Sample records for controlled pilot study

  1. A Study of the Characteristics of Human-Pilot Control Response to Simulated Aircraft Lateral Motions

    NASA Technical Reports Server (NTRS)

    Cheatham, Donald C

    1954-01-01

    Report presents the results of studies made in an attempt to provide information on the control operations of the human pilot. These studies included an investigation of the ability of pilots to control simulated unstable yawing oscillations, a study of the basic characteristics of human-pilot control response, and a study to determine whether and to what extent pilot control response can be represented in an analytical form.

  2. Pilot-model analysis and simulation study of effect of control task desired control response

    NASA Technical Reports Server (NTRS)

    Adams, J. J.; Gera, J.; Jaudon, J. B.

    1978-01-01

    A pilot model analysis was performed that relates pilot control compensation, pilot aircraft system response, and aircraft response characteristics for longitudinal control. The results show that a higher aircraft short period frequency is required to achieve superior pilot aircraft system response in an altitude control task than is required in an attitude control task. These results were confirmed by a simulation study of target tracking. It was concluded that the pilot model analysis provides a theoretical basis for determining the effect of control task on pilot opinions.

  3. The Effects of Longitudinal Control-System Dynamics on Pilot Opinion and Response Characteristics as Determined from Flight Tests and from Ground Simulator Studies

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin

    1958-01-01

    The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.

  4. Controlling road rage : a literature review and pilot study

    DOT National Transportation Integrated Search

    1999-06-01

    This report discusses results of a literature review and pilot study on how to prevent aggressive driving and road rage. The study "Controlling Road Rage: A Literature Review and Pilot Study" defines road rage as "an incident in which an angry or imp...

  5. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study

    PubMed Central

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339

  6. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study.

    PubMed

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control.

  7. Flight Simulator Visual-Display Delay Compensation

    NASA Technical Reports Server (NTRS)

    Crane, D. Francis

    1981-01-01

    A piloted aircraft can be viewed as a closed-loop man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability. The changes in pilot dynamic response and performance bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. The study reported here evaluated an approach to visual-display delay compensation. The objective of the compensation was to minimize delay-induced change in pilot performance and workload, The compensation was effective. Because the compensation design approach is based on well-established control-system design principles, prospects are favorable for successful application of the approach in other simulations.

  8. A Study of Longitudinal Control Problems at Low and Negative Damping and Stability with Emphasis on Effects of Motion Cues

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.

    1961-01-01

    As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision.

  9. Occupational Stress and Hypertension among Railway Loco Pilots and Section Controllers.

    PubMed

    Jayakumar, Devasigamoney

    2017-01-01

    A cross-sectional study on occupational stress was conducted on loco pilots in 2008, in view of loco pilots being one of the high strain jobs in Indian Railways. Subsequently, a comparative cross-sectional study on occupational stress was conducted among section controllers in 2011, which is another high strain job of Indian Railways. The studies were conducted to analyze and compare occupational stress and hypertension. A cross-sectional study on occupational stress and hypertension was conducted among 230 loco pilots in 2008, and subsequently, a comparative cross-sectional study was conducted among 82 section controllers in 2011. A closed end 24 item questionnaire on occupational stress was administered. Systolic blood pressure above 140 mmHg and diastolic blood pressure above 90 mmHg were considered as hypertension as per the VII Joint National Committee. Chi-square test and t -test were used for testing significance at P < 0.05. The mean stress score was 8.56 in loco pilots and 7.32 in section controllers. The number of loco pilots with more than 12 stress factors was 49 (21.3%) and the number of section controllers with more than 12 stress factors was 7 (8.5%). The number employees with more than 12 stress factors in different categories of loco pilots were 30 (32%) in the goods category, 12 (12%) in the mail/passenger category, and 7 (19%) in the shunter category, and 3 (11%) in the supervisory category and 4 (7%) in the on-board category of section controllers. The prevalence of hypertension in loco pilots was 36.52% (84) and in the section controllers was 53.66% (44). The prevalence of hypertension in the category with more than 12 stress factors was 30.61% (15) in the loco pilots and 28.57% (2) in the section controllers. The prevalence of hypertension in the both the study groups were higher in the older age, with a family history of hypertension, and with a body mass index of more than 25 kg/m 2 . The mean occupational stress and employees with more than 12 stress factors were higher in the loco pilots group. The goods category of loco pilots had highest stress factors. The prevalence of hypertension was high in the category with risk factors such as older age, family history of hypertension and BMI above 25 kg/m 2 .

  10. Piloted simulation study of two tilt-wing control concepts

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.

    1994-01-01

    A two-phase piloted simulation study was conducted to investigate alternative wing and flap controls for tilt-wing aircraft. The initial phase of the study compared the flying qualities of both a conventional (programmed) flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap, and two geared flap configurations. In general, the pilot rating showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two concepts were noticed and are discussed in this paper. The addition of pitch attitude stabilization in the second phase of the study greatly enhanced the aircraft flying qualities. This paper describes the simulated tilt-wing aircraft and the flap control concepts and presents the results of both phases of the simulation study.

  11. Modeling Pilot Pulse Control

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Hess, Ronald; Godfroy-Cooper, Martine; Aponso, Bimal

    2017-01-01

    In this study, behavioral models are developed that closely reproduced pulsive control response of two pilots from the experimental pool using markedly different control techniques (styles) while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to issue and cease pulse commands. This suggests that the pilots utilized kinesthetic feedback in order to perceive and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess' pilot Structural Model. The Pulse Models used in conjunction with the pilot Structural Model closely recreated the pilot data both in the frequency and time domains during closed-loop simulation. This indicates that for the range of tasks and control styles encountered, the models captured the fundamental mechanisms governing pulsive and control processes. The pilot Pulse Models give important insight for the amount of remnant (stick output uncorrelated with the forcing function) that arises from nonlinear pilot technique, and for the remaining remnant arising from different sources unrelated to tracking control (i.e. neuromuscular tremor, reallocation of cognitive resources, etc.).

  12. Estimation of Time-Varying Pilot Model Parameters

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2011-01-01

    Human control behavior is rarely completely stationary over time due to fatigue or loss of attention. In addition, there are many control tasks for which human operators need to adapt their control strategy to vehicle dynamics that vary in time. In previous studies on the identification of time-varying pilot control behavior wavelets were used to estimate the time-varying frequency response functions. However, the estimation of time-varying pilot model parameters was not considered. Estimating these parameters can be a valuable tool for the quantification of different aspects of human time-varying manual control. This paper presents two methods for the estimation of time-varying pilot model parameters, a two-step method using wavelets and a windowed maximum likelihood estimation method. The methods are evaluated using simulations of a closed-loop control task with time-varying pilot equalization and vehicle dynamics. Simulations are performed with and without remnant. Both methods give accurate results when no pilot remnant is present. The wavelet transform is very sensitive to measurement noise, resulting in inaccurate parameter estimates when considerable pilot remnant is present. Maximum likelihood estimation is less sensitive to pilot remnant, but cannot detect fast changes in pilot control behavior.

  13. Autogenic Feedback Training Exercise and pilot performance: enhanced functioning under search-and-rescue flying conditions.

    PubMed

    Cowings, P S; Kellar, M A; Folen, R A; Toscano, W B; Burge, J D

    2001-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  14. Autogenic Feedback Training Exercise and pilot performance: enhanced functioning under search-and-rescue flying conditions

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Kellar, M. A.; Folen, R. A.; Toscano, W. B.; Burge, J. D.

    2001-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  15. Compensation for time delay in flight simulator visual-display systems

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1983-01-01

    A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.

  16. Development of ADOCS controllers and control laws. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft that will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered during the study are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of SCAS characteristics; display mode switching logic. Volume 1 is an Executive Summary of the study. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  17. Piloted simulation study of two tilt-wing flap control concepts, phase 2

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.; Hindson, William S.; Churchill, Gary B.

    1994-01-01

    A two phase piloted simulation study has been conducted in the Ames Vertical Motion Simulator to investigate alternative wing and flap controls for tilt-wing aircraft. This report documents the flying qualities results and findings of the second phase of the piloted simulation study and describes the simulated tilt-wing aircraft, the flap control concepts, the experiment design and the evaluation tasks. The initial phase of the study compared the flying qualities of both a conventional programmed flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap and two geared flap configurations. In general, the pilot ratings showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two control concepts were noticed and are discussed in this report. The geared flap configurations had very similar results. Although the geared flap concept has the potential to reduce or eliminate the pitch control power requirements from a tail rotor or a tail thruster at low speeds and in hover, the results did not show reduced tail thruster pitch control power usage with the geared flap configurations compared to the programmed flap configuration. The addition of pitch attitude stabilization in the second phase of simulation study greatly enhanced the aircraft flying qualities compared to the first phase.

  18. The influence of ATC message length and timing on pilot communication

    NASA Technical Reports Server (NTRS)

    Morrow, Daniel; Rodvold, Michelle

    1993-01-01

    Pilot-controller communication is critical to safe and efficient flight. It is often a challenging component of piloting, which is reflected in the number of incidents and accidents involving miscommunication. Our previous field study identified communication problems that disrupt routine communication between pilots and controllers. The present part-task simulation study followed up the field results with a more controlled investigation of communication problems. Pilots flew a simulation in which they were frequently vectored by Air Traffic Control (ATC), requiring intensive communication with the controller. While flying, pilots also performed a secondary visual monitoring task. We examined the influence of message length (one message with four commands vs. two messages with two commands each) and noncommunication workload on communication accuracy and length. Longer ATC messages appeared to overload pilot working memory, resulting in more incorrect or partial readbacks, as well as more requests to repeat the message. The timing between the two short messages also influenced communication. The second message interfered with memory for or response to the first short message when it was delivered too soon after the first message. Performing the secondary monitoring task did not influence communication. Instead, communication reduced monitoring accuracy.

  19. Effects of False Tilt Cues on the Training of Manual Roll Control Skills

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Popovici, Alexandru; Zavala, Melinda A.

    2015-01-01

    This paper describes a transfer-of-training study performed in the NASA Ames Vertica lMotion Simulator. The purpose of the study was to investigate the effect of false tilt cues on training and transfer of training of manual roll control skills. Of specific interest were the skills needed to control unstable roll dynamics of a mid-size transport aircraft close to the stall point. Nineteen general aviation pilots trained on a roll control task with one of three motion conditions: no motion, roll motion only, or reduced coordinated roll motion. All pilots transferred to full coordinated roll motion in the transfer session. A novel multimodal pilot model identification technique was successfully applied to characterize how pilots' use of visual and motion cues changed over the course of training and after transfer. Pilots who trained with uncoordinated roll motion had significantly higher performance during training and after transfer, even though they experienced the false tilt cues. Furthermore, pilot control behavior significantly changed during the two sessions, as indicated by increasing visual and motion gains, and decreasing lead time constants. Pilots training without motion showed higher learning rates after transfer to the full coordinated roll motion case.

  20. Autogenic-feedback training improves pilot performance during emergency flying conditions

    NASA Technical Reports Server (NTRS)

    Kellar, Michael A.; Folen, Raymond A.; Cowings, Patricia S.; Toscano, William B.; Hisert, Glen L.

    1994-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised three pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight, physiological data were recorded for each crew member and individual crew performance was rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  1. Occupational Stress and Hypertension among Railway Loco Pilots and Section Controllers

    PubMed Central

    Jayakumar, Devasigamoney

    2017-01-01

    Introduction: A cross-sectional study on occupational stress was conducted on loco pilots in 2008, in view of loco pilots being one of the high strain jobs in Indian Railways. Subsequently, a comparative cross-sectional study on occupational stress was conducted among section controllers in 2011, which is another high strain job of Indian Railways. Objective: The studies were conducted to analyze and compare occupational stress and hypertension. Setting and Design: A cross-sectional study on occupational stress and hypertension was conducted among 230 loco pilots in 2008, and subsequently, a comparative cross-sectional study was conducted among 82 section controllers in 2011. Materials and Methods: A closed end 24 item questionnaire on occupational stress was administered. Systolic blood pressure above 140 mmHg and diastolic blood pressure above 90 mmHg were considered as hypertension as per the VII Joint National Committee. Chi-square test and t-test were used for testing significance at P < 0.05. Results: The mean stress score was 8.56 in loco pilots and 7.32 in section controllers. The number of loco pilots with more than 12 stress factors was 49 (21.3%) and the number of section controllers with more than 12 stress factors was 7 (8.5%). The number employees with more than 12 stress factors in different categories of loco pilots were 30 (32%) in the goods category, 12 (12%) in the mail/passenger category, and 7 (19%) in the shunter category, and 3 (11%) in the supervisory category and 4 (7%) in the on-board category of section controllers. The prevalence of hypertension in loco pilots was 36.52% (84) and in the section controllers was 53.66% (44). The prevalence of hypertension in the category with more than 12 stress factors was 30.61% (15) in the loco pilots and 28.57% (2) in the section controllers. The prevalence of hypertension in the both the study groups were higher in the older age, with a family history of hypertension, and with a body mass index of more than 25 kg/m2. The mean occupational stress and employees with more than 12 stress factors were higher in the loco pilots group. The goods category of loco pilots had highest stress factors. The prevalence of hypertension was high in the category with risk factors such as older age, family history of hypertension and BMI above 25 kg/m2. PMID:29391744

  2. Prediction of aircraft handling qualities using analytical models of the human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1982-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot-induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  3. Prediction of aircraft handling qualities using analytical models of the human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1982-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot induced oscillations is formulated. Finally, a model based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  4. An analytical approach for predicting pilot induced oscillations

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1981-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion or determining the susceptability of an aircraft to pilot induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  5. Defining Feasibility and Pilot Studies in Preparation for Randomised Controlled Trials: Development of a Conceptual Framework.

    PubMed

    Eldridge, Sandra M; Lancaster, Gillian A; Campbell, Michael J; Thabane, Lehana; Hopewell, Sally; Coleman, Claire L; Bond, Christine M

    2016-01-01

    We describe a framework for defining pilot and feasibility studies focusing on studies conducted in preparation for a randomised controlled trial. To develop the framework, we undertook a Delphi survey; ran an open meeting at a trial methodology conference; conducted a review of definitions outside the health research context; consulted experts at an international consensus meeting; and reviewed 27 empirical pilot or feasibility studies. We initially adopted mutually exclusive definitions of pilot and feasibility studies. However, some Delphi survey respondents and the majority of open meeting attendees disagreed with the idea of mutually exclusive definitions. Their viewpoint was supported by definitions outside the health research context, the use of the terms 'pilot' and 'feasibility' in the literature, and participants at the international consensus meeting. In our framework, pilot studies are a subset of feasibility studies, rather than the two being mutually exclusive. A feasibility study asks whether something can be done, should we proceed with it, and if so, how. A pilot study asks the same questions but also has a specific design feature: in a pilot study a future study, or part of a future study, is conducted on a smaller scale. We suggest that to facilitate their identification, these studies should be clearly identified using the terms 'feasibility' or 'pilot' as appropriate. This should include feasibility studies that are largely qualitative; we found these difficult to identify in electronic searches because researchers rarely used the term 'feasibility' in the title or abstract of such studies. Investigators should also report appropriate objectives and methods related to feasibility; and give clear confirmation that their study is in preparation for a future randomised controlled trial designed to assess the effect of an intervention.

  6. SUPERFUND TREATABILITY CLEARINGHOUSE: SOIL STABILIZATION PILOT STUDY, UNITED CHROME NPL SITE PILOT STUDY AND HEALTH AND SAFETY PROGRAM, UNITED CHROME NPL SITE PILOT STUDY

    EPA Science Inventory

    This document is a project plan for a pilot study at the United Chrome NPL site, Corvallis, Oregon and includes the health and safety and quality assurance/quality control plans. The plan reports results of a bench-scale study of the treatment process as iieasured by the ...

  7. Flight Controllability Limits and Related Human Transfer Functions as Determined from Simulator and Flight Tests

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Day, Richard E.

    1961-01-01

    A simulator study and flight tests were performed to determine the levels of static stability and damping necessary to enable a pilot to control the longitudinal and lateral-directional dynamics of a vehicle for short periods of time. Although a basic set of aerodynamic characteristics was used, the study was conducted so that the results would be applicable to a wide range of flight conditions and configurations. Novel piloting techniques were found which enabled the pilot to control the vehicle at conditions that were otherwise uncontrollable. The influence of several critical factors in altering the controllability limits was also investigated. Several human transfer functions were used which gave fairly good representations of the controllability limits determined experimentally for the short-period longitudinal, directional, and lateral modes. A transfer function with approximately the same gain and phase angle as the pilot at the controlling frequencies along the controllability limits was also derived.

  8. Use of Dynamic Distortion to Predict and Alleviate Loss of Control

    NASA Technical Reports Server (NTRS)

    Klyde, David; Liang, Chi-Ying; Alvarez, Daniel

    2011-01-01

    This research has developed and evaluated the specific concepts, termed Smart-Cue and Smart-Gain, to alleviate aircraft loss of control that results from unfavorable pilot/vehicle system interactions, including pilot-induced oscillations (PIOs). Unfavorable pilot/ vehicle-system interactions have long been an aviation safety problem. While the effective aircraft dynamic properties involved in these events have been extensively studied and understood, similar scrutiny has not been paid to the many aspects of the primary manual control system that converts the pilot control inputs to motions of the control surfaces. The purpose of the Smart-Cue and Smart-Gain developments is to redress this neglect, and to develop and validate remedial manual control systems.

  9. Study of Synthetic Vision Systems (SVS) and Velocity-vector Based Command Augmentation System (V-CAS) on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Liu, Dahai; Goodrich, Ken; Peak, Bob

    2006-01-01

    This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on single pilot performance (SPP). Specifically, we evaluated the benefits and interactions of two levels of terrain portrayal, guidance symbology, and control-system response type on SPP in the context of lower-landing minima (LLM) approaches. Performance measures consisted of flight technical error (FTE) and pilot perceived workload. In this study, pilot rating, control type, and guidance symbology were not found to significantly affect FTE or workload. It is likely that transfer from prior experience, limited scope of the evaluation task, specific implementation limitations, and limited sample size were major factors in obtaining these results.

  10. Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Chou, Hwei-Lan; Biezad, Daniel J.

    1996-01-01

    Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.

  11. Benefits of controller-pilot data link ATC communications in terminal airspace : final report

    DOT National Transportation Integrated Search

    1996-09-30

    This report documents a Federal Aviation Administration (FAA) study that was : conducted to demonstrate and quantify benefits associated with the implementation of controller-pilot Data Link communications in terminal : airspace. The study was suppor...

  12. A preliminary study of maximal control force capability of female pilots.

    DOT National Transportation Integrated Search

    1972-07-01

    The growing number of female pilots entering the field of civil aviation has suggested the need for a study of the maximum allowable forces which should be specified for operating aircraft controls. : Therefore, a study was made of the maximal volunt...

  13. Data-linked pilot reply time on controller workload and communication in a simulated terminal option

    DOT National Transportation Integrated Search

    2001-05-01

    This report describes an analysis of air traffic control communication and workload in a simulated terminal radar approach : control environment. The objective of this study was to investigate how pilot-to-controller data-link acknowledgment time : m...

  14. Analysis of reportable events in Kansas City air route traffic control center

    DOT National Transportation Integrated Search

    2017-02-10

    The implementation of ControllerPilot Datalink Communications (CPDLC) in domestic en route airspace will change the controllers and pilots : tasks, which will, in turn change the types of observed errors. This study characterizes the current...

  15. A Methodology to Determine the Psychomotor Performance of Helicopter Pilots During Flight Maneuvers.

    PubMed

    McMahon, Terry W; Newman, David G

    2015-07-01

    Helicopter flying is a complex psychomotor task requiring continuous control inputs to maintain stable flight and conduct maneuvers. Flight safety is impaired when this psychomotor performance is compromised. A comprehensive understanding of the psychomotor performance of helicopter pilots, under various operational and physiological conditions, remains to be developed. The purpose of this study was to develop a flight simulator-based technique for capturing psychomotor performance data of helicopter pilots. Three helicopter pilots conducted six low-level flight sequences in a helicopter simulator. Accelerometers applied to each flight control recorded the frequency and magnitude of movements. The mean (± SEM) number of control inputs per flight was 2450 (± 136). The mean (± SEM) number of control inputs per second was 1.96 (± 0.15). The mean (± SEM) force applied was 0.44 G (± 0.05 G). No significant differences were found between pilots in terms of flight completion times or number of movements per second. The number of control inputs made by the hands was significantly greater than the number of foot movements. The left hand control input forces were significantly greater than all other input forces. This study shows that the use of accelerometers in flight simulators is an effective technique for capturing accurate, reliable data on the psychomotor performance of helicopter pilots. This technique can be applied in future studies to a wider range of operational and physiological conditions and mission types in order to develop a greater awareness and understanding of the psychomotor performance demands on helicopter pilots.

  16. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  17. Analysis of aircraft longitudinal handling qualities

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1981-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  18. Pilot Certification, Age of Pilot, and Drug Use in Fatal Civil Aviation Accidents.

    PubMed

    Akparibo, Issaka Y; Stolfi, Adrienne

    2017-10-01

    This study examined the association between mean age of pilot, pilot license, pilot medical certificate and drug use trends in pilots fatally injured in aircraft accidents. The prevalence of prescription drugs, OTC drugs, controlled drugs and drugs that may be potentially impairing was also examined. This study was a descriptive observational study in which the NTSB Aviation Accident Database was searched from the period beginning January 1, 2012 to December 31, 2014. During the study period a total of 706 accidents involving 711 fatalities were investigated by the NTSB. This study included 633 of these accidents, involving 646 fatalities. Of these pilots, 42.1% had drugs in their biological samples. The prevalence of prescription drugs, controlled drugs, OTC drugs, opioids, and potentially impairing drugs in the fatally injured pilot population over the study period was 28.9%, 15.0%, 20.1%, 5.1%, and 25.5%, respectively. Pilots with any drugs in their samples were significantly older than those without drugs. Medical certificate held was associated with drug use; pilots who held third class certificates had the highest prevalence at 54.1%. Pilot license was not associated with drug use. In 3.8% of the accidents, drugs were a contributing factor in the cause. Despite current FAA medical regulations, potentially impairing drugs are frequently found in biological samples of fatally injured pilots in the U.S. More education of airmen by aviation medical examiners is needed on the safety of drug use.Akparibo IY, Stolfi A. Pilot certification, age of pilot, and drug use in fatal civil aviation accidents. Aerosp Med Hum Perform. 2017; 88(10):931-936.

  19. "Tower, Am I Cleared to Land?": Problematic Communication in Aviation Discourse

    ERIC Educational Resources Information Center

    Howard, John W., III

    2008-01-01

    This study examined problematic communication in pilot-air traffic controller (ATC) interaction. More than 15 hours of pilot-ATC dialogue were collected by monitoring control tower frequencies at 15 U.S. airports. The transcribed data yielded a total of 34 ATCs, 270 pilots, and 1,799 turns of talk. Analyses revealed that (a) communication…

  20. Intelligent Pilot Aids for Flight Re-Planning in Emergencies

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Ockerman, Jennifer

    2005-01-01

    Effective and safe control of an aircraft may be difficult or nearly impossible for a pilot following an unexpected system failure. Without prior training, the pilot must ascertain on the fly those changes in both manual control technique and procedures that will lead to a safe landing of the aircraft. Sophisticated techniques for determining the required control techniques are now available. Likewise, a body of literature on pilot decision making provides formalisms for examining how pilots approach discrete decisions framed as the selection between options. However, other aspects of behavior, such as the task of route planning and guidance, are not as well studied. Not only is the pilot faced with possible performance changes to the aircraft dynamics, but he or she is also tasked to create a plan of actions that will effectively take the aircraft down to a safe landing. In this plan, the many actions that the pilot can perform are closely intertwined with the trajectory of the aircraft, making it difficult to accurately predict the final outcome. Coupled with the vast number of potential actions to be taken, this problem may seem intractable. This is reflected in the lack of a pre-specified procedure capable of giving pilots the ability to find a resolution for this task. This report summarizes a multi-year effort to examine methods to aid pilots in planning an approach and arrival to an airport following an aircraft systems failure. Ultimately, we hypothesize that automatic assistance to pilots can be provided in real-time in the form of improving pilot control of a damaged aircraft and providing pilots with procedural directives suitable for critical flight conditions; such systems may also benefit pilot training and procedure design. To achieve this result, a systematic, comprehensive research program was followed, building on prior research. This approach included a pencil-and-paper study with airline pilots examining methods of representing a flight route in an immediately understandable manner, and in a manner that would allow the pilot to modify an automatically-generated route and/or detect any inappropriate elements in an automatically-generated route. Likewise, a flight simulator study examined different cockpit systems for the relative merits of providing pilots with any of a variety of automated functions for emergency flight planning. The results provide specific guidance for the design of such systems.

  1. Aircraft control forces and EMG activity: comparison of novice and experienced pilots during simulated rolls, loops and turns.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2000-08-01

    Flying an aircraft requires a considerable degree of coordination, particularly during aerobatic activities such as rolls, loops and turns. Only one previous study has examined the magnitude of muscle activity required to fly an aircraft, and that was restricted to takeoff and landing maneuvers. The aim of this study was to examine the phasing of muscle activation and control forces of novice and experienced pilots during more complex simulated flight maneuvers. There were 12 experienced and 9 novice pilots who were tested on an Aermacchi flight simulator while performing a randomized set of rolling, looping, and turning maneuvers. Four different runaway trim settings were used to increase the difficulty of the turns (elevator-up, elevator-down, aileron-left, and aileron-right). Variables recorded included aircraft attitude, pilot applied forces, and electromyographic (EMG) activity. Discriminant function analysis was used to distinguish between novice and experienced pilots. Over all maneuvers, 70% of pilots were correctly classified as novice or experienced. Better levels of classification were achieved when maneuvers were analyzed individually (67-91%), although the maneuvers that required the greatest force application, elevator-up turns, were unable to discriminate between novice and experienced pilots. There were no differences in the phasing of muscle activity between experienced and novice pilots. The only consistent difference in EMG activity between novice and experienced pilots was the reduced EMG activity in the wrist extensors of experienced pilots (p < 0.05). The increased wrist extensor activity of the novice pilots is indicative of a distal control strategy, whereby distal muscles with smaller motor units are used to perform a task that requires precise control. Muscle activity sensors could be used to detect the onset of high G maneuvers prior to any change in aircraft attitude and control G-suit inflation accordingly.

  2. Carotid duplex ultrasound and transcranial Doppler findings in commercial divers and pilots.

    PubMed

    Dormanesh, Banafshe; Vosoughi, Kia; Akhoundi, Fahimeh H; Mehrpour, Masoud; Fereshtehnejad, Seyed-Mohammad; Esmaeili, Setareh; Sabet, Azin Shafiee

    2016-12-01

    The risky working environments of divers and pilots, and the possible role of extreme ambient pressure in carotid stenosis, make ischemic stroke an important occupational concern among these professionals. In this study, we aimed to evaluate the association of being exposed to hyperbaric or hypobaric conditions with carotid artery stenosis by comparing common carotid intima-media thickness (CCIMT) and blood flow velocities of cerebral arteries in divers and pilots using carotid duplex ultrasound (CDUS) and transcranial Doppler (TCD). CDUS and transtemporal TCD were performed in 29 divers, 36 pilots and 30 control participants. Medical history, blood pressure, lipid profile and blood sugar were recorded to control the previously well-known risk factors of atherosclerosis. Findings of the CDUS and TCD [including: CCIMT and blood flow velocities of internal carotid artery (ICA), common carotid artery (CCA), and middle cerebral artery (MCA)] of divers and pilots were compared with those of the control group using regression analysis models. Both right and left side CCIMT were significantly higher in divers (P < 0.05) and pilots (P < 0.05) in comparison with the control group. Carotid index [peak systolic velocity (PSV) of ICA/PSV of CCA) of divers and pilots were also higher than the control group. TCD findings were not significantly different between divers, pilots, and the control group. Increased CCIMT and carotid index in diver and pilot groups appear to be suggestive of accelerated atherosclerosis of carotid artery in these occupational groups.

  3. The effect of aircraft control forces on pilot performance during instrument landings in a flight simulator.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2001-07-01

    Pilots may have difficulty controlling aircraft at both high and low force levels due to larger variability in force production at these force levels. The aim of this study was to measure the force variability and landing performance of pilots during an instrument landing in a flight simulator. There were 12 pilots who were tested while performing 5 instrument landings in a flight simulator, each of which required different control force inputs. Pilots can produce the least force when pushing the control column to the right, therefore the force levels for the landings were set relative to each pilot's maximum aileron-right force. The force levels for the landings were 90%, 60%, and 30% of maximal aileron-right force, normal force, and 25% of normal force. Variables recorded included electromyographic activity (EMG), aircraft control forces, aircraft attitude, perceived exertion and deviation from glide slope and heading. Multivariate analysis of variance was used to test for differences between landings. Pilots were least accurate in landing performance during the landing at 90% of maximal force (p < 0.05). There was also a trend toward decreased landing performance during the landing at 25% of normal force. Pilots were more variable in force production during the landings at 60% and 90% of maximal force (p < 0.05). Pilots are less accurate at performing instrument landings when control forces are high due to the increased variability of force production. The increase in variability at high force levels is most likely associated with motor unit recruitment, rather than rate coding. Aircraft designers need to consider the reduction in pilot performance at high force levels, as well as pilot strength limits when specifying new standards.

  4. Cervical Spine Status of Pilots and Air-Controllers of Airborne Early Warning and Control Aircraft.

    PubMed

    Shin, Young Ho; Yun, Chul; Han, Andrew Hogyu

    2017-05-01

    Many countries have developed their own airborne early warning and control (AEW&C) systems for use in surveying their territorial sky in real time. However, a review of the literature suggests that no studies have been conducted to analyze the cervical spine of pilots and air-controllers of AEW&C aircraft. The study subjects were 80 pilots and air-controllers of AEW&C aircraft with a period of service of > 1 yr and had data on physical examinations, simple radiographs and functional scores of the axial skeleton, and questionnaires about lifestyle and working conditions. Information about physical characteristics and experience of neck pain were collected. Functional scores including the neck disability index and short-form 36-item health survey were obtained. Radiological measurements were performed for the C2-7 Cobb angle and degree of forward head posture. Of the 80 subjects, 33 (41.3%) had experienced neck pain and 63 (78.8%) had impaired cervical lordosis. The results of functional and radiological evaluations were not significantly different between pilots and air-controllers. In multivariate analysis, only the age was significantly related to the occurrence of impaired cervical lordosis. However, there were no significant factors related to the occurrence of neck pain. The results of this study suggest that the working environment of pilots and air-controllers of AEW&C aircraft has a negative effect on their cervical spine. Age seemed to be the most significant factor affecting the occurrence of impaired cervical lordosis in these subjects.Shin YH, Yun C, Han AH. Cervical spine status of pilots and air-controllers of airborne early warning and control aircraft. Aerosp Med Hum Perform. 2017; 88(5):476-480.

  5. Study of the use of a nonlinear, rate limited, filter on pilot control signals

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1977-01-01

    The use of a filter on the pilot's control output could improve the performance of the pilot-aircraft system. What is needed is a filter with a sharp high frequency cut-off, no resonance peak, and a minimum of lag at low frequencies. The present investigation studies the usefulness of a nonlinear, rate limited, filter in performing the needed function. The nonlinear filter is compared with a linear, first order filter, and no filter. An analytical study using pilot models and a simulation study using experienced test pilots was performed. The results showed that the nonlinear filter does promote quick, steady maneuvering. It is shown that the nonlinear filter attenuates the high frequency remnant and adds less phase lag to the low frequency signal than does the linear filter. It is also shown that the rate limit in the nonlinear filter can be set to be too restrictive, causing an unstable pilot-aircraft system response.

  6. An experimental study of human pilot's scanning behavior

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Osawa, T.

    1982-01-01

    The scanning behavior and the control behavior of the pilot who manually controls the two-variable system, which is the most basic one of multi-variable systems are investigated. Two control tasks which simulate the actual airplane attitude and airspeed control were set up. In order to simulate the change of the situation where the pilot is placed, such as changes of flight phase, mission and others, the subject was requested to vary the weightings, as his control strategy, upon each task. Changes of human control dynamics and his canning properties caused by the modification of the situation were investigated. By making use of the experimental results, the optimal model of the control behavior and the scanning behavior of the pilot in the two-variable system is proposed from the standpoint of making the performance index minimal.

  7. Cosmic Radiation and Cataracts in Airline Pilots

    NASA Astrophysics Data System (ADS)

    Rafnsson, V.; Olafsdottir, E.; Hrafnkelsson, J.; de Angelis, G.; Sasaki, H.; Arnarson, A.; Jonasson, F.

    Nuclear cataracts have been associated with ionising radiation exposure in previous studies. A population based case-control study on airline pilots has been performed to investigate whether employment as a commercial pilot and consequent exposure to cosmic radiation were associated to lens opacification, when adjusted for known risk factors for cataracts. Cases of opacification of the ocular lens were found in surveys among pilots and a random sample of the Icelandic population. Altogether 445 male subjects underwent a detailed eye examination and answered a questionnaire. Information from the airline company on the 79 pilots employment time, annual hours flown per aircraft type, the timetables and the flight profiles made calculation of individual cumulated radiation dose (mSv) possible. Lens opacification were classified and graded according to WHO simplified cataracts grading system using slit lamp. The odds ratio from logistic regression of nuclear cataracts risk among cases and controls was 3.02 (95% CI 1.44 to 6.35) for pilots compared with non-pilots, adjusted for age, smoking and sunbathing habits, whereas that of cortical cataracts risk among cases and controls was lower than unity (non significant) for pilots compared with non-pilots in a logistic regression analysis adjusted for same factors. Length of employment as a pilot and cumulated radiation dose (mSv) were significantly related to the risk of nuclear cataracts. So the association between radiation exposure of pilots and the risk of nuclear cataracts, adjusted for age, smoking and sunbathing habits, indicates that cosmic radiation may be cause of nuclear cataract among commercial pilots.

  8. Training General Aviation Pilots for Convective Weather Situations.

    PubMed

    Blickensderfer, Elizabeth L; Lanicci, John M; Vincent, Michael J; Thomas, Robert L; Smith, MaryJo; Cruit, Jessica K

    2015-10-01

    Over the past 10-15 yr, considerable research has occurred for the development, testing, and fielding of real-time Datalink weather products for general aviation (GA) pilots to use before and during flight. As is the case with the implementation of most new technologies, work is needed to ensure that the users (in this case, the pilots) understand both the capabilities and limitations of the new technologies as well as how to use the new systems to improve their task performance. The purpose of this study was to replicate and extend a previous study on training pilots how and when to use these new weather technologies. This field study used a quasi-experimental design (pre- vs. post-test with a control group). There were 91 GA pilots from the Midwest, Northeastern, and Southeastern United States who participated in a 2-h short course or a control activity. The lecture-based short course covered radar basics, Next Generation Weather Radar (NEXRAD), NEXRAD specifics/limitations, thunderstorm basics, radar products, and decision making. The pilots who participated in the course earned higher knowledge test scores, improved at applying the concepts in paper-based flight scenarios, had higher self-efficacy in post-training assessments as compared to pre-training assessments, and also performed better than did control subjects on post-test knowledge and skills assessments. GA pilots lack knowledge about real-time Datalink weather technology. This study indicates that a relatively short training program was effective for fostering Datalink weather-related knowledge and skills in GA pilots.

  9. Report of ejections in the Spanish Air Force, 1979-1995: an epidemiological and comparative study.

    PubMed

    Moreno Vázquez, J M; Durán Tejeda, M R; García Alcón, J L

    1999-07-01

    Ejection seats have saved many lives with more than 80% of pilots having survived an ejection. Nevertheless, ejection injuries are seen in all modern air forces. An epidemiological study has been carried out on the 48 ejections made by the Spanish Air Force (SpAF) from 1979-1995. From data facilitated by the Flight Safety Section of the SpAF Staff, by the Flight Safety Section of Squadrons, and from personal reports of pilots who survived ejections a form was created. Relationships between data concerning aeronautical parameters, pilot data and injuries have been found, and a comparative study was made between these results and data shown by air forces of other countries. Of 48 pilots who ejected, 7 died, 25 had severe injuries, 11 had minor injuries and 5 had no injuries. The reason for the ejections included 35 cases of technical failure, and 13 cases of human error. Of 43 surviving pilots, 23 were injured only at the egress phase, 1 1 only at landing, and 9 cases at both moments. None of the five pilots who ejected outside the ejection envelope were able to adopt the correct position. However, of 43 pilots who ejected within the envelope, 19 were seated in good position. Of 13 pilots who maintained control of the airplane, 9 were able to adopt a correct position. Of 35 pilots who effected the ejection without control of the aircraft, 25 were not able to achieve a correct seated position. The pilot position in the ejection seat, plane control, ejection inside the envelope, the pilot's training in how to assume the necessary body position at both egress and landing phases are determining factors for successful ejections.

  10. Analysis of pilot response time to time-critical air traffic control calls

    DOT National Transportation Integrated Search

    1991-08-01

    One of the most important time-critical air traffic control messages for a pilot is one : that required an immediate maneuver for traffic avoidance. This study examines the time : required for an air traffic controller to successfully transmit such a...

  11. Handling qualities of large flexible control-configured aircraft

    NASA Technical Reports Server (NTRS)

    Swaim, R. L.

    1979-01-01

    The approach to an analytical study of flexible airplane longitudinal handling qualities was to parametrically vary the natural frequencies of two symmetric elastic modes to induce mode interactions with the rigid body dynamics. Since the structure of the pilot model was unknown for such dynamic interactions, the optimal control pilot modeling method is being applied and used in conjunction with pilot rating method.

  12. Training monitoring skills in helicopter pilots.

    PubMed

    Potter, Brian A; Blickensderfer, Elizabeth L; Boquet, Albert J

    2014-05-01

    Prior research has indicated that ineffective pilot monitoring has been associated with aircraft accidents. Despite this finding, empirical research concerning pilot monitoring skill training programs is nearly nonexistent. E-learning may prove to be an effective method to foster nontechnical flight skills, including monitoring. This study examined the effect of using e-learning to enhance helicopter aircrew monitoring skill performance. The design was a posttest only field study. Forty-four helicopter pilots completed either an e-learning training module or a control activity and then flew two scenarios in a high-fidelity flight simulator. Learner reactions and knowledge gained were assessed immediately following the e-learning module. Two observer raters assessed behaviors and performance outcomes using recordings of the simulation flights. Subjects who completed the e-learning training module scored almost twice as high as did the control group on the administered knowledge test (experimental group, mean = 92.8%; control group, mean = 47.7%) and demonstrated up to 150% more monitoring behaviors during the simulated flights than the control subjects. In addition, the participating pilots rated the course highly. The results supported the hypothesis that a relatively inexpensive and brief training course implemented through e-learning can foster monitoring skill development among helicopter pilots.

  13. Autogenic-feedback training improves pilot performance during emergency flying conditions

    NASA Technical Reports Server (NTRS)

    Kellar, Michael A.; Folen, Raymond A.; Cowings, Patricia S.; Toscano, William B.; Hisert, Glen L.

    1993-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. The effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance was examined. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised four pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight physiological data were recorded for each crewmember and individual crew performance and rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  14. Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  15. Comparison of Postural Responses to Galvanic Vestibular Stimulation between Pilots and the General Populace

    PubMed Central

    Yang, Yang; Pu, Fang; Lv, Xiaoning; Li, Shuyu; Li, Jing; Li, Deyu; Li, Minggao

    2015-01-01

    Galvanic vestibular stimulation (GVS) can be used to study the body's response to vestibular stimuli. This study aimed to investigate whether postural responses to GVS were different between pilots and the general populace. Bilateral bipolar GVS was applied with a constant-current profile to 12 pilots and 12 control subjects via two electrodes placed over the mastoid processes. Both GVS threshold and the center of pressure's trajectory (COP's trajectory) were measured. Position variability of COP during spontaneous body sway and peak displacement of COP during GVS-induced body sway were calculated in the medial-lateral direction. Spontaneous body sway was slight for all subjects, and there was no significant difference in the value of COP position variability between the pilots and controls. Both the GVS threshold and magnitude of GVS-induced body deviation were similar for different GVS polarities. GVS thresholds were similar between the two groups, but the magnitude of GVS-induced body deviation in the controls was significantly larger than that in the pilots. The pilots showed less GVS-induced body deviation, meaning that pilots may have a stronger ability to suppress vestibular illusions. PMID:25632395

  16. Defining Feasibility and Pilot Studies in Preparation for Randomised Controlled Trials: Development of a Conceptual Framework

    PubMed Central

    Eldridge, Sandra M.; Lancaster, Gillian A.; Campbell, Michael J.; Thabane, Lehana; Hopewell, Sally; Coleman, Claire L.; Bond, Christine M.

    2016-01-01

    We describe a framework for defining pilot and feasibility studies focusing on studies conducted in preparation for a randomised controlled trial. To develop the framework, we undertook a Delphi survey; ran an open meeting at a trial methodology conference; conducted a review of definitions outside the health research context; consulted experts at an international consensus meeting; and reviewed 27 empirical pilot or feasibility studies. We initially adopted mutually exclusive definitions of pilot and feasibility studies. However, some Delphi survey respondents and the majority of open meeting attendees disagreed with the idea of mutually exclusive definitions. Their viewpoint was supported by definitions outside the health research context, the use of the terms ‘pilot’ and ‘feasibility’ in the literature, and participants at the international consensus meeting. In our framework, pilot studies are a subset of feasibility studies, rather than the two being mutually exclusive. A feasibility study asks whether something can be done, should we proceed with it, and if so, how. A pilot study asks the same questions but also has a specific design feature: in a pilot study a future study, or part of a future study, is conducted on a smaller scale. We suggest that to facilitate their identification, these studies should be clearly identified using the terms ‘feasibility’ or ‘pilot’ as appropriate. This should include feasibility studies that are largely qualitative; we found these difficult to identify in electronic searches because researchers rarely used the term ‘feasibility’ in the title or abstract of such studies. Investigators should also report appropriate objectives and methods related to feasibility; and give clear confirmation that their study is in preparation for a future randomised controlled trial designed to assess the effect of an intervention. PMID:26978655

  17. Piloted studies of Enhanced or Synthetic Vision display parameters

    NASA Technical Reports Server (NTRS)

    Harris, Randall L., Sr.; Parrish, Russell V.

    1992-01-01

    This paper summarizes the results of several studies conducted at Langley Research Center over the past few years. The purposes of these studies were to investigate parameters of pictorial displays and imaging sensors that affect pilot approach and landing performance. Pictorial displays have demonstrated exceptional tracking performance and improved the pilots' spatial awareness. Stereopsis cueing improved pilot flight performance and reduced pilot stress. Sensor image parameters such as increased field-of-view. faster image update rate, and aiding symbology improved flare initiation. Finer image resolution and magnification improved attitude control performance parameters.

  18. White Matter Integrity in High-Altitude Pilots Exposed to Hypobaria

    PubMed Central

    McGuire, Stephen A.; Boone, Goldie R.E.; Sherman, Paul M.; Tate, David F.; Wood, Joe D.; Patel, Beenish; Eskandar, George; Wijtenburg, S. Andrea; Rowland, Laura M.; Clarke, Geoffrey D.; Grogan, Patrick M.; Sladky, John H.; Kochunov, Peter V.

    2017-01-01

    Introduction Nonhypoxic hypobaric (low atmospheric pressure) occupational exposure, such as experienced by U.S. Air Force U-2 pilots and safety personnel operating inside altitude chambers, is associated with increased subcortical white matter hyperintensity (WMH) burden. The pathophysiological mechanisms underlying this discrete WMH change remain unknown. The objectives of this study were to demonstrate that occupational exposure to nonhypoxic hypobaria is associated with altered white matter integrity as quantified by fractional anisotropy (FA) measured using diffusion tensor imaging and relate these findings to WMH burden and neurocognitive ability. Methods There were 102 U-2 pilots and 114 age- and gender-controlled, health-matched controls who underwent magnetic resonance imaging. All pilots performed neurocognitive assessment. Whole-brain and tract-wise average FA values were compared between pilots and controls, followed by comparison within pilots separated into high and low WMH burden groups. Neurocognitive measurements were used to help interpret group difference in FA values. Results Pilots had significantly lower average FA values than controls (0.489/0.500, respectively). Regionally, pilots had higher FA values in the fronto-occipital tract where FA values positively correlated with visual-spatial performance scores (0.603/0.586, respectively). There was a trend for high burden pilots to have lower FA values than low burden pilots. Discussion Nonhypoxic hypobaric exposure is associated with significantly lower average FA in young, healthy U-2 pilots. This suggests that recurrent hypobaric exposure causes diffuse axonal injury in addition to focal white matter changes. PMID:28323582

  19. Controller and pilot error in airport operations : a review of previous research and analysis of safety data

    DOT National Transportation Integrated Search

    2001-01-01

    The purpose of this study was to examine controller and pilot errors in airport operations to identify potential tower remedies. The : first part of the report contains a review of the literature of studies conducted of tower operationsand of efforts...

  20. Pilot Decision-Making in Irreversible Emergencies

    ERIC Educational Resources Information Center

    Winter, Scott R.

    2013-01-01

    The purpose of this study was to determine if a reflexive learning treatment utilizing select case studies could enhance the decision-making of pilots who encounter an irreversible emergency. Participants, who consisted of members of the subject university's professional pilot program, were divided into either a control or experimental group and…

  1. An Evaluation of Automatic Control System Concepts for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.

    1990-01-01

    A piloted simulation study of automatic longitudinal control systems for general aviation airplanes has been conducted. These automatic control systems were designed to make the simulated airplane easy to fly for a beginning or infrequent pilot. Different control systems are presented and their characteristics are documented. In a conventional airplane control system each cockpit controller commands combinations of both the airspeed and the vertical speed. The best system in the present study decoupled the airspeed and vertical speed responses to cockpit controller inputs. An important feature of the automatic system was that neither changing flap position nor maneuvering in steeply banked turns affected either the airspeed or the vertical speed. All the pilots who flew the control system simulation were favorably impressed with the very low workload and the excellent handling qualities of the simulated airplane.

  2. Using Simulation Speeds to Differentiate Controller Interface Concepts

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Pope, Alan

    2008-01-01

    This study investigated two concepts: (1) whether speeding a human-in-the-loop simulation (or the subject's "world") scales time stress in such a way as to cause primary task performance to reveal workload differences between experimental conditions and (2) whether using natural hand motions to control the attitude of an aircraft makes controlling the aircraft easier and more intuitive. This was accomplished by having pilots and non-pilots make altitude and heading changes using three different control inceptors at three simulation speeds. Results indicate that simulation speed does affect workload and controllability. The bank and pitch angle error was affected by simulation speed but not by a simulation speed by controller type interaction; this may have been due to the relatively easy flying task. Results also indicate that pilots could control the bank and pitch angle of an aircraft about equally as well with the glove as with the sidestick. Non-pilots approached the pilots ability to control the bank and pitch angle of an aircraft using the positional glove - where the hand angle is directly proportional to the commanded aircraft angle. Therefore, (1) changing the simulation speed lends itself to objectively indexing a subject s workload and may also aid in differentiating among interface concepts based upon performance if the task being studied is sufficiently challenging and (2) using natural body movements to mimic the movement of an airplane for attitude control is feasible.

  3. A pilot study to evaluate mindfulness as a strategy to improve inpatient nurse and patient experiences.

    PubMed

    Horner, Janice K; Piercy, Brigit S; Eure, Lois; Woodard, Elizabeth K

    2014-08-01

    The purpose of the Mindful Nursing Pilot Study was to explore the impact of mindfulness training for nursing staff on levels of mindfulness, compassion satisfaction, burnout, and stress. In addition, the study attempted to determine the impact on patient satisfaction scores. The pilot was designed as a quasi-experimental research study; staff on one nursing unit participated in the 10-week mindfulness training program while another, similar nursing unit served as the control group. The intervention group showed improvement in levels of mindfulness, burnout, and stress as well as patient satisfaction while the control group remained largely the same. This pilot provides encouraging results that suggest that replication and further study of mindfulness in the workplace would be beneficial. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    PubMed

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  5. An evaluation of automatic control system concepts for general aviation airplanes

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Ragsdale, W. A.; Wunschel, A. J.

    1988-01-01

    A piloted simulation study of automatic longitudinal control systems for general aviation airplanes has been conducted. These automatic control systems were designed to make the simulated airplane easy to fly for a beginning or infrequent pilot. Different control systems are presented and their characteristics are documented. In a conventional airplane control system each cockpit controller commands combinations of both the airspeed and the vertical speed. The best system in the present study decoupled the airspeed and vertical speed responses to cockpit throttle inputs. That is, the cockpit throttle lever commanded only airspeed responses, and the longitudinal wheel position commanded only vertical speed responses. This system significantly reduced the pilot workload throughout an entire mission of the airplane from takeoff to landing. An important feature of the automatic system was that neither changing flap position nor maneuvering in steeply banked turns affected either the airspeed or the vertical speed. All the pilots who flew the control system simulation were favorably impressed with the very low workload and the excellent handling qualities of the simulated airplane.

  6. A queueing model of pilot decision making in a multi-task flight management situation

    NASA Technical Reports Server (NTRS)

    Walden, R. S.; Rouse, W. B.

    1977-01-01

    Allocation of decision making responsibility between pilot and computer is considered and a flight management task, designed for the study of pilot-computer interaction, is discussed. A queueing theory model of pilot decision making in this multi-task, control and monitoring situation is presented. An experimental investigation of pilot decision making and the resulting model parameters are discussed.

  7. Collaboration in Controller-Pilot Communication

    NASA Technical Reports Server (NTRS)

    Morrow, Daniel; Lebacqz, J. Victor (Technical Monitor)

    1994-01-01

    Like other forms of dialogue, air traffic control (ATC) communication is an act of collaboration between two or more people. Collaboration progresses more or less smoothly depending on speaker and listener strategies. For example, we have found that the way controllers organize and deliver messages influences how easily pilots understand these messages, which in turn determines how much time and effort is needed to successfully complete the transaction. In this talk, I will introduce a collaborative framework for investigating controller-pilot communication and then describe a set of studies that investigate ATC communication from two complementary directions. First, we focused on the impact of ATC message factors (e.g., length, speech rate) on the cognitive processes involved in ATC: communication. Second, we examined pilot factors that influence the amount of cognitive resources available for these communication processes. These studies also illustrate how the collaborate framework can help analyze the impact of proposed visual data link systems on ATC communication. Examining the joint effects of communication medium, message factors, and pilot/controller factors on performance should help improve air safety and communication efficiency. Increased efficiency is important for meeting the growing demands on the National Air System.

  8. Applications of pilot scanning behavior to integrated display research

    NASA Technical Reports Server (NTRS)

    Waller, M. C.

    1977-01-01

    The oculometer is an electrooptical device designed to measure pilot scanning behavior during instrument approaches and landing operations. An overview of some results from a simulation study is presented to illustrate how information from the oculometer installed in a visual motion simulator, combined with measures of performance and control input data, can provide insight into the behavior and tactics of individual pilots during instrument approaches. Differences in measured behavior of the pilot subjects are pointed out; these differences become apparent in the way the pilots distribute their visual attention, in the amount of control activity, and in selected performance measures. Some of these measured differences have diagnostic implications, suggesting the use of the oculometer along with performance measures as a pilot training tool.

  9. Development of ADOCS controllers and control laws. Volume 2: Literature review and preliminary analysis

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  10. Piloted simulation of a ground-based time-control concept for air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1989-01-01

    A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement.

  11. Early Maladaptive Schemas in a Sample of Airline Pilots seeking Residential Substance Use Treatment: An Initial Investigation

    PubMed Central

    Shorey, Ryan C.; Brasfield, Hope; Anderson, Scott; Stuart, Gregory L.

    2014-01-01

    Background Recent research has begun to examine the early maladaptive schemas of substance abusers, as it is believed that targeting these core beliefs in treatment may result in improved substance use outcomes. One special population that has received scant attention in the research literature, despite high levels of substance use, is airline pilots. Aims The current study examined the early maladaptive schemas of a sample of airline pilots (n = 64) who were seeking residential treatment for alcohol dependence and whether they differed in early maladaptive schemas from non-pilot substance abusers who were also seeking residential treatment for alcohol dependence (n = 45). Method Pre-existing medical records from patients of a residential substance abuse treatment facility were reviewed for the current study. Results Of the 18 early maladaptive schemas, results demonstrated that pilots scored higher than non-pilots on the early maladaptive schema of unrelenting standards (high internalized standards of behavior), whereas non-pilots scored higher on insufficient self-control (low frustration tolerance and self-control). Conclusions Early maladaptive schemas may be a relevant treatment target for substance abuse treatment seeking pilots and non-pilots. PMID:24701252

  12. Effects of a Velocity-Vector Based Command Augmentation System and Synthetic Vision System Terrain Portrayal and Guidance Symbology Concepts on Single-Pilot Performance

    NASA Technical Reports Server (NTRS)

    Liu, Dahai; Goodrich, Kenneth H.; Peak, Bob

    2010-01-01

    This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on the performance of pilots flying a light, single-engine general aviation airplane. We evaluated the effects and interactions of two levels of terrain portrayal, guidance symbology, and flight control response type on pilot performance during the conduct of a relatively complex instrument approach procedure. The terrain and guidance presentations were evaluated as elements of an integrated primary flight display system. The approach procedure used in the study included a steeply descending, curved segment as might be encountered in emerging, required navigation performance (RNP) based procedures. Pilot performance measures consisted of flight technical performance, perceived workload, perceived situational awareness and subjective preference. The results revealed that an elevation based generic terrain portrayal significantly improved perceived situation awareness without adversely affecting flight technical performance or workload. Other factors (pilot instrument rating, control response type, and guidance symbology) were not found to significantly affect the performance measures.

  13. Computer simulation of a pilot in V/STOL aircraft control loops

    NASA Technical Reports Server (NTRS)

    Vogt, William G.; Mickle, Marlin H.; Zipf, Mark E.; Kucuk, Senol

    1989-01-01

    The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable.

  14. Manual flying of curved precision approaches to landing with electromechanical instrumentation. A piloted simulation study

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1993-01-01

    A piloted simulation study was conducted to examine the requirements for using electromechanical flight instrumentation to provide situation information and flight guidance for manually controlled flight along curved precision approach paths to a landing. Six pilots were used as test subjects. The data from these tests indicated that flight director guidance is required for the manually controlled flight of a jet transport airplane on curved approach paths. Acceptable path tracking performance was attained with each of the three situation information algorithms tested. Approach paths with both multiple sequential turns and short final path segments were evaluated. Pilot comments indicated that all the approach paths tested could be used in normal airline operations.

  15. A study of ASRS reports involving general aviation and weather encounters

    NASA Technical Reports Server (NTRS)

    Rockwell, T. H.; Roach, D. E.; Griffin, W. C.

    1981-01-01

    Consideration is given to the nature and characteristics of problems involving dissemination of weather information, use of this information by pilots, its adequacy for the purpose intended, the ability of the air traffic control system to cope with weather related incidents, and the various aspects of pilot behavior, aircraft equipment, and NAVAIDS affecting flights in which weather figures. It is concluded from the study that skill and training deficiencies of general aviation pilots are not major factors in weather related occurrences, nor is lack of aircraft equipment. Major problem causes are identified with timely and easily interpreted weather information, judgement and attitude factors of pilots, and the functioning of the air traffic control system.

  16. ATC/pilot voice communications: A survey of the literature

    NASA Astrophysics Data System (ADS)

    Prinzo, O. Veronika; Britton, Thomas W.

    1993-11-01

    The first radio-equipped control tower in the United States opened at the Cleveland Municipal Airport in 1930. From that time to the present, voice radio communications have played a primary role in air safety. Verbal communications in air traffic control (ATC) operations have been frequently cited as causal factors in operational errors and pilot deviations in the FAA Operational Error and Deviation System, the NASA Aviation Safety Reporting System (ASRS), and reports derived from government sponsored research projects. Collectively, the data provided by these programs indicate that communications constitute a significant problem for pilots and controllers. Although the communications problem was well known the research literature was fragmented, making it difficult to appreciate the various types of verbal communications problems that existed and their unique influence on the quality of ATC/pilot communications. This is a survey of the voice radio communications literature. The 43 reports in the review represent survey data, field studies, laboratory studies, narrative reports, and reviews. The survey topics pertain to communications taxonomies, acoustical correlates and cognitive/psycholinguistic perspectives. Communications taxonomies were used to identify the frequency and types of information that constitute routine communications, as well as those communications involved in operational errors, pilot deviations, and other safety-related events. Acoustical correlate methodologies identified some qualities of a speaker's voice, such as loudness, pitch, and speech rate, which might be used potentially to monitor stress, mental workload, and other forms of psychological or physiological factors that affect performance. Cognitive/psycho-linguistic research offered an information processing perspective for understanding how pilots' and controllers' memory and language comprehension processes affect their ability to communicate effectively with one another. This analysis of the ATC/pilot voice radio communications literature was performed to provide an organized summary for the systematic study of interactive communications between controllers and pilots. Recommendations are given for new research initiatives, communications-based instructional materials, and human factors applications for new communications systems.

  17. Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Simmons, James L.

    Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…

  18. A simulator investigation of the use of digital data link for pilot/ATC communications in a single pilot operation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Lohr, Gary W.

    1988-01-01

    Studies have shown that radio communications between pilots and air traffic control contribute to high pilot workload and are subject to various errors. These errors result from congestion on the voice radio channel, and missed and misunderstood messages. The use of digital data link has been proposed as a means of reducing this workload and error rate. A critical factor, however, in determining the potential benefit of data link will be the interface between future data link systems and the operator of those systems, both in the air and on the ground. The purpose of this effort was to evaluate the pilot interface with various levels of data link capability, in simulated general aviation, single-pilot instrument flight rule operations. Results show that the data link reduced demands on pilots' short-term memory, reduced the number of communication transmissions, and permitted the pilots to more easily allocate time to critical cockpit tasks while receiving air traffic control messages. The pilots who participated unanimously indicated a preference for data link communications over voice-only communications. There were, however, situations in which the pilot preferred the use of voice communications, and the ability for pilots to delay processing the data link messages, during high workload events, caused delays in the acknowledgement of messages to air traffic control.

  19. Studies of Pilot Control During Launching and Reentry of Space Vehicles, Utilizing the Human Centrifuge

    NASA Technical Reports Server (NTRS)

    Clark, Carl C.; Woodling, C. H.

    1959-01-01

    With the ever increasing complexity of airplanes and the nearness to reality of manned space vehicles the use of pilot-controlled flight simulators has become imperative. The state of the art in flight simulation has progressed well with the demand. Pilot-controlled flight simulators are finding increasing uses in aeromedical research, airplane and airplane systems design, and preflight training. At the present many flight simulators are in existence with various degrees of sophistication and sundry purposes. These vary from fixed base simulators where the pilot applies control inputs according to visual cues presented to him on an instrument display to moving base simulators where various combinations of angular and linear motions are added in an attempt to improve the flight simulation.

  20. Mindfulness meditation in older adults with postherpetic neuralgia: a randomized controlled pilot study.

    PubMed

    Meize-Grochowski, Robin; Shuster, George; Boursaw, Blake; DuVal, Michelle; Murray-Krezan, Cristina; Schrader, Ron; Smith, Bruce W; Herman, Carla J; Prasad, Arti

    2015-01-01

    This parallel-group, randomized controlled pilot study examined daily meditation in a diverse sample of older adults with postherpetic neuralgia. Block randomization was used to allocate participants to a treatment group (n = 13) or control group (n = 14). In addition to usual care, the treatment group practiced daily meditation for six weeks. All participants completed questionnaires at enrollment in the study, two weeks later, and six weeks after that, at the study's end. Participants recorded daily pain and fatigue levels in a diary, and treatment participants also noted meditation practice. Results at the 0.10 level indicated improvement in neuropathic, affective, and total pain scores for the treatment group, whereas affective pain worsened for the control group. Participants were able to adhere to the daily diary and meditation requirements in this feasibility pilot study. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Real-Time Monitoring and Prediction of the Pilot Vehicle System (PVS) Closed-Loop Stability

    NASA Astrophysics Data System (ADS)

    Mandal, Tanmay Kumar

    Understanding human control behavior is an important step for improving the safety of future aircraft. Considerable resources are invested during the design phase of an aircraft to ensure that the aircraft has desirable handling qualities. However, human pilots exhibit a wide range of control behaviors that are a function of external stimulus, aircraft dynamics, and human psychological properties (such as workload, stress factor, confidence, and sense of urgency factor). This variability is difficult to address comprehensively during the design phase and may lead to undesirable pilot-aircraft interaction, such as pilot-induced oscillations (PIO). This creates the need to keep track of human pilot performance in real-time to monitor the pilot vehicle system (PVS) stability. This work focused on studying human pilot behavior for the longitudinal axis of a remotely controlled research aircraft and using human-in-the-loop (HuIL) simulations to obtain information about the human controlled system (HCS) stability. The work in this dissertation is divided into two main parts: PIO analysis and human control model parameters estimation. To replicate different flight conditions, this study included time delay and elevator rate limiting phenomena, typical of actuator dynamics during the experiments. To study human control behavior, this study employed the McRuer model for single-input single-output manual compensatory tasks. McRuer model is a lead-lag controller with time delay which has been shown to adequately model manual compensatory tasks. This dissertation presents a novel technique to estimate McRuer model parameters in real-time and associated validation using HuIL simulations to correctly predict HCS stability. The McRuer model parameters were estimated in real-time using a Kalman filter approach. The estimated parameters were then used to analyze the stability of the closed-loop HCS and verify them against the experimental data. Therefore, the main contribution of this dissertation is the design of an unscented Kalman filter-based algorithm to estimate McRuer model parameters in real time, and a framework to validate this algorithm for single-input single-output manual compensatory tasks to predict instabilities.

  2. A preliminary investigation of the use of throttles for emergency flight control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.

    1991-01-01

    A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.

  3. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A decline in reports concerning small aircraft was noted; more reports involved transport aircraft, professional pilots, instrument meteorological conditions, and weather problems. A study of 136 reports of operational problems in terminal radar service areas was made. Pilot, controller, and system factors were found to be associated with these occurrences. Information transfer difficulties were prominent. Misunderstandings by pilots, and in some cases by controllers, of the policies and limitations of terminal radar programs were observed.

  4. Single pilot scanning behavior in simulated instrument flight

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.

    1979-01-01

    A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.

  5. Operator selection for unmanned aerial systems: comparing video game players and pilots.

    PubMed

    McKinley, R Andy; McIntire, Lindsey K; Funke, Margaret A

    2011-06-01

    Popular unmanned aerial system (UAS) platforms such as the MQ-1 Predator and MQ-9 Reaper have experienced accelerated operations tempos that have outpaced current operator training regimens, leading to a shortage of qualified UAS operators. To find a surrogate to replace pilots of manned aircraft as UAS operators, this study evaluated video game players (VGPs), pilots, and a control group on a set of UAS operation relevant cognitive tasks. There were 30 participants who volunteered for this study and were divided into 3 groups: experienced pilots (P), experienced VGPs, and a control group (C). Each was trained on eight cognitive performance tasks relevant to unmanned flight tasks. The results indicated that pilots significantly outperform the VGP and control groups on multi-attribute cognitive tasks (Tank mean: VGP = 465 +/- 1.046 vs. P = 203 +/- 0.237 vs. C = 351 +/- 0.601). However, the VGPs outperformed pilots on cognitive tests related to visually acquiring, identifying, and tracking targets (final score: VGP = 594.28 +/- 8.708 vs. P = 563.33 +/- 8.787 vs. C = 568.21 +/- 8.224). Likewise, both VGPs and pilots performed similarly on the UAS landing task, but outperformed the control group (glide slope: VGP = 40.982 +/- 3.244 vs. P = 30.461 +/- 2.251 vs. C = 57.060 +/- 4.407). Cognitive skills learned in video game play may transfer to novel environments and improve performance in UAS tasks over individuals with no video game experience.

  6. Laparoscopic Surgical Treatment of Severe Obesity Combined with Gastroesophageal Reflux Disease: A Pilot Randomized Two-Arm Controlled Clinical Study

    ERIC Educational Resources Information Center

    Ospanov, Oral B.; Orekeshova, Akzhunis M.; Fursov, Roman A.; Yelemesov, Aset A.

    2016-01-01

    Obesity and gastroesophageal reflux disease (GERD) are serious medical, social, and economic problems of modern society. A pilot randomized two-arm controlled clinical study was conducted to compare laparoscopic plication of the greater gastric curvature combined with Nissen fundoplication (LFN+LGP) versus only Nissen fundoplication (LFN). The…

  7. Results of the "In Control: No Alcohol!" Pilot Study

    ERIC Educational Resources Information Center

    Mares, Suzanne H. W.; van der Vorst, Haske; Vermeulen-Smit, Evelien; Lichtwarck-Aschoff, Anna; Verdurmen, Jacqueline E. E.; Engels, Rutger C. M. E.

    2012-01-01

    More than 50% of Dutch 12-year olds already started drinking. Since it is known that delaying the onset of alcohol use results in a lower risk of alcohol-related problems, the recently developed "In control: No alcohol!" prevention program is targeted at elementary school children and their mothers. In this pilot study, the success of…

  8. The Effect of Lateral-Directional Control Coupling on Pilot Control of an Airplane as Determined in Flight and in a Fixed-Base Flight Simulator

    NASA Technical Reports Server (NTRS)

    Vomaske, Richard F.; Sadoff, Melvin; Drinkwater, Fred J., III

    1961-01-01

    A flight and fixed-base simulator study was made of the effects of aileron-induced yaw on pilot opinion of aircraft lateral-directional controllability characteristics. A wide range of adverse and favorable aileron-induced yaw was investigated in flight at several levels of Dutch-roll damping. The flight results indicated that the optimum values of aileron- induced yaw differed only slightly from zero for Dutch-roll damping from satisfactory to marginally controllable levels. It was also shown that each range of values of aileron-induced yawing moment considered satisfactory, acceptable, or controllable increased with an increase in the Dutch- roll damping. The increase was most marked for marginally controllable configurations exhibiting favorable aileron-induced yaw. Comparison of fixed-base flight simulator results with flight results showed agreement, indicating that absence of kinesthetic motion cues did not markedly affect the pilots' evaluation of the type of control problem considered in this study. The results of the flight study were recast in terms of several parameters which were considered to have an important effect on pilot opinion of lateral-directional handling qualities, including the effects of control coupling. Results of brief tests with a three-axis side-arm controller indicated that for control coupling problems associated with highly favorable yaw and cross-control techniques, use of the three-axis controller resulted in a deterioration of control relative to results obtained with the conventional center stick and rudder pedals.

  9. Are pilot trials useful for predicting randomisation and attrition rates in definitive studies: A review of publicly funded trials.

    PubMed

    Cooper, Cindy L; Whitehead, Amy; Pottrill, Edward; Julious, Steven A; Walters, Stephen J

    2018-04-01

    External pilot trials are recommended for testing the feasibility of main or confirmatory trials. However, there is little evidence that progress in external pilot trials actually predicts randomisation and attrition rates in the main trial. To assess the use of external pilot trials in trial design, we compared randomisation and attrition rates in publicly funded randomised controlled trials with rates in their pilots. Randomised controlled trials for which there was an external pilot trial were identified from reports published between 2004 and 2013 in the Health Technology Assessment Journal. Data were extracted from published papers, protocols and reports. Bland-Altman plots and descriptive statistics were used to investigate the agreement of randomisation and attrition rates between the full and external pilot trials. Of 561 reports, 41 were randomised controlled trials with pilot trials and 16 met criteria for a pilot trial with sufficient data. Mean attrition and randomisation rates were 21.1% and 50.4%, respectively, in the pilot trials and 16.8% and 65.2% in the main. There was minimal bias in the pilot trial when predicting the main trial attrition and randomisation rate. However, the variation was large: the mean difference in the attrition rate between the pilot and main trial was -4.4% with limits of agreement of -37.1% to 28.2%. Limits of agreement for randomisation rates were -47.8% to 77.5%. Results from external pilot trials to estimate randomisation and attrition rates should be used with caution as comparison of the difference in the rates between pilots and their associated full trial demonstrates high variability. We suggest using internal pilot trials wherever appropriate.

  10. Are pilot trials useful for predicting randomisation and attrition rates in definitive studies: A review of publicly funded trials

    PubMed Central

    Whitehead, Amy; Pottrill, Edward; Julious, Steven A; Walters, Stephen J

    2018-01-01

    Background/aims: External pilot trials are recommended for testing the feasibility of main or confirmatory trials. However, there is little evidence that progress in external pilot trials actually predicts randomisation and attrition rates in the main trial. To assess the use of external pilot trials in trial design, we compared randomisation and attrition rates in publicly funded randomised controlled trials with rates in their pilots. Methods: Randomised controlled trials for which there was an external pilot trial were identified from reports published between 2004 and 2013 in the Health Technology Assessment Journal. Data were extracted from published papers, protocols and reports. Bland–Altman plots and descriptive statistics were used to investigate the agreement of randomisation and attrition rates between the full and external pilot trials. Results: Of 561 reports, 41 were randomised controlled trials with pilot trials and 16 met criteria for a pilot trial with sufficient data. Mean attrition and randomisation rates were 21.1% and 50.4%, respectively, in the pilot trials and 16.8% and 65.2% in the main. There was minimal bias in the pilot trial when predicting the main trial attrition and randomisation rate. However, the variation was large: the mean difference in the attrition rate between the pilot and main trial was −4.4% with limits of agreement of −37.1% to 28.2%. Limits of agreement for randomisation rates were −47.8% to 77.5%. Conclusion: Results from external pilot trials to estimate randomisation and attrition rates should be used with caution as comparison of the difference in the rates between pilots and their associated full trial demonstrates high variability. We suggest using internal pilot trials wherever appropriate. PMID:29361833

  11. Multiple curved descending approaches and the air traffic control problem

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Mcpherson, D.; Kreifeldt, J.; Wemple, T. E.

    1977-01-01

    A terminal area air traffic control simulation was designed to study ways of accommodating increased air traffic density. The concepts that were investigated assumed the availability of the microwave landing system and data link and included: (1) multiple curved descending final approaches; (2) parallel runways certified for independent and simultaneous operation under IFR conditions; (3) closer spacing between successive aircraft; and (4) a distributed management system between the air and ground. Three groups each consisting of three pilots and two air traffic controllers flew a combined total of 350 approaches. Piloted simulators were supplied with computer generated traffic situation displays and flight instruments. The controllers were supplied with a terminal area map and digital status information. Pilots and controllers also reported that the distributed management procedure was somewhat more safe and orderly than the centralized management procedure. Flying precision increased as the amount of turn required to intersect the outer mark decreased. Pilots reported that they preferred the alternative of multiple curved descending approaches with wider spacing between aircraft to closer spacing on single, straight in finals while controllers preferred the latter option. Both pilots and controllers felt that parallel runways are an acceptable way to accommodate increased traffic density safely and expeditiously.

  12. Pilot-controller communication errors : an analysis of Aviation Safety Reporting System (ASRS) reports

    DOT National Transportation Integrated Search

    1998-08-01

    The purpose of this study was to identify the factors that contribute to pilot-controller communication errors. Resports submitted to the Aviation Safety Reporting System (ASRS) offer detailed accounts of specific types of errors and a great deal of ...

  13. Mapping automotive like controls to a general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  14. Simulation Study of Impact of Aeroelastic Characteristics on Flying Qualities of a High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Jackson, E. Bruce; Buttrill, Carey S.

    2002-01-01

    A piloted simulation study conducted in NASA Langley Visual Motion Simulator addressed the impact of dynamic aero- servoelastic effects on flying qualities of a High Speed Civil Transport. The intent was to determine effectiveness of measures to reduce the impact of aircraft flexibility on piloting tasks. Potential solutions examined were increasing frequency of elastic modes through structural stiffening, increasing damping of elastic modes through active control, elimination of control effector excitation of the lowest frequency elastic modes, and elimination of visual cues associated with elastic modes. Six test pilots evaluated and performed simulated maneuver tasks, encountering incidents wherein cockpit vibrations due to elastic modes fed back into the control stick through involuntary vibrations of the pilots upper body and arm. Structural stiffening and compensation of the visual display were of little benefit in alleviating this impact, while increased damping and elimination of control effector excitation of the elastic modes both offered great improvements when applied in sufficient degree.

  15. The Effect of Shared Information on Pilot/Controller and Controller/Controller Interactions

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Davison, Hayley J.

    2000-01-01

    The increased ability to exchange information between Pilots, Controllers, Dispatchers, and other agents is a key component of advanced Air Traffic Management. The importance of shared information as well as current and evolving practices in information sharing are presented for a variety of interactions including: Controller/Pilot interactions, Pilot/Airline interactions, Controller/Controller interactions, and Airline/ATM interactions.

  16. An Experimental Study of the Effect of Shared Information on Pilot/Controller Re-Route Negotiation

    NASA Technical Reports Server (NTRS)

    Farley, Todd C.; Hansman, R. John

    1999-01-01

    Air-ground data link systems are being developed to enable pilots and air traffic controllers to share information more fully. The sharing of information is generally expected to enhance their shared situation awareness and foster more collaborative decision making. An exploratory, part-task simulator experiment is described which evaluates the extent to which shared information may lead pilots and controllers to cooperate or compete when negotiating route amendments. The results indicate an improvement in situation awareness for pilots and controllers and a willingness to work cooperatively. Independent of data link considerations, the experiment also demonstrates the value of providing controllers with a good-quality weather representation on their plan view displays. Observed improvements in situation awareness and separation assurance are discussed. It is argued that deployment of this relatively simple, low-risk addition to the plan view displays be accelerated.

  17. Hypoxia and flight performance of military instructor pilots in a flight simulator.

    PubMed

    Temme, Leonard A; Still, David L; Acromite, Michael T

    2010-07-01

    Military aircrew and other operational personnel frequently perform their duties at altitudes posing a significant hypoxia risk, often with limited access to supplemental oxygen. Despite the significant risk hypoxia poses, there are few studies relating it to primary flight performance, which is the purpose of the present study. Objective, quantitative measures of aircraft control were collected from 14 experienced, active duty instructor pilot volunteers as they breathed an air/nitrogen mix that provided an oxygen partial pressure equivalent to the atmosphere at 18,000 ft (5486.4 m) above mean sea level. The flight task required holding a constant airspeed, altitude, and heading at an airspeed significantly slower than the aircraft's minimum drag speed. The simulated aircraft's inherent instability at the target speed challenged the pilot to maintain constant control of the aircraft in order to minimize deviations from the assigned flight parameters. Each pilot's flight performance was evaluated by measuring all deviations from assigned target values. Hypoxia degraded the pilot's precision of altitude and airspeed control by 53%, a statistically significant decrease in flight performance. The effect on heading control effects was not statistically significant. There was no evidence of performance differences when breathing room air pre- and post-hypoxia. Moderate levels of hypoxia degraded the ability of military instructor pilots to perform a precision slow flight task. This is one of a small number of studies to quantify an effect of hypoxia on primary flight performance.

  18. 78 FR 76736 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes; Side...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... operating conditions and configurations, whether normal or non-normal. 2. Pilot control authority: The... Series Airplanes; Side Stick Controllers: Pilot Strength, Pilot Control Authority, and Pilot Control... side stick controllers for pitch and roll control instead of conventional wheels and columns. The...

  19. Synthetic Vision Systems in GA Cockpit-Evaluation of Basic Maneuvers Performed by Low Time GA Pilots During Transition from VMC to IMC

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Wong, D. T.; Uenking, M. D.

    2002-01-01

    An experimental investigation was conducted to study the effectiveness of modern flight displays in general aviation cockpits for mitigating Low Visibility Loss of Control and the Controlled Flight Into Terrain accidents. A total of 18 General Aviation (GA) pilots with private pilot, single engine land rating, with no additional instrument training beyond private pilot license requirements, were recruited to evaluate three different display concepts in a fixed-based flight simulator at the NASA Langley Research Center's General Aviation Work Station. Evaluation pilots were asked to continue flight from Visual Meteorological Conditions (VMC) into Instrument Meteorological Conditions (IMC) while performing a series of 4 basic precision maneuvers. During the experiment, relevant pilot/vehicle performance variables, pilot control inputs and physiological data were recorded. Human factors questionnaires and interviews were administered after each scenario. Qualitative and quantitative data have been analyzed and the results are presented here. Pilot performance deviations from the established target values (errors) were computed and compared with the FAA Practical Test Standards. Results of the quantitative data indicate that evaluation pilots committed substantially fewer errors when using the Synthetic Vision Systems (SVS) displays than when they were using conventional instruments. Results of the qualitative data indicate that evaluation pilots perceived themselves to have a much higher level of situation awareness while using the SVS display concept.

  20. A Double-Blind, Placebo-Controlled Study of Risperidone for the Treatment of Adolescents and Young Adults with Anorexia Nervosa: A Pilot Study

    ERIC Educational Resources Information Center

    Hagman, Jennifer; Gralla, Jane; Sigel, Eric; Ellert, Swan; Dodge, Mindy; Gardner, Rick; O'Lonergan, Teri; Frank, Guido; Wamboldt, Marianne Z.

    2011-01-01

    Objective: The purpose of this double-blind, placebo-controlled exploratory pilot study was to evaluate the safety and efficacy of risperidone for the treatment of anorexia nervosa. Method: Forty female subjects 12 to 21 years of age (mean, 16 years) with primary anorexia nervosa in an eating disorders program were randomized to receive…

  1. Piloted Simulator Tests of a Guidance System which Can Continously Predict Landing Point of a Low L/D Vehicle During Atmosphere Re-Entry

    NASA Technical Reports Server (NTRS)

    Wingrove, Rodney C.; Coate, Robert E.

    1961-01-01

    The guidance system for maneuvering vehicles within a planetary atmosphere which was studied uses the concept of fast continuous prediction of the maximum maneuver capability from existing conditions rather than a stored-trajectory technique. used, desired touchdown points are compared with the maximum range capability and heating or acceleration limits, so that a proper decision and choice of control inputs can be made by the pilot. In the method of display and control a piloted fixed simulator was used t o demonstrate the feasibility od the concept and to study its application to control of lunar mission reentries and recoveries from aborts.

  2. Advanced helicopter cockpit and control configurations for helicopter combat missions

    NASA Technical Reports Server (NTRS)

    Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel

    1987-01-01

    Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.

  3. Home Cervical Traction to Reduce Neck Pain in Fighter Pilots.

    PubMed

    Chumbley, Eric M; O'Hair, Nicole; Stolfi, Adrienne; Lienesch, Christopher; McEachen, James C; Wright, Bruce A

    2016-12-01

    Most fighter pilots report cervical pain during their careers. Recommendations for remediation lack evidence. We sought to determine whether regular use of a home cervical traction device could decrease reported cervical pain in F-15C pilots. An institutional review board-approved, Health Insurance Portability and Accountability Act-compliant, controlled crossover study was undertaken with 21 male F-15C fighter pilots between February and June 2015. Of the 21 subjects, 12 completed 6 wk each of traction and control, while logging morning, postflying, and post-traction pain. Pain was compared with paired t-tests between the periods, from initial pain scores to postflying, and postflying to post-traction. In the traction phase, initial pain levels increased postflight, from 1.2 (0.7) to 1.6 (1.0) Subsequent post-traction pain levels decreased to 1.3 (0.9), with a corresponding linear decrease in pain relative to pain reported postflight. The difference in pain levels after traction compared to initial levels was not significant, indicating that cervical traction was effective in alleviating flying-related pain. Control pain increased postflight from 1.4 (0.9) to 1.9 (1.3). Daily traction phase pain was lower than the control, but insignificant. To our knowledge, this is the first study of home cervical traction to address fighter pilots' cervical pain. We found a small but meaningful improvement in daily pain rating when using cervical traction after flying. These results help inform countermeasure development for pilots flying high-performance aircraft. Further study should clarify the optimal traction dose and timing in relation to flying.Chumbley EM, O'Hair N, Stolfi A, Lienesch C, McEachen JC, Wright BA. Home cervical traction to reduce neck pain in fighter pilots. Aerosp Med Hum Perform. 2016; 87(12):1010-1015.

  4. A predictive pilot model for STOL aircraft landing

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.; Killingsworth, W. R.

    1974-01-01

    An optimal control approach has been used to model pilot performance during STOL flare and landing. The model is used to predict pilot landing performance for three STOL configurations, each having a different level of automatic control augmentation. Model predictions are compared with flight simulator data. It is concluded that the model can be effective design tool for studying analytically the effects of display modifications, different stability augmentation systems, and proposed changes in the landing area geometry.

  5. Terminal Area Procedures for Paired Runways

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy

    2011-01-01

    Parallel Runway operations have been found to increase capacity within the National Airspace (NAS) however, poor visibility conditions reduce this capacity [1]. Much research has been conducted to examine the concepts and procedures related to parallel runways however, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This study developed and examined the pilot and controller procedures and information requirements for creating aircraft pairs for parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s(+/- 10s error) at a coupling point that is about 12 nmi from the runway threshold. Two variables were explored for the pilot participants: Two levels of flight deck automation (current-day flight deck automation, and a prototype future automation) as well as two flight deck displays that assisted in pilot conformance monitoring. The controllers were also provided with automation to help create and maintain aircraft pairs. Data showed that the operations in this study were found to be acceptable and safe. Workload when using the pairing procedures and tools was generally low for both controllers and pilots, and situation awareness (SA) was typically moderate to high. There were some differences based upon the display and automation conditions for the pilots. Future research should consider the refinement of the concepts and tools for pilot and controller displays and automation for parallel runway concepts.

  6. Helicopter pilots' views of air traffic controller responsibilities: a mismatch.

    PubMed

    Martin, Daniel; Nixon, Jim

    2018-02-21

    Controllers and pilots must work together to ensure safe and efficient helicopter flight within the London control zone. Subjective ratings of pilot perception of controller responsibility for five key flight tasks were obtained from thirty helicopter pilots. Three types of airspace were investigated. Results indicate that there is variation in pilot understanding of controller responsibility compared to the formal regulations that define controller responsibility. Significant differences in the perception of controller responsibility were found for the task of aircraft separation in class D airspace and along helicopter routes. Analysis of the patterns of response suggests that task type rather than the airspace type may be the key factor. Results are framed using the concept of a shared mental model. This research demonstrates that pilots flying in complex London airspace have an expectation of controller responsibility for certain flight tasks, in certain airspace types that is not supported by aviation regulation. Practitioner Summary: The responsibility for tasks during flight varies according to the flight rules used and airspace type. Helicopter pilots may attribute responsibility to controllers for tasks when controllers have no responsibility as defined by regulation. This variation between pilot perceptions of controller responsibility could affect safety within the London control zone.

  7. The effects of bed rest on crew performance during simulated shuttle reentry. Volume 1: Study overview and physiological results

    NASA Technical Reports Server (NTRS)

    Chambers, A.; Vykukal, H. C.

    1974-01-01

    A centrifuge study was carried out to measure physiological stress and control task performance during simulated space shuttle orbiter reentry. Jet pilots were tested with, and without, anti-g-suit protection. The pilots were exposed to simulated space shuttle reentry acceleration profiles before, and after, ten days of complete bed rest, which produced physiological deconditioning similar to that resulting from prolonged exposure to orbital zero g. Pilot performance in selected control tasks was determined during simulated reentry, and before and after each simulation. Physiological stress during reentry was determined by monitoring heart rate, blood pressure, and respiration rate. Study results indicate: (1) heart rate increased during the simulated reentry when no g protection was given, and remained at or below pre-bed rest values when g-suits were used; (2) pilots preferred the use of g-suits to muscular contraction for control of vision tunneling and grayout during reentry; (3) prolonged bed rest did not alter blood pressure or respiration rate during reentry, but the peak reentry acceleration level did; and (4) pilot performance was not affected by prolonged bed rest or simulated reentry.

  8. Safety and Efficacy of Modified Preoperative Lung Nodule Microcoil Localization Without Pleural Marking: A Pilot Study.

    PubMed

    Kha, Lan-Chau T; Hanneman, Kate; Donahoe, Laura; Chung, Taebong; Pierre, Andrew F; Yasufuku, Kazuhiro; Keshavjee, Shafique; Mayo, John R; Paul, Narinder S; Nguyen, Elsie T

    2016-01-01

    The purpose of this pilot study was to evaluate the safety and efficacy of preoperative computed tomography (CT)-guided percutaneous microcoil lung nodule localization without pleural marking compared with the established technique with pleural marking. Sixty-three consecutive patients (66.7% female, mean age 61.6±11.4 y) with 64 lung nodules resected between October 2008 and January 2014 were retrospectively evaluated. Of the nodules, 29.7% (n=19) had microcoil deployment with pleural marking (control group) and 70.3% (n=45) had microcoil deployment without pleural marking (pilot group). Clinical, pathologic, and imaging characteristics, radiation dose, CT procedure and operating room time, and complete resection and complication rates were compared between the pilot and control groups. There was no significant difference in nodule size (P=0.552) or distance from the pleural surface (P=0.222) between the pilot and control groups. However, mean procedure duration (53.6±18.3 vs. 72.8±25.3 min, P=0.001) and total effective radiation dose (5.1±2.6 vs. 7.1±4.9 mSv, P=0.039) were significantly lower in the pilot group compared with the control group. CT procedure-related complications (P=0.483) [including pneumothoraces (P=0.769) and pulmonary hemorrhage (P=1.000)], operating room time (P=0.926), complete resection rates (P=0.520), intraoperative complications (P=0.549), and postoperative complications (P=1.000) were similar between the pilot and control groups. Preoperative CT-guided lung nodule microcoil localization performed without visceral pleural marking appears to decrease the CT procedure time and radiation dose while maintaining equivalent complete resection rates and procedural and surgical complications, when compared with microcoil localization performed with pleural marking.

  9. Flight Simulator Platform Motion and Air Transport Pilot Training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  10. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  11. Investigating the Use of Coherence Analysis on Mandibular Electromyograms to Investigate Neural Control of Early Oromandibular Behaviours: A Pilot Study

    ERIC Educational Resources Information Center

    Steeve, Roger W.; Price, Christiana M.

    2010-01-01

    An empirical method for investigating differences in neural control of jaw movement across oromandibular behaviours is to compute the coherence function for electromyographic signals obtained from mandibular muscle groups. This procedure has been used with adults but not extended to children. This pilot study investigated if coherence analysis…

  12. Simulation Evaluation of Pilot Inputs for Real Time Modeling During Commercial Flight Operations

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Ranaudo, Richard; Oltman, Ryan; Myhre, Nick

    2017-01-01

    Aircraft dynamics characteristics can only be identified from flight data when the aircraft dynamics are excited sufficiently. A preliminary study was conducted into what types and levels of manual piloted control excitation would be required for accurate Real-Time Parameter IDentification (RTPID) results by commercial airline pilots. This includes assessing the practicality for the pilot to provide this excitation when cued, and to further understand if pilot inputs during various phases of flight provide sufficient excitation naturally. An operationally representative task was evaluated by 5 commercial airline pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). Results showed that it is practical to use manual pilot inputs only as a means of achieving good RTPID in all phases of flight and in flight turbulence conditions. All pilots were effective in satisfying excitation requirements when cued. Much of the time, cueing was not even necessary, as just performing the required task provided enough excitation for accurate RTPID estimation. Pilot opinion surveys reported that the additional control inputs required when prompted by the excitation cueing were easy to make, quickly mastered, and required minimal training.

  13. Influence of UAS Pilot Communication and Execution Delay on Controller's Acceptability Ratings of UAS-ATC Interactions

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Morales, Gregory; Chiappe, Dan; Strybel, Thomas Z.; Battiste, Vernol; Shively, Jay; Buker, Timothy J

    2013-01-01

    Successful integration of UAS in the NAS will require that UAS interactions with the air traffic management system be similar to interactions between manned aircraft and air traffic management. For example, UAS response times to air traffic controller (ATCo) clearances should be equivalent to those that are currently found to be acceptable with manned aircraft. Prior studies have examined communication delays with manned aircraft. Unfortunately, there is no analogous body of research for UAS. The goal of the present study was to determine how UAS pilot communication and execution delays affect ATCos' acceptability ratings of UAS pilot responses when the UAS is operating in the NAS. Eight radar-certified controllers managed traffic in a modified ZLA sector with one UAS flying in it. In separate scenarios, the UAS pilot verbal communication and execution delays were either short (1.5 s) or long (5 s) and either constant or variable. The ATCo acceptability of UAS pilot communication and execution delays were measured subjectively via post trial ratings. UAS verbal pilot communication delay, were rated as acceptable 92% of the time when the delay was short. This acceptability level decreased to 64% when the delay was long. UAS pilot execution delay had less of an influence on ATCo acceptability ratings in the present stimulation. Implications of these findings for UAS in the NAS integration are discussed.

  14. Pilot Evaluation of Adaptive Control in Motion-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T.; Campbell, Stefan Forrest

    2009-01-01

    The objective of this work is to assess the strengths, weaknesses, and robustness characteristics of several MRAC (Model-Reference Adaptive Control) based adaptive control technologies garnering interest from the community as a whole. To facilitate this, a control study using piloted and unpiloted simulations to evaluate sensitivities and handling qualities was conducted. The adaptive control technologies under consideration were ALR (Adaptive Loop Recovery), BLS (Bounded Linear Stability), Hybrid Adaptive Control, L1, OCM (Optimal Control Modification), PMRAC (Predictor-based MRAC), and traditional MRAC

  15. Navigation experience and mental representations of the environment: do pilots build better cognitive maps?

    PubMed

    Sutton, Jennifer E; Buset, Melanie; Keller, Mikayla

    2014-01-01

    A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context.

  16. Navigation Experience and Mental Representations of the Environment: Do Pilots Build Better Cognitive Maps?

    PubMed Central

    Sutton, Jennifer E.; Buset, Melanie; Keller, Mikayla

    2014-01-01

    A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context. PMID:24603608

  17. The influence of air traffic control message length and timing on pilot communication

    NASA Technical Reports Server (NTRS)

    Morrow, Daniel; Rodvold, Michelle

    1993-01-01

    The present paper outlines an approach to air traffic control (ATC) communication that is based on theories of dialogue organization and describes several steps or phases in routine controller-pilot communication. The introduction also describes several kinds of communication problems that often disrupt these steps, as well as how these problems may be caused by factors related to ATC messages, the communication medium (radio vs. data link) and task workload. Next, a part-task simulation study is described. This study focused on how problems in radio communication are related to message factors. More specifically, we examined if pilots are more likely to misunderstanding longer ATC messages. A more general goal of the study is to show that communication analysis can help trace where problem occur and why.

  18. Piloted simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Brown, P. W.; Yenni, K. R.

    1986-01-01

    A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.

  19. The selective use of functional optical variables in the control of forward speed

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Awe, Cynthia A.

    1994-01-01

    Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies presented here show that this ability is far greater for pilots than non-pilots, as would be expected since pilots must control vehicular speed over a variety of altitudes where flow rates change independently of forward speed. These studies also show that this ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. Subjective judgment data also indicated that awareness of altitude and ground texture density did not mediate ground speed awareness.

  20. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  1. Management of post traumatic stress disorder after childbirth: a review.

    PubMed

    Lapp, Leann K; Agbokou, Catherine; Peretti, Charles-Siegfried; Ferreri, Florian

    2010-09-01

    Prevalence and risk factors for the development of post traumatic stress disorder (PTSD) after childbirth is well described in the literature. However, its management and treatment has only begun to be investigated. The aim of this article is to describe the studies that examine the effects of interventions on PTSD after childbirth. MedLine, PILOTS, CINAHL and ISI Web of Science databases were systematically searched for randomised controlled trials, pilot studies and case studies using key words related to PTSD, childbirth, treatment and intervention. The reference lists of the retrieved articles were also used to supplement the search. A total of nine studies were retrieved. Seven studies that examined debriefing or counselling were identified; six randomised controlled trials and one pilot study. Also found were one case report describing the effects of cognitive behavioural therapy (CBT) on two women, and one pilot study of eye movement desensitisation and reprocessing (EMDR). Overall, there is limited evidence concerning the management of women with PTSD after childbirth. The results agree with the findings from the non-childbirth related literature: debriefing and counselling are inconclusively effective while CBT and EMDR may improve PTSD status but require investigation in controlled trials before conclusions could be drawn.

  2. Piloted simulator investigation of helicopter control systems effects on handling qualities during instrument flight

    NASA Technical Reports Server (NTRS)

    Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.

    1979-01-01

    An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.

  3. In-flight investigation of the effects of pilot location and control system design on airplane flying qualities for approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.; Chalk, C. R.

    1982-01-01

    The handling qualities of large airplanes in the approach and landing flight phase were studied. The primary variables were relative pilot position with respect to center of rotation, command path time delays and phase shifts, augmentation schemes and levels of augmentation. It is indicated that the approach and landing task with large airplanes is a low bandwidth task. Low equivalent short period frequencies and relatively long time delays are tolerated only when the pilot is located at considerable distance forward of the center of rotation. The control problem experienced by the pilots, when seated behind the center of rotation, tended to occur at low altitude when they were using visual cues of rate of sink and altitude. A direct lift controller improved final flight path control of the shuttle like configurations.

  4. Investigation of piloting aids for manual control of hypersonic maneuvers

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Phillips, Michael R.; Person, Lee H., Jr.

    1995-01-01

    An investigation of piloting aids designed to provide precise maneuver control for an air-breathing hypersonic vehicle is described. Stringent constraints and nonintuitive high-speed flight effects associated with maneuvering in the hypersonic regime raise the question of whether manual control of such a vehicle should even be considered. The objectives of this research were to determine the extent of manual control that is desirable for a vehicle maneuvering in this regime and to identify the form of aids that must be supplied to the pilot to make such control feasible. A piloted real-time motion-based simulation of a hypersonic vehicle concept was used for this study, and the investigation focused on a single representative cruise turn maneuver. Piloting aids, which consisted of an auto throttle, throttle director, autopilot, flight director, and two head-up display configurations, were developed and evaluated. Two longitudinal control response types consisting of a rate-command/attitude-hold system and a load factor-rate/load-factor-hold system were also compared. The complete set of piloting aids, which consisted of the autothrottle, throttle director, and flight director, improved the average Cooper-Harper flying qualities ratings from 8 to 2.6, even though identical inner-loop stability and control augmentation was provided in all cases. The flight director was determined to be the most critical of these aids, and the cruise turn maneuver was unachievable to adequate performance specifications in the absence of this flight director.

  5. Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model

    NASA Astrophysics Data System (ADS)

    Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-01-01

    This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.

  6. Control of odor and VOC emissions at wastewater treatment plants: Boston Harbor case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getter, R.; Breen, C.; Laquidara, M.

    1994-12-31

    Siting of the new wastewater treatment plant (WWTP) for the Massachusetts Water Resources Authority (MWRA) in Boston was based on an assumption of mitigation of total reduced sulfur (TRS) and volatile organic compound (VOC) emissions. Collection and treatment of exhaust streams from potential emission sources was recommended. Best Available Control Technology (BACT) for VOC control was conservatively suggested to consist of wet by carbon adsorption based on initial sampling performed in 1988 during facilities planning, which estimated uncontrolled VOC emissions in excess of 1,000 tons per year. This concept was carried forward to the design phase in 1990, concurrent withmore » an extensive air emissions testing and pilot treatment program at the NMRA`s existing primary treatment plant. Results of the pilot program, however, indicated source VOC concentrations well below what was expected as a result of the initial sampling study. Use of the 1990 pilot data in a top-down BACT analysis led to a recommendation to reconsider VOC control with carbon adsorption on the basis of prohibitive cost. This paper summarizes the background and permitting approach for five new odor control facilities on Deer Island for the Boston Harbor Project, with emphasis on the new primary treatment facilities. The paper also presents results from the 1990 emissions characterization and pilot program, providing generally applicable ideas for solving the difficulties of characterizing and estimating emissions for WWTPS. Results from operation of the pilot facilities illustrate the effectiveness of met scrubbing and carbon adsorption in removing TRS and VOCs from wastewater treatment exhaust air streams. In addition, pilot program results indicate the importance of flexibility in design of odor control systems to accommodate variations in concentrations of TRS and VOCS.« less

  7. Pilot-model measurements of pilot responses in a lateral-directional control task

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1976-01-01

    Pilot response during an aircraft bank-angle compensatory control task was measured by using an adaptive modeling technique. In the main control loop, which is the bank angle to aileron command loop, the pilot response was the same as that measured previously in single-input, single-output systems. The pilot used a rudder to aileron control coordination that canceled up to 80 percent of the vehicle yawing moment due to aileron deflection.

  8. The insertion of human dynamics models in the flight control loops of V/STOL research aircraft. Appendix 2: The optimal control model of a pilot in V/STOL aircraft control loops

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.

    1989-01-01

    An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.

  9. Pilot/vehicle model analysis of visual and motion cue requirements in flight simulation. [helicopter hovering

    NASA Technical Reports Server (NTRS)

    Baron, S.; Lancraft, R.; Zacharias, G.

    1980-01-01

    The optimal control model (OCM) of the human operator is used to predict the effect of simulator characteristics on pilot performance and workload. The piloting task studied is helicopter hover. Among the simulator characteristics considered were (computer generated) visual display resolution, field of view and time delay.

  10. Dietary Effects on Cognition and Pilots' Flight Performance.

    PubMed

    Lindseth, Glenda N; Lindseth, Paul D; Jensen, Warren C; Petros, Thomas V; Helland, Brian D; Fossum, Debra L

    2011-01-01

    The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg's mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer ( p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets.

  11. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  12. Pilot Domain Task Experience in Night Fatal Helicopter Emergency Medical Service Accidents.

    PubMed

    Aherne, Bryan B; Zhang, Chrystal; Newman, David G

    2016-06-01

    In the United States, accident and fatality rates in helicopter emergency medical service (HEMS) operations increase significantly under nighttime environmentally hazardous operational conditions. Other studies have found pilots' total flight hours unrelated to HEMS accident outcomes. Many factors affect pilots' decision making, including their experience. This study seeks to investigate whether pilot domain task experience (DTE) in HEMS plays a role against likelihood of accidents at night when hazardous operational conditions are entered. There were 32 flights with single pilot nighttime fatal HEMS accidents between 1995 and 2013 with findings of controlled flight into terrain (CFIT) and loss of control (LCTRL) due to spatial disorientation (SD) identified. The HEMS DTE of the pilots were compared with industry survey data. Of the pilots, 56% had ≤2 yr of HEMS experience and 9% had >10 yr of HEMS experience. There were 21 (66%) accidents that occurred in non-visual flight rules (VFR) conditions despite all flights being required to be conducted under VFR. There was a statistically significant increase in accident rates in pilots with <2 and <4 yr HEMS DTE and a statistically significant decrease in accident rates in pilots with >10 yr HEMS DTE. HEMS DTE plays a preventive role against the likelihood of a night operational accident. Pilots with limited HEMS DTE are more likely to make a poor assessment of hazardous conditions at night, and this will place HEMS flight crew at high risk in the VFR night domain.

  13. Operational problems experienced by single pilots in instrument meteorological conditions

    NASA Technical Reports Server (NTRS)

    Weislogel, S.

    1981-01-01

    The development and implementation of a search strategy to extract pertinent reports from the Aviation Safety Reporting System-2 (ASRS-2) database are described. For any particular occurence to be pertinent to the study, it must have satisfied the following conditions: the aircraft must be of the type usually flown by a single pilot; operation on an IFR flight plan in instrument meteorological conditions; pilot experienced an operational problem. The occurances consist of reports by the pilot about his own performance, by the pilot about the system performance, or by an air traffic controller about a pilot's performance.

  14. Loss-of-Control-Inhibitor Systems for Aircraft

    NASA Technical Reports Server (NTRS)

    AHarrah, Ralph C.

    2007-01-01

    Systems to provide improved tactile feedback to aircraft pilots are being developed to help the pilots maintain harmony between their control actions and the positions of aircraft control surfaces, thereby helping to prevent loss of control. A system of this type, denoted a loss-of-control-inhibitor system (LOCIS) can be implemented as a relatively simple addition to almost any pre-existing flight-control system. The LOCIS concept offers at least a partial solution to the problem of (1) keeping a pilot aware of the state of the control system and the aircraft and (2) maintaining sufficient control under conditions that, as described below, have been known to lead to loss of control. Current commercial aircraft exhibit uneven responses of primary flight-control surfaces to aggressive pilot control commands, leading to deterioration of pilots ability to control their aircraft. In severe cases, this phenomenon can result in loss of control and consequent loss of aircraft. For an older aircraft equipped with a purely mechanical control system, the loss of harmony between a pilot s command action and the control- surface response can be attributed to compliance in the control system (caused, for example, by stretching of control cables, flexing of push rods, or servo-valve distortion). In a newer aircraft equipped with a fly-by-wire control system, the major contributions to loss of harmony between the pilot and the control surfaces are delays attributable to computer cycle time, control shaping, filtering, aliasing, servo-valve distortion, and actuator rate limiting. In addition, a fly-by-wire control system provides no tactile feedback that would enable the pilot to sense such features of the control state as surface flutter, surface jam, position limiting, actuator rate limiting, and control limiting imposed by the aircraft operational envelope. Hence, for example, when a pilot is involved in aggressive closed-loop maneuvering, as when encountering a wake-vortex upset on final landing approach, the control-surface delay can lead to loss of control. Aggressive piloting can be triggered and exacerbated by control-system anomalies, which the pilot cannot diagnose because of the lack of symptoms caused by the absence of feedback through the controls. The purpose served by a LOCIS is to counteract these adverse effects by providing real-time feedback that notifies the pilot that the aircraft is tending to lag the pilot s commands. A LOCIS (see figure) includes cockpit control input-position sensors, control-surface output-position sensors, variable dampers (for example, shock absorbers containing magneto-rheological fluids such that the damping forces can be varied within times of the order of milliseconds by varying applied magnetic fields) attached to the cockpit control levers, electromagnet coils to apply the magnetic fields, and feedback control circuits to drive the electromagnet coils. The feedback control gains are chosen so that the current applied to each electromagnet coil results in a damping force that increases in a suitable nonlinear manner (e.g., exponentially) with the difference between the actual and commanded positions of the affected control surface. The increasing damping force both alerts the pilot to the onset of a potentially dangerous situation and resists the pilot s effort to command a control surface to change position at an excessive rate

  15. Generic Airplane Model Concept and Four Specific Models Developed for Use in Piloted Simulation Studies

    NASA Technical Reports Server (NTRS)

    Hoffler, Keith D.; Fears, Scott P.; Carzoo, Susan W.

    1997-01-01

    A generic airplane model concept was developed to allow configurations with various agility, performance, handling qualities, and pilot vehicle interface to be generated rapidly for piloted simulation studies. The simple concept allows stick shaping and various stick command types or modes to drive an airplane with both linear and nonlinear components. Output from the stick shaping goes to linear models or a series of linear models that can represent an entire flight envelope. The generic model also has provisions for control power limitations, a nonlinear feature. Therefore, departures from controlled flight are possible. Note that only loss of control is modeled, the generic airplane does not accurately model post departure phenomenon. The model concept is presented herein, along with four example airplanes. Agility was varied across the four example airplanes without altering specific excess energy or significantly altering handling qualities. A new feedback scheme to provide angle-of-attack cueing to the pilot, while using a pitch rate command system, was implemented and tested.

  16. Survey of piloting factors in V/STOL aircraft with implications for flight control system design

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Craig, S. J.

    1977-01-01

    Flight control system design factors involved for pilot workload relief are identified. Major contributors to pilot workload include configuration management and control and aircraft stability and response qualities. A digital fly by wire stability augmentation, configuration management, and configuration control system is suggested for reduction of pilot workload during takeoff, hovering, and approach.

  17. Handling Qualities Evaluation of Pilot Tools for Spacecraft Docking in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Mueller, Eric; Frost, Chad

    2009-01-01

    A new generation of spacecraft is now under development by NASA to replace the Space Shuttle and return astronauts to the Moon. These spacecraft will have a manual control capability for several mission tasks, and the ease and precision with which pilots can execute these tasks will have an important effect on mission risk and training costs. This paper focuses on the handling qualities of a spacecraft based on dynamics similar to that of the Crew Exploration Vehicle, during the last segment of the docking task with a space station in low Earth orbit. A previous study established that handling qualities for this task degrade significantly as the level of translation-into-rotation coupling increases. The goal of this study is to evaluate the efficacy of various pilot aids designed to mitigate the handling qualities degradation caused by this coupling. Four pilot tools were ev adluaetead:d-band box/indicator, flight-path marker, translation guidance cues, and feed-forward control. Each of these pilot tools improved handling qualities, generally with greater improvements resulting from using these tools in combination. A key result of this study is that feedforward control effectively counteracts coupling effects, providing solid Level 1 handling qualities for the spacecraft configuration evaluated.

  18. Positive Exchange of Flight Controls Program

    DOT National Transportation Integrated Search

    1995-03-10

    This advisory circular provides guidance for all pilots, especially student pilots, flight instructors, and pilot examiners, on the recommended procedure to use for the positive exchange of flight controls between pilots when operating an aircraft.

  19. Vigilance impossible: Diligence, distraction, and daydreaming all lead to failures in a practical monitoring task.

    PubMed

    Casner, Stephen M; Schooler, Jonathan W

    2015-09-01

    In laboratory studies of vigilance, participants watch for unusual events in a "sit and stare" fashion as their performance typically declines over time. But watch keepers in practical settings seldom approach monitoring in such simplistic ways and controlled environments. We observed airline pilots performing routine monitoring duties in the cockpit. Unlike laboratory studies, pilots' monitoring did not deteriorate amidst prolonged vigils. Monitoring was frequently interrupted by other pop-up tasks and misses followed. However, when free from these distractions, pilots reported copious mind wandering. Pilots often confined their mind wandering to times in which their monitoring performance would not conspicuously suffer. But when no convenient times were available, pilots mind wandered anyway and misses ensued. Real-world monitors may be caught between a continuous vigilance approach that is doomed to fail, a dynamic environment that cannot be fully controlled, and what may be an irresistible urge to let one's thoughts drift. Published by Elsevier Inc.

  20. Geographic Region, Weather, Pilot Age and Air Carrier Crashes: a Case-Control Study

    PubMed Central

    Li, Guohua; Pressley, Joyce C.; Qiang, Yandong; Grabowski, Jurek G.; Baker, Susan P.; Rebok, George W.

    2009-01-01

    Background Information about risk factors of aviation crashes is crucial for developing effective intervention programs. Previous studies assessing factors associated with crash risk were conducted primarily in general aviation, air taxis and commuter air carriers. Methods A matched case-control design was used to examine the associations of geographic region, basic weather condition, and pilot age with the risk of air carrier (14 CFR Part 121) crash involvement. Cases (n=373) were air carrier crashes involving aircraft made by Boeing, McDonnell Douglas, and Airbus, recorded in the National Transportation Safety Board’s aviation crash database during 1983 through 2002, and controls (n=746) were air carrier incidents involving aircraft of the same three makes selected at random from the Federal Aviation Administration’s aviation incident database. Each case was matched with two controls on the calendar year when the index crash occurred. Conditional logistic regression was used for statistical analysis. Results With adjustment for basic weather condition, pilot age, and total flight time, the risk of air carrier crashes in Alaska was more than three times the risk for other regions [adjusted odds ratio (OR) 3.18, 95% confidence interval (CI) 1.35 – 7.49]. Instrument meteorological conditions were associated with an increased risk for air carrier crashes involving pilot error (adjusted OR 2.26, 95% CI 1.15 – 4.44) and a decreased risk for air carrier crashes without pilot error (adjusted OR 0.57, 95% CI 0.40 – 0.87). Neither pilot age nor total flight time was significantly associated with the risk of air carrier crashes. Conclusions The excess risk of air carrier crashes in Alaska and the effect of adverse weather on pilot-error crashes underscore the importance of environmental hazards in flight safety. PMID:19378910

  1. Geographic region, weather, pilot age, and air carrier crashes: a case-control study.

    PubMed

    Li, Guohua; Pressley, Joyce C; Qiang, Yandong; Grabowski, Jurek G; Baker, Susan P; Rebok, George W

    2009-04-01

    Information about risk factors of aviation crashes is crucial for developing effective intervention programs. Previous studies assessing factors associated with crash risk were conducted primarily in general aviation, air taxis, and commuter air carriers. A matched case-control design was used to examine the associations of geographic region, basic weather condition, and pilot age with the risk of air carrier (14 CFR Part 121) crash involvement. Cases (N = 373) were air carrier crashes involving aircraft made by Boeing, McDonnell Douglas, and Airbus recorded in the National Transportation Safety Board's aviation crash database during 1983 through 2002, and controls (N = 746) were air carrier incidents involving aircraft of the same three makes selected at random from the Federal Aviation Administration's aviation incident database. Each case was matched with two controls on the calendar year when the index crash occurred. Conditional logistic regression was used for statistical analysis. With adjustment for basic weather condition, pilot age, and total flight time, the risk of air carrier crashes in Alaska was more than three times the risk for other regions ladjusted odds ratio (OR) 3.18, 95% confidence interval (CI) 1.35-7.49]. Instrument meteorological conditions were associated with an increased risk for air carrier crashes involving pilot error (adjusted OR 2.26, 95% CI 1.15-4.44) and a decreased risk for air carrier crashes without pilot error (adjusted OR 0.60, 95% CI 0.37-0.96). Neither pilot age nor total flight time were significantly associated with the risk of air carrier crashes. The excess risk of air carrier crashes in Alaska and the effect of adverse weather on pilot-error crashes underscore the importance of environmental hazards in flight safety.

  2. An Evaluation of Detect and Avoid (DAA) Displays for Unmanned Aircraft Systems: The Effect of Information Level and Display Location on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Fern, Lisa; Rorie, R. Conrad; Pack, Jessica S.; Shively, R. Jay; Draper, Mark H.

    2015-01-01

    A consortium of government, industry and academia is currently working to establish minimum operational performance standards for Detect and Avoid (DAA) and Control and Communications (C2) systems in order to enable broader integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). One subset of these performance standards will need to address the DAA display requirements that support an acceptable level of pilot performance. From a pilot's perspective, the DAA task is the maintenance of self separation and collision avoidance from other aircraft, utilizing the available information and controls within the Ground Control Station (GCS), including the DAA display. The pilot-in-the-loop DAA task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots' ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The authors propose an eight-stage pilot-DAA interaction timeline from which several pilot response time metrics can be extracted. These metrics were compared across the four display conditions. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays. Implications of the findings on understanding pilot performance on the DAA task, the development of DAA display performance standards, as well as the need for future research are discussed.

  3. [Hemodynamics variation in hypertensive pilots of polar transport aviation on different flight phases].

    PubMed

    Solov'eva, K B; Dolbin, I V; Koroleva, E B

    2013-01-01

    The purpose was to study in-flight blood pressure (BP) and heart rate (HR) in polar transport aviation pilots afflicted with essential hypertension. A total of 30 pilots were distributed into 2 groups: hypertensive pilots and those who, though generally healthy were, because of some conditions and lifestyle, predisposed to the cardiovascular risk (CVR). The examination included establishment of personal CVR factors, electrocardiography, bicycle ergometry, echocardiography, off-duty 24-hour BP and HR monitoring, and in-flight BP and HR monitoring. Maximum BP and HR values were higher in hypertensive pilots as compared with the control group. In the first group, maximum systolic BP (sBP) on the rise measured 202 mm Hg vs. 179 mm Hg in the control group. The highest HR on the rise was also registered in the first group (164 beats/min vs. 127 beats/min in the control). At landing, maximum sBP and HR made up 253 and 163 mm Hg, 150 and 141 beats/min values in groups first and second, respectively. To summarize, in the harsh weather conditions of Far North hypertensive pilots experience particularly heavy hemodynamic stresses during flight and, consequently, must be allowed to fly only if their hypertension is under control.

  4. The Effect of Shared Information on Pilot/Controller Situation Awareness and Re-Route Negotiation

    NASA Technical Reports Server (NTRS)

    Farley, Todd C.; Hansman, R. John; Endsley, Mica R.; Amonlirdviman, Keith; Vigeant-Langlois, Laurence

    1998-01-01

    The effect of shared information is assessed in terms of pilot/controller negotiation and shared situation awareness. Pilot goals and situation awareness requirements are developed and compared against those of air traffic controllers to identify areas of common and competing interest. A part-task simulator experiment is described which probes pilot/controller interaction in areas where common information has the potential to lead to contention, as identified in the comparative analysis. Preliminary results are presented which suggest that shared information can effect more collaborative interaction between pilots and air traffic controllers.

  5. Cross-sectional study of neck pain and cervical sagittal alignment in air force pilots.

    PubMed

    Moon, Bong Ju; Choi, Kyong Ho; Yun, Chul; Ha, Yoon

    2015-05-01

    There is a high prevalence of neck pain in air force pilots; however, the causes are not clear and are considered work-related. Kyphotic changes in the cervical spine have been known to cause neck pain. In this study, we investigated the association between neck pain and cervical kyphosis in air force pilots. This is a cross-sectional study of 63 Republic of South Korea Air Force pilots. We examined the C2-7 absolute rotation angle (ARA) using the posterior tangent method and other radiologic parameters on whole spine lateral radiographs. We divided the participants into a neck pain group (N = 32) and no neck pain group (N = 31), and subsequently analyzed the difference in radiographic parameters and clinical data between the two groups. There were no significant differences found in age, body mass index, total flight time, or aerobic or anaerobic exercise between the neck pain and control groups. The fighter pilots had higher 1-yr prevalence of neck pain than nonfighter pilots (84.4% vs. 15.6%). The lower C2-7 ARA (OR = 0.91, 95% CI 0.846, 0.979) and fighter type aircrafts (OR = 3.93, 95% CI 1.104, 13.989) were associated with neck pain. Fighter pilots experienced neck pain more frequently than the nonfighter pilots. Those fighter pilots suffering from neck pain were shown to have more kyphotic changes in the cervical spine than control pilots through evaluation of whole spine lateral radiographs using the posterior tangent method. These key findings suggest that the forces involved in flying a fighter type aircraft may affect cervical alignment and neck pain.

  6. The use of vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  7. A simulator evaluation of an automatic terminal approach system

    NASA Technical Reports Server (NTRS)

    Hinton, D. A.

    1983-01-01

    The automatic terminal approach system (ATAS) is a concept for improving the pilot/machine interface with cockpit automation. The ATAS can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane avionics, control the airplane's autopilot, and display status information to the pilot. A piloted simulation study was conducted to determine the feasibility of an ATAS, determine pilot acceptance, and examine pilot/ATAS interaction. Seven instrument-rated pilots each flew four instrument approaches with a base-line heading select autopilot mode. The ATAS runs resulted in lower flight technical error, lower pilot workload, and fewer blunders than with the baseline autopilot. The ATAS status display enabled the pilots to maintain situational awareness during the automatic approaches. The system was well accepted by the pilots.

  8. Linking the Pilot Structural Model and Pilot Workload

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Hess, Ronald; Aponso, Bimal; Godfroy-Cooper, Martine

    2018-01-01

    Behavioral models are developed that closely reproduced pulsive control response of two pilots using markedly different control techniques while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to either issue or cease a pulse command. This suggests that the pilots utilized kinesthetic feedback in order to sense and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess's pilot Structural Model. A Pilot Cost Index was developed, whose elements include estimated workload, performance, and the degree to which the pilot employs kinesthetic feedback. Preliminary results suggest that a pilot's operating point (parameter values) may be based on control style and index minimization.

  9. Space shuttle flying qualities and criteria assessment

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, Duane T.

    1987-01-01

    Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft.

  10. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  11. Discrete-time pilot model. [human dynamics and digital simulation

    NASA Technical Reports Server (NTRS)

    Cavalli, D.

    1978-01-01

    Pilot behavior is considered as a discrete-time process where the decision making has a sequential nature. This model differs from both the quasilinear model which follows from classical control theory and from the optimal control model which considers the human operator as a Kalman estimator-predictor. An additional factor considered is that the pilot's objective may not be adequately formulated as a quadratic cost functional to be minimized, but rather as a more fuzzy measure of the closeness with which the aircraft follows a reference trajectory. All model parameters, in the digital program simulating the pilot's behavior, were successfully compared in terms of standard-deviation and performance with those of professional pilots in IFR configuration. The first practical application of the model was in the study of its performance degradation when the aircraft model static margin decreases.

  12. An experimental study of pilots' control characteristics for flight of an STOL aircraft in backside of drag curve at approach and landing.

    PubMed

    Ema, T

    1992-01-01

    In general, most vehicles can be modelled by a multi-variable system which has interactive variables. It can be clearly shown that there is an interactive response in an aircraft's velocity and altitude obtained by stick control and/or throttle control. In particular, if the flight conditions fall to backside of drag curve in the flight of an STOL aircraft at approach and landing then the ratio of drag variation to velocity change has a negative value (delta D/delta u less than 0) and the system of motion presents a non-minimum phase. Therefore, the interaction between velocity and altitude response becomes so complicated that it affects to pilot's control actions and it may be difficult to control the STOL aircraft at approach and landing. In this paper, experimental results of a pilot's ability to control the STOL aircraft are presented for a multi-variable manual control system using a fixed ground base simulator and the pilot's control ability is discussed for the flight of an STOL aircraft at backside of drag curve at approach and landing.

  13. Preliminary Effect of Synthetic Vision Systems Displays to Reduce Low-Visibility Loss of Control and Controlled Flight Into Terrain Accidents

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Takallu, Mohammad A.

    2002-01-01

    An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a glass display that also included advanced flight symbology, such as a velocity vector. The third concept, referred to as the SVS display, was identical to the EAI except that computer-generated terrain imagery replaced the conventional blue-sky/brown-ground of the EAI. Pilot performance parameters, pilot control inputs and physiological data were recorded for post-test analysis. Situation awareness (SA) and qualitative pilot comments were obtained through questionnaires and free-form interviews administered immediately after the experimental session. Initial pilot performance data were obtained by instructor pilot observations. Physiological data (skin temperature, heart rate, and muscle flexure) were also recorded. Preliminary results indicate that far less errors were committed when using the EAI and SVS displays than when using conventional instruments. The specific data example examined in this report illustrates the benefit from SVS displays to avoid massive loss of SA conditions. All pilots acknowledged the enhanced situation awareness provided by the SVS display concept. Levels of pilot stress appear to be correlated with skin temperature measurements.

  14. Adaptive Controller Effects on Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  15. Study of the application of an implicit model-following flight controller to lift-fan VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Merrick, V. K.

    1977-01-01

    An implicit model-following flight controller is proposed. This controller is relatively simple in concept: it provides an input/output relationship that is approximately that of any selected second order system; it provides good gust alleviation; and it is self-trimming. The flight controller was applied to all axes of a comprehensive mathematical model of a lift-fan V/STOL transport. Power management controls and displays were designed to match the various modes of control provided by the flight controller. A piloted simulation was performed using a six degree of freedom simulator. The fixed-operating-point handling qualities throughout the powered lift flight envelope received pilot ratings of 3-1/2 or better. Approaches and vertical landings in IFR zero-zero conditions received pilot ratings varying from 2-1/2 to 4 depending on the type of approach and weather conditions.

  16. Pilot control through the TAFCOS automatic flight control system

    NASA Technical Reports Server (NTRS)

    Wehrend, W. R., Jr.

    1979-01-01

    The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.

  17. Initial piloted simulation study of geared flap control for tilt-wing V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Guerrero, Lourdes M.; Corliss, Lloyd D.

    1991-01-01

    A simulation study of a representative tilt wing transport aircraft was conducted in 1990 on the Ames Vertical Motion Simulator. This simulation is in response to renewed interest in the tilt wing concept for use in future military and civil applications. For past tilt wing concepts, pitch control in hover and low-speed flight has required a tail rotor or reaction jets at the tail. Use of mono cyclic propellers or a geared flap have also been proposed as alternate methods for providing pitch control at low speed. The geared flap is a subject of this current study. This report describes the geared flap concept, the tilt wing aircraft, the simulation model, the simulation facility and experiment setup, the pilots' evaluation tasks and procedures, and the results obtained from the simulation experiment. The pilot evaluations and comments are also documented in the report appendix.

  18. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  19. Effects of Motion Cues on the Training of Multi-Axis Manual Control Skills

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Mobertz, Xander R. I.

    2017-01-01

    The study described in this paper investigated the effects of two different hexapod motion configurations on the training and transfer of training of a simultaneous roll and pitch control task. Pilots were divided between two groups which trained either under a baseline hexapod motion condition, with motion typically provided by current training simulators, or an optimized hexapod motion condition, with increased fidelity of the motion cues most relevant for the task. All pilots transferred to the same full-motion condition, representing motion experienced in flight. A cybernetic approach was used that gave insights into the development of pilots use of visual and motion cues over the course of training and after transfer. Based on the current results, neither of the hexapod motion conditions can unambiguously be chosen as providing the best motion for training and transfer of training of the used multi-axis control task. However, the optimized hexapod motion condition did allow pilots to generate less visual lead, control with higher gains, and have better disturbance-rejection performance at the end of the training session compared to the baseline hexapod motion condition. Significant adaptations in control behavior still occurred in the transfer phase under the full-motion condition for both groups. Pilots behaved less linearly compared to previous single-axis control-task experiments; however, this did not result in smaller motion or learning effects. Motion and learning effects were more pronounced in pitch compared to roll. Finally, valuable lessons were learned that allow us to improve the adopted approach for future transfer-of-training studies.

  20. Intravenous versus intramuscular cobinamide compared to intravenous saline (control) in the treatment of acute, survivable, mitochondrial toxins in swine (Sus Scrofa): a pilot study

    DTIC Science & Technology

    2018-04-10

    Type of Research: Animal Research 3. Title: Intravenous versus intramuscular cobinamide compared to intravenous saline ( control ) in the treatment...the hyperkalemia under control and in our upcoming protocol we feel we will finally be able to induce apnea with the toxin and calcium channel...intramuscular cobinamide compared to intravenous saline ( control ) in the treatment of acute, survivable, mitochondrial toxins in swine (Sus Scrofa): a pilot

  1. Assessment of Crew Workload for the RAH-66 Comanche Force Development Experiment 1

    DTIC Science & Technology

    2001-10-01

    Scale and a cockpit controls and displays usability questionnaire . Results of the assessment indicate that (a) workload was tolerable for the pilots...Workload Levels Between Front Seat and Back Seat 13 3.4 Pilot Responses to Controls and Displays Usability Questionnaire 13 3.5 HMD Symbology 13 4... questionnaire . The data were analyzed to determine if the pilot flying the aircraft (pilot on controls) and the pilot operating the mission equipment

  2. Prediction of pilot-aircraft stability boundaries and performance contours

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.

    1977-01-01

    Control-theoretic pilot models can provide important new insights regarding the stability and performance characteristics of the pilot-aircraft system. Optimal-control pilot models can be formed for a wide range of flight conditions, suggesting that the human pilot can maintain stability if he adapts his control strategy to the aircraft's changing dynamics. Of particular concern is the effect of sub-optimal pilot adaptation as an aircraft transitions from low to high angle-of-attack during rapid maneuvering, as the changes in aircraft stability and control response can be extreme. This paper examines the effects of optimal and sub-optimal effort during a typical 'high-g' maneuver, and it introduces the concept of minimum-control effort (MCE) adaptation. Limited experimental results tend to support the MCE adaptation concept.

  3. Enhancing pilot situational awareness of the airport surface movement area

    NASA Technical Reports Server (NTRS)

    Jones, D. R.; Young, S. D.

    1994-01-01

    Two studies are being conducted to address airport surface movement area safety and capacity issues by providing enhanced situational awareness information to pilots. One study focuses on obtaining pilot opinion of the Runway Status Light System (RSLS). This system has been designed to reduce the likelihood of runway incursions by informing pilots when a runway is occupied. The second study is a flight demonstration of an rate integrated system consisting of an electronic moving map in the cockpit and display of the aircraft identification to the controller. Taxi route and hold warning information will be sent to the aircraft data link for display on the electronic moving map. This paper describes the plans for the two studies.

  4. A mixed method pilot study: the researchers' experiences.

    PubMed

    Secomb, Jacinta M; Smith, Colleen

    2011-08-01

    This paper reports on the outcomes of a small well designed pilot study. Pilot studies often disseminate limited or statistically meaningless results without adding to the body knowledge on the comparative research benefits. The design a pre-test post-test group parallel randomised control trial and inductive content analysis of focus group transcripts was tested specifically to increase outcomes in a proposed larger study. Strategies are now in place to overcome operational barriers and recruitment difficulties. Links between the qualitative and quantitative arms of the proposed larger study have been made; it is anticipated that this will add depth to the final report. More extensive reporting on the outcomes of pilot studies would assist researchers and increase the body of knowledge in this area.

  5. A piloted simulator investigation of augmentation systems to improve helicopter nap-of-the-earth handling qualities

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.

    1978-01-01

    A piloted simulation study assessed various levels of stability and control augmentation designed to improve the handling qualities of several helicopters in nap-of-the-earth (NOE) flight. Five basic single rotor helicopters - one teetering, two articulated, and two hingeless - which were found to have a variety of major deficiencies in a previous fixed-based simulator study were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems (CAS) to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular rate; and attitude command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usage and their gain levels associated with specific rotor type are also discussed.

  6. Extended cooperative control synthesis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1994-01-01

    This paper reports on research for extending the Cooperative Control Synthesis methodology to include a more accurate modeling of the pilot's controller dynamics. Cooperative Control Synthesis (CCS) is a methodology that addresses the problem of how to design control laws for piloted, high-order, multivariate systems and/or non-conventional dynamic configurations in the absence of flying qualities specifications. This is accomplished by emphasizing the parallel structure inherent in any pilot-controlled, augmented vehicle. The original CCS methodology is extended to include the Modified Optimal Control Model (MOCM), which is based upon the optimal control model of the human operator developed by Kleinman, Baron, and Levison in 1970. This model provides a modeling of the pilot's compensation dynamics that is more accurate than the simplified pilot dynamic representation currently in the CCS methodology. Inclusion of the MOCM into the CCS also enables the modeling of pilot-observation perception thresholds and pilot-observation attention allocation affects. This Extended Cooperative Control Synthesis (ECCS) allows for the direct calculation of pilot and system open- and closed-loop transfer functions in pole/zero form and is readily implemented in current software capable of analysis and design for dynamic systems. Example results based upon synthesizing an augmentation control law for an acceleration command system in a compensatory tracking task using the ECCS are compared with a similar synthesis performed by using the original CCS methodology. The ECCS is shown to provide augmentation control laws that yield more favorable, predicted closed-loop flying qualities and tracking performance than those synthesized using the original CCS methodology.

  7. 78 FR 11554 - Special Conditions: Embraer S.A., Model EMB-550 Airplane, Limit Pilot Forces for Sidestick Control

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... wheel or stick controls, is not appropriate for a sidestick controller, because pilot forces are applied... Pilot Forces for Sidestick Control AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... conventional wheel or control stick. This kind of controller is designed to be operated using only one hand...

  8. Motion cue effects on human pilot dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.

    1977-01-01

    Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.

  9. ATC simulation of helicopter IFR approaches into major terminal areas using RNAV, MLS, and CDTI

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Lee, H. Q.; Peach, L. L.; Willett, F. M., Jr.; Obrien, P. J.

    1981-01-01

    The introduction of independent helicopter IFR routes at hub airports was investigated in a real time air traffic control system simulation involving a piloted helicopter simulator, computer generated air traffic, and air traffic controllers. The helicopter simulator was equipped to fly area navigation (RNAV) routes and microwave landing system approaches. Problems studied included: (1) pilot acceptance of the approach procedure and tracking accuracy; (2) ATC procedures for handling a mix of helicopter and fixed wing traffic; and (3) utility of the cockpit display of traffic information (CDTI) for the helicopter in the hub airport environment. Results indicate that the helicopter routes were acceptable to the subject pilots and were noninterfering with fixed wing traffic. Merging and spacing maneuvers using CDTI were successfully carried out by the pilots, but controllers had some reservations concerning the acceptability of the CDTI procedures.

  10. A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III

    1959-01-01

    As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.

  11. HSI Guidelines Outline for the Air Vehicle Control Station. Version 2

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This document provides guidance to the FAA and manufacturers on how to develop UAS Pilot Vehicle Interfaces to safely and effectively integrate UASs into the NAS. Preliminary guidelines are provided for Aviate, Communicate, Navigate and Avoid Hazard functions. The pilot shall have information and control capability so that pilot-UA interactions are not adverse, unfavorable, nor compromise safety. Unfavorable interactions include anomalous aircraft-pilot coupling (APC) interactions (closed loop), pilot-involved oscillations (categories I, II or III), and non-oscillatory APC events (e.g., divergence). - Human Systems Integration Pilot-Technology Interface Requirements for Command, Control, and Communications (C3)

  12. TASKILLAN II - Pilot strategies for workload management

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.; Wickens, Christopher D.

    1990-01-01

    This study focused on the strategies used by pilots in managing their workload level, and their subsequent task performance. Sixteen licensed pilots flew 42 missions on a helicopter simulation, and were evaluated on their performance of the overall mission, as well as individual tasks. Pilots were divided in four groups, defined by the presence or absence of scheduling control over tasks and the availability of intelligence concerning the type and stage of difficulties imposed during the flight. Results suggest that intelligence supported strategies that yielded significant higher performance levels, while scheduling control seemed to have no impact on performance. Both difficulty type and the stage of difficulty impacted performance significantly, with strongest effects for time stresss and difficulties imposed late in the flight.

  13. Portable Weather Applications for General Aviation Pilots.

    PubMed

    Ahlstrom, Ulf; Ohneiser, Oliver; Caddigan, Eamon

    2016-09-01

    The objective of this study was to examine the potential benefits and impact on pilot behavior from the use of portable weather applications. Seventy general aviation (GA) pilots participated in the study. Each pilot was randomly assigned to an experimental or a control group and flew a simulated single-engine GA aircraft, initially under visual meteorological conditions (VMC). The experimental group was equipped with a portable weather application during flight. We recorded measures for weather situation awareness (WSA), decision making, cognitive engagement, and distance from the aircraft to hazardous weather. We found positive effects from the use of the portable weather application, with an increased WSA for the experimental group, which resulted in credibly larger route deviations and credibly greater distances to hazardous weather (≥30 dBZ cells) compared with the control group. Nevertheless, both groups flew less than 20 statute miles from hazardous weather cells, thus failing to follow current weather-avoidance guidelines. We also found a credibly higher cognitive engagement (prefrontal oxygenation levels) for the experimental group, possibly reflecting increased flight planning and decision making on the part of the pilots. Overall, the study outcome supports our hypothesis that portable weather displays can be used without degrading pilot performance on safety-related flight tasks, actions, and decisions as measured within the constraints of the present study. However, it also shows that an increased WSA does not automatically translate to enhanced flight behavior. The study outcome contributes to our knowledge of the effect of portable weather applications on pilot behavior and decision making. © 2016, Human Factors and Ergonomics Society.

  14. RESEARCH IN FILTRATION FOR CRYPTOSPORIDIUM REMOVAL

    EPA Science Inventory

    The USEPA has conducted pilot plant studies for the removal of Cryptosporidium oocysts from drinking water. Fourteen pilot-scale tests were performed to assess the ability of conventional treatment to control Cryptosporidium oocysts and three surrogates; turbidity, total particle...

  15. Approach path control for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Clymer, D. J.; Flora, C. C.

    1973-01-01

    A flight control system concept is defined for approach flightpath control of an augmentor wing (or similar) powered-lift STOL configuration. The proposed STOL control concept produces aircraft transient and steady-state control responses that are familiar to pilots of conventional jet transports, and has potential for good handling qualities ratings in all approach and landing phases. The effects of trailing-edge rate limits, real-engine dynamics, and atmospheric turbulence are considered in the study. A general discussion of STOL handling qualities problems and piloting techniques is included.

  16. Randomized Controlled Trial for Early Intervention for Autism: A Pilot Study of the Autism 1-2-3 Project

    ERIC Educational Resources Information Center

    Wong, Virginia C. N.; Kwan, Queenie K.

    2010-01-01

    We piloted a 2-week "Autism-1-2-3" early intervention for children with autism and their parents immediately after diagnosis that targeted at (1) eye contact, (2) gesture and (3) vocalization/words. Seventeen children were randomized into the Intervention (n = 9) and Control (n = 8) groups. Outcome measures included the Autism Diagnostic…

  17. A dual-task home-based rehabilitation programme for improving balance control in patients with acquired brain injury: a single-blind, randomized controlled pilot study.

    PubMed

    Peirone, Eliana; Goria, Paolo Filiberto; Anselmino, Arianna

    2014-04-01

    To evaluate the safety, feasibility and effectiveness of a dual-task home-based rehabilitation programme on balance impairments among adult patients with acquired brain injury. Single-blind, randomized controlled pilot study. Single rehabilitation centre. Sixteen participants between 12 and 18 months post-acquired brain injury with balance impairments and a score <10 seconds on the One-Leg Stance Test (eyes open). All participants received 50-minutes individualised traditional physiotherapy sessions three times a week for seven weeks. In addition, the intervention group (N = 8) performed an individualised dual-task home-based programme six days a week for seven weeks. The primary outcome measure was the Balance Evaluation System Test; secondary measures were the Activities-specific Balance Confidence Scale and Goal Attainment Scaling. At the end of the pilot study, the intervention group showed significantly greater improvement in Balance Evaluation System Test scores (17.87, SD 6.05) vs. the control group (5.5, SD 3.53; P = 0.008, r = 0.63). There was no significant difference in improvement in Activities-specific Balance Confidence Scale scores between the intervention group (25.25, SD 25.51) and the control group (7.00, SD 14.73; P = 0.11, r = 0.63). There was no significant improvement in Goal Attainment Scaling scores in the intervention (19.37, SD 9.03) vs. the control group (16.28, SD 6.58; P = 0.093, r = 0.63). This pilot study shows the safety, feasibility and short-term benefit of a dual-task home-based rehabilitation programme to improve balance control in patients with acquired brain injury. A sample size of 26 participants is required for a definitive study.

  18. Results of a simulator test comparing two display concepts for piloted flight-path-angle control

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1978-01-01

    Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.

  19. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The study deals with 165 inadvertent operations on or into inappropriate portions of the aircraft areas at controlled airports. Pilot-initiated and controller-initiated incursions are described and discussed. It was found that a majority of the pilot-initiated occurrences involved operation without a clearance; controller-initiated occurrences usually involved failure to maintain assured separation. The factors associated with these occurrences are analyzed. It appears that a major problem in these occurrences is inadequate coordination among the various system participants. Reasons for this, and some possible solutions to various aspects of the problem, are discussed. A sample of reports from pilots and controllers is presented. These relate to undesired occurrences in air transport, general aviation, and air traffic control operations; to ATC coordination problems; and to a recurrent problem in ASRS reports, parachuting operations. A sample of alert bulletins and responses to them is presented.

  20. Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Gregory, Irene

    2013-01-01

    Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.

  1. Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2012-01-01

    Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.

  2. Pilot Human Factors in Stall/Spin Accidents of Supersonic Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.; Enevoldson, E. K.; Nguyen, L. T.

    1983-01-01

    A study has been made of pilot human factors related to stall/spin accidents of supersonic fighter aircraft. The military specifications for flight at high angles of attack are examined. Several pilot human factors problems related to stall/spin are discussed. These problems include (1) unsatisfactory nonvisual warning cues; (2) the inability of the pilot to quickly determine if the aircraft is spinning out of control, or to recognize the type of spin; (3) the inability of the pilot to decide on and implement the correct spin recovery technique; (4) the inability of the pilot to move, caused by high angular rotation; and (5) the tendency of pilots to wait too long in deciding to abandon the irrecoverable aircraft. Psycho-physiological phenomena influencing pilot's behavior in stall/spin situations include (1) channelization of sensory inputs, (2) limitations in precisely controlling several muscular inputs, (3) inaccurate judgment of elapsed time, and (4) disorientation of vestibulo-ocular inputs. Results are given of pilot responses to all these problems in the F14A, F16/AB, and F/A-18A aircraft. The use of departure spin resistance and automatic spin prevention systems incorporated on recent supersonic fighters are discussed. These systems should help to improve the stall/spin accident record with some compromise in maneuverability.

  3. Controlled pilot oxidizer for a gas turbine combustor

    DOEpatents

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  4. Informing efficient randomised controlled trials: exploration of challenges in developing progression criteria for internal pilot studies.

    PubMed

    Avery, Kerry N L; Williamson, Paula R; Gamble, Carrol; O'Connell Francischetto, Elaine; Metcalfe, Chris; Davidson, Peter; Williams, Hywel; Blazeby, Jane M

    2017-02-17

    Designing studies with an internal pilot phase may optimise the use of pilot work to inform more efficient randomised controlled trials (RCTs). Careful selection of preagreed decision or 'progression' criteria at the juncture between the internal pilot and main trial phases provides a valuable opportunity to evaluate the likely success of the main trial and optimise its design or, if necessary, to make the decision not to proceed with the main trial. Guidance on the appropriate selection and application of progression criteria is, however, lacking. This paper outlines the key issues to consider in the optimal development and review of operational progression criteria for RCTs with an internal pilot phase. A structured literature review and exploration of stakeholders' opinions at a Medical Research Council (MRC) Hubs for Trials Methodology Research workshop. Key stakeholders included triallists, methodologists, statisticians and funders. There is considerable variation in the use of progression criteria for RCTs with an internal pilot phase, although 3 common issues predominate: trial recruitment, protocol adherence and outcome data. Detailed and systematic reporting around the decision-making process for stopping, amending or proceeding to a main trial is uncommon, which may hamper understanding in the research community about the appropriate and optimal use of RCTs with an internal pilot phase. 10 top tips for the development, use and reporting of progression criteria for internal pilot studies are presented. Systematic and transparent reporting of the design, results and evaluation of internal pilot trials in the literature should be encouraged in order to facilitate understanding in the research community and to inform future trials. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Informing efficient randomised controlled trials: exploration of challenges in developing progression criteria for internal pilot studies

    PubMed Central

    Williamson, Paula R; Gamble, Carrol; O'Connell Francischetto, Elaine; Metcalfe, Chris; Davidson, Peter; Williams, Hywel; Blazeby, Jane M

    2017-01-01

    Objectives Designing studies with an internal pilot phase may optimise the use of pilot work to inform more efficient randomised controlled trials (RCTs). Careful selection of preagreed decision or ‘progression’ criteria at the juncture between the internal pilot and main trial phases provides a valuable opportunity to evaluate the likely success of the main trial and optimise its design or, if necessary, to make the decision not to proceed with the main trial. Guidance on the appropriate selection and application of progression criteria is, however, lacking. This paper outlines the key issues to consider in the optimal development and review of operational progression criteria for RCTs with an internal pilot phase. Design A structured literature review and exploration of stakeholders' opinions at a Medical Research Council (MRC) Hubs for Trials Methodology Research workshop. Key stakeholders included triallists, methodologists, statisticians and funders. Results There is considerable variation in the use of progression criteria for RCTs with an internal pilot phase, although 3 common issues predominate: trial recruitment, protocol adherence and outcome data. Detailed and systematic reporting around the decision-making process for stopping, amending or proceeding to a main trial is uncommon, which may hamper understanding in the research community about the appropriate and optimal use of RCTs with an internal pilot phase. 10 top tips for the development, use and reporting of progression criteria for internal pilot studies are presented. Conclusions Systematic and transparent reporting of the design, results and evaluation of internal pilot trials in the literature should be encouraged in order to facilitate understanding in the research community and to inform future trials. PMID:28213598

  6. Prediction and measurement of human pilot dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Reedy, James T.

    1988-01-01

    An analytical and experimental study of human pilot control strategies in a manned rotorcraft simulation is described. The task simulated involves a low-speed, constant-altitude maneuvering task in which a head-down display is utilized to allow the pilot to track a moving hover point. The efficacy of the display law driving an 'acceleration symbol' is determined and the manner in which the prediction and measurement of pilot/vehicle dynamics can be made part of man/machine system evaluations is demonstrated.

  7. Pilot and Controller Workload and Situation Awareness with Three Traffic Management Concept

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Strybel, Thomas Z.; Kraut, Joshua; Bacon, Paige; Minakata, Katsumi; Battiste, Vernol; Johnson, Walter

    2010-01-01

    This paper reports on workload and situation awareness of pilots and controllers participating in a human-in-the-loop simulation using three different distributed air-ground traffic management concepts. Eight experimental pilots started the scenario in an en-route phase of flight and were asked to avoid convective weather while performing spacing and merging tasks along with a continuous descent approach (CDA) into Louisville Standiford Airport (SDF). Two controllers managed the sectors through which the pilots flew, with one managing a sector that included the Top of Descent, and the other managing a sector that included the merge point for arrival into SDF. At 3-minute intervals in the scenario, pilots and controllers were probed on their workload or situation awareness. We employed one of three concepts of operation that distributed separation responsibility across human controllers, pilots, and automation to measure changes in operator situation awareness and workload. We found that when pilots were responsible for separation, they had higher levels of awareness, but not necessarily higher levels of workload. When controllers are responsible and actively engaged, they showed higher workload levels compared to pilots and changes in awareness that were dependent on sector characteristics.

  8. Closed-loop, pilot/vehicle analysis of the approach and landing task

    NASA Technical Reports Server (NTRS)

    Anderson, M. R.; Schmidt, D. K.

    1986-01-01

    In the case of approach and landing, it is universally accepted that the pilot uses more than one vehicle response, or output, to close his control loops. Therefore, to model this task, a multi-loop analysis technique is required. The analysis problem has been in obtaining reasonable analytic estimates of the describing functions representing the pilot's loop compensation. Once these pilot describing functions are obtained, appropriate performance and workload metrics must then be developed for the landing task. The optimal control approach provides a powerful technique for obtaining the necessary describing functions, once the appropriate task objective is defined in terms of a quadratic objective function. An approach is presented through the use of a simple, reasonable objective function and model-based metrics to evaluate loop performance and pilot workload. The results of an analysis of the LAHOS (Landing and Approach of Higher Order Systems) study performed by R.E. Smith is also presented.

  9. A Flying Qualities Study of Longitudinal Long-Term Dynamics of Hypersonic Planes

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Sachs, G.; Knoll, A.; Stich, R.

    1995-01-01

    The NASA Dryden Flight Research Center and the Technical University of Munich are cooperating in a research program to assess the impact of unstable long-term dynamics on the flying qualities of planes in hypersonic flight. These flying qualities issues are being investigated with a dedicated flight simulator for hypersonic vehicles located at NASA Dryden. Several NASA research pilots have flown the simulator through well defined steady-level turns with varying phugoid and height mode instabilities. The data collected include Pilot ratings and comments, performance measurements, and Pilot workload measurements. The results presented in this paper include design guidelines for height and Phugoid mode instabilities, an evaluation of the tapping method used to measure pilot workload, a discussion of techniques developed by the pilots to control large instabilities, and a discussion of how flying qualities of unstable long-term dynamics influence control Power design requirements.

  10. A flying qualities study of longitudinal long-term dynamics of hypersonic planes

    NASA Technical Reports Server (NTRS)

    Cox, T.; Sachs, G.; Knoll, A.; Stich, R.

    1995-01-01

    The NASA Dryden Flight Research Center and the Technical University of Munich are cooperating in a research program to assess the impact of unstable long-term dynamics on the flying qualities of planes in hypersonic flight. These flying qualities issues are being investigated with a dedicated flight simulator for hypersonic vehicles located at NASA Dryden. Several NASA research pilots have flown the simulator through well-defined steady-level turns with varying phugoid and height mode instabilities. Th data collected include pilot ratings and comments, performance measurements, and pilot workload measurements. The results presented in this paper include design guidelines for height and phugoid mode instabilities, an evaluation of the tapping method used to measure pilot workload, a discussion of techniques developed by the pilots to control large instabilities, and a discussion of how flying qualities of unstable long-term dynamics influence control power design requirements.

  11. The challenge of regional accents for aviation English language proficiency standards: a study of difficulties in understanding in air traffic control-pilot communications.

    PubMed

    Tiewtrakul, T; Fletcher, S R

    2010-02-01

    Although English has been the international aviation language since 1951, formal language proficiency testing for key aviation personnel has only recently been implemented by the International Civil Aviation Organization (ICAO). It aims to ensure minimum acceptable levels of English pronunciation and comprehension universally, but does not attend to particular regional dialect difficulties. However, evidence suggests that voice transmissions between air traffic controllers and pilots are a particular problem in international airspace and that pilots may not understand messages due to the influence of different accents when using English. This study explores the potential impact of 'non-native English' in pilot-air traffic control transmissions using a 'conversation analysis' technique to examine approach phase recordings from Bangkok International Airport. Results support that communication errors, defined by incidents of pilots not understanding, occur significantly more often when speakers are both non-native English, messages are more complex and when numerical information is involved. These results and their possible implications are discussed with reference to the development of ICAO's new language proficiency standards. Statement of Relevance: This study builds on previous work and literature, providing further evidence to show that the risks caused by language and linguistics in aviation must be explored more deeply. Findings are particularly contemporary and relevant today, indicating that recently implemented international standards would benefit from further exploratory research and development.

  12. Role of the Controller in an Integrated Pilot-Controller Study for Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Verma, Savvy; Kozon, Thomas; Ballinger, Debbi; Lozito, Sandra; Subramanian, Shobana

    2011-01-01

    Closely spaced parallel runway operations have been found to increase capacity within the National Airspace System but poor visibility conditions reduce the use of these operations [1]. Previous research examined the concepts and procedures related to parallel runways [2][4][5]. However, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This study developed and examined the pilot s and controller s procedures and information requirements for creating aircraft pairs for closely spaced parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s (+/- 10s error) at a coupling point that was 12 nmi from the runway threshold. In this paper, the role of the controller, as examined in an integrated study of controllers and pilots, is presented. The controllers utilized a pairing scheduler and new pairing interfaces to help create and maintain aircraft pairs, in a high-fidelity, human-in-the loop simulation experiment. Results show that the controllers worked as a team to achieve pairing between aircraft and the level of inter-controller coordination increased when the aircraft in the pair belonged to different sectors. Controller feedback did not reveal over reliance on the automation nor complacency with the pairing automation or pairing procedures.

  13. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    DOT National Transportation Integrated Search

    1997-04-01

    This report describes the concept of a propulsion controlled aircraft (PCA), : discusses pilot controls, displays, and procedures; and presents the results of a : PCA piloted simulation test and evaluation of the B747-400 airplane conducted at : NASA...

  14. The Propulsive-Only Flight Control Problem

    NASA Technical Reports Server (NTRS)

    Blezad, Daniel J.

    1996-01-01

    Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.

  15. The retention of manual flying skills in the automated cockpit.

    PubMed

    Casner, Stephen M; Geven, Richard W; Recker, Matthias P; Schooler, Jonathan W

    2014-12-01

    The aim of this study was to understand how the prolonged use of cockpit automation is affecting pilots' manual flying skills. There is an ongoing concern about a potential deterioration of manual flying skills among pilots who assume a supervisory role while cockpit automation systems carry out tasks that were once performed by human pilots. We asked 16 airline pilots to fly routine and nonroutine flight scenarios in a Boeing 747-400 simulator while we systematically varied the level of automation that they used, graded their performance, and probed them about what they were thinking about as they flew. We found pilots' instrument scanning and manual control skills to be mostly intact, even when pilots reported that they were infrequently practiced. However, when pilots were asked to manually perform the cognitive tasks needed for manual flight (e.g., tracking the aircraft's position without the use of a map display, deciding which navigational steps come next, recognizing instrument system failures), we observed more frequent and significant problems. Furthermore, performance on these cognitive tasks was associated with measures of how often pilots engaged in task-unrelated thought when cockpit automation was used. We found that while pilots' instrument scanning and aircraft control skills are reasonably well retained when automation is used, the retention of cognitive skills needed for manual flying may depend on the degree to which pilots remain actively engaged in supervising the automation.

  16. Step 1: Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Command, Control, and Communications (C3)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The document provides the Human System Integration(HSI) high-level functional C3 HSI requirements for the interface to the pilot. Description includes (1) the information required by the pilot to have knowledge C3 system status, and (2) the control capability needed by the pilot to obtain C3 information. Fundamentally, these requirements provide the candidate C3 technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how C3 operations and functions should interface with the pilot to provide the necessary C3 functionality to the UA-pilot system. Requirements and guidelines for C3 are partitioned into three categories: (1) Pilot-Air Traffic Control (ATC) Voice Communications (2) Pilot-ATC Data Communications, and (3) command and control of the unmanned aircraft (UA). Each requirement is stated and is supported with a rationale and associated reference(s).

  17. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    PubMed

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  18. Comprehension of confidence intervals - development and piloting of patient information materials for people with multiple sclerosis: qualitative study and pilot randomised controlled trial.

    PubMed

    Rahn, Anne C; Backhus, Imke; Fuest, Franz; Riemann-Lorenz, Karin; Köpke, Sascha; van de Roemer, Adrianus; Mühlhauser, Ingrid; Heesen, Christoph

    2016-09-20

    Presentation of confidence intervals alongside information about treatment effects can support informed treatment choices in people with multiple sclerosis. We aimed to develop and pilot-test different written patient information materials explaining confidence intervals in people with relapsing-remitting multiple sclerosis. Further, a questionnaire on comprehension of confidence intervals was developed and piloted. We developed different patient information versions aiming to explain confidence intervals. We used an illustrative example to test three different approaches: (1) short version, (2) "average weight" version and (3) "worm prophylaxis" version. Interviews were conducted using think-aloud and teach-back approaches to test feasibility and analysed using qualitative content analysis. To assess comprehension of confidence intervals, a six-item multiple choice questionnaire was developed and tested in a pilot randomised controlled trial using the online survey software UNIPARK. Here, the average weight version (intervention group) was tested against a standard patient information version on confidence intervals (control group). People with multiple sclerosis were invited to take part using existing mailing-lists of people with multiple sclerosis in Germany and were randomised using the UNIPARK algorithm. Participants were blinded towards group allocation. Primary endpoint was comprehension of confidence intervals, assessed with the six-item multiple choice questionnaire with six points representing perfect knowledge. Feasibility of the patient information versions was tested with 16 people with multiple sclerosis. For the pilot randomised controlled trial, 64 people with multiple sclerosis were randomised (intervention group: n = 36; control group: n = 28). More questions were answered correctly in the intervention group compared to the control group (mean 4.8 vs 3.8, mean difference 1.1 (95 % CI 0.42-1.69), p = 0.002). The questionnaire's internal consistency was moderate (Cronbach's alpha = 0.56). The pilot-phase shows promising results concerning acceptability and feasibility. Pilot randomised controlled trial results indicate that the patient information is well understood and that knowledge gain on confidence intervals can be assessed with a set of six questions. German Clinical Trials Register: DRKS00008561 . Registered 8th of June 2015.

  19. Virgil Gus Grissom's Visit to LaRC

    NASA Image and Video Library

    1963-02-22

    Astronaut Virgil "Gus" Grissom at the controls of the Visual Docking Simulator. From A.W. Vogeley, "Piloted Space-Flight Simulation at Langley Research Center," Paper presented at the American Society of Mechanical Engineers 1966 Winter Meeting, New York, NY, November 27-December 1, 1966. "This facility was [later known as the Visual-Optical Simulator.] It presents to the pilot an out-the-window view of his target in correct 6 degrees of freedom motion. The scene is obtained by a television camera pick-up viewing a small-scale gimbaled model of the target." "For docking studies, the docking target picture was projected onto the surface of a 20-foot-diameter sphere and the pilot could, effectively, maneuver into contract. this facility was used in a comparison study with the Rendezvous Docking Simulator - one of the few comparison experiments in which conditions were carefully controlled and a reasonable sample of pilots used. All pilots preferred the more realistic RDS visual scene. The pilots generally liked the RDS angular motion cues although some objected to the false gravity cues that these motions introduced. Training time was shorter on the RDS, but final performance on both simulators was essentially equal. " "For station-keeping studies, since close approach is not required, the target was presented to the pilot through a virtual-image system which projects his view to infinity, providing a more realistic effect. In addition to the target, the system also projects a star and horizon background. "

  20. White matter hyperintensities on MRI in high-altitude U-2 pilots.

    PubMed

    McGuire, Stephen; Sherman, Paul; Profenna, Leonardo; Grogan, Patrick; Sladky, John; Brown, Anthony; Robinson, Andrew; Rowland, Laura; Hong, Elliot; Patel, Beenish; Tate, David; Kawano, Elaine S; Fox, Peter; Kochunov, Peter

    2013-08-20

    To demonstrate that U-2 pilot occupational exposure to hypobaria leads to increased incidence of white matter hyperintensities (WMH) with a more uniform distribution throughout the brain irrespective of clinical neurologic decompression sickness history. We evaluated imaging findings in 102 U-2 pilots and 91 controls matched for age, health, and education levels. Three-dimensional, T2-weighted, high-resolution (1-mm isotropic) imaging data were collected using fluid-attenuated inversion recovery sequence on a 3-tesla MRI scanner. Whole-brain and regional WMH volume and number were compared between groups using a 2-tailed Wilcoxon rank sum test. U-2 pilots demonstrated an increase in volume (394%; p = 0.004) and number (295%; p < 0.001) of WMH. Analysis of regional distribution demonstrated WMH more uniformly distributed throughout the brain in U-2 pilots compared with mainly frontal distribution in controls. Pilots with occupational exposure to hypobaria showed a significant increase in WMH lesion volume and number. Unlike the healthy controls with predominantly WMH in the frontal white matter, WMH in pilots were more uniformly distributed throughout the brain. This is consistent with our hypothesized pattern of damage produced by interaction between microemboli and cerebral tissue, leading to thrombosis, coagulation, inflammation, and/or activation of innate immune response, although further studies will be necessary to clarify the pathologic mechanisms responsible.

  1. White matter hyperintensities on MRI in high-altitude U-2 pilots

    PubMed Central

    Sherman, Paul; Profenna, Leonardo; Grogan, Patrick; Sladky, John; Brown, Anthony; Robinson, Andrew; Rowland, Laura; Hong, Elliot; Patel, Beenish; Tate, David; Kawano, Elaine S.; Fox, Peter; Kochunov, Peter

    2013-01-01

    Objective: To demonstrate that U-2 pilot occupational exposure to hypobaria leads to increased incidence of white matter hyperintensities (WMH) with a more uniform distribution throughout the brain irrespective of clinical neurologic decompression sickness history. Methods: We evaluated imaging findings in 102 U-2 pilots and 91 controls matched for age, health, and education levels. Three-dimensional, T2-weighted, high-resolution (1-mm isotropic) imaging data were collected using fluid-attenuated inversion recovery sequence on a 3-tesla MRI scanner. Whole-brain and regional WMH volume and number were compared between groups using a 2-tailed Wilcoxon rank sum test. Results: U-2 pilots demonstrated an increase in volume (394%; p = 0.004) and number (295%; p < 0.001) of WMH. Analysis of regional distribution demonstrated WMH more uniformly distributed throughout the brain in U-2 pilots compared with mainly frontal distribution in controls. Conclusion: Pilots with occupational exposure to hypobaria showed a significant increase in WMH lesion volume and number. Unlike the healthy controls with predominantly WMH in the frontal white matter, WMH in pilots were more uniformly distributed throughout the brain. This is consistent with our hypothesized pattern of damage produced by interaction between microemboli and cerebral tissue, leading to thrombosis, coagulation, inflammation, and/or activation of innate immune response, although further studies will be necessary to clarify the pathologic mechanisms responsible. PMID:23960192

  2. Physiological Effects of Acceleration Observed During a Centrifuge Study of Pilot Performance

    NASA Technical Reports Server (NTRS)

    Smedal, Harald A.; Creer, Brent Y.; Wingrove, Rodney C.

    1960-01-01

    An investigation was conducted by the National Aeronautics and Space Administration, Ames Research Center, and the Naval Air Development Center, Aviation Medical Acceleration Laboratory, to study the effects of acceleration on pilot performance and to obtain some meaningful data for use in establishing tolerance to acceleration levels. The flight simulator used in the study was the Johnsville centrifuge operated as a closed loop system. The pilot was required to perform a control task in various sustained acceleration fields typical of those that Might be encountered by a pilot flying an entry vehicle in which he is seated in a forward-facing position. A special restraint system was developed and designed to increase the pilot's tolerance to these accelerations. The results of this study demonstrated that a well-trained subject, such as a test pilot, can adequately carry out a control task during moderately high accelerations for prolonged periods of time. The maximum levels of acceleration tolerated were approximately 6 times that of gravity for approximately 6 minutes, and varied slightly with the acceleration direction. The tolerance runs were in each case terminated by the subject. In all but two instances, the cause was extreme fatigue. On two occasions the subject terminated the run when he "grayed out." Although there were subjective and objective findings involving the visual and cardiovascular systems, the respiratory system yielded the more critical limiting factors. It would appear that these limiting factors were less severe during the "eyeballs-out" accelerations when compared with the "eyeballs-in" accelerations. These findings are explained on the basis of the influence that the inertial forces of acceleration have on the mechanics of respiration. A condensed version of this report was presented at the Annual Meeting of the Aerospace Medical Association, Miami Beach, May 5-11, 1960, in a paper entitled "Ability of Pilots to Perform a Control Task in Various Sustained Acceleration Fields."

  3. A preliminary look at an optimal multivariable design for propulsion-only flight control of jet-transport aircraft

    NASA Technical Reports Server (NTRS)

    Azzano, Christopher P.

    1992-01-01

    Control of a large jet transport aircraft without the use of conventional control surfaces was studied. Engine commands were used to attempt to recreate the forces and moments typically provided by the elevator, ailerons, and rudder. Necessary conditions for aircraft controllability were developed pertaining to aircraft configuration such as the number of engines and engine placement. An optimal linear quadratic regulator controller was developed for the Boeing 707-720, in particular, for regulation of its natural dynamic modes. The design used a method of assigning relative weights to the natural modes, i.e., phugoid and dutch roll, for a more intuitive selection of the cost function. A prototype pilot command interface was then integrated into the loop based on pseudorate command of both pitch and roll. Closed loop dynamics were evaluated first with a batch linear simulation and then with a real time high fidelity piloted simulation. The NASA research pilots assisted in evaluation of closed loop handling qualities for typical cruise and landing tasks. Recommendations for improvement on this preliminary study of optimal propulsion only flight control are provided.

  4. A Pilot Study of Motor Disturbances in Children with ADHD Belonging to Chilean Schools

    ERIC Educational Resources Information Center

    Ancatén González, Carlos; Montes, Rodrigo; Gutiérrez-Rojas, Cristian

    2017-01-01

    The present pilot study aimed to determine motor control alterations in children with ADHD belonging to public schools, using Da Fonseca's Psychomotor Battery (BPM). This was a descriptive cross-sectional comparative study. The sample consisted of two groups, each group composed of 15 children between 7 and 9 years old belonging to public…

  5. The Effects of Shared Information on Pilot-Controller Situation Awareness And Re-Route Negotiation

    NASA Technical Reports Server (NTRS)

    Farley, Todd C.; Hansman, R. John; Endsley, Mica R.; Amonlirdviman, Keith

    1999-01-01

    The effect of shared information is assessed in terms of pilot-controller negotiating behavior and shared situation awareness. Pilot goals and situation awareness requirements are developed and compared against those of air traffic controllers to identify areas of common and competing interest. An exploratory, part-task simulator experiment is described which evaluates the extent to which shared information may lead pilots and controllers to cooperate or compete when negotiating route amendments. Results are presented which indicate that shared information enhances situation awareness and can engender more collaborative interaction between pilots and air traffic controllers. Furthermore, the value of providing controllers with a good-quality weather overlay on their plan view displays is demonstrated. Observed improvements in situation awareness and separation assurance are discussed.

  6. A Pilot Model for the NASA Simplified Aid for EVA Rescue (SAFER) (Single-Axis Pitch Task)

    NASA Astrophysics Data System (ADS)

    Handley, Patrick Mark

    This thesis defines, tests, and validates a descriptive pilot model for a single-axis pitch control task of the Simplified Aid for EVA Rescue (SAFER). SAFER is a small propulsive jetpack used by astronauts for self-rescue. Pilot model research supports development of improved self-rescue strategies and technologies through insights into pilot behavior.This thesis defines a multi-loop pilot model. The innermost loop controls the hand controller, the middle loop controls pitch rate, and the outer loop controls pitch angle. A human-in-the-loop simulation was conducted to gather data from a human pilot. Quantitative and qualitative metrics both indicate that the model is an acceptable fit to the human data. Fuel consumption was nearly identical; time to task completion matched very well. There is some evidence that the model responds faster to initial pitch rates than the human, artificially decreasing the model's time to task completion. This pilot model is descriptive, not predictive, of the human pilot. Insights are made into pilot behavior from this research. Symmetry implies that the human responds to positive and negative initial conditions with the same strategy. The human pilot appears indifferent to pitch angles within 0.5 deg, coasts at a constant pitch rate 1.09 deg/s, and has a reaction delay of 0.1 s.

  7. High-Alpha Research Vehicle (HARV) longitudinal controller: Design, analyses, and simulation resultss

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Hoffler, Keith D.; Proffitt, Melissa S.; Brown, Philip W.; Phillips, Michael R.; Rivers, Robert A.; Messina, Michael D.; Carzoo, Susan W.; Bacon, Barton J.; Foster, John F.

    1994-01-01

    This paper describes the design, analysis, and nonlinear simulation results (batch and piloted) for a longitudinal controller which is scheduled to be flight-tested on the High-Alpha Research Vehicle (HARV). The HARV is an F-18 airplane modified for and equipped with multi-axis thrust vectoring. The paper includes a description of the facilities, a detailed review of the feedback controller design, linear analysis results of the feedback controller, a description of the feed-forward controller design, nonlinear batch simulation results, and piloted simulation results. Batch simulation results include maximum pitch stick agility responses, angle of attack alpha captures, and alpha regulation for full lateral stick rolls at several alpha's. Piloted simulation results include task descriptions for several types of maneuvers, task guidelines, the corresponding Cooper-Harper ratings from three test pilots, and some pilot comments. The ratings show that desirable criteria are achieved for almost all of the piloted simulation tasks.

  8. Pilot vision considerations : the effect of age on binocular fusion time.

    DOT National Transportation Integrated Search

    1966-10-01

    The study provides data regarding the relationship between vision performance and age of the individual. It has direct application to pilot visual tasks with respect to instrument panel displays, and to controller visual tasks in association with rad...

  9. Pilots Rate Augmented Generalized Predictive Control for Reconfiguration

    NASA Technical Reports Server (NTRS)

    Soloway, Don; Haley, Pam

    2004-01-01

    The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.

  10. Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study.

    PubMed

    Rafnsson, Vilhjalmur; Olafsdottir, Eydis; Hrafnkelsson, Jon; Sasaki, Hiroshi; Arnarsson, Arsaell; Jonasson, Fridbert

    2005-08-01

    Aviation involves exposure to ionizing radiation of cosmic origin. The association between lesions of the ocular lens and ionizing radiation is well-known. To investigate whether employment as a commercial airline pilot and the resulting exposure to cosmic radiation is associated with lens opacification. This is a population-based case-control study of 445 men. Lens opacification was classified into 4 types using the World Health Organization simplified grading system. These 4 types, serving as cases, included 71 persons with nuclear cataracts, 102 with cortical lens opacification, 69 with central optical zone involvement, and 32 with posterior subcapsular lens opacification. Control subjects are those with a different type of lens opacification or without lens opacification. Exposure was assessed based on employment time as pilots, annual number of hours flown on each aircraft type, time tables, flight profiles, and individual cumulative radiation doses (in millisieverts) calculated by a software program. Odds ratios were calculated using logistic regression. The odds ratio for nuclear cataract risk among cases and controls was 3.02 (95% confidence interval, 1.44-6.35) for pilots compared with nonpilots, adjusted for age, smoking status, and sunbathing habits. The odds ratio for nuclear cataract associated with estimation of cumulative radiation dose (in millisieverts) to the age of 40 years was 1.06 (95% confidence interval, 1.02-1.10), adjusted for age, smoking status, and sunbathing habits. The association between the cosmic radiation exposure of pilots and the risk of nuclear cataracts, adjusted for age, smoking status, and sunbathing habits, indicates that cosmic radiation may be a causative factor in nuclear cataracts among commercial airline pilots.

  11. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    PubMed

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  12. Terminal Area Procedures for Paired Runways

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Verma, Savita Arora

    2011-01-01

    Parallel runway operations have been found to increase capacity within the National Airspace but poor visibility conditions reduce the use of these operations. The NextGen and SESAR Programs have identified the capacity benefits from increased use of closely-space parallel runway. Previous research examined the concepts and procedures related to parallel runways however, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This simulation study developed and examined the pilot and controller procedures and information requirements for creating aircraft pairs for parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s (+/- 10s error) at a coupling point that was about 12 nmi from the runway threshold. Two variables were explored for the pilot participants: two levels of flight deck automation (current-day flight deck automation and auto speed control future automation) as well as two flight deck displays that assisted in pilot conformance monitoring. The controllers were also provided with automation to help create and maintain aircraft pairs. Results show the operations in this study were acceptable and safe. Subjective workload, when using the pairing procedures and tools, was generally low for both controllers and pilots, and situation awareness was typically moderate to high. Pilot workload was influenced by display type and automation condition. Further research on pairing and off-nominal conditions is required however, this investigation identified promising findings about the feasibility of closely-spaced parallel runway operations.

  13. A Flexible Pilot-Scale Setup for Real-Time Studies in Process Systems Engineering

    ERIC Educational Resources Information Center

    Panjapornpon, Chanin; Fletcher, Nathan; Soroush, Masoud

    2006-01-01

    This manuscript describes a flexible, pilot-scale setup that can be used for training students and carrying out research in process systems engineering. The setup allows one to study a variety of process systems engineering concepts such as design feasibility, design flexibility, control configuration selection, parameter estimation, process and…

  14. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  15. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  16. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  17. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  18. 14 CFR 61.94 - Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Student pilot seeking a sport pilot... Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at... operational control tower in other airspace. (a) A student pilot seeking a sport pilot certificate or a...

  19. An adaptive human response mechanism controlling the V/STOL aircraft. Appendix 3: The adaptive control model of a pilot in V/STOL aircraft control loops. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Kucuk, Senol

    1988-01-01

    Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.

  20. Handling Qualities of a Capsule Spacecraft During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Mueller, Eric R.

    2010-01-01

    A piloted simulation was conducted to study handling qualities for capsule spacecraft entering the Earth s atmosphere. Eight evaluation pilots, including six pilot astronauts, provided Cooper-Harper ratings, workload ratings, and qualitative comments. The simulation began after descending through the atmospheric entry interface point and continued until the drogue parachutes deployed. There were two categories of piloting tasks, both of which required bank angle control. In one task category, the pilot followed a closed-loop bank angle command computed by the backup guidance system to manage g-loads during entry. In the other task category, the pilot used intuitive rules to determine the desired bank angle independently, based on an open-loop schedule of vertical speed, Mach, and total energy specified at several range-to-target gates along the entry trajectory. Pilots were able to accurately track the bank angle guidance commands and steered the capsule toward the recovery site with essentially the same range error as the benchmark autopilot trajectory albeit with substantially higher propellant usage, and the handling qualities for this task were satisfactory. Another key result was that the complex piloting task of atmospheric entry could be performed satisfactorily, even in the presence of large dispersions, by controlling bank angle to follow a simple open-loop schedule.

  1. Air Traffic Controller Performance and Acceptability of Multiple UAS in a Simulated NAS Environment

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Strybel, Thomas; Chiappe, Dan; Morales, Greg; Battiste, Vernol; Shively, Robert Jay

    2014-01-01

    Previously, we showed that air traffic controllers (ATCos) rated UAS pilot verbal response latencies as acceptable when a 1.5 s delay was added to the UAS pilot responses, but a 5 s delay was rated as mostly unacceptable. In the present study we determined whether a 1.5 s added delay in the UAS pilots' verbal communications would affect ATCos interactions with UAS and other conventional aircraft when the number and speed of the UAS were manipulated. Eight radar-certified ATCos participated in this simulation. The ATCos managed a medium altitude sector containing arrival aircraft, en route aircraft, and one to four UAS. The UAS were conducting a surveillance mission and flew at either a "slow" or "fast" speed. We measured both UAS and conventional pilots' verbal communication latencies, and obtained ATCos' acceptability ratings for these latencies. Although the UAS pilot response latencies were longer than those of conventional pilots, the ATCos rated UAS pilot verbal communication latencies to be as acceptable as those of conventional pilots. Because the overall traffic load within the sector was held constant, ATCos only performed slightly worse when multiple UAS were in their sector compared to when only one UAS was in the sector. Implications of these findings for UAS integration in the NAS are discussed.

  2. Conducting pilot and feasibility studies.

    PubMed

    Cope, Diane G

    2015-03-01

    Planning a well-designed research study can be tedious and laborious work. However, this process is critical and ultimately can produce valid, reliable study findings. Designing a large-scale randomized, controlled trial (RCT)-the gold standard in quantitative research-can be even more challenging. Even the most well-planned study potentially can result in issues with research procedures and design, such as recruitment, retention, or methodology. One strategy that may facilitate sound study design is the completion of a pilot or feasibility study prior to the initiation of a larger-scale trial. This article will discuss pilot and feasibility studies, their advantages and disadvantages, and implications for oncology nursing research. 
.

  3. Simulation of Controller Pilot Data Link Communications over VHF Digital Link Mode 3

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Murawski, Robert; Nguyen, Thanh C.; Raghavan, Rajesh S.

    2004-01-01

    The Federal Aviation Administration (FAA) has established an operational plan for the future Air Traffic Management (ATM) system, in which the Controller Pilot Data Link Communications (CPDLC) is envisioned to evolve into digital messaging that will take on an ever increasing role in controller to pilot communications, significantly changing the way the National Airspace System (NAS) is operating. According to FAA, CPDLC represents the first phase of the transition from the current analog voice system to an International Civil Aviation Organization (ICAO) compliant system in which digital communication becomes the alternate and perhaps primary method of routine communication. The CPDLC application is an Air Traffic Service (ATS) application in which pilots and controllers exchange messages via an addressed data link. CPDLC includes a set of clearance, information, and request message elements that correspond to existing phraseology employed by current Air Traffic Control (ATC) procedures. These message elements encompass altitude assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for information. The pilot is provided with the capability to respond to messages, to request clearances and information, to report information, and to declare/rescind an emergency. A 'free text' capability is also provided to exchange information not conforming to defined formats. This paper presents simulated results of the aeronautical telecommunication application Controller Pilot Data Link Communications over VHF Digital Link Mode 3 (VDL Mode 3). The objective of this simulation study was to determine the impact of CPDLC traffic loads, in terms of timely message delivery and capacity of the VDL Mode 3 subnetwork. The traffic model is based on and is used for generating air/ground messages with different priorities. Communication is modeled for the en route domain of the Cleveland Center air traffic (ZOB ARTCC).

  4. Aircraft control forces and EMG activity in a C-130 Hercules during strength-critical maneuvers.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2001-03-01

    The force levels required to operate aircraft controls should be readily generated by pilots, without undue fatigue or exertion. However, maximum pilot applied forces, as specified in aircraft design standards, were empirically derived from the subjective comments of test pilots, and may not be applicable for the majority of pilots. Further, experienced RNZAF Hercules flying instructors have indicated that endurance and fatigue are problems for Hercules pilots. The aim of this study was to quantify aircraft control forces during emergency maneuvers in a Hercules aircraft and compare these forces with design standards. In addition, EMG data were recorded as an indicator of muscle fatigue during flight. Six subjects were tested in a C-130 Hercules aircraft. The maneuvers performed were low-level dynamic flight, one engine-off straight-and-level flight, and a two-engines-off simulated approach. The variables recorded were pilot-applied forces and EMG activity. Left rudder pedal force and vastus lateralis activity were both significantly greater during engine-off maneuvers than during low-level dynamic flight (p < 0.05). Maximum aircraft control forces for all controls were within 10% of the design standards. The mean EMG activity across all muscles and maneuvers was 26% MVC, with a peak of 61% MVC in vastus lateralis during the two-engine-off approach. The median frequency of the vastus lateralis EMG signal decreased 13.0% and 16.0% for the one engine-off and two-engine-off maneuvers, respectively. The forces required to fly a Hercules aircraft during emergency maneuvers are similar to the aircraft design standards. However, the levels of vastus lateralis muscle activation observed during the engine-off maneuvers can be sustained for approximately 1 min only. Thus, if two engines fail more than 1 min before landing, pilots may have to alternate control of the aircraft to share the workload and enable the aircraft to land safely.

  5. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    NASA Technical Reports Server (NTRS)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited effects on pilot manual control behavior and performance.

  6. Prediction and measurement of human pilot dynamic characteristics in a manned rotorcraft simulation

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Reedy, James T.

    1988-01-01

    An analytical and experimental study of the human pilot control strategies in a manned rotorcraft simulation is described. The task simulated involves a low-speed, constant-altitude maneuvering task in which a head-down display is utilized to allow the pilot to track a moving hover point. The efficacy of the display law driving an acceleration symbol is determined and the manner in which the prediction and measurement of pilot/vehicle dynamics can be made part of man/machine system evaluations is demonstrated.

  7. Comparison of flying qualities derived from in-flight and ground-based simulators for a jet-transport airplane for the approach and landing pilot tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.

    1989-01-01

    The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).

  8. Initial Evaluations of LoC Prediction Algorithms Using the NASA Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Stepanyan, Vahram; Barlow, Jonathan; Hardy, Gordon; Dorais, Greg; Poolla, Chaitanya; Reardon, Scott; Soloway, Donald

    2014-01-01

    Flying near the edge of the safe operating envelope is an inherently unsafe proposition. Edge of the envelope here implies that small changes or disturbances in system state or system dynamics can take the system out of the safe envelope in a short time and could result in loss-of-control events. This study evaluated approaches to predicting loss-of-control safety margins as the aircraft gets closer to the edge of the safe operating envelope. The goal of the approach is to provide the pilot aural, visual, and tactile cues focused on maintaining the pilot's control action within predicted loss-of-control boundaries. Our predictive architecture combines quantitative loss-of-control boundaries, an adaptive prediction method to estimate in real-time Markov model parameters and associated stability margins, and a real-time data-based predictive control margins estimation algorithm. The combined architecture is applied to a nonlinear transport class aircraft. Evaluations of various feedback cues using both test and commercial pilots in the NASA Ames Vertical Motion-base Simulator (VMS) were conducted in the summer of 2013. The paper presents results of this evaluation focused on effectiveness of these approaches and the cues in preventing the pilots from entering a loss-of-control event.

  9. Cephalometric risk factors associated with myocardial infarction in patients suffering from obstructive sleep apnea: A pilot case-control study.

    PubMed

    Davoudmanesh, Zeinab; Bayat, Mohamad; Abbasi, Mohsen; Rakhshan, Vahid; Shariati, Mahsa

    2017-01-01

    Obstructive sleep apnea (OSA) and its craniofacial anatomic risk factors might play a role in several cardiovascular diseases, including myocardial infarction (MI). However, there are no data about cephalometric findings among OSA patients with MI. In this pilot case-control study, about 2000 individuals referred to the sleep center were evaluated according to apnea - hypopnea index (AHI) and other inclusion criteria. Included were 62 OSA male patients (AHI > 10), of whom 6 had an MI history. In both control (n = 56) and MI groups (n = 6), 18 cephalometric parameters were traced. Data were analyzed using independent samples t-test. Compared with control OSA patients, OSA patients with MI showed a significantly larger tongue length (p = 0.015). The other cephalometric variables were not significantly different between the two groups. An elongated tongue might be considered a risk factor for MI in OSA patients. The role of other variables remains inconclusive and open to investigation with larger samples (determined based on pilot studies such as this report) collected in longitudinal fashion.

  10. Flight Investigation of the Low-Speed Characteristics of a 45 deg Swept-Wing Fighter-Type Airplane with Blowing Boundary-Layer Control Applied to the Leading- and Trailing-Edge Flaps

    NASA Technical Reports Server (NTRS)

    Quigley, Hervey C.; Anderson, Seth B.; Innis, Robert C.

    1960-01-01

    A flight investigation has been conducted to study how pilots use the high lift available with blowing-type boundary-layer control applied to the leading- and trailing-edge flaps of a 45 deg. swept-wing airplane. The study includes documentation of the low-speed handling qualities as well as the pilots' evaluations of the landing-approach characteristics. All the pilots who flew the airplane considered it more comfortable to fly at low speeds than any other F-100 configuration they had flown. The major improvements noted were the reduced stall speed, the improved longitudinal stability at high lift, and the reduction in low-speed buffet. The study has shown the minimum comfortable landing-approach speeds are between 120.5 and 126.5 knots compared to 134 for the airplane with a slatted leading edge and the same trailing-edge flap. The limiting factors in the pilots' choices of landing-approach speeds were the limits of ability to control flight-path angle, lack of visibility, trim change with thrust, low static directional stability, and sluggish longitudinal control. Several of these factors were found to be associated with the high angles of attack, between 13 deg. and 15 deg., required for the low approach speeds. The angle of attack for maximum lift coefficient was 28 deg.

  11. Evaluation of Two Unique Side Stick Controllers in a Fixed-Base Flight Simulator

    NASA Technical Reports Server (NTRS)

    Mayer, Jann; Cox, Timothy H.

    2003-01-01

    A handling qualities analysis has been performed on two unique side stick controllers in a fixed-base F-18 flight simulator. Each stick, which uses a larger range of motion than is common for similar controllers, has a moving elbow cup that accommodates movement of the entire arm for control. The sticks are compared to the standard center stick in several typical fighter aircraft tasks. Several trends are visible in the time histories, pilot ratings, and pilot comments. The aggressive pilots preferred the center stick, because the side sticks are underdamped, causing overshoots and oscillations when large motions are executed. The less aggressive pilots preferred the side sticks, because of the smooth motion and low breakout forces. The aggressive pilots collectively gave the worst ratings, probably because of increased sensitivity of the simulator (compared to the actual F-18 aircraft), which can cause pilot-induced oscillations when aggressive inputs are made. Overall, the elbow cup is not a positive feature, because using the entire arm for control inhibits precision. Pilots had difficulty measuring their performance, particularly during the offset landing task, and tended to overestimate.

  12. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  13. Synthetic perspective optical flow: Influence on pilot control tasks

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.

    1989-01-01

    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.

  14. Effects of Reiki on Pain, Anxiety, and Blood Pressure in Patients Undergoing Knee Replacement: A Pilot Study.

    PubMed

    Baldwin, Ann Linda; Vitale, Anne; Brownell, Elise; Kryak, Elizabeth; Rand, William

    This blinded, controlled pilot study investigated the effects of Reiki on 46 patients undergoing knee replacement surgery. Of the 3 groups, Reiki, Sham Reiki, and Standard of Care, only the Reiki group showed significant reductions in pain, blood pressure, respiration rate, and state anxiety, which provides evidence for a full-scale clinical study.

  15. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways

    NASA Technical Reports Server (NTRS)

    Kibbee, G. W.

    1978-01-01

    The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.

  16. 77 FR 16232 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): A Pilot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): A Pilot Surveillance for High... in response to ``A Pilot Surveillance for High Impact/Low Prevalence Congenital and Inherited...

  17. Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study.

    PubMed

    Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier

    2016-10-25

    This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the "Florida Secundaria" high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable).

  18. Flight directors for STOl aircraft

    NASA Technical Reports Server (NTRS)

    Rabin, U. H.

    1983-01-01

    Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.

  19. Preliminary Study Using Forward Reaction Control System Jets During Space Shuttle Entry

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; Valasek, John

    2006-01-01

    Failure or degradation of the flight control system, or hull damage, can lead to loss of vehicle control during entry. Possible failure scenarios are debris impact and wing damage that could result in a large aerodynamic asymmetry which cannot be trimmed out without additional yaw control. Currently the space shuttle uses aerodynamic control surfaces and Reaction Control System jets to control attitude. The forward jets are used for orbital maneuvering only, while the aft jets are used for yaw control during entry. This paper develops a controller for using the forward reaction control system jets as an additional control during entry, and assesses its value and feasibility during failure situations. Forward-aft jet blending logic is created, and implemented on a simplified model of the space shuttle entry flight control system. The model is validated and verified on the nonlinear, six degree-of-freedom Shuttle Engineering Simulator. A rudimentary human factors study was undertaken using the forward cockpit simulator at Johnson Space Center, to assess flying qualities of the new system and pilot workload. Results presented in the paper show that the combination of forward and aft jets provides useful additional yaw control, in addition to potential fuel savings and the ability to balance the use of the fuel in the forward and aft tanks to meet availability constraints of both forward and aft fuel tanks. Piloted simulation studies indicated that using both sets of jets while flying a damaged space shuttle reduces pilot workload, and makes the vehicle more responsive.

  20. Flight simulation using a Brain-Computer Interface: A pilot, pilot study.

    PubMed

    Kryger, Michael; Wester, Brock; Pohlmeyer, Eric A; Rich, Matthew; John, Brendan; Beaty, James; McLoughlin, Michael; Boninger, Michael; Tyler-Kabara, Elizabeth C

    2017-01-01

    As Brain-Computer Interface (BCI) systems advance for uses such as robotic arm control it is postulated that the control paradigms could apply to other scenarios, such as control of video games, wheelchair movement or even flight. The purpose of this pilot study was to determine whether our BCI system, which involves decoding the signals of two 96-microelectrode arrays implanted into the motor cortex of a subject, could also be used to control an aircraft in a flight simulator environment. The study involved six sessions in which various parameters were modified in order to achieve the best flight control, including plane type, view, control paradigm, gains, and limits. Successful flight was determined qualitatively by evaluating the subject's ability to perform requested maneuvers, maintain flight paths, and avoid control losses such as dives, spins and crashes. By the end of the study, it was found that the subject could successfully control an aircraft. The subject could use both the jet and propeller plane with different views, adopting an intuitive control paradigm. From the subject's perspective, this was one of the most exciting and entertaining experiments she had performed in two years of research. In conclusion, this study provides a proof-of-concept that traditional motor cortex signals combined with a decoding paradigm can be used to control systems besides a robotic arm for which the decoder was developed. Aside from possible functional benefits, it also shows the potential for a new recreational activity for individuals with disabilities who are able to master BCI control. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Novel Estimation of Pilot Performance Characteristics

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward N.; Aponso, Bimal

    2017-01-01

    Two mechanisms internal to the pilot that affect performance during a tracking task are: 1) Pilot equalization (i.e. lead/lag); and 2) Pilot gain (i.e. sensitivity to the error signal). For some applications McRuer's Crossover Model can be used to anticipate what equalization will be employed to control a vehicle's dynamics. McRuer also established approximate time delays associated with different types of equalization - the more cognitive processing that is required due to equalization difficulty, the larger the time delay. However, the Crossover Model does not predict what the pilot gain will be. A nonlinear pilot control technique, observed and coined by the authors as 'amplitude clipping', is shown to improve stability, performance, and reduce workload when employed with vehicle dynamics that require high lead compensation by the pilot. Combining linear and nonlinear methods a novel approach is used to measure the pilot control parameters when amplitude clipping is present, allowing precise measurement in real time of key pilot control parameters. Based on the results of an experiment which was designed to probe workload primary drivers, a method is developed that estimates pilot spare capacity from readily observable measures and is tested for generality using multi-axis flight data. This paper documents the initial steps to developing a novel, simple objective metric for assessing pilot workload and its variation over time across a wide variety of tasks. Additionally, it offers a tangible, easily implementable methodology for anticipating a pilot's operating parameters and workload, and an effective design tool. The model shows promise in being able to precisely predict the actual pilot settings and workload, and observed tolerance of pilot parameter variation over the course of operation. Finally, an approach is proposed for generating Cooper-Harper ratings based on the workload and parameter estimation methodology.

  2. Shopper marketing nutrition interventions: Social norms on grocery carts increase produce spending without increasing shopper budgets.

    PubMed

    Payne, Collin R; Niculescu, Mihai; Just, David R; Kelly, Michael P

    2015-01-01

    We assessed the efficacy of an easy-to-implement shopper marketing nutrition intervention in a pilot and two additional studies to increase produce demand without decreasing store profitability or increasing shopper budgets. We created grocery cart placards that detailed the number of produce items purchased (i.e., descriptive norm) at particular stores (i.e., provincial norm). The effect of these placards on produce spending was assessed across 971,706 individual person grocery store transactions aggregated by day. The pilot study designated a baseline period (in both control and intervention store) followed by installation of grocery cart placards (in the intervention store) for two weeks. The pilot study was conducted in Texas in 2012. In two additional stores, we designated baseline periods followed by 28 days of the same grocery cart placard intervention as in the pilot. Additional interventions were conducted in New Mexico in 2013. The pilot study resulted in a significant difference between average produce spending per day per person across treatment periods (i.e., intervention versus same time period in control) (16%) and the difference between average produce spending per day per person across stores in the control periods (4%); Furthermore, the same intervention in two additional stores resulted in significant produce spending increases of 12.4% and 7.5% per day per person respectively. In all stores, total spending did not change. Descriptive and provincial social norm messages (i.e., on grocery cart placards) may be an overlooked tool to increase produce demand without decreasing store profitability and increasing shopper budgets.

  3. Shopper marketing nutrition interventions: Social norms on grocery carts increase produce spending without increasing shopper budgets☆

    PubMed Central

    Payne, Collin R.; Niculescu, Mihai; Just, David R.; Kelly, Michael P.

    2015-01-01

    Objectives We assessed the efficacy of an easy-to-implement shopper marketing nutrition intervention in a pilot and two additional studies to increase produce demand without decreasing store profitability or increasing shopper budgets. Methods We created grocery cart placards that detailed the number of produce items purchased (i.e., descriptive norm) at particular stores (i.e., provincial norm). The effect of these placards on produce spending was assessed across 971,706 individual person grocery store transactions aggregated by day. The pilot study designated a baseline period (in both control and intervention store) followed by installation of grocery cart placards (in the intervention store) for two weeks. The pilot study was conducted in Texas in 2012. In two additional stores, we designated baseline periods followed by 28 days of the same grocery cart placard intervention as in the pilot. Additional interventions were conducted in New Mexico in 2013. Results The pilot study resulted in a significant difference between average produce spending per day per person across treatment periods (i.e., intervention versus same time period in control) (16%) and the difference between average produce spending per day per person across stores in the control periods (4%); Furthermore, the same intervention in two additional stores resulted in significant produce spending increases of 12.4% and 7.5% per day per person respectively. In all stores, total spending did not change. Conclusions Descriptive and provincial social norm messages (i.e., on grocery cart placards) may be an overlooked tool to increase produce demand without decreasing store profitability and increasing shopper budgets. PMID:26844084

  4. STS-28 Columbia, OV-102, Pilot Richards at forward flight deck pilots station

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Pilot Richard N. Richards, sitting at forward flight deck pilots station controls, looks back to aft flight deck during STS-28, a Department of Defense (DOD) dedicated mission. Control panels F7 and F8 and portable laptop computer propped on panel F4 appear in front of Richards. Behind him are the pilots seat seat back and head rest. A stuffed toy animal is positioned on C1 panel.

  5. Pilot Critical Incident Reports as a Means to Identify Human Factors of Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Cardoza, Colleen; Null, Cynthia

    2016-01-01

    It has been estimated that aviation accidents are typically preceded by numerous minor incidents arising from the same causal factors that ultimately produced the accident. Accident databases provide in-depth information on a relatively small number of occurrences, however incident databases have the potential to provide insights into the human factors of Remotely Piloted Aircraft System (RPAS) operations based on a larger volume of less-detailed reports. Currently, there is a lack of incident data dealing with the human factors of unmanned aircraft systems. An exploratory study is being conducted to examine the feasibility of collecting voluntary critical incident reports from RPAS pilots. Twenty-three experienced RPAS pilots volunteered to participate in focus groups in which they described critical incidents from their own experience. Participants were asked to recall (1) incidents that revealed a system flaw, or (2) highlighted a case where the human operator contributed to system resilience or mission success. Participants were asked to only report incidents that could be included in a public document. During each focus group session, a note taker produced a de-identified written record of the incident narratives. At the end of the session, participants reviewed each written incident report, and made edits and corrections as necessary. The incidents were later analyzed to identify contributing factors, with a focus on design issues that either hindered or assisted the pilot during the events. A total of 90 incidents were reported. Human factor issues included the impact of reduced sensory cues, traffic separation in the absence of an out-the-window view, control latencies, vigilance during monotonous and ultra-long endurance flights, control station design considerations, transfer of control between control stations, the management of lost link procedures, and decision-making during emergencies. Pilots participated willingly and enthusiastically in the study, and generally had little difficulty recalling critical incidents. The results suggest that pilot interviews can be a productive method of gathering information on incidents that might not otherwise be reported. Some of the issues described in the reports have received significant attention in the literature, or are analogous to human factors of manned aircraft. In other cases, incident reports involved human factors that are poorly understood, and have not yet been the subject of extensive study. Although many of the reported incidents were related to pilot error, the participants also provided examples of the positive contribution that humans make to the operation of highly-automated systems.

  6. Mindfulness for Teachers: A Pilot Study to Assess Effects on Stress, Burnout, and Teaching Efficacy

    ERIC Educational Resources Information Center

    Flook, Lisa; Goldberg, Simon B.; Pinger, Laura; Bonus, Katherine; Davidson, Richard J.

    2013-01-01

    Despite the crucial role of teachers in fostering children's academic learning and social-emotional well-being, addressing teacher stress in the classroom remains a significant challenge in education. This study reports results from a randomized controlled pilot trial of a modified Mindfulness-Based Stress Reduction course (mMBSR) adapted…

  7. Managing Emotion in a Maltreating Context: A Pilot Study Examining Child Neglect

    ERIC Educational Resources Information Center

    Shipman, Kimberly; Edwards, Anna; Brown, Amy; Swisher, Lisa; Jennings, Ernestine

    2005-01-01

    Objective: The primary goal of this pilot study was to examine emotion management skills (i.e., emotional understanding, emotion regulation) in children who had experienced neglect and a control group to determine the ways that neglect may interfere with children's emotional development. Method: Participants included children 6-12 years of age and…

  8. Enabling CSPA Operations Through Pilot Involvement in Longitudinal Approach Spacing

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol (Technical Monitor); Pritchett, Amy

    2003-01-01

    Several major airports around the United States have, or plan to have, closely-spaced parallel runways. This project complemented current and previous research by examining the pilots ability to control their position longitudinally within their approach stream.This project s results considered spacing for separation from potential positions of wake vortices from the parallel approach. This preventive function could enable CSPA operations to very closely spaced runways. This work also considered how pilot involvement in longitudinal spacing could allow for more efficient traffic flow, by allowing pilots to keep their aircraft within tighter arrival slots then air traffic control (ATC) might be able to establish, and by maintaining space within the arrival stream for corresponding departure slots. To this end, this project conducted several research studies providing an analytic and computational basis for calculating appropriate aircraft spacings, experimental results from a piloted flight simulator test, and an experimental testbed for future simulator tests. The following sections summarize the results of these three efforts.

  9. Launch Vehicle Manual Steering with Adaptive Augmenting Control:In-Flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.

    2015-01-01

    An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.

  10. Dietary Effects on Cognition and Pilots’ Flight Performance

    PubMed Central

    Lindseth, Glenda N.; Lindseth, Paul D.; Jensen, Warren C.; Petros, Thomas V.; Helland, Brian D.; Fossum, Debra L.

    2017-01-01

    The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg’s mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer (p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets. PMID:29353985

  11. Justification for, and design of, an economical programmable multiple flight simulator

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Wittenber, J.; Macdonald, G.

    1981-01-01

    The considered research interests in air traffic control (ATC) studies revolve about the concept of distributed ATC management based on the assumption that the pilot has a cockpit display of traffic and navigation information (CDTI) via CRT graphics. The basic premise is that a CDTI equipped pilot can, in coordination with a controller, manage a part of his local traffic situation thereby improving important aspects of ATC performance. A modularly designed programmable flight simulator system is prototyped as a means of providing an economical facility of up to eight simulators to interface with a mainframe/graphics system for ATC experimentation, particularly CDTI-distributed management in which pilot-pilot interaction can have a determining effect on system performance. Need for a multiman simulator facility is predicted on results from an earlier three simulator facility.

  12. Experience with a three-axis side-located controller during a static and centrifuge simulation of the piloted launch of a manned multistage vehicle

    NASA Technical Reports Server (NTRS)

    Andrews, William H.; Holleman, Euclid C.

    1960-01-01

    An investigation was conducted to determine a human pilot's ability to control a multistage vehicle through the launch trajectory. The simulation was performed statically and dynamically by utilizing a human centrifuge. An interesting byproduct of the program was the three-axis side-located controller incorporated for pilot control inputs. This method of control proved to be acceptable for the successful completion of the tracking task during the simulation. There was no apparent effect of acceleration on the mechanical operation of the controller, but the pilot's control feel deteriorated as his dexterity decreased at high levels of acceleration. The application of control in a specific control mode was not difficult. However, coordination of more than one mode was difficult, and, in many instances, resulted in inadvertent control inputs. The acceptable control harmony at an acceleration level of 1 g became unacceptable at higher acceleration levels. Proper control-force harmony for a particular control task appears to be more critical for a three-axis controller than for conventional controllers. During simulations in which the pilot wore a pressure suit, the nature of the suit gloves further aggravated this condition.

  13. Stress training improves performance during a stressful flight.

    PubMed

    McClernon, Christopher K; McCauley, Michael E; O'Connor, Paul E; Warm, Joel S

    2011-06-01

    This study investigated whether stress training introduced during the acquisition of simulator-based flight skills enhances pilot performance during subsequent stressful flight operations in an actual aircraft. Despite knowledge that preconditions to aircraft accidents can be strongly influenced by pilot stress, little is known about the effectiveness of stress training and how it transfers to operational flight settings. For this study, 30 participants with no flying experience were assigned at random to a stress-trained treatment group or a control group. Stress training consisted of systematic pairing of skill acquisition in a flight simulator with stress coping mechanisms in the presence of a cold pressor. Control participants received identical flight skill acquisition training but without stress training. Participants then performed a stressful flying task in a Piper Archer aircraft. Stress-trained research participants flew the aircraft more smoothly, as recorded by aircraft telemetry data, and generally better, as recorded by flight instructor evaluations, than did control participants. Introducing stress coping mechanisms during flight training improved performance in a stressful flying task. The results of this study indicate that stress training during the acquisition of flight skills may serve to enhance pilot performance in stressful operational flight and, therefore, might mitigate the contribution of pilot stress to aircraft mishaps.

  14. Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.

    2012-01-01

    This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.

  15. Fixed-Base Simulator Studies of the Ability of the Human Pilot to Provide Energy Management Along Abort and Deep-Space Entry Trajectories

    NASA Technical Reports Server (NTRS)

    Young, J. W.; Goode, M. W.

    1962-01-01

    A simulation study has been made to determine a pilot's ability to control a low L/D vehicle to a desired point on the earth with initial conditions ranging from parabolic orbits to abort conditions along the boost phase of a deep-space mission. The program was conducted to develop procedures which would allow the pilot to perform the energy management functions required while avoiding the high deceleration or skipout region and to determine the information display required to aid the pilot in flying these procedures. The abort conditions studied extend from a region of relatively high flight-path angles at suborbital velocities while leaving the atmosphere to a region between orbital and near-escape velocity outside the atmosphere. The conditions studied included guidance from suborbital and superorbital aborts as well as guidance following return from a deepspace mission. In this paper, the role of the human pilot?s ability to combine safe return abort procedures with guidance procedures has been investigated. The range capability from various abort and entry conditions is also presented.

  16. Pilot error in air carrier accidents: does age matter?

    PubMed

    Li, Guohua; Grabowski, Jurek G; Baker, Susan P; Rebok, George W

    2006-07-01

    The relationship between pilot age and safety performance has been the subject of research and controversy since the "Age 60 Rule" became effective in 1960. This study aimed to examine age-related differences in the prevalence and patterns of pilot error in air carrier accidents. Investigation reports from the National Transportation Safety Board for accidents involving Part 121 operations in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Accident circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Of the 558 air carrier accidents studied, 25% resulted from turbulence, 21% from mechanical failure, 16% from taxiing events, 13% from loss of control at landing or takeoff, and 25% from other causes. Accidents involving older pilots were more likely to be caused by turbulence, whereas accidents involving younger pilots were more likely to be taxiing events. Pilot error was a contributing factor in 34%, 38%, 35%, and 34% of the accidents involving pilots ages 25-34 yr, 35-44 yr, 45-54 yr, and 55-59 yr, respectively (p = 0.87). The patterns of pilot error were similar across age groups. Overall, 26% of the pilot errors identified were inattentiveness, 22% flawed decisions, 22% mishandled aircraft kinetics, and 11% poor crew interactions. The prevalence and patterns of pilot error in air carrier accidents do not seem to change with pilot age. The lack of association between pilot age and error may be due to the "safe worker effect" resulting from the rigorous selection processes and certification standards for professional pilots.

  17. Stall Recovery Guidance Algorithms Based on Constrained Control Approaches

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana

    2016-01-01

    Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.

  18. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  19. Human Factors of Remotely Piloted Aircraft Systems: Lessons from Incident Reports

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Null, Cynthia

    2016-01-01

    An exploratory study is being conducted to examine the feasibility of collecting voluntary critical incident reports from RPAS pilots. Twenty-three experienced RPAS pilots volunteered to participate in focus groups in which they described critical incidents from their own experience. Participants were asked to recall (1) incidents that revealed a system flaw, or (2) highlighted a case where the human operator contributed to system resilience or mission success. Participants were asked to only report incidents that could be included in a public document. A total of 90 incidents were reported. Human factor issues included the impact of reduced sensory cues, traffic separation in the absence of an out-the-window view, control latencies, vigilance during monotonous and ultra-long endurance flights, control station design considerations, transfer of control between control stations, the management of lost link procedures, and decision-making during emergencies.

  20. A Play and Joint Attention Intervention for Teachers of Young Children with Autism: A Randomized Controlled Pilot Study

    ERIC Educational Resources Information Center

    Wong, Connie S.

    2013-01-01

    The aim of this study was to pilot test a classroom-based intervention focused on facilitating play and joint attention for young children with autism in self-contained special education classrooms. Thirty-three children with autism between the ages of 3 and 6 years participated in the study with their classroom teachers (n = 14). The 14 preschool…

  1. Pilot age and expertise predict flight simulator performance: a 3-year longitudinal study.

    PubMed

    Taylor, Joy L; Kennedy, Quinn; Noda, Art; Yesavage, Jerome A

    2007-02-27

    Expert knowledge may compensate for age-related declines in basic cognitive and sensory-motor abilities in some skill domains. We investigated the influence of age and aviation expertise (indexed by Federal Aviation Administration pilot ratings) on longitudinal flight simulator performance. Over a 3-year period, 118 general aviation pilots aged 40 to 69 years were tested annually, in which their flight performance was scored in terms of 1) executing air-traffic controller communications; 2) traffic avoidance; 3) scanning cockpit instruments; 4) executing an approach to landing; and 5) a flight summary score. More expert pilots had better flight summary scores at baseline and showed less decline over time. Secondary analyses revealed that expertise effects were most evident in the accuracy of executing aviation communications, the measure on which performance declined most sharply over time. Regarding age, even though older pilots initially performed worse than younger pilots, over time older pilots showed less decline in flight summary scores than younger pilots. Secondary analyses revealed that the oldest pilots did well over time because their traffic avoidance performance improved more vs younger pilots. These longitudinal findings support previous cross-sectional studies in aviation as well as non-aviation domains, which demonstrated the advantageous effect of prior experience and specialized expertise on older adults' skilled cognitive performances.

  2. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows both astronauts reviewing procedures and checking CRT screen data.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lea, C.S.; Selvin, S.; Buffler, P.A.

    This pilot study uses a unique method to calculate cumulative lifetime exposure to, ultraviolet radiation-b to determine if this refined method would indicate differences in lifetime cumulative UVB exposure between age and sex matched controls. Forty-four age and sex matched cases and controls demonstrated no significant difference in mean cumulative lifetime UVB exposure based on the duration and location of residence. This pilot study suggests that further analysis of the dataset should be conducted to determine if the cumulative lifetime exposure hypothesis is of primary importance regarding the association between UVB exposure and development of cutaneous malignant melanoma.

  4. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

    2014-01-01

    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  5. Characterization of Pilot Technique

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Aponso, Bimal; Godfroy, Martine

    2017-01-01

    Skilled pilots often use pulse control when controlling higher order (i.e. acceleration-command) vehicle dynamics. Pulsing does not produce a stick response that resembles what the human Crossover Model predicts. The Crossover Model (CM) assumes the pilot provides compensation necessary (lead or lag) such that the suite of display-human-vehicle approximates an integrator in the region of crossover frequency. However, it is shown that the CM does appear to drive the pilots pulsing behavior in a very predictable manner. Roughly speaking, the pilot generates pulses such that the area under the pulse (pulse amplitude multiplied by pulse width) is approximately equal to area under the hypothetical CM output. This can allow a pilot to employ constant amplitude pulsing so that only the pulse duration (width) is modulated a drastic simplification over the demands of continuous tracking. A pilot pulse model is developed, with which the parameters of the pilots internally-generated CM can be computed in real time for pilot monitoring and display compensation. It is also demonstrated that pursuit tracking may be activated when pulse control is employed.

  6. Pilot age and error in air taxi crashes.

    PubMed

    Rebok, George W; Qiang, Yandong; Baker, Susan P; Li, Guohua

    2009-07-01

    The associations of pilot error with the type of flight operations and basic weather conditions are well documented. The correlation between pilot characteristics and error is less clear. This study aims to examine whether pilot age is associated with the prevalence and patterns of pilot error in air taxi crashes. Investigation reports from the National Transportation Safety Board for crashes involving non-scheduled Part 135 operations (i.e., air taxis) in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Crash circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Of the 1751 air taxi crashes studied, 28% resulted from mechanical failure, 25% from loss of control at landing or takeoff, 7% from visual flight rule conditions into instrument meteorological conditions, 7% from fuel starvation, 5% from taxiing, and 28% from other causes. Crashes among older pilots were more likely to occur during the daytime rather than at night and off airport than on airport. The patterns of pilot error in air taxi crashes were similar across age groups. Of the errors identified, 27% were flawed decisions, 26% were inattentiveness, 23% mishandled aircraft kinetics, 15% mishandled wind and/or runway conditions, and 11% were others. Pilot age is associated with crash circumstances but not with the prevalence and patterns of pilot error in air taxi crashes. Lack of age-related differences in pilot error may be attributable to the "safe worker effect."

  7. Flight test experience and controlled impact of a remotely piloted jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Horton, Timothy W.; Kempel, Robert W.

    1988-01-01

    The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

  8. Cognitive Behavioral Therapy for Management of Dyspnea: A Pilot Study.

    PubMed

    Williams, Marie T; Cafarella, Paul; Paquet, Catherine; Frith, Peter

    2015-09-01

    In patients with COPD, psychological interventions usually target generalized anxiety and depression rather than the sensation of breathlessness. The objectives of this pilot study were to develop and implement a cognitive behavioral therapy (CBT) program specific to the perceptual experience of breathlessness, identify practical issues in the study protocol, and estimate beneficial effects of combining the CBT program with comprehensive pulmonary rehabilitation. The CBT program for the sensation of breathlessness (Breathing: Recognize sensations, Explore thoughts and beliefs, Validate thoughts as useful or harmful, Evolve and change behavior [BREVE]) was developed as a sequential series of 8 modules enabling it to be embedded within an 8-week comprehensive pulmonary rehabilitation program. When appropriate, outcomes from the pilot group (comprehensive pulmonary rehabilitation program + BREVE) were compared with those from a retrospective control group (comprehensive pulmonary rehabilitation program only). Outcomes included feedback provided by pilot study subjects, sensation of breathlessness (volunteered and endorsed descriptors of breathlessness), 6-min walk distance (6MWD), and St George Respiratory Questionnaire (SGRQ) total score. Within-group analyses were undertaken for descriptors of breathlessness (the McNemar test), whereas between-group analyses (repeated-measures analysis of variance, effect-size comparison) were conducted for the 6MWD and SGRQ total score. Pilot (n = 11) and control (n = 58) groups were not significantly different at baseline. Feedback indicated that the program structure and content were positively received. No significant changes were evident for the sensation of breathlessness or the SGRQ score (< 4 points). The 6MWD improved significantly in both groups, with the pilot group demonstrating greater gains compared with the control group (mean change of 57 m and effect size of 0.73 vs mean change of 27 m and effect size of 0.23; between groups, P = .03, effect size of 0.69). The CBT program for the perceptual experience of breathlessness was feasible and well accepted by subjects, although the protocol raised a number of methodological limitations warranting modification. A larger randomized controlled trial is needed to determine the effectiveness and longer-term outcomes. Copyright © 2015 by Daedalus Enterprises.

  9. Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study

    PubMed Central

    Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier

    2016-01-01

    This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the “Florida Secundaria” high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable). PMID:27792132

  10. Parent Perception of Two Eye-Gaze Control Technology Systems in Young Children with Cerebral Palsy: Pilot Study.

    PubMed

    Karlsson, Petra; Wallen, Margaret

    2017-01-01

    Eye-gaze control technology enables people with significant physical disability to access computers for communication, play, learning and environmental control. This pilot study used a multiple case study design with repeated baseline assessment and parents' evaluations to compare two eye-gaze control technology systems to identify any differences in factors such as ease of use and impact of the systems for their young children. Five children, aged 3 to 5 years, with dyskinetic cerebral palsy, and their families participated. Overall, families were satisfied with both the Tobii PCEye Go and myGaze® eye tracker, found them easy to position and use, and children learned to operate them quickly. This technology provides young children with important opportunities for learning, play, leisure, and developing communication.

  11. 75 FR 43395 - Airworthiness Directives; Aircraft Industries a.s. Model L 23 Super Blanik Gliders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... elevator in place and in jamming of the Pilot's elevator control system, and subsequent loss of elevator... elevator in place and in jamming of the Pilot's elevator control system, and subsequent loss of elevator... retaining the elevator in place and in jamming of the Pilot's elevator control system, and subsequent loss...

  12. Closed-loop, pilot/vehicle analysis of the approach and landing task

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.; Anderson, M. R.

    1985-01-01

    Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.

  13. Evaluation of temporary traffic signals in conjunction with pilot car operations at two-way long temporary work zones.

    DOT National Transportation Integrated Search

    2016-05-01

    The primary objective of this study was to evaluate the use of Portable Traffic Signal (PTS) systems at long, rural : two-lane work zones and to compare three different conditions for controlling one-lane traffic in conjunction with pilot car : opera...

  14. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1981-01-01

    The role of the pilot and crew for future aircraft is discussed. Fifteen formal experimental studies and the development of a variety of models of human behavior based on queueing history, pattern recognition methods, control theory, fuzzy set theory, and artificial intelligence concepts are presented. L.F.M.

  15. The Use of Biofeedback in Treating the Self-Mutilative Behaviors of a Child with Lesch-Nyhan Syndrome: A Pilot Study.

    ERIC Educational Resources Information Center

    Carmen, Jeffrey A.; And Others

    The pilot study focused on the effective design of adaptive biofeedback equipment for use in the control of self-mutilating behaviors in individuals with Lesch-Nyhan syndrome, typically characterized by apasticity, mental retardation, and violent biting of the lips and fingers. Utilizing an electromyographic (EMG) monitor and a custom-designed…

  16. Fear of Negative Evaluation Influences Eye Gaze in Adolescents with Autism Spectrum Disorder: A Pilot Study

    ERIC Educational Resources Information Center

    White, Susan W.; Maddox, Brenna B.; Panneton, Robin K.

    2015-01-01

    Social anxiety is common among adolescents with Autism Spectrum Disorder (ASD). In this modest-sized pilot study, we examined the relationship between social worries and gaze patterns to static social stimuli in adolescents with ASD (n = 15) and gender-matched adolescents without ASD (control; n = 18). Among cognitively unimpaired adolescents with…

  17. Need for Achievement, Curiosity and Sense of Control: Pilot Study for a Large-Scale Investigation.

    ERIC Educational Resources Information Center

    Greenberger, Ellen; Entwisle, Doris R.

    The introduction reviews a number of findings and problems in the measurement of achievement motivation and raises some questions concerning the possible friction between motivation to achieve and curiosity. Subjects for the two pilot studies es were ninth graders of average (95-113) and high IQ (128 +) from a predominantly upper middle-class…

  18. A Pilot Study of a Culturally Adapted Early Intervention for Young Children with Autism Spectrum Disorders in China

    ERIC Educational Resources Information Center

    Xu, Yun; Yang, Jian; Yao, Jing; Chen, Jun; Zhuang, Xiangxiang; Wang, Wenxiang; Zhang, Xiaoli; Lee, Gabrielle T.

    2018-01-01

    The purpose of this study was to pilot test the effects of a culturally adapted early intervention influenced by the Early Start Denver Model (ESDM) on reduction of autism symptoms and severity categorization for young children with autism spectrum disorders in China. Participants were randomly assigned to either the control or intervention…

  19. Virtual reality flight control display with six-degree-of-freedom controller and spherical orientation overlay

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C. (Inventor)

    1995-01-01

    A virtual reality flight control system displays to the pilot the image of a scene surrounding a vehicle or pod having six degrees of freedom of acceleration or velocity control by the pilot and traveling through inertial space, the image itself including a superimposed figure providing the pilot an instant reference of orientation consisting of superimposed sets of geometric figures whose relative orientations provide the pilot an instantaneous feel or sense of orientation changes with respect to some fixed coordinate system. They include a first set of geometric figures whose orientations are fixed to the pilot's vehicle and a second set of geometric figures whose orientations are fixed with respect to a fixed or interstellar coordinate system. The first set of figures is a first set of orthogonal great circles about the three orthogonal axes of the flight vehicle or pod and centered at and surrounding the pilot's head, while the second set of figures is a second set of orthogonal great circles about the three orthogonal axes of a fixed or interstellar coordinate system, also centered at and surrounding the pilot's head.

  20. Wetware, Hardware, or Software Incapacitation: Observational Methods to Determine When Autonomy Should Assume Control

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2014-01-01

    Control-theoretic modeling of human operator's dynamic behavior in manual control tasks has a long, rich history. There has been significant work on techniques used to identify the pilot model of a given structure. This research attempts to go beyond pilot identification based on experimental data to develop a predictor of pilot behavior. Two methods for pre-dicting pilot stick input during changing aircraft dynamics and deducing changes in pilot behavior are presented This approach may also have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot. With this ability to detect changes in piloting behavior, the possibility now exists to mediate human adverse behaviors, hardware failures, and software anomalies with autono-my that may ameliorate these undesirable effects. However, appropriate timing of when au-tonomy should assume control is dependent on criticality of actions to safety, sensitivity of methods to accurately detect these adverse changes, and effects of changes in levels of auto-mation of the system as a whole.

  1. A simulation evaluation of a pilot interface with an automatic terminal approach system

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1987-01-01

    The pilot-machine interface with cockpit automation is a critical factor in achieving the benefits of automation and reducing pilot blunders. To improve this interface, an automatic terminal approach system (ATAS) was conceived that can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane radios and control an airplane autopilot and autothrottle. The emphasis in the ATAS concept is a reduction in pilot blunders and work load by improving the pilot-automation interface. A research prototype of an ATAS was developed and installed in the Langley General Aviation Simulator. A piloted simulation study of the ATAS concept showed fewer pilot blunders, but no significant change in work load, when compared with a baseline heading-select autopilot mode. With the baseline autopilot, pilot blunders tended to involve loss of navigational situational awareness or instrument misinterpretation. With the ATAS, pilot blunders tended to involve a lack of awareness of the current ATAS mode state or deficiencies in the pilots' mental model of how the system operated. The ATAS display provided adequate approach status data to maintain situational awareness.

  2. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    NASA Technical Reports Server (NTRS)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  3. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.

    2015-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.

  4. The Cognitive Challenges of Flying a Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Cardoza, Colleen; Null, Cynthia

    2016-01-01

    A large variety of Remotely Piloted Aircraft (RPA) designs are currently in production or in development. These aircraft range from small electric quadcopters that are flown close to the ground within visual range of the operator, to larger systems capable of extended flight in airspace shared with conventional aircraft. Before RPA can operate routinely and safely in civilian airspace, we need to understand the unique human factors associated with these aircraft. The task of flying an RPA in civilian airspace involves challenges common to the operation of other highly-automated systems, but also introduces new considerations for pilot perception, decision-making, and action execution. RPA pilots participated in focus groups where they were asked to recall critical incidents that either presented a threat to safety, or highlighted a case where the pilot contributed to system resilience or mission success. Ninety incidents were gathered from focus-groups. Human factor issues included the impact of reduced sensory cues, traffic separation in the absence of an out-the-window view, control latencies, vigilance during monotonous and ultra-long endurance flights, control station design considerations, transfer of control between control stations, the management of lost link procedures, and decision-making during emergencies. Some of these concerns have received significant attention in the literature, or are analogous to human factors of manned aircraft. The presentation will focus on issues that are poorly understood, and have not yet been the subject of extensive human factors study. Although many of the reported incidents were related to pilot error, the participants also provided examples of the positive contribution that humans make to the operation of highly-automated systems.

  5. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    NASA Astrophysics Data System (ADS)

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight regime. An energy management system was developed in order to manage performance limits (namely power required) to promote carefree maneuvering and alleviate pilot workload. This system features limits on pilot commands and has additional logic for preserving control margins and limiting maximum speed in a dive. Nonlinear dynamic inversion (NLDI) is the framework of the unified controller, which incorporates primary and redundant controls. The inner loop of the NLDI controller regulates bank angle, pitch attitude, and yaw rate, while the outer loop command structure is varied (three modes). One version uses an outer loop that commands velocities in the longitudinal and vertical axes (velocity mode), another commands longitudinal acceleration and vertical speed (acceleration mode), and the third commands longitudinal acceleration and transitions from velocity to acceleration command in the vertical axis (aerobatic mode). The flight envelope is discretized into low, cruise, and high speed flight regimes. The unified outer loop primary control effectors for the longitudinal and vertical axes (collective pitch, pitch attitude, and propeller pitch) vary depending on flight regime. A weighted pseudoinverse is used to phase either the collective or propeller pitch in/out of a redundant control role. The controllers were evaluated in Penn State's Rotorcraft Flight Simulator retaining the cyclic stick for vertical and lateral axis control along with pedal inceptors for yaw axis control. A throttle inceptor was used in place of the pilot's traditional left hand inceptor for longitudinal axis control. Ultimately, a simple rigid body model of the aircraft was sufficient enough to design a controller with favorable performance and stability characteristics. This unified flight control system promoted a low enough pilot workload so that an untrained pilot (the author) was able to pilot maneuvers of varying complexity with ease. The framework of this unified system is generalized enough to be able to be applied to any rotorcraft with redundant controls. Minimum power propeller thrust shares ranged from 50% - 90% in high speed flight, while lift shares at high speeds tended towards 60% wing and 40% main rotor.

  6. Running injuries in novice runners enrolled in different training interventions: a pilot randomized controlled trial.

    PubMed

    Baltich, J; Emery, C A; Whittaker, J L; Nigg, B M

    2017-11-01

    The purpose of this trial was to evaluate injury risk in novice runners participating in different strength training interventions. This was a pilot randomized controlled trial. Novice runners (n = 129, 18-60 years old, <2 years recent running experience) were block randomized to one of three groups: a "resistance" strength training group, a "functional" strength training group, or a stretching "control" group. The primary outcome was running related injury. The number of participants with complaints and the injury rate (IR = no. injuries/1000 running hours) were quantified for each intervention group. For the first 8 weeks, participants were instructed to complete their training intervention three to five times a week. The remaining 4 months was a maintenance period. NCT01900262. A total of 52 of the 129 (40%) novice runners experienced at least one running related injury: 21 in the functional strength training program, 16 in the resistance strength training program and 15 in the control stretching program. Injury rates did not differ between study groups [IR = 32.9 (95% CI 20.8, 49.3) in the functional group, IR = 31.6 (95% CI 18.4, 50.5) in the resistance group, and IR = 26.7 (95% CI 15.2, 43.2)] in the control group. Although this was a pilot assessment, home-based strength training did not appear to alter injury rates compared to stretching. Future studies should consider methods to minimize participant drop out to allow for the assessment of injury risk. Injury risk in novice runners based on this pilot study will inform the development of future larger studies investigating the impact of injury prevention interventions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Chronic care coordination by integrating care through a team-based, population-driven approach: a case study.

    PubMed

    van Eeghen, Constance O; Littenberg, Benjamin; Kessler, Rodger

    2018-05-23

    Patients with chronic conditions frequently experience behavioral comorbidities to which primary care cannot easily respond. This study observed a Vermont family medicine practice with integrated medical and behavioral health services that use a structured approach to implement a chronic care management system with Lean. The practice chose to pilot a population-based approach to improve outcomes for patients with poorly controlled Type 2 diabetes using a stepped-care model with an interprofessional team including a community health nurse. This case study observed the team's use of Lean, with which it designed and piloted a clinical algorithm composed of patient self-assessment, endorsement of behavioral goals, shared documentation of goals and plans, and follow-up. The team redesigned workflows and measured reach (patients who engaged to the end of the pilot), outcomes (HbA1c results), and process (days between HbA1c tests). The researchers evaluated practice member self-reports about the use of Lean and facilitators and barriers to move from pilot to larger scale applications. Of 20 eligible patients recruited over 3 months, 10 agreed to participate and 9 engaged fully (45%); 106 patients were controls. Relative to controls, outcomes and process measures improved but lacked significance. Practice members identified barriers that prevented implementation of all changes needed but were in agreement that the pilot produced useful outcomes. A systematized, population-based, chronic care management service is feasible in a busy primary care practice. To test at scale, practice leadership will need to allocate staffing, invest in shared documentation, and standardize workflows to streamline office practice responsibilities.

  8. The manual control of vehicles undergoing slow transitions in dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Moriarty, T. E.

    1974-01-01

    The manual control was studied of a vehicle with slowly time-varying dynamics to develop analytic and computer techniques necessary for the study of time-varying systems. The human operator is considered as he controls a time-varying plant in which the changes are neither abrupt nor so slow that the time variations are unimportant. An experiment in which pilots controlled the longitudinal mode of a simulated time-varying aircraft is described. The vehicle changed from a pure double integrator to a damped second order system, either instantaneously or smoothly over time intervals of 30, 75, or 120 seconds. The regulator task consisted of trying to null the error term resulting from injected random disturbances with bandwidths of 0.8, 1.4, and 2.0 radians per second. Each of the twelve experimental conditons was replicated ten times. It is shown that the pilot's performance in the time-varying task is essentially equivalent to his performance in stationary tasks which correspond to various points in the transition. A rudimentary model for the pilot-vehicle-regulator is presented.

  9. Pilot mental workload: how well do pilots really perform?

    PubMed

    Morris, Charles H; Leung, Ying K

    2006-12-15

    The purpose of this study was to investigate the effects of increasing mental demands on various aspects of aircrew performance. In particular, the robustness of the prioritization and allocation hierarchy of aviate-navigate-communicate was examined, a hierarchy commonly used within the aviation industry. A total of 42 trainee pilots were divided into three workload groups (low, medium, high) to complete a desktop, computer-based exercise that simulated combinations of generic flight deck activities: flight control manipulation, rule-based actions and higher level cognitive processing, in addition to Air Traffic Control instructions that varied in length from one chunk of auditory information to seven chunks. It was found that as mental workload and auditory input increased, participants experienced considerable difficulty in carrying out the primary manipulation task. A similar decline in prioritization was also observed. Moreover, when pilots were under a high mental workload their ability to comprehend more than two chunks of auditory data deteriorated rapidly.

  10. Mission control of multiple unmanned aerial vehicles: a workload analysis.

    PubMed

    Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon

    2005-01-01

    With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.

  11. Pilot study of a targeted dance class for physical rehabilitation in children with cerebral palsy.

    PubMed

    López-Ortiz, Citlali; Egan, Tara; Gaebler-Spira, Deborah J

    2016-01-01

    This pilot study evaluates the effects of a targeted dance class utilizing classical ballet principles for rehabilitation of children with cerebral palsy on balance and upper extremity control. Twelve children with cerebral palsy (ages 7-15 years) with Gross Motor Function Classification scores II-IV participated in this study and were assigned to either a control group or targeted dance class group. Targeted dance class group participated in 1-h classes three times per week in a 4-week period. The Pediatric Balance Scale and the Quality of Upper Extremity Skills Test were administered before, after, and 1 month after the targeted dance class. Improvements in the Pediatric Balance Scale were present in the targeted dance class group in before versus after and before versus 1 month follow-up comparisons (p-value = 0.0088 and p-value = 0.019, respectively). The Pediatric Balance Scale changes were not significant in the control group. The Quality of Upper Extremity Skills Test did not reach statistical differences in either group. Classical ballet as an art form involves physical training, musical accompaniment, social interactions, and emotional expression that could serve as adjunct to traditional physical therapy. This pilot study demonstrated improvements in balance control. A larger study with a more homogeneous sample is warranted.

  12. Trunk Acceleration for Neuroprosthetic Control of Standing – a Pilot Study

    PubMed Central

    Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance. Correlation coefficients between ANN predictions and actual COP ranged from 0.67 to 0.77. An ANN trained across all subject-normalized data was used to drive feedback control of ankle muscle excitation levels for a computer model representing a standing neuroprosthesis user. Feedback control reduced average upper-body loading during perturbation onset and recovery by 42% and peak loading by 29% compared to optimal, constant excitation. PMID:21975251

  13. Trunk acceleration for neuroprosthetic control of standing: a pilot study.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2012-02-01

    This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance. Correlation coefficients between ANN predictions and actual COP ranged from 0.67 to 0.77. An ANN trained across all subject-normalized data was used to drive feedback control of ankle muscle excitation levels for a computer model representing a standing neuroprosthesis user. Feedback control reduced average upper-body loading during perturbation onset and recovery by 42% and peak loading by 29% compared with optimal, constant excitation.

  14. Remotely piloted vehicles. Citations from the International Aerospace abstracts data base

    NASA Technical Reports Server (NTRS)

    Mauk, S. C.

    1980-01-01

    These citations from the international literature cover various aspects of remotely piloted vehicles. Included are articles concerning aircraft design, flight tests, aircraft control, cost effectiveness, automatic flight control, automatic pilots, and data links. Civil aviation applications are included, although military uses of remotely piloted vehicles are stressed. This updated bibliography contains 224 citations, 43 of which are new additions to the previous edition.

  15. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows Overmyer pointing to data on Panel 7 (F7) CRT 1 screen.

  16. Pilot visual acquisition of traffic : operational communications from air traffic control operational communication.

    DOT National Transportation Integrated Search

    2001-05-01

    Avionics devices designed to provide pilots with graphically displayed traffic information will enable pilots to acquire and verify the identity of any intruder aircraft within the general area, either before or in accordance with a controller-issued...

  17. Effect of motion cues during complex curved approach and landing tasks: A piloted simulation study

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1987-01-01

    A piloted simulation study was conducted to examine the effect of motion cues using a high fidelity simulation of commercial aircraft during the performance of complex approach and landing tasks in the Microwave Landing System (MLS) signal environment. The data from these tests indicate that in a high complexity MLS approach task with moderate turbulence and wind, the pilot uses motion cues to improve path tracking performance. No significant differences in tracking accuracy were noted for the low and medium complexity tasks, regardless of the presence of motion cues. Higher control input rates were measured for all tasks when motion was used. Pilot eye scan, as measured by instrument dwell time, was faster when motion cues were used regardless of the complexity of the approach tasks. Pilot comments indicated a preference for motion. With motion cues, pilots appeared to work harder in all levels of task complexity and to improve tracking performance in the most complex approach task.

  18. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  19. Feasibility study of a procedure to detect and warn of low level wind shear

    NASA Technical Reports Server (NTRS)

    Turkel, B. S.; Kessel, P. A.; Frost, W.

    1981-01-01

    A Doppler radar system which provides an aircraft with advanced warning of longitudinal wind shear is described. This system uses a Doppler radar beamed along the glide slope linked with an on line microprocessor containing a two dimensional, three degree of freedom model of the motion of an aircraft including pilot/autopilot control. The Doppler measured longitudinal glide slope winds are entered into the aircraft motion model, and a simulated controlled aircraft trajectory is calculated. Several flight path deterioration parameters are calculated from the computed aircraft trajectory information. The aircraft trajectory program, pilot control models, and the flight path deterioration parameters are discussed. The performance of the computer model and a test pilot in a flight simulator through longitudinal and vertical wind fields characteristic of a thunderstorm wind field are compared.

  20. Portable pilot plant for evaluating marine biofouling growth and control in heat exchangers-condensers.

    PubMed

    Casanueva, J F; Sánchez, J; García-Morales, J L; Casanueva-Robles, T; López, J A; Portela, J R; Nebot, E; Sales, D

    2003-01-01

    Biofouling frequently involves a serious impediment to achieving optimum operating conditions in heat exchangers-condensers. The economic coat and energy losses associated with this phenomenon are significant and the environmental impact of biocides must satisfy stringent regulations. A portable pilot plant has been designed in order to carry out in-situ experimental study as biofilm is formed under thermal and hydrodynamically controlled conditions. The pilot plant has an automatic monitoring, control and data acquisition system, which automatically processes data from indirect measure of fouling in terms of increased fluid frictional and heat transfer resistances. A particular method is used and proposed for direct measuring and biofilm characterization. Once we know the actual film thickness, we can calculate the effective thermal conductivity of the layer by using the appropriate heat transfer equations.

  1. The size of a pilot study for a clinical trial should be calculated in relation to considerations of precision and efficiency.

    PubMed

    Sim, Julius; Lewis, Martyn

    2012-03-01

    To investigate methods to determine the size of a pilot study to inform a power calculation for a randomized controlled trial (RCT) using an interval/ratio outcome measure. Calculations based on confidence intervals (CIs) for the sample standard deviation (SD). Based on CIs for the sample SD, methods are demonstrated whereby (1) the observed SD can be adjusted to secure the desired level of statistical power in the main study with a specified level of confidence; (2) the sample for the main study, if calculated using the observed SD, can be adjusted, again to obtain the desired level of statistical power in the main study; (3) the power of the main study can be calculated for the situation in which the SD in the pilot study proves to be an underestimate of the true SD; and (4) an "efficient" pilot size can be determined to minimize the combined size of the pilot and main RCT. Trialists should calculate the appropriate size of a pilot study, just as they should the size of the main RCT, taking into account the twin needs to demonstrate efficiency in terms of recruitment and to produce precise estimates of treatment effect. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study.

    PubMed

    Iosa, Marco; Morone, Giovanni; Fusco, Augusto; Castagnoli, Marcello; Fusco, Francesca Romana; Pratesi, Luca; Paolucci, Stefano

    2015-08-01

    The leap motion controller (LMC) is a new optoelectronic system for capturing motion of both hands and controlling a virtual environment. Differently from previous devices, it optoelectronically tracks the fine movements of fingers neither using glows nor markers. This pilot study explored the feasibility of adapting the LMC, developed for videogames, to neurorehabilitation of elderly with subacute stroke. Four elderly patients (71.50 ± 4.51 years old) affected by stroke in subacute phase were enrolled and tested in a cross-over pilot trial in which six sessions of 30 minutes of LMC videogame-based therapy were added on conventional therapy. Measurements involved participation to the sessions, evaluated by means of the Pittsburgh Rehabilitation Participation Scale, hand ability and grasp force evaluated respectively by means of the Abilhand Scale and by means of the dynamometer. Neither adverse effects nor spasticity increments were observed during LMC training. Participation to the sessions was excellent in three patients and very good in one patient during the LMC trial. In this period, patients showed a significantly higher improvement in hand abilities (P = 0.028) and grasp force (P = 0.006). This feasibility pilot study was the first one using leap motion controller for conducting a videogame-based therapy. This study provided a proof of concept that LMC can be a suitable tool even for elderly patients with subacute stroke. LMC training was in fact performed with a high level of active participation, without adverse effects, and contributed to increase the recovery of hand abilities.

  3. Gender differences in navigational memory: pilots vs. nonpilots.

    PubMed

    Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico

    2015-02-01

    The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.

  4. An Analysis of Tower (Ground) Controller - Pilot Voice Communications

    DOT National Transportation Integrated Search

    1995-11-01

    This report is based on an analysis of over 48 hours of pilot-controller communications recorded from the ground-control : frequency at twelve air traffic control towers. The analysis examined the complexity of controller instructions, that : is, how...

  5. Crew workload in JASDF C-1 transport flights: I. Change in heart rate and salivary cortisol.

    PubMed

    Kakimoto, Y; Nakamura, A; Tarui, H; Nagasawa, Y; Yagura, S

    1988-06-01

    The physiological responses of heart rate and salivary cortisol for six paired captains and co-pilots during JASDF scheduled transport flights were compared to assess crew workload. The relative change of both responses showed similar patterns and were influenced significantly by whether pilots were controlling the aircraft. Moreover, differences in flying experience and responsibility of captains and co-pilots influenced the two physiological responses; heart rate and salivary cortisol measures increased more for both captains and co-pilots while they were in control of the aircraft than when they were not. Compared to captains, co-pilots showed much higher activation and variability in relative change of heart rate and salivary cortisol between periods of controlling and non-controlling the aircraft. On the other hand, captains showed relatively constant responses comparing aircraft controlling and non-controlling periods, especially in the cruise phase of flight. Salivary cortisol may be a useful, non-invasive method of assess crew workload.

  6. Fault tolerant attitude sensing and force feedback control for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Jagadish, Chirag

    Two aspects of an unmanned aerial vehicle are studied in this work. One is fault tolerant attitude determination and the other is to provide force feedback to the joy-stick of the UAV so as to prevent faulty inputs from the pilot. Determination of attitude plays an important role in control of aerial vehicles. One way of defining the attitude is through Euler angles. These angles can be determined based on the measurements of the projections of the gravity and earth magnetic fields on the three body axes of the vehicle. Attitude determination in unmanned aerial vehicles poses additional challenges due to limitations of space, payload, power and cost. Therefore it provides for almost no room for any bulky sensors or extra sensor hardware for backup and as such leaves no room for sensor fault issues either. In the face of these limitations, this study proposes a fault tolerant computing of Euler angles by utilizing multiple different computation methods, with each method utilizing a different subset of the available sensor measurement data. Twenty-five such methods have been presented in this document. The capability of computing the Euler angles in multiple ways provides a diversified redundancy required for fault tolerance. The proposed approach can identify certain sets of sensor failures and even separate the reference fields from the disturbances. A bank-to-turn maneuver of the NASA GTM UAV is used to demonstrate the fault tolerance provided by the proposed method as well as to demonstrate the method of determining the correct Euler angles despite interferences by inertial acceleration disturbances. Attitude computation is essential for stability. But as of today most UAVs are commanded remotely by human pilots. While basic stability control is entrusted to machine or the on-board automatic controller, overall guidance is usually with humans. It is therefore the pilot who sets the command/references through a joy-stick. While this is a good compromise between complete automation and complete human control, it still poses some unique challenges. Pilots of manned aircraft are present inside the cockpit of the aircraft they fly and thus have a better feel of the flying environment and also the limitations of the flight. The same might not be true for UAV pilots stationed on the ground. A major handicap is that visual feedback is the only one available for the UAV pilot. An additional parameter like force feedback on the remote control joy-stick can help the UAV pilot to physically feel the limitation of the safe flight envelope. This can make the flying itself easier and safer. A method proposed here is to design a joy-stick assembly with an additional actuator. This actuator is controlled so as to generate a force feedback on the joy-stick. The control developed for this system is such that the actuator allows free movement for the pilot as long as the UAV is within the safe flight envelope. On the other hand, if it is outside this safe range, the actuator opposes the pilot's applied torque and prevents him/her from giving erroneous commands to the UAV.

  7. Pilots strategically compensate for display enlargements in surveillance and flight control tasks.

    PubMed

    Stelzer, Emily Muthard; Wickens, Christopher D

    2006-01-01

    Experiments were conducted to assess the impact of display size on flight control, airspace surveillance, and goal-directed target search. Research of 3-D displays has shown that display scale compression influences the perception of flight path deviation, though less is known about the causes that drive this effect. In addition, research on attention-based tasks has shown that information displaced to significant eccentricities can amplify effort, but it is unclear whether the effect generates a performance difference in complex displays. In Experiment 1, 16 pilots completed a low-fidelity flight control task under single- and dual-axis control. In Experiment 2, the control task from Experiment 1 was scaled up to a more realistic flight environment, and pilots performed hazard surveillance and target search tasks. For flight control, pilots exhibited less path error and greater stick activity with a large display, which was attributed both to greater enhanced resolution and to the fact that larger depictions of error lead to greater urgency in correcting deviations. Size did not affect hazard surveillance or search, as pilots were adaptive in altering scanning patterns in response to the enlargement of the displays. Although pilots were adaptive to display changes in search and surveillance, display size reduction diminished estimates of flight path deviation and control performance because of lowered resolution and control urgency. Care should be taken when manipulating display size, as size reduction can diminish control performance.

  8. Laboratory, semi-pilot and room scale study of nitrite and molybdate mediated control of H(2)S emission from swine manure.

    PubMed

    Moreno, Lyman; Predicala, Bernardo; Nemati, Mehdi

    2010-04-01

    The effects of manure age on emission of H(2)S and required level of nitrite or molybdate to control these emissions were investigated in the present work. Molybdate mediated control of H(2)S emission was also studied in semi-pilot scale open systems, and in specifically designed chambers which simulated swine production rooms. With fresh 1-, 3- and 6-month old manures average H(2)S concentration in the headspace gas of the closed systems were 4856+/-460, 3431+/-208, 1037+/-98 ppm and non-detectable, respectively. Moreover, the level of nitrite or molybdate required to control the emission of H(2)S decreased as manure age increased. In the semi-pilot scale open system and chambers, average H(2)S concentration at the surface of agitated fresh manure were 831+/-26 and 88.4+/-5.7 ppm, respectively. Furthermore, 0.1-0.25 mM molybdate was sufficient to control the emission of H(2)S. A cost study for an average size swine operation showed that the cost of treatment with molybdate was less than 1% of the overall production cost for each market hog. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  10. Precision controllability of the YF-17 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Mataeny, N. W.

    1980-01-01

    A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.

  11. Nitrous oxide for pain management of first trimester surgical abortion -- a randomized controlled pilot study.

    PubMed

    Singh, Rameet H; Espey, Eve; Carr, Shannon; Pereda, Brenda; Ogburn, Tony; Leeman, Lawrence

    2015-02-01

    The objective was to determine feasibility of a study comparing mean pain scores between women randomized to nitrous oxide/oxygen (NO) versus oxygen+oral analgesics for trimester surgical abortion. Pilot randomized controlled trial comparing NO (n=10) versus oxygen+oral analgesics (n=10). Feasibility of subject recruitment, and pain and satisfaction scores on a visual analog scale were evaluated. Fifty-seven percent of eligible women participated. Mean pain scores were similar between groups, and mean satisfaction scores were higher for the NO group (77.5 vs. 46.7, P=.048). The majority of eligible women agreed to participate in this study evaluating an uncommon pain control intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. An investigation of sensory information, levels of automation, and piloting experience on unmanned aircraft pilot performance.

    DOT National Transportation Integrated Search

    2012-03-01

    "The current experiment was intended to examine the effect of sensory information on pilot reactions to system : failures within a UAS control station simulation. This research also investigated the level of automation used in : controlling the aircr...

  13. Handling qualities of large flexible control-configured aircraft

    NASA Technical Reports Server (NTRS)

    Swaim, R. L.

    1980-01-01

    The effects on handling qualities of low frequency symmetric elastic mode interaction with the rigid body dynamics of a large flexible aircraft was analyzed by use of a mathematical pilot modeling computer simulation. An extension of the optimal control model for a human pilot was made so that the mode interaction effects on the pilot's control task could be assessed. Pilot ratings were determined for a longitudinal tracking task with parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes made to induce varying amounts of mode interaction. Relating numerical performance index values associated with the frequency variations used in several dynamic cases, to a numerical Cooper-Harper pilot rating has proved successful in discriminating when the mathematical pilot can or cannot separate rigid from elastic response in the tracking task.

  14. User Acceptability of Physiological and Other Measures of Hazardous States of Awareness

    NASA Technical Reports Server (NTRS)

    Dickinson, Terry L.; Milkulka, Peter J.; Kwan, Doris; Fitzgibbons, Amy A.; Jinadu, Florence R.; Freeman, Frederick G.; Scerbo, Mark W.; Pope, A. T. (Technical Monitor)

    2001-01-01

    Two studies explored user acceptance of devices that measure hazardous states of awareness. In the first study, critical incident data were collected in two workshops from 11 operators working as air traffic controllers or commercial pilots. These critical incident data were used to develop a survey of the acceptability of awareness measures. In the second study, the survey was administered to 100 people also working as air traffic controllers or commercial pilots. Results show that operators are open to the inclusion of technology to measure HSAs even if that technology is somewhat invasive as long as feedback about the HSAs is considered to be useful and helpful. Nonetheless, a major concern is the legal complications associated with being recorded, particularly for older and more experienced operators. Air traffic controllers emphasized the importance of sharing technology information with supervisors in order to receive backup or assistance under conditions of task overload, whereas pilots emphasized the influence of work schedules on problems with awareness. Recommendations are offered concerning the implementation of devices to measure hazardous states of awareness.

  15. A study of pilot modeling in multi-controller tasks

    NASA Technical Reports Server (NTRS)

    Whitbeck, R. F.; Knight, J. R.

    1972-01-01

    A modeling approach, which utilizes a matrix of transfer functions to describe the human pilot in multiple input, multiple output control situations, is studied. The approach used was to extend a well established scalar Wiener-Hopf minimization technique to the matrix case and then study, via a series of experiments, the data requirements when only finite record lengths are available. One of these experiments was a two-controller roll tracking experiment designed to force the pilot to use rudder in order to coordinate and reduce the effects of aileron yaw. One model was computed for the case where the signals used to generate the spectral matrix are error and bank angle while another model was computed for the case where error and yaw angle are the inputs. Several anomalies were observed to be present in the experimental data. These are defined by the descriptive terms roll up, break up, and roll down. Due to these algorithm induced anomalies, the frequency band over which reliable estimates of power spectra can be achieved is considerably less than predicted by the sampling theorem.

  16. A Demonstration of a Retrofit Architecture for Intelligent Control and Diagnostics of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Turso, James A.; Shah, Neerav; Sowers, T. Shane; Owen, A. Karl

    2005-01-01

    A retrofit architecture for intelligent turbofan engine control and diagnostics that changes the fan speed command to maintain thrust is proposed and its demonstration in a piloted flight simulator is described. The objective of the implementation is to increase the level of autonomy of the propulsion system, thereby reducing pilot workload in the presence of anomalies and engine degradation due to wear. The main functions of the architecture are to diagnose the cause of changes in the engine s operation, warning the pilot if necessary, and to adjust the outer loop control reference signal in response to the changes. This requires that the retrofit control architecture contain the capability to determine the changed relationship between fan speed and thrust, and the intelligence to recognize the cause of the change in order to correct it or warn the pilot. The proposed retrofit architecture is able to determine the fan speed setting through recognition of the degradation level of the engine, and it is able to identify specific faults and warn the pilot. In the flight simulator it was demonstrated that when degradation is introduced into an engine with standard fan speed control, the pilot needs to take corrective action to maintain heading. Utilizing the intelligent retrofit control architecture, the engine thrust is automatically adjusted to its expected value, eliminating yaw without pilot intervention.

  17. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.

    1976-01-01

    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.

  18. Human in the Loop Simulation Measures of Pilot Response Delay in a Self-Separation Concept of Operations

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Wilson, Sara R.; Sturdy, James; Murdoch, Jennifer L.; Wing, David J.

    2010-01-01

    A human-in-the-loop (HITL) simulation experiment was conducted by the National Aeronautics and Space Administration (NASA) to assess airline transport pilots performance and reported acceptance of the use of procedures relying on airborne separation assistance and trajectory management tools. This study was part of a larger effort involving two NASA centers that includes multiple HITL experiments planned over the next few years to evaluate the use of automated separation assurance (SA) tools by both air traffic controllers and pilots. This paper presents results of measured pilot response delay that subject pilots incurred when interacting with cockpit tools for SA and discusses possible implications for future concept and procedures design.

  19. Adaptive State Predictor Based Human Operator Modeling on Longitudinal and Lateral Control

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2015-01-01

    Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to categorize these interactions of the pilot with an adaptive controller compensating during control surface failures. A general linear in-parameter model structure is used to represent a pilot. Three different estimation methods are explored. A gradient descent estimator (GDE), a least squares estimator with exponential forgetting (LSEEF), and a least squares estimator with bounded gain forgetting (LSEBGF) used the experiment data to predict pilot stick input. Previous results have found that the GDE and LSEEF methods are fairly accurate in predicting longitudinal stick input from commanded pitch. This paper discusses the accuracy of each of the three methods - GDE, LSEEF, and LSEBGF - to predict both pilot longitudinal and lateral stick input from the flight director's commanded pitch and bank attitudes.

  20. OMV mission simulator

    NASA Technical Reports Server (NTRS)

    Cok, Keith E.

    1989-01-01

    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.

  1. 46 CFR 96.40-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pilot boarding equipment. 96.40-1 Section 96.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 96.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...

  2. 46 CFR 195.40-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pilot boarding equipment. 195.40-1 Section 195.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 195.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...

  3. 46 CFR 96.40-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pilot boarding equipment. 96.40-1 Section 96.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 96.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...

  4. 46 CFR 195.40-1 - Pilot boarding equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pilot boarding equipment. 195.40-1 Section 195.40-1... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Pilot Boarding Equipment § 195.40-1 Pilot boarding equipment. (a) This section applies to each vessel that normally embarks or disembarks a pilot from a pilot...

  5. The feasibility of conducting a randomised controlled trial comparing arthroscopic hip surgery to conservative care for patients with femoroacetabular impingement syndrome: the FASHIoN feasibility study.

    PubMed

    Griffin, D R; Dickenson, E J; Wall, P D H; Realpe, A; Adams, A; Parsons, N; Hobson, R; Achten, J; Costa, M L; Foster, N E; Hutchinson, C E; Petrou, S; Donovan, J L

    2016-10-01

    To determine whether it was feasible to perform a randomized controlled trial (RCT) comparing arthroscopic hip surgery to conservative care in patients with femoroacetabular impingement (FAI). This study had two phases: a pre-pilot and pilot RCT. In the pre-pilot, we conducted interviews with clinicians who treated FAI and with FAI patients to determine their views about an RCT. We developed protocols for operative and conservative care. In the pilot RCT, we determined the rates of patient eligibility, recruitment and retention, to investigate the feasibility of the protocol and we established methods to assess treatment fidelity. In the pre-pilot phase, 32 clinicians were interviewed, of which 26 reported theoretical equipoise, but in example scenarios 7 failed to show clinical equipoise. Eighteen patients treated for FAI were also interviewed, the majority of whom felt that surgery and conservative care were acceptable treatments. Surgery was viewed by patients as a 'definitive solution'. Patients were motivated to participate in research but were uncomfortable about randomization. Randomization was more acceptable if the alternative was available at the end of the trial. In the pilot phase, 151 patients were assessed for eligibility. Sixty were eligible and invited to take part in the pilot RCT; 42 consented to randomization. Follow-up was 100% at 12 months. Assessments of treatment fidelity were satisfactory. An RCT to compare arthroscopic hip surgery with conservative care in patients with FAI is challenging but feasible. Recruitment has started for a full RCT.

  6. Effect of vertical active vibration isolation on tracking performance and on ride qualities

    NASA Technical Reports Server (NTRS)

    Dimasi, F. P.; Allen, R. E.; Calcaterra, P. C.

    1972-01-01

    An investigation to determine the effect on pilot performance and comfort of an active vibration isolation system for a commercial transport pilot seat is reported. The test setup consisted of: a hydraulic shaker which produced random vertical vibration inputs; the active vibration isolation system; the pilot seat; the pilot control wheel and column; the side-arm controller; and a two-axis compensatory tracking task. The effects of various degrees of pilot isolation on short-term (two-minute) tracking performance and comfort were determined.

  7. The Impact of Life Skills Training on Behavior Problems in Left-Behind Children in Rural China: A Pilot Study

    ERIC Educational Resources Information Center

    Liu, Jia; Liu, Shan; Yan, Jin; Lee, Elizabeth; Mayes, Linda

    2016-01-01

    A randomized controlled experimental pilot study was conducted in order to investigate the effect of life skills training on behavior problems in left-behind children (LBC) in rural China. Sixty-eight LBC were recruited from a middle school in rural China. The intervention group took a ten-week-long life skills training course. The Child Behavior…

  8. Pilot Age and Error in Air-Taxi Crashes

    PubMed Central

    Rebok, George W.; Qiang, Yandong; Baker, Susan P.; Li, Guohua

    2010-01-01

    Introduction The associations of pilot error with the type of flight operations and basic weather conditions are well documented. The correlation between pilot characteristics and error is less clear. This study aims to examine whether pilot age is associated with the prevalence and patterns of pilot error in air-taxi crashes. Methods Investigation reports from the National Transportation Safety Board for crashes involving non-scheduled Part 135 operations (i.e., air taxis) in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Crash circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Results Of the 1751 air-taxi crashes studied, 28% resulted from mechanical failure, 25% from loss of control at landing or takeoff, 7% from visual flight rule conditions into instrument meteorological conditions, 7% from fuel starvation, 5% from taxiing, and 28% from other causes. Crashes among older pilots were more likely to occur during the daytime rather than at night and off airport than on airport. The patterns of pilot error in air-taxi crashes were similar across age groups. Of the errors identified, 27% were flawed decisions, 26% were inattentiveness, 23% mishandled aircraft kinetics, 15% mishandled wind and/or runway conditions, and 11% were others. Conclusions Pilot age is associated with crash circumstances but not with the prevalence and patterns of pilot error in air-taxi crashes. Lack of age-related differences in pilot error may be attributable to the “safe worker effect.” PMID:19601508

  9. Effectiveness of an Integrated Approach to HIV and Hypertension Care in Rural South Africa: Controlled Interrupted Time-Series Analysis.

    PubMed

    Ameh, Soter; Klipstein-Grobusch, Kerstin; Musenge, Eustasius; Kahn, Kathleen; Tollman, Stephen; Gómez-Olivé, Francesc Xavier

    2017-08-01

    South Africa faces a dual burden of HIV/AIDS and noncommunicable diseases. In 2011, a pilot integrated chronic disease management (ICDM) model was introduced by the National Health Department into selected primary health care (PHC) facilities. The objective of this study was to assess the effectiveness of the ICDM model in controlling patients' CD4 counts (>350 cells/mm) and blood pressure [BP (<140/90 mm Hg)] in PHC facilities in the Bushbuckridge municipality, South Africa. A controlled interrupted time-series study was conducted using the data from patients' clinical records collected multiple times before and after the ICDM model was initiated in PHC facilities in Bushbuckridge. Patients ≥18 years were recruited by proportionate sampling from the pilot (n = 435) and comparing (n = 443) PHC facilities from 2011 to 2013. Health outcomes for patients were retrieved from facility records for 30 months. We performed controlled segmented regression to model the monthly averages of individuals' propensity scores using autoregressive moving average model at 5% significance level. The pilot facilities had 6% greater likelihood of controlling patients' CD4 counts than the comparison facilities (coefficient = 0.057; 95% confidence interval: 0.056 to 0.058; P < 0.001). Compared with the comparison facilities, the pilot facilities had 1.0% greater likelihood of controlling patients' BP (coefficient = 0.010; 95% confidence interval: 0.003 to 0.016; P = 0.002). Application of the model had a small effect in controlling patients' CD4 counts and BP, but showed no overall clinical benefit for the patients; hence, the need to more extensively leverage the HIV program for hypertension treatment.

  10. Family Planning for Inner-City Adolescent Males: Pilot Study.

    ERIC Educational Resources Information Center

    Reis, Janet; And Others

    1987-01-01

    Describes a pilot family planning program in an inner-city pediatric practice. Male adolescents were more likely to accept contraceptives if the provider first raised the topic of birth control to them. Identified a desire for anonymity/confidentiality and embarrassment or discomfort as the key reasons for not seeking contraceptives. Emphasizes…

  11. Design and Outcomes of a "Mothers In Motion" Behavioral Intervention Pilot Study

    ERIC Educational Resources Information Center

    Chang, Mei-Wei; Nitzke, Susan; Brown, Roger

    2010-01-01

    Objective: This paper describes the design and findings of a pilot "Mothers In Motion" (P-"MIM") program. Design: A randomized controlled trial that collected data via telephone interviews and finger stick at 3 time points: baseline and 2 and 8 months post-intervention. Setting: Three Special Supplemental Nutrition Program for…

  12. Evaluation of temporary traffic signals in conjunction with pilot car operations at two-way long temporary work zones : technical summary.

    DOT National Transportation Integrated Search

    2016-05-01

    The primary objective of this study was to evaluate the use of Portable Traffic Signal (PTS) systems at long, rural two-lane work zones and to compare three different conditions for controlling one-lane traffic in conjunction with pilot car operation...

  13. Minimum time and fuel flight profiles for an F-15 airplane with a Highly Integrated Digital Electronic Control (HIDEC) system

    NASA Technical Reports Server (NTRS)

    Haering, E. A., Jr.; Burcham, F. W., Jr.

    1984-01-01

    A simulation study was conducted to optimize minimum time and fuel consumption paths for an F-15 airplane powered by two F100 Engine Model Derivative (EMD) engines. The benefits of using variable stall margin (uptrim) to increase performance were also determined. This study supports the NASA Highly Integrated Digital Electronic Control (HIDEC) program. The basis for this comparison was minimum time and fuel used to reach Mach 2 at 13,716 m (45,000 ft) from the initial conditions of Mach 0.15 at 1524 m (5000 ft). Results were also compared to a pilot's estimated minimum time and fuel trajectory determined from the F-15 flight manual and previous experience. The minimum time trajectory took 15 percent less time than the pilot's estimate for the standard EMD engines, while the minimum fuel trajectory used 1 percent less fuel than the pilot's estimate for the minimum fuel trajectory. The F-15 airplane with EMD engines and uptrim, was 23 percent faster than the pilot's estimate. The minimum fuel used was 5 percent less than the estimate.

  14. Conflict Resolution Automation and Pilot Situation Awareness

    NASA Technical Reports Server (NTRS)

    Dao, Arik-Quang V.; Brandt, Summer L.; Bacon, Paige; Kraut, Josh; Nguyen, Jimmy; Minakata, Katsumi; Raza, Hamzah; Rozovski, David; Johnson, Walter W.

    2010-01-01

    This study compared pilot situation awareness across three traffic management concepts. The Concepts varied in terms of the allocation of traffic avoidance responsibility between the pilot on the flight deck, the air traffic controllers, and a conflict resolution automation system. In Concept 1, the flight deck was equipped with conflict resolution tools that enable them to fully handle the responsibility of weather avoidance and maintaining separation between ownship and surrounding traffic. In Concept 2, pilots were not responsible for traffic separation, but were provided tools for weather and traffic avoidance. In Concept 3, flight deck tools allowed pilots to deviate for weather, but conflict detection tools were disabled. In this concept pilots were dependent on ground based automation for conflict detection and resolution. Situation awareness of the pilots was measured using online probes. Results showed that individual situation awareness was highest in Concept 1, where the pilots were most engaged, and lowest in Concept 3, where automation was heavily used. These findings suggest that for conflict resolution tasks, situation awareness is improved when pilots remain in the decision-making loop.

  15. Cervical and lumbar pain and radiological degeneration among fighter pilots: a systematic review and meta-analysis.

    PubMed

    Shiri, Rahman; Frilander, Heikki; Sainio, Markku; Karvala, Kirsi; Sovelius, Roope; Vehmas, Tapio; Viikari-Juntura, Eira

    2015-02-01

    To assess the associations of acceleration force indicators (aircraft type and flight hours) with cervical and lumbar pain and radiological degeneration among fighter pilots. The PubMed, Embase, Scopus and Web of Science databases were searched until October 2013. Twenty-seven studies were included in the review and 20 in the meta-analysis. There were no differences in the prevalence of neck pain (pooled OR=1.07, 95% CI 0.87 to 1.33), cervical disc degeneration (OR=1.26, CI 0.81 to 1.96), low back pain (OR=0.80, CI 0.47 to 1.38) or lumbar disc degeneration (OR=0.87, CI 0.67 to 1.13) between fighter pilots and helicopter or transport/cargo pilots. Moreover, the prevalence of cervical (OR=1.14, CI 0.61 to 2.16) or lumbar (OR=1.05, CI 0.49 to 2.26) disc degeneration did not differ between fighter pilots and non-flying personnel. Most studies did not control their estimates for age and other potential confounders. Among high-performance aircraft pilots, exposure to the highest G-forces was associated with a higher prevalence of neck pain compared with exposure to lower G-forces (pooled OR=3.12, CI 2.08 to 4.67). The studies on the association between flight hours and neck pain reported inconsistent findings. Moreover, looking back over the shoulder (check six) was the most common posture associated with neck pain. Fighter pilots exposed to high G-forces may be at a greater risk for neck pain than those exposed to low G-forces. This finding should be confirmed with better control for confounding. Awkward neck posture may be an important factor in neck pain among fighter pilots. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Effects of baby massage on neonatal jaundice in healthy Iranian infants: A pilot study.

    PubMed

    Dalili, Hosein; Sheikhi, Sanaz; Shariat, Mamak; Haghnazarian, Edith

    2016-02-01

    To evaluate the effects of baby massage on transcutaneous bilirubin levels and stool frequency of healthy term newborns. This Pilot study was conducted on 50 healthy newborns in Valiasr Hospital of IKHC. The infants were randomly allocated to two treatment (massage) and control group. The massage group received massage therapy (according to Touch Therapy) for four days from the first day postnatal while the control group received routine care. Main variable studied were transcutaneous bilirubin level (TCB) and stool frequency which were compared in two groups. There were 50 newborns in the study 25 in each group (50%). There was a significant difference in the TCB levels between two groups (p=0.000) with those in the massage group having lower bilirubin levels. As for the stool frequency there was a significant difference in two groups on the first day showing more defecation in the control group (p=0.042) which on the consequent days was not significant and the frequencies were almost similar. Massage group had a lower transcutaneous billirubin levels compared to the control group, thus, these pilot results indicate that massaging the newborns can be accompanied by a lower bilirubin level in the healthy term newborn. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Using stand/sit workstations in classrooms: lessons learned from a pilot study in Texas.

    PubMed

    Blake, Jamilia J; Benden, Mark E; Wendel, Monica L

    2012-01-01

    Childhood obesity has grown into a national epidemic since the 1980s. Many school-based intervention efforts that target childhood obesity involve curriculum and programming that demands instructional time, which disincentivizes school participation. Stand-biased classrooms are an environmental intervention that promotes standing rather than sitting by utilizing standing height desks that allow students to stand during normal classroom activities. The quasi-experimental pilot study was conducted in 5 first-grade classrooms in a Texas elementary school, with 2 control classrooms, 2 treatment classrooms, and 1 classroom that was a control in the fall and treatment in the spring (to allow for within-group comparisons). This intervention has been shown effective in significantly increasing caloric expenditure. In addition, the present study reveals potential behavioral effects from standing. This article presents lessons learned from the pilot study that may prove useful for others implementing similar interventions and calls for additional research on the academic benefits of standing for students.

  18. Effect of Alternate Nostril Breathing Exercise on Experimentally Induced Anxiety in Healthy Volunteers Using the Simulated Public Speaking Model: A Randomized Controlled Pilot Study.

    PubMed

    Kamath, Ashwin; Urval, Rathnakar P; Shenoy, Ashok K

    2017-01-01

    A randomized controlled pilot study was carried out to determine the effect of a 15-minute practice of ANB exercise on experimentally induced anxiety using the simulated public speaking model in yoga-naïve healthy young adults. Thirty consenting medical students were equally divided into test and control groups. The test group performed alternate nostril breathing exercise for 15 minutes, while the control group sat in a quiet room before participating in the simulated public speaking test (SPST). Visual Analog Mood Scale and Self-Statements during Public Speaking scale were used to measure the mood state at different phases of the SPST. The psychometric scores of both groups were comparable at baseline. Repeated-measures ANOVA showed a significant effect of phase ( p < 0.05), but group and gender did not have statistically significant influence on the mean anxiety scores. However, the test group showed a trend towards lower mean scores for the anxiety factor when compared with the control group. Considering the limitations of this pilot study and the trend seen towards lower anxiety in the test group, alternate nostril breathing may have potential anxiolytic effect in acute stressful situations. A study with larger sample size is therefore warranted. This trial is registered with CTRI/2014/03/004460.

  19. Effect of Alternate Nostril Breathing Exercise on Experimentally Induced Anxiety in Healthy Volunteers Using the Simulated Public Speaking Model: A Randomized Controlled Pilot Study

    PubMed Central

    Urval, Rathnakar P.; Shenoy, Ashok K.

    2017-01-01

    A randomized controlled pilot study was carried out to determine the effect of a 15-minute practice of ANB exercise on experimentally induced anxiety using the simulated public speaking model in yoga-naïve healthy young adults. Thirty consenting medical students were equally divided into test and control groups. The test group performed alternate nostril breathing exercise for 15 minutes, while the control group sat in a quiet room before participating in the simulated public speaking test (SPST). Visual Analog Mood Scale and Self-Statements during Public Speaking scale were used to measure the mood state at different phases of the SPST. The psychometric scores of both groups were comparable at baseline. Repeated-measures ANOVA showed a significant effect of phase (p < 0.05), but group and gender did not have statistically significant influence on the mean anxiety scores. However, the test group showed a trend towards lower mean scores for the anxiety factor when compared with the control group. Considering the limitations of this pilot study and the trend seen towards lower anxiety in the test group, alternate nostril breathing may have potential anxiolytic effect in acute stressful situations. A study with larger sample size is therefore warranted. This trial is registered with CTRI/2014/03/004460. PMID:29159176

  20. Operational requirements for flight control and navigation systems for short haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.

    1978-01-01

    To provide a background for evaluating advanced STOL systems concepts, a number of short haul and STOL airline operations in the United States and one operation in Canada were studied. A study of flight director operational procedures for an advanced STOL research airplane, the Augmented Wing Jet STOL Research Airplane, was conducted using the STOLAND simulation facility located at the Ames Changes to the advanced digital flight control system (STOLAND) installed in the Augmentor Wing Airplane are proposed to improve the mode sequencing to simplify pilot procedures and reduce pilot workload.

  1. Computer simulation of multiple pilots flying a modern high performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    A computer simulation of a human response pilot mechanism within the flight control loop of a high-performance modern helicopter is presented. A human response mechanism, implemented by a low order, linear transfer function, is used in a decoupled single variable configuration that exploits the dominant vehicle characteristics by associating cockpit controls and instrumentation with specific vehicle dynamics. Low order helicopter models obtained from evaluations of the time and frequency domain responses of a nonlinear simulation model, provided by NASA Lewis Research Center, are presented and considered in the discussion of the pilot development. Pilot responses and reactions to test maneuvers are presented and discussed. Higher level implementation, using the pilot mechanisms, are discussed and considered for their use in a comprehensive control structure.

  2. Detection of system failures in multi-axes tasks. [pilot monitored instrument approach

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1975-01-01

    The effects of the pilot's participation mode in the control task on his workload level and failure detection performance were examined considering a low visibility landing approach. It is found that the participation mode had a strong effect on the pilot's workload, the induced workload being lowest when the pilot acted as a monitoring element during a coupled approach and highest when the pilot was an active element in the control loop. The effects of workload and participation mode on failure detection were separated. The participation mode was shown to have a dominant effect on the failure detection performance, with a failure in a monitored (coupled) axis being detected significantly faster than a comparable failure in a manually controlled axis.

  3. 46 CFR 58.25-80 - Automatic pilots and ancillary steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-80 Automatic pilots and ancillary steering gear. (a) Automatic pilots and ancillary steering gear, and steering-gear control systems, must be arranged to allow immediate resumption of manual operation of the steering-gear control system required in...

  4. 46 CFR 58.25-80 - Automatic pilots and ancillary steering gear.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-80 Automatic pilots and ancillary steering gear. (a) Automatic pilots and ancillary steering gear, and steering-gear control systems, must be arranged to allow immediate resumption of manual operation of the steering-gear control system required in...

  5. Identification of pilot-vehicle dynamics from simulation and flight test

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    The paper discusses an identification problem in which a basic feedback control structure, or pilot control strategy, is hypothesized. Identification algorithms are employed to determine the particular form of pilot equalization in each feedback loop. It was found that both frequency- and time-domain identification techniques provide useful information.

  6. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to a survivable runway landing using TOC. The PCAR project objective was a set of pilot procedures for operation of a specific aircraft without hydraulics that (a) have been validated in both simulation and flight by relevant personnel, and (b) mesh well with existing commercial operations, maintenance, and training at a minimum cost. As a result of this study, a procedure has been developed to assist a crew in making a survivable landing using TOC. In a simulation environment, line pilots with little or no previous TOC experience performed survivable runway landings after a few practice TOC approaches. In-flight evaluations put line pilots in a simulated emergency situation where TOC was used to recover the aircraft, maneuver to a landing site, and perform an approach down to 200 feet AGL. The results of this research, including pilot observations, procedure comments, recommendations, future work and lessons learned, will he discussed. Flight data and video footage of TOC approaches may also be shown.

  7. Medication coaching program for patients with minor stroke or TIA: a pilot study.

    PubMed

    Sides, Elizabeth G; Zimmer, Louise O; Wilson, Leslie; Pan, Wenqin; Olson, Daiwai M; Peterson, Eric D; Bushnell, Cheryl

    2012-07-25

    Patients who are hospitalized with a first or recurrent stroke often are discharged with new medications or adjustment to the doses of pre-admission medications, which can be confusing and pose safety issues if misunderstood. The purpose of this pilot study was to assess the feasibility of medication coaching via telephone after discharge in patients with stroke. Two-arm pilot study of a medication coaching program with 30 patients (20 intervention, 10 control). Consecutive patients admitted with stroke or TIA with at least 2 medications changed between admission and discharge were included. The medication coach contacted intervention arm patients post-discharge via phone call to discuss risk factors, review medications and triage patients' questions to a stroke nurse and/or pharmacist. Intervention and control participants were contacted at 3 months for outcomes. The main outcomes were feasibility (appropriateness of script, ability to reach participants, and provide requested information) and participant evaluation of medication coaching. The median lengths of the coaching and follow-up calls with requested answers to these questions were 27 minutes and 12 minutes, respectively, and participant evaluations of the coaching were positive. The intervention participants were more likely to have seen their primary care provider than were control participants by 3 months post discharge. This medication coaching study executed early after discharge demonstrated feasibility of coaching and educating stroke patients with a trained coach. Results from our small pilot showed a possible trend towards improved appointment-keeping with primary care providers in those who received coaching.

  8. A Fixed-Base-Simulator Study of the Ability of a Pilot to Establish Close Orbits Around the Moon

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, Donald R.

    1961-01-01

    A study was made on a six-degree-of-freedom fixed-base simulator of the ability of human pilots to modify ballistic trajectories of a 5 space vehicle approaching the moon to establish a circular orbit about 50 miles above the lunar surface. The unmodified ballistic trajectories had miss distances from the lunar surface of from 40 to 80 miles, and a velocity range of from 8,200 to 8,700 feet per second at closest approach. The pilot was given control of the thrust (along the vehicle longitudinal axis) and torques about all three body axes. The information display given to the pilot was a hodograph of the vehicle rate of descent and circumferential velocity, an altimeter, and vehicle attitude and rate meters.

  9. A piloted simulator study on augmentation systems to improve helicopter flying qualities in terrain flight

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.

    1979-01-01

    Four basic single-rotor helicopters, one teetering, on articulated, and two hingeless, which were found to have a variety of major deficiencies in a previous fixed-based simulator study, were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate-command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular tate; and attitude-command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usages and their gain levels associated with specific rotor types are also discussed.

  10. Real time control of a combined sewer system using radar-measured precipitation--results of the pilot study.

    PubMed

    Petruck, A; Holtmeier, E; Redder, A; Teichgräber, B

    2003-01-01

    Emschergenossenschaft and Lippeverband have developed a method to use radar-measured precipitation as an input for a real-time control of a combined sewer system containing several overflow structures. Two real-time control strategies have been developed and tested, one is solely volume-based, the other is volume and pollution-based. The system has been implemented in a pilot study in Gelsenkirchen, Germany. During the project the system was optimised and is now in constant operation. It was found, that the volume of combined sewage overflow could be reduced by 5 per cent per year. This was also found in simulations carried out in similar catchment areas. Most of the potential of improvement can already be achieved by local pollution-based control strategies.

  11. The NASA Aviation Safety Reporting System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This is the fourteenth in a series of reports based on safety-related incidents submitted to the NASA Aviation Safety Reporting System by pilots, controllers, and, occasionally, other participants in the National Aviation System (refs. 1-13). ASRS operates under a memorandum of agreement between the National Aviation and Space Administration and the Federal Aviation Administration. The report contains, first, a special study prepared by the ASRS Office Staff, of pilot- and controller-submitted reports related to the perceived operation of the ATC system since the 1981 walkout of the controllers' labor organization. Next is a research paper analyzing incidents occurring while single-pilot crews were conducting IFR flights. A third section presents a selection of Alert Bulletins issued by ASRS, with the responses they have elicited from FAA and others concerned. Finally, the report contains a list of publications produced by ASRS with instructions for obtaining them.

  12. Modified optimal control pilot model for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1992-01-01

    This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.

  13. Manual and automatic flight control during severe turbulence penetration

    NASA Technical Reports Server (NTRS)

    Johnston, D. E.; Klein, R. H.; Hoh, R. H.

    1976-01-01

    An analytical and experimental investigation of possible contributing factors in jet aircraft turbulence upsets was conducted. Major contributing factors identified included autopilot and display deficiencies, the large aircraft inertia and associated long response time, and excessive pilot workload. An integrated flight and thrust energy management director system was synthesized. The system was incorporated in a moving-base simulation and evaluated using highly experienced airline pilots. The evaluation included comparison of pilot workload and flight performance during severe turbulence penetration utilizing four control/display concepts: manual control with conventional full panel display, conventional autopilot (A/P-A) with conventional full panel display, improved autopilot (A/P-B) with conventional full panel display plus thrust director display, and longitudinal flight director with conventional full panel display plus thrust director display. Simulation results show improved performance, reduced pilot workload, and a pilot preference for the autopilot system controlling to the flight director command and manual control of thrust following the trim thrust director.

  14. Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.

    1994-01-01

    An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.

  15. The effects of workload on respiratory variables in simulated flight: a preliminary study.

    PubMed

    Karavidas, Maria Katsamanis; Lehrer, Paul M; Lu, Shou-En; Vaschillo, Evgeny; Vaschillo, Bronya; Cheng, Andrew

    2010-04-01

    In this pilot study, we investigated respiratory activity and end-tidal carbon dioxide (P(et)CO(2)) during exposure to varying levels of work load in a simulated flight environment. Seven pilots (age: 34-60) participated in a one-session test on the Boeing 737-800 simulator. Physiological data were collected while pilots wore an ambulatory multi-channel recording device. Respiratory variables, including inductance plethysmography (respiratory pattern) and pressure of end-tidal carbon dioxide (P(et)CO(2)), were collected demonstrating change in CO(2) levels proportional to changes in flight task workload. Pilots performed a set of simulation flight tasks. Pilot performance was rated for each task by a test pilot; and self-report of workload was taken using the NASA-TLX scale. Mixed model analysis revealed that respiration rate and minute ventilation are significantly associated with workload levels and evaluator scores controlling for "vanilla baseline" condition. Hypocapnia exclusively occurred in tasks where pilots performed more poorly. This study was designed as a preliminary investigation in order to develop a psychophysiological assessment methodology, rather than to offer conclusive findings. The results show that the respiratory system is very reactive to high workload conditions in aviation and suggest that hypocapnia may pose a flight safety risk under some circumstances. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. An Analysis of TRACON (Terminal Radar Approach Control) Controller-Pilot Voice Communication

    DOT National Transportation Integrated Search

    1996-06-01

    The purpose of this analysis was to examine pilot-controller communication practices in the TRACONI (Terminal Radar Approach : Control) environment. Forty-eight hours of communications recorded on the voice tapes from eight TRACONs were analyzed. : T...

  17. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  18. Recruitment and accrual of women in a placebo-controlled clinical pilot study on manual therapy.

    PubMed

    Cambron, Jerrilyn A; Hawk, Cheryl; Evans, Roni; Long, Cynthia R

    2004-06-01

    To investigate the accrual rates and recruitment processes among 3 Midwestern sites during a pilot study on manual therapy for chronic pelvic pain. Multisite pilot study for a randomized, placebo-controlled clinical trial. Three chiropractic institutions in or near major metropolitan cities in the Midwestern United States. Thirty-nine women aged 18 to 45 with chronic pelvic pain of at least 6 months duration, diagnosed by a board certified gynecologist. The method of recruitment was collected for each individual who responded to an advertisement and completed an interviewer-administered telephone screen. Participants who were willing and eligible after 3 baseline visits were entered into a randomized clinical trial. The number of responses and accrual rates were determined for the overall study, each of the 3 treatment sites, and each of the 5 recruitment efforts. In this study, 355 women were screened over the telephone and 39 were randomized, making the rate of randomization approximately 10%. The most effective recruitment methods leading to randomization were direct mail (38%) and radio advertisements (34%). However, success of the recruitment process differed by site. Based on the accrual of this multisite pilot study, a full-scale trial would not be feasible using this study's parameters. However, useful information was gained on recruitment effectiveness, eligibility criteria, and screening protocols among the 3 metropolitan sites.

  19. Results of recent NASA studies on automatic spin prevention for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Nguyen, L. T.

    1976-01-01

    A broad based research program was developed to eliminate or minimize inadvertent spins for advanced military aircraft. Recent piloted simulator studies and airplane flight tests have demonstrated that the automatic control systems in use on current fighters can be tailored to provide a high degree of spin resistance for some configurations without restrictions to maneuverability. Such systems result in greatly increased tactical effectiveness, safety, and pilot confidence.

  20. Sensory Adapted Dental Environments to Enhance Oral Care for Children with Autism Spectrum Disorders: A Randomized Controlled Pilot Study

    ERIC Educational Resources Information Center

    Cermak, Sharon A.; Stein Duker, Leah I.; Williams, Marian E.; Dawson, Michael E.; Lane, Christianne J.; Polido, José C.

    2015-01-01

    This pilot and feasibility study examined the impact of a sensory adapted dental environment (SADE) to reduce distress, sensory discomfort, and perception of pain during oral prophylaxis for children with autism spectrum disorder (ASD). Participants were 44 children ages 6-12 (n = 22 typical, n = 22 ASD). In an experimental crossover design, each…

  1. Effectiveness of a Mindfulness-Based Program on School Children's Self-Reported Well-Being: A Pilot Study Comparing Effects with an Emotional Literacy Program

    ERIC Educational Resources Information Center

    Devcich, Daniel A.; Rix, Grant; Bernay, Ross; Graham, Esther

    2017-01-01

    This pilot study aimed to test the well-being effects of a locally developed mindfulness-based program tailored for New Zealand elementary school children in comparison with an active control condition. It was hypothesized that significantly greater well-being change scores would be observed for the mindfulness group. Students (n = 106) between 9…

  2. Scatter Plot Analysis of Excessive Daytime Sleepiness and Severe Disruptive Behavior in Adults with Prader-Willi Syndrome: A Pilot Study

    ERIC Educational Resources Information Center

    Maas, Anneke P. H. M.; Didden, Robert; Bouts, Lex; Smits, Marcel G.; Curfs, Leopold M. G.

    2009-01-01

    Individuals with Prader-Willi syndrome (PWS) are at risk for excessive daytime sleepiness (EDS) and disruptive behavior. This pilot study explores temporal characteristics of EDS and severe disruptive behavior across time of day and day of week in seven individuals with PWS (aged between 33 and 49 years) of whom five were matched to controls.…

  3. Study of control force limits for female pilots.

    DOT National Transportation Integrated Search

    1973-12-01

    The study described in this paper was the second phase in a ground- based control force testing program conducted by the University of Oklahoma and the Civil Aeromedical Institute of the Federal Aviation Administration located in Oklahoma City, Oklah...

  4. Variable strategy model of the human operator

    NASA Astrophysics Data System (ADS)

    Phillips, John Michael

    Human operators often employ discontinuous or "bang-bang" control strategies when performing large-amplitude acquisition tasks. The current study applies Variable Structure Control (VSC) techniques to model human operator behavior during acquisition tasks. The result is a coupled, multi-input model replicating the discontinuous control strategy. In the VSC formulation, a switching surface is the mathematical representation of the operator's control strategy. The performance of the Variable Strategy Model (VSM) is evaluated by considering several examples, including the longitudinal control of an aircraft during the visual landing task. The aircraft landing task becomes an acquisition maneuver whenever large initial offsets occur. Several different strategies are explored in the VSM formulation for the aircraft landing task. First, a switching surface is constructed from literal interpretations of pilot training literature. This approach yields a mathematical representation of how a pilot is trained to fly a generic aircraft. This switching surface is shown to bound the trajectory response of a group of pilots performing an offset landing task in an aircraft simulator study. Next, front-side and back-side landing strategies are compared. A back-side landing strategy is found to be capable of landing an aircraft flying on either the front side or back side of the power curve. However, the front-side landing strategy is found to be insufficient for landing an aircraft flying on the back side. Finally, a more refined landing strategy is developed that takes into the account the specific aircraft's dynamic characteristics. The refined strategy is translated back into terminology similar to the existing pilot training literature.

  5. Team versus individual sport participation as a modifying factor in the development of post-concussion syndrome after first concussion: A pilot study.

    PubMed

    Jeckell, Aaron S; Brett, Benjamin L; Totten, Douglas J; Solomon, Gary S

    2018-01-19

    Identification of modifying factors that influence the development of post-concussion syndrome (PCS) following sport-related concussion (SRC) has drawn considerable interest. In this pilot study, we investigate the effect of team vs. individual sport participation on the development of PCS in a sample of 136 high school and college student-athletes. Controlling for several confounding variables, we employed a binary logistic regression and chi-squared test. Results of this pilot study indicate that participation in team versus individual sport is not a significant factor in the development of PCS. The identification of other forms of protective mechanisms is discussed.

  6. Pilot-Induced Oscillations and Human Dynamic Behavior

    NASA Technical Reports Server (NTRS)

    McRuer, Duane T.

    1995-01-01

    This is an in-depth survey and study of pilot-induced oscillations (PIO's) as interactions between human pilot and vehicle dynamics; it includes a broad and comprehensive theory of PIO's. A historical perspective provides examples of the diversity of PIO's in terms of control axes and oscillation frequencies. The constituents involved in PIO phenomena, including effective aircraft dynamics, human pilot dynamic behavior patterns, and triggering precursor events, are examined in detail as the structural elements interacting to produce severe pilot-induced oscillations. The great diversity of human pilot response patterns, excessive lags and/or inappropriate gain in effective aircraft dynamics, and transitions in either the human or effective aircraft dynamics are among the key sources implicated as factors in severe PIO's. The great variety of interactions which may result in severe PIO's is illustrated by examples drawn from famous PIO's. These are generalized under a pilot-behavior-theory-based set of categories proposed as a classification scheme pertinent to a theory of PIO's. Finally, a series of interim prescriptions to avoid PIO is provided.

  7. Simulation comparison of a decoupled longitudinal control system and a velocity vector control wheel steering system during landings in wind shear

    NASA Technical Reports Server (NTRS)

    Kimball, G., Jr.

    1980-01-01

    A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.

  8. Promoting Healthy Transition to College through Mindfulness Training with First-Year College Students: Pilot Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Dvoráková, Kamila; Kishida, Moé; Li, Jacinda; Elavsky, Steriani; Broderick, Patricia C.; Agrusti, Mark R.; Greenberg, Mark T.

    2017-01-01

    Objective: Given the importance of developmental transitions on young adults' lives and the high rates of mental health issues among U.S. college students, first-year college students can be particularly vulnerable to stress and adversity. This pilot study evaluated the effectiveness and feasibility of mindfulness training aiming to promote…

  9. Effects of 'Real World' Radio Chatter on Mid-Phase Instrument Ground Trainer Proficiency: A Pilot Study.

    ERIC Educational Resources Information Center

    Goebel, Ronald A.; And Others

    Under a background condition of either recorded radio chatter or no radio chatter, the individual performances of two flights of mid-phase instrument student pilots were measured during a simulated instrument cross-country mission in the T-38 ground trainer. Operational constraints prevented the exercise of optimal experimental controls, thereby…

  10. An Emergency Department Intervention to Increase Parent-Child Tobacco Communication: A Pilot Study

    ERIC Educational Resources Information Center

    Mahabee-Gittens, E. Melinda; Huang, Bin; Slap, Gail B.; Gordon, Judith S.

    2008-01-01

    We conducted a randomized trial of parents and their 9- to 16-year-old children to pilot test an emergency department (ED)-based intervention designed to increase parent-child tobacco communication. Intervention group (IG) parents received verbal/written instructions on how to relay anti-tobacco messages to their children; control group (CG)…

  11. Piloting the future: Results from a pilot study for changes in the animal sampling program for the national antibiotic resistance monitoring system (NARMS)

    USDA-ARS?s Scientific Manuscript database

    A well recognized monitoring system for antimicrobial resistance in the U. S. is the National Antimicrobial Resistance Monitoring System (NARMS). It was established in 1996 among the Food and Drug Administration (FDA), USDA, and Centers for Disease Control and Prevention (CDC). FDA coordinates the ...

  12. Preschool Social-Emotional Skills Training: A Controlled Pilot Test of the Making Choices and Strong Families Programs

    ERIC Educational Resources Information Center

    Conner, Natalie W.; Fraser, Mark W.

    2011-01-01

    Objective: The purpose of this study was to pilot test a multicomponent program designed to prevent aggressive behavior in preschool children. The first program component was comprised of social-emotional skills training. It focused on improving the social information processing and emotional-regulation skills of children. The second component was…

  13. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Pilot study of a targeted dance class for physical rehabilitation in children with cerebral palsy

    PubMed Central

    López-Ortiz, Citlali; Egan, Tara; Gaebler-Spira, Deborah J

    2016-01-01

    Introduction: This pilot study evaluates the effects of a targeted dance class utilizing classical ballet principles for rehabilitation of children with cerebral palsy on balance and upper extremity control. Methods: Twelve children with cerebral palsy (ages 7–15 years) with Gross Motor Function Classification scores II–IV participated in this study and were assigned to either a control group or targeted dance class group. Targeted dance class group participated in 1-h classes three times per week in a 4-week period. The Pediatric Balance Scale and the Quality of Upper Extremity Skills Test were administered before, after, and 1 month after the targeted dance class. Results: Improvements in the Pediatric Balance Scale were present in the targeted dance class group in before versus after and before versus 1 month follow-up comparisons (p-value = 0.0088 and p-value = 0.019, respectively). The Pediatric Balance Scale changes were not significant in the control group. The Quality of Upper Extremity Skills Test did not reach statistical differences in either group. Conclusion: Classical ballet as an art form involves physical training, musical accompaniment, social interactions, and emotional expression that could serve as adjunct to traditional physical therapy. This pilot study demonstrated improvements in balance control. A larger study with a more homogeneous sample is warranted. PMID:27721977

  15. Pilot modeling and closed-loop analysis of flexible aircraft in the pitch tracking task

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1983-01-01

    The issue addressed in the appropriate modeling technique for pilot vehicle analysis of large flexible aircraft, when the frequency separation between the rigid-body mode and the dynamic aeroelastic modes is reduced. This situation was shown to have significant effects on pitch-tracking performance and subjective rating of the task, obtained via fixed base simulation. Further, the dynamics in these cases are not well modeled with a rigid-body-like model obtained by including only 'static elastic' effects, for example. It is shown that pilot/vehicle analysis of this data supports the hypothesis that an appropriate pilot-model structure is an optimal-control pilot model of full order. This is in contrast to the contention that a representative model is of reduced order when the subject is controlling high-order dynamics as in a flexible vehicle. The key appears to be in the correct assessment of the pilot's objective of attempting to control 'rigid-body' vehicle response, a response that must be estimated by the pilot from observations contaminated by aeroelastic dynamics. Finally, a model-based metric is shown to correlate well with the pilot's subjective ratings.

  16. A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials.

    PubMed

    Boge, Thierry; Rémigy, Michel; Vaudaine, Sarah; Tanguy, Jérôme; Bourdet-Sicard, Raphaëlle; van der Werf, Sylvie

    2009-09-18

    Influenza vaccination is recommended for the elderly in many countries, but immune responses are weaker compared to younger adults. To investigate the impact of daily consumption of a probiotic dairy drink on the immune response to influenza vaccination in an elderly population of healthy volunteers over 70 years of age. Two randomised, multicentre, double-blind, controlled studies were conducted during two vaccination seasons in 2005-2006 (pilot) and 2006-2007 (confirmatory). Eighty-six and 222 elderly volunteers consumed either a fermented dairy drink, containing the probiotic strain Lactobacillus casei DN-114 001 and yoghurt ferments (Actimel, or a non-fermented control dairy product twice daily for a period of 7 weeks (pilot) or 13 weeks (confirmatory). Vaccination occurred after 4 weeks of product consumption. Geometric mean antibody titres (GMT) against the 3 viral strains composing the vaccine (H1N1, H3N2, and B) were measured at several time intervals post-vaccination by haemagglutination inhibition test. In the pilot study, the influenza-specific antibody titres increased after vaccination, being consistently higher in the probiotic product group compared to the control group under product consumption. Similarly, in the confirmatory study, titres against the B strain increased significantly more in the probiotic group than in the control group at 3, 6 and 9 weeks post-vaccination under product consumption (p=0.020). Significant differences in seroconversion between the groups by intended to treat analysis were still found 5 months after vaccination. Similar GMT results were observed for the H3N2 strain and H1N1 strain, confirming the results of the pilot study. These studies demonstrate that daily consumption of this particular probiotic product increased relevant specific antibody responses to influenza vaccination in individuals of over 70 years of age and may therefore provide a health benefit in this population.

  17. Simulator evaluation of display concepts for pilot monitoring and control of space shuttle approach and landing. Phase 2: Manual flight control

    NASA Technical Reports Server (NTRS)

    Gartner, W. B.; Baldwin, K. M.

    1973-01-01

    A study of the display requirements for final approach management of the space shuttle orbiter vehicle is presented. An experimental display concept, providing a more direct, pictorial representation of the vehicle's movement relative to the selected approach path and aiming points, was developed and assessed as an aid to manual flight path control. Both head-up, windshield projections and head-down, panel mounted presentations of the experimental display were evaluated in a series of simulated orbiter approach sequence. Data obtained indicate that the experimental display would enable orbiter pilots to exercise greater flexibility in implementing alternative final approach control strategies. Touchdown position and airspeed dispersion criteria were satisfied on 91 percent of the approach sequences, representing various profile and wind effect conditions. Flight path control and airspeed management satisfied operationally-relevant criteria for the two-segment, power-off orbiter approach and were consistently more accurate and less variable when the full set of experimental display elements was available to the pilot. Approach control tended to be more precise when the head-up display was used; however, the data also indicate that the head-down display would provide adequate support for the manual control task.

  18. A piloted simulation investigation of yaw dynamics requirements for turreted gun use in low-level helicopter air combat

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Morris, Patrick M.; Williams, Jeffrey N.

    1988-01-01

    A piloted, fixed-base simulation study was conducted to investigate the handling qualities requirements for helicopter air-to-air combat using turreted guns in the near-terrain environment. The study used a version of the helicopter air combat system developed at NASA Ames Research Center for one-on-one air combat. The study focused on the potential trade-off between gun angular movement capability and required yaw axis response. Experimental variables included yaw axis response frequency and damping and the size of the gun-movement envelope. A helmet position and sighting system was used for pilot control of gun aim. Approximately 340 simulated air combat engagements were evaluated by pilots from the Army and industry. Results from the experiment indicate that a highly-damped, high frequency yaw response was desired for Level I handling qualities. Pilot preference for those characteristics became more pronounced as gun turret movement was restricted; however, a stable, slow-reacting platform could be used with a large turret envelope. Most pilots preferred to engage with the opponent near the own-ship centerline. Turret elevation restriction affected the engagement more than azimuth restrictions.

  19. Analytical methodology for determination of helicopter IFR precision approach requirements. [pilot workload and acceptance level

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.

    1980-01-01

    A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.

  20. Results of the promoting effective advance care planning for elders (PEACE) randomized pilot study.

    PubMed

    Radwany, Steven M; Hazelett, Susan E; Allen, Kyle R; Kropp, Denise J; Ertle, Denise; Albanese, Teresa H; Fosnight, Susan M; Moore, Pamela S

    2014-04-01

    The specific aim of the PEACE pilot study was to determine the feasibility of a fully powered study to test the effectiveness of an in-home geriatrics/palliative care interdisciplinary care management intervention for improving measures of utilization, quality of care, and quality of life in enrollees of Ohio's community-based long-term care Medicaid waiver program, PASSPORT. This was a randomized pilot study (n=40 intervention [IG], n=40 usual care) involving new enrollees into PASSPORT who were >60 years old. This was an in-home interdisciplinary chronic illness care management intervention by PASSPORT care managers collaborating with a hospital-based geriatrics/palliative care specialist team and the consumer's primary care physician. This pilot was not powered to test hypotheses; instead, it was hypothesis generating. Primary outcomes measured symptom control, mood, decision making, spirituality, and quality of life. Little difference was seen in primary outcomes; however, utilization favored the IG. At 12 months, the IG had fewer hospital visits (50% vs. 55%, P=0.65) and fewer nursing facility admissions (22.5% vs. 32.5%, P=0.32). Using hospital-based specialists interfacing with a community agency to provide a team-based approach to care of consumers with chronic illnesses was found to be feasible. Lack of change in symptom control or quality of life outcome measures may be related to the tools used, as these were validated in populations closer to the end of life. Data from this pilot study will be used to calculate the sample size needed for a fully powered trial.

  1. Volitional control of the anterior insula in criminal psychopaths using real-time fMRI neurofeedback: a pilot study

    PubMed Central

    Sitaram, Ranganatha; Caria, Andrea; Veit, Ralf; Gaber, Tilman; Ruiz, Sergio; Birbaumer, Niels

    2014-01-01

    This pilot study aimed to explore whether criminal psychopaths can learn volitional regulation of the left anterior insula with real-time fMRI neurofeedback. Our previous studies with healthy volunteers showed that learned control of the blood oxygenation-level dependent (BOLD) signal was specific to the target region, and not a result of general arousal and global unspecific brain activation, and also that successful regulation modulates emotional responses, specifically to aversive picture stimuli but not neutral stimuli. In this pilot study, four criminal psychopaths were trained to regulate the anterior insula by employing negative emotional imageries taken from previous episodes in their lives, in conjunction with contingent feedback. Only one out of the four participants learned to increase the percent differential BOLD in the up-regulation condition across training runs. Subjects with higher Psychopathic Checklist-Revised (PCL:SV) scores were less able to increase the BOLD signal in the anterior insula than their lower PCL:SV counterparts. We investigated functional connectivity changes in the emotional network due to learned regulation of the successful participant, by employing multivariate Granger Causality Modeling (GCM). Learning to up-regulate the left anterior insula not only increased the number of connections (causal density) in the emotional network in the single successful participant but also increased the difference between the number of outgoing and incoming connections (causal flow) of the left insula. This pilot study shows modest potential for training psychopathic individuals to learn to control brain activity in the anterior insula. PMID:25352793

  2. 75 FR 28098 - Agency Information Collection Activities: Notice of Request for Extension of Currently Approved...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... studying crashes using case-control methods including the Grand Rapids study, (Borkenstein, R.F., Crowther... Federal holidays. SUPPLEMENTARY INFORMATION: Title: Motorcycle Crash Causation Study and Pilot Motorcycle Crash Causes and Outcomes Study. OMB Control #: 2125-0619. Background: Motorcycle injuries and...

  3. Impact on seniors of the patient-centered medical home: evidence from a pilot study.

    PubMed

    Fishman, Paul A; Johnson, Eric A; Coleman, Kathryn; Larson, Eric B; Hsu, Clarissa; Ross, Tyler R; Liss, David; Tufano, James; Reid, Robert J

    2012-10-01

    To assess the impact on health care cost and quality among seniors of a patient-centered medical home (PCMH) pilot at Group Health Cooperative, an integrated health care system in Washington State. A prospective before-and-after evaluation of the experience of seniors receiving primary care services at 1 pilot clinic compared with seniors enrolled at the remaining 19 primary care clinics owned and operated by Group Health. Analyses of secondary data on quality and cost were conducted for 1,947 seniors in the PCMH clinic and 39,396 seniors in the 19 control clinics. Patient experience with care was based on survey data collected from 487 seniors in the PCMH clinic and of 668 in 2 specific control clinics that were selected for their similarities in organization and patient composition to the pilot clinic. After adjusting for baseline, seniors in the PCMH clinic reported higher ratings than controls on 3 of 7 patient experience scales. Seniors in the PCMH clinic had significantly greater quality outcomes over time, but this difference was not significant relative to control. PCMH patients used more e-mail, phone, and specialist visits but fewer emergency services and inpatient admissions for ambulatory care sensitive conditions. At 1 and 2 years, the PCMH and control clinics did not differ significantly in overall costs. A PCMH redesign can be associated with improvements in patient experience and quality without increasing overall cost.

  4. Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System

    NASA Technical Reports Server (NTRS)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2012-01-01

    The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative paradigm is the Haptic Flight Control System (HFCS) that is part of NASA Langley Research Center s Naturalistic Flight Deck Concept. The HFCS uses only stick and throttle for easily and intuitively controlling the actual flight of the aircraft without losing any of the efficiency and operational benefits of the current paradigm. Initial prototypes of the HFCS are being evaluated and this paper describes one such evaluation. In this evaluation we examined claims regarding improved situation awareness, appropriate workload, graceful degradation, and improved pilot acceptance. Twenty-four instrument-rated pilots were instructed to plan and fly four different flights in a fictitious airspace using a moderate fidelity desktop simulation. Three different flight control paradigms were tested: Manual control, Full Automation control, and a simplified version of the HFCS. Dependent variables included both subjective (questionnaire) and objective (SAGAT) measures of situation awareness, workload (NASA-TLX), secondary task performance, time to recognize automation failures, and pilot preference (questionnaire). The results showed a statistically significant advantage for the HFCS in a number of measures. Results that were not statistically significant still favored the HFCS. The results suggest that the HFCS does offer an attractive and viable alternative to the tactical components of today s FMS/autopilot control system. The paper describes further studies that are planned to continue to evaluate the HFCS.

  5. Design and pilot evaluation of the RAH-66 Comanche Core AFCS

    NASA Technical Reports Server (NTRS)

    Fogler, Donald L., Jr.; Keller, James F.

    1993-01-01

    This paper addresses the design and pilot evaluation of the Core Automatic Flight Control System (AFCS) for the Reconnaissance/Attack Helicopter (RAH-66) Comanche. During the period from November 1991 through February 1992, the RAH-66 Comanche control laws were evaluated through a structured pilot acceptance test using a motion base simulator. Design requirements, descriptions of the control law design, and handling qualities data collected from ADS-33 maneuvers are presented.

  6. Analysis of routine pilot-controller communication

    NASA Technical Reports Server (NTRS)

    Morrow, Daniel G.; Lee, Alfred; Rodvold, Michelle

    1990-01-01

    Although pilot-controller communication is central to aviation safety, this area of aviation human factors has not been extensively researched. Most research has focused on what kinds of communication problems occur. A more complete picture of communication problems requires understanding how communication usually works in routine operations. A sample of routine pilot-controller communication in the TRACON environment is described. After describing several dimensions of routine communication, three kinds of communication problems are treated: inaccuracies such as incorrect readbacks, procedural deviations such as missing callsigns and readbacks, and nonroutine transactions where pilot and controller must deal with misunderstandings or other communication problems. Preliminary results suggest these problems are not frequent events in daily operations. However, analysis of the problems that do occur suggest some factors that may cause them.

  7. Analysis of the longitudinal handling qualities and pilot-induced-oscillation tendencies of the High-Angle-of-Attack Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1994-01-01

    The NASA High-Angle-of Attack Research Vehicle (HARV), a modified F-18 aircraft, experienced handling qualities problems in recent flight tests at NASA Dryden Research Center. Foremost in these problems was the tendency of the pilot-aircraft system to exhibit a potentially dangerous phenomenon known as a pilot-induced oscillation (PIO). When they occur, PIO's can severely restrict performance, sharply dimish mission capabilities, and can even result in aircraft loss. A pilot/vehicle analysis was undertaken with the goal of reducing these PIO tendencies and improving the overall vehicle handling qualities with as few changes as possible to the existing feedback/feedforward flight control laws. Utilizing a pair of analytical pilot models developed by the author, a pilot/vehicle analysis of the existing longitudinal flight control system was undertaken. The analysis included prediction of overall handling qualities levels and PIO susceptability. The analysis indicated that improvement in the flight control system was warranted and led to the formulation of a simple control stick command shaping filter. Analysis of the pilot/vehicle system with the shaping filter indicated significant improvements in handling qualities and PIO tendencies could be achieved. A non-real time simulation of the modified control system was undertaken with a realistic, nonlinear model of the current HARV. Special emphasis was placed upon those details of the command filter implementation which could effect safety of flight. The modified system is currently awaiting evaluation in the real-time, pilot-in-the-loop, Dual-Maneuvering-Simulator (DMS) facility at Langley.

  8. Variations Among Pilots from Different Flight Operations in Party Line Information Requirements for Situation Awareness

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy; Hansman, John

    1997-01-01

    Current air traffic control communications use shared VHF voice frequencies from which pilots can obtain 'party line' information (PLI) by overhearing communications addressed to other aircraft. Previous studies have shown that pilots perceive PLI to be important. There is concern that some critical PLI may be lost in the proposed data link environment, where communications will be discretely addressed. Different types of flight operations will be equipped with data link equipment at different times, generating a mixed environment in which some pilots will rely on PLI, while others will receive their information by data link. To research the importance, availability, and accuracy of PLI and to query pilots on the information they feel is necessary for global situation awareness, a survey was distributed to pilots. The pilots were selected from four flight operation groups to study the variations in PLI requirements in the mixed data link environment. Pilots perceived PLI to be important overall, with specific traffic and weather information elements identified as critical. Most PLI elements followed a pattern of higher perceived importance during terminal area operations, final approach, and landing. Pilots from the different flight operation groups identified some elements as particularly important. In a free-response question designed to identify the information requirements for global situation awareness, pilots frequently indicated a need for traffic and weather information. The results of this survey reveal specific concerns to be addressed when implementing data link communications.

  9. Practices to identify and preclude adverse Aircraft-and-Rotorcraft-Pilot Couplings - A design perspective

    NASA Astrophysics Data System (ADS)

    Pavel, Marilena D.; Masarati, Pierangelo; Gennaretti, Massimo; Jump, Michael; Zaichik, Larisa; Dang-Vu, Binh; Lu, Linghai; Yilmaz, Deniz; Quaranta, Giuseppe; Ionita, Achim; Serafini, Jacopo

    2015-07-01

    Understanding, predicting and supressing the inadvertent aircraft oscillations caused by Aircraft/Rotorcraft Pilot Couplings (A/RPC) is a challenging problem for designers. These are potential instabilities that arise from the effort of controlling aircraft with high response actuation systems. The present paper reviews, updates and discusses desirable practices to be used during the design process for unmasking A/RPC phenomena. These practices are stemming from the European Commission project ARISTOTEL Aircraft and Rotorcraft Pilot Couplings - Tools and Techniques for Alleviation and Detection (2010-2013) and are mainly related to aerodynamic and structural modelling of the aircraft/rotorcraft, pilot modelling and A/RPC prediction criteria. The paper proposes new methodologies for precluding adverse A/RPCs events taking into account the aeroelasticity of the structure and pilot biodynamic interaction. It is demonstrated that high-frequency accelerations due to structural elasticity cause negative effects on pilot control, since they lead to involuntary body and limb-manipulator system displacements and interfere with pilot's deliberate control activity (biodynamic interaction) and, finally, worsen handling quality ratings.

  10. Theoretical linear approach to the combined man-manipulator system in manual control of an aircraft

    NASA Technical Reports Server (NTRS)

    Brauser, K.

    1981-01-01

    An approach to the calculation of the dynamic characteristics of the combined man manipulator system in manual aircraft control was derived from a model of the neuromuscular system. This model combines the neuromuscular properties of man with the physical properties of the manipulator system which is introduced as pilot manipulator model into the manual aircraft control. The assumption of man as a quasilinear and time invariant control operator adapted to operating states, depending on the flight phases, of the control system gives rise to interesting solutions of the frequency domain transfer functions of both the man manipulator system and the closed loop pilot aircraft control system. It is shown that it is necessary to introduce the complete precision pilot manipulator model into the closed loop pilot aircraft transfer function in order to understand the well known handling quality criteria, and to derive these criteria directly from human operator properties.

  11. [Chronic noise exposure and the cardiovascular system in aircraft pilots].

    PubMed

    Tomei, F; Papaleo, B; Baccolo, T P; Tomao, E; Alfi, P; Fantini, S

    1996-01-01

    The aim of this study was to assess whether pilots are exposed to any risk of effects on the cardiovascular apparatus, whether chronic exposure to noise can be a risk factor for this occupation, the importance of intensity, length and type of exposure to noise, and if any relationship exists between audiometric deficits and cardiovascular effects. The study comprised 416 pilots subdivided into two groups according to the different levels of chronic exposure to noise, and a group of 150 control subjects not exposed to noise. The results showed: a) a higher prevalence of hypertension, nearly always diastolic, and of ECG abnormalities in the group of pilots of turboprop aircraft compared to jet plane pilots and to controls (p < 0.005 and p < 0.01 respectively); b) a higher prevalence of orthostatic hypotension in the two groups of pilots than in the controls (p < 0.05); c) a higher prevalence of hypertension with audiometric deficit compared to hypertension without audiometric deficit both in the more heavily and in the less heavily exposed to noise (p < 0.05), and a higher prevalence of hypertension with audiometric deficit in subjects exposed to higher levels of noise compared to hypertension with deficit but in subjects with lower levels of exposure (p < 0.05); d) a higher prevalence of abnormalities of basal, maximum effort and recovery ECG in pilots exposed to higher noise intensity (p < 0.05); e) improved hypertensive response to ergometric test in pilots with basal hypertension; f) subjects with a maximal load up to 120 W belonged prevalently to the group exposed to more intense noise (p < 0.001), while those with maximal load up to 210 W (p < 0.001) belonged to the group exposed to less intense noise. Considering that pilots are comparable for traditional cardiovascular risk factors, including age, both within the group and with the controls, the results confirm 1) that pilots could be exposed to the risk of effects on the cardiovascular apparatus, 2) that noise could be one of the risk factors and that cardiovascular effects could be related to intensity, type and length of exposure, age being the same, 3) that vascular damage is often accompanied by hearing loss even if the response of the auditory apparatus is different from the response of the cardiovascular apparatus, 4) that the postural diminution of arterial blood pressure might be a sign of a cardiovascular effect of noise. Lastly, a higher hypertensive response in hypertensive pilots suggests that basal hypertension is not reversible. Also a longer exposure to noise seems to influence the cardiovascular apparatus, causing a decrease in the response to work loads due to a lower sympathetic adaptability. The altered response of sympathetic activity to the postural modifications in the more exposed subjects and the response to lower work loads in pilots exposed to more intense noise, suggests a hypothesis of catecholamine depletion and alteration of baroceptor sensitivity as a consequence of chronic sympathetic activation due to chronic exposure to noise.

  12. Validation of MIL-F-9490D. General Specification for Flight Control System for Piloted Military Aircraft. Volume III. C-5A Heavy Logistics Transport Validation

    DTIC Science & Technology

    1977-04-01

    U* AFFDL-TR-77-7 0 VOLUME III " 󈧦 VALIDATION OF MIL-F-9490D - GENERAL SPECIFICATION FOR FLIGHT CONTROL SYSTEM "FOR PILOTED MILITARY AIRCRAFT VOLUME...ý A1O 1 C I\\.FFBL Ti(-77-7. Vol. III f Validatio~n of UL-P-9-490D#,*. General Spacificatior "~inal 1’l -_t e for Flight ContrsA Zyn’om for Piloted...cation MIL-F-9490D (USAF), "Flight Control Systems - Design, Installation and Test of Piloted Aircraft, General Specifications for," dated 6 June 1975, by

  13. Research pilot and former astronaut C. Gordon Fullerton in an F/A-18

    NASA Image and Video Library

    2002-05-14

    Former NASA astronaut C. Gordon Fullerton, seated in the cockpit of an F/A-18, is a research pilot at NASA's Dryden Flight Research Center, Edwards, Calif. Since transferring to Dryden in 1986, his assignments have included a variety of flight research and support activities piloting NASA's B-52 launch aircraft, the 747 Shuttle Carrier Aircraft (SCA), and other multi-engine and high performance aircraft. He flew a series of development air launches of the X-38 prototype Crew Return Vehicle and in the launches for the X-43A Hyper-X project. Fullerton also flies Dryden's DC-8 Airborne Science aircraft in support a variety of atmospheric physics, ground mapping and meteorology studies. Fullerton also was project pilot on the Propulsion Controlled Aircraft program, during which he successfully landed both a modified F-15 and an MD-11 transport with all control surfaces neutralized, using only engine thrust modulation for control. Fullerton also evaluated the flying qualities of the Russian Tu-144 supersonic transport during two flights in 1998, one of only two non-Russian pilots to fly that aircraft. With more than 15,000 hours of flying time, Fullerton has piloted 135 different types of aircraft in his career. As an astronaut, Fullerton served on the support crews for the Apollo 14, 15, 16, and 17 lunar missions. In 1977, Fullerton was on one of the two flight crews that piloted the Space Shuttle prototype Enterprise during the Approach and Landing Test Program at Dryden. Fullerton was the pilot on the STS-3 Space Shuttle orbital flight test mission in 1982, and commanded the STS-51F Spacelab 2 mission in 1985. He has logged 382 hours in space flight. In July 1988, he completed a 30-year career with the U.S. Air Force and retired as a colonel.

  14. Helicopter Pilot Performance for Discrete-maneuver Flight Tasks

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Bourne, S. M.; Hindson, W. S.

    1984-01-01

    This paper describes a current study of several basic helicopter flight maneuvers. The data base consists of in-flight measurements from instrumented helicopters using experienced pilots. The analysis technique is simple enough to apply without automatic data processing, and the results can be used to build quantitative matah models of the flight task and some aspects of the pilot control strategy. In addition to describing the performance measurement technqiue, some results are presented which define the aggressiveness and amplitude of maneuvering for several lateral maneuvers including turns and sidesteps.

  15. An application of adaptive learning to malfunction recovery

    NASA Technical Reports Server (NTRS)

    Cruz, R. E.

    1986-01-01

    A self-organizing controller is developed for a simplified two-dimensional aircraft model. The Controller learns how to pilot the aircraft through a navigational mission without exceeding pre-established position and velocity limits. The controller pilots the aircraft by activating one of eight directional actuators at all times. By continually monitoring the aircraft's position and velocity with respect to the mission, the controller progressively modifies its decision rules to improve the aircraft's performance. When the controller has learned how to pilot the aircraft, two actuators fail permanently. Despite this malfunction, the controller regains proficiency at its original task. The experimental results reported show the controller's capabilities for self-organizing control, learning, and malfunction recovery.

  16. Effects of high temperature and noise on erythrocyte membrane ATPase activity in pilots during flight.

    PubMed

    Qin, S Z; Yu, Q F; Ma, G X; Hao, W W; Li, M G; Zhao, H

    1999-12-01

    Objective. To determine the effect of heat and noise on erythrocyte membrane ATPase activities in pilots during flying. Method. Twenty-four pilots performing bombing for 3 h (45-53 degrees C, 122-97 dB in the cabin) served as the subjects. 21 ground personnel served as control (27 degrees C in the room). Blood samples were taken from both groups before flying (6:00 a.m.), and immediately (12:00 a.m.) and 8 h (8:00 p.m.) after flying. Na(+)-K+ ATPase, and Ca2(+)-Mg2+ ATPase activities in erythrocyte membrane were determined with colorimetry. Result. The Na(+)-K+ ATPase activity in erythrocyte membrane at 6:00 a.m. in pilots was higher than that in control group at the same time (P<0.01). The Ca2(+)-Mg2+ ATPase activities in erythrocyte membrane at 12:00 a.m. and 8:00 p.m. in pilots were significantly higher, compared with those in control group at the same time (P<0.01). Conclusion. The ATPase values obtained in our study were all within normal range, and the daytime variation of both groups are the same. Exposure of human body to heat and noise for long time may be harmful, the higher ATPase activity is, the more catabolism of ATP will be. ATP exhaustion will lead to Ca2+ overload in erythrocyte thus stiffen the red cell membrane.

  17. Effect of data self-collection as an activating teaching method in a statistical software course in medical biometry - a pilot study.

    PubMed

    Mayer, Benjamin; Braisch, Ulrike; Meule, Marianne; Allgoewer, Andreas; Richter, Silvia; Muche, Rainer

    2018-01-01

    Background: Biostatistics is an integral part of the studies of human medicine. Students learn the basics of analyzing and interpreting study results. It is important to demonstrate the subject's relevance by means of appropriate measures to maximize learning success. We investigated whether an active involvement of students in the process of data collection may improve test performance and motivation among medical students. Methods: We conducted a pilot study comparing active involvement of students (n1=45) in the process of data collection and standard education (n2=26). All students of this pilot study participated in an observational study assessing their preferences regarding sweets or salty munchies, and students of the experimental group subsequently used this data set during the exercises throughout the semester. Primary and secondary endpoints were examination success and motivation respectively. Results: Superiority of the activating teaching method could not be demonstrated (intervention: 109.0 points (SD 8.8), control: 113.8 points (SD 6.5)). The course ratings were superior in the intervention group (median grade 1 vs. median grade 2 in the control group), although this was not a significant improvement (p=0.487). Conclusions: Biostatistics education should incorporate approaches contributing to a better understanding of learning contents. Possible reasons why this pilot study failed to prove superiority of the intervention were a lack of sample size as well as the good grades in the control group. The presented teaching concept has to be evaluated by means of a larger sample enabling more valid conclusions. Furthermore, the considered research question in the experimental group may be changed to a more relevant one for medical practice.

  18. A Control Allocation Technique to Recover From Pilot-Induced Oscillations (CAPIO) Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2010-01-01

    This paper proposes a control allocation technique that can help pilots recover from pilot induced oscillations (PIO). When actuators are rate-saturated due to aggressive pilot commands, high gain flight control systems or some anomaly in the system, the effective delay in the control loop may increase depending on the nature of the cause. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate PIOs. The proposed control allocator reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. Simulation results are reported, which demonstrate phase shift minimization and recovery from PIOs. Conversion of the objective function to be minimized and constraints to a form that is suitable for implementation is given.

  19. 14 CFR 135.247 - Pilot qualifications: Recent experience.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... as the sole manipulator of the flight controls in an aircraft of the same category and class and, if... controls in an aircraft of the same category and class and, if a type rating is required, of the same type... to a pilot in command of a turbine-powered airplane that is type certificated for more than one pilot...

  20. 14 CFR 135.247 - Pilot qualifications: Recent experience.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... as the sole manipulator of the flight controls in an aircraft of the same category and class and, if... controls in an aircraft of the same category and class and, if a type rating is required, of the same type... to a pilot in command of a turbine-powered airplane that is type certificated for more than one pilot...

  1. 14 CFR 135.247 - Pilot qualifications: Recent experience.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... as the sole manipulator of the flight controls in an aircraft of the same category and class and, if... controls in an aircraft of the same category and class and, if a type rating is required, of the same type... to a pilot in command of a turbine-powered airplane that is type certificated for more than one pilot...

  2. Feasibility of a patient-centred nutrition intervention to improve oral intakes of patients at risk of pressure ulcer: a pilot randomised control trial.

    PubMed

    Roberts, Shelley; Desbrow, Ben; Chaboyer, Wendy

    2016-06-01

    Nutrition is important for pressure ulcer prevention. This randomised control pilot study assessed the feasibility of conducting a larger trial to test the effectiveness of a patient-centred intervention for improving the dietary intakes of patients at risk of pressure ulcer in hospital. A 3-day intervention targeting patients at risk of pressure ulcer was developed, based on three main foundations: patient education, patient participation and guided goal setting. The intervention was piloted in three wards in a metropolitan hospital in Queensland, Australia. Participants were randomised into control or intervention groups and had their oral intakes monitored. A subset of intervention patients was interviewed on their perceptions of the intervention. Feasibility was tested against three criteria: ≥75% recruitment; ≥80% retention; and ≥80% intervention fidelity. Secondary outcomes related to effects on energy and protein intakes. Eighty patients participated in the study and 66 were included in final analysis. The recruitment rate was 82%, retention rate was 88%, and 100% of intervention patients received the intervention. Patients viewed the intervention as motivating and met significantly more of their estimated energy and protein requirements over time. This pilot study indicates that the intervention is feasible and acceptable by patients at risk of pressure ulcer. A larger trial is needed to confirm the effectiveness of the intervention in the clinical setting. © 2015 Nordic College of Caring Science.

  3. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLanc, Katya Le; Powers, David; Joe, Jeffrey

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologiesmore » that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.« less

  4. A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Cox, David E.; Murri, Daniel G.; Riddick, Stephen E.

    2011-01-01

    Toward the goal of reducing the fatal accident rate of large transport airplanes due to loss of control, the NASA Aviation Safety Program has conducted research into flight control technologies that can provide resilient control of airplanes under adverse flight conditions, including damage and failure. As part of the safety program s Integrated Resilient Aircraft Control Project, the NASA Airborne Subscale Transport Aircraft Research system was designed to address the challenges associated with the safe and efficient subscale flight testing of research control laws under adverse flight conditions. This paper presents the results of a series of pilot evaluations of several flight control algorithms used during an offset-to-landing task conducted at altitude. The purpose of this investigation was to assess the ability of various flight control technologies to prevent loss of control as stability and control characteristics were degraded. During the course of 8 research flights, data were recorded while one task was repeatedly executed by a single evaluation pilot. Two generic failures, which degraded stability and control characteristics, were simulated inflight for each of the 9 different flight control laws that were tested. The flight control laws included three different adaptive control methodologies, several linear multivariable designs, a linear robust design, a linear stability augmentation system, and a direct open-loop control mode. Based on pilot Cooper-Harper Ratings obtained for this test, the adaptive flight control laws provided the greatest overall benefit for the stability and control degradation scenarios that were considered. Also, all controllers tested provided a significant improvement in handling qualities over the direct open-loop control mode.

  5. In-Flight Study of Helmet-Mounted Symbology System Concepts in Degraded Visual Environments.

    PubMed

    Cheung, Bob; Craig, Gregory; Steels, Brad; Sceviour, Robert; Cosman, Vaughn; Jennings, Sion; Holst, Peter

    2015-08-01

    During approach and departure in rotary wing aircraft, a sudden loss of external visual reference precipitates spatial disorientation. There were 10 Royal Canadian Air Force (RCAF) Griffon pilots who participated in an in-flight investigation of a 3-dimensional conformal Helmet Display Tracking System (HDTS) and the BrownOut Symbology System (BOSS) aboard an Advanced System Research Aircraft. For each symbology system, pilots performed a two-stage departure followed by a single-stage approach. The presentation order of the two symbology systems was randomized across the pilots. Subjective measurements included situation awareness, mental effort, perceived performance, perceptual cue rating, NASA Task Load Index, and physiological response. Objective performance included aircraft speed, altitude, attitude, and distance from the landing point, control position, and control activity. Repeated measures analysis of variance and planned comparison tests for the subjective and objective responses were performed. For both maneuvers, the HDTS system afforded better situation awareness, lower workload, better perceptual cueing in attitude, horizontal and vertical translation, and lower overall workload index. During the two-stage departure, HDTS achieved less lateral drift from initial takeoff and hover, lower root mean square error (RMSE) in altitude during hover, and lower track error during the acceleration to forward flight. During the single-stage approach, HDTS achieved less error in lateral and longitudinal position offset from the landing point and lower RMSE in heading. In both maneuvers, pilots exhibited higher control activity when using HDTS, which suggested that more pertinent information was available to the pilots. Pilots preferred the HDTS system.

  6. Improved Lunar Lander Handling Qualities Through Control Response Type and Display Enhancements

    NASA Technical Reports Server (NTRS)

    Mueller, Eric Richard; Bilimoria, Karl D.; Frost, Chad Ritchie

    2010-01-01

    A piloted simulation that studied the handling qualities for a precision lunar landing task from final approach to touchdown is presented. A vehicle model based on NASA's Altair Lunar Lander was used to explore the design space around the nominal vehicle configuration to determine which combination of factors provides satisfactory pilot-vehicle performance and workload; details of the control and propulsion systems not available for that vehicle were derived from Apollo Lunar Module data. The experiment was conducted on a large motion base simulator. Eight Space Shuttle and Apollo pilot astronauts and three NASA test pilots served as evaluation pilots, providing Cooper-Harper ratings, Task Load Index ratings and qualitative comments. Each pilot flew seven combinations of control response types and three sets of displays, including two varieties of guidance and a nonguided approach. The response types included Rate Command with Attitude Hold, which was used in the original Apollo Moon landings, a Velocity Increment Command response type designed for up-and-away flight, three response types designed specifically for the vertical descent portion of the trajectory, and combinations of these. It was found that Velocity Increment Command significantly improved handling qualities when compared with the baseline Apollo design, receiving predominantly Level 1 ratings. This response type could be flown with or without explicit guidance cues, something that was very difficult with the baseline design, and resulted in approximately equivalent touchdown accuracies and propellant burn as the baseline response type. The response types designed to be used exclusively in the vertical descent portion of the trajectory did not improve handling qualities.

  7. Multimodal Pilot Behavior in Multi-Axis Tracking Tasks with Time-Varying Motion Cueing Gains

    NASA Technical Reports Server (NTRS)

    Zaal, P. M. T; Pool, D. M.

    2014-01-01

    In a large number of motion-base simulators, adaptive motion filters are utilized to maximize the use of the available motion envelope of the motion system. However, not much is known about how the time-varying characteristics of such adaptive filters affect pilots when performing manual aircraft control. This paper presents the results of a study investigating the effects of time-varying motion filter gains on pilot control behavior and performance. An experiment was performed in a motion-base simulator where participants performed a simultaneous roll and pitch tracking task, while the roll and/or pitch motion filter gains changed over time. Results indicate that performance increases over time with increasing motion gains. This increase is a result of a time-varying adaptation of pilots' equalization dynamics, characterized by increased visual and motion response gains and decreased visual lead time constants. Opposite trends are found for decreasing motion filter gains. Even though the trends in both controlled axes are found to be largely the same, effects are less significant in roll. In addition, results indicate minor cross-coupling effects between pitch and roll, where a cueing variation in one axis affects the behavior adopted in the other axis.

  8. An Analysis of En Route Controller-Pilot Voice Communications

    DOT National Transportation Integrated Search

    1993-03-01

    The purposes of this analysis were to examine current pilot-controller communication practices in the en route : environment. Forty-eight hours of voice tapes from eight different Air Route Traffic Control Centers (ARTCCs) were : examined. There were...

  9. Development of a coding form for approach control/pilot voice communications.

    DOT National Transportation Integrated Search

    1995-05-01

    The Aviation Topics Speech Acts Taxonomy (ATSAT) is a tool for categorizing pilot/controller communications according to their purpose and for classifying communication errors. Air traffic controller communications that deviate from FAA Air Traffic C...

  10. A pilot rating scale for evaluating failure transients in electronic flight control systems

    NASA Technical Reports Server (NTRS)

    Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.

    1990-01-01

    A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.

  11. The Effects of a Performance Base Curriculum on the Gross Motor Development of Preschool Children during Teacher Training: A Pilot Study.

    ERIC Educational Resources Information Center

    van der Mars, Hans; Butterfield, Stephen A.

    This pilot study used a task-analyzed performance base curriculum as an intervention on the gross motor development of 24 children aged three to six, 15 in a treatment group, 9 in a control group. Pre- and post-training data on gross motor development (relating to 10 motor skills) were collected using the Ohio State University Scale of Intra Gross…

  12. Rehabilitation R&D Progress Reports 1995, Volume 33, June 1996

    DTIC Science & Technology

    1996-06-01

    Stimulation 72 Rehabilitation of the Colon after Spinal Cord Injury: A Pilot Study 73 Electrical Control of Bladder and Bowel following Spinal Cord Injury...A. General 130 Design of New Toilet Prototypes for Elderly and Disabled Veterans 131 Design of a New Bowel Care/Shower Chair for SCI Veterans...and Rehabilitation 292 Functional Restoration of Grasp: A Pilot Study 293 High-Frequency Magnetic Stimulation of the Bladder and Bowel 294 Treatment

  13. RApid Primary care Initiation of Drug treatment for Transient Ischaemic Attack (RAPID-TIA): study protocol for a pilot randomised controlled trial.

    PubMed

    Edwards, Duncan; Fletcher, Kate; Deller, Rachel; McManus, Richard; Lasserson, Daniel; Giles, Matthew; Sims, Don; Norrie, John; McGuire, Graham; Cohn, Simon; Whittle, Fiona; Hobbs, Vikki; Weir, Christopher; Mant, Jonathan

    2013-07-02

    People who have a transient ischaemic attack (TIA) or minor stroke are at high risk of a recurrent stroke, particularly in the first week after the event. Early initiation of secondary prevention drugs is associated with an 80% reduction in risk of stroke recurrence. This raises the question as to whether these drugs should be given before being seen by a specialist--that is, in primary care or in the emergency department. The aims of the RAPID-TIA pilot trial are to determine the feasibility of a randomised controlled trial, to analyse cost effectiveness and to ask: Should general practitioners and emergency doctors (primary care physicians) initiate secondary preventative measures in addition to aspirin in people they see with suspected TIA or minor stroke at the time of referral to a specialist? This is a pilot randomised controlled trial with a sub-study of accuracy of primary care physician diagnosis of TIA. In the pilot trial, we aim to recruit 100 patients from 30 general practices (including out-of-hours general practice centres) and 1 emergency department whom the primary care physician diagnoses with TIA or minor stroke and randomly assign them to usual care (that is, initiation of aspirin and referral to a TIA clinic) or usual care plus additional early initiation of secondary prevention drugs (a blood-pressure lowering protocol, simvastatin 40 mg and dipyridamole 200 mg m/r bd). The primary outcome of the main study will be the number of strokes at 90 days. The diagnostic accuracy sub-study will include these 100 patients and an additional 70 patients in whom the primary care physician thinks the diagnosis of TIA is possible, rather than probable. For the pilot trial, we will report recruitment rate, follow-up rate, a preliminary estimate of the primary event rate and occurrence of any adverse events. For the diagnostic study, we will calculate sensitivity and specificity of primary care physician diagnosis using the final TIA clinic diagnosis as the reference standard. This pilot study will be used to estimate key parameters that are needed to design the main study and to estimate the accuracy of primary care diagnosis of TIA. The planned follow-on trial will have important implications for the initial management of people with suspected TIA. ISRCTN62019087.

  14. Hyper III on ramp, front view

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Hyper III was a low-cost test vehicle for an advanced lifting-body shape. Like the earlier M2-F1, it was a 'homebuilt' research aircraft, i.e., built at the Flight Research Center (FRC), later redesignated the Dryden Flight Research Center. It had a steel-tube frame covered with Dacron, a fiberglass nose, sheet aluminum fins, and a wing from an HP-11 sailplane. Construction was by volunteers at the FRC. Although the Hyper III was to be flown remotely in its initial tests, it was fitted with a cockpit for a pilot. On the Hyper III's only flight, it was towed aloft attached to a Navy SH-3 helicopter by a 400-foot cable. NASA research pilot Bruce Peterson flew the SH-3. After he released the Hyper III from the cable, NASA research pilot Milt Thompson flew the vehicle by radio control until the final approach when Dick Fischer took over control using a model-airplane radio-control box. The Hyper III flared, then landed and slid to a stop on Rogers Dry Lakebed. The Flight Research Center (FRC--as Dryden was named from 1959 until 1976) already had experience with testing small-scale aircraft using model-airplane techniques, but the first true remotely piloted research vehicle was the Hyper III, which flew only once in December 1969. At that time, the Center was engaged in flight research with a variety of reentry shapes called lifting bodies, and there was a desire both to expand the flight research experience with maneuverable reentry vehicles, including a high-performance, variable-geometry craft, and to investigate a remotely piloted flight research technique that made maximum use of a research pilot's skill and experience by placing him 'in the loop' as if he were in the cockpit. (There have been, as yet, no female research pilots assigned to Dryden.) The Hyper III as originally conceived was a stiletto-shaped lifting body that had resulted from a study at NASA's Langley Research Center in Hampton, Virginia. It was one of a number of hypersonic, cross-range reentry vehicles studied at Langley. (Hypersonic means Mach 5--five times the speed of sound--or faster; cross-range means able to fly a considerable distance to the left or right of the initial reentry path.) The FRC added a small, deployable, skewed wing to compensate for the shape's extremely low glide ratio. Shop personnel built the 32-foot-long Hyper III and covered its tubular frame with dacron, aluminum, and fiberglass, for about $6,500. Hyper III employed the same '8-ball' attitude indicator developed for control-room use when flying the X-15, two model-airplane receivers to command the vehicle's hydraulic controls, and a telemetry system (surplus from the X-15 program) to transmit 12 channels of data to the ground not only for display and control but for data analysis. Dropped from a helicopter at 10,000 feet, Hyper III flew under the control of research pilot Milt Thompson to a near landing using instruments for control. When the vehicle was close to the ground, he handed the vehicle off to experienced model pilot Dick Fischer for a visual landing using standard controls. The flight demonstrated the feasibility of remotely piloting research vehicles and, among other things, that control of the vehicle in roll was much better than predicted and that the vehicle had a much lower lift-to-drag ratio than predicted (a maximum of 4.0 rather than 5.0). Pilot Milt Thompson exhibited some suprising reactions during the Hyper III flight; he behaved as if he were in the cockpit of an actual research aircraft. 'I was really stimulated emotionally and physically in exactly the same manner that I have been during actual first flights.' 'Flying the Hyper III from a ground cockpit was just as dramatic as an actual flight in any of the other vehicles....responsibility rather than fear of personal safety is the real emotional driver. I have never come out of a simulator emtionally and physically tired as is often the case after a test flight in a research aircraft. I was emotionally and physically tired after a 3-minute flight of the Hyper III.'

  15. Uncoupling VOR and vestibuloautonomic retention to Coriolis acceleration training in student pilots and control subjects.

    PubMed

    Wang, Linjie; Cao, Yi; Tan, Cheng; Zhao, Qi; He, Siyang; Niu, Dongbin; Tang, Guohua; Zou, Peng; Xing, Lei

    2017-01-01

    Explore the different vestibular physiologic response retention patterns after Coriolis acceleration training in student pilots and extend the results for use with Chinese astronauts in the future. Twelve healthy control male subjects were screened from males familiar with vestibular training and who physically resembled the astronauts. Fourteen student pilots were selected from 23 participants by rotational vestibular function tests. All subjects were exposed to five-day continuous or intermittent Coriolis acceleration training. Subjective motion sickness (MS) symptom scores, electrocardiography, electrogastrography (EGG), post-rotatory nystagmus and renin-angiotensin system responses were measured before, during and after rotational vestibular function tests at different times after vestibular training. Subjects could tolerate 10 min or 15 min of vestibular with mild MS symptoms. Retention of vestibular autonomic responses (retention of MS symptom scores, heart rate variability, power density of EGG, variations in levels of arginine vasopressin) were approximately 1 week for control subjects and approximately 5 weeks for student pilots. Decreases in slow-phase velocity of post-rotatory nystagmus were maintained for 14 weeks for control subjects and 9 weeks for student pilots. Retention of the vestibulo-autonomic reaction after vestibular training was different for control subjects and student pilots. All parameters related to autonomic responses could be maintained at low levels after vestibular training for approximately 1 week for control subjects and approximately 5 weeks for student pilots. Uncoupling patterns between post-rotatory nystagmus and the vestibulo-autonomic reaction may be helpful in the design of clinical rehabilitation plans for balance-disorder patients and for exploration of artificial gravity in future space missions.

  16. Comparison of in-flight and ground-based simulator derived flying qualities and pilot performance for approach and landing tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Williams, Robert H.

    1987-01-01

    For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.

  17. Cardiac responses to long duration and high magnitude +Gz exposure in pilots: an observational study.

    PubMed

    Öztürk, Cengiz; İlbasmış, M Savaş; Akın, Ahmet

    2012-12-01

    In military aviation, high performance aircraft pilots are exposed to +Gz acceleration at longer durations and higher magnitude than transport/helicopter pilots. The purpose of this study was to reveal the negative or positive cardiac responses to this occupational high +Gz exposure. Our study design was cross-sectional and observational. We have evaluated 21 echocardiographic parameters of 63 pilots who applied for aircrew periodic medical examination. Of 63 pilots, 33 were grouped as high performance aircraft pilots group (Group A) and 30 were grouped as control group (Group B) whose aircraft type was transport or helicopter. Means of demographic and echocardiography parameters between two groups were compared statistically with Student's t-test, Mann- Whitney U or Chi-square test as appropriate. Among all echocardiographic parameters, mean TV A (tricuspid valve peak velocity during late diastolic filling) was significantly higher and TV E (peak velocity during early diastolic filling)/ A ratio was significantly lower for Group A pilots (p<0.05). In Group A pilots, mean TV A and TV E/A ratio were (52.12 ± 13.85) and (1.36 ± 0.30) respectively. In Group B pilots, mean TV A and TV E/A ratio were (42.61 ± 6.42) and (1.53 ± 0.20) respectively (p=0.001 for TVA and p=0.005 for TV E/A). Mean pulmonary artery pressure (PAP) of Group A pilots (32.04 ± 9.09) was higher than Group B pilots (28.76 ± 7.9) but it was not statistically significant (p>0.05). We conclude that according to the results of our study, long term +Gz exposure has no effects on cardiac morphologic and systolic functions but has effects on right ventricular diastolic functions. We have considered that these effects may be a result of chronic +Gz adaptation or high PAP levels.

  18. Free radicals and antioxidant enzymes in older adults after regular senior elastic band exercising: an experimental randomized controlled pilot study.

    PubMed

    Liao, Lin Yu; Chung, Wei Sheng; Chen, Kuei Min

    2017-01-01

    The aim of this study was to pilot test the effects of regular senior elastic band exercises on the generation of free radicals and antioxidant enzyme activities in older adults. Long-term regular exercises have positive health promotion outcomes. On the contrary, high-intensity, high-speed and short-term exercises in older adults may increase free radicals and cause chronic disease and ageing effect. A prospective randomized controlled pilot study. Data were collected during 2012. Twenty-five older adults were recruited from a community care centre, southern Taiwan and were randomly assigned to either an experimental or control group. Twenty-two participants completed the study: experimental group (n = 10) and control group (n = 12). The experimental group performed 6-month senior elastic band exercises while the control group kept regular daily routines. Both groups received blood tests (thiobarbituric acid-reacting substances and glutathione peroxidase) 30 minutes before the study began and 1 hour after the final intervention treatment. At the end of the 6-month senior elastic band exercises, no statistically significant differences in thiobarbituric acid-reacting substances and glutathione peroxidase values between the experimental and control groups. No significant differences existed in both thiobarbituric acid-reacting substances and glutathione peroxidase values before and after the 6-month senior elastic band exercises either. Regular senior elastic band exercises did not increase the generation of free radicals and antioxidant enzyme activities. Senior elastic band exercises have the potential to be promoted among older adults in the community as an exercise option without adverse effects on free radicals and have potential for mitigating ageing and increasing disease control. © 2016 John Wiley & Sons Ltd.

  19. A pilot randomized controlled trial comparing prenatal yoga to perinatal health education for antenatal depression.

    PubMed

    Uebelacker, Lisa A; Battle, Cynthia L; Sutton, Kaeli A; Magee, Susanna R; Miller, Ivan W

    2016-06-01

    We conducted a pilot randomized controlled trial (RCT) comparing a prenatal yoga intervention to perinatal-focused health education in pregnant women with depression. Findings document acceptability and feasibility of the yoga intervention: no yoga-related injuries were observed, instructors showed fidelity to the yoga manual, and women rated interventions as acceptable. Although improvements in depression were not statistically different between groups, they favored yoga. This study provides support for a larger scale RCT examining prenatal yoga to improve mood during pregnancy.

  20. Analyses of shuttle orbiter approach and landing conditions

    NASA Technical Reports Server (NTRS)

    Teper, G. L.; Dimarco, R. J.; Ashkenas, I. L.; Hoh, R. H.

    1981-01-01

    A study of one shuttle orbiter approach and landing conditions are summarized. Causes of observed PIO like flight deficiencies are identified and potential cures are examined. Closed loop pilot/vehicle analyses are described and path/attitude stability boundaries defined. The latter novel technique proved of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. The analytical results are shown to be consistent with flight test and fixed base simulation. Conclusions are drawn relating to possible improvements of the shuttle orbiter/digital flight control system.

  1. Analytical display design for flight tasks conducted under instrument meteorological conditions. [human factors engineering of pilot performance for display device design in instrument landing systems

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1976-01-01

    Paramount to proper utilization of electronic displays is a method for determining pilot-centered display requirements. Display design should be viewed fundamentally as a guidance and control problem which has interactions with the designer's knowledge of human psychomotor activity. From this standpoint, reliable analytical models of human pilots as information processors and controllers can provide valuable insight into the display design process. A relatively straightforward, nearly algorithmic procedure for deriving model-based, pilot-centered display requirements was developed and is presented. The optimal or control theoretic pilot model serves as the backbone of the design methodology, which is specifically directed toward the synthesis of head-down, electronic, cockpit display formats. Some novel applications of the optimal pilot model are discussed. An analytical design example is offered which defines a format for the electronic display to be used in a UH-1H helicopter in a landing approach task involving longitudinal and lateral degrees of freedom.

  2. Pilot performance in zero-visibility precision approach. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1975-01-01

    The pilot's short-term decisions regarding performance assessment and failure monitoring is examined. The performance of airline pilots who flew simulated zero-visibility landing approaches is reported. Results indicate that the pilot's mode of participation in the control task has a strong effect on his workload, the induced workload being lowest when the pilot acts as a monitor during a coupled approach and highest when the pilot is an active element in the control loop. A marked increase in workload at altitudes below 500 ft. is documented at all participation modes; this increase is inversely related to distance-to-go. The participation mode is shown to have a dominant effect on failure-detection performance, with a failure in a monitored (coupled) axis being detected faster than a comparable failure in a manually-controlled axis. Touchdown performance is also documented. It is concluded that the conventional instrument panel and its associated displays are inadequate for zero-visibility operations in the final phases of the landing approach.

  3. Evaluation of peripheral binocular visual field in patients with glaucoma: a pilot study.

    PubMed

    Ana, Banc; Cristina, Stan; Dorin, Chiselita

    2016-01-01

    The objective of this study was to evaluate the peripheral binocular visual field (PBVF) in patients with glaucoma using the threshold strategy of Humphrey Field Analyzer. We conducted a case-control pilot study in which we enrolled 59 patients with glaucoma and 20 controls. All participants were evaluated using a custom PBVF test and central 24 degrees monocular visual field tests for each eye using the threshold strategy. The central binocular visual field (CBVF) was predicted from the monocular tests using the most sensitive point at each field location. The glaucoma patients were grouped according to Hodapp classification and age. The PBVF was compared to controls and the relationship between the PBVF and CBVF was tested. The areas of frame-induced artefacts were determined (over 50 degrees in each temporal field, 24 degrees superiorly and 45 degrees inferiorly) and excluded from interpretation. The patients presented a statistically significant generalized decrease of the peripheral retinal sensitivity compared to controls for Hodapp initial stage--groups aged 50-59 (t = 11.93 > 2.06; p < 0.05) and 60-69 (t = 7.55 > 2.06; p < 0.05). For the initial Hodapp stage there was no significant relationship between PBVF and CBVF (r = 0.39). For the moderate and advanced Hodapp stages, the interpretation of data was done separately for each patient. This pilot study suggests that glaucoma patients present a decrease of PBVF compared to controls and CBVF cannot predict the PBVF in glaucoma.

  4. HandTutor™ enhanced hand rehabilitation after stroke--a pilot study.

    PubMed

    Carmeli, Eli; Peleg, Sara; Bartur, Gadi; Elbo, Enbal; Vatine, Jean-Jacques

    2011-12-01

    This study assessed the potential therapeutic benefi t of using HandTutor™ in combination with traditional rehabilitation in a post-stroke sub-acute population. The study compares an experimental group receiving traditional therapy combined with HandTutorTM treatment, against a control group receiving only traditional therapy. An assessor-blinded, randomized controlled pilot trial, was conducted in the Reuth rehabilitation unit in Israel. Thirty-one stroke patients in the sub-acute phase, were randomly assigned to one of the two groups (experimental or control) in sets of three. The experimental group (n = 16) underwent a hand rehabilitation programme using the HandTutorTM combined with traditional therapy. The control group (n = 15) received only traditional therapy. The treatment schedules for both groups were of similar duration and frequency. Improvements were evaluated using three indicators: 1) The Brunnström-Fugl-Meyer (FM) test, 2) the Box and Blocks (B&B) test and 3) improvement parameters as determined by the HandTutorTM software. Following 15 consecutive treatment sessions, a signifi cant improvement was observed within the experimental group (95% confi dence intervals) compared with the control group: B&B p = 0.015; FM p = 0.041, HandTutor™ performance accuracy on x axis and performance accuracy on y axis p < 0.0003. The results from this pilot study support further investigation of the use of the HandTutorTM in combination with traditional occupational therapy and physiotherapy during post stroke hand function rehabilitation.

  5. 77 FR 69571 - Special Conditions: Embraer S.A., Model EMB-550 Airplane, Limit Pilot Forces for Sidestick Control

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... wheel or stick controls, is not appropriate for a sidestick controller, because pilot forces are applied... Forces for Sidestick Control AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... instead of a conventional wheel or control stick. This kind of controller is designed to be operated using...

  6. Effect of lift-to-drag ratio in pilot rating of the HL-20 landing task

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1993-01-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting-body vehicle was made in a fixed-base simulation cockpit at NASA Langley Research Center. The purpose of the study was to identify and substantiate opportunities for improving the original design of the vehicle from a handling qualities and landing performance perspective. Using preliminary wind-tunnel data, a subsonic aerodynamic model of the HL-20 was developed. This model was adequate to simulate the last 75-90 s of the approach and landing. A simple flight-control system was designed and implemented. Using this aerodynamic model as a baseline, visual approaches and landings were made at several vehicle lift-to-drag ratios. Pilots rated the handling characteristics of each configuration using a conventional numerical pilot-rating scale. Results from the study showed a high degree of correlation between the lift-to-drag ratio and pilot rating. Level 1 pilot ratings were obtained when the L/D ratio was approximately 3.8 or higher.

  7. Effect of lift-to-drag ratio in pilot rating of the HL-20 landing task

    NASA Astrophysics Data System (ADS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1993-10-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting-body vehicle was made in a fixed-base simulation cockpit at NASA Langley Research Center. The purpose of the study was to identify and substantiate opportunities for improving the original design of the vehicle from a handling qualities and landing performance perspective. Using preliminary wind-tunnel data, a subsonic aerodynamic model of the HL-20 was developed. This model was adequate to simulate the last 75-90 s of the approach and landing. A simple flight-control system was designed and implemented. Using this aerodynamic model as a baseline, visual approaches and landings were made at several vehicle lift-to-drag ratios. Pilots rated the handling characteristics of each configuration using a conventional numerical pilot-rating scale. Results from the study showed a high degree of correlation between the lift-to-drag ratio and pilot rating. Level 1 pilot ratings were obtained when the L/D ratio was approximately 3.8 or higher.

  8. Experimental and Numerical Study on Effect of Sample Orientation on Auto-Ignition and Piloted Ignition of Poly(methyl methacrylate)

    PubMed Central

    Peng, Fei; Zhou, Xiao-Dong; Zhao, Kun; Wu, Zhi-Bo; Yang, Li-Zhong

    2015-01-01

    In this work, the effect of seven different sample orientations from 0° to 90° on pilot and non-pilot ignition of PMMA (poly(methyl methacrylate)) exposed to radiation has been studied with experimental and numerical methods. Some new and significant conclusions are drawn from the study, including a U-shape curve of ignition time and critical mass flux as sample angle increases for pilot ignition conditions. However, in auto-ignition, the ignition time and critical mass flux increases with sample angle α. Furthermore, a computational fluid dynamic model have been built based on the Fire Dynamics Simulator (FDS6) code to investigate the mechanisms controlling the dependence on sample orientation of the ignition of PMMA under external radiant heating. The results of theoretical analysis and modeling results indicate the decrease of total incident heat flux at sample surface plays the dominant role during the ignition processes of auto-ignition, but the volatiles gas flow has greater influence for piloted ignition conditions. PMID:28793421

  9. Learning About Cockpit Automation: From Piston Trainer to Jet Transport

    NASA Technical Reports Server (NTRS)

    Casner, Stephen M.

    2003-01-01

    Two experiments explored the idea of providing cockpit automation training to airline-bound student pilots using cockpit automation equipment commonly found in small training airplanes. In a first experiment, pilots mastered a set of tasks and maneuvers using a GPS navigation computer, autopilot, and flight director system installed in a small training airplane Students were then tested on their ability to complete a similar set of tasks using the cockpit automation system found in a popular jet transport aircraft. Pilot were able to successfully complete 77% of all tasks in the jet transport on their first attempt. An analysis of a control group suggests that the pilot's success was attributable to the application of automation principles they had learned in the small airplane. A second experiment looked at two different ways of delivering small-aeroplane cockpit automation training: a self-study method, and a dual instruction method. The results showed a slight advantage for the self-study method. Overall, the results of the two studies cast a strong vote for the incorporation of cockpit automation training in curricula designed for pilot who will later transition to the jet fleet.

  10. Assessment of sleepiness, fatigue, and depression among Gulf Cooperation Council commercial airline pilots.

    PubMed

    Aljurf, Tareq M; Olaish, Awad H; BaHammam, Ahmed S

    2018-05-01

    No studies have assessed the prevalence of fatigue, depression, sleepiness, and the risk of obstructive sleep apnea (OSA) among commercial airlines pilots in the Gulf Cooperation Council (GCC). This was a quantitative cross-sectional study conducted among pilots who were on active duty and had flown during the past 6 months for one of three commercial airline companies. We included participants with age between 20 and 65 years. Data were collected using a predesigned electronic questionnaire composed of questions related to demographic information in addition to the Fatigue Severity Scale (FSS), the Berlin Questionnaire, the Epworth Sleepiness Scale (ESS), and the Hospital Anxiety and Depression Scale (HADS). The study included 328 pilots with a mean age ± standard deviation of 41.4 ± 9.7 years. Overall, 224 (68.3%) pilots had an FSS score ≥ 36 indicating severe fatigue and 221 (67.4%) reported making mistakes in the cockpit because of fatigue. One hundred and twelve (34.1%) pilots had an ESS score ≥ 10 indicating excessive daytime sleepiness and 148 (45.1%) reported falling asleep at the controls at least once without previously agreeing with their colleagues. One hundred and thirteen (34.5%) pilots had an abnormal HADS depression score (≥ 8), and 96 (29.3%) pilots were at high risk for OSA requiring further assessment. Fatigue, sleepiness, risk of OSA, and depression are prevalent among GCC commercial airline pilots. Regular assessment by aviation authorities is needed to detect and treat these medical problems.

  11. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  12. Stress Management-Augmented Behavioral Weight Loss Intervention for African American Women: A Pilot, Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Cox, Tiffany L.; Krukowski, Rebecca; Love, ShaRhonda J.; Eddings, Kenya; DiCarlo, Marisha; Chang, Jason Y.; Prewitt, T. Elaine; West, Delia Smith

    2013-01-01

    The relationship between chronic stress and weight management efforts may be a concern for African American (AA) women, who have a high prevalence of obesity, high stress levels, and modest response to obesity treatment. This pilot study randomly assigned 44 overweight/obese AA women with moderate to high stress levels to either a 12-week…

  13. Preschool Based JASPER Intervention in Minimally Verbal Children with Autism: Pilot RCT

    ERIC Educational Resources Information Center

    Goods, Kelly Stickles; Ishijima, Eric; Chang, Ya-Chih; Kasari, Connie

    2013-01-01

    In this pilot study, we tested the effects of a novel intervention (JASPER, Joint Attention Symbolic Play Engagement and Regulation) on 3 to 5 year old, minimally verbal children with autism who were attending a non-public preschool. Participants were randomized to a control group (treatment as usual, 30 h of ABA-based therapy per week) or a…

  14. A Pilot Randomized Controlled Trial of DIR/Floortime[TM] Parent Training Intervention for Pre-School Children with Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Pajareya, Kingkaew; Nopmaneejumruslers, Kaewta

    2011-01-01

    This pilot study was designed to test the efficacy of adding home-based Developmental, Individual-Difference, Relationship-Based (DIR)/Floortime[TM] intervention to the routine care of preschool children with autistic spectrum disorder. Measures of functional emotional development and symptom severity were taken. It was found that after the…

  15. A pilot randomized trial of two cognitive rehabilitation interventions for mild cognitive impairment: caregiver outcomes.

    PubMed

    Cuc, Andrea V; Locke, Dona E C; Duncan, Noah; Fields, Julie A; Snyder, Charlene Hoffman; Hanna, Sherrie; Lunde, Angela; Smith, Glenn E; Chandler, Melanie

    2017-12-01

    This study aims to provide effect size estimates of the impact of two cognitive rehabilitation interventions provided to patients with mild cognitive impairment: computerized brain fitness exercise and memory support system on support partners' outcomes of depression, anxiety, quality of life, and partner burden. A randomized controlled pilot trial was performed. At 6 months, the partners from both treatment groups showed stable to improved depression scores, while partners in an untreated control group showed worsening depression over 6 months. There were no statistically significant differences on anxiety, quality of life, or burden outcomes in this small pilot trial; however, effect sizes were moderate, suggesting that the sample sizes in this pilot study were not adequate to detect statistical significance. Either form of cognitive rehabilitation may help partners' mood, compared with providing no treatment. However, effect size estimates related to other partner outcomes (i.e., burden, quality of life, and anxiety) suggest that follow-up efficacy trials will need sample sizes of at least 30-100 people per group to accurately determine significance. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. A Flight Evaluation of the Factors which Influence the Selection of Landing Approach Speeds

    NASA Technical Reports Server (NTRS)

    Drinkwater, Fred J., III; Cooper, George E.

    1958-01-01

    The factors which influence the selection of landing approach speeds are discussed from the pilot's point of view. Concepts were developed and data were obtained during a landing approach flight investigation of a large number of jet airplane configurations which included straight-wing, swept-wing, and delta-wing airplanes as well as several applications of boundary-layer control. Since the fundamental limitation to further reductions in approach speed on most configurations appeared to be associated with the reduction in the pilot's ability to control flight path angle and airspeed, this problem forms the basis of the report. A simplified equation is presented showing the basic parameters which govern the flight path angle and airspeed changes, and pilot control techniques are discussed in relation to this equation. Attention is given to several independent aerodynamic characteristics which do not affect the flight path angle or airspeed directly but which determine to a large extent the effort and attention required of the pilot in controlling these factors during the approach. These include stall characteristics, stability about all axes, and changes in trim due to thrust adjustments. The report considers the relationship between piloting technique and all of the factors previously mentioned. A piloting technique which was found to be highly desirable for control of high-performance airplanes is described and the pilot's attitudes toward low-speed flight which bear heavily on the selection of landing approach speeds under operational conditions are discussed.

  17. A comparison of Kneipp hydrotherapy with conventional physiotherapy in the treatment of osteoarthritis: a pilot trial.

    PubMed

    Schencking, Martin; Wilm, Stefan; Redaelli, Marcus

    2013-01-01

    An increasingly aging population implies an increasing prevalence of osteoarthritis (OA) of hip or knee. It has been ascertained that unspecific hydrotherapy of OA according to Sebastian Kneipp not only improves the range of mobility but also reduces pain significantly and increases the quality of life of the patients affected. The main aim of this pilot study was to determine the effects of hydrotherapy in comparison to conventional physiotherapy, and to analyze the feasibility of the study design under clinical circumstances. The study design is a prospective randomized controlled three-arm clinical pilot trial, carried out at a specialist clinic for integrative medicine. Thirty patients diagnosed with symptomatic OA of hip or knee and radiologic findings were randomly assigned to one of two intervention groups and a control group: hydrotherapy (group 1), physiotherapy (group 2), and both physiotherapy and hydrotherapy (group 3, control group) of the affected joint. pain intensity of the affected joint in the course of inpatient treatment; secondary outcome: health-related quality of life, joint-specific pain and mobility in the course of the study. Concerning the main outcome, intervention group 1 showed most beneficial effects in the course of inpatient treatment, followed by groups 3 and 2, and also the indirect flexion ability of hip or knee together with the general patient mobility through the "timed up and go" test were mainly improved within group 1 followed by groups 3 and 2. The results of this pilot study demonstrate beneficial effects of hydrotherapy. The study design is feasible. For statistically significant evidence and a robust conclusion of efficacy of Kneipp's hydrotherapy, a larger sample size is necessary. NCT 00950326.

  18. Spaceborne synthetic aperture radar pilot study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A pilot study of a spaceborne sidelooking radar is summarized. The results of the system trade studies are given along with the electrical parameters for the proposed subsystems. The mechanical aspects, packaging, thermal control and dynamics of the proposed design are presented. Details of the data processor are given. A system is described that allows the data from a pass over the U. S. to be in hard copy form within two hours. Also included are the proposed schedule, work breakdown structure, and cost estimate.

  19. Pilot evaluation of sailplane handling qualities

    NASA Technical Reports Server (NTRS)

    Bennett, A. G., Jr.

    1978-01-01

    The evaluation sailplanes were found generally deficient in the area of cockpit layout. The pilots indicated general dissatisfaction with high pitch sensitivity especially when coupled with inertially induced stick forces. While all sailplanes were judged satisfactory for centering thermals and in the ease of speed control in circling flight, pilot opinions diverged on the maneuvering response, pull-out characteristics from a dive, and on phugoid damping. Lateral-directional control problems were noted mainly during takeoff and landing for most sailplanes with the landing wheel ahead of center of gravity. Pilot opinion of in-flight lateral-directional stability and control was generally satisfactory. Five of the evaluation sailplanes exhibited a very narrow airspeed band in which perceptible stall warning buffet occurred. However, this characteristic was considered not objectionable when stall recovery was easy. The pilots objected to the characteristics of a wide airspeed band of stall warning followed by a stall with yawing and rolling tendency and substantial loss of altitude during the stall. Glide path control for the evaluation sailplanes was found to be generally objectionable.

  20. Pilot age and expertise predict flight simulator performance

    PubMed Central

    Kennedy, Quinn; Noda, Art; Yesavage, Jerome A.

    2010-01-01

    Background Expert knowledge may compensate for age-related declines in basic cognitive and sensory-motor abilities in some skill domains. We investigated the influence of age and aviation expertise (indexed by Federal Aviation Administration pilot ratings) on longitudinal flight simulator performance. Methods Over a 3-year period, 118 general aviation pilots aged 40 to 69 years were tested annually, in which their flight performance was scored in terms of 1) executing air-traffic controller communications; 2) traffic avoidance; 3) scanning cockpit instruments; 4) executing an approach to landing; and 5) a flight summary score. Results More expert pilots had better flight summary scores at baseline and showed less decline over time. Secondary analyses revealed that expertise effects were most evident in the accuracy of executing aviation communications, the measure on which performance declined most sharply over time. Regarding age, even though older pilots initially performed worse than younger pilots, over time older pilots showed less decline in flight summary scores than younger pilots. Secondary analyses revealed that the oldest pilots did well over time because their traffic avoidance performance improved more vs younger pilots. Conclusions These longitudinal findings support previous cross-sectional studies in aviation as well as non-aviation domains, which demonstrated the advantageous effect of prior experience and specialized expertise on older adults’ skilled cognitive performances. PMID:17325270

  1. NREL Studies Voltage Regulation Strategies for Hawaiian Electric Companies

    Science.gov Websites

    , electric vehicles, and electric water heater control to understand their potential in supporting voltage locally. Meanwhile, NREL has also completed a pilot inverter control study, in which data from advanced voltage regulation, such as battery storage, water heater control, and electric vehicles, will be done

  2. Realizable optimal control for a remotely piloted research vehicle. [stability augmentation

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1980-01-01

    The design of a control system using the linear-quadratic regulator (LQR) control law theory for time invariant systems in conjunction with an incremental gradient procedure is presented. The incremental gradient technique reduces the full-state feedback controller design, generated by the LQR algorithm, to a realizable design. With a realizable controller, the feedback gains are based only on the available system outputs instead of being based on the full-state outputs. The design is for a remotely piloted research vehicle (RPRV) stability augmentation system. The design includes methods for accounting for noisy measurements, discrete controls with zero-order-hold outputs, and computational delay errors. Results from simulation studies of the response of the RPRV to a step in the elevator and frequency analysis techniques are included to illustrate these abnormalities and their influence on the controller design.

  3. Analysis of Controller-Pilot Voice Communications from Kansas City Air Route Traffic Control Center

    DOT National Transportation Integrated Search

    2017-07-01

    The implementation of Controller Pilot Datalink Communications (CPDLC) in domestic en route airspace is a key enabling technology in the Next Generation Air Transportation System. The Federal Aviation Administration plans to implement en route CPDLC ...

  4. An Analysis of Tower (Local) Controller - Pilot Voice Communications

    DOT National Transportation Integrated Search

    1994-06-01

    The purposes of this analysis were to examine current pilot-controller communication practices in the terminal environment. Forty-nine hours of voice tapes from local positions in ten Air Traffic Control Towers (ATCTs) were examined. There were 8,444...

  5. Muslim communities learning about second-hand smoke (MCLASS): study protocol for a pilot cluster randomised controlled trial.

    PubMed

    Ainsworth, Hannah; Shah, Sarwat; Ahmed, Faraz; Amos, Amanda; Cameron, Ian; Fairhurst, Caroline; King, Rebecca; Mir, Ghazala; Parrott, Steve; Sheikh, Aziz; Torgerson, David; Thomson, Heather; Siddiqi, Kamran

    2013-09-13

    In the UK, 40% of Bangladeshi and 29% of Pakistani men smoke cigarettes regularly compared to the national average of 24%. As a consequence, second-hand smoking is also widespread in their households which is a serious health hazard to non-smokers, especially children. Smoking restrictions in households can help reduce exposure to second-hand smoking. This is a pilot trial of 'Smoke Free Homes', an educational programme which has been adapted for use by Muslim faith leaders, in an attempt to find an innovative solution to encourage Pakistani- and Bangladeshi-origin communities to implement smoking restrictions in their homes. The primary objectives for this pilot trial are to establish the feasibility of conducting such an evaluation and provide information to inform the design of a future definitive study. This is a pilot cluster randomised controlled trial of 'Smoke Free Homes', with an embedded preliminary health economic evaluation and a qualitative analysis. The trial will be carried out in around 14 Islamic religious settings. Equal randomisation will be employed to allocate each cluster to a trial arm. The intervention group will be offered the Smoke Free Homes package (Smoke Free Homes: a resource for Muslim religious teachers), trained in its use, and will subsequently implement the package in their religious settings. The remaining clusters will not be offered the package until the completion of the study and will form the control group. At each cluster, we aim to recruit around 50 households with at least one adult resident who smokes tobacco and at least one child or a non-smoking adult. Households will complete a household survey and a non-smoking individual will provide a saliva sample which will be tested for cotinine. All participant outcomes will be measured before and after the intervention period in both arms of the trial. In addition, a purposive sample of participants and religious leaders/teachers will take part in interviews and focus groups. The results of this pilot study will inform the protocol for a definitive trial. Current Controlled Trials ISRCTN03035510.

  6. Muslim communities learning about second-hand smoke (MCLASS): study protocol for a pilot cluster randomised controlled trial

    PubMed Central

    2013-01-01

    Background In the UK, 40% of Bangladeshi and 29% of Pakistani men smoke cigarettes regularly compared to the national average of 24%. As a consequence, second-hand smoking is also widespread in their households which is a serious health hazard to non-smokers, especially children. Smoking restrictions in households can help reduce exposure to second-hand smoking. This is a pilot trial of ‘Smoke Free Homes’, an educational programme which has been adapted for use by Muslim faith leaders, in an attempt to find an innovative solution to encourage Pakistani- and Bangladeshi-origin communities to implement smoking restrictions in their homes. The primary objectives for this pilot trial are to establish the feasibility of conducting such an evaluation and provide information to inform the design of a future definitive study. Methods/Design This is a pilot cluster randomised controlled trial of ‘Smoke Free Homes’, with an embedded preliminary health economic evaluation and a qualitative analysis. The trial will be carried out in around 14 Islamic religious settings. Equal randomisation will be employed to allocate each cluster to a trial arm. The intervention group will be offered the Smoke Free Homes package (Smoke Free Homes: a resource for Muslim religious teachers), trained in its use, and will subsequently implement the package in their religious settings. The remaining clusters will not be offered the package until the completion of the study and will form the control group. At each cluster, we aim to recruit around 50 households with at least one adult resident who smokes tobacco and at least one child or a non-smoking adult. Households will complete a household survey and a non-smoking individual will provide a saliva sample which will be tested for cotinine. All participant outcomes will be measured before and after the intervention period in both arms of the trial. In addition, a purposive sample of participants and religious leaders/teachers will take part in interviews and focus groups. Discussion The results of this pilot study will inform the protocol for a definitive trial. Trial registration Current Controlled Trials ISRCTN03035510 PMID:24034853

  7. Remotely Piloted Aircraft for Research

    NASA Technical Reports Server (NTRS)

    Rezek, T. W.

    1985-01-01

    NASA Technical Memorandum presents overview of remotely-piloted research vehicle (RPRV) activities. Controlled from ground, vehicles allow new concepts tried without subjecting pilots to danger. Critical role of pilot in flight testing with RPRV's demonstrated repeatedly, and many system anomalies uncovered with no risk to human life.

  8. Piloted Simulation to Evaluate the Utility of a Real Time Envelope Protection System for Mitigating In-Flight Icing Hazards

    NASA Technical Reports Server (NTRS)

    Ranaudo, Richard J.; Martos, Borja; Norton, Bill W.; Gingras, David R.; Barnhart, Billy P.; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    The utility of the Icing Contamination Envelope Protection (ICEPro) system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). ICEPro provides real time envelope protection cues and alerting messages on pilot displays. The pilots participating in this test were divided into two groups; a control group using baseline displays without ICEPro, and an experimental group using ICEPro driven display cueing. Each group flew identical precision approach and missed approach procedures with a simulated failure case icing condition. Pilot performance, workload, and survey questionnaires were collected for both groups of pilots. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their situation awareness of a hazardous aircraft state.

  9. STS-43 Pilot Baker eats a sandwich on OV-104's forward flight deck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-43 Pilot Michael A. Baker, seated at the forward flight deck pilots station controls, eats a freefloating peanut butter and jelly sandwich while holding a carrot. Surrounding Baker on Atlantis', Orbiter Vehicle (OV) 104's, flight deck are procedural checklists, control panels, and windows. A lemonade drink bag is velcroed to overhead panel O9.

  10. Bristol girls dance project feasibility study: using a pilot economic evaluation to inform design of a full trial

    PubMed Central

    Powell, Jane E; Carroll, Fran E; Sebire, Simon J; Haase, Anne M; Jago, Russell

    2013-01-01

    Background There is currently little guidance for pilot trial economic evaluation where health outcomes and costs are influenced by a range of wider determinants and factors. Objectives This article presents the findings of a pilot economic evaluation study running alongside the Bristol Girls Dance Project (BGDP) feasibility study. Design 3-arm, cluster randomised, controlled pilot trial and economic evaluation. 7 schools (n=210) from the Bristol and greater Bristol area, UK were randomly allocated to the intervention arm 3 schools (n=90) and the control arm 4 schools (n=120). Intervention Girls aged 11–12 years with parental consent were provided with two, 90 min dance sessions per week for 9 weeks at school facilities. Economic outcome measures Programme costs and girls’ preferences for attributes of dance and preferences for competing leisure time activities were measured. Results The mainstream average cost of the BGDP programme (not including research, control and dance teacher training costs) per school was $2126.40, £1329 and €1555 and per participant was $70.90, £44.31 and €51.84 in 2010–2011 prices. Discrete choice experiment (DCE) methods are acceptable to girls of this age indicating time available for other leisure activities on dance class days is the attribute girls valued most and 2 h leisure time remaining preferred to 3 h. Conclusions This pilot study indicates that providing full cost data for a future trial of the BGDP programme is feasible and practical. There is no evidence from preference data to support adjustment to intervention design. A future economic evaluation is likely to be successful utilising the resource use checklist developed. The importance of categorising separately resources used to develop, prepare, deliver and maintain the programme to estimate mainstream costs accurately is demonstrated. PMID:24362013

  11. PHARMacy-based interdisciplinary program for patients with Chronic Heart Failure (PHARM-CHF): rationale and design of a randomized controlled trial, and results of the pilot study.

    PubMed

    Laufs, Ulrich; Griese-Mammen, Nina; Krueger, Katrin; Wachter, Angelika; Anker, Stefan D; Koehler, Friedrich; Rettig-Ewen, Volker; Botermann, Lea; Strauch, Dorothea; Trenk, Dietmar; Böhm, Michael; Schulz, Martin

    2018-05-30

    We report the rationale and design of a community PHARMacy-based prospective randomized controlled interdisciplinary study for ambulatory patients with Chronic Heart Failure (PHARM-CHF) and results of its pilot study. The pilot study randomized 50 patients to a pharmacy-based intervention or usual care for 12 months. It demonstrated the feasibility of the design and showed reduced systolic blood pressure in the intervention group as indicator for improved medication adherence. The main study will randomize patients ≥60 years on stable pharmacotherapy including at least one diuretic and a history of heart failure hospitalization within 12 months. The intervention group will receive a medication review at baseline followed by regular dose dispensing of the medication, counselling regarding medication use and symptoms of heart failure. The control patients are unknown to the pharmacy and receive usual care. The primary efficacy endpoint is medication adherence, pre-specified as a significant difference of the proportion of days covered between the intervention and control group within 365 days following randomization using pharmacy claims data for three CHF medications (angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, beta-blockers, and mineralocorticoid receptor antagonists). The primary composite safety endpoint is days lost due to blindly adjudicated unplanned cardiovascular hospitalizations or death. Overall, 248 patients shall be randomized. The minimum follow-up is 12 months with an expected mean of 24 months. Based on the feasibility demonstrated in the pilot study, the randomized PHARM-CHF trial will test whether an interdisciplinary pharmacy-based intervention can safely improve medication adherence and will estimate the potential impact on clinical endpoints. ClinicalTrials.gov Identifier: NCT01692119. © 2018 The Authors. European Journal of Heart Failure © 2018 European Society of Cardiology.

  12. Hyper III on ramp

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Hyper III was a full-scale lifting-body remotely piloted research vehicle (RPRV) built at what was then the NASA Flight Research Center located at Edwards Air Force Base in Southern California. The Flight Research Center (FRC--as Dryden was named from 1959 until 1976) already had experience with testing small-scale aircraft using model-airplane techniques, but the first true remotely piloted research vehicle was the Hyper III, which flew only once in December 1969. At that time, the Center was engaged in flight research with a variety of reentry shapes called lifting bodies, and there was a desire both to expand the flight research experience with maneuverable reentry vehicles, including a high-performance, variable-geometry craft, and to investigate a remotely piloted flight research technique that made maximum use of a research pilot's skill and experience by placing him 'in the loop' as if he were in the cockpit. (There have been, as yet, no female research pilots assigned to Dryden.) The Hyper III as originally conceived was a stiletto-shaped lifting body that had resulted from a study at NASA's Langley Research Center in Hampton, Virginia. It was one of a number of hypersonic, cross-range reentry vehicles studied at Langley. (Hypersonic means Mach 5--five times the speed of sound--or faster; cross-range means able to fly a considerable distance to the left or right of the initial reentry path.) The FRC added a small, deployable, skewed wing to compensate for the shape's extremely low glide ratio. Shop personnel built the 32-foot-long Hyper III and covered its tubular frame with dacron, aluminum, and fiberglass, for about $6,500. Hyper III employed the same '8-ball' attitude indicator developed for control-room use when flying the X-15, two model-airplane receivers to command the vehicle's hydraulic controls, and a telemetry system (surplus from the X-15 program) to transmit 12 channels of data to the ground not only for display and control but for data analysis. Dropped from a helicopter at 10,000 feet, Hyper III flew under the control of research pilot Milt Thompson to a near landing using instruments for control. When the vehicle was close to the ground, he handed the vehicle off to experienced model pilot Dick Fischer for a visual landing using standard controls. The flight demonstrated the feasibility of remotely piloting research vehicles and, among other things, that control of the vehicle in roll was much better than predicted and that the vehicle had a much lower lift-to-drag ratio than predicted (a maximum of 4.0 rather than 5.0). Pilot Milt Thompson exhibited some suprising reactions during the Hyper III flight; he behaved as if he were in the cockpit of an actual research aircraft. 'I was really stimulated emotionally and physically in exactly the same manner that I have been during actual first flights.' 'Flying the Hyper III from a ground cockpit was just as dramatic as an actual flight in any of the other vehicles....responsibility rather than fear of personal safety is the real emotional driver. I have never come out of a simulator emtionally and physically tired as is often the case after a test flight in a research aircraft. I was emotionally and physically tired after a 3-minute flight of the Hyper III.'

  13. Efficacy of a radiation absorbing shield in reducing dose to the interventionalist during peripheral endovascular procedures: a single centre pilot study.

    PubMed

    Power, S; Mirza, M; Thakorlal, A; Ganai, B; Gavagan, L D; Given, M F; Lee, M J

    2015-06-01

    This prospective pilot study was undertaken to evaluate the feasibility and effectiveness of using a radiation absorbing shield to reduce operator dose from scatter during lower limb endovascular procedures. A commercially available bismuth shield system (RADPAD) was used. Sixty consecutive patients undergoing lower limb angioplasty were included. Thirty procedures were performed without the RADPAD (control group) and thirty with the RADPAD (study group). Two separate methods were used to measure dose to a single operator. Thermoluminescent dosimeter (TLD) badges were used to measure hand, eye, and unshielded body dose. A direct dosimeter with digital readout was also used to measure eye and unshielded body dose. To allow for variation between control and study groups, dose per unit time was calculated. TLD results demonstrated a significant reduction in median body dose per unit time for the study group compared with controls (p = 0.001), corresponding to a mean dose reduction rate of 65 %. Median eye and hand dose per unit time were also reduced in the study group compared with control group, however, this was not statistically significant (p = 0.081 for eye, p = 0.628 for hand). Direct dosimeter readings also showed statistically significant reduction in median unshielded body dose rate for the study group compared with controls (p = 0.037). Eye dose rate was reduced for the study group but this was not statistically significant (p = 0.142). Initial results are encouraging. Use of the shield resulted in a statistically significant reduction in unshielded dose to the operator's body. Measured dose to the eye and hand of operator were also reduced but did not reach statistical significance in this pilot study.

  14. Pilot dynamics for instrument approach tasks: Full panel multiloop and flight director operations

    NASA Technical Reports Server (NTRS)

    Weir, D. H.; Mcruer, D. T.

    1972-01-01

    Measurements and interpretations of single and mutiloop pilot response properties during simulated instrument approach are presented. Pilot subjects flew Category 2-like ILS approaches in a fixed base DC-8 simulaton. A conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Reduced and interpreted pilot describing functions and remmant are given for pitch attitude, flight director, and multiloop (longitudinal) control tasks. The response data are correlated with simultaneously recorded eye scanning statistics, previously reported in NASA CR-1535. The resulting combined response and scanning data and their interpretations provide a basis for validating and extending the theory of manual control displays.

  15. PILOT: An intelligent distributed operations support system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Arthur N.

    1993-01-01

    The Real-Time Data System (RTDS) project is exploring the application of advanced technologies to the real-time flight operations environment of the Mission Control Centers at NASA's Johnson Space Center. The system, based on a network of engineering workstations, provides services such as delivery of real time telemetry data to flight control applications. To automate the operation of this complex distributed environment, a facility called PILOT (Process Integrity Level and Operation Tracker) is being developed. PILOT comprises a set of distributed agents cooperating with a rule-based expert system; together they monitor process operation and data flows throughout the RTDS network. The goal of PILOT is to provide unattended management and automated operation under user control.

  16. On the pilot's behavior of detecting a system parameter change

    NASA Technical Reports Server (NTRS)

    Morizumi, N.; Kimura, H.

    1986-01-01

    The reaction of a human pilot, engaged in compensatory control, to a sudden change in the controlled element's characteristics is described. Taking the case where the change manifests itself as a variance change of the monitored signal, it is shown that the detection time, defined to be the time elapsed until the pilot detects the change, is related to the monitored signal and its derivative. Then, the detection behavior is modeled by an optimal controller, an optimal estimator, and a variance-ratio test mechanism that is performed for the monitored signal and its derivative. Results of a digital simulation show that the pilot's detection behavior can be well represented by the model proposed here.

  17. Profile negotiation: An air/ground automation integration concept for managing arrival traffic

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Arbuckle, P. Douglas; Green, Steven M.; Denbraven, Wim

    1993-01-01

    NASA Ames Research Center and NASA Langley Research Center conducted a joint simulation study to evaluate a profile negotiation process (PNP) between a time-based air traffic control ATC system and an airplane equipped with a four dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution that satisfies the separation requirements of ATC while remaining as close as possible to the airplane's preferred trajectory. The Transport Systems Research Vehicle cockpit simulator was linked in real-time to the Center/TRACON Automation System (CTAS) for the experiment. Approximately 30 hours of simulation testing were conducted over a three week period. Active airline pilot crews and active Center controller teams participated as test subjects. Results from the experiment indicate the potential for successful incorporation of airplane preferred arrival trajectories in the CTAS automation environment. Controllers were able to consistently and effectively negotiate nominally conflict-free trajectories with pilots flying a 4D-FMS-equipped airplane. The negotiated trajectories were substantially closer to the airplane's preference than would have otherwise been possible without the PNP. Airplane fuel savings relative to baseline CTAS were achieved in the test scenarios. The datalink procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. Additional pilot control and understanding of the proposed airplane-preferred trajectory and a simplified clearance procedure were cited as necessary for operational implementation of the concept. From the controllers' perspective, the main concerns were the ability of the 4D airplane to accurately track the negotiated trajectory and the workload required to support the PNP as implemented in this study.

  18. Operational and Functional Description of the AERA Packages,

    DTIC Science & Technology

    1983-09-11

    implications: * Very early coordination with the pilot may be effected, to allow the pilot to resolve the problem (since he has primary responsibility for...but that this is a situation of which the controller and the pilot may want to be aware for planning purposes. 4.3.2.3 Controller’s Response The primary ...data link will be greatly expanded in AERA 2.01. The primary capability that affects the operation of t he ATC system is that non-control messages

  19. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  20. Biotelemetry implant volume and weight in rats: A pilot study report

    NASA Technical Reports Server (NTRS)

    Somps, Chris J.

    1994-01-01

    This paper reports the results of a pilot study in which a 240-gram rat was implanted for 41 days with biotelemetry devices weighing a total of 36 gm (18 cc). The implanted animal showed no differences in weight gain, food and water consumption, and postnecropsy organ weights when compared to both an unoperated control animal and an animal that underwent surgery but did not receive an implant. The implanted animal also had temperature and activity rhythms similar to those reported using much smaller implants. Thus, this pilot study showed that a 240-gm rat could be implanted with biotelemetry devices weighing nearly 15 percent of body weight without significant changes in health or behavior. A larger study involving more animals and similar implant sizes is recommended.

  1. Simulation Test Of Descent Advisor

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1991-01-01

    Report describes piloted-simulation test of Descent Advisor (DA), subsystem of larger automation system being developed to assist human air-traffic controllers and pilots. Focuses on results of piloted simulation, in which airline crews executed controller-issued descent advisories along standard curved-path arrival routes. Crews able to achieve arrival-time precision of plus or minus 20 seconds at metering fix. Analysis of errors generated in turns resulted in further enhancements of algorithm to increase accuracies of its predicted trajectories. Evaluations by pilots indicate general support for DA concept and provide specific recommendations for improvement.

  2. Flight-test experience in digital control of a remotely piloted vehicle.

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1972-01-01

    The development of a remotely piloted vehicle system consisting of a remote pilot cockpit and a ground-based digital computer coupled to the aircraft through telemetry data links is described. The feedback control laws are implemented in a FORTRAN program. Flight-test experience involving high feedback gain limits for attitude and attitude rate feedback variables, filtering of sampled data, and system operation during intermittent telemetry data link loss is discussed. Comparisons of closed-loop flight tests with analytical calculations, and pilot comments on system operation are included.

  3. The Effect of Shared Information on Pilot/Controller And Controller/Controller Interactions

    NASA Technical Reports Server (NTRS)

    Hansman, R. John

    1999-01-01

    In order to respond to the increasing demand on limited airspace system resources, a number of applications of information technology have been proposed, or are under investigation, to improve the efficiency, capacity and reliability of ATM (Asynchronous Transfer Mode) operations. Much of the attention in advanced ATM technology has focused on advanced automation systems or decision aiding systems to improve the performance of individual Pilots or Controllers. However, the most significant overall potential for information technology appears to he in increasing the shared information between human agents such as Pilots, Controllers or between interacting Controllers or traffic flow managers. Examples of proposed shared information systems in the US include; Controller Pilot Databank Communication (CPDLC), Traffic Management Advisor (TMA); Automatic Dependent Surveillance (ADS); Collaborative Decision Making (CDM) and NAS Level Common Information Exchange. Air Traffic Management is fundamentally a human centered process consisting of the negotiation, execution and monitoring of contracts between human agents for the allocation of limited airspace, runway and airport surface resources. The decision processes within ATM tend to be Semistructured. Many of the routine elements in ATM decision making on the part of the Controllers or Pilots are well Structured and can be represented by well defined rules or procedures. However in disrupted conditions, the ATM decision processes are often Unstructured and cannot be reduced to a set of discrete rules. As a consequence, the ability to automate ATM processes will be limited and ATM will continue to be a human centric process where the responsibility and the authority for the negotiation will continue to rest with human Controllers and Pilots. The use of information technology to support the human decision process will therefore be an important aspect of ATM modernization. The premise of many of the proposed shared information systems is that the performance of ATM operations will improve with an increase in Shared Situation Awareness between agents (Pilots, Controller, Dispatchers). This will allow better informed control decisions and an improved ability to negotiate between agents. A common information basis may reduce communication load and may increase the level of collaboration in the decision process. In general, information sharing is expected to have advantages for all agents within the system. However there are important questions which remain to be,addressed. For example: What shared information is most important for developing effective Shared Situation Awareness? Are there issues of information saturation? Does information parity create ambiguity in control authority? Will information sharing induce undesirable or unstable gaming behavior between agents? This paper will explore the effect of current and proposed information sharing between different ATM agents. The paper will primarily concentrate on bilateral tactical interactions between specific agents (Pilot/Controller; Controller/Controller; Pilot/Dispatcher; Controller/Dispatcher) however it will also briefly discuss multilateral interaction and more strategic interactions.

  4. Brief mindfulness-based therapy for chronic tension-type headache: a randomized controlled pilot study.

    PubMed

    Cathcart, Stuart; Galatis, Nicola; Immink, Maarten; Proeve, Michael; Petkov, John

    2014-01-01

    Mindfulness-based therapy (MBT) has been demonstrated to be effective for reducing chronic pain symptoms; however, the use of MBT for Chronic Tension-Type Headache (CTH) exclusively has to date not been examined. Typically, MBT for chronic pain has involved an 8-week program based on Mindfulness Based Stress Reduction. Recent research suggests briefer mindfulness-based treatments may be effective for chronic pain. To conduct a pilot study into the efficacy of brief MBT for CTH. We conducted a randomized controlled trial of a brief (6-session, 3-week) MBT for CTH. Results indicated a significant decrease in headache frequency and an increase in the mindfulness facet of Observe in the treatment but not wait-list control group. Brief MBT may be an effective intervention for CTH.

  5. Assessing the elimination of user fees for delivery services in Laos.

    PubMed

    Boudreaux, Chantelle; Chanthala, Phetdara; Lindelow, Magnus

    2014-01-01

    A pilot eliminating user fees associated with delivery at the point of services was introduced in two districts of Laos in March 2009. Following two years of implementation, an evaluation was conducted to assess the pilot impact, as well as to document the pilot design and implementation challenges. Study results show that, even in the presence of the substantial access and cultural barriers, user fees associated with delivery at health facilities act as a serious deterrent to care seeking behavior. We find a tripling of facility-based delivery rates in the intervention areas, compared to a 40% increase in the control areas. While findings from the control region suggest that facility-based delivery rates may be on the rise across the country, the substantially higher increase in the pilot areas highlight the impact of financial burden associated with facility-based delivery fees. These fees can play an important role in rapidly increasing the uptake of facility delivery to reach the national targets and, ultimately, to improve maternal and child health outcomes. The pilot achieved important gains while relying heavily on capacity and systems already in place. However, the high cost associated with monitoring and evaluation suggest broad-scale expansion of the pilot activities is likely to necessitate targeted capacity building initiatives, especially in areas with limited district level capacity to manage funds and deliver detailed and timely reports.

  6. A simulation study of emergency lunar escape to orbit using several simplified manual guidance and control techniques

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Hurt, G. J., Jr.

    1971-01-01

    A fixed-base piloted simulator investigation has been made of the feasibility of using any of several manual guidance and control techniques for emergency lunar escape to orbit with very simplified, lightweight vehicle systems. The escape-to-orbit vehicles accommodate two men, but one man performs all of the guidance and control functions. Three basic attitude-control modes and four manually executed trajectory-guidance schemes were used successfully during approximately 125 simulated flights under a variety of conditions. These conditions included thrust misalinement, uneven propellant drain, and a vehicle moment-of-inertia range of 250 to 12,000 slugs per square foot. Two types of results are presented - orbit characteristics and pilot ratings of vehicle handling qualities.

  7. Development of a remote digital augmentation system and application to a remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Deets, D. A.

    1975-01-01

    A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.

  8. Restoring effective sleep tranquility (REST): A feasibility and pilot study.

    PubMed

    Eakman, Aaron M; Schmid, Arlene A; Henry, Kimberly L; Rolle, Natalie R; Schelly, Catherine; Pott, Christine E; Burns, Joshua E

    2017-06-01

    The purpose of this pilot study was to establish the feasibility of completing a future controlled trial of a multi-component cognitive behavioral therapy for insomnia program for military veterans with sleep disturbance. This was a single-arm feasibility and pilot study. Participants were United States post-9/11 veterans with service-connected injuries, university students, and had self-reported sleep disturbances. Restoring Effective Sleep Tranquility was a multi-component cognitive behavioral therapy for insomnia intervention consisting of seven sessions of group therapy and eight 1:1 sessions delivered by occupational therapists. Feasibility and pilot indicators were process, resources, management, and scientific, including pre-post-assessments of sleep difficulties, dysfunctional sleep beliefs, participation, and pain interference. Indicators were supportive of feasibility, including reduced sleep difficulties (for example Medical Outcomes Study Sleep Measure [ t  = 3.29, p  = .02]), reduced nightmares: t  = 2.79, p  = .03; fewer dysfunctional sleep beliefs: t  = 3.63, p  = .01, and greater ability to participate in social roles: t  = -2.86, p  = .03, along with trends towards improved satisfaction with participation and reduced pain interference. The Restoring Effective Sleep Tranquility program may reduce sleep difficulties and improve participation in US veterans with service-connected injuries, and evidence indicates a controlled trial would be feasible to deliver.

  9. Restoring effective sleep tranquility (REST): A feasibility and pilot study

    PubMed Central

    Schmid, Arlene A; Henry, Kimberly L; Rolle, Natalie R; Schelly, Catherine; Pott, Christine E; Burns, Joshua E

    2017-01-01

    Introduction The purpose of this pilot study was to establish the feasibility of completing a future controlled trial of a multi-component cognitive behavioral therapy for insomnia program for military veterans with sleep disturbance. Method This was a single-arm feasibility and pilot study. Participants were United States post-9/11 veterans with service-connected injuries, university students, and had self-reported sleep disturbances. Restoring Effective Sleep Tranquility was a multi-component cognitive behavioral therapy for insomnia intervention consisting of seven sessions of group therapy and eight 1:1 sessions delivered by occupational therapists. Feasibility and pilot indicators were process, resources, management, and scientific, including pre–post-assessments of sleep difficulties, dysfunctional sleep beliefs, participation, and pain interference. Findings Indicators were supportive of feasibility, including reduced sleep difficulties (for example Medical Outcomes Study Sleep Measure [t = 3.29, p = .02]), reduced nightmares: t = 2.79, p = .03; fewer dysfunctional sleep beliefs: t = 3.63, p = .01, and greater ability to participate in social roles: t = –2.86, p = .03, along with trends towards improved satisfaction with participation and reduced pain interference. Conclusion The Restoring Effective Sleep Tranquility program may reduce sleep difficulties and improve participation in US veterans with service-connected injuries, and evidence indicates a controlled trial would be feasible to deliver. PMID:28626295

  10. The effects of speech controls on performance in advanced helicopters in a double stimulation paradigm

    NASA Technical Reports Server (NTRS)

    Bortolussi, Michael R.; Vidulich, Michael A.

    1991-01-01

    The potential benefit of speech as a control modality has been investigated with mixed results. Earlier studies suggests that speech controls can reduce the potential of manual control overloads and improve time-sharing performance. However, these benefits were not without costs. Pilots reported higher workload levels associated with the use of speech controls. To further investigate these previous findings, an experiment was conducted in a simulation of an advanced single-pilot, scout/attack helicopter at NASA-Ames' ICAB (interchangeable cab) facility. Objective performance data suggested that speech control modality was effective in reducing interference of discrete, time-shared responses during continuous flight control activity. Subjective ratings, however, indicated that the speech control modality increased workload. Post-flight debriefing indicated that these results were mainly due to the increased effort to speak precisely to a less than perfect voice recognition system.

  11. Using music to reduce anxiety among older adults in the emergency department: a randomized pilot study.

    PubMed

    Belland, Laura; Rivera-Reyes, Laura; Hwang, Ula

    2017-11-01

    An emergency department (ED) visit may be distressing and anxiety-provoking for older adults (age > 65 years). No studies have specifically evaluated the effect of music listening on anxiety in older adults in the ED. The objective of this pilot study was to evaluate the effect of music listening on anxiety levels in older ED patients. This was a randomized pilot study in the geriatric ED of an urban academic tertiary medical center. This was a sample of English-speaking adults (age > 65 years) who were not deaf (n = 35). Subjects consented to participate and were randomized to receive up to 60 min of music listening with routine care, while the control group received routine care with no music. Subjects in the music treatment group received headphones and an electronic tablet with pre-downloaded music, and were allowed to choose from 5 selections. The primary outcome was change in anxiety levels, measured by the state-trait anxiety inventory (STAI), at enrollment and 1 h later. A total of 35 participants were enrolled: 74% were female, 40% were white, and 40% were black; of these, 32 subjects completed the study protocol. When comparing control (n = 18) against intervention subjects (n = 17), there were no significant differences in enrollment STAI scores (43.00 ± 15.00 vs. 40.30 ± 12.80, P = 0.57). STAI scores 1 hour after enrollment (after the music intervention) were significantly reduced in the intervention subjects compared to the control subjects (with reduction of 10.00 ± 12.29 vs. 1.88 ± 7.97, P = 0.03). These pilot results suggest that music listening may be an effective tool for reducing anxiety among older adults in the ED.

  12. Effects of stick dynamics on helicopter flying qualities

    NASA Technical Reports Server (NTRS)

    Watson, Douglas C.; Schroeder, Jeffery A.

    1990-01-01

    An experiment that investigated the influence of typical helicopter force-feel system dynamics on roll-axis handling qualities was conducted in concurrent ground and inflight simulations. Variations in lateral control natural frequency and damping ratio, effected by changes in inertia and damping, were evaluated in a disturbance-rejection task. Pilot ratings indicated a preference for low-inertia feel systems, although measured performance was relatively constant over the range of stick characteristics. Force-sensing was compared with position sensing as the input to the control system. Force-sensing improved performance but did not improve pilot ratings. Overall, the results indicated that control-stick dynamics, at least within a reasonable range, did not have a significant effect on pilot-vehicle performance. However, the physical effort required to maintain a desired pilot/manipulator bandwidth became objectionable as the stick inertia increased beyond 5-7 lbm, which was reflected in the pilot ratings and comments.

  13. Autism and exergaming: effects on repetitive behaviors and cognition.

    PubMed

    Anderson-Hanley, Cay; Tureck, Kimberly; Schneiderman, Robyn L

    2011-01-01

    Autism is a neurodevelopmental disorder that leads to impairment in social skills and delay in language development, and results in repetitive behaviors and restricted interests that impede academic and social involvement. Physical exercise has been shown to decrease repetitive behaviors in autistic children and improve cognitive function across the life-span. Exergaming combines physical and mental exercise simultaneously by linking physical activity movements to video game control and may yield better compliance with exercise. In this investigation, two pilot studies explored the potential behavioral and cognitive benefits of exergaming. In Pilot I, twelve children with autism spectrum disorders completed a control task and an acute bout of Dance Dance Revolution (DDR); in Pilot II, ten additional youths completed an acute bout of cyber cycling. Repetitive behaviors and executive function were measured before and after each activity. Repetitive behaviors significantly decreased, while performance on Digits Backwards improved following the exergaming conditions compared with the control condition. Additional research is needed to replicate these findings, and to explore the application of exergaming for the management of behavioral disturbance and to increase cognitive control in children on the autism spectrum.

  14. Autism and exergaming: effects on repetitive behaviors and cognition

    PubMed Central

    Anderson-Hanley, Cay; Tureck, Kimberly; Schneiderman, Robyn L

    2011-01-01

    Autism is a neurodevelopmental disorder that leads to impairment in social skills and delay in language development, and results in repetitive behaviors and restricted interests that impede academic and social involvement. Physical exercise has been shown to decrease repetitive behaviors in autistic children and improve cognitive function across the life-span. Exergaming combines physical and mental exercise simultaneously by linking physical activity movements to video game control and may yield better compliance with exercise. In this investigation, two pilot studies explored the potential behavioral and cognitive benefits of exergaming. In Pilot I, twelve children with autism spectrum disorders completed a control task and an acute bout of Dance Dance Revolution (DDR); in Pilot II, ten additional youths completed an acute bout of cyber cycling. Repetitive behaviors and executive function were measured before and after each activity. Repetitive behaviors significantly decreased, while performance on Digits Backwards improved following the exergaming conditions compared with the control condition. Additional research is needed to replicate these findings, and to explore the application of exergaming for the management of behavioral disturbance and to increase cognitive control in children on the autism spectrum. PMID:22114543

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aegerter, P.A.

    Phillips Petroleum Company scientists and engineers have been operating petroleum refining and separations pilot plants for five years in the Process Development Center. The 26 pilot plants in this building, with one exception, operate under complete computer-control, allowing maximum utilization of limited operating manpower. This centralization and automation of pilot plants has allowed Phillips to more than double the number of operating pilot plants in the petroleum refining area without an increase in manpower. At the same time, the quantity and quality of data has increased correspondingly. This paper discusses Phillips philosophy of operation and management of these pilot plants.more » In addition, details of day-to-day operations and a brief description of the control system are also presented.« less

  16. Impact of Conflict Avoidance Responsibility Allocation on Pilot Workload in a Distributed Air Traffic Management System

    NASA Technical Reports Server (NTRS)

    Ligda, Sarah V.; Dao, Arik-Quang V.; Vu, Kim-Phuong; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter W.

    2010-01-01

    Pilot workload was examined during simulated flights requiring flight deck-based merging and spacing while avoiding weather. Pilots used flight deck tools to avoid convective weather and space behind a lead aircraft during an arrival into Louisville International airport. Three conflict avoidance management concepts were studied: pilot, controller or automation primarily responsible. A modified Air Traffic Workload Input Technique (ATWIT) metric showed highest workload during the approach phase of flight and lowest during the en-route phase of flight (before deviating for weather). In general, the modified ATWIT was shown to be a valid and reliable workload measure, providing more detailed information than post-run subjective workload metrics. The trend across multiple workload metrics revealed lowest workload when pilots had both conflict alerting and responsibility of the three concepts, while all objective and subjective measures showed highest workload when pilots had no conflict alerting or responsibility. This suggests that pilot workload was not tied primarily to responsibility for resolving conflicts, but to gaining and/or maintaining situation awareness when conflict alerting is unavailable.

  17. An Evaluation of Detect and Avoid Displays for UAS: The Effect of Information Level and Display Location on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Pack, Jessica; Shively, Jay; Draper, Mark H.

    2015-01-01

    The pilot-in-the-loop Detect-and-Avoid (DAA) task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays.

  18. An Evaluation of Controller and Pilot Performance, Workload and Acceptability under a NextGen Concept for Dynamic Weather Adapted Arrival Routing

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Battiste, Vernol

    2012-01-01

    In todays terminal operations, controller workload increases and throughput decreases when fixed standard terminal arrival routes (STARs) are impacted by storms. To circumvent this operational constraint, Prete, Krozel, Mitchell, Kim and Zou (2008) proposed to use automation to dynamically adapt arrival and departure routing based on weather predictions. The present study examined this proposal in the context of a NextGen trajectory-based operation concept, focusing on the acceptability and its effect on the controllers ability to manage traffic flows. Six controllers and twelve transport pilots participated in a human-in-the-loop simulation of arrival operations into Louisville International Airport with interval management requirements. Three types of routing structures were used: Static STARs (similar to current routing, which require the trajectories of individual aircraft to be modified to avoid the weather), Dynamic routing (automated adaptive routing around weather), and Dynamic Adjusted routing (automated adaptive routing around weather with aircraft entry time adjusted to account for differences in route length). Spacing Responsibility, whether responsibility for interval management resided with the controllers (as today), or resided with the pilot (who used a flight deck based automated spacing algorithm), was also manipulated. Dynamic routing as a whole was rated superior to static routing, especially by pilots, both in terms of workload reduction and flight path safety. A downside of using dynamic routing was that the paths flown in the dynamic conditions tended to be somewhat longer than the paths flown in the static condition.

  19. Review of performance, medical, and operational data on pilot aging issues

    NASA Technical Reports Server (NTRS)

    Stoklosa, J. H.

    1992-01-01

    An extensive review of the literature and studies relating to performance, medical, operational, and legal data regarding pilot aging issues was performed in order to determine what evidence there is, if any, to support mandatory pilot retirement. Popular misconceptions about aging, including the failure to distinguish between the normal aging process and disease processes that occur more frequently in older individuals, continue to contribute to much of the misunderstanding and controversy that surround this issue. Results: Review of medical data related to the pilot aging issue indicate that recent improvement in medical diagnostics and treatment technology have made it possible to identify to a high degree individuals who are at risk for developing sudden incapacitating illness and for treating those with disqualifying medical conditions. Performance studies revealed that after controlling for the presence of disease states, older pilots are able to perform as well as younger pilots on many performance tasks. Review of accident data showed that older, healthy pilots do not have higher accident rates than younger pilots, and indeeed, evidence suggests that older pilots have an advantage in the cockpit due to higher experience levels. The Man-Machine-Mission-Environment interface of factors can be managed through structured, supervised, and enhanced operations, maintenance, flight reviews, and safety procedures in order to ensure safe and productive operations by reducing the margin of error and by increasing the margin of safety. Conclusions: There is no evidence indicating any specific age as an arbitrary cut-off point for pilots to perform their fight duties. A combination of regular medical screening, performance evaluation, enhanced operational maintenance, and safety procedures can most effectively ensure a safe pilot population than can a mandatory retirement policy based on arbitrary age restrictions.

  20. Initial Investigation of Reaction Control System Design on Spacecraft Handling Qualities for Earth Orbit Docking

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Goodrich, Kenneth H.; Ragsdale, W. Al; Neuhaus, Jason; Barnes, Jim

    2008-01-01

    A program of research, development, test, and evaluation is planned for the development of Spacecraft Handling Qualities guidelines. In this first experiment, the effects of Reaction Control System design characteristics and rotational control laws were evaluated during simulated proximity operations and docking. Also, the influence of piloting demands resulting from varying closure rates was assessed. The pilot-in-the-loop simulation results showed that significantly different spacecraft handling qualities result from the design of the Reaction Control System. In particular, cross-coupling between translational and rotational motions significantly affected handling qualities as reflected by Cooper-Harper pilot ratings and pilot workload, as reflected by Task-Load Index ratings. This influence is masked but only slightly by the rotational control system mode. While rotational control augmentation using Rate Command Attitude Hold can reduce the workload (principally, physical workload) created by cross-coupling, the handling qualities are not significantly improved. The attitude and rate deadbands of the RCAH introduced significant mental workload and control compensation to evaluate when deadband firings would occur, assess their impact on docking performance, and apply control inputs to mitigate that impact.

  1. A culturally tailored Internet cancer support group for Asian American breast cancer survivors: A randomized controlled pilot intervention study.

    PubMed

    Chee, Wonshik; Lee, Yaelim; Im, Eun-Ok; Chee, Eunice; Tsai, Hsiu-Min; Nishigaki, Masakazu; Yeo, Seon Ae; Schapira, Marilyn M; Mao, Jun James

    2017-07-01

    Introduction The necessity of culturally competent Internet Cancer Support Groups (ICSGs) for ethnic minorities has recently been highlighted in order to increase its attractiveness and usage. The purpose of this study was to determine the preliminary efficacy of a culturally tailored registered-nurse-moderated ICSG for Asian American breast cancer survivors in enhancing the women's breast cancer survivorship experience. Methods The study included two phases: (a) a usability test and an expert review; and (b) a randomized controlled pilot intervention study. The usability test was conducted among five Asian American breast cancer survivors using a one-month online forum, and the expert review was conducted among five experts using the Cognitive Walkthrough method. The randomized controlled pilot intervention study (a pre-test and post-test design) was conducted among 65 Asian American breast cancer survivors. The data were analysed using content analysis and descriptive and inferential statistics including the repeated ANOVA. Results All users and experts positively evaluated the program and provided their suggestions for the display, educational contents, and user-friendly structure. There were significant positive changes in the support care needs and physical and psychological symptoms ( p < 0.05) of the control group. There were significant negative changes in the uncertainty level of the intervention group ( p < 0.10). Controlling for background and disease factors, the intervention group showed significantly greater improvements than the control group in physical and psychological symptoms and quality of life ( p < 0.10). Discussion The findings supported the positive effects of ICSGs on support care needs, psychological and physical symptoms, and quality of life.

  2. Motion simulator study of longitudinal stability requirements for large delta wing transport airplanes during approach and landing with stability augmentation systems failed

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Fry, E. B.; Drinkwater, F. J., III; Forrest, R. D.; Scott, B. C.; Benefield, T. D.

    1972-01-01

    A ground-based simulator investigation was conducted in preparation for and correlation with an-flight simulator program. The objective of these studies was to define minimum acceptable levels of static longitudinal stability for landing approach following stability augmentation systems failures. The airworthiness authorities are presently attempting to establish the requirements for civil transports with only the backup flight control system operating. Using a baseline configuration representative of a large delta wing transport, 20 different configurations, many representing negative static margins, were assessed by three research test pilots in 33 hours of piloted operation. Verification of the baseline model to be used in the TIFS experiment was provided by computed and piloted comparisons with a well-validated reference airplane simulation. Pilot comments and ratings are included, as well as preliminary tracking performance and workload data.

  3. Flight deck human factors issues for National Airspace System (NAS) en route controller pilot data link communications (CPDLC)

    DOT National Transportation Integrated Search

    2017-05-01

    Fundamental differences exist between transmissions of Air Traffic Control clearances over voice and those transmitted via Controller Pilot Data Link Communications (CPDLC). This paper provides flight deck human factors issues that apply to processin...

  4. A technique for displaying flight information in the field of view of binoculars for use by the pilots of radio controlled models

    NASA Technical Reports Server (NTRS)

    Fuller, H. V.

    1974-01-01

    A display system was developed to provide flight information to the ground based pilots of radio controlled models used in flight research programs. The display system utilizes data received by telemetry from the model, and presents the information numerically in the field of view of the binoculars used by the pilots.

  5. STS-43 Pilot Baker eats a sandwich on OV-104's forward flight deck

    NASA Image and Video Library

    1991-08-11

    STS043-02-020 (2-11 Aug. 1991) --- Astronaut Michael A. Baker, STS-43 pilot, seated at the forward flight deck pilot station controls of the Space Shuttle Atlantis, eats a free-floating peanut butter and jelly sandwich while holding a carrot. Surrounding Baker are procedural checklists, control panels, and windows. A lemonade drink bag is velcroed to overhead panel.

  6. An Investigation of Rotorcraft Stability-Phase Margin Requirements in Hover

    NASA Technical Reports Server (NTRS)

    Blanken, Chris L.; Lusardi, Jeff A.; Ivler, Christina M.; Tischler, Mark B.; Hoefinger, Marc T.; Decker, William A.; Malpica, Carlos A.; Berger, Tom; Tucker, George E.

    2009-01-01

    A cooperative study was performed to investigate the handling quality effects from reduced flight control system stability margins, and the trade-offs with higher disturbance rejection bandwidth (DRB). The piloted simulation study, perform on the NASA-Ames Vertical Motion Simulator, included three classes of rotorcraft in four configurations: a utility-class helicopter; a medium-lift helicopter evaluated with and without an external slung load; and a large (heavy-lift) civil tiltrotor aircraft. This large aircraft also allowed an initial assessment of ADS-33 handling quality requirements for an aircraft of this size. Ten experimental test pilots representing the U.S. Army, Marine Corps, NASA, rotorcraft industry, and the German Aerospace Center (DLR), evaluated the four aircraft configurations, for a range of flight control stability-margins and turbulence levels, while primarily performing the ADS-33 Hover and Lateral Reposition MTEs. Pilot comments and aircraft-task performance data were analyzed. The preliminary stability margin results suggest higher DRB and less phase margin cases are preferred as the aircraft increases in size. Extra care will need to be taken to assess the influence of variability when nominal flight control gains start with reduced margins. Phase margins as low as 20-23 degrees resulted in low disturbance-response damping ratios, objectionable oscillations, PIO tendencies, and a perception of an incipient handling qualities cliff. Pilot comments on the disturbance response of the aircraft correlated well to the DRB guidelines provided in the ADS-33 Test Guide. The A D-3S3 mid-term response-to-control damping ratio metrics can be measured and applied to the disturbance-response damping ratio. An initial assessment of LCTR yaw bandwidth shows the current Level 1 boundary needs to be relaxed to help account for a large pilot off-set from the c.g. Future efforts should continue to investigate the applicability/refinement of the current ADS-33 requirements to large vehicles, like an LCTR.

  7. Substance Use Recovery Outcomes among a Cohort of Youth Participating in a Mobile-Based Texting Aftercare Pilot Program

    PubMed Central

    Gonzales, Rachel; Ang, Alfonso; Murphy, Debra A.; Glik, Deborah C.; Anglin, M. Douglas

    2014-01-01

    Project ESQYIR (Educating & Supporting inquisitive Youth in Recovery) is a pilot study examining the feasibility of a 12-week mobile-based aftercare intervention for youth (ages 12 to 24) transitioning out of community-based substance abuse treatment programs. From January 2012 through July 2013, a total of 80 youth were recruited from outpatient and residential treatment programs, geographically dispersed throughout Los Angeles County, California. Results revealed that youth who participated in the texting mobile pilot intervention were significantly less likely to relapse to their primary compared to the aftercare as usual control condition (OR = 0.52, p = 0.002) over time (from baseline throughout the 12-week aftercare pilot program to a 90-day follow-up). Participants in the texting aftercare pilot program also reported significantly less substance use problem severity (β = −0.46, p = .03) and were more likely to participate in extracurricular recovery behaviors (β = 1.63, p = .03) compared to participants in the standard aftercare group. Collectively, findings from this pilot aftercare study suggest that mobile texting could provide a feasible way to engage youth in recovery after substance abuse treatment to aid with reducing relapse and promoting lifestyle behavior change. PMID:24629885

  8. Contributions of Platform Motion to Simulator Training Effectiveness: Study II--Aerobatics. Interim Report for Period March 1976-November 1977.

    ERIC Educational Resources Information Center

    Martin, Elizabeth L.; Waag, Wayne L.

    A transfer-of-training design was used to evaluate the contributions of simulator training with synergistic six-degrees-of-freedom platform motion to aerobatic skills acquisition in the novice pilot. Thirty-six undergraduate pilot trainees were randomly assigned to one of three treatment groups: motion, no-motion, and control. Those in the control…

  9. A Pilot Investigation Comparing Instructional Packages for MTS Training: "Manual Alone" vs. "Manual-Plus-Computer-Aided Personalized System of Instruction"

    ERIC Educational Resources Information Center

    Oliveira, Marileide; Goyos, Celso; Pear, Joseph

    2012-01-01

    Matching-to-sample (MTS) training consists of presenting a stimulus as a sample followed by stimuli called comparisons from which a subject makes a choice. This study presents results of a pilot investigation comparing two packages for teaching university students to conduct MTS training. Two groups--control and experimental--with 2 participants…

  10. Analysis of pilot control strategy

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Hanson, G. D.; Jewell, W. F.; Clement, W. F.

    1983-01-01

    Methods for nonintrusive identification of pilot control strategy and task execution dynamics are presented along with examples based on flight data. The specific analysis technique is Nonintrusive Parameter Identification Procedure (NIPIP), which is described in a companion user's guide (NASA CR-170398). Quantification of pilot control strategy and task execution dynamics is discussed in general terms followed by a more detailed description of how NIPIP can be applied. The examples are based on flight data obtained from the NASA F-8 digital fly by wire airplane. These examples involve various piloting tasks and control axes as well as a demonstration of how the dynamics of the aircraft itself are identified using NIPIP. Application of NIPIP to the AFTI/F-16 flight test program is discussed. Recommendations are made for flight test applications in general and refinement of NIPIP to include interactive computer graphics.

  11. Pilot/Controller Coordinated Decision Making in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Bearman, Chris; Miller, Ronald c.; Orasanu, Judith M.

    2011-01-01

    Introduction: NextGen technologies promise to provide considerable benefits in terms of enhancing operations and improving safety. However, there needs to be a thorough human factors evaluation of the way these systems will change the way in which pilot and controllers share information. The likely impact of these new technologies on pilot/controller coordinated decision making is considered in this paper using the "operational, informational and evaluative disconnect" framework. Method: Five participant focus groups were held. Participants were four experts in human factors, between x and x research students and a technical expert. The participant focus group evaluated five key NextGen technologies to identify issues that made different disconnects more or less likely. Results: Issues that were identified were: Decision Making will not necessarily improve because pilots and controllers possess the same information; Having a common information source does not mean pilots and controllers are looking at the same information; High levels of automation may lead to disconnects between the technology and pilots/controllers; Common information sources may become the definitive source for information; Overconfidence in the automation may lead to situations where appropriate breakdowns are not initiated. Discussion: The issues that were identified lead to recommendations that need to be considered in the development of NextGen technologies. The current state of development of these technologies provides a good opportunity to utilize recommendations at an early stage so that NextGen technologies do not lead to difficulties in resolving breakdowns in coordinated decision making.

  12. A piloted simulation study of data link ATC message exchange

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.; Lohr, Gary W.

    1989-01-01

    Data link Air Traffic Control (ATC) and Air Traffic Service (ATS) message and data exchange offers the potential benefits of increased flight safety and efficiency by reducing communication errors and allowing more information to be transferred between aircraft and ground facilities. Digital communication also presents an opportunity to relieve the overloading of ATC radio frequencies which hampers message exchange during peak traffic hours in many busy terminal areas. A piloted simulation study to develop pilot factor guidelines and assess potential flight crew benefits and liabilities from using data link ATC message exchange was completed. The data link ATC message exchange concept, implemented on an existing navigation computer Control Display Unit (CDU) required maintaining a voice radio telephone link with an appropriate ATC facility. Flight crew comments, scanning behavior, and measurements of time spent in ATC communication activities for data link ATC message exchange were compared to similar measures for simulated conventional voice radio operations. The results show crew preference for the quieter flight deck environment and a perception of lower communication workload.

  13. Topical Allium ampeloprasum subsp Iranicum (Leek) extract cream in patients with symptomatic hemorrhoids: a pilot randomized and controlled clinical trial.

    PubMed

    Mosavat, Seyed Hamdollah; Ghahramani, Leila; Sobhani, Zahra; Haghighi, Ehsan Rahmanian; Heydari, Mojtaba

    2015-04-01

    Allium ampeloprasum subsp iranicum (Leek) has been traditionally used in antihemorrhoidal topical herbal formulations. This study aimed to evaluate its safety and efficacy in a pilot randomized controlled clinical trial. Twenty patients with symptomatic hemorrhoids were randomly allocated to receive the topical leek extract cream or standard antihemorrhoid cream for 3 weeks. The patients were evaluated before and after the intervention in terms of pain, defecation discomfort, bleeding severity, anal itching severity, and reported adverse events. A significant decrease was observed in the grade of bleeding severity and defecation discomfort in both the leek and antihemorrhoid cream groups after the intervention, while no significant change was observed in pain scores. There was no significant difference between the leek and antihemorrhoid cream groups with regard to mean changes in outcome measures. This pilot study showed that the topical use of leek cream can be as effective as a standard antihemorrhoid cream. © The Author(s) 2015.

  14. Sleep disturbance, psycho-social and medical symptoms—A pilot survey among persons exposed to high levels of road traffic noise

    NASA Astrophysics Data System (ADS)

    Öhrström, E.

    1989-08-01

    A pilot survey was undertaken to elucidate sleep quality, as well as psycho-social and medical symptoms and mood, among people who had lived for many years in an area with high levels of road traffic noise during night hours and inhabitants of a quiet control area: 106 personal interviews were performed and specific questionnaires on sleep and mood answered by 63 persons during three consecutive days. It was found that both sleep quality and mood (social orientation, activity, wellbeing and extroversion) were depressed in the noisy area as compared with a control area. Symptoms of tiredness, headache and nervous stomach disorders were more frequent. A significant relationship between sensitivity to noise and sleep quality was also found. From this pilot study hypotheses may be formulated about a relationship between environmental noise and different psycho-social and medical symptoms. It is suggested that similar studies on a larger scale are performed to elucidate long-term effects of noise.

  15. TASAR Flight Trial 2: Assessment of Air Traffic Controller Acceptability of TASAR Requests

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Enea, Gabriele

    2016-01-01

    In support of the Flight Trial (FT-2) of NASA's prototype of the Traffic Aware Strategic Aircrew Requests (TASAR) concept, observations were conducted at the air traffic facilities to identify and assess the main factors that affect the acceptability of pilot requests by air traffic controllers. Two observers shadowed air traffic controllers at the Atlanta (ZTL) and Jacksonville (ZJX) air traffic control centers as the test flight pilot made pre-scripted requests to invoke acceptability issues and then they interviewed the observed and other controllers voluntarily. Fifty controllers were interviewed with experience ranging from one to thirty-five years. All interviewed controllers were enthusiastic about the technology and accounting for sector boundaries in pilot requests, particularly if pilots can be made aware of high workload situations. All interviewed controllers accept more than fifty percent of pilot requests; forty percent of them reject less than ten percent of requests. The most common reason for rejecting requests is conflicting with traffic followed by violating letters of agreement (LOAs) and negatively impacting neighboring sector workload, major arrival and departure flows and flow restrictions. Thirty-six requests were made during the test, eight of which were rejected due to: the aircraft already handed off to another sector, violating LOA, opposing traffic, intruding into an active special use airspace (SUA), intruding into another center, weather, and unfamiliarity with the requested waypoint. Nine requests were accepted with delay mostly because the controller needed to locate unfamiliar waypoints or to coordinate with other controllers.

  16. Assessing validity of observational intervention studies - the Benchmarking Controlled Trials.

    PubMed

    Malmivaara, Antti

    2016-09-01

    Benchmarking Controlled Trial (BCT) is a concept which covers all observational studies aiming to assess impact of interventions or health care system features to patients and populations. To create and pilot test a checklist for appraising methodological validity of a BCT. The checklist was created by extracting the most essential elements from the comprehensive set of criteria in the previous paper on BCTs. Also checklists and scientific papers on observational studies and respective systematic reviews were utilized. Ten BCTs published in the Lancet and in the New England Journal of Medicine were used to assess feasibility of the created checklist. The appraised studies seem to have several methodological limitations, some of which could be avoided in planning, conducting and reporting phases of the studies. The checklist can be used for planning, conducting, reporting, reviewing, and critical reading of observational intervention studies. However, the piloted checklist should be validated in further studies. Key messages Benchmarking Controlled Trial (BCT) is a concept which covers all observational studies aiming to assess impact of interventions or health care system features to patients and populations. This paper presents a checklist for appraising methodological validity of BCTs and pilot-tests the checklist with ten BCTs published in leading medical journals. The appraised studies seem to have several methodological limitations, some of which could be avoided in planning, conducting and reporting phases of the studies. The checklist can be used for planning, conducting, reporting, reviewing, and critical reading of observational intervention studies.

  17. Expert cognitive control and individual differences associated with frontal and parietal white matter microstructure

    PubMed Central

    Roberts, R.E.; Anderson, E. J.; Husain, M.

    2011-01-01

    Although many functional imaging studies have reported frontal activity associated with ‘cognitive control’ tasks, little is understood about factors underlying individual differences in performance. Here we compared the behaviour and brain structure of healthy controls with fighter pilots, an expert group trained to make precision choices at speed in the presence of conflicting cues. Two different behavioural paradigms – Eriksen Flanker and Change of plan tasks – were used to assess the influence of distractors and the ability to update ongoing action plans. Fighter pilots demonstrated superior cognitive control as indexed by accuracy and post-conflict adaptation on the flanker task, but also showed increased sensitivity to irrelevant, distracting choices. By contrast, when pilots were examined on their ability to inhibit a current action plan in favour of an alternative response, their performance was no better than the control group. Diffusion weighted imaging revealed differences in white matter radial diffusivity between pilots and controls not only in the right dorsomedial frontal region but also in the right parietal lobe. Moreover, analysis of individual differences in reaction time costs for conflict trials on the flanker task demonstrated significant correlations with radial diffusivity at these locations, but in different directions. Post-conflict adaptation effects, however, were confined to the dorsomedial frontal locus. The findings demonstrate that in humans expert cognitive control may surprisingly be mediated by enhanced response gain to both relevant and irrelevant stimuli, and is accompanied by structural alterations in the white matter of the frontal and parietal lobe. PMID:21159976

  18. Pilot evaluation of a media literacy program for tobacco prevention targeting early adolescents shows mixed results.

    PubMed

    Kaestle, Christine E; Chen, Yvonnes; Estabrooks, Paul A; Zoellner, Jamie; Bigby, Brandon

    2013-01-01

    The purpose of this pilot study was to assess the impact of media literacy for tobacco prevention for youth delivered through a community site. A randomized pretest-posttest evaluation design with matched-contact treatment and control conditions. The pilot study was delivered through the YMCA in a lower-income suburban and rural area of Southwest Virginia, a region long tied, both economically and culturally, to the tobacco industry. Children ages 8 to 14 (76% white, 58% female) participated in the study (n = 38). The intervention was an antismoking media literacy program (five 1-hour lessons) compared with a matched-contact creative writing control program. General media literacy, three domains of tobacco-specific media literacy ("authors and audiences," "messages and meanings," and "representation and reality"), tobacco attitudes, and future expectations were assessed. Multiple regression modeling assessed the impact of the intervention, controlling for pretest measures, age, and sex. General media literacy and tobacco-specific "authors and audiences" media literacy improved significantly for treatment compared with control (p < .05); results for other tobacco-specific media literacy measures and for tobacco attitudes were not significant. Future expectations of smoking increased significantly for treatment participants ages 10 and younger (p < .05). Mixed results indicated that improvements in media literacy are accompanied by an increase in future expectations to smoke for younger children.

  19. A Youth-Led, Social Marketing Intervention Run by Adolescents to Encourage Healthy Lifestyles among Younger School Peers (EYTO-Kids Project): A Protocol for Pilot Cluster Randomized Controlled Trial (Spain)

    PubMed Central

    Aceves-Martins, Magaly; Papell-Garcia, Ignasi; Arola, Lluís; Giralt, Montse; Solà, Rosa

    2017-01-01

    Introduction: The EYTO-kids (European Youth Tackling Obesity in Adolescents and Children) study aims to increase fruit and/or vegetable consumption and physical activity, decrease sedentary lifestyles, and reduce the intake of sugary drinks and fast food using an innovative methodology based on social marketing and youth involvement. Methods: This study is a pilot school-based cluster randomized controlled 10-month intervention spanning two academic years (2015–2016 and 2016–2017), with eight primary schools and three high schools randomized into and designated the control group and eight primary schools and four high schools designated the intervention group in Reus, Spain. At least 301 younger school peers per group should be included. At the intervention high schools, the adolescent creators (ACs) receive an initial 16-h training session. In total, 26–32 high school ACs (12–14 years) from the four high schools will design and implement four health-promotion activities (1 h/each) for their younger (8–10 years), primary school peers. The control group will not receive any intervention. The outcomes (fruit, vegetable, fast food and sugary drink consumption; physical activity; and sedentary behaviors) of the control and intervention groups will be measured pre- and post-intervention. Conclusion: This study describes a protocol for pilot, peer-led, social marketing and youth-involved intervention, where adolescents design and implement activities for their younger peers to promote healthy lifestyles.

  20. An experimental study of the effect of a pilot flame on technically pre-mixed, self-excited combustion instabilities

    NASA Astrophysics Data System (ADS)

    O'Meara, Bridget C.

    Combustion instabilities are a problem facing the gas turbine industry in the operation of lean, pre-mixed combustors. Secondary flames known as "pilot flames" are a common passive control strategy for eliminating combustion instabilities in industrial gas turbines, but the underlying mechanisms responsible for the pilot flame's stabilizing effect are not well understood. This dissertation presents an experimental study of a pilot flame in a single-nozzle, swirl-stabilized, variable length atmospheric combustion test facility and the effect of the pilot on combustion instabilities. A variable length combustor tuned the acoustics of the system to excite instabilities over a range of operating conditions without a pilot flame. The inlet velocity was varied from 25 -- 50 m/s and the equivalence ratio was varied from 0.525 -- 0.65. This range of operating conditions was determined by the operating range of the combustion test facility. Stability at each operating condition and combustor length was characterized by measurements of pressure oscillations in the combustor. The effect of the pilot flame on the magnitude and frequency of combustor stability was then investigated. The mechanisms responsible for the pilot flame effect were studied using chemiluminescence flame images of both stable and unstable flames. Stable flame structure was investigated using stable flame images of CH* chemiluminescence emission. The effect of the pilot on stable flame metrics such as flame length, flame angle, and flame width was investigated. In addition, a new flame metric, flame base distance, was defined to characterize the effect of the pilot flame on stable flame anchoring of the flame base to the centerbody. The effect of the pilot flame on flame base anchoring was investigated because the improved stability with a pilot flame is usually attributed to improved flame anchoring through the recirculation of hot products from the pilot to the main flame base. Chemiluminescence images of unstable flames were used to identify several instability mechanisms and infer how these mechanisms are affected by the pilot flame. Flame images of cases in which the pilot flame did not eliminate the instability were investigated to understand why the pilot flame is not effective in certain cases. The phase of unstable pilot flame oscillations was investigated to determine how the phase of pilot flame oscillations may affect its ability to interfere with instability mechanisms in the main flame. A forced flame response study was conducted to determine the effect of inlet velocity oscillation amplitude on the pilot flame. The flame response was characterized by measurements of velocity oscillations in the injector and chemiluminescence intensity oscillations determined from flame images. As the forcing amplitude increases, the pilot flame's effect on the flame transfer function magnitude becomes weaker. Flame images show that as the forcing amplitude increases, the pilot flame oscillations increase, leading to an ineffective pilot. The results of the flame response portion of this study highlight the effect of instability amplitude on the ability of a pilot flame to eliminate a combustion instability.

Top