. The aluminum promoted the δ-ferrite formation as the skeletal structure during solidification. In the high-aluminum weld, the microstructure consisted of martensite and long and band-like δ-ferrite. Meanwhile, the low-aluminum weld was full of lath martensite. After the hot stamping process, the δ-ferrite fraction increased from 10 to 24% in the coated joints and the lath martensite became finer in the de-coated joints. The tensile strengths of the coated joints or de-coated joints were similar to that before hot stamping, but the strength of the coated joints was reduced heavily after hot stamping compared to the de-coated joints and base material. The effect of δ-ferrite on the tensile properties became stronger when the fusion zone was soft and deformed first in the hot-stamped specimens. The coated weld showed a brittle fracture surface with many cleavage planes, and the de-coated weld showed a ductile fracture surface with many dimples in hot-stamped conditions.
NASA Technical Reports Server (NTRS)
Mourey, D. J.
1979-01-01
The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.
Effectiveness of web-based tailored smoking cessation advice reports (iQuit): a randomized trial.
Mason, Dan; Gilbert, Hazel; Sutton, Stephen
2012-12-01
To determine whether web-based tailored cessation advice, based on social cognitive theory and the perspectives on change model, was more effective in aiding a quit attempt than broadly similar web-based advice that was not tailored. Participants were allocated randomly to one of two groups, to receive either a cessation advice report and progress report that were tailored to individual-level characteristics or a cessation advice report that presented standardized (non-tailored) content. Tailoring was based on smoking-related beliefs, personal characteristics and smoking patterns, self-efficacy and outcome expectations. Participant enrolment and baseline assessments were conducted remotely online via the study website, with the advice reports presented by the same website. Participants (n = 1758) were visitors to the QUIT website who were based in the United Kingdom, aged 18 years or over and who smoked cigarettes or hand-rolled tobacco. Follow-up assessments were made at 6 months by telephone interview. The primary outcome measure was self-reported 3 months prolonged abstinence, and secondary outcomes were 1 month prolonged abstinence, 7-day and 24-hour point prevalence abstinence. The intervention group did not differ from the control group on the primary outcome (9.1% versus 9.3%; odds ratio = 1.02 95% confidence interval 0.73-1.42) or on any of the secondary outcomes. Intervention participants gave more positive evaluations of the materials than control participants. A web-based intervention that tailored content according to smoking-related beliefs, personal characteristics and smoking patterns, self-efficacy and outcome expectations, was not more effective than web-based materials presenting broadly similar non-tailored information. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.
Schulz, Daniela N; Candel, Math Jjm; Kremers, Stef Pj; Reinwand, Dominique A; Jander, Astrid; de Vries, Hein
2013-09-17
Web-based tailored interventions provide users with information that is adapted to their individual characteristics and needs. Randomized controlled trials assessing the effects of tailored alcohol self-help programs among adults are scarce. Furthermore, it is a challenge to develop programs that can hold respondents' attention in online interventions. To assess whether a 3-session, Web-based tailored intervention is effective in reducing alcohol intake in high-risk adult drinkers and to compare 2 computer-tailoring feedback strategies (alternating vs summative) on behavioral change, dropout, and appreciation of the program. A single-blind randomized controlled trial was conducted with an experimental group and a control group (N=448) in Germany in 2010-2011. Follow-up took place after 6 months. Drinking behavior, health status, motivational determinants, and demographics were assessed among participants recruited via an online access panel. The experimental group was divided into 2 subgroups. In the alternating condition (n=132), the tailored feedback was split into a series of messages discussing individual topics offered while the respondent was filling out the program. Participants in the summative condition (n=181) received all advice at once after having answered all questions. The actual texts were identical for both conditions. The control group (n=135) only filled in 3 questionnaires. To identify intervention effects, logistic and linear regression analyses were conducted among complete cases (n=197) and after using multiple imputation. Among the complete cases (response rate: 197/448, 44.0%) who did not comply with the German national guideline for low-risk drinking at baseline, 21.1% of respondents in the experimental group complied after 6 months compared with 5.8% in the control group (effect size=0.42; OR 2.65, 95% CI 1.14-6.16, P=.02). The experimental group decreased by 3.9 drinks per week compared to 0.4 drinks per week in the control group, but this did not reach statistical significance (effect size=0.26; beta=-0.12, 95% CI -7.96 to 0.03, P=.05). Intention-to-treat analyses also indicated no statistically significant effect. Separate analyses of the 2 experimental subgroups showed no differences in intervention effects. The dropout rate during the first visit to the intervention website was significantly lower in the alternating condition than in the summative condition (OR 0.23, 95% CI 0.08-0.60, P=.003). Program appreciation was comparable for the 2 experimental groups. Complete case analyses revealed that Web-based tailored feedback can be an effective way to reduce alcohol intake among adults. However, this effect was not confirmed when applying multiple imputations. There was no indication that one of the tailoring strategies was more effective in lowering alcohol intake. Nevertheless, the lower attrition rates we found during the first visit suggest that the version of the intervention with alternating questions and advice may be preferred. International Standard Randomized Controlled Trial Number (ISRCTN): 91623132; http://www.controlled-trials.com/ISRCTN91623132 (Archived by WebCite at http://www.webcitation.org/6J4QdhXeG).
Candel, Math JJM; Kremers, Stef PJ; Reinwand, Dominique A; Jander, Astrid; de Vries, Hein
2013-01-01
Background Web-based tailored interventions provide users with information that is adapted to their individual characteristics and needs. Randomized controlled trials assessing the effects of tailored alcohol self-help programs among adults are scarce. Furthermore, it is a challenge to develop programs that can hold respondents’ attention in online interventions. Objective To assess whether a 3-session, Web-based tailored intervention is effective in reducing alcohol intake in high-risk adult drinkers and to compare 2 computer-tailoring feedback strategies (alternating vs summative) on behavioral change, dropout, and appreciation of the program. Methods A single-blind randomized controlled trial was conducted with an experimental group and a control group (N=448) in Germany in 2010-2011. Follow-up took place after 6 months. Drinking behavior, health status, motivational determinants, and demographics were assessed among participants recruited via an online access panel. The experimental group was divided into 2 subgroups. In the alternating condition (n=132), the tailored feedback was split into a series of messages discussing individual topics offered while the respondent was filling out the program. Participants in the summative condition (n=181) received all advice at once after having answered all questions. The actual texts were identical for both conditions. The control group (n=135) only filled in 3 questionnaires. To identify intervention effects, logistic and linear regression analyses were conducted among complete cases (n=197) and after using multiple imputation. Results Among the complete cases (response rate: 197/448, 44.0%) who did not comply with the German national guideline for low-risk drinking at baseline, 21.1% of respondents in the experimental group complied after 6 months compared with 5.8% in the control group (effect size=0.42; OR 2.65, 95% CI 1.14-6.16, P=.02). The experimental group decreased by 3.9 drinks per week compared to 0.4 drinks per week in the control group, but this did not reach statistical significance (effect size=0.26; beta=−0.12, 95% CI −7.96 to 0.03, P=.05). Intention-to-treat analyses also indicated no statistically significant effect. Separate analyses of the 2 experimental subgroups showed no differences in intervention effects. The dropout rate during the first visit to the intervention website was significantly lower in the alternating condition than in the summative condition (OR 0.23, 95% CI 0.08-0.60, P=.003). Program appreciation was comparable for the 2 experimental groups. Conclusions Complete case analyses revealed that Web-based tailored feedback can be an effective way to reduce alcohol intake among adults. However, this effect was not confirmed when applying multiple imputations. There was no indication that one of the tailoring strategies was more effective in lowering alcohol intake. Nevertheless, the lower attrition rates we found during the first visit suggest that the version of the intervention with alternating questions and advice may be preferred. Trial Registration International Standard Randomized Controlled Trial Number (ISRCTN): 91623132; http://www.controlled-trials.com/ISRCTN91623132 (Archived by WebCite at http://www.webcitation.org/6J4QdhXeG). PMID:24045005
NASA Astrophysics Data System (ADS)
Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji
Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiali, E-mail: j.zhang@mpie.de; Morsdorf, Lutz, E-mail: l.morsdorf@mpie.de; Tasan, Cemal Cem, E-mail: c.tasan@mpie.de
In-situ scanning electron microscopy observations of the microstructure evolution during heat treatments are increasingly demanded due to the growing number of alloys with complex microstructures. Post-mortem characterization of the as-processed microstructures rarely provides sufficient insight on the exact route of the microstructure formation. On the other hand, in-situ SEM approaches are often limited due to the arising challenges upon using an in-situ heating setup, e.g. in (i) employing different detectors, (ii) preventing specimen surface degradation, or (iii) controlling and measuring the temperature precisely. Here, we explore and expand the capabilities of the “mid-way” solution by step-wise microstructure tracking, ex-situ, atmore » selected steps of heat treatment. This approach circumvents the limitations above, as it involves an atmosphere and temperature well-controlled dilatometer, and high resolution microstructure characterization (using electron channeling contrast imaging, electron backscatter diffraction, atom probe tomography, etc.). We demonstrate the capabilities of this approach by focusing on three cases: (i) nano-scale carbide precipitation during low-temperature tempering of martensitic steels, (ii) formation of transformation-induced geometrically necessary dislocations in a dual-phase steel during intercritical annealing, and (iii) the partial recrystallization of a metastable β-Ti alloy. - Highlights: • A multi-probe method to track microstructures during heat treatment is developed. • It enables the analysis of various complex phenomena, even those at atomistic scale. • It circumvents some of the free surface effects of classical in-situ experiments.« less
Recent Developments in Ultra High Temperature Ceramics at NASA Ames
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matt; Lawson, John W.; Gusman, Michael I.; Stackpole, Margaret M.
2009-01-01
NASA Ames is pursuing a variety of approaches to modify and control the microstructure of UHTCs with the goal of improving fracture toughness, oxidation resistance and controlling thermal conductivity. The overall goal is to produce materials that can perform reliably as sharp leading edges or nose tips in hypersonic reentry vehicles. Processing approaches include the use of preceramic polymers as the SiC source (as opposed to powder techniques), the addition of third phases to control grain growth and oxidation, and the use of processing techniques to produce high purity materials. Both hot pressing and field assisted sintering have been used to make UHTCs. Characterization of the mechanical and thermal properties of these materials is ongoing, as is arcjet testing to evaluate performance under simulated reentry conditions. The preceramic polymer approach has generated a microstructure in which elongated SiC grains grow in the form of an in-situ composite. This microstructure has the advantage of improving fracture toughness while potentially improving oxidation resistance by reducing the amount and interconnectivity of SiC in the material. Addition of third phases, such as Ir, results in a very fine-grained microstructure, even in hot-pressed samples. The results of processing and compositional changes on microstructure and properties are reported, along with selected arcjet results.
Björklund, Martin; Djupsjöbacka, Mats; Svedmark, Asa; Häger, Charlotte
2012-05-20
A major problem with rehabilitation interventions for neck pain is that the condition may have multiple causes, thus a single treatment approach is seldom efficient. The present study protocol outlines a single blinded randomised controlled trial evaluating the effect of tailored treatment for neck-shoulder pain. The treatment is based on a decision model guided by standardized clinical assessment and functional tests with cut-off values. Our main hypothesis is that the tailored treatment has better short, intermediate and long-term effects than either non-tailored treatment or treatment-as-usual (TAU) on pain and function. We sub-sequentially hypothesize that tailored and non-tailored treatment both have better effect than TAU. 120 working women with minimum six weeks of nonspecific neck-shoulder pain aged 20-65, are allocated by minimisation with the factors age, duration of pain, pain intensity and disability in to the groups tailored treatment (T), non-tailored treatment (NT) or treatment-as-usual (TAU). Treatment is given to the groups T and NT for 11 weeks (27 sessions evenly distributed). An extensive presentation of the tests and treatment decision model is provided. The main treatment components are manual therapy, cranio-cervical flexion exercise and strength training, EMG-biofeedback training, treatment for cervicogenic headache, neck motor control training. A decision algorithm based on the baseline assessment determines the treatment components given to each participant of T- and NT-groups. Primary outcome measures are physical functioning (Neck Disability Index) and average pain intensity last week (Numeric Rating Scale). Secondary outcomes are general improvement (Patient Global Impression of Change scale), symptoms (Profile Fitness Mapping neck questionnaire), capacity to work in the last 6 weeks (quality and quantity) and pressure pain threshold of m. trapezius. Primary and secondary outcomes will be reported for each group with effect size and its precision. We have chosen not to include women with psychological ill-health and focus on biomedical aspects of neck pain. Future studies should aim at including psychosocial aspects in a widened treatment decision model. No important adverse events or side-effects are expected.
Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures
2010-01-01
angles were tested. Detailed microstructural, mass loss, and peak erosion analyses were conducted on the phenolic -based matrix composite (control) and...silicone-based matrix composites to understand their protective mechanisms. Keywords silicone polymer matrix composites, phenolic polymer matrix...erosion analyses were conducted on the phenolic -based matrix composite (control) and silicone-based matrix composites to understand their protective
Charles, Pierre; Terrier, Benjamin; Perrodeau, Élodie; Cohen, Pascal; Faguer, Stanislas; Huart, Antoine; Hamidou, Mohamed; Agard, Christian; Bonnotte, Bernard; Samson, Maxime; Karras, Alexandre; Jourde-Chiche, Noémie; Lifermann, François; Gobert, Pierre; Hanrotel-Saliou, Catherine; Godmer, Pascal; Martin-Silva, Nicolas; Pugnet, Grégory; Matignon, Marie; Aumaitre, Olivier; Viallard, Jean-François; Maurier, François; Meaux-Ruault, Nadine; Rivière, Sophie; Sibilia, Jean; Puéchal, Xavier; Ravaud, Philippe; Mouthon, Luc; Guillevin, Loïc
2018-04-25
To compare individually tailored, based on trimestrial biological parameter monitoring, to fixed-schedule rituximab reinfusion for remission maintenance of antineutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAVs). Patients with newly diagnosed or relapsing granulomatosis with polyangiitis (GPA) or microscopic polyangiitis (MPA) in complete remission after induction therapy were included in an open-label, multicentre, randomised controlled trial. All tailored-arm patients received a 500 mg rituximab infusion at randomisation, with rituximab reinfusion only when CD19+B lymphocytes or ANCA had reappeared or ANCA titre rose markedly based on trimestrial testing until month 18. Controls received a fixed 500 mg rituximab infusion on days 0 and 14 postrandomisation, then 6, 12 and 18 months after the first infusion. The primary endpoint was the number of relapses (new or reappearing symptom(s) or worsening disease with Birmingham Vasculitis Activity Score (BVAS)>0) at month 28 evaluated by an independent Adjudication Committee blinded to treatment group. Among the 162 patients (mean age: 60 years; 42% women) included, 117 (72.2%) had GPA and 45 (27.8%) had MPA. Preinclusion induction therapy included cyclophosphamide for 100 (61.7%), rituximab for 61 (37.6%) and methotrexate for 1 (0.6%). At month 28, 21 patients had suffered 22 relapses: 14/81 (17.3%) in 13 tailored-infusion recipients and 8/81 (9.9%) in 8 fixed-schedule patients (p=0.22). The tailored-infusion versus fixed-schedule group, respectively, received 248 vs 381 infusions, with medians (IQR) of 3 (2-4) vs 5 (5-5) administrations. AAV relapse rates did not differ significantly between individually tailored and fixed-schedule rituximab regimens. Individually tailored-arm patients received fewer rituximab infusions. NCT01731561; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Tailor-welded blanks and their production
NASA Astrophysics Data System (ADS)
Yan, Qi
2005-01-01
Tailor welded blanks had been widely used in the automobile industry. A tailor welded blank consists of several flat sheets that were laser welded together before stamping. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. As for the material for automobile industry, this technology was one of the development trend for automobile industry because of its weight reduction, safety improvement and economical use of materials. In this paper, the characters and production of tailor welded blanks in the market were discussed in detail. There had two major methods to produce tailor welded blanks. Laser welding would replace mesh seam welding for the production of tailor welded blanks in the future. The requirements on the edge preparation of unwelded blanks for tailor welded blanks were higher than the other steel processing technology. In order to produce the laser welded blank, there had the other process before the laser welding in the factory. In the world, there had three kinds of patterns for the large volume production of tailor welded blanks. In China, steel factory played the important role in the promotion of the application of tailor welded blanks. The competition for the supply of tailor welded blanks to the automobile industry would become fierce in the near future. As a result, the demand for the quality control on the production of tailor welded blanks would be the first priority concern for the factory.
Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...
2016-11-15
The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less
Lairson, David R; Chan, Wen; Chang, Yu-Chia; del Junco, Deborah J; Vernon, Sally W
2011-05-01
We conducted an economic evaluation of mammography promotion interventions in a population-based, nationally representative sample of 5500 women veterans. Women 52 years and older were randomly selected from the National Registry of Women Veterans and randomly assigned to a survey-only control group and two intervention groups that varied in the extent of personalization (tailored vs. targeted). Effectiveness measures were the prevalence of at least one self-reported post-intervention mammogram and two post-intervention mammograms 6-15 months apart. Incremental cost-effectiveness ratios (ICERs) were the incremental cost per additional person screened. Uncertainty was examined with sensitivity analysis and bootstrap simulation. The targeted intervention cost $25 per person compared to $52 per person for the tailored intervention. About 27% of the cost was incurred in identifying and recruiting the eligible population. The percent of women reporting at least one mammogram were .447 in the control group, .469 in the targeted group, and .460 in the tailored group. The ICER was $1116 comparing the targeted group to the control group (95% confidence interval (CI)=$493 to dominated). The tailored intervention was dominated (more costly and less effective) by the targeted intervention. Decision-makers should consider effectiveness evidence and the full recruitment and patient time costs associated with the implementation of screening interventions when making investments in mammography screening promotion programs. Identification and recruitment of eligible participants add substantial costs to outreach screening promotion interventions. Tailoring adds substantial cost to the targeted mammography promotion strategy without a commensurate increase in effectiveness. Although cost-effectiveness has been reported to be higher for some in-reach screening promotion interventions, a recent meta-analysis revealed significant heterogeneity in the effect sizes of published health-plan based intervention studies for repeat mammography (i.e., some studies reported null effects compared with control groups). Copyright © 2010 Elsevier Ltd. All rights reserved.
Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang
2017-01-01
Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys. PMID:28772826
Demirörs, Ahmet Faik; Courty, Diana; Libanori, Rafael; Studart, André R.
2016-01-01
Living organisms often combine soft and hard anisotropic building blocks to fabricate composite materials with complex microstructures and outstanding mechanical properties. An optimum design and assembly of the anisotropic components reinforces the material in specific directions and sites to best accommodate multidirectional external loads. Here, we fabricate composite films with periodic modulation of the soft–hard microstructure by simultaneously using electric and magnetic fields. We exploit forefront directed-assembly approaches to realize highly demanded material microstructural designs and showcase a unique example of how one can bridge colloidal sciences and composite technology to fabricate next-generation advanced structural materials. In the proof-of-concept experiments, electric fields are used to dictate the position of the anisotropic particles through dielectrophoresis, whereas a rotating magnetic field is used to control the orientation of the particles. By using such unprecedented control over the colloidal assembly process, we managed to fabricate ordered composite microstructures with up to 2.3-fold enhancement in wear resistance and unusual site-specific hardness that can be locally modulated by a factor of up to 2.5. PMID:27071113
NASA Astrophysics Data System (ADS)
Jia, Tao; Zhou, Yanlei; Jia, Xiaoxiao; Wang, Zhaodong
2017-02-01
Investigation on the correlation between microstructure and CVN impact toughness is of practical importance for the microstructure design of high strength microalloyed steels. In this work, three steels with characteristic microstructures were produced by cooling path control, i.e., steel A with granular bainite (GB), steel B with polygonal ferrite (PF) and martensite-austenite (M-A) constituent, and steel C with the mixture of bainitic ferrite (BF), acicular ferrite (AF), and M-A constituent. Under the same alloy composition and controlled rolling, similar ductile-to-brittle transition temperatures were obtained for the three steels. Steel A achieved the highest upper shelf energy (USE), while large variation of impact absorbed energy has been observed in the ductile-to-brittle transition region. With apparently large-sized PF and M-A constituent, steel B shows the lowest USE and delamination phenomenon in the ductile-to-brittle transition region. Steel C exhibits an extended upper shelf region, intermediate USE, and the fastest decrease of impact absorbed energy in the ductile-to-brittle transition region. The detailed CVN impact behavior is studied and then linked to the microstructural features.
NASA Astrophysics Data System (ADS)
Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.
2015-07-01
This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.
Boudreau, François; Walthouwer, Michel Jean Louis; de Vries, Hein; Dagenais, Gilles R; Turbide, Ginette; Bourlaud, Anne-Sophie; Moreau, Michel; Côté, José; Poirier, Paul
2015-10-09
The relationship between physical activity and cardiovascular disease (CVD) protection is well documented. Numerous factors (e.g. patient motivation, lack of facilities, physician time constraints) can contribute to poor PA adherence. Web-based computer-tailored interventions offer an innovative way to provide tailored feedback and to empower adults to engage in regular moderate- to vigorous-intensity PA. To describe the rationale, design and content of a web-based computer-tailored PA intervention for Canadian adults enrolled in a randomized controlled trial (RCT). 244 men and women aged between 35 and 70 years, without CVD or physical disability, not participating in regular moderate- to vigorous-intensity PA, and familiar with and having access to a computer at home, were recruited from the Quebec City Prospective Urban and Rural Epidemiological (PURE) study centre. Participants were randomized into two study arms: 1) an experimental group receiving the intervention and 2) a waiting list control group. The fully automated web-based computer-tailored PA intervention consists of seven 10- to 15-min sessions over an 8-week period. The theoretical underpinning of the intervention is based on the I-Change Model. The aim of the intervention was to reach a total of 150 min per week of moderate- to vigorous-intensity aerobic PA. This study will provide useful information before engaging in a large RCT to assess the long-term participation and maintenance of PA, the potential impact of regular PA on CVD risk factors and the cost-effectiveness of a web-based computer-tailored intervention. ISRCTN36353353 registered on 24/07/2014.
NASA Astrophysics Data System (ADS)
Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine
2012-09-01
The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.
Method of producing improved microstructure and properties for ceramic superconductors
Singh, Jitendra P.; Guttschow, Rob A.; Dusek, Joseph T.; Poeppel, Roger B.
1996-01-01
A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2). The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C. resulted in a fine-grain microstructure, with an average grain size of approximately 4 .mu.m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity.
Method of producing improved microstructure and properties for ceramic superconductors
Singh, J.P.; Guttschow, R.A.; Dusek, J.T.; Poeppel, R.B.
1996-06-11
A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}). The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of approximately 4 {micro}m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity. 20 figs.
Shape-Controlled Synthesis of NiCo2 O4 Microstructures and Their Application in Supercapacitors.
Xiang, Nannan; Ni, Yonghong; Ma, Xiang
2015-09-01
The shape-controlled synthesis of NiCo2 O4 microstructures through a facile hydrothermal method and subsequent calcinations was explored. By employing CoSO4 , NiSO4 , and urea as the starting reactants, flower-like NiCo2 O4 microstructures were obtained at 100 °C after 5 h without the assistance of any additive and subsequent calcination at 300 °C for 2 h; dumbbell-like NiCo2 O4 microstructures were prepared at 150 °C after 5 h in the presence of trisodium citrate and subsequent calcination at 300 °C for 2 h. The as-prepared NiCo2 O4 microstructures were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and (high-resolution) transmission electron microscopy. Both the flower-like and dumbbell-like NiCo2 O4 microstructures could be used as electrode materials for supercapacitors, and they exhibited excellent electrochemical performance, including high specific capacitance, good rate capability, and excellent long-term cycle stability. Simultaneously, the shape-dependent electrochemical properties of the product were investigated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Matrix Microstructures in UHTC Composites
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael
2012-01-01
One of the major issues hindering the use of ultra high temperature ceramics for aerospace applications is low fracture toughness. There is considerable interest in developing fiber-reinforced composites to improve fracture toughness. Considerable knowledge has been gained in controlling and improving the microstructure of monolithic UHTCs, and this paper addresses the question of transferring that knowledge to composites. Some model composites have been made and the microstructures of the matrix developed has been explored and compared to the microstructure of monolithic materials in the hafnium diboride/silicon carbide family. Both 2D and 3D weaves have been impregnated and processed.
ERIC Educational Resources Information Center
Tobin, Karin; Kuramoto, Satoko J.; German, Danielle; Fields, Errol; Spikes, Pilgrim S.; Patterson, Jocelyn; Latkin, Carl
2013-01-01
Unity in Diversity was a randomized controlled trial of a culturally tailored HIV prevention intervention for African American men who have sex with men. The intervention condition was six group-based sessions and one individual session. The control condition was a single-session HIV prevention review. Participants were aged 18 years or older,…
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several quiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. George Myers, controls engineer, monitors the thermal environment of a ground test for the EDSE located in the Microgravity Development Laboratory (MDL).
3D Printing Optical Engine for Controlling Material Microstructure
NASA Astrophysics Data System (ADS)
Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei
Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens.
Safranski, David L; Boothby, Jennifer M; Kelly, Cambre N; Beatty, Kyle; Lakhera, Nishant; Frick, Carl P; Lin, Angela; Guldberg, Robert E; Griffis, Jack C
2016-09-01
New processing methods for shape-memory polymers allow for tailoring material properties for numerous applications. Shape-memory nonwovens have been previously electrospun, but melt blow processing has yet to be evaluated. In order to determine the process parameters affecting shape-memory behavior, this study examined the effect of air pressure and collector speed on the mechanical behavior and shape-recovery of shape-memory polyurethane nonwovens. Mechanical behavior was measured by dynamic mechanical analysis and tensile testing, and shape-recovery was measured by unconstrained and constrained recovery. Microstructure changes throughout the shape-memory cycle were also investigated by micro-computed tomography. It was found that increasing collector speed increases elastic modulus, ultimate strength and recovery stress of the nonwoven, but collector speed does not affect the failure strain or unconstrained recovery. Increasing air pressure decreases the failure strain and increases rubbery modulus and unconstrained recovery, but air pressure does not influence recovery stress. It was also found that during the shape-memory cycle, the connectivity density of the fibers upon recovery does not fully return to the initial values, accounting for the incomplete shape-recovery seen in shape-memory nonwovens. With these parameter to property relationships identified, shape-memory nonwovens can be more easily manufactured and tailored for specific applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Sijia; Liu, Xianghua; Liu, Lizhong
2018-01-01
In this paper, the microstructure and mechanical properties that distribute regulation along the rolling direction of tailor rolled blanks (TRB) were investigated. A tensile specimen with equal probability in yield (EYS) was first designed considering variation both in thickness and in material strength. The uniaxial tension test was carried out with a digital image correlation method to analyze the mechanical behaviors. The results showed that the strain distribution of EYS was homogeneous. From the results, it can be known that a new design philosophy for a TRB tensile specimen is reasonable and EYS is suitable to characterize the mechanical behavior of TRB. The true stress-strain curves of metal in different cross sections of TRB were calculated. On the basis of the true stress-strain curves, a material model of TRB was constructed and then implemented into finite element simulations of TRB uniaxial tensile tests. The strain distribution of numerical and experimental results was similar and the error between the elongation of the specimen after fracture obtained by experiment and FE ranged from 9.51% to 13.06%. Therefore, the simulation results match well with the experimental results and the material model has high accuracy and as well as practicability. PMID:29710772
Kazakia, Galateia J; Carballido-Gamio, Julio; Lai, Andrew; Nardo, Lorenzo; Facchetti, Luca; Pasco, Courtney; Zhang, Chiyuan A; Han, Misung; Parrott, Amanda Hutton; Tien, Phyllis; Krug, Roland
2018-02-01
There is evidence that human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are independent risk factors for osteoporosis and fracture which is not solely explained by changes in bone mineral density. Thus, we hypothesized that the assessment of trabecular microstructure might play an important role for bone quality in this population and might explain the increased fracture risk. In this study, we have assessed bone microstructure in the proximal femur using high-resolution magnetic resonance imaging (MRI) as well as in the extremities using high resolution peripheral quantitative computed tomography (HR-pQCT) in HIV-infected men and healthy controls and compared these findings to those based on areal bone mineral density (aBMD) derived from dual X-ray absorptiometry (DXA) which is the standard clinical parameter for the diagnosis of osteoporosis. Eight HIV-infected men and 11 healthy age-matched controls were recruited and informed consent was obtained before each scan. High-resolution MRI of the proximal femur was performed using fully balanced steady state free precession (bSSFP) on a 3T system. Three volumes of interest at corresponding anatomic locations across all subjects were defined based on registrations of a common template. Four MR-based trabecular microstructural parameters were analyzed at each region: fuzzy bone volume fraction (f-BVF), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp). In addition, the distal radius and distal tibia were imaged with HR-pQCT. Four HR-pQCT-based microstructural parameters were analyzed: trabecular bone volume fraction (BV/TV), Tb.N, Tb.Th, and Tb.Sp. Total hip and spine aBMD were determined from DXA. Microstructural bone parameters derived from MRI at the proximal femur and from HR-pQCT at the distal tibia showed significantly lower bone quality in HIV-infected patients compared to healthy controls. In contrast, DXA aBMD data showed no significant differences between HIV-infected patients and healthy controls. Our results suggest that high-resolution imaging is a powerful tool to assess trabecular bone microstructure and can be used to assess bone health in HIV-infected men who show no differences to healthy males by DXA aBMD. Advances in MRI technology have made microstructural imaging at the proximal femur possible. Further studies in larger patient cohorts are clearly warranted.
Feasibility of a Tailored Intervention Targeting STD-Related Behaviors.
ERIC Educational Resources Information Center
Bellis, Jeffery M.; Grimely, Diane M.; Alexander, Leah R.
2002-01-01
Investigated whether high risk populations would be receptive to tailored, multimedia interventions to promote adoption of health-protective behaviors related to sexually transmitted disease (STD) prevention and control. Feedback from predominantly African American, urban participants aged 16-50 years, recruited from a STD clinic, indicated that…
Controlled evaporative self-assembly of confined microfluids: A route to complex ordered structures
NASA Astrophysics Data System (ADS)
Byun, Myunghwan
The evaporative self-assembly of nonvolatile solutes such as polymers, nanocrystals, and carbon nanotubes has been widely recognized as a non-lithographic means of producing a diverse range of intriguing complex structures. Due to the spatial variation of evaporative flux and possible convection, however, these non-equilibrium dissipative structures (e.g., fingering patterns and polygonal network structures) are often irregularly and stochastically organized. Yet for many applications in microelectronics, data storage devices, and biotechnology, it is highly desirable to achieve surface patterns having a well-controlled spatial arrangement. To date, only a few elegant studies have centered on precise control over the evaporation process to produce ordered structures. In a remarked comparison with conventional lithography techniques, surface patterning by controlled solvent evaporation is simple and cost-effective, offering a lithography- and external field-free means to organize nonvolatile materials into ordered microscopic structures over large surface areas. The ability to engineer an evaporative self-assembly process that yields a wide range of complex, self-organizing structures over large areas offers tremendous potential for applications in electronics, optoelectronics, and bio- or chemical sensors. We developed a facile, robust tool for evaporating polymer, nanoparticle, or DNA solutions in curve-on-flat geometries to create versatile, highly regular microstructures, including hierarchically structured polymer blend rings, conjugated polymer "snake-skins", block copolymer stripes, and punch-hole-like meshes, biomolecular microring arrays, etc. The mechanism of structure formation was elucidated both experimentally and theoretically. Our method further enhances current fabrication approaches to creating highly ordered structures in a simple and cost-effective manner, envisioning the potential to be tailored for use in photonics, optoelectronics, microfluidic devices, nanotechnology and biotechnology, etc.
Anstey, Kaarin J; Eramudugolla, Ranmalee; Kiely, Kim M; Price, Jasmine
2018-06-01
We evaluated the effectiveness of individually tailored driving lessons compared with a road rules refresher course for improving older driver safety. Two arm parallel randomised controlled trial, involving current drivers aged 65 and older (Mean age 72.0, 47.4% male) residing in Canberra, Australia. The intervention group (n = 28) received a two-hour class-based road rules refresher course, and two one-hour driving lessons tailored to improve poor driving skills and habits identified in a baseline on-road assessment. The control group (n = 29) received the road rules refresher course only. Tests of cognitive performance, and on-road driving were conducted at baseline and at 12-weeks. Main outcome measure was the Driver safety rating (DSR) on the on-road driving test. The number of Critical Errors made during the on-road was also recorded. 55 drivers completed the trial (intervention group: 27, control group: 28). Both groups showed reduction in dangerous/hazardous driver errors that required instructor intervention. From baseline to follow-up there was a greater reduction in the number of critical errors made by the intervention group relative to the control group (IRR = 0.53, SE = 0.1, p = .008). The intervention group improved on the DSR more than the control group (intervention mean change = 1.07 SD = 2.00, control group mean change = 0.32 SD = 1.61). The intervention group had 64% remediation of unsafe driving, where drivers who achieved a score of 'fail' at baseline, 'passed' at follow-up. The control group had 25% remediation. Tailored driving lessons reduced the critical driving errors made by older adults. Longer term follow-up and larger trials are required. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Manocha, Satish M.; Patel, Hemang; Manocha, L. M.
2013-02-01
Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.
Tailored synthesis of TiC/a-C nanocomposite tribological coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Martinez, D.; Lopez-Cartes, C.; Justo, A.
2005-11-15
Composite coatings made of nanocrystalline TiC (nc-TiC) particles and amorphous carbon (a-C) have been prepared in a double magnetron sputtering system using graphite and titanium targets under Ar bombardment. Chemical composition and microstructure of coatings were studied by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and x-ray diffraction (XRD) for a set of samples prepared varying the ratio and intensity of power applied to each magnetron. Changes in coatings microstructure, from a quasipolycrystalline TiC to a nanocomposite formed by nanocrystals of TiC embedded in an amorphous matrix of carbon (nc-TiC/a-C), are observed depending on the synthesis conditions. Tribologicalmore » and mechanical properties of coatings were tested using a pin-on-disk tribometer and an ultramicrohardness indenter, respectively. Coatings with moderate hardness (7-27 GPa), low friction (0.1-0.2), and low wear rates (k{approx}10{sup -7} mm{sup 3}/N m) were obtained. A percentage between 15% and 30% of TiC is found as an optimum value to get a good compromise between good mechanical and tribological properties. Finally, a mapping of the mechanical and tribological properties of the nc-TiC/a-C system is presented for the synthesis conditions employed.« less
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
1995-01-01
A recently developed micromechanical theory for the thermoelastic response of functionally graded composites with nonuniform fiber spacing in the through-thickness direction is further extended to enable analysis of material architectures characterized by arbitrarily nonuniform fiber spacing in two directions. In contrast to currently employed micromechanical approaches applied to functionally graded materials, which decouple the local and global effects by assuming the existence of a representative volume element at every point within the composite, the new theory explicitly couples the local and global effects. The analytical development is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense. Results are presented that illustrate the capability of the derived theory to capture local stress gradients at the free edge of a laminated composite plate due to the application of a uniform temperature change. It is further shown that it is possible to reduce the magnitude of these stress concentrations by a proper management of the microstructure of the composite plies near the free edge. Thus by an appropriate tailoring of the microstructure it is possible to reduce or prevent the likelihood of delamination at free edges of standard composite laminates.
Tailoring the structural and optical properties of TiN thin films by Ag ion implantation
NASA Astrophysics Data System (ADS)
Popović, M.; Novaković, M.; Rakočević, Z.; Bibić, N.
2016-12-01
Titanium nitride (TiN) thin films thickness of ∼260 nm prepared by dc reactive sputtering were irradiated with 200 keV silver (Ag) ions to the fluences ranging from 5 × 1015 ions/cm2 to 20 × 1015 ions/cm2. After implantation TiN layers were annealed 2 h at 700 °C in a vacuum. Ion irradiation-induced microstructural changes were examined by using Rutherford backscattering spectrometry, X-ray diffraction and transmission electron microscopy, while the surface topography was observed using atomic force microscopy. Spectroscopic ellipsometry was employed to get insights on the optical and electronic properties of TiN films with respect to their microstructure. The results showed that the irradiations lead to deformation of the lattice, increasing disorder and formation of new Ag phase. The optical results demonstrate the contribution of surface plasmon resonace (SPR) of Ag particles. SPR position shifted in the range of 354.3-476.9 nm when Ag ion fluence varied from 5 × 1015 ions/cm2 to 20 × 1015 ions/cm2. Shift in peak wavelength shows dependence on Ag particles concentration, suggesting that interaction between Ag particles dominate the surface plasmon resonance effect. Presence of Ag as second metal in the layer leads to overall decrease of optical resistivity of TiN.
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
1993-01-01
A new micromechanical theory is presented for the response of heterogeneous metal matrix composites subjected to thermal gradients. In contrast to existing micromechanical theories that utilize classical homogenization schemes in the course of calculating microscopic and macroscopic field quantities, in the present approach the actual microstructural details are explicitly coupled with the macrostructure of the composite. Examples are offered that illustrate limitations of the classical homogenization approach in predicting the response of thin-walled metal matrix composites with large-diameter fibers when subjected to thermal gradients. These examples include composites with a finite number of fibers in the thickness direction that may be uniformly or nonuniformly spaced, thus admitting so-called functionally gradient composites. The results illustrate that the classical approach of decoupling micromechanical and macromechanical analyses in the presence of a finite number of large-diameter fibers, finite dimensions of the composite, and temperature gradient may produce excessively conservative estimates for macroscopic field quantities, while both underestimating and overestimating the local fluctuations of the microscopic quantities in different regions of the composite. Also demonstrated is the usefulness of the present approach in generating favorable stress distributions in the presence of thermal gradients by appropriately tailoring the internal microstructure details of the composite.
A laboratory means to produce tough aluminum sheet from powder
NASA Technical Reports Server (NTRS)
Singleton, O. R.; Royster, D. M.; Thomas, J. R.
1990-01-01
The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.
Microstructural and mechanical characterization of laser deposited advanced materials
NASA Astrophysics Data System (ADS)
Sistla, Harihar Rakshit
Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.
El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.
2014-01-01
The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials. PMID:24796578
Chiapponi, Chiara; Piras, Fabrizio; Fagioli, Sabrina; Girardi, Paolo; Caltagirone, Carlo; Spalletta, Gianfranco
2014-08-01
Macrostructural-volumetric abnormalities of the hippocampus have been described in schizophrenia. Here, we characterized age-related changes of hippocampal mean diffusivity as an index of microstructural damage by carrying out a neuroimaging study in 85 patients with a DSM-IV-TR diagnosis of schizophrenia and 85 age- and gender-matched healthy controls. We performed analyses of covariance, with diagnosis as fixed factor, mean diffusivity as dependent variable and age as covariate. Patients showed an early increase in mean diffusivity in the right and left hippocampus that increased with age. Thus, microstructural hippocampal changes associated with schizophrenia cannot be confined to a specific time window. Copyright © 2014 Elsevier B.V. All rights reserved.
Microstructural and mechanical characterization of scarred vocal folds.
Heris, Hossein K; Miri, Amir K; Ghattamaneni, Nageswara R; Li, Nicole Y K; Thibeault, Susan L; Wiseman, Paul W; Mongeau, Luc
2015-02-26
The goal of this study was to characterize the vocal folds microstructure and elasticity using nonlinear laser scanning microscopy and atomic force microscopy-based indentation, respectively. As a pilot study, the vocal folds of fourteen rats were unilaterally injured by full removal of lamina propria; the uninjured folds of the same animals served as controls. The area fraction of collagen fibrils was found to be greater in scarred tissues two months after injury than the uninjured controls. A novel mathematical model was also proposed to relate collagen concentration and tissue bulk modulus. This work presents a first step towards systematic investigation of microstructural and mechanical characteristics in scarred vocal fold tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kalfon, Pierre; Baumstarck, Karine; Estagnasie, Philippe; Geantot, Marie-Agnès; Berric, Audrey; Simon, Georges; Floccard, Bernard; Signouret, Thomas; Boucekine, Mohamed; Fromentin, Mélanie; Nyunga, Martine; Sossou, Achille; Venot, Marion; Robert, René; Follin, Arnaud; Audibert, Juliette; Renault, Anne; Garrouste-Orgeas, Maïté; Collange, Olivier; Levrat, Quentin; Villard, Isabelle; Thevenin, Didier; Pottecher, Julien; Patrigeon, René-Gilles; Revel, Nathalie; Vigne, Coralie; Azoulay, Elie; Mimoz, Olivier; Auquier, Pascal
2017-12-01
Critically ill patients are exposed to stressful conditions and experience several discomforts. The primary objective was to assess whether a tailored multicomponent program is effective for reducing self-perceived discomfort. In a cluster-randomized two-arm parallel trial, 34 French adult intensive care units (ICUs) without planned interventions to reduce discomfort were randomized, 17 to the arm including a 6-month period of program implementation followed by a 6-month period without the program (experimental group), and 17 to the arm with an inversed sequence (control group). The tailored multicomponent program consisted of assessment of ICU-related self-perceived discomforts, immediate and monthly feedback to healthcare teams, and site-specific tailored interventions. The primary outcome was the overall discomfort score derived from the 16-item IPREA questionnaire (0, minimal, 100, maximal overall discomfort) and the secondary outcomes were the discomfort scores of each IPREA item. IPREA was administered on the day of ICU discharge with a considered timeframe from the ICU admission until ICU discharge. During a 1-month assessment period, 398 and 360 patients were included in the experimental group and the control group, respectively. The difference (experimental minus control) of the overall discomfort score between groups was - 7.00 (95% CI - 9.89 to - 4.11, p < 0.001). After adjustment (age, gender, ICU duration, mechanical ventilation duration, and type of admission), the program effect was still positive for the overall discomfort score (difference - 6.35, SE 1.23, p < 0.001) and for 12 out of 16 items. This tailored multicomponent program decreased self-perceived discomfort in adult critically ill patients. Clinicaltrials.gov Identifier NCT02442934.
Shock-loading response of advanced materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, G.T. III
1993-08-01
Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevantmore » to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.« less
Simulation of diffuse-charge capacitance in electric double layer capacitors
NASA Astrophysics Data System (ADS)
Sun, Ning; Gersappe, Dilip
2017-01-01
We use a Lattice Boltzmann Model (LBM) in order to simulate diffuse-charge dynamics in Electric Double Layer Capacitors (EDLCs). Simulations are carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). The steric effect of concentrated solutions is considered by using a Modified Poisson-Nernst-Planck (MPNP) equations and compared with regular Poisson-Nernst-Planck (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. Our studies show how electrode morphology can be used to tailor the properties of supercapacitors.
Preventing smoking relapse via Web-based computer-tailored feedback: a randomized controlled trial.
Elfeddali, Iman; Bolman, Catherine; Candel, Math J J M; Wiers, Reinout W; de Vries, Hein
2012-08-20
Web-based computer-tailored approaches have the potential to be successful in supporting smoking cessation. However, the potential effects of such approaches for relapse prevention and the value of incorporating action planning strategies to effectively prevent smoking relapse have not been fully explored. The Stay Quit for You (SQ4U) study compared two Web-based computer-tailored smoking relapse prevention programs with different types of planning strategies versus a control group. To assess the efficacy of two Web-based computer-tailored programs in preventing smoking relapse compared with a control group. The action planning (AP) program provided tailored feedback at baseline and invited respondents to do 6 preparatory and coping planning assignments (the first 3 assignments prior to quit date and the final 3 assignments after quit date). The action planning plus (AP+) program was an extended version of the AP program that also provided tailored feedback at 11 time points after the quit attempt. Respondents in the control group only filled out questionnaires. The study also assessed possible dose-response relationships between abstinence and adherence to the programs. The study was a randomized controlled trial with three conditions: the control group, the AP program, and the AP+ program. Respondents were daily smokers (N = 2031), aged 18 to 65 years, who were motivated and willing to quit smoking within 1 month. The primary outcome was self-reported continued abstinence 12 months after baseline. Logistic regression analyses were conducted using three samples: (1) all respondents as randomly assigned, (2) a modified sample that excluded respondents who did not make a quit attempt in conformance with the program protocol, and (3) a minimum dose sample that also excluded respondents who did not adhere to at least one of the intervention elements. Observed case analyses and conservative analyses were conducted. In the observed case analysis of the randomized sample, abstinence rates were 22% (45/202) in the control group versus 33% (63/190) in the AP program and 31% (53/174) in the AP+ program. The AP program (odds ratio 1.95, P = .005) and the AP+ program (odds ratio 1.61, P = .049) were significantly more effective than the control condition. Abstinence rates and effects differed per sample. Finally, the results suggest a dose-response relationship between abstinence and the number of program elements completed by the respondents. Despite the differences in results caused by the variation in our analysis approaches, we can conclude that Web-based computer-tailored programs combined with planning strategy assignments and feedback after the quit attempt can be effective in preventing relapse 12 months after baseline. However, adherence to the intervention seems critical for effectiveness. Finally, our results also suggest that more research is needed to assess the optimum intervention dose. Dutch Trial Register: NTR1892; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1892 (Archived by WebCite at http://www.webcitation.org/693S6uuPM).
Baquero, Barbara; Ayala, Guadalupe X.; Arredondo, Elva M.; Campbell, Nadia R.; Slymen, Donald J.; Gallo, Linda; Elder, John P.
2009-01-01
Secretos de la Buena Vida was a successful tailored nutrition communication intervention delivered to Latinas living along the US–Mexico border in California. The intervention was delivered over a 14-week period and consisted of three intervention conditions: weekly home visits with promotoras + weekly tailored mailed newsletters in the first condition, weekly tailored mailed newsletters in the second condition and targeted materials in the attention control condition. The current study examined what elements of the promotora + tailored newsletter and tailored newsletter-only conditions were most effective for behavioral adoption and maintenance in a sample of 238 Latina women. Process evaluation measures assessed the implementation, fidelity and dose of these two intervention conditions. Results indicate that there was high fidelity to program implementation and delivery. Perceived effort, perceived support and intervention length predicted adoption of a lower fat diet at the 15-month follow-up. In the promotora + tailored newsletter condition, married women were four times more likely to be adopters of dietary fat changes than single women. These findings highlight the importance of process evaluation measures and help us understand the mechanism by which tailored print materials and interpersonal health communication via promotoras can facilitate health behavior change. PMID:19339374
Pölönen, S; Tiihonen, M; Hartikainen, S; Nykänen, I
2017-01-01
To evaluate the effect of individually tailored dietary counseling on nutritional status among home care clients aged 75 years or older. Non-randomised controlled study. The study sample consisted of 224 home care clients (≥ 75 years) (intervention group, n = 127; control group, n = 100) who were at protein-energy malnutrition (PEM) or risk of PEM (MNA score <24 and plasma albumin <35 g/L). Individually tailored dietary counseling; the persons were instructed to increase their food intake with energy-dense food items, the number of meals they ate and their consumption of energy-, protein- and nutrient-rich snacks for six months. The Mini Nutritional Assessment (MNA), Body Mass Index (BMI) and plasma albumin were used to determine nutritional status at the baseline and after the six-month intervention. The mean age of the home care clients was 84.3 (SD 5.5) in the intervention group and 84.4 (SD 5.3) in the control group, and 70 percent were women in both groups. After the six-month nutritional intervention, the MNA score increased 2.3 points and plasma albumin 1.6 g/L in the intervention group, against MNA score decreased -0.2 points and plasma albumin -0.1 g/L in the control group. Individually tailored dietary counseling may improve nutritional status among older home care clients.
Oh, Sohee; Steinhubl, Steven; Kim, Sohye; Bae, Woo Kyung; Han, Jong Soo; Kim, Jeong-Hyun; Lee, Keehyuck; Kim, Mi Jin
2015-01-01
Background Worksite nutrition and physical activity interventions are important to help overweight and obese employees lose weight, but costs and insufficient sustained motivation prevent the majority of these programs from succeeding. Tailored text messaging in aiding weight management has been effective in several studies, but no studies have evaluated the effect of a tailored text message service on weight loss in a worksite health promotion program. Objective We studied the efficacy of a tailored text-messaging intervention for obese male participants in a worksite weight loss program of 6 months duration. Methods The study was an unblinded, randomized controlled trial. Men with a body mass index greater than 25 kg/m2 were recruited from the Korea District Heating Corporation, the Korea Expressway Corporation, and the Korea Gas Corporation. The participants were identified by nurse managers. Participants were randomly allocated to 1 of the following 2 groups for 24 weeks: (1) intervention group, which received tailored text message reminders every other day plus 4 offline education sessions and brief counseling with monthly weight check by nurses for weight control over 6 months and (2) control group, which received the 4 offline education sessions and brief counseling with monthly weight check by nurses about weight control over 6 months. The primary outcome was the difference in weight loss at 6 months. A mixed-model repeated-measures analysis was performed to evaluate the effect of the intervention group’s weight loss compared with the control group. Results A total of 205 obese men were randomized into either the intervention (n=104) or the control group (n=101). At the end of 6 months, the intervention group (n=63) had lost 1.71 kg (95% CI –2.53 to –0.88) and the control group (n=59) had lost 1.56 kg (95% CI –2.45 to –0.66); the difference between the 2 groups was not significant (mean difference –0.15, 95% CI –1.36 to 1.07). At the end of the study, 60% (34/57) of the intervention group rated the message program as helpful for weight control and 46% (26/57) would recommend the text message service to their friends. Conclusions Tailored text message reminders did not have a significant effect on weight loss in obese men as part of a worksite weight loss program. Trial Registration International Standard Randomized Controlled Trial Number (ISRCTN): 39629189; http://www.isrctn.com/ISRCTN39629189?q=39629189&filters=&sort=&offset=1&totalResults=1&page=1&pageSize=10&searchType=basic-search (Archived by WebCite at http://www.webcitation.org/6VsFkwJH6). PMID:25648325
Xie, Y; Zhang, Y; Qin, W; Lu, S; Ni, C; Zhang, Q
2017-03-01
Increasing DTI studies have demonstrated that white matter microstructural abnormalities play an important role in type 2 diabetes mellitus-related cognitive impairment. In this study, the diffusional kurtosis imaging method was used to investigate WM microstructural alterations in patients with type 2 diabetes mellitus and to detect associations between diffusional kurtosis imaging metrics and clinical/cognitive measurements. Diffusional kurtosis imaging and cognitive assessments were performed on 58 patients with type 2 diabetes mellitus and 58 controls. Voxel-based intergroup comparisons of diffusional kurtosis imaging metrics were conducted, and ROI-based intergroup comparisons were further performed. Correlations between the diffusional kurtosis imaging metrics and cognitive/clinical measurements were assessed after controlling for age, sex, and education in both patients and controls. Altered diffusion metrics were observed in the corpus callosum, the bilateral frontal WM, the right superior temporal WM, the left external capsule, and the pons in patients with type 2 diabetes mellitus compared with controls. The splenium of the corpus callosum and the pons had abnormal kurtosis metrics in patients with type 2 diabetes mellitus. Additionally, altered diffusion metrics in the right prefrontal WM were significantly correlated with disease duration and attention task performance in patients with type 2 diabetes mellitus. With both conventional diffusion and additional kurtosis metrics, diffusional kurtosis imaging can provide additional information on WM microstructural abnormalities in patients with type 2 diabetes mellitus. Our results indicate that WM microstructural abnormalities occur before cognitive decline and may be used as neuroimaging markers for predicting the early cognitive impairment in patients with type 2 diabetes mellitus. © 2017 by American Journal of Neuroradiology.
Gong, Xiaohui; Xu, Xiaojuan; Lin, Sisi; Cheng, Yu; Tong, Jianhua; Li, Yongyu
2017-08-01
The aim of the current study was to investigate the effects of early-stage dextran sodium sulfate (DSS)-induced mouse colitis on the biomechanical properties and microstructure of colon walls. In the present study, colitis was induced in 8-week-old mice by the oral administration of DSS, and then 10 control and 10 experimental colitis samples were harvested. Uniaxial tensile tests were performed to measure the ultimate tensile strength and ultimate stretches of colon tissues. In addition, histological investigations were performed to characterize changes in the microstructure of the colon wall following treatment. The results revealed that the ultimate tensile stresses were 232±33 and 183±25 kPa for the control and DSS groups, respectively (P=0.001). Ultimate stretches at rupture for the control and DSS groups were 1.43±0.04 and 1.51±0.06, respectively (P=0.006). However, there was no statistically significant difference in tissue stiffness between the two groups. Histological analysis demonstrated high numbers of inflammatory cells infiltrated into the stroma in the DSS group, leading to significant submucosa edema. Hyperplasia was also identified in the DSS-treated submucosa, causing a disorganized microstructure within the colon wall. Furthermore, a large number of collagen fibers in the DSS-treated muscular layer were disrupted, and fiber bundles were thinner when compared with the control group. In conclusion, early-stage experimental colitis alters the mechanical properties and microstructural characteristics of the colon walls, further contributing to tissue remodeling in the pathological process.
Micromanipulation and microfabrication for optical microrobotics
NASA Astrophysics Data System (ADS)
Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton; Kelemen, Lóránd; Aabo, Thomas; Ormos, Pál.; Glückstad, Jesper
2012-10-01
Robotics can use optics feedback in vision-based control of intelligent robotic guidance systems. With light's miniscule momentum, shrinking robots down to the microscale regime creates opportunities for exploiting optical forces and torques in microrobotic actuation and control. Indeed, the literature on optical trapping and micromanipulation attests to the possibilities for optical microrobotics. This work presents an optical microrobotics perspective on the optical microfabrication and micromanipulation work that we performed. We designed different three-dimensional microstructures and fabricated them by two-photon polymerization. These microstructures were then handled using our biophotonics workstation (BWS) for proof-of-principle demonstrations of optical actuation, akin to 6DOF actuation of robotic micromanipulators. Furthermore, we also show an example of dynamic behavior of the trapped microstructure that can be achieved when using static traps in the BWS. This can be generalized, in the future, towards a structural shaping optimization strategy for optimally controlling microstructures to complement approaches based on lightshaping. We also show that light channeled to microfabricated, free-standing waveguides can be used not only to redirect light for targeted delivery of optical energy but can also for targeted delivery of optical force, which can serve to further extend the manipulation arms in optical robotics. Moreover, light deflection with waveguide also creates a recoil force on the waveguide, which can be exploited for controlling the optical force.
Lau, Erica Y; Lau, Patrick W C; Cai, Bo; Archer, Edward
2015-01-01
This study examined the effects of text message content (generic vs. culturally tailored) on the login rate of an Internet physical activity program in Hong Kong Chinese adolescent school children. A convenience sample of 252 Hong Kong secondary school adolescents (51% female, 49% male; M age = 13.17 years, SD = 1.28 years) were assigned to one of 3 treatments for 8 weeks. The control group consisted of an Internet physical activity program. The Internet plus generic text message group consisted of the same Internet physical activity program and included daily generic text messages. The Internet plus culturally tailored text message group consisted of the Internet physical activity program and included daily culturally tailored text messages. Zero-inflated Poisson mixed models showed that the overall effect of the treatment group on the login rates varied significantly across individuals. The login rates over time were significantly higher in the Internet plus culturally tailored text message group than the control group (β = 46.06, 95% CI 13.60, 156.02; p = .002) and the Internet plus generic text message group (β = 15.80, 95% CI 4.81, 51.9; p = .021) after adjusting for covariates. These findings suggest that culturally tailored text messages may be more advantageous than generic text messages on improving adolescents' website login rate, but effects varied significantly across individuals. Our results support the inclusion of culturally tailored messaging in future online physical activity interventions.
Progress in Integrative Biomaterial Systems to Approach Three-Dimensional Cell Mechanotransduction
Zhang, Ying; Liao, Kin; Li, Chuan; Lai, Alvin C.K.; Foo, Ji-Jinn
2017-01-01
Mechanotransduction between cells and the extracellular matrix regulates major cellular functions in physiological and pathological situations. The effect of mechanical cues on biochemical signaling triggered by cell–matrix and cell–cell interactions on model biomimetic surfaces has been extensively investigated by a combination of fabrication, biophysical, and biological methods. To simulate the in vivo physiological microenvironment in vitro, three dimensional (3D) microstructures with tailored bio-functionality have been fabricated on substrates of various materials. However, less attention has been paid to the design of 3D biomaterial systems with geometric variances, such as the possession of precise micro-features and/or bio-sensing elements for probing the mechanical responses of cells to the external microenvironment. Such precisely engineered 3D model experimental platforms pave the way for studying the mechanotransduction of multicellular aggregates under controlled geometric and mechanical parameters. Concurrently with the progress in 3D biomaterial fabrication, cell traction force microscopy (CTFM) developed in the field of cell biophysics has emerged as a highly sensitive technique for probing the mechanical stresses exerted by cells onto the opposing deformable surface. In the current work, we first review the recent advances in the fabrication of 3D micropatterned biomaterials which enable the seamless integration with experimental cell mechanics in a controlled 3D microenvironment. Then, we discuss the role of collective cell–cell interactions in the mechanotransduction of engineered tissue equivalents determined by such integrative biomaterial systems under simulated physiological conditions. PMID:28952551
Lin, Chia-Ying; Hsiao, Chun-Ching; Chen, Po-Quan; Hollister, Scott J
2004-08-15
An approach combining global layout and local microstructure topology optimization was used to create a new interbody fusion cage design that concurrently enhanced stability, biofactor delivery, and mechanical tissue stimulation for improved arthrodesis. To develop a new interbody fusion cage design by topology optimization with porous internal architecture. To compare the performance of this new design to conventional threaded cage designs regarding early stability and long-term stress shielding effects on ingrown bone. Conventional interbody cage designs mainly fall into categories of cylindrical or rectangular shell shapes. The designs contribute to rigid stability and maintain disc height for successful arthrodesis but may also suffer mechanically mediated failures of dislocation or subsidence, as well as the possibility of bone resorption. The new optimization approach created a cage having designed microstructure that achieved desired mechanical performance while providing interconnected channels for biofactor delivery. The topology optimization algorithm determines the material layout under desirable volume fraction (50%) and displacement constraints favorable to bone formation. A local microstructural topology optimization method was used to generate periodic microstructures for porous isotropic materials. Final topology was generated by the integration of the two-scaled structures according to segmented regions and the corresponding material density. Image-base finite element analysis was used to compare the mechanical performance of the topology-optimized cage and conventional threaded cage. The final design can be fabricated by a variety of Solid Free-Form systems directly from the image output. The new design exhibited a narrower, more uniform displacement range than the threaded cage design and lower stress at the cage-vertebra interface, suggesting a reduced risk of subsidence. Strain energy density analysis also indicated that a higher portion of total strain energy density was transferred into the new bone region inside the new designed cage, indicating a reduced risk of stress shielding. The new design approach using integrated topology optimization demonstrated comparable or better stability by limited displacement and reduced localized deformation related to the risk of subsidence. Less shielding of newly formed bone was predicted inside the new designed cage. Using the present approach, it is also possible to tailor cage design for specific materials, either titanium or polymer, that can attain the desired balance between stability, reduced stress shielding, and porosity for biofactor delivery.
NASA Astrophysics Data System (ADS)
Chung, Reinaldo Javier
High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of HCCIs by microstructural modification through addition of strong carbide-forming elements to produce eutectic microstructures reinforced with in-situ formed foreign carbides. Very promising results have been obtained in lab, which demonstrates that the approach is feasible and effective in tailoring HCCIs for improved performance.
Peng, Jing; Zhou, Yong; Min, Li; Zhang, Wenli; Luo, Yi; Zhang, Xuelei; Zou, Chang; Shi, Rui; Tu, Chongqi
2014-05-01
To analyze the correlation between the trabecular microstructure and the clinical imaging parameters in the fracture region of osteoporotic hip so as to provide a simple method to evaluate the trabecular microstructure by a non-invasive way. Between June 2012 and January 2013, 16 elderly patients with femoral neck fracture underwent hip arthroplasty were selected as the trial group; 5 young patients with pelvic fracture were selected as the control group. The hip CT examination was done, and cancellous bone volume/marrow cavity volume (CV/MV) was analyzed with Mimics 10.01 software in the control group. The CT scan and bone mineral density (BMD) measurement were performed on normal hips of the trial group, and cuboid specimens were gained from the femoral necks at the place of the tensional trabeculae to evaluate the trabecular microstructure parameters by Micro-CT, including bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular spacing (Tb.Sp), trabecular thickness (Tb.Th), connect density (Conn.D), and structure model index (SMI). The correlation between imaging parameters and microstructure parameters was analyzed. In the trial group, the BMD value was 0.491-0.698 g/cm2 (mean, 0.601 g/cm2); according to World Health Organization (WHO) standard, 10 cases were diagnosed as having osteoporosis, and 6 cases as having osteopenia. The CV/MV of the trial group (0.670 1 +/- 0.102 0) was significantly lower than that of the control group (0.885 0 +/- 0.089 1) (t = -4.567, P = 0.000). In the trial group, CV/MV had correlation with BV/TV, Tb.Th, and SMI (P < 0.05); however, CV/MV had no correlation with Tb.N, Tb.Sp, or Conn.D (P > 0.05). BV/TV had correlation with Tb.Th, Tb.N, Tb.Sp, and SMI (P < 0.05), but it had no correlation with Conn.D (P=0.075). There was no correlation between BMD and microstructure parameters (P > 0.05). CV/MV obviously decreases in the osteoporotic hip, and there is a correlation between CV/MV and the microstructure parameters of BV/TV, Tb.Th, and SMI, to some extent, which can reflect the variety of the microstructure of the trabeculae. There is no correlation between BMD of femoral neck and microstructure parameters.
Evaluation of factors affecting the edge formability of two hot rolled multiphase steels
NASA Astrophysics Data System (ADS)
Mukherjee, Monideepa; Tiwari, Sumit; Bhattacharya, Basudev
2018-02-01
In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.
Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites
NASA Astrophysics Data System (ADS)
Xiong, J.; Ghori, M. Z.; Henkel, B.; Strunskus, T.; Schürmann, U.; Deng, M.; Kienle, L.; Faupel, F.
2017-07-01
Silver/titania nanocomposites with strong bactericidal effects and good biocompatibility/environmental safety show a high potential for antibacterial applications. Tailoring the silver ion release is thus highly promising to optimize the antibacterial properties of such coatings and to preserve biocompatibility. Reactive sputtering is a fast and versatile method for the preparation of such Ag/TiOx nanocomposites coatings. The present work is concerned with the influence of sputter parameters on the surface morphology and silver ion release properties of reactively sputtered Ag/TiOx nanocomposites coatings showing a silver nanoparticle size distribution in the range from 1 to 20 nm. It is shown that the silver ion release rate strongly depends on the total pressure: the coatings prepared at lower pressure present a lower but long-lasting release behavior. The much denser structure produced under these conditions reduces the transport of water molecules into the coating. In addition, the influence of microstructure and thickness of titanium oxide barriers on the silver ion release were investigated intensively. Moreover, for the coatings prepared at high total pressure, it was demonstrated that stable and long-lasting silver release can be achieved by depositing a barrier with a high rate. Nanocomposites produced under these conditions show well controllable silver ion release properties for applications as antibacterial coatings.
Bringing nanomagnetism to the mesoscale with artificial amorphous structures
NASA Astrophysics Data System (ADS)
Muscas, G.; Brucas, R.; Jönsson, P. E.
2018-05-01
In the quest for materials with emergent or improved properties, an effective route is to create artificial superstructures. Novel properties emerge from the coupling between the phases, but the strength of this coupling depends on the quality of the interfaces. Atomic control of crystalline interfaces is notoriously complicated and to elude that obstacle, we suggest here an all-amorphous design. Starting from a model amorphous iron alloy, we locally tune the magnetic behavior by creating boron-doped regions by means of ion implantation through a lithographic mask. This process preserves the amorphous environment, creating a non-topographic magnetic superstructure with smooth interfaces and no structural discontinuities. The absence of inhomogeneities acting as pinning centers for the magnetization reversal is demonstrated by the formation of magnetic vortexes for ferromagnetic disks as large as 20 µm in diameter embedded within a paramagnetic matrix. Rigid exchange coupling between two amorphous ferromagnetic phases in a microstructured sample is evidenced by an investigation involving first-order reversal curves. The sample consists of a soft matrix with embedded elements constituting a hard phase where the anisotropy originates from an elongated shape of the elements. We provide an intuitive explanation for the micrometer-range exchange coupling mechanism and discuss how to tailor the properties of all-amorphous superstructures.
Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach
NASA Astrophysics Data System (ADS)
Velicu, Ioana-Laura; Tiron, Vasile; Porosnicu, Corneliu; Burducea, Ion; Lupu, Nicoleta; Stoian, George; Popa, Gheorghe; Munteanu, Daniel
2017-12-01
Despite the tremendous potential for industrial use of tungsten (W), very few studies have been reported so far on controlling and tailoring the properties of W thin films obtained by physical vapor deposition techniques and, even less, for those deposited by High Power Impulse Magnetron Sputtering (HiPIMS). This study presents results on the deposition process and properties characterization of nanocrystalline W thin films deposited on silicon and molybdenum substrates (100 W average sputtering power) by conventional dc magnetron sputtering (dcMS) and HiPIMS techniques. Topological, structural, mechanical and tribological properties of the deposited thin films were investigated. It was found that in HiPIMS, both deposition process and coatings properties may be optimized by using an appropriate magnetic field configuration and pulsing design. Compared to the other deposited samples, the W films grown in multi-pulse (5 × 3 μs) HiPIMS assisted by an additional magnetic field, created with a toroidal-shaped permanent magnet placed in front of the magnetron cathode, show significantly enhanced properties, such as: smoother surfaces, higher homogeneity and denser microstructure, higher hardness and Young's modulus values, better adhesion to the silicon substrate and lower coefficient of friction. Mechanical behaviour and structural changes are discussed based on plasma diagnostics results.
NASA Astrophysics Data System (ADS)
Chen, Chao; Zhang, Yan; Zeng, Jing; Zhang, Fuqiang; Zhou, Kechao; Bowen, Chris R.; Zhang, Dou
2017-12-01
In this article ice templating is used to fabricate novel TiO2/chitosan/reduced graphene oxide (rGO) composites with a highly aligned macroporous structure for photocatalytic applications. The structure of the composites was readily tailored using the composite composition, for example the lamellar pore width decreased from 50-45 to 5-10 μm, while the lamellar thickness increased from 2-3 to 20-25 μm, with an increase of the TiO2 content from 45 to 77 vol%. Lamellar pore channels between the layers exhibited a more uniform distribution when the rGO content was 1.0 wt%. The increase in viscosity of the composites with high TiO2 contents led to the formation of smaller ice crystals and smaller lamellar pore sizes to enable the production of composite structures with improved mechanical strength. The TiO2/chitosan/rGO composites exhibited excellent photocatalytic degradation of methyl orange and the photocatalytic efficiency was optimized by control of the active material content and microstructure. The hybrid composites with 1.0 wt% rGO showed a degradation percentage of 97%, which makes these novel TiO2/chitosan/rGO freeze cast structures attractive materials as high performance and high strength substrates for photocatalytic degradation applications.
Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.
2015-04-08
In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less
Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won
2016-01-01
There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834
In-Gel Direct Laser Writing for 3D-Designed Hydrogel Composites That Undergo Complex Self-Shaping.
Nishiguchi, Akihiro; Mourran, Ahmed; Zhang, Hang; Möller, Martin
2018-01-01
Self-shaping and actuating materials inspired by biological system have enormous potential for biosensor, microrobotics, and optics. However, the control of 3D-complex microactuation is still challenging due to the difficulty in design of nonuniform internal stress of micro/nanostructures. Here, we develop in-gel direct laser writing (in-gel DLW) procedure offering a high resolution inscription whereby the two materials, resin and hydrogel, are interpenetrated on a scale smaller than the wavelength of the light. The 3D position and mechanical properties of the inscribed structures could be tailored to a resolution better than 100 nm over a wide density range. These provide an unparalleled means of inscribing a freely suspended microstructures of a second material like a skeleton into the hydrogel body and also to direct isotropic volume changes to bending and distortion motions. In the combination with a thermosensitive hydrogel rather small temperature variations could actuate large amplitude motions. This generates complex modes of motion through the rational engineering of the stresses present in the multicomponent material. More sophisticated folding design would realize a multiple, programmable actuation of soft materials. This method inspired by biological system may offer the possibility for functional soft materials capable of biomimetic actuation and photonic crystal application.
Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth
Grain boundaries in metallic alloys often play a crucial role, not only in determining the mechanical properties or thermal stability of alloys, but also in dictating the phase transformation kinetics during thermomechanical processing. We demonstrate that locally stabilized structure and compositional segregation at grain boundaries—“grain boundary complexions”—in a complex multicomponent alloy can be modified to influence the kinetics of cellular transformation during subsequent thermomechanical processing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography analysis of a metallic nuclear fuel highly relevant to worldwide nuclear non-proliferation efforts —uranium-10 wt% molybdenum (U-10Mo) alloy, new evidence for the existence of grainmore » boundary complexion is provided. We then modified the concentration of impurities dissolved in Υ-UMo grain interiors and/or segregated to Υ-UMo grain boundaries by changing the homogenization treatment, and these effects were used used to retard the kinetics of cellular transformation during subsequent sub-eutectoid annealing in this U-10-Mo alloy during sub-eutectoid annealing. Thus, this work provided insights on tailoring the final microstructure of the U-10Mo alloy, which can potentially improve the irradiation performance of this important class of alloy fuels.« less
NASA Astrophysics Data System (ADS)
Cebollero, J. A.; Lahoz, R.; Laguna-Bercero, M. A.; Larrea, A.
2017-08-01
Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface.
Krause, Bärbel; Abadias, Gregory; Michel, Anny; Wochner, Peter; Ibrahimkutty, Shyjumon; Baumbach, Tilo
2016-12-21
The kinetics of phase transitions during formation of small-scale systems are essential for many applications. However, their experimental observation remains challenging, making it difficult to elucidate the underlying fundamental mechanisms. Here, we combine in situ and real-time synchrotron X-ray diffraction (XRD) and X-ray reflectivity (XRR) experiments with substrate curvature measurements during deposition of nanoscale Mo and Mo 1-x Si x films on amorphous Si (a-Si). The simultaneous measurements provide direct evidence of a spontaneous, thickness-dependent amorphous-to-crystalline (a-c) phase transition, associated with tensile stress build-up and surface roughening. This phase transformation is thermodynamically driven, the metastable amorphous layer being initially stabilized by the contributions of surface and interface energies. A quantitative analysis of the XRD data, complemented by simulations of the transformation kinetics, unveils an interface-controlled crystallization process. This a-c phase transition is also dominating the stress evolution. While stress build-up can significantly limit the performance of devices based on nanostructures and thin films, it can also trigger the formation of these structures. The simultaneous in situ access to the stress signal itself, and to its microstructural origins during structure formation, opens new design routes for tailoring nanoscale devices.
Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun
2011-03-01
In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Carriers for the Tunable Release of Therapeutics: Etymological Classification and Examples
Uskoković, Vuk; Ghosh, Shreya
2016-01-01
Introduction Physiological processes at the molecular level take place at precise spatiotemporal scales, which vary from tissue to tissue and from one patient to another, implying the need for the carriers that enable tunable release of therapeutics. Areas Covered Classification of all drug release to intrinsic and extrinsic is proposed, followed by the etymological clarification of the term “tunable” and its distinction from the term “tailorable”. Tunability is defined as analogous to tuning a guitar string or a radio receiver to the right frequency using a single knob. It implies changing a structural parameter along a continuous quantitative scale and correlating it numerically with the release kinetics. Examples of tunable, tailorable and environmentally responsive carriers are given, along with the parameters used to achieve these levels of control. Expert Opinion Interdependence of multiple variables defining the carrier microstructure obstructs the attempts to elucidate parameters that allow for the independent tuning of release kinetics. Learning from the tunability of nanostructured materials and superstructured metamaterials can be a fruitful source of inspiration in the quest for the new generation of tunable release carriers. The greater intersection of traditional materials sciences and pharmacokinetic perspectives could foster the development of more sophisticated mechanisms for tunable release. PMID:27322661
Acoustic activation of water-in-oil microemulsions for controlled salt dissolution.
Baxamusa, Salmaan; Ehrmann, Paul; Ong, Jemi
2018-06-18
The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates. Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH 2 PO 4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field. Dispersed aqueous domains of 2-6 nm radius dissolve a solid block of KDP at 0-10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with <20% of the increase due to bulk heating effects. The rest is attributed to cavitation-induced changes to the domain microstructure, providing a simple method for remotely activating and de-activating dissolution. Copyright © 2018 Elsevier Inc. All rights reserved.
Use of Microgravity to Control the Microstructure of Eutectics
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.
1999-01-01
The long term goal of this project is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. Prior experimental results on the influence of microgravity on the microstructure of fibrous eutectics have been contradictory. Theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in the melt sufficiently to cause a measurable change in microstructure when the eutectic grows at minimum supercooling. Currently, there are four other hypotheses that might explain the observed changes in microstructure of fibrous eutectics caused by convection: (1) Disturbance of the concentration boundary layer arising from an off-eutectic melt composition and growth at the extremum; (2) Disturbance of the concentration boundary layer of a habit-modifying impurity; (3) Disturbance of the concentration boundary layer arising from an off-eutectic interfacial composition due to non-extremum growth; and (4) A fluctuating freezing rate combined with differences in the kinetics of fiber termination and fiber formation. We favor the last of these hypotheses. Thus, the primary objective of the present grant is to determine experimentally and theoretically the influence of a periodically varying freezing rate on eutectic solidification. A secondary objective is to determine the influence of convection on the microstructure of at least one other eutectic alloy that might be suitable for flight experiments.
Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V
Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush; ...
2016-01-20
Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less
Impact of Protein Gel Porosity on the Digestion of Lipid Emulsions.
Sarkar, Anwesha; Juan, Jean-Marc; Kolodziejczyk, Eric; Acquistapace, Simone; Donato-Capel, Laurence; Wooster, Tim J
2015-10-14
The present study sought to understand how the microstructure of protein gels impacts lipolysis of gelled emulsions. The selected system consisted of an oil-in-water (o/w) emulsion embedded within gelatin gels. The gelatin-gelled emulsions consisted of a discontinuous network of aggregated emulsion droplets (mesoscale), dispersed within a continuous network of gelatin (microscale). The viscoelastic properties of the gelled emulsions were dominated by the rheological behavior of the gelatin, suggesting a gelatin continuous microstructure rather than a bicontinuous gel. A direct relationship between the speed of fat digestion and gel average mesh size was found, indicating that the digestion of fat within gelatin-gelled emulsions is controlled by the ability of the gel's microstructure to slow lipase diffusion to the interface of fat droplets. Digestion of fat was facilitated by gradual breakdown of the gelatin network, which mainly occurred via surface erosion catalyzed by proteases. Overall, this work has demonstrated that the lipolysis kinetics of gelled emulsions is driven by the microstructure of protein gels; this knowledge is key for the future development of microstructures to control fat digestion and/or the delivery of nutrients to different parts of the gastrointestinal tract.
Microstructure Evolution and Composition Control During the Processing of Thin-Gage Metallic Foil
NASA Astrophysics Data System (ADS)
Semiatin, S. L.; Gross, M. E.; Matson, D. W.; Bennett, W. D.; Bonham, C. C.; Ustinov, A. I.; Ballard, D. L.
2012-12-01
The manufacture of thin-gage superalloy and gamma-titanium-aluminide foil products via near-conventional thermomechanical processing and two different vapor-deposition methods was investigated. Thermomechanical processing was based on hot-pack rolling of plate and sheet. Foils of the superalloy LSHR and the near-gamma titanium aluminide Ti-45.5Al-2Cr-2Nb made by this approach exhibited excellent gage control and fine two-phase microstructures. The vapor-phase techniques used magnetron sputtering (MS) of a target of the desired product composition or electron-beam physical vapor deposition (EBPVD) of separate targets of the specific alloying elements. Thin deposits of LSHR and Ti-48Al-2Cr-2Nb made by MS showed uniform thickness/composition and an ultrafine microstructure. However, systematic deviations from the specific target composition were found. During subsequent heat treatment, the microstructure of the MS samples showed various degrees of grain growth and coarsening. Foils of Ti-43Al and Ti-51Al-1V fabricated by EBPVD were fully dense. The microstructures developed during EBPVD were interpreted in terms of measured phase equilibria and the dependence of evaporant flux on temperature.
Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush
Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less
Gotsman, Israel; Ezra, Orly; Hirsh Raccah, Bruria; Admon, Dan; Lotan, Chaim; Dekeyser Ganz, Freda
2017-08-01
Many patients with heart failure need anticoagulants, including warfarin. Good control is particularly challenging in heart failure patients, with <60% of international normalized ratio (INR) measurements in the therapeutic range, thereby increasing the risk of complications. This study aimed to evaluate the effect of a patient-specific tailored intervention on anticoagulation control in patients with heart failure. Patients with heart failure taking warfarin therapy (n = 145) were randomized to either standard care or a 1-time intervention assessing potential risk factors for lability of INR, in which they received patient-specific instructions. Time in therapeutic range (TTR) using Rosendaal's linear model was assessed 3 months before and after the intervention. The patient-tailored intervention significantly increased anticoagulation control. The median TTR levels before intervention were suboptimal in the interventional and control groups (53% vs 45%, P = .14). After intervention the median TTR increased significantly in the interventional group compared with the control group (80% [interquartile range, 62%-93%] vs 44% [29%-61%], P <.0001). The intervention resulted in a significant improvement in the interventional group before versus after intervention (53% vs 80%, P <.0001) but not in the control group (45% vs 44%, P = .95). The percentage of patients with a TTR ≥60%, considered therapeutic, was substantially higher in the interventional group: 79% versus 25% (P <.0001). The INR variability (standard deviation of each patient's INR measurements) decreased significantly in the interventional group, from 0.53 to 0.32 (P <.0001) after intervention but not in the control group. Patient-specific tailored intervention significantly improves anticoagulation therapy in patients with heart failure. Copyright © 2017 Elsevier Inc. All rights reserved.
Nerve Conduction Study on Sural Nerve among Nepalese Tailors Using Mechanical Sewing Machine.
Yadav, Prakash Kumar; Yadav, Ram Lochan; Sharma, Deepak; Shah, Dev Kumar; Thakur, Dilip; Limbu, Nirmala; Islam, Md Nazrul
2017-03-01
The use of new technologies and innovations are out of access for people living in a developing country like Nepal. The mechanical sewing machine is still in existence at a large scale and dominant all over the country. Tailoring is one of the major occupations adopted by skilled people with lower socioeconomic status and education level. Sural nerves of both right and left legs are exposed to strenuous and chronic stress exerted by chronic paddling of mechanical sewing machine with legs. To evaluate the influence of chronic and strenuous paddling on right and left sural nerves. The study recruited 30 healthy male tailors with median age {34(31-37.25)} years (study group), and, 30 healthy male volunteers with age {34(32-36.25)} years (control group). Anthropometric measurements (age, height, weight, BMI and length of both right and left legs) as well as cardio respiratory measurements [Systolic Blood Pressure (SBP), Dystolic Blood Pressure (DBP), Pules Rate (PR) and Respiratory Rate (RR)] were recorded for each subject. Standard nerve conduction techniques using constant measured distances were applied to evaluate sural nerve (sensory) in both legs of each individual. The differences in variables between the study and control groups were tested using Student's t-test for parametric variables and Mann-Whitney U test for nonparametric variables. A p-value of ≤ 0.05 was considered significant. Age, height, weight, body mass index and leg length were not significantly different between tailors and control groups. Cardio respiratory measurements (SBP, DBP, PR and RR) were also not significantly altered between both the groups. The sensory nerve conduction velocities (m/s) of the right {44.23(42.72-47.83) vs 50(46- 54)} and left sural nerves {45.97±5.86 vs 50.67±6.59} m/s were found significantly reduced in tailors in comparison to control group. Similarly amplitudes (μv) of right sural (20.75±5.42 vs 24.10±5.45) and left sural nerves {18.2(12.43-21.8) vs 32.0(26.5-35.25)} were significantly less in tailors in comparison to control group whereas, latencies (ms) of right sural {2.6(2.2-2.7) vs 2.0(2.0-2.250} and left sural nerve {2.4(2.07-2.72) vs 2.0(2.0-2.0)} were found significantly high in tailors as compared with control group. Operating mechanical sewing machine by paddling chronically and arduously could have attributed to abnormal nerve conduction study parameters due to vibration effect of the machine on right and left sural nerves. The results of present study follow the trend towards presymptomatic or asymptomatic neuropathy similar to subclinical neuropathy.
Nerve Conduction Study on Sural Nerve among Nepalese Tailors Using Mechanical Sewing Machine
Yadav, Ram Lochan; Sharma, Deepak; Shah, Dev Kumar; Thakur, Dilip; Limbu, Nirmala; Islam, Md. Nazrul
2017-01-01
Introduction The use of new technologies and innovations are out of access for people living in a developing country like Nepal. The mechanical sewing machine is still in existence at a large scale and dominant all over the country. Tailoring is one of the major occupations adopted by skilled people with lower socioeconomic status and education level. Sural nerves of both right and left legs are exposed to strenuous and chronic stress exerted by chronic paddling of mechanical sewing machine with legs. Aim To evaluate the influence of chronic and strenuous paddling on right and left sural nerves. Materials and Methods The study recruited 30 healthy male tailors with median age {34(31-37.25)} years (study group), and, 30 healthy male volunteers with age {34(32-36.25)} years (control group). Anthropometric measurements (age, height, weight, BMI and length of both right and left legs) as well as cardio respiratory measurements [Systolic Blood Pressure (SBP), Dystolic Blood Pressure (DBP), Pules Rate (PR) and Respiratory Rate (RR)] were recorded for each subject. Standard nerve conduction techniques using constant measured distances were applied to evaluate sural nerve (sensory) in both legs of each individual. The differences in variables between the study and control groups were tested using Student’s t-test for parametric variables and Mann-Whitney U test for nonparametric variables. A p-value of ≤ 0.05 was considered significant. Results Age, height, weight, body mass index and leg length were not significantly different between tailors and control groups. Cardio respiratory measurements (SBP, DBP, PR and RR) were also not significantly altered between both the groups. The sensory nerve conduction velocities (m/s) of the right {44.23(42.72-47.83) vs 50(46- 54)} and left sural nerves {45.97±5.86 vs 50.67±6.59} m/s were found significantly reduced in tailors in comparison to control group. Similarly amplitudes (μv) of right sural (20.75±5.42 vs 24.10±5.45) and left sural nerves {18.2(12.43-21.8) vs 32.0(26.5-35.25)} were significantly less in tailors in comparison to control group whereas, latencies (ms) of right sural {2.6(2.2-2.7) vs 2.0(2.0-2.250} and left sural nerve {2.4(2.07-2.72) vs 2.0(2.0-2.0)} were found significantly high in tailors as compared with control group. Conclusion Operating mechanical sewing machine by paddling chronically and arduously could have attributed to abnormal nerve conduction study parameters due to vibration effect of the machine on right and left sural nerves. The results of present study follow the trend towards presymptomatic or asymptomatic neuropathy similar to subclinical neuropathy. PMID:28511376
Microstructure of Tablet-Pharmaceutical Significance, Assessment, and Engineering.
Sun, Changquan Calvin
2017-05-01
To summarize the microstructure - property relationship of pharmaceutical tablets and approaches to improve tablet properties through tablet microstructure engineering. The main topics reviewed here include: 1) influence of material properties and manufacturing process parameters on the evolution of tablet microstructure; 2) impact of tablet structure on tablet properties; 3) assessment of tablet microstructure; 4) development and engineering of tablet microstructure. Microstructure plays a decisive role on important pharmaceutical properties of a tablet, such as disintegration, drug release, and mechanical strength. Useful information on mechanical properties of a powder can be obtained from analyzing tablet porosity-pressure data. When helium pycnometry fails to accurately measure true density of a water-containing powder, non-linear regression of tablet density-pressure data is a useful alternative method. A component that is more uniformly distributed in a tablet generally exerts more influence on the overall tablet properties. During formulation development, it is highly recommended to examine the relationship between any property of interest and tablet porosity when possible. Tablet microstructure can be engineered by judicious selection of formulation composition, including the use of the optimum solid form of the drug and appropriate type and amount of excipients, and controlling manufacturing process.
Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).
Simsiriwong, Jutima; Shrestha, Rakish; Shamsaei, Nima; Lugo, Marcos; Moser, Robert D
2015-11-01
In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK. Copyright © 2015 Elsevier Ltd. All rights reserved.
Capturing the Complexity of Additively Manufactured Microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2016-05-12
The underlying mechanisms and kinetics controlling damage nucleation and growth as a function of material microstructure and loading paths are discussed. These experiments indicate that structural features such as grain boundaries, grain size distribution, grain morphology crystallographic texture are all factors that influence mechanical behavior.
NASA Astrophysics Data System (ADS)
Wei, J.; Ye, Y.; Sun, Z.; Liu, L.; Zou, G.
2016-05-01
Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.
Tailored metal matrix composites for high-temperature performance
NASA Technical Reports Server (NTRS)
Morel, M. R.; Saravanos, D. A.; Chamis, C. C.
1992-01-01
A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate.
Ultrasonically Absorptive Coatings for Hypersonic Laminar Flow Control
2007-12-01
integratt JAC and TPS functions. To aid in the design of UAC with regular microstructure to be tested the CUBRC LENS I tunnel, parametric studies of th...solid foundation for large-scale demonstration of the UAC-LFC performance the CUBRC LENS I -tnel as wel as fabrication of ceramic UAC samples...with regular microstructure to be tested the CUBRC LENS I tunnel, extensive parametric studies of the UAC laminar flow control performance were conducted
NASA Astrophysics Data System (ADS)
Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.
2013-04-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Kumar, Amit; Arruda, Thomas M; Tselev, Alexander; Ivanov, Ilia N; Lawton, Jamie S; Zawodzinski, Thomas A; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V
2013-01-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.
2013-01-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes. PMID:23563856
NASA Astrophysics Data System (ADS)
Au, Peter
A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are discussed in detail. Beyond the review, the results of experiments are described for determining the alpha transus temperature, the phase transformation kinetics in this region and the effects of heat treatment time and cooling rate on microstructure. Based on this preliminary work, a heat treatment to achieve a FGFL microstructure with grain sizes in the range of 50 mum to 150 mum is proposed and confirmed. The room temperature and high temperature mechanical properties of these materials are compared with those of conventional duplex and fully lamellar structures. The results of this experimentation are discussed in terms of the fundamental mechanisms for controlling microstructure and mechanical properties in these materials. The potential for applying cyclic heat treatments to cast and wrought materials to improve the mechanical property balance in engineering practice is discussed.
Structural tailoring of advanced turboprops (STAT): User's manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1991-01-01
This user's manual describes the Structural Tailoring of Advanced Turboprops program. It contains instructions to prepare the input for optimization, blade geometry and analysis, geometry generation, and finite element program control. In addition, a sample input file is provided as well as a section describing special applications (i.e., non-standard input).
Biomarker Evaluation Does Not Confirm Efficacy of Computer-Tailored Nutrition Education
ERIC Educational Resources Information Center
Kroeze, Willemieke; Dagnelie, Pieter C.; Heymans, Martijn W.; Oenema, Anke; Brug, Johannes
2011-01-01
Objective: To evaluate the efficacy of computer-tailored nutrition education with objective outcome measures. Design: A 3-group randomized, controlled trial with posttests at 1 and 6 months post-intervention. Setting: Worksites and 2 neighborhoods in the urban area of Rotterdam. Participants: A convenience sample of healthy Dutch adults (n = 442).…
Enhanced cellular transport and drug targeting using dendritic nanostructures
NASA Astrophysics Data System (ADS)
Kannan, R. M.; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary
2003-03-01
Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. The large density of end groups can also be tailored to create enhanced affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, drug/ligand conjugation, in vitro cellular and in vivo drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Results on PAMAM dendrimers and polyol hyperbranched polymers suggest that: (1) These materials complex/encapsulate a large number of drug molecules and release them at tailorable rates; (2) The drug-dendrimer complex is transported very rapidly through a A549 lung epithelial cancel cell line, compared to free drug, perhaps by endocytosis. The ability of the drug-dendrimer-ligand complexes to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.
Nanoscale tailor-made membranes for precise and rapid molecular sieve separation.
Wang, Jing; Zhu, Junyong; Zhang, Yatao; Liu, Jindun; Van der Bruggen, Bart
2017-03-02
The precise and rapid separation of different molecules from aqueous, organic solutions and gas mixtures is critical to many technologies in the context of resource-saving and sustainable development. The strength of membrane-based technologies is well recognized and they are extensively applied as cost-effective, highly efficient separation techniques. Currently, empirical-based approaches, lacking an accurate nanoscale control, are used to prepare the most advanced membranes. In contrast, nanoscale control renders the membrane molecular specificity (sub-2 nm) necessary for efficient and rapid molecular separation. Therefore, as a growing trend in membrane technology, the field of nanoscale tailor-made membranes is highlighted in this review. An in-depth analysis of the latest advances in tailor-made membranes for precise and rapid molecule sieving is given, along with an outlook to future perspectives of such membranes. Special attention is paid to the established processing strategies, as well as the application of molecular dynamics (MD) simulation in nanoporous membrane design. This review will provide useful guidelines for future research in the development of nanoscale tailor-made membranes with a precise and rapid molecular sieve separation property.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, Kyle; Bordia, Rajendra; Reifsnider, Kenneth
This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.
Step-by-step growth of complex oxide microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.
The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.
Step-by-step growth of complex oxide microstructures
Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.
2015-06-10
The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.
Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo
2011-01-01
Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1989-01-01
This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.
NASA Astrophysics Data System (ADS)
Peng, Zhang; Liangfa, Xie; Ming, Wei; Jianli, Li
In the shipbuilding industry, the welding efficiency of the ship plate not only has a great effect on the construction cost of the ship, but also affects the construction speed and determines the delivery cycle. The steel plate used for large heat input welding was developed sufficiently. In this paper, the composition of the steel with a small amount of Nb, Ti and large amount of Mn had been designed in micro-alloyed route. The content of C and the carbon equivalent were also designed to a low level. The technology of oxide metallurgy was used during the smelting process of the steel. The rolling technology of TMCP was controlled at a low rolling temperature and ultra-fast cooling technology was used, for the purpose of controlling the transformation of the microstructure. The microstructure of the steel plate was controlled to be the mixed microstructure of low carbon bainite and ferrite. Large amount of oxide particles dispersed in the microstructure of steel, which had a positive effects on the mechanical property and welding performance of the steel. The mechanical property of the steel plate was excellent and the value of longitudinal Akv at -60 °C is more than 200 J. The toughness of WM and HAZ were excellent after the steel plate was welded with a large heat input of 100-250 kJ/cm. The steel plate processed by mentioned above can meet the requirement of large heat input welding.
Research on non-direct reflection columnar microstructure
NASA Astrophysics Data System (ADS)
Wu, B. Q.; Wang, X. Z.; Dong, L. H.
2015-10-01
To minimize the risk of laser accidents, especially those involving eye and skin injuries, it is crucial to pay more attention to laser safety. To control the risk of injury, depending on the laser power and wavelength, a number of required safety measures have been put forward, such as specific protection walls, and wearing safety goggles when operating lasers. The direct reflection columnar microstructure can also be used for laser safety. Based on mathematical foundations , a columnar microstructure is designed by the optical design software LightTools. Simulation showed that there is a tilt angle between the emergent and incident light, the incident light being perpendicular to the microstructure, as well as the phenomenon of no direct reflection happened. A novel testing platform was built for the columnar microstructure after it was machined. The applied testing method can measure the angle between the emergent and incident light. The method lays the condition for the further research. It is shown that the columnar microstructure with no direct reflection can be utilized in laser protection systems.
Internet-based interventions for smoking cessation.
Taylor, Gemma M J; Dalili, Michael N; Semwal, Monika; Civljak, Marta; Sheikh, Aziz; Car, Josip
2017-09-04
Tobacco use is estimated to kill 7 million people a year. Nicotine is highly addictive, but surveys indicate that almost 70% of US and UK smokers would like to stop smoking. Although many smokers attempt to give up on their own, advice from a health professional increases the chances of quitting. As of 2016 there were 3.5 billion Internet users worldwide, making the Internet a potential platform to help people quit smoking. To determine the effectiveness of Internet-based interventions for smoking cessation, whether intervention effectiveness is altered by tailoring or interactive features, and if there is a difference in effectiveness between adolescents, young adults, and adults. We searched the Cochrane Tobacco Addiction Group Specialised Register, which included searches of MEDLINE, Embase and PsycINFO (through OVID). There were no restrictions placed on language, publication status or publication date. The most recent search was conducted in August 2016. We included randomised controlled trials (RCTs). Participants were people who smoked, with no exclusions based on age, gender, ethnicity, language or health status. Any type of Internet intervention was eligible. The comparison condition could be a no-intervention control, a different Internet intervention, or a non-Internet intervention. To be included, studies must have measured smoking cessation at four weeks or longer. Two review authors independently assessed and extracted data. We extracted and, where appropriate, pooled smoking cessation outcomes of six-month follow-up or more, reporting short-term outcomes narratively where longer-term outcomes were not available. We reported study effects as a risk ratio (RR) with a 95% confidence interval (CI).We grouped studies according to whether they (1) compared an Internet intervention with a non-active control arm (e.g. printed self-help guides), (2) compared an Internet intervention with an active control arm (e.g. face-to-face counselling), (3) evaluated the addition of behavioural support to an Internet programme, or (4) compared one Internet intervention with another. Where appropriate we grouped studies by age. We identified 67 RCTs, including data from over 110,000 participants. We pooled data from 35,969 participants.There were only four RCTs conducted in adolescence or young adults that were eligible for meta-analysis.Results for trials in adults: Eight trials compared a tailored and interactive Internet intervention to a non-active control. Pooled results demonstrated an effect in favour of the intervention (RR 1.15, 95% CI 1.01 to 1.30, n = 6786). However, statistical heterogeneity was high (I 2 = 58%) and was unexplained, and the overall quality of evidence was low according to GRADE. Five trials compared an Internet intervention to an active control. The pooled effect estimate favoured the control group, but crossed the null (RR 0.92, 95% CI 0.78 to 1.09, n = 3806, I 2 = 0%); GRADE quality rating was moderate. Five studies evaluated an Internet programme plus behavioural support compared to a non-active control (n = 2334). Pooled, these studies indicated a positive effect of the intervention (RR 1.69, 95% CI 1.30 to 2.18). Although statistical heterogeneity was substantial (I 2 = 60%) and was unexplained, the GRADE rating was moderate. Four studies evaluated the Internet plus behavioural support compared to active control. None of the studies detected a difference between trial arms (RR 1.00, 95% CI 0.84 to 1.18, n = 2769, I 2 = 0%); GRADE rating was moderate. Seven studies compared an interactive or tailored Internet intervention, or both, to an Internet intervention that was not tailored/interactive. Pooled results favoured the interactive or tailored programme, but the estimate crossed the null (RR 1.10, 95% CI 0.99 to 1.22, n = 14,623, I 2 = 0%); GRADE rating was moderate. Three studies compared tailored with non-tailored Internet-based messages, compared to non-tailored messages. The tailored messages produced higher cessation rates compared to control, but the estimate was not precise (RR 1.17, 95% CI 0.97 to 1.41, n = 4040), and there was evidence of unexplained substantial statistical heterogeneity (I 2 = 57%); GRADE rating was low.Results should be interpreted with caution as we judged some of the included studies to be at high risk of bias. The evidence from trials in adults suggests that interactive and tailored Internet-based interventions with or without additional behavioural support are moderately more effective than non-active controls at six months or longer, but there was no evidence that these interventions were better than other active smoking treatments. However some of the studies were at high risk of bias, and there was evidence of substantial statistical heterogeneity. Treatment effectiveness in younger people is unknown.
Schepens, Stacey L; Panzer, Victoria; Goldberg, Allon
2011-01-01
We attempted to determine whether multimedia fall prevention education using different instructional strategies increases older adults' knowledge of fall threats and their fall prevention behaviors. Fifty-three community-dwelling older adults were randomized to iwo educational groups or a control group. Multimedia-based educational interventions to increase fall threats knowledge and encourage fall prevention behaviors had two tailoring strategies: (1) improve content realism for individual learners (authenticity group) and (2) highlight program goals and benefits while using participants' content selections (motivation group). Knowledge was measured at baseline and 1-mo follow-up. Participants recorded prevention behaviors for 1 mo. Intervention group participants showed greater knowledge gains and posttest knowledge than did control group participants. The motivation group engaged in more prevention behaviors over 1 mo than did the other groups. Tailoring fall prevention education by addressing authenticity and motivation successfully improved fall threats knowledge. Combining motivational strategies with multimedia education increased the effectiveness of the intervention in encouraging fall prevention behaviors.
Zhang, Weiqing; Yang, Jizheng; Lu, Xianmao
2012-08-28
Here we report the synthesis of Pt/Ag bimetallic nanostructures with controlled number of void spaces via a tailored galvanic replacement reaction (GRR). Ag nanocubes (NCs) were employed as the template to react with Pt ions in the presence of HCl. The use of HCl in the GRR caused rapid precipitation of AgCl, which grew on the surface of Ag NCs and acted as a removable secondary template for the deposition of Pt. The number of nucleation sites for AgCl was tailored by controlling the amount of HCl added to the Ag NCs or by introducing PVP to the reaction. This strategy led to the formation of Pt/Ag hollow nanoboxes, dimers, multimers, or popcorn-shaped nanostructures consisting of one, two, or multiple hollow domains. Due to the presence of large void space and porous walls, these nanostructures exhibited high surface area and improved catalytic activity for methanol oxidation reaction.
Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E
2013-10-01
Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Metal flow of a tailor-welded blank in deep drawing process
NASA Astrophysics Data System (ADS)
Yan, Qi; Guo, Ruiquan
2005-01-01
Tailor welded blanks were used in the automotive industry to consolidate parts, reduce weight, and increase safety. In recent years, this technology was developing rapidly in China. In Chinese car models, tailor welded blanks had been applied in a lot of automobile parts such as rail, door inner, bumper, floor panel, etc. Concerns on the properties of tailor welded blanks had become more and more important for automobile industry. A lot of research had shown that the strength of the welded seam was higher than that of the base metal, such that the weld failure in the aspect of strength was not a critical issue. However, formability of tailor welded blanks in the stamping process was complex. Among them, the metal flow of tailor welded blanks in the stamping process must be investigated thoroughly in order to reduce the scrap rate during the stamping process in automobile factories. In this paper, the behavior of metal flow for tailor welded blanks made by the laser welding process with two types of different thickness combinations were studied in the deep drawing process. Simulations and experiment verification of the movement of weld line for tailor welded blanks were discussed in detail. Results showed that the control on the movement of welded seam during stamping process by taking some measures in the aspect of blank holder was effective.
A cost-effectiveness comparison of three tailored interventions to increase mammography screening.
Saywell, Robert M; Champion, Victoria L; Skinner, Celette Sugg; Menon, Usha; Daggy, Joanne
2004-10-01
Mammography is the primary method used for breast cancer screening. However, adherence to recommended screening practices is still below acceptable levels. This study examined the cost-effectiveness of three combinations of tailored telephone and mailed intervention strategies for increasing adherence to mammography. There were 1044 participants who were randomly assigned to one of four groups. A logistic regression model with adherence as the dependent variable and group as the independent variable was used to test for significant differences, and a ratio of cost/improvement in mammogram adherence evaluated the cost-effectiveness. All three of the interventions (tailored telephone, tailored mail, and tailored telephone and mail) had significantly better adherence rates compared with the control group (usual care). However, when also considering costs, one emerged as the superior strategy. The cost-effectiveness ratios for the three interventions show that the tailored mail (letter) was the most cost-effective strategy, achieving 43.3% mammography adherence at a marginal cost of dollar 0.39 per 1% increase in women screened. The tailored mail plus telephone achieved greater adherence (49.4%), but at a higher cost (dollar 0.56 per 1% increase in women screened). A tailored mail reminder is an effective and economical intervention to increase mammography adherence. Future research should confirm this finding and address its applicability to practice in other settings.
Wurdak, Mara; Wolstein, Jörg; Kuntsche, Emmanuel
2016-06-01
The aim of this study is to develop and test the effectiveness of a drinking-motive-tailored intervention for adolescents hospitalized due to alcohol intoxication in eight cities in Germany between December 2011 and May 2012 against a similar, non-motive-tailored intervention. In a randomized controlled trial, 254 adolescents received a psychosocial intervention plus motive-tailored (intervention group; IG) or general exercises (control group; CG). Adolescents in the IG received exercises in accordance with their drinking motives as indicated at baseline (e.g. alternative ways of spending leisure time or dealing with stress). Exercises for the CG contained alcohol-related information in general (e.g. legal issues). The data of 81 adolescents (age: M = 15.6, SD = 1.0; 42.0% female) who participated in both the baseline and the follow-up were compared using ANOVA with repeated measurements and effect sizes (available case analyses). Adolescents reported lower alcohol use at the four-week follow-up independently of the kind of intervention. Significant interaction effects between time and IG were found for girls in terms of drinking frequency (F = 7.770, p < 0.01) and binge drinking (F = 7.0005, p < 0.05) but not for boys. For the former, the proportional reductions and corresponding effect sizes of drinking frequency (d = - 1.18), binge drinking (d = - 1.61) and drunkenness (d = - 2.87) were much higher than the .8 threshold for large effects. Conducting psychosocial interventions in a motive-tailored way appears more effective for girls admitted to hospital due to alcohol intoxication than without motive-tailoring. Further research is required to address the specific needs of boys in such interventions. (German Clinical Trials Register, DRKS ID: DRKS00005588).
Alley, Stephanie; Jennings, Cally; Plotnikoff, Ronald C; Vandelanotte, Corneel
2014-07-21
There is a need for effective population-based physical activity interventions. The internet provides a good platform to deliver physical activity interventions and reach large numbers of people at low cost. Personalised advice in web-based physical activity interventions has shown to improve engagement and behavioural outcomes, though it is unclear if the effectiveness of such interventions may further be improved when providing brief video-based coaching sessions with participants. The purpose of this study is to determine the effectiveness, in terms of engagement, retention, satisfaction and physical activity changes, of a web-based and computer-tailored physical activity intervention with and without the addition of a brief video-based coaching session in comparison to a control group. Participants will be randomly assigned to one of three groups (tailoring + online video-coaching, tailoring-only and wait-list control). The tailoring + video-coaching participants will receive a computer-tailored web-based physical activity intervention ('My Activity Coach') with brief coaching sessions with a physical activity expert over an online video calling program (e.g. Skype). The tailoring-only participants will receive the intervention but not the counselling sessions. The primary time point's for outcome assessment will be immediately post intervention (week 9). The secondary time points will be at 6 and 12 months post-baseline. The primary outcome, physical activity change, will be assessed via the Active Australia Questionnaire (AAQ). Secondary outcome measures include correlates of physical activity (mediators and moderators), quality of life (measured via the SF-12v2), participant satisfaction, engagement (using web-site user statistics) and study retention. Study findings will inform researchers and practitioners about the feasibility and effectiveness of brief online video-coaching sessions in combination with computer-tailored physical activity advice. This may increase intervention effectiveness at an acceptable cost and will inform the development of future web-based physical activity interventions. ACTRN12614000339651Date: 31/03/2014.
2014-01-01
Background Few studies have tested whether individually tailored text messaging interventions have an effect on clinical outcomes when used to supplement traditional psychotherapy. This is despite the potential to improve outcomes through symptom monitoring, prompts for between-session activities, and psychoeducation. Objective The intent of the study was to explore the use of individually tailored between-session text messaging, or short message service (SMS), as an adjunct to telephone-based psychotherapy for consumers who present to the Emergency Department (ED) in situational and/or emotional crises. Methods Over a 4-month period, two therapists offered 68 prospective consumers of a telephone-based psychotherapy service individually tailored between-session text messaging alongside their telephone-based psychotherapy. Attendance and clinical outcomes (depression, anxiety, functional impairment) of those receiving messages were compared against a historical control group (n=157) who received telephone psychotherapy only. Results A total of 66% (45/68) of the consumers offered SMS accepted the intervention. A total of 432 messages were sent over the course of the trial, the majority involving some kind of psychoeducation or reminders to engage in therapy goals. There were no significant differences in clinical outcomes between consumers who received the SMS and those in the control group. There was a trend for participants in the intervention group to attend fewer sessions than those in the control group (mean 3.7, SD 1.9 vs mean 4.4, SD 2.3). Conclusions Both groups showed significant improvement over time. Individually tailored SMS were not found to improve clinical outcomes in consumers receiving telephone-based psychotherapy, but the study was underpowered, given the effect sizes noted and the significance level chosen. Given the ease of implementation and positive feedback from therapists and clients, individually tailored text messages should be explored further in future trials with a focus on enhancing the clinical impact of the tailored text messages, and utilizing designs with additional power to test for between-group effects. PMID:25295667
Furber, Gareth; Jones, Gabrielle Margaret; Healey, David; Bidargaddi, Niranjan
2014-10-08
Few studies have tested whether individually tailored text messaging interventions have an effect on clinical outcomes when used to supplement traditional psychotherapy. This is despite the potential to improve outcomes through symptom monitoring, prompts for between-session activities, and psychoeducation. The intent of the study was to explore the use of individually tailored between-session text messaging, or short message service (SMS), as an adjunct to telephone-based psychotherapy for consumers who present to the Emergency Department (ED) in situational and/or emotional crises. Over a 4-month period, two therapists offered 68 prospective consumers of a telephone-based psychotherapy service individually tailored between-session text messaging alongside their telephone-based psychotherapy. Attendance and clinical outcomes (depression, anxiety, functional impairment) of those receiving messages were compared against a historical control group (n=157) who received telephone psychotherapy only. A total of 66% (45/68) of the consumers offered SMS accepted the intervention. A total of 432 messages were sent over the course of the trial, the majority involving some kind of psychoeducation or reminders to engage in therapy goals. There were no significant differences in clinical outcomes between consumers who received the SMS and those in the control group. There was a trend for participants in the intervention group to attend fewer sessions than those in the control group (mean 3.7, SD 1.9 vs mean 4.4, SD 2.3). Both groups showed significant improvement over time. Individually tailored SMS were not found to improve clinical outcomes in consumers receiving telephone-based psychotherapy, but the study was underpowered, given the effect sizes noted and the significance level chosen. Given the ease of implementation and positive feedback from therapists and clients, individually tailored text messages should be explored further in future trials with a focus on enhancing the clinical impact of the tailored text messages, and utilizing designs with additional power to test for between-group effects.
TAILORING A FRUIT AND VEGETABLE INTERVENTION ON ETHNIC IDENTITY: RESULTS OF A RANDOMIZED STUDY
Resnicow, Ken; Davis, Rachel; Zhang, Nanhua; Saunders, Ed; Strecher, Victor; Tolsma, Dennis; Calvi, Josephine; Alexander, Gwen; Anderson, Julia; Wiese, Cheryl; Cross, William
2009-01-01
Objective Many targeted health interventions have been developed and tested with African American (AA) populations; however, AAs are a highly heterogeneous group. One characteristic that varies across AAs is Ethnic Identity (EI). Despite the recognition that AAs are heterogeneous with regard to EI, little research has been conducted on how to incorporate EI into the design of health messages and programs. Design This randomized trial tested whether tailoring a print-based fruit and vegetable (F & V) intervention based on individual EI would enhance program impact beyond that of social cognitive tailoring alone. AA adults were recruited from two integrated healthcare delivery systems, one based in the Detroit Metro area and the other in the Atlanta Metro area, and then randomized to receive three newsletters focused on F & V behavior change over three months. One set of newsletters was tailored only on demographic, behavioral, and social cognitive variables (control condition) whereas the other (experimental condition) was additionally tailored on EI. Main Outcome Measures The primary outcome for the study was F & V intake, which was assessed at baseline and three months later using the composite of two brief self-report frequency measures. Results A total of 560 eligible participants were enrolled, of which 468 provided complete 3-month follow-up data. The experimental group increased their daily mean F & V intake by 1.1 servings compared to .8 servings in the control group (p = .13). Several variables were found to interact with intervention group. For instance, Afrocentric experimental group participants showed a 1.4 increase in F & V servings per day compared to a .43 servings per day increase among Afrocentric controls (p < .05). Conclusions Although the overall between-group effects were not significant, this study confirms that AAs are a highly diverse population and that tailoring dietary messages on ethnic identity may improve intervention impact for some AA subgroups. PMID:19594262
Jean-Louis, Girardin; Newsome, Valerie; Williams, Natasha J; Zizi, Ferdinand; Ravenell, Joseph; Ogedegbe, Gbenga
2017-01-01
To assess effectiveness of a culturally and linguistically tailored telephone-delivered intervention to increase adherence to physician-recommended evaluation and treatment of obstructive sleep apnea (OSA) among blacks. In a two-arm randomized controlled trial, we evaluated effectiveness of the tailored intervention among blacks with metabolic syndrome, relative to those in an attention control arm (n = 380; mean age = 58 ± 13; female = 71%). The intervention was designed to enhance adherence using culturally and linguistically tailored OSA health messages delivered by a trained health educator based on patients' readiness to change and unique barriers preventing desired behavior changes. Analysis showed 69.4% of the patients in the intervention arm attended initial consultation with a sleep specialist, compared to 36.7% in the control arm; 74.7% of those in the intervention arm and 66.7% in the control arm completed diagnostic evaluation; and 86.4% in the intervention arm and 88.9% in the control arm adhered to PAP treatment based on subjective report. Logistic regression analyses adjusting for sociodemographic factors indicated patients in the intervention arm were 3.17 times more likely to attend initial consultation, compared to those in the control arm. Adjusted models revealed no significant differences between the two arms regarding adherence to OSA evaluation or treatment. The intervention was successful in promoting importance of sleep consultation and evaluation of OSA among blacks, while there was no significant group difference in laboratory-based evaluation and treatment adherence rates. It seems that the fundamental barrier to OSA care in that population may be the importance of seeking OSA care. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Petsky, Helen L; Cates, Chris J; Kew, Kayleigh M; Chang, Anne B
2018-06-01
Asthma guidelines guide health practitioners to adjust treatments to the minimum level required for asthma control. As many people with asthma have an eosinophilic endotype, tailoring asthma medications based on airway eosinophilic levels (sputum eosinophils or exhaled nitric oxide, FeNO) may improve asthma outcomes. To synthesise the evidence from our updated Cochrane systematic reviews, for tailoring asthma medication based on eosinophilic inflammatory markers (sputum analysis and FeNO) for improving asthma-related outcomes in children and adults. Cochrane reviews with standardised searches up to February 2017. The Cochrane reviews included randomised controlled comparisons of tailoring asthma medications based on sputum analysis or FeNO compared with controls (primarily clinical symptoms and/or spirometry/peak flow). The 16 included studies of FeNO-based management (seven in adults) and 6 of sputum-based management (five in adults) were clinically heterogeneous. On follow-up, participants randomised to the sputum eosinophils strategy (compared with controls) were significantly less likely to have exacerbations (62 vs 82/100 participants with ≥1 exacerbation; OR 0.36, 95% CI 0.21 to 0.62). For the FeNO strategy, the respective numbers were adults OR 0.60 (95% CI 0.43 to 0.84) and children 0.58 (95% CI 0.45 to 0.75). However, there were no significant group differences for either strategy on daily inhaled corticosteroids dose (at end of study), asthma control or lung function. Adjusting treatment based on airway eosinophilic markers reduced the likelihood of asthma exacerbations but had no significant impact on asthma control or lung function. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Laporta-Hoyos, Olga; Pannek, Kerstin; Ballester-Plané, Júlia; Reid, Lee B; Vázquez, Élida; Delgado, Ignacio; Zubiaurre-Elorza, Leire; Macaya, Alfons; Póo, Pilar; Meléndez-Plumed, Mar; Junqué, Carme; Boyd, Roslyn; Pueyo, Roser
2017-01-01
Dyskinetic cerebral palsy (CP) is one of the most disabling motor types of CP and has been classically associated with injury to the basal ganglia and thalamus. Although cognitive dysfunction is common in CP, there is a paucity of published quantitative analyses investigating the relationship between white matter (WM) microstructure and cognition in this CP type. This study aims (1) to compare brain WM microstructure between people with dyskinetic CP and healthy controls, (2) to identify brain regions where WM microstructure is related to intelligence and (3) to identify brain regions where WM microstructure is related to executive function in people with dyskinetic CP and (4) to identify brain regions where the correlations are different between controls and people with CP in IQ and executive functions. Thirty-three participants with dyskinetic CP (mean ± SD age: 24.42 ± 12.61, 15 female) were age and sex matched with 33 controls. Participants underwent a comprehensive neuropsychological battery to assess intelligence quotient (IQ) and four executive function domains (attentional control, cognitive flexibility, goal setting and information processing). Diffusion weighted MRI scans were acquired at 3T. Voxel-based whole brain groupwise analyses were used to compare fractional anisotropy (FA) and of the CP group to the matched controls using a general lineal model. Further general linear models were used to identify regions where white matter FA correlated with IQ and each of the executive function domains. White matter FA was significantly reduced in the CP group in all cerebral lobes, predominantly in regions connected with the parietal and to a lesser extent the temporal lobes. There was no significant correlation between IQ or any of the four executive function domains and WM microstructure in the control group. In participants with CP, lower IQ was associated with lower FA in all cerebral lobes, predominantly in locations that also showed reduced FA compared to controls. Attentional control, goal setting and information processing did not correlate with WM microstructure in the CP group. Cognitive flexibility was associated with FA in regions known to contain connections with the frontal lobe (such as the superior longitudinal fasciculus and cingulum) as well as regions not known to contain tracts directly connected with the frontal lobe (such as the posterior corona radiata, posterior thalamic radiation, retrolenticular part of internal capsule, tapetum, body and splenium of corpus callosum). The widespread loss in the integrity of WM tissue is mainly located in the parietal lobe and related to IQ in dyskinetic CP. Unexpectedly, executive functions are only related with WM microstructure in regions containing fronto-cortical and posterior cortico-subcortical pathways, and not being specifically related to the state of fronto-striatal pathways which might be due to brain reorganization. Further studies of this nature may improve our understanding of the neurobiological bases of cognitive impairments after early brain insult.
Wise, Meg; Gustafson, David H.; Sorkness, Christine A.; Molfenter, Todd; Staresinic, Anthony; Meis, Tracy; Hawkins, Robert P.; Shanovich, Kathleen Kelly; Walker, Nola P.
2008-01-01
This article reports on the development of a personalized, Web-based asthma-education program for parents whose 4- to 12-year-old children have moderate to severe asthma. Personalization includes computer-based tailored messages and a human coach to build asthma self-management skills. Computerized features include the Asthma Manager, My Calendar/Reminder, My Goals, and a tailored home page. These are integrated with monthly asthma-education phone calls from an asthmanurse case manager. The authors discuss the development process and issues and describe the current randomized evaluation study to test whether the yearlong integrated intervention can improve adherence to a daily asthma controller medication, asthma control, and parent quality of life to reduce asthma-related healthcare utilization. Implications for health education for chronic disease management are raised. PMID:16928987
NASA Astrophysics Data System (ADS)
Wang, W. P.; Shen, B. F.; Xu, Z. Z.
2017-05-01
The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.
The Effect of Rare-Earth Metals on Cast Steels
1954-04-01
as the 1-inch section is also illustrated in Figure 23 and consists of tempered bainite and tempered martensite. Both of the control steels (AE-1...section Tempered bainite and tempered martensite 4 inch section Figure 23 Microstructure ol the Mn-Cr-Mo base control steels . Etched with... bainite 4-inch Section Figure 25—Microstructures of the MnCr-Mo + Rare Earths f B cast steels . Etched with picral, SOOX - .1 €. Figure 26
Longitudinal changes in microstructural white matter metrics in Alzheimer's disease.
Mayo, Chantel D; Mazerolle, Erin L; Ritchie, Lesley; Fisk, John D; Gawryluk, Jodie R
2017-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Current avenues of AD research focus on pre-symptomatic biomarkers that will assist with early diagnosis of AD. The majority of magnetic resonance imaging (MRI) based biomarker research to date has focused on neuronal loss in grey matter and there is a paucity of research on white matter. Longitudinal DTI data from the Alzheimer's Disease Neuroimaging Initiative 2 database were used to examine 1) the within-group microstructural white matter changes in individuals with AD and healthy controls at baseline and year one; and 2) the between-group microstructural differences in individuals with AD and healthy controls at both time points. 1) Within-group: longitudinal Tract-Based Spatial Statistics revealed that individuals with AD and healthy controls both had widespread reduced fractional anisotropy (FA) and increased mean diffusivity (MD) with changes in the hippocampal cingulum exclusive to the AD group. 2) Between-group: relative to healthy controls, individuals with AD had lower FA and higher MD in the hippocampal cingulum, as well as the corpus callosum, internal and external capsule; corona radiata; posterior thalamic radiation; superior and inferior longitudinal fasciculus; fronto-occipital fasciculus; cingulate gyri; fornix; uncinate fasciculus; and tapetum. The current results indicate that sensitivity to white matter microstructure is a promising avenue for AD biomarker research. Additional longitudinal studies on both white and grey matter are warranted to further evaluate potential clinical utility.
Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger
2017-02-15
Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.
O'Connor, Claire M; Clemson, Lindy; Brodaty, Henry; Low, Lee-Fay; Jeon, Yun-Hee; Gitlin, Laura N; Piguet, Olivier; Mioshi, Eneida
2017-10-15
To explore the feasibility of implementing the Tailored Activity Program with a cohort of people with frontotemporal dementia and their carers (dyads). The Tailored Activity Program is an occupational therapy based intervention that involves working collaboratively with family carers and prescribes personalized activities for behavioral management in people with dementia. Twenty dyads randomized into the study (Tailored Activity Program: n = 9; Control: n = 11) were assessed at baseline and 4-months. Qualitative analyzes evaluated feasibility and acceptability of the program for the frontotemporal dementia cohort, and quantitative analyzes (linear mixed model analyzes, Spearman's rho correlations) measured the impact of the program on the dyads. The Tailored Activity Program was an acceptable intervention for the frontotemporal dementia dyads. Qualitative analyses identified five themes: "carer perceived benefits", "carer readiness to change", "strategies used by carer to engage person with dementia", "barriers to the Tailored Activity Program uptake/implementation", and "person with dementia engagement". Quantitative outcomes showed an overall reduction of behavioral symptoms (F 18.34 = 8.073, p = 0.011) and maintenance of functional performance in the person with dementia (F 18.03 = 0.375, p = 0.548). This study demonstrates the potential for using an activity-based intervention such as the Tailored Activity Program in frontotemporal dementia. Service providers should recognize that while people with frontotemporal dementia present with challenging issues, tailored therapies may support their function and reduce their behavioral symptoms. Implications for rehabilitation The Tailored Activity Program is an occupational therapy based intervention that involves prescribing personalized activities for behavioral management in dementia. The Tailored Activity Program is an acceptable and feasible intervention approach to address some of the unique behavioral and functional impairments inherent in frontotemporal dementia.
Age-related differences in autism: The case of white matter microstructure.
Koolschijn, P Cédric M P; Caan, Matthan W A; Teeuw, Jalmar; Olabarriaga, Sílvia D; Geurts, Hilde M
2017-01-01
Autism spectrum disorder (ASD) is typified as a brain connectivity disorder in which white matter abnormalities are already present early on in life. However, it is unknown if and to which extent these abnormalities are hard-wired in (older) adults with ASD and how this interacts with age-related white matter changes as observed in typical aging. The aim of this first cross-sectional study in mid- and late-aged adults with ASD was to characterize white matter microstructure and its relationship with age. We utilized diffusion tensor imaging with head motion control in 48 adults with ASD and 48 age-matched controls (30-74 years), who also completed a Flanker task. Intra-individual variability of reaction times (IIVRT) measures based on performance on the Flanker interference task were used to assess IIVRT-white matter microstructure associations. We observed primarily higher mean and radial diffusivity in white matter microstructure in ASD, particularly in long-range fibers, which persisted after taking head motion into account. Importantly, group-by-age interactions revealed higher age-related mean and radial diffusivity in ASD, in projection and association fiber tracts. Subtle dissociations were observed in IIVRT-white matter microstructure relations between groups, with the IIVRT-white matter association pattern in ASD resembling observations in cognitive aging. The observed white matter microstructure differences are lending support to the structural underconnectivity hypothesis in ASD. These reductions seem to have behavioral percussions given the atypical relationship with IIVRT. Taken together, the current results may indicate different age-related patterns of white matter microstructure in adults with ASD. Hum Brain Mapp 38:82-96, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Vandelanotte, Corneel; De Bourdeaudhuij, Ilse; Sallis, James F; Spittaels, Heleen; Brug, Johannes
2005-04-01
Little evidence exists about the effectiveness of "interactive" computer-tailored interventions and about the combined effectiveness of tailored interventions on physical activity and diet. Furthermore, it is unknown whether they should be executed sequentially or simultaneously. The purpose of this study was to examine (a) the effectiveness of interactive computer-tailored interventions for increasing physical activity and decreasing fat intake and (b) which intervening mode, sequential or simultaneous, is most effective in behavior change. Participants (N = 771) were randomly assigned to receive (a) the physical activity and fat intake interventions simultaneously at baseline, (b) the physical activity intervention at baseline and the fat intake intervention 3 months later, (c) the fat intake intervention at baseline and the physical activity intervention 3 months later, or (d) a place in the control group. Six months postbaseline, the results showed that the tailored interventions produced significantly higher physical activity scores, F(2, 573) = 11.4, p < .001, and lower fat intake scores, F(2, 565) = 31.4, p < .001, in the experimental groups when compared to the control group. For both behaviors, the sequential and simultaneous intervening modes showed to be effective; however, for the fat intake intervention and for the participants who did not meet the recommendation in the physical activity intervention, the simultaneous mode appeared to work better than the sequential mode.
Global Efficiency of Structural Networks Mediates Cognitive Control in Mild Cognitive Impairment
Berlot, Rok; Metzler-Baddeley, Claudia; Ikram, M. Arfan; Jones, Derek K.; O’Sullivan, Michael J.
2016-01-01
Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localized white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI). Materials and Methods: Twenty-five patients with MCI and 20 age, sex, and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI). Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusion: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive control but not for episodic memory. Interventions to improve cognitive control will need to address both dysfunction of local circuitry and global network architecture to be maximally effective. PMID:28018208
Ozasa, Ryosuke; Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Yun, Hui-Suk; Nakano, Takayoshi
2018-02-01
Bone tissue has anisotropic microstructure based on collagen/biological apatite orientation, which plays essential roles in the mechanical and biological functions of bone. However, obtaining an appropriate anisotropic microstructure during the bone regeneration process remains a great challenging. A powerful strategy for the control of both differentiation and structural development of newly-formed bone is required in bone tissue engineering, in order to realize functional bone tissue regeneration. In this study, we developed a novel anisotropic culture model by combining human induced pluripotent stem cells (hiPSCs) and artificially-controlled oriented collagen scaffold. The oriented collagen scaffold allowed hiPSCs-derived osteoblast alignment and further construction of anisotropic bone matrix which mimics the bone tissue microstructure. To the best of our knowledge, this is the first report showing the construction of bone mimetic anisotropic bone matrix microstructure from hiPSCs. Moreover, we demonstrated for the first time that the hiPSCs-derived osteoblasts possess a high level of intact functionality to regulate cell alignment. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 360-369, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.
Alterations of bone microstructure and strength in end-stage renal failure.
Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R
2013-05-01
End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p < 0.04). BMI correlated positively with trabecular number (r = 0.4, p < 0.02) and negatively with trabecular spacing (r = -0.37, p < 0.03) and trabecular network heterogeneity (r = -0.4, p < 0.02). Biomechanics positively correlated with BMI and negatively with BALP. Cortical and trabecular bone microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.
Mnemonic function in small vessel disease and associations with white matter tract microstructure.
Metoki, Athanasia; Brookes, Rebecca L; Zeestraten, Eva; Lawrence, Andrew J; Morris, Robin G; Barrick, Thomas R; Markus, Hugh S; Charlton, Rebecca A
2017-09-01
Cerebral small vessel disease (SVD) is associated with deficits in working memory, with a relative sparing of long-term memory; function may be influenced by white matter microstructure. Working and long-term memory were examined in 106 patients with SVD and 35 healthy controls. Microstructure was measured in the uncinate fasciculi and cingula. Working memory was more impaired than long-term memory in SVD, but both abilities were reduced compared to controls. Regression analyses found that having SVD explained the variance in memory functions, with additional variance explained by the cingula (working memory) and uncinate (long-term memory). Performance can be explained in terms of integrity loss in specific white matter tract associated with mnemonic functions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Low-loss electromagnetic composites for RF and microwave applications.
Wang, Hong; Yang, Haibo; Xiang, Feng; Yao, Xi
2011-09-01
Low-loss electromagnetic composites with high permittivity and permeability will benefit the miniaturization and multifunctional of RF devices. A kind of low-loss dielectric-magnetic ceramic-ceramic composite was developed by hybrid processing technology with the goal of integrating the dielectric properties and magnetic properties. The hybrid processing technology exhibits the advantage of lowered sintering temperatures for the composites while retaining good microstructure and high performance. By introducing elastomer as matrix, a kind of flexible low-loss dielectric-magnetic ceramic-polymer composite was prepared and studied. The obtained flexible dielectric-magnetic ceramic-polymer composite exhibited low loss and good mechanical properties. The results show good effects on lowering the dielectric loss and extending the cut-off magnetic frequency of the electromagnetic composite. Methods for tailoring the properties of the multifunctional composites were proposed and discussed.
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2014-01-01
Several minimum-mass aeroelastic optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic strength and panel buckling constraints are imposed across a variety of trimmed maneuver loads. Tailoring with metallic thickness variations, functionally graded materials, composite laminates, tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.
Culturally Targeted Strategies for Diabetes Prevention in Minority Population.
Lagisetty, Pooja A; Priyadarshini, Shubadra; Terrell, Stephanie; Hamati, Mary; Landgraf, Jessica; Chopra, Vineet; Heisler, Michele
2017-02-01
Purpose The purpose of this study is to (a) assess the effectiveness of culturally tailored diabetes prevention interventions in minority populations and (b) develop a novel framework to characterize 4 key domains of culturally tailored interventions. Prevention strategies specifically tailored to the culture of ethnic minority patients may help reduce the incidence of diabetes. Methods We searched PubMed, EMBASE, and CINAHL for English-language, randomized controlled trials (RCTs) or quasi-experimental (QE) trials testing culturally tailored interventions to prevent diabetes in minority populations. Two reviewers independently extracted data and assessed risk of bias. Inductive thematic analysis was used to develop a framework with 4 domains (FiLLM: Facilitating [ie, delivering] Interventions Through Language, Location, and Message). The framework was used to assess the overall effectiveness of culturally tailored interventions. Results Thirty-four trials met eligibility criteria. Twelve studies were RCTs, and 22 were QE trials. Twenty-five out of 34 studies (74%) that used cultural tailoring demonstrated significantly improved A1C, fasting glucose, and/or weight loss. Of the 25 successful interventions, 21 (84%) incorporated at least 3 culturally targeted domains. Seven studies used all 4 domains and were all successful. The least utilized domain was delivery (4/34) of the intervention's key educational message. Conclusions Culturally tailoring interventions across the 4 domains of facilitators, language, location, and messaging can be effective in improving risk factors for progression to diabetes among ethnic minority groups. Future studies should evaluate how specific tailoring approaches work compared to usual care as well as comparative effectiveness of each tailoring domain.
Reduced atomic shadowing in HiPIMS: Role of the thermalized metal ions
NASA Astrophysics Data System (ADS)
Oliveira, João Carlos; Ferreira, Fábio; Anders, André; Cavaleiro, Albano
2018-03-01
In magnetron sputtering, the ability to tailor film properties depends primarily on the control of the flux of particles impinging on the growing film. Among deposition mechanisms, the shadowing effect leads to the formation of a rough surface and a porous, columnar microstructure. Re-sputtered species may be re-deposited in the valleys of the films surface and thereby contribute to a reduction of roughness and to fill the underdense regions. Both effects are non-local and they directly compete to shape the final properties of the deposited films. Additional control of the bombarding flux can be obtained by ionizing the sputtered flux, because ions can be controlled with respect to their energy and impinging direction, such as in High-Power Impulse Magnetron Sputtering (HiPIMS). In this work, the relation between ionization of the sputtered species and thin film properties is investigated in order to identify the mechanisms which effectively influence the shadowing effect in Deep Oscillation Magnetron Sputtering (DOMS), a variant of HiPIMS. The properties of two Cr films deposited using the same averaged target power by d.c. magnetron sputtering and DOMS have been compared. Additionally, the angle distribution of the Cr species impinging on the substrate was simulated using Monte Carlo-based programs while the energy distribution of the energetic particles bombarding the substrate was evaluated by energy-resolved mass analysis. It was found that the acceleration of the thermalized chromium ions at the substrate sheath in DOMS significantly reduces the high angle component of their impinging angle distribution and, thus, efficiently reduces atomic shadowing. Therefore, a high degree of ionization in HiPIMS results in almost shadowing effect-free film deposition and allows us to deposit dense and compact films without the need of high energy particle bombardment during growth.
Baiduc, Rachael R.; Lee, Jungmee; Dhar, Sumitrajit
2014-01-01
Hearing thresholds have been shown to exhibit periodic minima and maxima, a pattern known as threshold microstructure. Microstructure has previously been linked to spontaneous otoacoustic emissions (SOAEs) and normal cochlear function. However, SOAEs at high frequencies (>4 kHz) have been associated with hearing loss or cochlear pathology in some reports. Microstructure would not be expected near these high-frequency SOAEs. Psychophysical tuning curves (PTCs), the expression of frequency selectivity, may also be altered by SOAEs. Prior comparisons of tuning between ears with and without SOAEs demonstrated sharper tuning in ears with emissions. Here, threshold microstructure and PTCs were compared at SOAE frequencies ranging between 1.2 and 13.9 kHz using subjects without SOAEs as controls. Results indicate: (1) Threshold microstructure is observable in the vicinity of SOAEs of all frequencies; (2) PTCs are influenced by SOAEs, resulting in shifted tuning curve tips, multiple tips, or inversion. High frequency SOAEs show a greater effect on PTC morphology. The influence of most SOAEs at high frequencies on threshold microstructure and PTCs is consistent with those at lower frequencies, suggesting that high-frequency SOAEs reflect the same cochlear processes that lead to SOAEs at lower frequencies. PMID:24437770
Cold cathode emission studies on topographically modified few layer and single layer MoS2 films
NASA Astrophysics Data System (ADS)
Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.
2016-01-01
Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.
Han, Junjie; Wan, Peng; Ge, Ye; Fan, Xinmin; Tan, Lili; Li, Jianjun; Yang, Ke
2016-01-01
Bone defects are very challenging in orthopedic practice. There are many practical and clinical shortcomings in the repair of the defect by using autografts, allografts or xenografts, which continue to motivate the search for better alternatives. The ideal bone grafts should provide mechanical support, fill osseous voids and enhance the bone healing. Biodegradable magnesium-strontium (Mg-Sr) alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. The aim of this study was to evaluate and pair the degradation of Mg-Sr alloys for grafting with their clinical demands. The microstructure and performance of Mg-Sr alloys, in vitro degradation and biological properties including in vitro cytocompatibility and in vivo implantation were investigated. The results showed that the as-cast Mg-Sr alloy exhibited a rapid degradation rate compared with the as-extruded alloy due to the intergranular distribution of the second phase and micro-galvanic corrosion. However, the initial degradation could be tailored by the coating protection, which was proved to be cytocompatible and also suitable for bone repair observed by in vivo implantation. The integrated fracture calluses were formed and bridged the fracture gap without gas bubble accumulation, meanwhile the substitutes simultaneously degraded. In conclusion, the as-cast Mg-Sr alloy with coating is potential to be used for bone substitute alternative. Copyright © 2015 Elsevier B.V. All rights reserved.
Tailoring properties of commercially pure titanium by gradation extrusion
NASA Astrophysics Data System (ADS)
Bergmann, Markus; Rautenstrauch, Anja; Selbmann, René; de Oliveira, Raoni Barreto; Coelho, Rodrigo Santiago; Landgrebe, Dirk
2016-10-01
Commercially pure titanium (CP Ti) is of great importance in medical applications due to its attractive properties, such as high biocompatibility, excellent corrosion resistance and relatively low density and suitable stiffness. Compared to the commonly used Ti-6Al-4V alloy, its lower strength has to be increased. The most attractive approach is to subject CP Ti to severe plastic deformation (SPD) processes such as Equal Channel Angular Pressing (ECAP). The resulting decreased grain size in CP Ti yields a significant increase in hardness and strength. Common SPD-processes typically provide a uniform modification of the material. Their material efficiency and productivity are critical and limiting factors. A new approach is to tailor the material properties by using Gradation Extrusion, which produces a distinct gradient in microstructure and strength. The forming process combines a regular impact extrusion process and severe plastic deformation in the lateral area of the material. This efficient process can be integrated easily into forming process chains, for instance for dental implants. This paper presents the forming process and the applied die geometry. The results of numerical simulations are used to illustrate the potential of the process to modify and strengthen the titanium material. Experiments show that the material is successfully processed by gradation extrusion. By characterizing the hardness and its distribution within the formed parts the effects of the process are investigated.
NASA Astrophysics Data System (ADS)
Kumar, Manish; Kulriya, P. K.; Pivin, J. C.; Avasthi, D. K.
2011-02-01
Ag:ZrO2 nanocomposite films have been synthesized by a sol-gel dip coating process at room temperature, followed by irradiation using swift heavy ions. The effect of electronic energy loss and fluences on the evolution and consequently on the tailoring of plasmonic properties of films has been studied. The optical study exhibits that color of films converts from transparent in pristine form into shiny yellow when films are irradiated by 100 MeV Ag ions at a fluence of 3×1012 ions/cm2. However, irradiation by 120 MeV O ions up to the fluence of 1 × 1014 ions/cm2 does not induce any coloration in films. The coloration is attributed to the evolution of plasmonic feature resulting in a surface plasmon resonance (SPR) induced absorption peak in the visible region. Increase in fluence from 3 × 1012 to 6 × 1013 ions/cm2 of 100 MeV Ag ions induces a redshift in SPR induced peak position from 434 to 487 nm. Microstructural studies confirms the conversion of Ag2O3 (in pristine films) into cubic phase of metallic Ag and the increase of average size of particles with the increasing fluence up to 6 × 1013 ions/cm2. Further increase in fluence leads to the dissolution of Ag atoms in the ZrO2 matrix.
Păsărelu, Costina Ruxandra; Andersson, Gerhard; Bergman Nordgren, Lise; Dobrean, Anca
2017-01-01
Anxiety and depressive disorders are often comorbid. Transdiagnostic and tailored treatments seem to be promising approaches in dealing with comorbidity. Although several primary studies have examined the effects of Internet-delivered cognitive behavior therapy (iCBT) for anxiety and depression, no meta-analysis including different types of iCBT that address comorbidity has been conducted so far. We conducted systematic searches in databases up to 1 July 2016. Only randomized trials comparing transdiagnostic/tailored iCBT for adult anxiety and/or depression with control groups were included. Nineteen randomized trials with a total of 2952 participants that met inclusion criteria were analyzed. The quality of the studies was high, however the blinding criteria were not fulfilled. The uncontrolled effect size (Hedges' g) of transdiagnostic/tailored iCBT on anxiety and depression outcomes was large and medium for quality of life. The controlled effect size for iCBT on anxiety and depression outcomes was medium to large (anxiety: g = .82, 95% CI: .58-1.05, depression: g = .79, 95% CI: .59-1.00) and medium on quality of life (g = .56, 95% CI: .37-.73). Heterogeneity was small (quality of life) to moderate (anxiety, depression). There was a large effect on generic outcome measures and a moderate effect on comorbidities. When compared to disorder-specific treatments there were no differences on anxiety and quality of life outcomes, however there were differences in depression outcomes. Transdiagnostic and tailored iCBT are effective interventions for anxiety disorders and depression. Future studies should investigate mechanisms of change and develop outcome measures for these interventions.
Sutton, Stephen; Gilbert, Hazel
2007-06-01
To evaluate the effectiveness of individually tailored smoking cessation advice letters as an adjunct to telephone counselling and generic self-help materials. Randomized controlled trial. The UK Quitline. A total of 1508 current smokers and recent ex-smokers. The control group received usual care (telephone counselling and an information pack sent through the post). The intervention group received in addition a computer-generated individually tailored advice letter. All outcomes were assessed at 6-month follow-up. The primary outcome measure was self-reported prolonged abstinence for at least 3 months. Secondary outcomes were self-reported prolonged abstinence for at least 1 month and 7-day and 24-hour point-prevalence abstinence. For the sample as a whole, quit rates did not differ significantly between the two conditions. However, among the majority (n = 1164) who were smokers at baseline, quit rates were consistently higher in the intervention group: prolonged abstinence for 3 months, 12.2% versus 9.0% [odds ratio (OR) = 1.40, 95% confidence interval (CI) = 0.96-2.04, P = 0.080); prolonged abstinence for 1 month, 16.4% versus 11.3% (OR = 1.53, 95% CI = 1.09-2.15, P = 0.013); 7-day point-prevalence abstinence, 18.9% versus 12.7% (OR = 1.59, 95% CI = 1.15-2.19, P = 0.004); 24-hour point-prevalence abstinence, 20.9% versus 15.4% (OR = 1.45, 95% CI = 1.07-1.96, P = 0.015). The results for the smokers are encouraging in showing a small but useful effect of the tailored letter on quit rate. Versions of the tailoring program could be used on the web and in general practices, pharmacies and primary care trusts.
Cost Effectiveness of Interventions to Promote Screening for Colorectal Cancer: A Randomized Trial
Misra, Swati; Chan, Wenyaw; Chang, Yu-Chia; Bartholomew, L. Kay; Greisinger, Anthony; McQueen, Amy; Vernon, Sally W.
2011-01-01
Objectives Screening for colorectal cancer is considered cost effective, but is underutilized in the U.S. Information on the efficiency of "tailored interventions" to promote colorectal cancer screening in primary care settings is limited. The paper reports the results of a cost effectiveness analysis that compared a survey-only control group to a Centers for Disease Control (CDC) web-based intervention (screen for life) and to a tailored interactive computer-based intervention. Methods A randomized controlled trial of people 50 and over, was conducted to test the interventions. The sample was 1224 partcipants 50-70 years of age, recruited from Kelsey-Seybold Clinic, a large multi-specialty clinic in Houston, Texas. Screening status was obtained by medical chart review after a 12-month follow-up period. An "intention to treat" analysis and micro costing from the patient and provider perspectives were used to estimate the costs and effects. Analysis of statistical uncertainty was conducted using nonparametric bootstrapping. Results The estimated cost of implementing the web-based intervention was $40 per person and the cost of the tailored intervention was $45 per person. The additional cost per person screened for the web-based intervention compared to no intervention was $2602 and the tailored intervention was no more effective than the web-based strategy. Conclusions The tailored intervention was less cost-effective than the web-based intervention for colorectal cancer screening promotion. The web-based intervention was less cost-effective than previous studies of in-reach colorectal cancer screening promotion. Researchers need to continue developing and evaluating the effectiveness and cost-effectiveness of interventions to increase colorectal cancer screening. PMID:21617335
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt
1999-07-31
This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.
Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment
Metzler-Baddeley, Claudia; Hunt, Sarah; Jones, Derek K.; Leemans, Alexander; Aggleton, John P.
2012-01-01
Objective: To examine the pattern of association between microstructure of temporal lobe connections and the breakdown of episodic memory that is a core feature of mild cognitive impairment (MCI). Methods: Twenty-five individuals with MCI and 20 matched controls underwent diffusion MRI and cognitive assessment. Three temporal pathways were reconstructed by tractography: fornix, parahippocampal cingulum (PHC), and uncinate fasciculus. Tissue volume fraction—a tract-specific measure of atrophy—and microstructural measures were derived for each tract. To test specificity of associations, a comparison tract (corticospinal tract) and control cognitive domains were also examined. Results: In MCI, tissue volume fraction was reduced in the fornix. Axial and radial diffusivity were increased in uncinate and PHC implying more subtle microstructural change. In controls, tissue volume fraction in the fornix was the predominant correlate of free recall. In contrast, in MCI, the strongest relationship was with left PHC. Microstructure of uncinate and PHC also correlated with recognition memory, and recognition confidence, in MCI. Conclusions: Episodic memory in MCI is related to the structure of multiple temporal association pathways. These associations are not confined to the fornix, as they are in healthy young and older adults. In MCI, because of a compromised fornix, alternative pathways may contribute disproportionally to episodic memory performance. PMID:23175726
Subgenual Cingulum Microstructure Supports Control of Emotional Conflict.
Keedwell, Paul A; Doidge, Amie N; Meyer, Marcel; Lawrence, Natalia; Lawrence, Andrew D; Jones, Derek K
2016-06-01
Major depressive disorder (MDD) is associated with specific difficulties in attentional disengagement from negatively valenced material. Diffusion MRI studies have demonstrated altered white matter microstructure in the subgenual cingulum bundle (CB) in individuals with MDD, though the functional significance of these alterations has not been examined formally. This study explored whether individual differences in selective attention to negatively valenced stimuli are related to interindividual differences in subgenual CB microstructure. Forty-six individuals (21 with remitted MDD, 25 never depressed) completed an emotional Stroop task, using happy and angry distractor faces overlaid by pleasant or unpleasant target words and a control gender-based Stroop task. CBs were reconstructed in 38 individuals using diffusion-weighted imaging and tractography, and mean fractional anisotropy (FA) computed for the subgenual, retrosplenial, and parahippocampal subdivisions. No significant correlations were found between FA and performance in the control gender-based Stroop task in any CB region. However, the degree of interference produced by angry face distractors on time to identify pleasant words (emotional conflict) correlated selectively with FA in the subgenual CB (r = -0.53; P = 0.01). Higher FA was associated with reduced interference, irrespective of a diagnosis of MDD, suggesting that subgenual CB microstructure is functionally relevant for regulating attentional bias toward negative interpersonal stimuli. © The Author 2016. Published by Oxford University Press.
Regional microstructural organization of the cerebral cortex is affected by preterm birth.
Bouyssi-Kobar, Marine; Brossard-Racine, Marie; Jacobs, Marni; Murnick, Jonathan; Chang, Taeun; Limperopoulos, Catherine
2018-01-01
To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. We prospectively enrolled very preterm infants (gestational age (GA) at birth<32 weeks; birthweight<1500 g) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants.
Subgenual Cingulum Microstructure Supports Control of Emotional Conflict
Keedwell, Paul A.; Doidge, Amie N.; Meyer, Marcel; Lawrence, Natalia; Lawrence, Andrew D.; Jones, Derek K.
2016-01-01
Major depressive disorder (MDD) is associated with specific difficulties in attentional disengagement from negatively valenced material. Diffusion MRI studies have demonstrated altered white matter microstructure in the subgenual cingulum bundle (CB) in individuals with MDD, though the functional significance of these alterations has not been examined formally. This study explored whether individual differences in selective attention to negatively valenced stimuli are related to interindividual differences in subgenual CB microstructure. Forty-six individuals (21 with remitted MDD, 25 never depressed) completed an emotional Stroop task, using happy and angry distractor faces overlaid by pleasant or unpleasant target words and a control gender-based Stroop task. CBs were reconstructed in 38 individuals using diffusion-weighted imaging and tractography, and mean fractional anisotropy (FA) computed for the subgenual, retrosplenial, and parahippocampal subdivisions. No significant correlations were found between FA and performance in the control gender-based Stroop task in any CB region. However, the degree of interference produced by angry face distractors on time to identify pleasant words (emotional conflict) correlated selectively with FA in the subgenual CB (r = −0.53; P = 0.01). Higher FA was associated with reduced interference, irrespective of a diagnosis of MDD, suggesting that subgenual CB microstructure is functionally relevant for regulating attentional bias toward negative interpersonal stimuli. PMID:27048427
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J
2016-01-01
Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus ([Formula: see text]) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 [Formula: see text]m) and lower pore volume (54.5%).
NASA Astrophysics Data System (ADS)
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.
2016-01-01
Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus (?) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 ?m) and lower pore volume (54.5%).
Tailored balance exercises on people with multiple sclerosis: A pilot randomized, controlled study.
Brichetto, Giampaolo; Piccardo, Elisa; Pedullà, Ludovico; Battaglia, Mario Alberto; Tacchino, Andrea
2015-07-01
Altered integration of signals from visual (VIS), somatosensory (PROP) and vestibular system (VEST) lead to balance control impairments affecting the daily living activities of patients with multiple sclerosis (PwMS). As a consequence, tailored interventions could be crucial in improving efficacy of balance rehabilitation treatments. The objective of this paper is to assess the efficacy of tailored rehabilitation treatments for balance disorders based on visual, somatosensory and vestibular deficits versus traditional rehabilitation exercises. Thirty-two PwMS were assessed with the Berg Balance Scale (BBS), the composite score (CS) obtained by computerized dynamic posturography (CDP) test and the Modified Fatigue Impact Scale (MFIS). Based on CDP analysis, prevalent VIS, PROP or VEST deficits were identified and patients randomly allocated to a personalized (PRG) or traditional (TRG) rehabilitation group. BBS score showed a significant difference between pre- and post-treatment scores of 6.3 and 2.0 points respectively for PRG and TRG. CS showed a significant difference between pre- and post-treatment scores of 16.6 and 7.6 points respectively for PRG and TRG. No interaction effect was found for MFIS score. BBS and CS showed changes in the PRG group that met clinical relevant difference, underlining that tailored rehabilitation interventions based on patient-specific sensory system impairment could improve balance and postural control in PwMS. © The Author(s), 2015.
Zullig, Leah L.; Melnyk, S. Dee; Stechuchak, Karen M.; McCant, Felicia; Danus, Susanne; Oddone, Eugene; Bastian, Lori; Olsen, Maren; Edelman, David; Rakley, Susan; Morey, Miriam
2014-01-01
Abstract Background: Hypertension, hyperlipidemia, and diabetes are significant, but often preventable, contributors to cardiovascular disease (CVD) risk. Medication and behavioral nonadherence are significant barriers to successful hypertension, hyperlidemia, and diabetes management. Our objective was to describe the theoretical framework underlying a tailored behavioral and educational pharmacist-administered intervention for achieving CVD risk reduction. Materials and Methods: Adults with poorly controlled hypertension and/or hyperlipidemia were enrolled from three outpatient primary care clinics associated with the Durham Veterans Affairs Medical Center (Durham, NC). Participants were randomly assigned to receive a pharmacist-administered, tailored, 1-year telephone-based intervention or usual care. The goal of the study was to reduce the risk for CVD through a theory-driven intervention to increase medication adherence and improve health behaviors. Results: Enrollment began in November 2011 and is ongoing. The target sample size is 500 patients. Conclusions: The Cardiovascular Intervention Improvement Telemedicine Study (CITIES) intervention has been designed with a strong theoretical underpinning. The theoretical foundation and intervention are designed to encourage patients with multiple comorbidities and poorly controlled CVD risk factors to engage in home-based monitoring and tailored telephone-based interventions. Evidence suggests that clinical pharmacist-administered telephone-based interventions may be efficiently integrated into primary care for patients with poorly controlled CVD risk factors. PMID:24303930
Multiple infrared bands absorber based on multilayer gratings
NASA Astrophysics Data System (ADS)
Liu, Xiaoyi; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Guo, Chengli
2018-03-01
The present study offers an Ag/Si multilayer-grating microstructure based on an Si substrate. The microstructure exhibits designable narrowband absorption in multiple infrared wavebands, especially in mid- and long-wave infrared atmospheric windows. We investigate its resonance mode mechanism, and calculate the resonance wavelengths by the Fabry-Perot and metal-insulator-metal theories for comparison with the simulation results. Furthermore, we summarize the controlling rules of the absorption peak wavelength of the microstructure to provide a new method for generating a Si-based device with multiple working bands in infrared.
Advanced composite applications for sub-micron biologically derived microstructures
NASA Technical Reports Server (NTRS)
Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas
1991-01-01
A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.
The effect of tailored Web-based interventions on pain in adults: a systematic review protocol.
Martorella, Géraldine; Gélinas, C; Bérubé, M; Boitor, M; Fredericks, S; LeMay, S
2016-04-12
Information technologies can facilitate the implementation of health interventions, especially in the case of widespread conditions such as pain. Tailored Web-based interventions have been recognized for health behavior change among diverse populations. However, none of the systematic reviews looking at Web-based interventions for pain management has specifically addressed the contribution of tailoring. The aims of this systematic review are to assess the effect of tailored Web-based pain management interventions on pain intensity and physical and psychological functions. Randomized controlled trials including adults suffering from any type of pain and involving Web-based interventions for pain management, using at least one of the three tailoring strategies (personalization, feedback, or adaptation), will be considered. The following types of comparisons will be carried out: tailored Web-based intervention with (1) usual care (passive control group), (2) face-to-face intervention, and (3) standardized Web-based intervention. The primary outcome will be pain intensity measured using a self-report measure such as the numeric rating scale (e.g., 0-10) or visual analog scale (e.g., 0-100). Secondary outcomes will include pain interference with activities and psychological well-being. A systematic review of English and French articles using MEDLINE, Embase, CINAHL, PsycINFO, Web of Science, and Cochrane Library will be conducted from January 2000 to December 2015. Eligibility assessment will be performed independently in an unblinded standardized manner by two reviewers. Extracted data will include the following: sample size, demographics, dropout rate, number and type of study groups, type of pain, inclusion and exclusion criteria, study setting, type of Web-based intervention, tailoring strategy, comparator, type of pain intensity measure, pain-related disability and psychological well-being outcomes, and times of measurement. Disagreements between reviewers at the full-text level will be resolved by consulting a third reviewer, a senior researcher. This systematic review is the first one looking at the specific ingredients and effects of tailored and Web-based interventions for pain management. Results of this systematic review could contribute to a better understanding of the mechanisms by which Web-based interventions could be helpful for people facing pain problems. PROSPERO CRD42015027669.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Shengsong, E-mail: geshengsong@126.com; Yang, Xiaokun; Shao, Qian
A simple hydrothermal process was adopted to self-assembly prepare high infrared reflective antimony trioxide with three-dimensional flower-like microstructures. The morphologies of antimony trioxide microstructures were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) respectively. It is also found that experimental parameters, such as NaOH concentration, surfactant concentration and volume ratio of ethanol–water played crucial roles in controlling the morphologies of Sb{sub 2}O{sub 3} microstructures. A possible growth mechanism of flower-like Sb{sub 2}O{sub 3} microstructure was proposed based on the experimental data. UV–vis–NIR spectra verified that the near infraredmore » reflectivity of the obtained flower-like microstructures could averagely achieve as 92% with maximum reflectivity of 98%, obviously higher than that of other different morphologies of antimony trioxide microstructures. It is expected that the flower-like Sb{sub 2}O{sub 3} nanostructures have some applications in optical materials and heat insulation coatings. - Graphical abstract: Flower-like Sb{sub 2}O{sub 3} microstructures that composed of nanosheets with thickness of ca. 100 nm exhibit high reflectivity under UV–vis–NIR spectra. Highlights: ► Uniform flower-like microstructures were synthesized via simple hydrothermal reaction. ► The flower-like Sb{sub 2}O{sub 3} microstructures exhibited higher reflectivity than other morphologies under the UV–vis–NIR light. ► Influencing parameters on the Sb{sub 2}O{sub 3} morphologies have been discussed in detail. ► Possible mechanism leading to flower-like microstructures was proposed.« less
NASA Astrophysics Data System (ADS)
Tajcmanova, L.; Moulas, E.; Vrijmoed, J.; Podladchikov, Y.
2016-12-01
Estimation of pressure-temperature (P-T) from petrographic observations in metamorphic rocks has become a common practice in petrology studies during the last 50 years. This data often serves as a key input in geodynamic reconstructions and thus directly influences our understanding of lithospheric processes. Such an approach might have led the metamorphic geology field to a certain level of quiescence. In the classical view of metamorphic quantification approaches, fast viscous relaxation (and therefore constant pressure across the rock microstructure) is assumed, with chemical diffusion being the limiting factor in equilibration. Recently, we have focused on the other possible scenario - fast chemical diffusion and slow viscous relaxation - and brings an alternative interpretation of chemical zoning found in high-grade rocks. The aim has been to provide insight into the role of mechanically maintained pressure variations on multi-component chemical zoning in minerals. Furthermore, we used the pressure information from the mechanically-controlled microstructure for rheological constrains. We show an unconventional way of relating the direct microstructural observations in rocks to the nonlinearity of rheology at time scales unattainable by laboratory measurements. Our analysis documents that mechanically controlled microstructures that have been preserved over geological times can be used to deduce flow-law parameters and in turn estimate stress levels of minerals in their natural environment. The development of the new quantification approaches has opened new horizons in understanding the phase transformations in the Earth's lithosphere. Furthermore, the new data generated can serve as a food for thought for the next generation of fully coupled numerical codes that involve reacting materials while respecting conservation of mass, momentum and energy.
Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Johnson, Bradley R.; Sundaram, S. K.
2006-12-01
Nanowire Formation in Arsenic Trisulfide Brian J. Riley, S.K. Sundaram*, Bradley R. Johnson, Mark Engelhard Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 * Corresponding author: Phone: 509-373-6665; Fax: 509-376-3108, E-mail: sk.Sundaram@pnl.gov Abstract: Arsenic trisulfide (As2S3) nanowires, nano-droplets, and micro-islands were synthesized on fused silica substrates, using a sublimation-condensation process at reduced pressures (70 mtorr – 70 torr) in a sealed ampoule. Microstructural control of the deposited thin film was achieved by controlling initial pressure, substrate temperature and substrate surface treatment. Microstructures were characterized using scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). Surface topography and chemistrymore » of the substrates were characterized using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Semi-quantitative image analysis and basic curve-fitting were used to develop empirical models to mathematically describe the variation of microstructure as a function of initial pressure and substrate temperature and map out the regions of different microstructures in P-T space. Thermodyamic properties (available from literature) of this system are also incorporated in this map. Nanowires of an amorphous, transparent in visible-LWIR region, semi-conducting material, like As2S3, provide new opportunities for the development of novel nano-photonic and electronic devices. Additionally, this system provides an excellent opportunity to model (and control) microstructure development from nanometer to micron scales in a physical vapor deposition process, which is of great value to nanoscience and nanotechnology in general.« less
Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.
Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank
2017-05-26
Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C 60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.
Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.
Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F
2016-08-09
Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.
Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy
Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.
2016-01-01
Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444
Yao, Huai; Wen, Jiu-Ba; Xiong, Yi; Lu, Yan; Huttula, Marko
2018-01-01
Being a biocompatible metal with similar mechanical properties as bones, magnesium bears both biodegradability suitable for bone substitution and chemical reactivity detrimental in bio-ambiences. To benefit its biomaterial applications, we developed Mg-2.0Zn-0.5Zr-3.0Gd (wt%) alloy through hot extrusion and tailored its biodegradability by just varying the extrusion temperatures during alloy preparations. The as-cast alloy is composed of the α-Mg matrix, a network of the fish-bone shaped and ellipsoidal (Mg, Zn)3Gd phase, and a lamellar long period stacking ordered phase. Surface content of dynamically recrystallized (DRXed) and large deformed grains increases within 330–350°C of the extrusion temperature, and decreases within 350–370°C. Sample second phase contains the (Mg, Zn)3Gd nano-rods parallel to the extrusion direction, and Mg2Zn11 nanoprecipitation when temperature tuned above 350°C. Refining microstructures leads to different anticorrosive ability of the alloys as given by immersion and electrochemical corrosion tests in the simulated body fluids. The sample extruded at 350°C owns the best anticorrosive ability thanks to structural impacts where large DRXed portions and uniform nanosized grains reduce chemical potentials among composites, and passivate the extruded surfaces. Besides materials applications, the in vitro mechanism revealed here is hoped to inspire similar researches in biometal developments. PMID:29616216
Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings
NASA Technical Reports Server (NTRS)
Harder, Bryan J.; Zhu, Dongming
2011-01-01
In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers