49 CFR 236.506 - Release of brakes after automatic application.
Code of Federal Regulations, 2010 CFR
2010-10-01
... INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.506 Release of brakes after automatic application. The automatic train stop or train control apparatus shall prevent release of the...
49 CFR 236.506 - Release of brakes after automatic application.
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.506 Release of brakes after automatic application. The automatic train stop or train control apparatus shall prevent release of the...
Bioinspired nanovalves with selective permeability and pH sensitivity
NASA Astrophysics Data System (ADS)
Zheng, Z.; Huang, X.; Schenderlein, M.; Moehwald, H.; Xu, G.-K.; Shchukin, D. G.
2015-01-01
Biological systems with controlled permeability and release functionality, which are among the successful examples of living beings to survive in evolution, have attracted intensive investigation and have been mimicked due to their broad spectrum of applications. We present in this work, for the first time, an example of nuclear pore complexes (NPCs)-inspired controlled release system that exhibits on-demand release of angstrom-sized molecules. We do so in a cost-effective way by stabilizing porous cobalt basic carbonates as nanovalves and realizing pH-sensitive release of entrapped subnano cargo. The proof-of-concept work also consists of the establishment of two mathematical models to explain the selective permeability of the nanovalves. Finally, gram-sized (or larger) quantities of the bio-inspired controlled release system can be synthesized through a scaling-up strategy, which opens up opportunities for controlled release of functional molecules in wider practical applications.Biological systems with controlled permeability and release functionality, which are among the successful examples of living beings to survive in evolution, have attracted intensive investigation and have been mimicked due to their broad spectrum of applications. We present in this work, for the first time, an example of nuclear pore complexes (NPCs)-inspired controlled release system that exhibits on-demand release of angstrom-sized molecules. We do so in a cost-effective way by stabilizing porous cobalt basic carbonates as nanovalves and realizing pH-sensitive release of entrapped subnano cargo. The proof-of-concept work also consists of the establishment of two mathematical models to explain the selective permeability of the nanovalves. Finally, gram-sized (or larger) quantities of the bio-inspired controlled release system can be synthesized through a scaling-up strategy, which opens up opportunities for controlled release of functional molecules in wider practical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06378c
Tang, Sanyi; Tang, Guangyao; Cheke, Robert A
2010-05-21
Many factors including pest natural enemy ratios, starting densities, timings of natural enemy releases, dosages and timings of insecticide applications and instantaneous killing rates of pesticides on both pests and natural enemies can affect the success of IPM control programmes. To address how such factors influence successful pest control, hybrid impulsive pest-natural enemy models with different frequencies of pesticide sprays and natural enemy releases were proposed and analyzed. With releasing both more or less frequent than the sprays, a stability threshold condition for a pest eradication periodic solution is provided. Moreover, the effects of times of spraying pesticides (or releasing natural enemies) and control tactics on the threshold condition were investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications. Multiple attractors from which the pest population oscillates with different amplitudes can coexist for a wide range of parameters and the switch-like transitions among these attractors showed that varying dosages and frequencies of insecticide applications and the numbers of natural enemies released are crucial. To see how the pesticide applications could be reduced, we developed a model involving periodic releases of natural enemies with chemical control applied only when the densities of the pest reached the given Economic Threshold. The results indicate that the pest outbreak period or frequency largely depends on the initial densities and the control tactics. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Conjugated Polymer for Voltage-Controlled Release of Molecules.
Liu, Shenghua; Fu, Ying; Li, Guijun; Li, Li; Law, Helen Ka-Wai; Chen, Xianfeng; Yan, Feng
2017-09-01
Conjugated polymers are attractive in numerous biological applications because they are flexible, biocompatible, cost-effective, solution-processable, and electronic/ionic conductive. One interesting application is for controllable drug release, and this has been realized previously using organic electronic ion pumps. However, organic electronic ion pumps show high operating voltages and limited transportation efficiency. Here, the first report of low-voltage-controlled molecular release with a novel organic device based on a conjugated polymer poly(3-hexylthiophene) is presented. The releasing rate of molecules can be accurately controlled by the duration of the voltage applied on the device. The use of a handy mobile phone to remotely control the releasing process and its application in delivering an anticancer drug to treat cancer cells are also successfully demonstrated. The working mechanism of the device is attributed to the unique switchable permeability of poly(3-hexylthiophene) in aqueous solutions under a bias voltage that can tune the wettability of poly(3-hexylthiophene) via oxidation or reduction processes. The organic devices are expected to find many promising applications for controllable drug delivery in biological systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlled Release Applications of Organometals.
ERIC Educational Resources Information Center
Thayer, John S.
1981-01-01
Reviews two classes of controlled release organometals: (1) distributional, to distribute bioactive materials to control a certain target organism; and (2) protective, to protect surface or interior of some structure from attach by organisms. Specific examples are given including a discussion of controlled release for schistosomiasis. (SK)
Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.
Huang, Wenwen; Rollett, Alexandra; Kaplan, David L
2015-05-01
Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure-function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semi-crystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli-responsive properties and tunability, thereby becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release. An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties and self-assembly mechanisms are discussed. The review focuses on sequence-structure-function relationships, stimuli-responsive features and current and potential drug delivery applications. The tunable material properties allow SELPs to be pursued as promising biomaterials for nanocarriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli-responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration.
NASA Astrophysics Data System (ADS)
Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.
2010-03-01
Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.
Li, Jing; Wang, Hongyu; Yang, Baixue; Xu, Lu; Zheng, Nan; Chen, Hongtao; Li, Sanming
2016-01-01
In the present work, control-release microcapsule of famotidine (FMT) loaded biomimetic synthesized mesoporous silica nanoparticles (B-MSNs) was developed, and controlled release effect and stomach adhesion of this formulation in vitro were mainly investigated. B-MSN was previously synthesized and it was amorphous mesoporous nanoparticles with helical channels. Cytotoxicity of B-MSN was studied using human breast cancer cells (MCF-7) and the result indicated that cytotoxicity of B-MSN can be neglected. After loading FMT into B-MSN, specific surface area, pore volume and pore diameter of B-MSN were obviously reduced. In vitro dissolution test showed that B-MSN had the ability to slow down FMT release for 15 min. In order to prolong controlled release effect and remained the advantage of B-MSN (improve drug stability due to its rigid silica framework), the combined application of control-release microcapsule (using cellulose and hydroxypropyl methylcellulose K15M as excipients) with B-MSN was designed. It was obvious that newly designed formulation significantly controlled FMT release with Fickian diffusion mechanism and showed enhanced stomach adhesion in vitro, which has significant value in widening the application of B-MSN in formulation design. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oliveira, L. F.; Marques, J.; Coutinho, P. J. G.; Parpot, P.; Tavares, C. J.
2013-06-01
This work reportson the application of solar-activated photocatalytic thin films that allow the controlled-release of volatile agents (e.g., insecticides, repellents) from the interior of adsorbedpolymericmicrocapsules. In order to standardize the tests, a quantification of the inherent controlled-release of a particular volatile agent is determined by gas chromatography coupled to mass spectroscopy, so that an application can be offered to a wide range of supports from various industrial sectors, such as in textiles (clothing, curtains, mosquito nets). This technology takes advantage of the established photocatalytic property of titanium dioxide (TiO2) for the use as an active surface/site to promote the controlled-release of a specific vapor (volatile agentfrom within the aforementioned microcapsules.
USDA-ARS?s Scientific Manuscript database
Urea pearls were encapsulated in cloisite-based matrices using different natural materials (lignin, beeswax and latex) to control the release of urea over time. It was found that all cloisite-based fertilizer tablets showed better release profiles than neat urea tablets. The best release profile was...
Controlled and extended drug release behavior of chitosan-based nanoparticle carrier.
Yuan, Q; Shah, J; Hein, S; Misra, R D K
2010-03-01
Controlled drug release is presently gaining significant attention. In this regard, we describe here the synthesis (based on the understanding of chemical structure), structural morphology, swelling behavior and drug release response of chitosan intercalated in an expandable layered aluminosilicate. In contrast to pure chitosan, for which there is a continuous increase in drug release with time, the chitosan-aluminosilicate nanocomposite carrier was characterized by controlled and extended release. Drug release from the nanocomposite particle carrier occurred by degradation of the carrier to its individual components or nanostructures with a different composition. In both the layered aluminosilicate-based mineral and chitosan-aluminosilicate nanocomposite carriers the positively charged chemotherapeutic drug strongly bound to the negatively charged aluminosilicate and release of the drug was slow. Furthermore, the pattern of drug release from the chitosan-aluminosilicate nanocomposite carrier was affected by pH and the chitosan/aluminosilicate ratio. The study points to the potential application of this hybrid nanocomposite carrier in biomedical applications, including tissue engineering and controlled drug delivery. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Parachute deploy/Release mechanism
NASA Technical Reports Server (NTRS)
Robelen, D. B.
1979-01-01
Mechanism operated by signals from single radio-control channel deploy and releases small drogue parachute from flying aircraft. Technique has uses in industrial process control and in recreational hobby applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...
Highly porous drug-eluting structures
Elsner, Jonathan J.; Kraitzer, Amir; Grinberg, Orly; Zilberman, Meital
2012-01-01
For many biomedical applications, there is need for porous implant materials. The current article focuses on a method for preparation of drug-eluting porous structures for various biomedical applications, based on freeze drying of inverted emulsions. This fabrication process enables the incorporation of any drug, to obtain an “active implant” that releases drugs to the surrounding tissue in a controlled desired manner. Examples for porous implants based on this technique are antibiotic-eluting mesh/matrix structures used for wound healing applications, antiproliferative drug-eluting composite fibers for stent applications and local cancer treatment, and protein-eluting films for tissue regeneration applications. In the current review we focus on these systems. We show that the release profiles of both types of drugs, water-soluble and water-insoluble, are affected by the emulsion's formulation parameters. The former's release profile is affected mainly through the emulsion stability and the resulting porous microstructure, whereas the latter's release mechanism occurs via water uptake and degradation of the host polymer. Hence, appropriate selection of the formulation parameters enables to obtain desired controllable release profile of any bioactive agent, water-soluble or water-insoluble, and also fit its physical properties to the application. PMID:23507890
Yang, Jun-gang; Xu, Kai; Tong, Er-jian; Cao, Bing; Ni, Xiao-hui; Xu, Jun-xiang
2010-12-01
An open field experiment was conducted to study the effects of applying controlled-release fertilizer blended with rapidly available chemical N fertilizer on Chinese cabbage yield and quality as well as nitrogen losses, including ammonia volatilization and NO3- -N accumulation and leaching in Beijing suburb. The results showed that a combined application of 2:1 controlled-release fertilizer and urea fertilizer (total N rate 150 kg x hm(-2)) did not induce the reduction of Chinese cabbage yield, and decreased the leaf nitrate and organic acid contents significantly, compared with conventional urea N application (300 kg x hm(-2)), and had no significant difference in the cabbage yield and leaf nitrate content, compared with applying 150 kg x hm(-2) of urea N. The combined application of 2:1 controlled-release fertilizer and urea fertilizer improved the N use efficiency of Chinese cabbage, and reduced the ammonia volatilization and NO3- -N leaching. At harvest, the NO3- -N concentrations in 20-40, 60-80 and 80-100 cm soil layers were significantly lower in the combined application treatment than in urea N treatment.
NASA Astrophysics Data System (ADS)
Quint, Makiko T.
Hybrid material, mixtures of two or more materials with new properties, represents an exciting class of new materials for a variety of potential applications such as displays, optoelectronics, and sensors due to their unique physical and optical properties. The scope of this dissertation is to produce two new plasmonic applications by combining liquid crystals with gold nanoparticles. The first application is gold nanoparticle coated liquid crystal thin film. Most liquid crystal (LC) thin films require external voltage to reorient LC molecules. Recent advances in optical controlling technology of LC molecule behavior, resulting in the reduction of energy consumption, have stimulated research and development of new LC thin films. In order to re-orient LC molecules by just using light, the common approach is to include either a photo-responsive LC host, one that require high power light and severely narrows the range of usable materials, or add photo-active dye or polymer layer, photodegradation over time. Our work designing an all-optical method for LC re-orientation that overcomes all the limitations mentioned above. We have successfully both in- and out-of-plane spatial orientation of nematic liquid crystal (LC) molecules by leveraging the highly localized electric fields produced in the near-field regime of a gold nanoparticle (AuNP) layer. This re-orientation of LC molecules in thin LC-AuNP film is all-optical, driven by a small resonance excitation power with the localized surface plasmon absorption of the AuNPs at room temperature. The second application is LC mediated nano-assembled gold microcapsules. This application has a potential in controlled-release cargo-style delivery system. Targeted delivery systems with controlled release mechanisms have been the subject of extensive research more than fifty years. One is to control the release process remotely by using optical excitation. Optical actuation of delivery capsules, which plasmonic nanoparticle such as gold, allows rapid release at specific locations and uses the photothermal effect to unload contents. Almost all gold-based delivery applications including Au coated nanocrystals or AuNPs with soft materials like gels and polymers are not suitable for control release applications in real life since these applications do not provide robust leakage-free containment lower than the American National Standards Institute (ANSI) maximum permissible light exposure limit. We have successfully managed the difficulties mentioned above and produced a new gold-based delivery application. The application is spherical capsules with a densely packed wall of AuNPs. The rigid capsule wall allows encapsulation of cargo that can be contained, virtually leakage-free, over several months. Further, by leveraging LSPR of AuNPs, we can rupture the microshells using optical excitation with ultralow power (< 2 mW), controllably and rapidly releasing the encapsulated contents in less than 5 seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances are a novel platform that combines controlled-release cargo-style delivery and photothermal therapy in one versatile and multifunctional unit. Both our applications are overcoming current limitations and promising future research directions towards the next generation of LC-AuNPs hybrid material research and developments.
Laser-activated nano-biomaterials for tissue repair and controlled drug release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matteini, P; Ratto, F; Rossi, F
2014-07-31
We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)
Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives
Weng, Lin; Xie, Jingwei
2017-01-01
In biological systems, chemical molecules or ions often release upon certain conditions, at a specific location, and over a desired period of time. Electrospun nanofibers that undergo alterations in the physicochemical characteristics corresponding to environmental changes have gained considerable interest for various applications. Inspired by biological systems, therapeutic molecules have been integrated with these smart electrospun nanofibers, presenting activation-modulated or feedback-regulated control of drug release. Compared to other materials like smart hydrogels, environment-responsive nanofiber-based drug delivery systems are relatively new but possess incomparable advantages due to their greater permeability, which allows shorter response time and more precise control over the release rate. In this article, we review the mechanisms of various environmental parameters functioning as stimuli to tailor the release rates of smart electrospun nanofibers. We also illustrate several typical examples in specific applications. We conclude this article with a discussion on perspectives and future possibilities in this field. PMID:25732665
Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives.
Weng, Lin; Xie, Jingwei
2015-01-01
In biological systems, chemical molecules or ions often release upon certain conditions, at a specific location, and over a desired period of time. Electrospun nanofibers that undergo alterations in the physicochemical characteristics corresponding to environmental changes have gained considerable interest for various applications. Inspired by biological systems, therapeutic molecules have been integrated with these smart electrospun nanofibers, presenting activation-modulated or feedback-regulated control of drug release. Compared to other materials like smart hydrogels, environment-responsive nanofiber-based drug delivery systems are relatively new but possess incomparable advantages due to their greater permeability, which allows shorter response time and more precise control over the release rate. In this article, we review the mechanisms of various environmental parameters functioning as stimuli to tailor the release rates of smart electrospun nanofibers. We also illustrate several typical examples in specific applications. We conclude this article with a discussion on perspectives and future possibilities in this field.
Mu, Honglei; Gao, Haiyan; Chen, Hangjun; Fang, Xiangjun; Han, Qiang
2017-11-01
Reducing spoilage and prolonging the shelf-life of food materials are both critically important in the food industry. Among the many available preservatives, ethanol has been widely used for the storage of fruits and vegetables. Although a few ethanol emitters are available in the form of antimicrobial packaging, these ethanol emitters demonstrate high volatility, uncontrolled release and other disadvantages, and so the practical applications are limited. A novel ethanol gel with a controlled release rate was prepared by a gelatification reaction between ethanol and sodium stearate to overcome the disadvantage of conventional ethanol emitters. The hardness, adhesiveness and cohesiveness of developed ethanol gels increased, whereas the springiness decreased along with an increase in the sodium stearate concentration. The release rate of ethanol in the gels was controlled by the concentration of sodium stearate, in which a first-order release kinetic was observed. The release rate constant (k) of the gels with 12.5, 37.5, 62.5 g kg -1 of sodium stearate was 0.58 ± 0.029, 0.49 ± 0.035 and 0.41 ± 0.021 h -1 , respectively, at 25 °C. The application of the controlled release ethanol emitter with respect to the storage of Chinese bayberry fruit demonstrated its ability to reduce the decay rate, maintain firmness and inhibit increased malondialdehyde content at 4 °C. In terms of practical applications, an appropriate sodium stearate content can be selected in accordance with the storage period, aiming to achieve precise storage goals. Therefore, the ethanol emitter has potential application prospects as an active packaging for Chinese bayberry fruit, as well as for other perishable products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
49 CFR 229.135 - Event recorders.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Locomotive position in consist (lead or trail); (xxiii) Tractive effort; (xxiv) Cruise control on/off, if so...; (xviii) Brakes apply summary train line; (xix) Brakes released summary train line; (xx) Cruise control on... determining, that a brake application or release resulted from manipulation of brake controls at the position...
49 CFR 229.135 - Event recorders.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Locomotive position in consist (lead or trail); (xxiii) Tractive effort; (xxiv) Cruise control on/off, if so...; (xviii) Brakes apply summary train line; (xix) Brakes released summary train line; (xx) Cruise control on... determining, that a brake application or release resulted from manipulation of brake controls at the position...
49 CFR 229.135 - Event recorders.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Locomotive position in consist (lead or trail); (xxiii) Tractive effort; (xxiv) Cruise control on/off, if so...; (xviii) Brakes apply summary train line; (xix) Brakes released summary train line; (xx) Cruise control on... determining, that a brake application or release resulted from manipulation of brake controls at the position...
49 CFR 229.135 - Event recorders.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Locomotive position in consist (lead or trail); (xxiii) Tractive effort; (xxiv) Cruise control on/off, if so...; (xviii) Brakes apply summary train line; (xix) Brakes released summary train line; (xx) Cruise control on... determining, that a brake application or release resulted from manipulation of brake controls at the position...
Calcium modified edible Canna (Canna edulis L) starch for controlled released matrix
NASA Astrophysics Data System (ADS)
Putri, A. P.; Ridwan, M.; Darmawan, T. A.; Darusman, F.; Gadri, A.
2017-07-01
Canna edulis L starch was modified with calcium chloride in order to form controlled released matrix. Present study aim to analyze modified starch characteristic. Four different formulation of ondansetron granules was used to provide dissolution profile of controlled released, two formula consisted of 15% and 30% modified starch, one formula utilized matrix reference standards and the last granules was negative control. Methocel-hydroxypropyl methyl cellulose was used as controlled released matrix reference standards in the third formula. Calcium starch was synthesized in the presence of sodium hydroxide to form gelatinized mass and calcium chloride as the cross linking agent. Physicochemical and dissolution properties of modified starch for controlled released application were investigated. Modified starch has higher swelling index, water solubility and compressibility index. Three of four different formulation of granules provide dissolution profile of controlled released. The profiles indicate granules which employed calcium Canna edulis L starch as matrix are able to resemble controlled drug released profile of matrix reference, however their bigger detain ability lead to lower bioavailability.
Controlled release of molecular components of dendrimer/bioactive complexes
Segalman, Daniel J.; Wallace, J. Shield
1998-01-01
A method for releasing molecules (guest molecules) from the matrix formed by the structure of another molecule (host molecule) in a controllable manner has been invented. This method has many applications in science and industry. In addition, applications based on such molecular systems may revolutionize significant areas of medicine, in particular the treatment of cancer and of viral infection. Similar effects can also be obtained by controlled fragmentation of a source molecule, where the molecular fragments form the active principle.
Controlled release of molecular components of dendrimer/bioactive complexes
Segalman, D.J.; Wallace, J.S.
1998-08-18
A method for releasing molecules (guest molecules) from the matrix formed by the structure of another molecule (host molecule) in a controllable manner has been invented. This method has many applications in science and industry. In addition, applications based on such molecular systems may revolutionize significant areas of medicine, in particular the treatment of cancer and of viral infection. Similar effects can also be obtained by controlled fragmentation of a source molecule, where the molecular fragments form the active principle. 13 figs.
Clinical translation of controlled protein delivery systems for tissue engineering.
Spiller, Kara L; Vunjak-Novakovic, Gordana
2015-04-01
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed.
Clinical translation of controlled protein delivery systems for tissue engineering
Spiller, Kara L.; Vunjak-Novakovic, Gordana
2013-01-01
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed. PMID:25787736
Zhi, Z. L.; Craster, R. V.
2018-01-01
Graphene oxide (GO) is increasingly used for controlling mass diffusion in hydrogel-based drug delivery applications. On the macro-scale, the density of GO in the hydrogel is a critical parameter for modulating drug release. Here, we investigate the diffusion of a peptide drug through a network of GO membranes and GO-embedded hydrogels, modelled as porous matrices resembling both laminated and ‘house of cards’ structures. Our experiments use a therapeutic peptide and show a tunable nonlinear dependence of the peptide concentration upon time. We establish models using numerical simulations with a diffusion equation accounting for the photo-thermal degradation of fluorophores and an effective percolation model to simulate the experimental data. The modelling yields an interpretation of the control of drug diffusion through GO membranes, which is extended to the diffusion of the peptide in GO-embedded agarose hydrogels. Varying the density of micron-sized GO flakes allows for fine control of the drug diffusion. We further show that both GO density and size influence the drug release rate. The ability to tune the density of hydrogel-like GO membranes to control drug release rates has exciting implications to offer guidelines for tailoring drug release rates in hydrogel-based therapeutic delivery applications. PMID:29445040
Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.
Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M
1998-03-01
The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.
Polymer Nanosheet Containing Star-Like Copolymers: A Novel Scalable Controlled Release System.
Cao, Peng-Fei; de Leon, Al; Rong, Lihan; Yin, Ke-Zhen; Abenojar, Eric C; Su, Zhe; Tiu, Brylee David B; Exner, Agata A; Baer, Eric; Advincula, Rigoberto C
2018-04-26
Poly(ε-caprolactone) (PCL)-based nanomaterials, such as nanoparticles and liposomes, have exhibited great potential as controlled release systems, but the difficulties in large-scale fabrication limit their practical applications. Among the various methods being developed to fabricate polymer nanosheets (PNSs) for different applications, such as Langmuir-Blodgett technique and layer-by-layer assembly, are very effort consuming, and only a few PNSs can be obtained. In this paper, poly(ε-caprolactone)-based PNSs with adjustable thickness are obtained in large quantity by simple water exposure of multilayer polymer films, which are fabricated via a layer multiplying coextrusion method. The PNS is also demonstrated as a novel controlled guest release system, in which release kinetics are adjustable by the nanosheet thickness, pH values of the media, and the presence of protecting layers. Theoretical simulations, including Korsmeyer-Peppas model and Finite-element analysis, are also employed to discern the observed guest-release mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlled drug-release system based on pH-sensitive chloride-triggerable liposomes.
Wehunt, Mark P; Winschel, Christine A; Khan, Ali K; Guo, Tai L; Abdrakhmanova, Galya R; Sidorov, Vladimir
2013-03-01
New pH-sensitive lipids were synthesized and utilized in formulations of liposomes suitable for controlled drug release. These liposomes contain various amounts of NaCl in the internal aqueous compartments. The release of the drug model is triggered by an application of HCl cotransporter and exogenous physiologically relevant NaCl solution. HCl cotransporter allows an uptake of HCl by liposomes to the extent of their being proportional to the transmembrane Cl(-) gradient. Therefore, each set of liposomes undergoes internal acidification, which, ultimately, leads to the hydrolysis of the pH-sensitive lipids and content release at the desired time. The developed system releases the drug model in a stepwise fashion, with the release stages separated by periods of low activity. These liposomes were found to be insensitive to physiological concentrations of human serum albumin and to be nontoxic to cells at concentrations exceeding pharmacological relevance. These results render this new drug-release model potentially suitable for in vivo applications.
Impact of Release Rates on the Effectiveness of Augmentative Biological Control Agents
Crowder, David W.
2007-01-01
To access the effect of augmentative biological control agents, 31 articles were reviewed that investigated the impact of release rates of 35 augmentative biological control agents on the control of 42 arthropod pests. In 64% of the cases, the release rate of the biological control agent did not significantly affect the density or mortality of the pest insect. Results where similar when parasitoidsor predators were utilized as the natural enemy. Within any order of natural enemy, there were more cases where release rates did not affect augmentative biological control than cases where release rates were significant. There were more cases in which release rates did not affect augmentative biological control when pests were from the orders Hemiptera, Acari, or Diptera, but not with pests from the order Lepidoptera. In most cases, there was an optimal release rate that produced effective control of a pest species. This was especially true when predators were used as a biological control agent. Increasing the release rate above the optimal rate did not improve control of the pest and thus would be economically detrimental. Lower release rates were of ten optimal when biological control was used in conjunction with insecticides. In many cases, the timing and method of biological control applications were more significant factors impacting the effectiveness of biological control than the release rate. Additional factors that may limit the relative impact of release rates include natural enemy fecundity, establishment rates, prey availability, dispersal, and cannibalism. PMID:20307240
Gao, Lei; Wang, Tingting; Jia, Keke; Wu, Xuan; Yao, Chenhao; Shao, Wei; Zhang, Dongmei; Hu, Xiao-Yu; Wang, Leyong
2017-05-11
The stimuli-responsive behavior of supramolecular nanocarriers is crucial for their potential applications as smart drug delivery systems. We hereby constructed a glucose-responsive supramolecular drug delivery system based on the host-guest interaction between a water-soluble pillar[5]arene (WP5) and a pyridylboronic acid derivative (G) for insulin delivery and controlled release under physiological conditions. The approach represents the ideal treatment of diabetes mellitus. The drug loading and in vitro drug release experiments demonstrated that large molecular weight insulin could be encapsulated into the vesicles with high loading efficiency, which, to our knowledge, is the first example of small-size supramolecular vesicles with excellent encapsulation capacity of a large protein molecule. Moreover, FITC-labeled insulin was used to evaluate the release behavior of insulin, and it was demonstrated that high glucose concentration could facilitate the quick release of insulin, suggesting a smart drug delivery system for potential application in controlled insulin release only under hyperglycemic conditions. Finally, we demonstrated that these supramolecular nanocarriers have good cytocompatibility, which is essential for their further biomedical applications. The present study provides a novel strategy for the construction of glucose-responsive smart supramolecular drug delivery systems, which has potential applications for the treatment of diabetes mellitus. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Kejun; Mao, Xiaoyun; Lu, Qiming; Jia, Aiping; Liao, Zongwen
2004-12-01
By using static absorption and soil column leaching methods, this paper studied the behaviors of several controlled-release N fertilizers in soil under laboratory conditions. The results showed that under the application rate of 450 mg x kg(-1), total ammonia volatilization from three controlled-release fertilizers decreased by 49.7%, 28.0% and 71.2%, respectively, in comparing with common urea. When the application rate was 600 mg x kg(-1), total ammonia volatilization decreased by 34.6%, 12.3%, 69.9%, respectively. Controlled-release fertilizers could markedly reduce total ammonia volatilization from soil and decrease environment pollution via fertilization. The results also indicated that total ammonia volatilization correlated significantly with soil urease activity, pH value and N leaching rate. The correlation coefficient between total ammonia volatilization and accumulated N leaching rate was 0.9533, and that between total ammonia volatilization and soil urease activity and pH value was 0.9533 and 0.9908, respectively.
A Voltage-Responsive Free-Blockage Controlled-Release System Based on Hydrophobicity Switching.
Jiao, Xiangyu; Sun, Ruijuan; Cheng, Yaya; Li, Fengyu; Du, Xin; Wen, Yongqiang; Song, Yanlin; Zhang, Xueji
2017-05-19
Controlled-release systems based on mesoporous silica nanomaterials (MSNs) have drawn great attention owing to their potential biomedical applications. Various switches have been designed to control the release of cargoes through the construction of physical blocking units on the surface of MSNs. However, such physical blockages are limited by poor sealing ability and low biocompatibility, and most of them lack closure ability. Herein, a voltage-responsive controlled-release system was constructed by functionalizing the nanopore of MSNs with ferrocene. The system realized free-blockage controlled release and achieved pulsatile release. The nanopores of the ferrocene-functionalized MSNs were hydrophobic enough to prevent invasion of the solution. Once a suitable voltage was applied, the nanopores became hydrophilic, which was followed by invasion of the solution and the release of the cargos. Moreover, pulsatile release was realized, which avoided unexpected release after the stimulus disappeared. Thus, we believe that our studies provide new insight into highly effective blockage for MSNs. Furthermore, the voltage-responsive release system is expected to find use in electrical stimulation combination therapy and bioelectricity-responsive release. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alvarez, Mario Moisés; Liu, Julie C; Trujillo-de Santiago, Grissel; Cha, Byung-Hyun; Vishwakarma, Ajaykumar; Ghaemmaghami, Amir M; Khademhosseini, Ali
2016-10-28
Macrophages are key players in many physiological scenarios including tissue homeostasis. In response to injury, typically the balance between macrophage sub-populations shifts from an M1 phenotype (pro-inflammatory) to an M2 phenotype (anti-inflammatory). In tissue engineering scenarios, after implantation of any device, it is desirable to exercise control on this M1-M2 progression and to ensure a timely and smooth transition from the inflammatory to the healing stage. In this review, we briefly introduce the current state of knowledge regarding macrophage function and nomenclature. Next, we discuss the use of controlled release strategies to tune the balance between the M1 and M2 phenotypes in the context of tissue engineering applications. We discuss recent literature related to the release of anti-inflammatory molecules (including nucleic acids) and the sequential release of cytokines to promote a timely M1-M2 shift. In addition, we describe the use of macrophages as controlled release agents upon stimulation by physical and/or mechanical cues provided by scaffolds. Moreover, we discuss current and future applications of "smart" implantable scaffolds capable of controlling the cascade of biochemical events related to healing and vascularization. Finally, we provide our opinion on the current challenges and the future research directions to improve our understanding of the M1-M2 macrophage balance and properly exploit it in tissue engineering and regenerative medicine applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Alvarez, Mario Moisés; Liu, Julie C.; Santiago, Grissel Trujillo-de; Cha, Byung-Hyun; Vishwakarma, Ajaykumar; Ghaemmaghami, Amir; Khademhosseini, Ali
2016-01-01
Macrophages are key players in many physiological scenarios including tissue homeostasis. In response to injury, typically the balance between macrophage sub-populations shifts from an M1 phenotype (pro-inflammatory) to an M2 phenotype (anti-inflammatory). In tissue engineering scenarios, after implantation of any device, it is desirable to exercise control on this M1-M2 progression and to ensure a timely and smooth transition from the inflammatory to the healing stage. In this review, we briefly introduce the current state of knowledge regarding macrophage function and nomenclature. Next, we discuss the use of controlled release strategies to tune the balance between the M1 and M2 phenotypes in the context of tissue engineering applications. We discuss recent literature related to the release of anti-inflammatory molecules (including nucleic acids) and the sequential release of cytokines to promote a timely M1-M2 shift. In addition, we describe the use of macrophages as controlled release agents upon stimulation by physical and/or mechanical cues provided by scaffolds. Moreover, we discuss current and future applications of “smart” implantable scaffolds capable of controlling the cascade of biochemical events related to healing and vascularization. Finally, we provide our opinion on the current challenges and the future research directions to improve our understanding of the M1-M2 macrophage balance and properly exploit it in tissue engineering and regenerative medicine applications. PMID:26778695
Somvipart, Siraporn; Kanokpanont, Sorada; Rangkupan, Rattapol; Ratanavaraporn, Juthamas; Damrongsakkul, Siriporn
2013-04-01
Thai silk fibroin and gelatin are attractive biomaterials for tissue engineering and controlled release applications due to their biocompatibility, biodegradability, and bioactive properties. The development of electrospun fiber mats from silk fibroin and gelatin were reported previously. However, burst drug release from such fiber mats remained the problem. In this study, the formation of beads on the fibers aiming to be used for the sustained release of drug was of our interest. The beaded fiber mats were fabricated using electrospinning technique by controlling the solution concentration, weight blending ratio of Thai silk fibroin/gelatin blend, and applied voltage. It was found that the optimal conditions including the solution concentration and the weight blending ratio of Thai silk fibroin/gelatin at 8-10% (w/v) and 70/30, respectively, with the applied voltage at 18 kV provided the fibers with homogeneous formation of beads. Then, the beaded fiber mats obtained were crosslinked by the reaction of carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS). Methylene blue as a model active compound was loaded on the fiber mats. The release test of methylene blue from the beaded fiber mats was carried out in comparison to that of the smooth fiber mats without beads. It was found that the beaded fiber mats could prolong the release of methylene blue, comparing to the smooth fiber mats without beads. This was possibly due to the beaded fiber mats that would absorb and retain higher amount of methylene blue than the fiber mats without beads. Thai silk fibroin/gelatin beaded fiber mats were established as an effective carrier for the controlled release applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Peng; Wu, Tong; Kong, Ji-Lie
2014-10-22
Therapeutic platforms such as chemotherapy that respond to physical and biological stimuli are highly desirable for effective cancer therapy. In this study, pH-responsive charge-reversal, polymer-coated mesoporous silica nanoparticles [PAH-cit/APTES-MSNs; PAH-cit refers to poly(allylamine)-citraconic anhydride; APTES refers to (3-aminopropyl)triethoxysilane] were synthesized for application as drug-delivery systems for the treatment of malignant cells. Confocal laser scanning microscopy (CLSM) revealed that the PAH-cit/APTES-MSNs nanocomposite effectively delivered and released doxorubicin hydrochloride to the nucleus of HeLa (human cervical carcinoma) cells. Additionally, the real-time dynamic drug-release process was monitored by CLSM. The current pH-controlled-smart-release platform holds promise in drug-delivery and cancer therapy-related applications.
Willems, Nicole; Yang, Hsiao-Yin; Langelaan, Marloes L P; Tellegen, Anna R; Grinwis, Guy C M; Kranenburg, Hendrik-Jan C; Riemers, Frank M; Plomp, Saskia G M; Craenmehr, Eric G M; Dhert, Wouter J A; Papen-Botterhuis, Nicole E; Meij, Björn P; Creemers, Laura B; Tryfonidou, Marianna A
2015-08-20
Chronic low back pain due to intervertebral disc (IVD) degeneration is associated with increased levels of inflammatory mediators. Current medical treatment consists of oral anti-inflammatory drugs to alleviate pain. In this study, the efficacy and safety of a novel thermoreversible poly-N-isopropylacrylamide MgFe-layered double hydroxide (pNIPAAM MgFe-LDH) hydrogel was evaluated for intradiscal controlled delivery of the selective cyclooxygenase (COX) 2 inhibitor and anti-inflammatory drug celecoxib (CXB). Degradation, release behavior, and the ability of a CXB-loaded pNIPAAM MgFe-LDH hydrogel to suppress prostaglandin E2 (PGE2) levels in a controlled manner in the presence of a proinflammatory stimulus (TNF-α) were evaluated in vitro. Biocompatibility was evaluated histologically after subcutaneous injection in mice. Safety of intradiscal application of the loaded and unloaded hydrogels was studied in a canine model of spontaneous mild IVD degeneration by histological, biomolecular, and biochemical evaluation. After the hydrogel was shown to be biocompatible and safe, an in vivo dose-response study was performed in order to determine safety and efficacy of the pNIPAAM MgFe-LDH hydrogel for intradiscal controlled delivery of CXB. CXB release correlated to hydrogel degradation in vitro. Furthermore, controlled release from CXB-loaded hydrogels was demonstrated to suppress PGE2 levels in the presence of TNF-α. The hydrogel was shown to exhibit a good biocompatibility upon subcutaneous injection in mice. Upon intradiscal injection in a canine model, the hydrogel exhibited excellent biocompatibility based on histological evaluation of the treated IVDs. Gene expression and biochemical analyses supported the finding that no substantial negative effects of the hydrogel were observed. Safety of application was further confirmed by the absence of clinical symptoms, IVD herniation or progression of degeneration. Controlled release of CXB resulted in a nonsignificant maximal inhibition (approximately 35 %) of PGE2 levels in the mildly degenerated canine IVDs. In conclusion, this study showed biocompatibility and safe intradiscal application of an MgFe LDH-pNIPAAM hydrogel. Controlled release of CXB resulted in only limited inhibition of PGE2 in this model with mild IVD degeneration, and further studies should concentrate on application of controlled release from this type of hydrogel in animal models with more severe IVD degeneration.
USDA-ARS?s Scientific Manuscript database
This research investigated the technical feasibility of metal-organic frameworks (MOFs) as novel delivery systems for encapsulation and controlled release of volatile allyl isothiocyanate (AITC) molecules. We hypothesized that water vapor molecules could act as an external stimulus to trigger the re...
NASA Astrophysics Data System (ADS)
Solihin; Mursito, Anggoro Tri; Dida, Eki N.; Erlangga, Bagus D.; Widodo
2017-07-01
Silica mineral, which comes along with geothermal fluid in Dieng, is a product of erosion, decomposition and dissolution of silicon oxide based mineral, which is followed by precipitation to form silica mineral. This silica cell structure is non crystalline, and it contains 85,60 % silicon oxide, 6.49 volatile elements, and also other oxide elements. Among the direct potential application of this silica is as raw material in slow release fertilizer. Silica in compacted slow release fertilizer is able control the release rate of fertilizer elements. Two type of slow release fertilizer has been made by using silica as the matrix in these slow release fertilizer. The first type is the mixing of ordinary solid fertilizer with Dieng silica, whereas the second one is the mixing of disposal leach water with Dieng silica. The release test shows that both of these modified fertilizers have slow release fertilizer characteristic. The release rate of fertilizer elements (magnesium, potassium, ammonium, and phosphate) can be significantly reduced. The addition of kaolin in the first type of slow release fertilizer makes the release rate of fertilizer elements can be more slowed down. Meanwhile in the second type of slow release fertilizer, the release rate is determined by ratio of silica/hydrogel. The lowest release rate is achieved by sample that has highest ratio of silica/hydrogel.
Physiological Feedback Control 2011-2012 Annual Report
2013-01-07
Invention Title: UM 3709 – Dendrimeric Prodrug as a Controlled Release Formulation in Pain Management – Patent Title: Dendrimer Conjugates Patent... Dendrimeric Prodrug as a Controlled Release Formulation in Pain Management – Patent Title: Dendrimer Conjugates Patent/Application Numbers: 61/101,461; 12...class of dendrimer -oxime drug conjugates, and evaluated the mechanism by which these conjugates hydrolyze paraoxon. (a) Papers published in peer
Sechi, Mario; Syed, Deeba N; Pala, Nicolino; Mariani, Alberto; Marceddu, Salvatore; Brunetti, Antonio; Mukhtar, Hasan; Sanna, Vanna
2016-11-01
The bioactive flavonoid fisetin (FS) is a diet-derived antioxidant that is being increasingly investigated for its health-promoting effects. Unfortunately, the poor physicochemical and pharmacokinetic properties affect and limit the clinical application. In this study, novel polymeric nanoparticles (NPs), based on Poly-(ε-caprolactone) (PCL) and PLGA-PEG-COOH, encapsulating FS were formulated as suitable oral controlled release systems. Results showed NPs having a mean diameter of 140-200nm, and a percent loading of FS ranging from 70 to 82%. In vitro release studies revealed that NPs are able to protect and preserve the release of FS in gastric simulated conditions, also controlling the release in the intestinal medium. Moreover, the DPPH and ABTS scavenging capacity of FS, as well as α-glucosidase inhibition activity, that resulted about 20-fold higher than commercial Acarbose, were retained during nanoencapsulation process. In summary, our developed NPs can be proposed as an attractive delivery system to control the release of antioxidant and anti-hyperglycemic FS for nutraceutical and/or therapeutic application. Copyright © 2016 Elsevier B.V. All rights reserved.
Packing of Fruit Fly Parasitoids for Augmentative Releases
Montoya, Pablo; Cancino, Jorge; Ruiz, Lía
2012-01-01
The successful application of Augmentative Biological Control (ABC) to control pest fruit flies (Diptera: Tephritidae) confronts two fundamental requirements: (1) the establishment of efficient mass rearing procedures for the species to be released, and (2) the development of methodologies for the packing and release of parasitoids that permit a uniform distribution and their optimal field performance under an area-wide approach. Parasitoid distributions have been performed by ground and by air with moderate results; both options face challenges that remain to be addressed. Different devices and strategies have been used for these purposes, including paper bags and the chilled adult technique, both of which are commonly used when releasing sterile flies. However, insect parasitoids have morphological and behavioral characteristics that render the application of such methodologies suboptimal. In this paper, we discuss an alternate strategy for the augmentative release of parasitoids and describe packing conditions that favor the rearing and emergence of adult parasitoids for increased field performance. We conclude that the use of ABC, including the packaging of parasitoids, requires ongoing development to ensure that this technology remains a viable and effective control technique for pest fruit flies. PMID:26466634
Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie
2009-01-01
Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.
Ibuprofen-loaded poly(lactic-co-glycolic acid) films for controlled drug release.
Pang, Jianmei; Luan, Yuxia; Li, Feifei; Cai, Xiaoqing; Du, Jimin; Li, Zhonghao
2011-01-01
Ibuprofen- (IBU) loaded biocompatible poly(lactic-co-glycolic acid) (PLGA) films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.
Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai
2011-10-01
The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.
Koneru, Bhuvaneswari; Shi, Yi; Wang, Yu-Chieh; Chavala, Sai H; Miller, Michael L; Holbert, Brittany; Conson, Maricar; Ni, Aiguo; Di Pasqua, Anthony J
2015-10-30
Tetracycline (TC) is a well-known broad spectrum antibiotic, which is effective against many Gram positive and Gram negative bacteria. Controlled release nanoparticle formulations of TC have been reported, and could be beneficial for application in the treatment of periodontitis and dental bone infections. Furthermore, TC-controlled transcriptional regulation systems (Tet-on and Tet-off) are useful for controlling transgene expression in vitro and in vivo for biomedical research purposes; controlled TC release systems could be useful here, as well. Mesoporous silica nanomaterials (MSNs) are widely studied for drug delivery applications; Mobile crystalline material 41 (MCM-41), a type of MSN, has a mesoporous structure with pores forming channels in a hexagonal fashion. We prepared 41 ± 4 and 406 ± 55 nm MCM-41 mesoporous silica nanoparticles and loaded TC for controlled dug release; TC content in the TC-MCM-41 nanoparticles was 18.7% and 17.7% w/w, respectively. Release of TC from TC-MCM-41 nanoparticles was then measured in phosphate-buffered saline (PBS), pH 7.2, at 37 °C over a period of 5 h. Most antibiotic was released from both over this observation period; however, the majority of TC was released over the first hour. Efficacy of the TC-MCM-41 nanoparticles was then shown to be superior to free TC against Escherichia coli (E. coli) in culture over a 24 h period, while blank nanoparticles had no effect.
Mouriño, Viviana; Cattalini, Juan Pablo; Boccaccini, Aldo R.
2012-01-01
This article provides an overview on the application of metallic ions in the fields of regenerative medicine and tissue engineering, focusing on their therapeutic applications and the need to design strategies for controlling the release of loaded ions from biomaterial scaffolds. A detailed summary of relevant metallic ions with potential use in tissue engineering approaches is presented. Remaining challenges in the field and directions for future research efforts with focus on the key variables needed to be taken into account when considering the controlled release of metallic ions in tissue engineering therapeutics are also highlighted. PMID:22158843
Reynolds, Thomas D; Mitchell, Shawn A; Balwinski, Karen M
2002-04-01
The purpose of this study was to investigate the influence of tablet surface area/volume (SA/Vol) on drug release from controlled-release matrix tablets containing hydroxypropylmethylcellulose (HPMC). Soluble drugs (promethazine HCl, diphenhydramine HCl, and propranolol HCl) were utilized in this study to give predominantly diffusion-controlled release. Drug release from HPMC matrix tablets with similar values of SA/Vol was comparable within the same tablet shape (i.e., flat-faced round tablets) and among different shapes (i.e., oval, round concave, flat-faced beveled-edge, and flat-faced round tablets). Tablets having the same surface area but different SA/Vol values did not result in similar drug release; tablets with larger SA/Vol values hadfaster release profiles. Utility of SA/Vol to affect drug release was demonstrated by changing drug doses, and altering tablet shape to adjust SA/Vol. When SA/Vol was held constant, similar release profiles were obtained with f2 metric values greater than 70. Thus, surface area/volume is one of the key variables in controlling drug release from HPMC matrix tablets. Proper use of this variable has practical application by formulators who may need to duplicate drug release profiles from tablets of different sizes and different shapes.
NASA Astrophysics Data System (ADS)
Lee, Hye Sun; Sung, Dae Kyung; Kim, Sung Hyun; Choi, Won Il; Hwang, Ee Tag; Choi, Doo Jin; Chang, Jeong Ho
2017-12-01
Nanoporous silicified-phospholipids assembled boron nitride (nSPLs@BN) powder was prepared and demonstrated for use in controlled release of anti-oxidant astaxanthin (AX) as a cosmetic application. The nanoporous silicified phospholipids (nSPLs) were obtained by the silicification with tetraethyl orthosilicate (TEOS) of the hydrophilic region of phospholipid bilayers. This process involved the co-assembly of chemically active phospholipid bilayers within the porous silica matrix. In addition, nSPLs@BN was characterized using several analytical techniques and tested to assess their efficiency as drug delivery systems. We calculated the maximum release amounts as a function of time and various pH. The release rate of AX from the nSPLs@BN for the initial 24 h was 10.7 μmol/(h mg) at pH 7.4. Furthermore, we determined the antioxidant activity (KD) for the released AX with DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical and the result was 34.6%.
Fifth-year pine growth response to woody release treatments in young loblolly plantations
A.W. Ezell; J.L. Yeiser; L.R. Nelson
2013-01-01
The efficacy of adding Oust® XP to woody release treatments was evaluated on second-year pine plantations in Texas, Mississippi, and South Carolina. Overall, the residual control of herbaceous weeds on these sites was excellent the growing season following application. Pine height and diameter growth was evaluated for 5 years following application. Generally, the...
Towards Theranostic Multicompartment Microcapsules: in-situ Diagnostics and Laser-induced Treatment
Xiong, Ranhua; Soenen, Stefaan J.; Braeckmans, Kevin; Skirtach, Andre G.
2013-01-01
Paving the way towards the application of polyelectrolyte multilayer capsules in theranostics, we describe diagnostic multi-functionality and drug delivery using multicompartment polymeric capsules which represent the next generation of drug delivery carriers. Their versatility is particularly important for potential applications in the area of theranostics wherein the carriers are endowed with the functionality for both diagnostics and therapy. Responsiveness towards external stimuli is attractive for providing controlled and on-demand release of encapsulated materials. An overview of external stimuli is presented with an emphasis on light as a physical stimulus which has been widely used for activation of microcapsules and release of their contents. In this article we also describe existing and new approaches to build multicompartment microcapsules as well as means available to achieve controlled and triggered release from their subcompartments, with a focus on applications in theranostics. Outlook for future directions in the area are highlighted. PMID:23471141
RANKL release from self-assembling nanofiber hydrogels for inducing osteoclastogenesis in vitro.
Xing, James Z; Lu, Lei; Unsworth, Larry D; Major, Paul W; Doschak, Michael R; Kaipatur, Neelambar R
2017-02-01
To develop a nanofiber hydrogel (NF-hydrogel) for sustained and controlled release of the recombinant receptor activator of NF-kB ligand; (RANKL) and to characterize the release kinetics and bioactivity of the released RANKL. Various concentrations of fluorescently-labelled RANKL protein were added to NF-hydrogels, composed of Acetyl-(Arg-Ala-Asp-Ala) 4 -CONH 2 [(RADA) 4 ] of different concentrations, to investigate the resulting in vitro release rates. The nano-structures of NF-hydrogel, with and without RANKL, were determined using atomic force microscopy (AFM). Released RANKL was further analyzed for changes in secondary and tertiary structure using CD spectroscopy and fluorescent emission spectroscopy, respectively. Bioactivity of released RANKL protein was determined using NFATc1 gene expression and tartrate resistant acid phosphatase (TRAP) activity of osteoclast cells as biomarkers. NF-hydrogel concentration dependent sustained release of RANKL protein was measured at concentrations between 0.5 and 2%(w/v). NF-hydrogel at 2%(w/v) concentration exhibited a sustained and slow-release of RANKL protein up to 48h. Secondary and tertiary structure analyses confirmed no changes to the RANKL protein released from NF-hydrogel in comparison to native RANKL. The results of NFATc1 gene mRNA expression and TRAP activities of osteoclast, showed that the release process did not affect the bioactivity of released RANKL. This novel study is the first of its kind to attempt in vitro characterization of NF-hydrogel based delivery of RANKL protein to induce osteoclastogenesis. We have shown the self-assembling NF-hydrogel peptide system is amenable to the sustained and controlled release of RANKL locally; that could in turn increase local concentration of RANKL to induce osteoclastogenesis, for application to the controlled mobilization of tooth movement in orthodontic procedures. Orthodontic tooth movement (OTM) occurs through controlled application of light forces to teeth, facilitating the required changes in the surrounding alveolar bone through the process of bone remodelling. The RANKL system regulates alveolar bone remodelling and controls root resorption during OTM. The use of exogenous RANKL to accelerate OTM has not been attempted to date because large quantities of RANKL for systemic therapy may subsequently cause serious systemic loss of skeletal bone. The controlled and sustained local release of RANKL from a carrier matrix could maximize its therapeutic benefit whilst minimizing systemic side effects. In this study a NF-hydrogel was used for sustained and controlled release of RANKL and the release kinetics and biofunctionality of the released RANKL was characterized. Our results provide fundamental insight for further investigating the role of RANKL NF-hydrogel release systems for inducing osteoclastogenesis in vivo. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Li, Guang Hao; Liu, Ping Ping; Zhao, Bin; Dong, Shu Ting; Liu, Peng; Zhang, Ji Wang; Tian, Cui Xia; He, Zai Ju
2017-02-01
In an soil column experiment with Zhengdan 958 (a summer maize cultivar planted widely in China), treatments of three water levels,severe water stress W 1 which the soil moisture kept (35±5)% of the field capacity, mild water stress W 2 which was (55±5)%,normal water W 3 which was (75±5)%, and four levels of controlled release urea fertilizer (N 0 , N 1 was 150 kg N·hm -2 ,N 2 was 225 kg N·hm -2 and N 3 was 300 kg N·hm -2 ) were included to study the interactive effects of water and controlled release urea on yield and leaf senescence characteristics of summer maize. The results showed that the coupling of water and controlled release urea had significant effects on increasing yield, delaying the senescence and keeping the high efficiency of the functional leaves. Under the same nitrogen condition, yield, LAI, chlorophyll content and the activities of SOD, POD, CAT and soluble protein content in summer maize ear leaf were significantly increased with more water supplying, and the content of MDA decreased significantly. Under the condition of the same moisture, these indicators were also significantly increased with the increasing nitrogen application and MDA content was reduced significantly. However, these indicators (except MDA) of W 3 N 3 , W 3 N 2 and W 2 N 3 treatments were maintained at a higher level and the MDA content was lo-wer compared with other treatments despite the fact that there were no significant difference among these three treatments, which indicated that the interactive effects of water and controlled release urea had an important role in maintaining the function of ear leaf, delaying the leaf senescence, and was beneficial to the photosynthates production and obtaining higher yield of summer maize. Integrating the yield, LAI, chlorophyll content, various protective enzymes activity, MDA and soluble protein content, controlled release urea application rate of 225 kg N·hm -2 was the best treatment as the soil moisture content was (75±5)% of field capacity. Continuous increase in the nitrogen application could not enhance the activities of protective enzymes, oppositely, it could cause the decline of protective enzymes activities and the increase of MDA content rapidly and speed up plants translation to senescence, which was not conductive to the efficient use of nitrogen. We suggested that coupling controlled release urea application rate of 300 kg N·hm -2 with soil moisture content of (55±5)% of field capacity was optimum.
Sun, Xiang Xin; Li, Dong Po; Wu, Zhi Jie; Cui, Ya Lan; Han, Mei; Li, Yong Hua; Yang, De Fu; Cui, Yong Kun
2016-06-01
The characteristics of ammonia volatilization and nitrous oxide emission from a paddy soil were examined under 9-year application of different slow/controlled release urea with the common large granule urea (U) as the control. The results showed that compared with the control, all slow/controlled release urea treatments, except 25.8% increase of ammonia volatilization under 1% 3,4-dimethylpyrazole phosphate (DMPP)+U, could decrease the ammonia volatilization. Polymer coated urea (PCU) dominated the highest reduction of 73.4% compared to U, followed by sulfur coated urea (SCU) (72.2%), 0.5% N-(N-butyl) thiophosphoric triamide (NBPT)+1% DMPP+U (71.9%), 1% hydroquinone (HQ)+3% dicyandiamide (DCD)+U (46.9%), 0.5% NBPT+U (43.2%), 1% HQ +U (40.2%), 3% DCD+U (25.5%), and the ammonia volatilization under different slow/controlled release urea treatments were statistically lower than that of U (P<0.05). 1% DMPP+U caused the lowest emission of N 2 O under different slow/controlled release urea treatments. The slow/controlled release urea also had a significant potential of N 2 O emission reduction: 1% DMPP+U showed the highest reduction of 74.9% compared to U, followed by PCU (62.1%), 1% HQ+3% DCD+U (54.7%), 0.5% NBPT+1% DMPP+U (42.2%), 3% DCD+U (35.9%), 1% HQ +U (28.9%), 0.5% NBPT+U (17.7%), SCU (14.5%), and N 2 O emissions under different slow/controlled release urea treatments were statistically lower than that of U (P<0.05). The comprehensive analysis showed that 0.5% NBPT+1% DMPP+U, SCU and PCU had similar effects on decreasing the ammonia volatilization and N 2 O emission and were remarkably better than the other treatments. The slow release urea with the combination of urease and nitrification inhibitors should be the first choice for reducing N loss and environmental pollution in paddy field, in view of the higher costs of coated urea fertilizers.
Oyen, Edith; Martin, Charlotte; Caveliers, Vicky; Madder, Annemieke; Van Mele, Bruno; Hoogenboom, Richard; Hernot, Sophie; Ballet, Steven
2017-03-13
Hydrogels are promising materials for biomedical applications such as tissue engineering and controlled drug release. In the past two decades, the peptide hydrogel subclass has attracted an increasing level of interest from the scientific community because of its numerous advantages, such as biocompatibility, biodegradability, and, most importantly, injectability. Here, we report on a hydrogel consisting of the amphipathic hexapeptide H-FEFQFK-NH 2 , which has previously shown promising in vivo properties in terms of releasing morphine. In this study, the release of a small molecule, a peptide, and a protein cargo as representatives of the three major drug classes is directly visualized by in vivo fluorescence and nuclear imaging. In addition, the in vivo stability of the peptide hydrogel system is investigated through the use of a radiolabeled hydrogelator sequence. Although it is shown that the hydrogel remains present for several days, the largest decrease in volume takes place within the first 12 h of subcutaneous injection, which is also the time frame wherein the cargos are released. Compared to the situation in which the cargos are injected in solution, a prolonged release profile is observed up to 12 h, showing the potential of our hydrogel system as a scaffold for controlled drug delivery. Importantly, this study elucidates the release mechanism of the peptide hydrogel system that seems to be based on erosion of the hydrogel providing a generally applicable controlled release platform for small molecule, peptide, and protein drugs.
Lopez, M D; Maudhuit, A; Pascual-Villalobos, M J; Poncelet, D
2012-02-08
In recent studies, insecticide activity of a monoterpene, linalool, has been demonstrated, finding, however, limitations in application because of its rapid volatilization. Potential effectiveness of microcapsules and effects of various types of matrices on its stability as controlled-release systems for the slow volatilization of linalool to be applied as insecticide were evaluated. To study controlled-release, linalool was entrapped into microcapsules, inclusion complexes, and beads, obtained by different methods, inverse gelation (IG1, IG2, IG3, IG4, and IG5), oil-emulsion-entrapment (OEE), interfacial coacervation (INCO), and chemical precipitation (Cyc5 and Cyc10). The encapsulation yield turned out to be different for each formulation, reaching the maximum retention for IG1 and OEE. In controlled-release, OEE followed by INCO presented a long time necessary for releasing as a result of the presence of glycerol or chitosan. These results pointed out remarkable differences in the release behavior of linalool depending on matrix composition and the method of encapsulation.
Nakagawa, Hidehiko; Hishikawa, Kazuhiro; Eto, Kei; Ieda, Naoya; Namikawa, Tomotaka; Kamada, Kenji; Suzuki, Takayoshi; Miyata, Naoki; Nabekura, Jun-ichi
2013-11-15
Two-photon-excitation release of nitric oxide (NO) from our recently synthesized photolabile NO donor, Flu-DNB, was confirmed to allow fine spatial and temporal control of NO release at the subcellular level in vitro. We then evaluated in vivo applications. Femtosecond near-infrared pulse laser irradiation of predefined regions of interest in living mouse brain treated with Flu-DNB induced NO-release-dependent, transient vasodilation specifically at the irradiated site. Photoirradiation in the absence of Flu-DNB had no effect. Further, NO release from Flu-DNB by pulse laser irradiation was shown to cause chemoattraction of microglial processes to the irradiated area in living mouse brain. To our knowledge, this is the first demonstration of induction of biological responses in vitro and in vivo by means of precisely controlled, two-photon-mediated release of NO.
Polypyrrole Film as a Drug Delivery System for the Controlled Release of Risperidone
NASA Astrophysics Data System (ADS)
Svirskis, Darren; Travas-Sejdic, Jadranka; Rodgers, Anthony; Garg, Sanjay
2009-07-01
Conducting polymers are finding applications in medicine including drug delivery systems, biosensors and templates for the regeneration of nervous pathways. We aim to develop a novel system where the drug release rate can be controlled by electrical stimulation. Polypyrrole (PPY) is being used as a drug delivery system due to its inherent electrical conductivity, ease of preparation and apparent biocompatibility. Risperidone is an atypical antipsychotic drug used in the treatment of psychosis and related disorders, including schizophrenia. PPY was synthesised using p-toluene sulfonic acid as a primary dopant, in the presence of risperidone. A validated high performance liquid chromatography (HPLC) analytical method was used to quantify risperidone release. It has been demonstrated that the release rate of risperidone can be altered through the application, or absence, of electrical stimulation. Technology such as this would find use in drug-delivering implants where the dose could be adjusted through application of external stimulus, optimising benefit to side effect ratio, while simultaneously ensuring patient adherence (which is a particular challenge in mental health conditions).
NASA Astrophysics Data System (ADS)
Huang, Tao; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe
2016-01-01
A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications.A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications. Electronic supplementary information (ESI) available: AFM images of GO and GO films, UV-vis spectra of delayed release, and permeation fidelities. See DOI: 10.1039/c5nr08129g
Lysine-based polycation:heparin coacervate for controlled protein delivery.
Johnson, Noah Ray; Ambe, Trisha; Wang, Yadong
2014-01-01
Polycations have good potential as carriers of proteins and genetic material. However, poor control over the release rate and safety issues currently limit their use as delivery vehicles. Here we introduce a new lysine-based polycation, poly(ethylene lysinylaspartate diglyceride) (PELD), which exhibits high cytocompatibility. PELD self-assembles with the biological polyanion heparin into a coacervate that incorporates proteins with high loading efficiency. Coacervates of varying surface charge were obtained by simple alteration of the PELD:heparin ratio and resulted in diverse release profiles of the model protein bovine serum albumin. Therefore, coacervate charge represents a direct means of control over release rate and duration. The PELD coacervate also rapidly adsorbed onto a porous polymeric scaffold, demonstrating potential use in tissue engineering applications. This coacervate represents a safe and tunable protein delivery system for biomedical applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release.
Bettini, Simona; Bonfrate, Valentina; Syrgiannis, Zois; Sannino, Alessandro; Salvatore, Luca; Madaghiele, Marta; Valli, Ludovico; Giancane, Gabriele
2015-09-14
A porous collagen-based hydrogel scaffold was prepared in the presence of iron oxide nanoparticles (NPs) and was characterized by means of infrared spectroscopy and scanning electron microscopy. The hybrid scaffold was then loaded with fluorescein sodium salt as a model compound. The release of the hydrosoluble species was triggered and accurately controlled by the application of an external magnetic field, as monitored by fluorescence spectroscopy. The biocompatibility of the proposed matrix was also tested by the MTT assay performed on 3T3 cells. Cell viability was only slightly reduced when the cells were incubated in the presence of the collagen-NP hydrogel, compared to controls. The economicity of the chemical protocol used to obtain the paramagnetic scaffolds as well as their biocompatibility and the safety of the external trigger needed to induce the drug release suggest the proposed collagen paramagnetic matrices for a number of applications including tissue engeneering and drug delivery.
Present and future medical applications of microbial exopolysaccharides
Moscovici, Misu
2015-01-01
Microbial exopolysaccharides (EPS) have found outstanding medical applications since the mid-20th century, with the first clinical trials on dextran solutions as plasma expanders. Other EPS entered medicine firstly as conventional pharmaceutical excipients (e.g., xanthan – as suspension stabilizer, or pullulan – in capsules and oral care products). Polysaccharides, initially obtained from plant or animal sources, became easily available for a wide range of applications, especially when they were commercially produced by microbial fermentation. Alginates are used as anti-reflux, dental impressions, or as matrix for tablets. Hyaluronic acid and derivatives are used in surgery, arthritis treatment, or wound healing. Bacterial cellulose is applied in wound dressings or scaffolds for tissue engineering. The development of drug controlled-release systems and of micro- and nanoparticulated ones, has opened a new era of medical applications for biopolymers. EPS and their derivatives are well-suited potentially non-toxic, biodegradable drug carriers. Such systems concern rating and targeting of controlled release. Their large area of applications is explained by the available manifold series of derivatives, whose useful properties can be thereby controlled. From matrix inclusion to conjugates, different systems have been designed to solubilize, and to assure stable transport in the body, target accumulation and variable rate-release of a drug substance. From controlled drug delivery, EPS potential applications expanded to vaccine adjuvants and diagnostic imaging systems. Other potential applications are related to the bioactive (immunomodulator, antitumor, antiviral) characteristics of EPS. The numerous potential applications still wait to be developed into commercial pharmaceuticals and medical devices. Based on previous and recent results in important medical-pharmaceutical domains, one can undoubtedly state that EPS medical applications have a broad future ahead. PMID:26483763
Hock, Sia Chong; Constance, Neo Xue Rui; Wah, Chan Lai
2012-01-01
Pharmaceutical products are generally subjected to end-product batch testing as a means of quality control. Due to the inherent limitations of conventional batch testing, this is not the most ideal approach for determining the pharmaceutical quality of the finished dosage form. In the case of terminally sterilized parenteral products, the limitations of conventional batch testing have been successfully addressed with the application of parametric release (the release of a product based on control of process parameters instead of batch sterility testing at the end of the manufacturing process). Consequently, there has been an increasing interest in applying parametric release to other pharmaceutical dosage forms, beyond terminally sterilized parenteral products. For parametric release to be possible, manufacturers must be capable of designing quality into the product, monitoring the manufacturing processes, and controlling the quality of intermediates and finished products in real-time. Process analytical technology (PAT) has been thought to be capable of contributing to these prerequisites. It is believed that the appropriate use of PAT tools can eventually lead to the possibility of real-time release of other pharmaceutical dosage forms, by-passing the need for end-product batch testing. Hence, this literature review attempts to present the basic principles of PAT, introduce the various PAT tools that are currently available, present their recent applications to pharmaceutical processing, and explain the potential benefits that PAT can bring to conventional ways of processing and quality assurance of pharmaceutical products. Last but not least, current regulations governing the use of PAT and the manufacturing challenges associated with PAT implementation are also discussed. Pharmaceutical products are generally subjected to end-product batch testing as a means of quality control. Due to the inherent limitations of conventional batch testing, this is not the most ideal approach. In the case of terminally sterilized parenteral products, these limitations have been successfully addressed with the application of parametric release (the release of a product based on control of process parameters instead of batch sterility testing at the end of the manufacturing process). Consequently, there has been an increasing interest in applying parametric release to other pharmaceutical dosage forms. With the advancement of process analytical technology (PAT), it is possible to monitor the manufacturing processes closely. This will eventually enable quality control of the intermediates and finished products, and thus their release in real-time. Hence, this literature review attempts to present the basic principles of PAT, introduce the various PAT tools that are currently available, present their recent applications to pharmaceutical processing, and explain the potential benefits that PAT can bring to conventional ways of processing and quality assurance of pharmaceutical products. It will also discuss the current regulations governing the use of PAT and the manufacturing challenges associated with the implementation of PAT.
Sun, Ruijuan; Wang, Wenqian; Wen, Yongqiang; Zhang, Xueji
2015-01-01
Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers’ attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple “separated” switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind. PMID:28347110
Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.
Arcan, Iskender; Yemenicioğlu, Ahmet
2014-08-13
To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.
Magnetic molecularly imprinted polymer for aspirin recognition and controlled release
NASA Astrophysics Data System (ADS)
Kan, Xianwen; Geng, Zhirong; Zhao, Yao; Wang, Zhilin; Zhu, Jun-Jie
2009-04-01
Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe3O4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boateng, F; Ngwa, W; Harvard Medical School, Boston, MA
Purpose: Brachytherapy application with in situ dose-painting using gold nanoparticles (GNP) released from GNP-loaded brachytherapy spacers has been proposed as an innovative approach to increase therapeutic efficacy during brachytherapy. This work investigates the dosimetric impact of slow versus burst release of GNP from next generation biodegradable spacers. Methods: Mathematical models were developed based on experimental data to study the release of GNP from a spacer designed with FDA approved poly(lactic-co-glycolic acid) (PLGA) polymer. The diffusion controlled released process and PLGA polymer degradation kinetics was incorporated in the calculations for the first time. An in vivo determined diffusion coefficient was usedmore » for determining the concentration profiles and corresponding dose enhancement based on initial GNP-loading concentrations of 7 mg/g. Results: The results showed that there is significant delay before the concentration profile of GNP diffusion in the tumor is similar to that when burst release is assumed as in previous studies. For example, in the case of burst release after spacer administration, it took up to 25 days for all the GNP to be released from the spacer using diffusion controlled release process only. However, it took up to 45 days when a combined model for both diffusion and polymer degradation processes was used. Based on the tumor concentration profiles, a significant dose enhancement factor (DEF >20%), could be attained at a tumor distances of 5 mm from a spacer loaded with 10 nm GNP sizes. Conclusion: The results highlight the need to take the slow release of GNP from spacers and factors such as biodegradation of polymers into account in research development of GNP-eluting spacers for brachytherapy applications with in-situ dose-painting using gold nanoparticles. The findings suggest that I-125 may be the more appropriate for such applications given the relatively longer half-live compared to other radioisotopes like Pd-103 and Cs-131.« less
Feng, Diejing; Bai, Bo; Wang, Honglun; Suo, Yourui
2017-07-26
Synergistic utilization of water and fertilizer has vital contribution to the modern production of agriculture. This work reports on a simple and facile strategy to prepare biodegradable yeast/sodium alginate/poly(vinyl alcohol) superabsorbent microspheres with a diffusion barrier merit by thermo-chemical modification route. The integrated performances, including water absorbency, water retention, water evaporation ratio, leaching loss control, sustained-release behaviors, and degradation in soil, were systematically investigated. The results revealed that the modified microspheres were a triumphant water and fertilizer manager to effectively hold water and control the unexpected leakage of fertilizer for sustained release. Therefore, this work provides a promising approach to ameliorate the utilization efficiency of water and fertilizer in potential agriculture applications.
Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng
2005-10-01
A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.
Controlled Release System for Localized and Sustained Drug Delivery Applications
NASA Astrophysics Data System (ADS)
Rodriguez, Lidia Betsabe
Current controlled release formulations has many drawbacks such as excess of initial burst release, low drug efficiency, non-degradability of the system and low reproducibility. The present project aims to offer an alternative by developing a technique to prepare uniform, biodegradable particles ( ˜19 mum ) that can sustainably release a drug for a specific period of time. Chitosan is a natural polysaccharide that has many characteristics to be used for biomedical applications. In the last two decades, there have been a considerable number of studies affirming that chitosan could be used for pharmaceutical applications. However, chitosan suffers from inherent weaknesses such as low mechanical stability and dissolution of the system in acidic media. In the present study, chitosan microparticles were prepared by emulsification process. The model drug chosen was acetylsalicylic acid as it is a small and challenging molecule. The maximum loading capacity obtained for the microparticles was approximately 96%. The parameters for the preparation of uniform particles with a narrow size distribution were identified in a triangular phase diagram. Moreover, chitosan particles were successfully coated with thin layers of poly lactic-coglycolic acid (PLGA) and poly lactic acid (PLA). The performance of different layerswas tested for in vitro drug release and degradation studies. Additionally, the degradability of the system was evaluated by measuring the weight loss of the system when exposed to enzyme and without enzyme. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to characterize the controlled release system. Additionally, the in vitro drug release was monitored by ultraviolet-visible spectrophotometry (UV-Vis) and liquid chromatography mass spectrometry (LC-MS). The results obtained from this project showed that it is possible to prepare biodegradable microparticles with a uniform size distribution and high drug loading efficiency. However, this could only be achieved with a hybrid system consisting of chitosan matrix interior and then exterior coating of PLGA or PLA. A two layer coating of PLGA 50:50 was shown to be optimal with sustainable controlled drug release for almost 5 days and with 91% of degradation (weight loss) in 8 weeks.
Classification of stimuli-responsive polymers as anticancer drug delivery systems.
Taghizadeh, Bita; Taranejoo, Shahrouz; Monemian, Seyed Ali; Salehi Moghaddam, Zoha; Daliri, Karim; Derakhshankhah, Hossein; Derakhshani, Zaynab
2015-02-01
Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.
USDA-ARS?s Scientific Manuscript database
A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HGAFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical m...
Silas Little; Horace A. Somes
1968-01-01
Various herbicides were used to release pine or hardwood seedlings from competition of Japanese honeysuckle, or to eliminate honeysuckle in areas being prepared for regeneration. Considering both the degree of honeysuckle control and the amount of damage to desired trees, we recommend 2,4-D emulsifiable acid with application in late fall for release of hardwoods and in...
Transition in Gas Turbine Engine Control System Architecture: Modular, Distributed, Embedded
2009-08-01
Design + Development + Certification + Procurement + Life Cycle Cost = Net Savings for our Customers Approved for Public Release 16 Economic ...Supporting Small Quantity Electronics Need Broadly Applicable High Temperature Electronics Supply Base Approved for Public Release 17 Economic ...rc ec ures Approved for Public Release 18 Economic Drivers for New FADEC Designs FADEC Implementation Time Pacing Engine Development Issues • FADEC
Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells
NASA Astrophysics Data System (ADS)
Suarez Castellanos, Ivan M.
Type 2 diabetes (T2D) mellitus is a complex metabolic disease that has reached epidemic proportions in the United States and around the world. Controlling T2D is often difficult as pharmacological management routinely requires complex therapy with multiple medications, and loses its effectiveness over time. The objective of this dissertation was to explore a novel, non-pharmacological approach that utilizes the application of ultrasound energy to stimulate insulin release. Our experiments have focused on determination of effectiveness and safety of ultrasound application in stimulation of insulin release from the pancreatic beta cells. Our results showed that ultrasound treatment, applied at frequencies of 800 kHz and 1 MHz and intensities of 0.5 W/cm2 and 1 W/cm2, did not produce any significant effects on cell viability compared to sham group as assessed with trypan blue dye exclusion test and MTT cytotoxicity assay. ELISA quantification of insulin release from beta cells resulting from ultrasound treatment showed clinically-significant amounts of released insulin as compared to sham-treated beta cells. Carbon fiber amperometry detection of secretory events from dopamine-loaded beta cells treated with ultrasound showed that release of secretory content could be temporally controlled by careful selection of ultrasound parameters. Both ELISA and amperometry experiments demonstrated that ultrasound-stimulated insulin release is a calcium-dependent process, potentially mediated by the mechanical effects of ultrasound. This study demonstrated that therapeutic ultrasound is a technique capable of stimulating the release of insulin from pancreatic beta cells in a safe, effective and controlled manner.
Ryosuke Fujinuma; Nick J. Balster; Hyung-Kyung. Lee
2011-01-01
Controlled-release fertilizer (CRF) typically increases nitrogen (N) fertilizer uptake and lowers N lost from the rooting zone via leaching. However, questions remain as to whether lower rates of CRF could further increase this efficiency, especially in sandy bare-root nurseries in Wisconsin. We hypothesized that: 1) a reduced CRF application at 60 percent of the...
Microencapsulation: A promising technique for controlled drug delivery.
Singh, M N; Hemant, K S Y; Ram, M; Shivakumar, H G
2010-07-01
MICROPARTICLES OFFER VARIOUS SIGNIFICANT ADVANTAGES AS DRUG DELIVERY SYSTEMS, INCLUDING: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.
Microencapsulation: A promising technique for controlled drug delivery
Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G.
2010-01-01
Microparticles offer various significant advantages as drug delivery systems, including: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed. PMID:21589795
Xie, Lihua; Liu, Mingzhu; Ni, Boli; Wang, Yanfang
2012-07-18
With the aim of improving fertilizer use efficiency and minimizing the negative impact on the environment, a new coated controlled-release fertilizer with the function of water retention was prepared. A novel low water solubility macromolecular fertilizer, poly(dimethylourea phosphate) (PDUP), was "designed" and formulated from N,N'-dimethylolurea (DMU) and potassium dihydrogen phosphate. Simultaneously, an eco-friendly superabsorbent composite based on wheat straw (WS), acrylic acid (AA), 2-acryloylamino-2-methyl-1-propanesulfonic acid (AMPS), and N-hydroxymethyl acrylamide (NHMAAm) was synthesized and used as the coating to control the release of nutrient. The nitrogen release profile and water retention capacity of the product were also investigated. The degradation of the coating material in soil solution was studied. Meanwhile, the impact of the content of N-hydroxymethyl acrylamide on the degradation extent was examined. The experimental data showed that the product with good water retention and controlled-release capacities, being economical and eco-friendly, could be promising for applications in agriculture and horticulture.
Thiol–ene click hydrogels for therapeutic delivery
Kharkar, Prathamesh M.; Rehmann, Matthew S.; Skeens, Kelsi M.; Maverakis, Emanual; Kloxin, April M.
2016-01-01
Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For use as a delivery vehicle, hydrophilic precursors are usually laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation and controlled release dictated by precursor design. Hydrogels formed by thiol–ene click reactions are attractive for local controlled release of therapeutics owing to their rapid reaction rate and efficiency under mild aqueous conditions, enabling in situ formation of gels with tunable properties often responsive to environmental cues. Herein, we will review the wide range of applications for thiol–ene hydrogels, from the prolonged release of anti-inflammatory drugs in the spine to the release of protein-based therapeutics in response to cell-secreted enzymes, with a focus on their clinical relevance. We will also provide a brief overview of thiol–ene click chemistry and discuss the available alkene chemistries pertinent to macromolecule functionalization and hydrogel formation. These chemistries include functional groups susceptible to Michael type reactions relevant for injection and radically-mediated reactions for greater temporal control of formation at sites of interest using light. Additionally, mechanisms for the encapsulation and controlled release of therapeutic cargoes are reviewed, including i) tuning the mesh size of the hydrogel initially and temporally for cargo entrapment and release and ii) covalent tethering of the cargo with degradable linkers or affinity binding sequences to mediate release. Finally, myriad thiol–ene hydrogels and their specific applications also are discussed to give a sampling of the current and future utilization of this chemistry for delivery of therapeutics, such as small molecule drugs, peptides, and biologics. PMID:28361125
Göhler, Daniel; Stintz, Michael; Hillemann, Lars; Vorbau, Manuel
2010-01-01
Nanoparticles are used in industrial and domestic applications to control customized product properties. But there are several uncertainties concerning possible hazard to health safety and environment. Hence, it is necessary to search for methods to analyze the particle release from typical application processes. Based on a survey of commercial sanding machines, the relevant sanding process parameters were employed for the design of a miniature sanding test setup in a particle-free environment for the quantification of the nanoparticle release into air from surface coatings. The released particles were moved by a defined airflow to a fast mobility particle sizer and other aerosol measurement equipment to enable the determination of released particle numbers additionally to the particle size distribution. First, results revealed a strong impact of the coating material on the swarf mass and the number of released particles. PMID:20696941
Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P
2010-05-01
Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.
Chai, Fujuan; Sun, Linlin; He, Xinyi; Li, Jieli; Liu, Yuanfen; Xiong, Fei; Ge, Liang; Webster, Thomas J; Zheng, Chunli
2017-01-01
Natural polyelectrolyte multilayers of chitosan (CHI) and alginate (ALG) were alternately deposited on doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with layer by layer self-assembly to control drug release for antitumor activity. Numerous factors which influenced the multilayer growth on nano-colloidal particles were studied: polyelectrolyte concentration, NaCl concentration and temperature. Then the growth regime of the CHI/ALG multilayers was elucidated. The coated NPs were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction and a zeta potential analyzer. In vitro studies demonstrated an undesirable initial burst release of DOX-loaded PLGA NPs (DOX-PLGA NPs), which was relieved from 55.12% to 5.78% through the use of the layer by layer technique. The release of DOX increased more than 40% as the pH of media decreased from 7.4 to 5.0. More importantly, DOX-PLGA (CHI/ALG) 3 NPs had superior in vivo tumor inhibition rates at 83.17% and decreased toxicity, compared with DOX-PLGA NPs and DOX in solution. Thus, the presently formulated PLGA-polyelectrolyte NPs have strong potential applications for numerous controlled anticancer drug release applications.
Allee effects in tritrophic food chains: some insights in pest biological control.
Costa, Michel Iskin da S; Dos Anjos, Lucas
2016-12-01
Release of natural enemies to control pest populations is a common strategy in biological control. However, its effectiveness is supposed to be impaired, among other factors, by Allee effects in the biological control agent and by the fact that introduced pest natural enemies interact with some native species of the ecosystem. In this work, we devise a tritrophic food chain model where the assumptions previously raised are proved correct when a hyperpredator attacks the introduced pest natural enemy by a functional response type 2 or 3. Moreover, success of pest control is shown to be related to the release of large amounts (i.e., inundative releases) of natural enemies. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Erdogan, Hakan; Yilmaz, Mehmet; Babur, Esra; Duman, Memed; Aydin, Halil M; Demirel, Gokhan
2016-05-09
Control of drug release by an external stimulus may provide remote controllability, low toxicity, and reduced side effects. In this context, varying physical external stimuli, including magnetic and electric fields, ultrasound, light, and pharmacological stimuli, have been employed to control the release rate of drug molecules in a diseased region. However, the design and development of alternative on-demand drug-delivery systems that permit control of the dosage of drug released via an external stimulus are still required. Here, we developed near-infrared laser-activatable microspheres based on Fmoc-diphenylalanine (Phe-Phe) dipeptides and plasmonic gold nanorods (AuNRs) via a simple freeze-quenching approach. These plasmonic nanoparticle-embedded microspheres were then employed as a smart drug-delivery platform for native, continuous, and pulsatile doxorubicin (DOX) release. Remarkable sustained, burst, and on-demand DOX release from the fabricated microspheres were achieved by manipulating the laser exposure time. Our results demonstrate that AuNR-embedded dipeptide microspheres have great potential for controlled drug-delivery systems.
Timmins, Peter; Desai, Divyakant; Chen, Wei; Wray, Patrick; Brown, Jonathan; Hanley, Sarah
2016-08-01
Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed.
Smart Micro/Nano-robotic Systems for Gene Delivery.
Pedram, Alireza; Pishkenari, Hossein Nejat
2017-01-01
Small scale robotics have attracted growing attention for the prospect of targeting and accessing cell-sized sites, necessary for high precision biomedical applications and drug/gene delivery. The loss of controlled gene therapy, inducing systemic side effects and reduced therapeutic efficiency, can be settled utilizing these intelligent carriers. Newly proposed solutions for the main challenges of control, power supplying, gene release and final carrier extraction/degradation have shifted these smart miniature robots to the point of being employed for practical applications of transferring oligonucleotides (pDNA, siRNA, mRNA, etc.) in near future. In this paper, different scenarios and their endeavors to address the vital working demands and steps, in particular, carrier attachment and release, cell internalization, manipulation concerns as well as actuation systems are discussed.This review highlights some promising experimental results showing controlled gene release of robotic systems in comparison with current non-specific gene delivery methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Rhodes, Elena M; Liburd, Oscar E
2006-08-01
Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite 50 WP (bifenazate), for control of twospotted spider mite, Tetranychus urticae Koch, in strawberries (Fragaria x ananassa Duchesne). In greenhouse tests, three treatments consisting of releases of P. persimilis, N. californicus, and an untreated control were evaluated. Both species of predatory mites significantly reduced twospotted spider mite numbers below those found in the control during the first 3 wk of evaluation. However, during week 4, twospotted spider mite numbers on the plants treated with P. persimilis increased and did not differ significantly from the control. Field studies used releases of P. persimilis and N. californicus, applications of Acramite, and untreated control plots. Both N. californicus and P. persimilis significantly reduced populations of twospotted spider mite below numbers recorded in the control plots. During the 2003-2004 field season P. persimilis took longer than N. californicus to bring the twospotted spider mite population under control (< 10 mites per leaflet). Acramite was effective in reducing twospotted spider mite populations below 10 mites per leaflet during the 2003-2004 field season but not during the 2004-2005 field season, possibly because of a late application. These findings indicate that N. californicus releases and properly timed Acramite applications are promising options for twospotted spider mite control in strawberries for growers in north Florida and other areas of the southeast.
Holt, Kiffnie M; Opit, George P; Nechols, James R; Margolies, David C
2006-01-01
The compatibility of the selective insecticide spinosad (Conserve SC), at rates recommended for thrips control in greenhouses, with release of the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) to control spider mites, was investigated in a crop of ivy geranium Pelargonium peltatum, cultivar 'Amethyst 96.' Plants were inoculated with twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), 2 weeks before treatments were applied. There were three treatment variables, each at two levels: predators (released or not), spray application (water or Conserve SC at 2 ml/3.79 l), and timing of spray (1 day before or after predators were released). Twospotted spider mite populations then were sampled twice each week over a three-week period. The application or timing of spinosad had no effect on the ability of the predator to reduce the population of spider mites. Spider mite populations in the no-predator treatment continued to expand over the course of the experiment, while those in the predator-release treatment declined. We conclude that P. persimilis can be used in conjunction with spinosad on ivy geraniums without causing obvious detrimental effects to this predator or leading to a reduction in biological control.
NASA Astrophysics Data System (ADS)
Malvindi, Maria Ada; di Corato, Riccardo; Curcio, Annalisa; Melisi, Daniela; Rimoli, Maria Grazia; Tortiglione, Claudia; Tino, Angela; George, Chandramohan; Brunetti, Virgilio; Cingolani, Roberto; Pellegrino, Teresa; Ragusa, Andrea
2011-12-01
The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release.The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release. Electronic supplementary information (ESI) available: TEM images, absorption and emission spectra, ζ-potential and DLS graphics, gel electrophoresis images, cyclic voltammograms, western blot and RT-PCR data. See DOI: 10.1039/c1nr10797f
Controlled release of insect sex pheromones from paraffin wax and emulsions.
Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M
1999-02-22
Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.
NASA Astrophysics Data System (ADS)
Bruno, Giacomo; Geninatti, Thomas; Hood, R. Lyle; Fine, Daniel; Scorrano, Giovanni; Schmulen, Jeffrey; Hosali, Sharath; Ferrari, Mauro; Grattoni, Alessandro
2015-03-01
General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5.7 nm nanochannel membrane designed for zero-order drug delivery. Two electrode configurations were tested: laser-cut foils and electron beam deposited thin-films, configurations capable of operating at low voltage (<=1.5 V), and power (100 nW). Temporal, reproducible tuning and interruption of dendritic fullerene 1 (DF-1) transport was demonstrated over multi-day release experiments. Conductance tests showed limiting currents in the low applied potential range, implying ionic concentration polarization (ICP) at the interface between the membrane's micro- and nanochannels, even in concentrated solutions (<=1 M NaCl). The ability of this nanotechnology platform to facilitate controlled delivery of molecules and particles has broad applicability to next-generation therapeutics for numerous pathologies, including autoimmune diseases, circadian dysfunction, pain, and stress, among others.General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5.7 nm nanochannel membrane designed for zero-order drug delivery. Two electrode configurations were tested: laser-cut foils and electron beam deposited thin-films, configurations capable of operating at low voltage (<=1.5 V), and power (100 nW). Temporal, reproducible tuning and interruption of dendritic fullerene 1 (DF-1) transport was demonstrated over multi-day release experiments. Conductance tests showed limiting currents in the low applied potential range, implying ionic concentration polarization (ICP) at the interface between the membrane's micro- and nanochannels, even in concentrated solutions (<=1 M NaCl). The ability of this nanotechnology platform to facilitate controlled delivery of molecules and particles has broad applicability to next-generation therapeutics for numerous pathologies, including autoimmune diseases, circadian dysfunction, pain, and stress, among others. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06209d
Applications of Natural Polymeric Materials in Solid Oral Modified-Release Dosage Forms.
Li, Liang; Zhang, Xin; Gu, Xiangqin; Mao, Shirui
2015-01-01
Solid oral modified-release dosage forms provide numerous advantages for drug delivery compared to dosage forms where the drugs are released and absorbed rapidly following ingestion. Natural polymers are of particular interest as drug carriers due to their good safety profile, biocompatibility, biodegradability, and rich sources. This review described the current applications of important natural polymers, such as chitosan, alginate, pectin, guar gum, and xanthan gum, in solid oral modified-release dosage forms. It was shown that natural polymers have been widely used to fabricate solid oral modified-release dosage forms such as matrix tablets, pellets and beads, and especially oral drug delivery systems such as gastroretentive and colon drug delivery systems. Moreover, chemical modifications could overcome the shortcomings associated with the use of natural polymers, and the combination of two or more polymers presented further advantages compared with that of single polymer. In conclusion, natural polymers and modified natural polymers have promising applications in solid oral modified-release dosage forms. However, commercial products based on them are still limited. To accelerate the application of natural polymers in commercial products, in vivo behavior of natural polymers-based solid oral modified-release dosage forms should be deeply investigated, and meanwhile quality of the natural polymers should be controlled strictly, and the influence of formulation and process parameters need to be understood intensively.
Ensing, Geert T; Neut, Daniëlle; van Horn, Jim R; van der Mei, Henny C; Busscher, Henk J
2006-12-01
Antibiotic-loaded bone cements are used for the permanent fixation of joint prostheses. Antibiotic-loaded cements significantly decrease the incidence of infection. The objective of this study was to investigate whether the viability of bacteria derived from patients with a prosthesis-related infection could be further decreased when antibiotic release from bone cements was combined with application of pulsed ultrasound. Escherichia coli ATCC 10798, Staphylococcus aureus 7323, coagulase-negative staphylococci (CoNS 7368 and CoNS 7391) and Pseudomonas aeruginosa 5148 were grown planktonically in suspension and as a biofilm on three different bone cements: Palacos R without gentamicin as control, gentamicin-loaded Palacos R-G and gentamicin/clindamycin-loaded Copal. The viability of planktonic and biofilm bacteria was measured in the absence and presence of pulsed ultrasound for 40 h. Ultrasound itself did not affect bacterial viability. However, application of pulsed ultrasound in combination with antibiotic release by antibiotic-loaded bone cements yielded a reduction of both planktonic and biofilm bacterial viability compared with antibiotic release without application of ultrasound. This study shows that antibiotic release in combination with ultrasound increases the antimicrobial efficacy further than antibiotic release alone against a variety of clinical isolates. Application of ultrasound in combination with antibiotic release in clinical practice could therefore lead to better prevention or treatment of prosthesis-related infections.
Ciolino, Joseph B.; Hoare, Todd R.; Iwata, Naomi G.; Behlau, Irmgard; Dohlman, Claes H.; Langer, Robert; Kohane, Daniel S.
2014-01-01
Purpose To formulate and characterize a drug-eluting contact lens designed to provide extended, controlled release of a drug. Methods Prototype contact lenses were created by coating PLGA (poly[lactic-co-glycolic acid]) films containing test compounds with pHEMA (poly[hydroxyethyl methacrylate]) by ultraviolet light polymerization. The films, containing encapsulated fluorescein or ciprofloxacin, were characterized by scanning electron microscopy. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. Ciprofloxacin eluted from the contact lens was studied in an antimicrobial assay to verify antimicrobial effectiveness. Results After a brief and minimal initial burst, the prototype contact lenses demonstrated controlled release of the molecules studied, with zero-order release kinetics under infinite sink conditions for over 4 weeks. The rate of drug release was controlled by changing either the ratio of drug to PLGA or the molecular mass of the PLGA used. Both the PLGA and the pHEMA affected release kinetics. Ciprofloxacin released from the contact lenses inhibited ciprofloxacin-sensitive Staphylococcus aureus at all time-points tested. Conclusions A prototype contact lens for sustained drug release consisting of a thin drug-PLGA film coated with pHEMA could be used as a platform for ocular drug delivery with widespread therapeutic applications. PMID:19136709
Jannesari, Marziyeh; Varshosaz, Jaleh; Morshed, Mohammad; Zamani, Maedeh
2011-01-01
The aim of this study was to develop novel biomedicated nanofiber electrospun mats for controlled drug release, especially drug release directly to an injury site to accelerate wound healing. Nanofibers of poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), and a 50:50 composite blend, loaded with ciprofloxacin HCl (CipHCl), were successfully prepared by an electrospinning technique for the first time. The morphology and average diameter of the electrospun nanofibers were investigated by scanning electron microscopy. X-ray diffraction studies indicated an amorphous distribution of the drug inside the nanofiber blend. Introducing the drug into polymeric solutions significantly decreased solution viscosities as well as nanofiber diameter. In vitro drug release evaluations showed that both the kind of polymer and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst and rate of drug release. Blending PVA and PVAc exhibited a useful and convenient method for electrospinning in order to control the rate and period of drug release in wound healing applications. Also, the thickness of the blend nanofiber mats strongly influenced the initial release and rate of drug release. PMID:21720511
Application of Uniform Measurement Error Distribution
2016-03-18
subrata.sanyal@navy.mil Point of Contact: Measurement Science & Engineering Department Operations (Code: MS02) P.O. Box 5000 Corona , CA 92878... Corona , California 92878-5000 March 18, 2016 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited...NSWC Corona Public Release Control Number 16-005) NSWCCORDIV/RDTR-2016-005 iii
Controlled release of chlorhexidine digluconate using β-cyclodextrin and microfibrillated cellulose.
Lavoine, Nathalie; Tabary, Nicolas; Desloges, Isabelle; Martel, Bernard; Bras, Julien
2014-09-01
This study aims to develop a high-performance delivery system using microfibrillated cellulose (MFC)-coated papers as a controlled release system combined with the well-known drug delivery agent, β-cyclodextrin (βCD). Chlorhexidine digluconate (CHX), an antibacterial molecule, was mixed with a suspension of MFC or a βCD solution or mixed with both the substances, before coating onto a cellulosic substrate. The intermittent diffusion of CHX (i.e., diffusion interrupted by the renewal of the release medium periodically) was conducted in an aqueous medium, and the release mechanism of CHX was elucidated by field emission gun-scanning electron microscopy, SEM, NMR, and Fourier transform infrared analyses. According to the literature, both βCD and MFC are efficient controlled delivery systems. This study indicated that βCD releases CHX more gradually and over a longer period of time compared to MFC, which is mainly due to the ability of βCD to form an inclusion complex with CHX. Furthermore from the release study, a complementary action when the two compounds were combined was deduced. MFC mainly affected the burst effect, while βCD primarily controlled the amount of CHX released over time. In this paper, two different types of controlled release systems are proposed and compared. Depending on the final application, the use of βCD alone would release low amounts of active molecules over time (slow delivery), whereas the combination of β-cyclodextrin and MFC would be more suitable for the release of higher amounts of active molecules over time (rapid delivery). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar
2017-12-01
The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.
Controlled release repellent formulations on human volunteers under three climatic regimens.
Gupta, R K; Rutledge, L C
1991-09-01
Two controlled-release repellent formulations containing 33% (3M) and 42% (Biotek) deet and an Army repellent containing 75% deet were evaluated in 3 different climatic regimens (tropical forested, tropical open and basic hot environments). The 3 repellents provided similar protection for different time periods after application under all 3 climates against Aedes aegypti, Ae. taeniorhynchus and Anopheles stephensi whereas there was no difference in protection period against An. albimanus.
Wang, Bifeng; Friess, Wolfgang
2017-10-30
A new precursor, tetrakis(2-methoxyethyl) orthosilicate (TMEOS) was used to fabricate microparticles for sustained release application, specifically for biopharmaceuticals, by spray drying. The advantages of TMEOS over the currently applied precursors are its water solubility and hydrolysis at moderate pH without the need of organic solvents or catalyzers. Thus a detrimental effect on biomolecular drug is avoided. By generating spray-dried silica particles encapsulating the high molecular weight model compound FITC-dextran 150 via the nano spray dryer Büchi-90, we demonstrated how formulation parameters affect and enable control of drug release properties. The implemented strategies to regulate release included incorporating different quantities of dextrans with varying molecular weight as well as adjusting the pH of the precursor solution to modify the internal microstructures. The addition of dextran significantly altered the released amount, while the release became faster with increasing dextran molecular weight. A sustained release over 35days could be achieved with addition of 60 kD dextran. The rate of FITC-Dextran 150 release from the dextran 60 containing particles decreased with higher precursor solution pH. In conclusion, the new precursor TMEOS presents a promising alternative sol-gel technology based carrier material for sustained release application of high molecular weight biopharmaceutical drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Guidebook for analysis of tether applications
NASA Technical Reports Server (NTRS)
Carroll, J. A.
1985-01-01
This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. Topics disscussed include: orbit and orbit transfer equations; orbital perturbations; aerodynamic drag; thermal balance; micrometeoroids; gravity gradient effects; tether control strategies; momentum transfer; orbit transfer by tethered release/rendezvous; impact hazards for tethers; electrodynamic tether principles; and electrodynamic libration control issues.
NASA Astrophysics Data System (ADS)
Singh, R. K.; Kim, W.-S.; Ollinger, M.; Craciun, V.; Coowantwong, I.; Hochhaus, G.; Koshizaki, N.
2002-09-01
There is an urgent need to develop controlled drug release systems for the delivery of drugs via the pulmonary route. A key issue in pulmonary dry delivery systems is to reduce the amount of biodegradable polymers that are added to control the drug release. We have synthesized nanofunctionalized drug particles using the pulsed laser deposition on particles (PLDP) (e.g. budesonide) in an effort to control the architecture and thickness of a nanoscale polymer coating on the drug particles. In vitro studies indicated that the dry half-life release for budesonide can be enhanced from 1.2 to over 60 min by a nanoscale coating on the drug particle. Extensive studies have been conducted to characterize the bonding and composition of the polymer film deposited on drug particles.
Multifunctional silk-heparin biomaterials for vascular tissue engineering applications
Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.
2013-01-01
Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708
Yang, Jie; Lin, Feng K; Yang, Lei; Hua, Dan Y
2015-01-01
The effects of oxygen-releasing compound (ORC) on the control of phosphorus (P) release as well as the spatial and temporal distribution of P fractions in sediment were studied through a bench-scale test. An ORC with an extended oxygen-releasing capacity was prepared. The results of the oxygen-releasing test showed that the ORC provided a prolonged period of oxygen release with a highly effective oxygen content of 60.6% when compared with powdery CaO2. In the bench-scale test, an ORC dose of 180 g·m(-2) provided a higher inhibition efficiency for P release within 50 days. With the application of the ORC, the dissolved oxygen (DO) concentration and redox potential (ORP) of the overlying water were notably improved, and the dissolved total phosphorus (DTP) was maintained below 0.689 mg·L(-1) compared to 2.906 mg·L(-1) without the ORC treatment. According to the P fractions distribution, the summation of all detectable P fractions in each sediment layer exhibited an enhanced accumulation tendency with the application of ORC. Higher phosphorus retention efficiencies were observed in the second and third layers of sediment from days 10 to 20 with the ORC. Phosphorus was trapped mainly in the form of iron bound P (Fe-P) and organically bound P (O-P) in sediment with the ORC, whereas the effects of the ORC on exchangeable P (EX-P), apatite-associated P (A-P) and detrital P (De-P) in the sediment sample were not significant. The microbial activities of the sediment samples demonstrated that both the dehydrogenase activity (DHA) and alkaline phosphatase activity (APA) in the upper sediment layer increased with the ORC treatment, which indicated that the mineralization of P was accelerated and the microbial biomass was increased. As the accumulation of P suppressed the release of P, the sediment exhibited an increased P retention efficiency with the application of the ORC.
Halloysite clay nanotubes for controlled release of protective agents.
Lvov, Yuri M; Shchukin, Dmitry G; Möhwald, Helmuth; Price, Ronald R
2008-05-01
Halloysite aluminosilicate nanotubes with a 15 nm lumen, 50 nm external diameter, and length of 800 +/- 300 nm have been developed as an entrapment system for loading, storage, and controlled release of anticorrosion agents and biocides. Fundamental research to enable the control of release rates from hours to months is being undertaken. By variation of internal fluidic properties, the formation of nanoshells over the nanotubes and by creation of smart caps at the tube ends it is possible to develop further means of controlling the rate of release. Anticorrosive halloysite coatings are in development and a self-healing approach has been developed for repair mechanisms through response activation to external impacts. In this Perspective, applications of halloysite as nanometer-scale containers are discussed, including the use of halloysite tubes as drug releasing agents, as biomimetic reaction vessels, and as additives in biocide and protective coatings. Halloysite nanotubes are available in thousands of tons, and remain sophisticated and novel natural nanomaterials which can be used for the loading of agents for metal and plastic anticorrosion and biocide protection.
Magnetic Nanomaterials for Hyperthermia-based Therapy and Controlled Drug Delivery
Kumar, Challa S. S. R.; Mohammad, Faruq
2011-01-01
Previous attempts to review the literature on magnetic nanomaterials for hyperthermia-based therapy focused primarily on magnetic fluid hyperthermia (MFH) using mono metallic/metal oxide nanoparticles. The term “Hyperthermia” in the literature was also confined only to include use of heat for therapeutic applications. Recently, there have been a number of publications demonstrating magnetic nanoparticle-based hyperthermia to generate local heat resulting in the release of drugs either bound to the magnetic nanoparticle or encapsulated within polymeric matrices. In this review article, we present a case for broadening the meaning of the term “hyperthermia” by including thermotherapy as well as magnetically modulated controlled drug delivery. We provide a classification for controlled drug delivery using hyperthermia: Hyperthermia-based controlled Drug delivery through Bond Breaking (DBB) and Hyperthermia-based controlled Drug delivery through Enhanced Permeability (DEP). The review also covers, for the first time, core-shell type magnetic nanomaterials, especially nanoshells prepared using layer-by-layer self-assembly, for the application of hyperthermia-based therapy and controlled drug delivery. The highlight of the review article is to portray potential opportunities in the combination of hyperthermia-based therapy and controlled drug release paradigms for successful application in personalized medicine. PMID:21447363
Carbon monoxide – physiology, detection and controlled release
Heinemann, Stefan H.; Hoshi, Toshinori; Westerhausen, Matthias
2014-01-01
Carbon monoxide (CO) is increasingly recognized as a cell-signalling molecule akin to nitric oxide (NO). CO has attracted particular attention as a potential therapeutic agent because of its reported anti-hypertensive, anti-inflammatory and cell-protective effects. We discuss recent progress in identifying new effector systems and elucidating the mechanisms of action of CO on, e.g., ion channels, as well as the design of novel methods to monitor CO in cellular environments. We also report on recent developments in the area of CO-releasing molecules (CORMs) and materials for controlled CO application. Novel triggers for CO release, metal carbonyls and degradation mechanisms of CORMs, are highlighted. In addition, potential formulations of CORMs for targeted CO release are discussed. PMID:24556640
Li, Zhengkai; Spaulding, Malcolm; French McCay, Deborah; Crowley, Deborah; Payne, James R
2017-01-15
An oil droplet size model was developed for a variety of turbulent conditions based on non-dimensional analysis of disruptive and restorative forces, which is applicable to oil droplet formation under both surface breaking-wave and subsurface-blowout conditions, with or without dispersant application. This new model was calibrated and successfully validated with droplet size data obtained from controlled laboratory studies of dispersant-treated and non-treated oil in subsea dispersant tank tests and field surveys, including the Deep Spill experimental release and the Deepwater Horizon blowout oil spill. This model is an advancement over prior models, as it explicitly addresses the effects of the dispersed phase viscosity, resulting from dispersant application and constrains the maximum stable droplet size based on Rayleigh-Taylor instability that is invoked for a release from a large aperture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels.
Valo, Hanna; Arola, Suvi; Laaksonen, Päivi; Torkkeli, Mika; Peltonen, Leena; Linder, Markus B; Serimaa, Ritva; Kuga, Shigenori; Hirvonen, Jouni; Laaksonen, Timo
2013-09-27
Highly porous nanocellulose aerogels prepared by freeze-drying from various nanofibrillar cellulose (NFC) hydrogels are introduced as nanoparticle reservoirs for oral drug delivery systems. Here we show that beclomethasone dipropionate (BDP) nanoparticles coated with amphiphilic hydrophobin proteins can be well integrated into the NFC aerogels. NFCs from four different origins are introduced and compared to microcrystalline cellulose (MCC). The nanocellulose aerogel scaffolds made from red pepper (RC) and MCC release the drug immediately, while bacterial cellulose (BC), quince seed (QC) and TEMPO-oxidized birch cellulose-based (TC) aerogels show sustained drug release. Since the release of the drug is controlled by the structure and interactions between the nanoparticles and the cellulose matrix, modulation of the matrix formers enable a control of the drug release rate. These nanocomposite structures can be very useful in many pharmaceutical nanoparticle applications and open up new possibilities as carriers for controlled drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.
Shi, Linfan; Fu, Xiong; Tan, Chin Ping; Huang, Qiang; Zhang, Bin
2017-03-15
Ethylene gas was introduced into granular cold-water-soluble (GCWS) starches using a solid encapsulation method. The morphological and structural properties of the novel inclusion complexes (ICs) were characterized using scanning electron microscopy, X-ray diffractometry, and Raman spectroscopy. The V-type single helix of GCWS starches was formed through controlled gelatinization and ethanol precipitation and was approved to host ethylene gas. The controlled release characteristics of ICs were also investigated at various temperature and relative humidity conditions. Avrami's equation was fitted to understand the release kinetics and showed that the release of ethylene from the ICs was accelerated by increasing temperature or RH and was decelerated by increased degree of amylose polymerization. The IC of Hylon-7 had the highest ethylene concentration (31.8%, w/w) among the five starches, and the IC of normal potato starch showed the best controlled release characteristics. As a renewable and inexpensive material, GCWS starch is a desirable solid encapsulation matrix with potential in agricultural and food applications.
Schwach-Abdellaoui, Khadija; Moreau, Marinette; Schneider, Marc; Boisramć, Bernard; Gurny, Robert
2002-11-06
In animal health care, current therapeutic regimens for gastrointestinal disorders require repeated oral or parenteral dosage forms of anti-emetic agents. However, fluctuations of plasma concentrations produce severe side effects. The aim of this work is to develop a subcutaneous and biodegradable controlled release system containing metoclopramide (MTC). Semi-solid poly(ortho ester)s (POE) prepared by a transesterification reaction between trimethyl orthoacetate and 1,2,6,-hexanetriol were investigated as injectable bioerodible polymers for the controlled release of MTC. MTC is present in the polymeric matrix as a solubilised form and it is released rapidly from the POE by erosion and diffusion because of its acidic character and its high hydrosolubility. If a manual injection is desired, only low molecular weight can be used. However, low molecular weight POEs release the drug rapidly. In order to extend polymer lifetime and decrease drug release rate, a sparingly water-soluble base Mg(OH)(2) was incorporated to the formulation. It was possible to produce low molecular weight POE that can be manually injected and releasing MTC over a period of several days.
Peng, Hongxia; Cui, Bin; Li, Guangming; Wang, Yingsai; Li, Nini; Chang, Zhuguo; Wang, Yaoyu
2015-01-01
We constructed a novel core-shell structured Fe3O4@ZnO:Er(3+),Yb(3+)@(β-CD) nanoparticles used as drug carrier to investigate the loading and controllable release properties of the chemotherapeutic drug etoposide (VP-16). The cavity of β-cyclodextrin is chemically inert, it can store etoposide molecules by means of hydrophobic interactions. The Fe3O4 core and ZnO:Er(3+),Yb(3+) shell functioned successfully for magnetic targeting and up-conversion fluorescence imaging, respectively. In addition, the ZnO:Er(3+),Yb(3+) shell acts as a good microwave absorber with excellent microwave thermal response property for microwave triggered drug release (the VP-16 release of 18% under microwave irradiation for 15 min outclass the 2% within 6h without microwave irradiation release). The release profile could be controlled by the duration and number of cycles of microwave application. This material therefore promises to be a useful noninvasive, externally controlled drug-delivery system in cancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release.
Dang, Xugang; Yang, Mao; Shan, Zhihua; Mansouri, Shahnaz; May, Bee K; Chen, Xiaodong; Chen, Hui; Woo, Meng Wai
2017-05-01
Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326°C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The ability to rear a beneficial predatory insect is often required for its use in inoculative releases for classical biological control applications. However, affordable mass production is required before a beneficial predatory insect will be commercialized for large scale repetitive releases. The...
NASA Astrophysics Data System (ADS)
Peterson, Aaron; Lopez, Tessy; Islas, Emma Ortiz; Gonzalez, Richard D.
2007-04-01
Several process variables, which may be helpful in optimizing the rate at which drugs are released from implantable, sol-gel titania devices have been identified in this study. The controlled rate of drug release is compared for two different anticonvulsant drugs, valproic acid and sodic phenytoin. Contrary to what one might expect, when the concentration is increased in the titania reservoir the rate of initial drug delivery decreases. This is a desirable result, because it may reduce the danger of a high initial discharge, which may harm the epileptic rat. The structure of the porous structure within the titania network has been studied using a generalized form of the BET equation which considers only n layers. In general, following an initial discharge, the rate at which the drug is released will increase with the increasing concentration. Pore mouth blocking can present a problem. However, this problem tends to disappear following the initial discharge. The extent of drug loading is a useful variable parameter, which can be adjusted in order to deliver the amount of drug required in a given application.
NASA Astrophysics Data System (ADS)
Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj.; Zainal, Zulkarnain
2009-11-01
Intercalation of beneficial anion into inorganic host has lead to an opportunity to synthesize various combinations of new organic-inorganic nanohybrids with various potential applications; especially, for the controlled release formulation and storage purposes. Investigation on the release behavior of 2,4-dichlorophenoxyacetate (2,4-D) intercalated into the interlayer of Zn-Al-layered double hydroxide (ZAN) have been carried out using single, binary and ternary aqueous systems of chloride, carbonate and phosphate. The release behavior of the active agent 2,4-D from its double-layered hydroxide nanohybrid ZANDI was found to be of controlled manner governed by pseudo-second order kinetics. It was found that carbonate medium yielded the highest accumulated release of 2,4-D, while phosphate in combination with carbonate and/or nitrate speeds up the release rate of 2,4-D. These results indicate that it is possible to design and develop new delivery system of latex stimulant compound with controlled release property based on 2,4-D that is known as a substance to increase latex production of rubber tree, Hevea brasiliensis.
Diisocyanate mediated polyether modified gelatin drug carrier for controlled release
Vijayakumar, Vediappan; Subramanian, Kaliappagounder
2013-01-01
Gelatin is an extensively studied biopolymer hydrogel drug carrier due to its biocompatibility, biodegradability and non-toxicity of its biodegraded products formed in vivo. But with the pristine gelatin it is difficult to achieve a controlled and desirable drug release characteristics due to its structural and thermal lability and high solubility in aqueous biofluids. Hence it is necessary to modify its solubility and structural stability in biofluids to achieve controlled release features with improved drug efficacy and broader carrier applications. In the present explorations an effort is made in this direction by cross linking gelatin to different extents using hitherto not studied isocyanate terminated poly(ether) as a macrocrosslinker prepared from poly(ethylene glycol) and isophorone diisocyanate in dimethyl sulfoxide. The crosslinked samples were analyzed for structure by Fourier transform-infrared spectroscopy, thermal behavior through thermogravimetric analysis and differential scanning calorimetry. The cross linked gelatins were biodegradable, insoluble and swellable in biofluids. They were evaluated as a carrier for in vitro drug delivery taking theophylline as a model drug used in asthma therapy. The crosslinking of gelatin decreased the drug release rate by 10–20% depending upon the extent of crosslinking. The modeled drug release characteristics revealed an anomalous transport mechanism. The release rates for ampicillin sodium, 5-fluorouracil and theophylline drugs in a typical crosslinked gelatin carrier were found to depend on the solubility and hydrophobicity of the drugs, and the pH of the fluid. The observed results indicated that this material can prove its mettle as a viable carrier matrix in drug delivery applications. PMID:24493973
Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins.
Bloomquist, Cameron J; Mecham, Michael B; Paradzinsky, Mark D; Janusziewicz, Rima; Warner, Samuel B; Luft, J Christopher; Mecham, Sue J; Wang, Andrew Z; DeSimone, Joseph M
2018-05-28
Mass customization along with the ability to generate designs using medical imaging data makes 3D printing an attractive method for the fabrication of patient-tailored drug and medical devices. Herein we describe the application of Continuous Liquid Interface Production (CLIP) as a method to fabricate biocompatible and drug-loaded devices with controlled release properties, using liquid resins containing active pharmaceutical ingredients (API). In this work, we characterize how the release kinetics of a model small molecule, rhodamine B-base (RhB), are affected by device geometry, network crosslink density, and the polymer composition of polycaprolactone- and poly (ethylene glycol)-based networks. To demonstrate the applicability of using API-loaded liquid resins with CLIP, the UV stability was evaluated for a panel of clinically-relevant small molecule drugs. Finally, select formulations were tested for biocompatibility, degradation and encapsulation of docetaxel (DTXL) and dexamethasone-acetate (DexAc). Formulations were shown to be biocompatible over the course of 175 days of in vitro degradation and the clinically-relevant drugs could be encapsulated and released in a controlled fashion. This study reveals the potential of the CLIP manufacturing platform to serve as a method for the fabrication of patient-specific medical and drug-delivery devices for personalized medicine. Copyright © 2018. Published by Elsevier B.V.
Physical and chemical control of released microorganisms at field sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donegan, K.; Seidler, R.; Matyac, C.
1991-01-01
An important consideration in the environmental release of a genetically engineered microorganism (GEM) is the capability for reduction or elimination of GEM populations once their function is completed or if adverse environmental effects are observed. The decontamination treatments of burning and biocide application, alone and in combination with tilling, were evaluated for their ability to reduce populations of bacteria released on the phylloplane. Field plots of bush beans sprayed with the bacterium Erwinia herbicola, received the following treatments: (1) control, (2) control + till, (3) burn, (4) burn + till, (5) Kocide (cupric hydroxide), (6) Kocide + till, (7) Agri-strepmore » (streptomycin sulfate), and (8) Agri-strept + till. Leaves and soil from the plots were sampled -1, 1, 5, 8, 12, 15, 19, and 27 days after application of the decontamination treatments. Burning produced a significant and persistent reduction in the number of bacteria whereas tilling, alone or in combination with the biocide treatments, stimulated a significant and persistent reduction in the number of bacteria, whereas tilling, alone or in combination with the biocide treatments, stimulated a significant increase in bacterial populations that persisted for several weeks.« less
Wang, Jinpeng; Qiu, Chao; Narsimhan, Ganesan; Jin, Zhengyu
2017-01-01
Allyl isothiocyanate (AITC) are natural essential oil components that have outstanding antimicrobial activities. However, low water solubility, high volatility, and easy degradation by heat, restricting their application in food packing industry. Development of the inclusion complex of β-cyclodextrin/AITC (β-CD/AITC) is a promising solution. Furthermore, the incorporation of β-CD/AITC complex into polylactic acid (PLA) films would be an attractive method to develop food antimicrobial materials. The aim of this study was to evaluate the enhancement in physicochemical properties, antimicrobial activities, and controlled release of β-CD/AITC from such films. The addition of β-CD/AITC significantly increased the flexibility and thermal stability of films. The Fourier transform infrared (FTIR) results revealed that the interactions between β-CD/AITC and PLA films occurred. The controlled release of AITC encapsulated in β-CD was significantly affected by relative humidity and temperature. The PLA films containing β-CD/AITC can be applied as an effective antimicrobial packing material for food and non-food applications. PMID:29053573
Yu, Shann S; Scherer, Randy L; Ortega, Ryan A; Bell, Charleson S; O'Neil, Conlin P; Hubbell, Jeffrey A; Giorgio, Todd D
2011-02-27
Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative environments, smart theranostic applications combining drug delivery with imaging of platform localization are within reach. The modular design of these USPIO nanoclusters enables future development of platforms for imaging and drug delivery targeted towards proteolytic activity in tumors and in advanced atherosclerotic plaques.
Pasqua, Luigi; Cundari, Sante; Ceresa, Cecilia; Cavaletti, Guido
2009-01-01
Mesoporous silica particles (MSP) are a new development in nanotechnology. Covalent modification of the surface of the silica is possible both on the internal pore and on the external particle surface. It allows the design of functional nanostructured materials with properties of organic, biological and inorganic components. Research and development are ongoing on the MSP, which have applications in catalysis, drug delivery and imaging. The most recent and interesting advancements in size, morphology control and surface functionalization of MSP have enhanced the biocompatibility of these materials with high surface areas and pore volumes. In the last 5 years several reports have demonstrated that MSP can be efficiently internalized using in vitro and animal models. The functionalization of MSP with organic moieties or other nanostructures brings controlled release and molecular recognition capabilities to these mesoporous materials for drug/gene delivery and sensing applications, respectively. Herein, we review recent research progress on the design of functional MSP materials with various mechanisms of targeting and controlled release.
Gnavi, S; di Blasio, L; Tonda-Turo, C; Mancardi, A; Primo, L; Ciardelli, G; Gambarotta, G; Geuna, S; Perroteau, I
2017-02-01
Hydrogels are promising materials in regenerative medicine applications, due to their hydrophilicity, biocompatibility and capacity to release drugs and growth factors in a controlled manner. In this study, biocompatible and biodegradable hydrogels based on blends of natural polymers were used in in vitro and ex vivo experiments as a tool for VEGF-controlled release to accelerate the nerve regeneration process. Among different candidates, the angiogenic factor VEGF was selected, since angiogenesis has been long recognized as an important and necessary step during tissue repair. Recent studies have pointed out that VEGF has a beneficial effect on motor neuron survival and Schwann cell vitality and proliferation. Moreover, VEGF administration can sustain and enhance the growth of regenerating peripheral nerve fibres. The hydrogel preparation process was optimized to allow functional incorporation of VEGF, while preventing its degradation and denaturation. VEGF release was quantified through ELISA assay, whereas released VEGF bioactivity was validated in human umbilical vein endothelial cells (HUVECs) and in a Schwann cell line (RT4-D6P2T) by assessing VEGFR-2 and downstream effectors Akt and Erk1/2 phosphorylation. Moreover, dorsal root ganglia explants cultured on VEGF-releasing hydrogels displayed increased neurite outgrowth, providing confirmation that released VEGF maintained its effect, as also confirmed in a tubulogenesis assay. In conclusion, a gelatin-based hydrogel system for bioactive VEGF delivery was developed and characterized for its applicability in neural tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Schroeder, Avi; Kost, Joseph; Barenholz, Yechezkel
2009-11-01
Ultrasound is used in many medical applications, such as imaging, blood flow analysis, dentistry, liposuction, tumor and fibroid ablation, and kidney stone disruption. In the past, low frequency ultrasound (LFUS) was the main method to downsize multilamellar (micron range) vesicles into small (nano scale) unilamellar vesicles. Recently, the ability of ultrasound to induce localized and controlled drug release from liposomes, utilizing thermal and/or mechanical effects, has been shown. This review, deals with the interaction of ultrasound with liposomes, focusing mainly on the mechanical mechanism of drug release from liposomes using LFUS. The effects of liposome lipid composition and physicochemical properties, on one hand, and of LFUS parameters, on the other, on liposomal drug release, are addressed. Acoustic cavitation, in which gas bubbles oscillate and collapse in the medium, thereby introducing intense mechanical strains, increases release substantially. We suggest that the mechanism of release may involve formation and collapse of small gas nuclei in the hydrophobic region of the lipid bilayer during exposure to LFUS, thereby inducing the formation of transient pores through which drugs are released. Introducing PEG-lipopolymers to the liposome bilayer enhances responsivity to LFUS, most likely due to absorption of ultrasonic energy by the highly hydrated PEG headgroups. The presence of amphiphiles, such as phospholipids with unsaturated acyl chains, which destabilize the lipid bilayer, also increases liposome susceptibility to LFUS. Application of these principles to design highly LFUS-responsive liposomes is discussed.
NASA Astrophysics Data System (ADS)
Yang, Miaosen; Gu, Lianghua; Yang, Bin; Wang, Li; Sun, Zhiyong; Zheng, Jiyong; Zhang, Jinwei; Hou, Jian; Lin, Cunguo
2017-12-01
This paper reports a novel method to prepare the antifouling composites with properties of self-adaptive controlled release (defined as control the release rate autonomously and adaptively according to the change of environmental conditions) by intercalation of sodium paeonolsilate (PAS) into MgAl and ZnAl layered double hydroxide (LDH) with the molar ratio (M2+/M3+) of 2:1 and 3:1, respectively. The powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) confirm the intercalation of PAS into the galleries of LDH. The controlled release behavior triggered by temperature for the PAS-LDH composites has been investigated, and the results show that the release rate of all PAS-LDH composites increases as the increase of temperature. However, the MgAl-PAS-LDH composites (Mg2Al-PAS-LDH and Mg3Al-PAS-LDH) exhibit the increased release rate of 0.21 ppm/°C from 15 to 30 °C in 3.5% NaCl solution, more than three times of the ZnAl-PAS-LDH composites (0.06 ppm/°C), owing to the confined microenvironment influenced by metal types in LDH layers. In addition, a possible diffusion-controlled process with surface diffusion, bulk diffusion and heterogeneous flat surface diffusion has been revealed via fitting four kinetic equations. Moreover, to verify the practical application of the PAS-LDH composites, a model coating denoted as Mg2Al-PAS-LDH coating was fabricated. The release result displays that the release rate increases or decreases as temperature altered at 15 and 25 °C alternately, indicating its self-adaptive controlled release behavior with temperature. Moreover, the superior resistance to the settlement of Ulva spores at 15 and 25 °C was observed for the Mg2Al-PAS-LDH coating, as a result of the controllable release of antifoulant. Therefore, this work provides a facile and effective method for the fabrication of antifouling composites with self-adaptive controlled release behavior in response to temperature, which can be used to prolong the lifetime of antifouling coatings.
Pillay, Viness; Tsai, Tong-Sheng; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Modi, Girish; Naidoo, Dinesh; Tomar, Lomas K; Tyagi, Charu; Ndesendo, Valence M K
2014-06-01
Electroactive polymers (EAPs) are promising candidate materials for the design of drug delivery technologies, especially in conditions where an "on-off" drug release mechanism is required. To achieve this, EAPs such as polyaniline, polypyrrole, polythiophene, ethylene vinyl acetate, and polyethylene may be blended into responsive hydrogels in conjunction with the desired drug to obtain a patient-controlled drug release system. The "on-off" drug release mechanism can be achieved through the environmental-responsive nature of the interpenetrating hydrogel-EAP complex via (i) charged ions initiated diffusion of drug molecules; (ii) conformational changes that occur during redox switching of EAPs; or (iii) electroerosion. These release mechanisms are not exhaustive and new release mechanisms are still under investigation. Therefore, this review seeks to provide a concise incursion and critical overview of EAPs and responsive hydrogels as a strategy for advanced drug delivery, for example, controlled release of neurotransmitters, sulfosalicyclic acid from cross-linked hydrogel, and vaccine delivery. The review further discusses techniques such as linear sweep voltammetry, cyclic voltammetry, impedance spectroscopy, and chronoamperometry for the determination of the redox capability of EAPs. The future implications of the hydrogel-EAP composites include, but not limited to, application toward biosensors, DNA hybridizations, microsurgical tools, and miniature bioreactors and may be utilized to their full potential in the form of injectable devices as nanorobots or nanobiosensors. Copyright © 2013 Wiley Periodicals, Inc.
Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.
Winters, Nancy; Granuke, Kyle; McCall, Melissa
2015-09-01
To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.
Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery
Gao, Weiwei; Zhang, Yue; Zhang, Qiangzhe; Zhang, Liangfang
2016-01-01
Nanoparticles have offered a unique set of properties for drug delivery including high drug loading capacity, combinatorial delivery, controlled and sustained drug release, prolonged stability and lifetime, and targeted delivery. To further enhance therapeutic index, especially for localized application, nanoparticles have been increasingly combined with hydrogels to form a hybrid biomaterial system for controlled drug delivery. Herein, we review recent progresses in engineering such nanoparticle-hydrogel hybrid system (namely ‘NP-gel’) with a particular focus on its application for localized drug delivery. Specifically, we highlight four research areas where NP-gel has shown great promises, including (1) passively controlled drug release, (2) stimuli-responsive drug delivery, (3) site-specific drug delivery, and (4) detoxification. Overall, integrating therapeutic nanoparticles with hydrogel technologies creates a unique and robust hybrid biomaterial system that enables effective localized drug delivery. PMID:26951462
2015-03-01
UNCLASSIFIED UNCLASSIFIED Biotechnology on the Battlefield: An Application of Agent-based Modelling for Emerging Technology Assessment...wounds might be treatable using advanced biotechnologies to control haemorrhaging and reduce blood-loss until medical evacuation can be completed. This...APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED Biotechnology on the Battlefield: An Application
Cellular automata model for drug release from binary matrix and reservoir polymeric devices.
Johannes Laaksonen, Timo; Mikael Laaksonen, Hannu; Tapio Hirvonen, Jouni; Murtomäki, Lasse
2009-04-01
Kinetics of drug release from polymeric tablets, inserts and implants is an important and widely studied area. Here we present a new and widely applicable cellular automata model for diffusion and erosion processes occurring during drug release from polymeric drug release devices. The model divides a 2D representation of the release device into an array of cells. Each cell contains information about the material, drug, polymer or solvent that the domain contains. Cells are then allowed to rearrange according to statistical rules designed to match realistic drug release. Diffusion is modeled by a random walk of mobile cells and kinetics of chemical or physical processes by probabilities of conversion from one state to another. This is according to the basis of diffusion coefficients and kinetic rate constants, which are on fundamental level just probabilities for certain occurrences. The model is applied to three kinds of devices with different release mechanisms: erodable matrices, diffusion through channels or pores and membrane controlled release. The dissolution curves obtained are compared to analytical models from literature and the validity of the model is considered. The model is shown to be compatible with all three release devices, highlighting easy adaptability of the model to virtually any release system and geometry. Further extension and applications of the model are envisioned.
Izadifar, Mohammad; Haddadi, Azita; Chen, Xiongbiao; Kelly, Michael E
2015-01-09
Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.
Controlled release from drug microparticles via solventless dry-polymer coating.
Capece, Maxx; Barrows, Jason; Davé, Rajesh N
2015-04-01
A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Code of Federal Regulations, 2012 CFR
2012-01-01
... executing. III. Design Control Measures shall be established to assure that applicable regulatory... control of design interfaces and for coordination among participating design organizations. These measures..., approval, release, distribution, and revision of documents involving design interfaces. The design control...
Code of Federal Regulations, 2013 CFR
2013-01-01
... executing. III. Design Control Measures shall be established to assure that applicable regulatory... control of design interfaces and for coordination among participating design organizations. These measures..., approval, release, distribution, and revision of documents involving design interfaces. The design control...
Benedict, Mark Q; Charlwood, J Derek; Harrington, Laura C; Lounibos, L Philip; Reisen, William K; Tabachnick, Walter J
2018-01-01
Experimental releases of mosquitoes are performed to understand characteristics of populations related to the biology, ability to transmit pathogens, and ultimately their control. In this article, we discuss considerations related to the safety of experimental releases of living mosquitoes, applying principles of good practice in vector biology that protect human health and comfort. We describe specific factors of experimental releases of mosquitoes that we believe are critical to inform institutional biosafety committees and similar review boards to which proposals to conduct mosquito release experiments have been submitted. In this study, "experimental releases" means those that do not significantly increase vector capacity or nuisance biting relative to the unperturbed natural baseline. This document specifically does not address releases of mosquitoes for ongoing control programs or trials of new control methods for which broader assessments of risk are required. It also does not address releases of transgenic or exotic (non-native) mosquito species, both of which require particular regulatory approval. Experimental releases may include females and males and evaluation must consider their effects based on the number released, their genotype and phenotype, the environment into which they are released, and postrelease collection activities. We consider whether increases of disease transmission and nuisance biting might result from proposed experimental releases against the backdrop of natural population size variation. We recommend that experimental releases be conducted in a manner that can be reasonably argued to have insignificant negative effects. Reviewers of proposals for experimental releases should expect applicants to provide such an argument based on evidence from similar studies and their planned activities. This document provides guidance for creating and evaluating such proposals.
Guha, Samit; Shaw, Scott K; Spence, Graeme T; Roland, Felicia M; Smith, Bradley D
2015-07-21
The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of (1)O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive (1)O2, leading to bleaching of the dye and also decomposition of coencapsulated payload such as the drug doxorubicin. Croc dye was especially useful as a photothermal agent for laser-controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water-soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications.
Ion-exchange and iontophoresis-controlled delivery of apomorphine.
Malinovskaja, Kristina; Laaksonen, Timo; Kontturi, Kyösti; Hirvonen, Jouni
2013-04-01
The objective of this study was to test a drug delivery system that combines iontophoresis and cation-exchange fibers as drug matrices for the controlled transdermal delivery of antiparkinsonian drug apomorphine. Positively charged apomorphine was bound to the ion-exchange groups of the cation-exchange fibers until it was released by mobile counter-ions in the external solution. The release of the drug was controlled by modifying either the fiber type or the ionic composition of the external solution. Due to high affinity of apomorphine toward the ion-exchanger, a clear reduction in the in vitro transdermal fluxes from the fibers was observed compared to the respective fluxes from apomorphine solutions. Changes in the ionic composition of the donor formulations affected both the release and iontophoretic flux of the drug. Upon the application of higher co-ion concentrations or co-ions of higher valence in the donor formulation, the release from the fibers was enhanced, but the iontophoretic steady-state flux was decreased. Overall, the present study has demonstrated a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of apomorphine. Copyright © 2012 Elsevier B.V. All rights reserved.
Guha, Samit; Shaw, Scott K.; Spence, Graeme T.; Roland, Felicia M.; Smith, Bradley D.
2015-01-01
The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer-hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of 1O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive 1O2 leading to bleaching of the dye and also decomposition of co-encapsulated payload such as the drug Doxorubicin. Croc dye was especially useful as a photothermal agent for laser controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326
Peles, Zachi; Binderman, Itzhak; Berdicevsky, Israela; Zilberman, Meital
2013-05-01
Use of naturally derived materials is becoming widespread in the biomedical field. Soy protein has advantages over the various types of natural proteins employed for biomedical applications, due to its low price, non-animal origin and relatively long storage time and stability. In the current study, soy protein isolate (SPI) was investigated as a matrix for wound-dressing applications. The antibiotic drug gentamicin was incorporated into the matrix for local controlled release and thus continuous bactericidal effect. Homogeneous high-quality films were cast from aqueous solutions and tested for the effects of gentamicin release on bacterial inhibition. The cytotoxicity and in vitro biocompatibility of these films were also examined. The gentamicin release profiles exhibited a moderate burst effect followed by a decreasing release rate, which was maintained for at least 4 weeks, thus enabling a suitable bacterial inhibition effect. The materials released from the films during an indirect cytotoxicity test were found to be safe, except for a slight inhibitory effect in the presence of high concentrations of glycerol. The biocompatibility test showed confluent cell cultures in close proximity to the SPI films. It is clear that these new antibiotic-eluting SPI films exhibit a high potential for use as wound dressings. Copyright © 2012 John Wiley & Sons, Ltd.
Abu-Awwad, Hosam Al-Deen M; Thiagarajan, Lalitha; Dixon, James E
2017-07-15
Controlled release systems for therapeutic molecules are vital to allow the sustained local delivery of their activities which direct cell behaviour and enable novel regenerative strategies. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor signalling but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding domains which promote cell targeting, and cell penetrating peptides (CPPs) which allow cell entry. Herein we demonstrate that GET system can be used in controlled release systems to mediate sustained intracellular transduction over one week. We assessed the stability and activity of GET peptides in poly(dl-lactic acid-co-glycolic acid) (PLGA) microparticles (MPs) prepared using a S/O/W double emulsion method. Efficient encapsulation (∼65%) and tailored protein release profiles could be achieved, however intracellular transduction was significantly inhibited post-release. To retain GET peptide activity we optimized a strategy of co-encapsulation of l-Histidine, which may form a complex with the PLGA degradation products under acidic conditions. Simulations of the polymer microclimate showed that hydrolytic acidic PLGA degradation products directly inhibited GET peptide transduction activity, and use of l-Histidine significantly enhanced released protein delivery. The ability to control the intracellular transduction of functional proteins into cells will facilitate new localized delivery methods and allow approaches to direct cellular behaviour for many regenerative medicine applications. The goal for regenerative medicine is to restore functional biological tissue by controlling and augmenting cellular behaviour. Either Transcription (TFs) or growth factors (GFs) can be presented to cells in spatio-temporal gradients for programming cell fate and gene expression. Here, we have created a sustained and controlled release system for GET (Glycosaminoglycan-enhanced transducing)-tagged proteins using S/O/W PLGA microparticle fabrication. We demonstrated that PLGA and its acidic degradants inhibit GET-mediated transduction, which can be overcome by using pH-activated l-Histidine. l-Histidine inhibits the electrostatic interaction of GET/PLGA and allows enhanced intracellular transduction. GET could provide a powerful tool to program cell behaviour either in gradients or with sustained delivery. We believe that our controlled release systems will allow application of GET for tissue regeneration directly by TF cellular programming. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Acid-Labile Acyclic Cucurbit[n]uril Molecular Containers for Controlled Release.
Mao, Dake; Liang, Yajun; Liu, Yamin; Zhou, Xianhao; Ma, Jiaqi; Jiang, Biao; Liu, Jia; Ma, Da
2017-10-02
Stimuli-responsive molecular containers are of great importance for controlled drug delivery and other biomedical applications. A new type of acid labile acyclic cucurbit[n]uril (CB[n]) molecular containers is presented that can degrade and release the encapsulated cargo at accelerated rates under mildly acidic conditions (pH 5.5-6.5). These containers retain the excellent recognition properties of CB[n]-type hosts. A cell culture study demonstrated that the cellular uptake of cargos could be fine-tuned by complexation with different containers. The release and cell uptake of cargo dye was promoted by acidic pH. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment.
Ding, Chendi; Tong, Ling; Feng, Jing; Fu, Jiajun
2016-12-20
Benefiting from the development of nanotechnology, drug delivery systems (DDSs) with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs), quantum dots (QDs) and carbon nanotubes (CNTs). The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules) and extrinsic (temperature, light irradiation, magnetic field and ultrasound) ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.
NASA Astrophysics Data System (ADS)
Jeong, Eun Sook; Kim, Jin Woong
2015-03-01
Hydrogel particles, also known as microgels, consist of cross-linked three-dimensional water-soluble polymer networks. They play an essential role in loading and delivering active ingredients in medicine, cosmetics, and foods. Despite their excellent biocompatibility as well as structural diversity, much wider applications are limited due mainly to their intrinsically loose network nature. This study introduces a practical and straightforward method that enables fabrication of hydrogel microparticles layered with a mechanically robust hybrid thin shell. Basically highly monodisperse hydrogel microparticles were produced in microcapillary devices. Then, their surface was coated with alternate polyelectrolyte layers through the layer-by-layer deposition. Finally a thin silica layer was again formed by reduction of silicate on the amino-functionalized polyelectrolyte layer. We have figured out that these hybrid hydrogel microparticles showed controlled loading and releasing behaviors for water-soluble probe molecules. Moreover, we have demonstrated that they can be applied for immobilization of biomacromolecules, such as bacteria and living cells, and even for targeted releasing.
Oil and drug control the release rate from lyotropic liquid crystals.
Martiel, Isabelle; Baumann, Nicole; Vallooran, Jijo J; Bergfreund, Jotam; Sagalowicz, Laurent; Mezzenga, Raffaele
2015-04-28
The control of the diffusion coefficient by the dimensionality d of the structure appears as a most promising lever to efficiently tune the release rate from lyotropic liquid crystalline (LLC) phases and dispersed particles towards sustained, controlled and targeted release. By using phosphatidylcholine (PC)- and monolinoleine (MLO)-based mesophases with various apolar structural modifiers and water-soluble drugs, we present a comprehensive study of the dimensional structural control of hydrophilic drug release, including 3-d bicontinuous cubic, 2-d lamellar, 1-d hexagonal and 0-d micellar cubic phases in excess water. We investigate how the surfactant, the oil properties and the drug hydrophilicity mitigate or even cancel the effect of structure variation on the drug release rate. Unexpectedly, the observed behavior cannot be fully explained by the thermodynamic partition of the drug into the lipid matrix, which points out to previously overlooked kinetic effects. We therefore interpret our results by discussing the mechanism of structural control of the diffusion rate in terms of drug permeation through the lipid membrane, which includes exchange kinetics. A wide range of implications follow regarding formulation and future developments, both for dispersed LLC delivery systems and topical applications in bulk phase. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Junwei; He, Zhaoshuai; Li, Biao; Cheng, Tanyu; Liu, Guohua
2017-04-01
Recently, the controlled drug delivery system has become a potential platform for biomedical application. Herein, we developed a pH and light-dual controlled cargo release system exhibiting AND logic based on MCM-41 mesoporous silica nanoparticles, which was surface modified using β-cyclodextrin (β-CD) with imine bond and azobenzene derivative. The complex of β-CD and azobenzene derivative effectively blocked the cargo delivery in pH=7.0 phosphate buffered saline (PBS) solution without 365nm UV light irradiation. The cargo was fully released when both factors of acidic environment (pH=5.0 PBS) and 365nm UV light irradiation were satisfied, meanwhile only very little cargo was delivered if one factor was satisfied. The result also demonstrates that the opening/closing of the gate and the release of the cargo in small portions can be controlled. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns.
Timilsena, Yakindra Prasad; Adhikari, Raju; Casey, Phil; Muster, Tim; Gill, Harsharn; Adhikari, Benu
2015-04-01
Fertilisers are one of the most important elements of modern agriculture. The application of fertilisers in agricultural practices has markedly increased the production of food, feed, fuel, fibre and other plant products. However, a significant portion of nutrients applied in the field is not taken up by plants and is lost through leaching, volatilisation, nitrification, or other means. Such a loss increases the cost of fertiliser and severely pollutes the environment. To alleviate these problems, enhanced efficiency fertilisers (EEFs) are produced and used in the form of controlled release fertilisers and nitrification/urease inhibitors. The application of biopolymers for coating in EEFs, tailoring the release pattern of nutrients to closely match the growth requirement of plants and development of realistic models to predict the release pattern of common nutrients have been the foci of fertiliser research. In this context, this paper intends to review relevant aspects of new developments in fertiliser production and use, agronomic, economic and environmental drives for enhanced efficiency fertilisers and their formulation process and the nutrient release behaviour. Application of biopolymers and complex coacervation technique for nutrient encapsulation is also explored as a promising technology to produce EEFs. © 2014 Society of Chemical Industry.
[Batch release of immunoglobulin and monoclonal antibody products].
Gross, S
2014-10-01
The Paul-Ehrlich Institute (PEI) is an independent institution of the Federal Republic of Germany responsible for performing official experimental batch testing of sera. The institute decides about the release of each batch and performs experimental research in the field. The experimental quality control ensures the potency of the product and also the absence of harmful impurities. For release of an immunoglobulin batch the marketing authorization holder has to submit the documentation of the manufacture and the results of quality control measures together with samples of the batch to the PEI. Experimental testing is performed according to the approved specifications regarding the efficacy and safety. Since implementation of the 15th German drug law amendment, the source of antibody is not defined anymore. According to § 32 German drug law, all batches of sera need to be released by an official control laboratory. Sera are medicinal products, which contain antibodies, antibody fragments or fusion proteins with a functional antibody portion. Therefore, all batches of monoclonal antibodies and derivatives must also be released by the PEI and the marketing authorization holder has to submit a batch release application. Under certain circumstances a waiver for certain products can be issued with regard to batch release. The conditions for such a waiver apply to the majority of monoclonal antibodies.
Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.
Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A
2004-02-11
Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.
Charlwood, J. Derek; Harrington, Laura C.; Lounibos, L. Philip; Reisen, William K.; Tabachnick, Walter J.
2018-01-01
Abstract Experimental releases of mosquitoes are performed to understand characteristics of populations related to the biology, ability to transmit pathogens, and ultimately their control. In this article, we discuss considerations related to the safety of experimental releases of living mosquitoes, applying principles of good practice in vector biology that protect human health and comfort. We describe specific factors of experimental releases of mosquitoes that we believe are critical to inform institutional biosafety committees and similar review boards to which proposals to conduct mosquito release experiments have been submitted. In this study, “experimental releases” means those that do not significantly increase vector capacity or nuisance biting relative to the unperturbed natural baseline. This document specifically does not address releases of mosquitoes for ongoing control programs or trials of new control methods for which broader assessments of risk are required. It also does not address releases of transgenic or exotic (non-native) mosquito species, both of which require particular regulatory approval. Experimental releases may include females and males and evaluation must consider their effects based on the number released, their genotype and phenotype, the environment into which they are released, and postrelease collection activities. We consider whether increases of disease transmission and nuisance biting might result from proposed experimental releases against the backdrop of natural population size variation. We recommend that experimental releases be conducted in a manner that can be reasonably argued to have insignificant negative effects. Reviewers of proposals for experimental releases should expect applicants to provide such an argument based on evidence from similar studies and their planned activities. This document provides guidance for creating and evaluating such proposals. PMID:29337660
Applications of Neural Networks to Adaptive Control
1989-12-01
DTIC ;-E py 00 NAVAL POSTGRADUATE SCHOOL Monterey, California I.$ RDTIC IELECTE fl THESIS BEG7V°U APPLICATIONS OF NEURAL NETWORKS TO ADAPTIVE CONTROL...MONITORING ORGANIZATION Naval Postgraduate School (10 applicable) Naval Postgraduate School 6< ADDRESS (C~tV Start, and ZIPCode) 7b ADDRESS(City. Stott...eshausted SICURIIY CLAS$SItATO’. -r’, T..i5 PAGE~ All oth~er edit,ons art obsolete U11C1ASS 11- I’ Approved for Public release; distribution unlimited
An oxygen slow-releasing material and its application in water remediation as oxygen supplier.
Zhou, Yanbo; Fang, Xingbin; Zhang, Zhiqing; Hu, Yonghua; Lu, Jun
2017-11-01
In this study, an oxygen slow-releasing material (OSRM) consisting of calcium peroxide (CaO 2 ), stearic acid (SA) and quartz sand was used to improve oxygen supply during bioremediation. The oxygen-releasing rates of CaO 2 powder and OSRM with different SA contents were investigated. The efficacy of OSRM as an oxygen supplier was assessed by water remediation experiments using activated sludge. Results showed that CaO 2 powder was effectively embedded by SA under anhydrous conditions. The oxygen-releasing rate decreased with increasing SA contents. Moreover, the OSRM exhibited higher oxygen-releasing capacity, and more effective pH control ability than CaO 2 powder. The water remediation experiments showed better removal of COD and [Formula: see text] with OSRM as the oxygen supplier. These results provided detailed information when CaO 2 was applied as the oxygen supplier in water remediation, which can serve as references for field application of bioremediation.
A novel method to obtain chitosan/DNA nanospheres and a study of their release properties
NASA Astrophysics Data System (ADS)
Masotti, Andrea; Bordi, Federico; Ortaggi, Giancarlo; Marino, Federica; Palocci, Cleofe
2008-02-01
Polysaccharides and other cationic polymers have recently been used in pharmaceutical research and industry for their properties to control the release of antibiotics, DNA, proteins, peptide drugs or vaccines, and they have also been extensively studied as non-viral DNA carriers for gene delivery and therapy. Among them, chitosan is the most used since it can promote long-term release of incorporated drugs. This work is focused on the preparation of chitosan and chitosan/DNA nanospheres by using a novel and simple osmosis-based method, recently patented. The morphology of chitosan/DNA particles is spherical (as observed by scanning electron microscopy, SEM) and the nanospheres' average diameter is 38 ± 4 nm (obtained by dynamic light scattering, DLS). With this method, DNA is incorporated with high yield (up to 30%) and the release process is gradual and prolonged in time. The novelty of the reported method resides in the general applicability to various synthetic or natural biopolymers. Solvent, temperature and membrane cut-off are the physicochemical parameters that one is able to use to control the overall osmotic process, leading to several nanostructured systems with different size and shape that may be used in several biotechnological applications.
Mailloux, Shay; Halámek, Jan; Katz, Evgeny
2014-03-07
A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.
DOE R&D Accomplishments Database
Teller, E.
1958-07-03
Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.
A porphyrin-based metal–organic framework as a pH-responsive drug carrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Wenxin; Hu, Quan; Jiang, Ke
A low cytotoxic porphyrin-based metal–organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)−2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without “burst effect”. The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery. - Graphical abstract: The porous crystals PCN-221 with pore openings (MOF) PCN-221 was prepared exhibiting low cytotoxicity. PCN-221 showed high drug Methotrexatemore » loading and controlled pH-responsive release of Methotrexate. - Highlights: • A porphyrin-based metal–organic framework (MOF) PCN-221 was prepared showing low cytotoxicity. • PCN-221 showed high drug Methotrexate loading. • PCN-221 showed controlled pH-responsive release of Methotrexate.« less
Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra
2017-01-01
Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.
Suarez Castellanos, Ivan; Jeremic, Aleksandar; Cohen, Joshua; Zderic, Vesna
2017-06-01
Type 2 diabetes mellitus is a complex metabolic disease that has reached epidemic proportions in the United States and around the world. This disease is characterized by loss of insulin secretion and, eventually, destruction of insulin-producing pancreatic beta cells. Controlling type 2 diabetes is often difficult as pharmacological management routinely requires complex therapy with multiple medications, and loses its effectiveness over time. The objective of this study was to explore the effectiveness of a novel, non-pharmacological approach that uses the application of ultrasound energy to augment insulin release from rat INS 832/13 beta cells. The cells were exposed to unfocused ultrasound for 5 min at a peak intensity of 1 W/cm 2 and frequencies of 400 kHz, 600 kHz, 800 kHz and 1 MHz. Insulin release was measured with enzyme-linked immunosorbent assay and cell viability was assessed via the trypan blue dye exclusion test. A marked release (approximately 150 ng/10 6 cells, p < 0.05) of insulin was observed when beta cells were exposed to ultrasound at 400 and 600 kHz as compared with their initial control values; however, this release was accompanied by a substantial loss in cell viability. Ultrasound application at frequencies of 800 kHz resulted in 24 ng/10 6 cells released insulin (p < 0.05) as compared with its unstimulated base level, while retaining cell viability. Insulin release from beta cells caused by application of 800-kHz ultrasound was comparable to that reported by the secretagogue glucose, thus operating within physiological secretory capacity of these cells. Ultrasound has potential as a novel and alternative method to current approaches aimed at correcting secretory deficiencies in patients with type 2 diabetes. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Multifunctional ferromagnetic disks for modulating cell function
Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.
2013-01-01
In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging. PMID:23766544
Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles
NASA Astrophysics Data System (ADS)
Rodzinski, Alexandra; Guduru, Rakesh; Liang, Ping; Hadjikhani, Ali; Stewart, Tiffanie; Stimphil, Emmanuel; Runowicz, Carolyn; Cote, Richard; Altman, Norman; Datar, Ram; Khizroev, Sakhrat
2016-02-01
It is a challenge to eradicate tumor cells while sparing normal cells. We used magnetoelectric nanoparticles (MENs) to control drug delivery and release. The physics is due to electric-field interactions (i) between MENs and a drug and (ii) between drug-loaded MENs and cells. MENs distinguish cancer cells from normal cells through the membrane’s electric properties; cancer cells have a significantly smaller threshold field to induce electroporation. In vitro and in vivo studies (nude mice with SKOV-3 xenografts) showed that (i) drug (paclitaxel (PTX)) could be attached to MENs (30-nm CoFe2O4@BaTiO3 nanostructures) through surface functionalization to avoid its premature release, (ii) drug-loaded MENs could be delivered into cancer cells via application of a d.c. field (~100 Oe), and (iii) the drug could be released off MENs on demand via application of an a.c. field (~50 Oe, 100 Hz). The cell lysate content was measured with scanning probe microscopy and spectrophotometry. MENs and control ferromagnetic and polymer nanoparticles conjugated with HER2-neu antibodies, all loaded with PTX were weekly administrated intravenously. Only the mice treated with PTX-loaded MENs (15/200 μg) in a field for three months were completely cured, as confirmed through infrared imaging and post-euthanasia histology studies via energy-dispersive spectroscopy and immunohistochemistry.
De Mattia, Fabrizio; Chapsal, Jean-Michel; Descamps, Johan; Halder, Marlies; Jarrett, Nicholas; Kross, Imke; Mortiaux, Frederic; Ponsar, Cecile; Redhead, Keith; McKelvie, Jo; Hendriksen, Coenraad
2011-01-01
Current batch release testing of established vaccines emphasizes quality control of the final product and is often characterized by extensive use of animals. This report summarises the discussions of a joint ECVAM/EPAA workshop on the applicability of the consistency approach for routine release of human and veterinary vaccines and its potential to reduce animal use. The consistency approach is based upon thorough characterization of the vaccine during development and the principle that the quality of subsequent batches is the consequence of the strict application of a quality system and of a consistent production of batches. The concept of consistency of production is state-of-the-art for new-generation vaccines, where batch release is mainly based on non-animal methods. There is now the opportunity to introduce the approach into established vaccine production, where it has the potential to replace in vivo tests with non-animal tests designed to demonstrate batch quality while maintaining the highest quality standards. The report indicates how this approach may be further developed for application to established human and veterinary vaccines and emphasizes the continuing need for co-ordination and harmonization. It also gives recommendations for work to be undertaken in order to encourage acceptance and implementation of the consistency approach. Copyright © 2011. Published by Elsevier Ltd.. All rights reserved.
Koralegedara, N H; Al-Abed, S R; Arambewela, M K J; Dionysiou, D D
2017-02-15
The interest in using Flue Gas Desulfurization Gypsum (FGDG) for land applications has increased recently. This study evaluates the leaching characteristics of trace elements in "modern" FGDG (produced after fly ash removal) and FGDG-mixed soil (SF) under different environmental conditions using recently approved EPA leaching methods (1313-1316). These methods employ various pH and liquid-solid (LS) ratios under batch leaching, column percolation and diffusion controlled release scenarios. Toxicity Characteristic Leaching Protocol (TCLP) and Synthetic Precipitation Leaching Protocol (SPLP) were used for comparison. The data obtained from new EPA methods provide broad insight into constituent release from FGDG and SF when compared to TCLP and SPLP. The release of toxic elements such as Hg, As, Pb, Co, Cd and Cr from SF was negligible. High release of B from FGDG was observed under all tested conditions; however, its release from SF was low. Both FGDG and SF released Se under all pH conditions (2-13) and LS ratios (1-10) in low concentrations (0.02-0.2mg/L). The data from this study could be used to investigate potential use of "modern" FGDG for new beneficial land applications. Published by Elsevier B.V.
Koutsopoulos, Sotirios; Unsworth, Larry D.; Nagai, Yusuke; Zhang, Shuguang
2009-01-01
The release kinetics for a variety of proteins of a wide range of molecular mass, hydrodynamic radii, and isoelectric points through a nanofiber hydrogel scaffold consisting of designer self-assembling peptides were studied by using single-molecule fluorescence correlation spectroscopy (FCS). In contrast to classical diffusion experiments, the single-molecule approach allowed for the direct determination of diffusion coefficients for lysozyme, trypsin inhibitor, BSA, and IgG both inside the hydrogel and after being released into the solution. The results of the FCS analyses and the calculated pristine in-gel diffusion coefficients were compared with the values obtained from the Stokes–Einstein equation, Fickian diffusion models, and the literature. The release kinetics suggested that protein diffusion through nanofiber hydrogels depended primarily on the size of the protein. Protein diffusivities decreased, with increasing hydrogel nanofiber density providing a means of controlling the release kinetics. Secondary and tertiary structure analyses and biological assays of the released proteins showed that encapsulation and release did not affect the protein conformation and functionality. Our results show that this biocompatible and injectable designer self-assembling peptide hydrogel system may be useful as a carrier for therapeutic proteins for sustained release applications. PMID:19273853
Controlled release behaviors of chitosan/α, β-glycerophosphate thermo-sensitive hydrogels
NASA Astrophysics Data System (ADS)
Liu, Wei-Fang; Kang, Chuan-Zhen; Kong, Ming; Li, Yang; Su, Jing; Yi, An; Cheng, Xiao-Jie; Chen, Xi-Guang
2012-09-01
Chitosan/α, β-glycerophosphate (CS/α, β-GP) thermo-sensitive hydrogels presented flowable solution state at low temperature and semisolid hydrogel when the ambient temperature increased. In this research, different concentrations of metronidazole encapsulated, CS and α, β-GP, as well as different acid solvents, were chosen to evaluate their influences on the drug release behaviors from CS/α, β-GP hydrogels. It was found that there was a sustaining release during the first 3 h followed by a plateau. SEM images showed that drugs were located both on the surface and in the interior of hydrogels. The optimal preparation conditions of this hydrogel for drug release were as follows: 1.8% (w/v) CS in HAc solvent, 5.6% (w/v) α, β-GP and 5 g/L metronidazole encapsulation. Cytotoxicity evaluation found no toxic effect. In order to control the release rate, 2.5 g/L chitosan microspheres with spherical shape and smooth surface were incorporated, and it was found that the initial release process was alleviated, while drug concentration had no obvious effect on the release rate. It could be concluded that the metronidzole release behaviors could be optimized according to practical applications.
Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.
Deodhar, Gauri V; Adams, Marisa L; Trewyn, Brian G
2017-01-01
Protein therapeutics are promising candidates for disease treatment due to their high specificity and minimal adverse side effects; however, targeted protein delivery to specific sites has proven challenging. Mesoporous silica nanoparticles (MSN) have demonstrated to be ideal candidates for this application, given their high loading capacity, biocompatibility, and ability to protect host molecules from degradation. These materials exhibit tunable pore sizes, shapes and volumes, and surfaces which can be easily functionalized. This serves to control the movement of molecules in and out of the pores, thus entrapping guest molecules until a specific stimulus triggers release. In this review, we will cover the benefits of using MSN as protein therapeutic carriers, demonstrating that there is great diversity in the ways MSN can be used to service proteins. Methods for controlling the physical dimensions of pores via synthetic conditions, applications of therapeutic protein loaded MSN materials in cancer therapies, delivering protein loaded MSN materials to plant cells using biolistic methods, and common stimuli-responsive functionalities will be discussed. New and exciting strategies for controlled release and manipulation of proteins are also covered in this review. While research in this area has advanced substantially, we conclude this review with future challenges to be tackled by the scientific community. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
... the confidentiality of borrower information. The system of internal controls, at a minimum, must... and maintain an effective system of internal controls over the data included in the report of accounts... system of internal controls, at a minimum, must comply with the requirements of applicable Farm Credit...
USDA-ARS?s Scientific Manuscript database
Biological disease control of soil-borne plant diseases has traditionally employed the biopesticide approach whereby single strains or strain mixtures are introduced into production systems through inundative/inoculative release. The approach has significant barriers that have long been recognized,...
NASA Astrophysics Data System (ADS)
Moncion, Alexander
Administration of exogenous growth factors (GFs) is a proposed method of stimulating tissue regeneration. Conventional administration routes, such as at-site or systemic injections, have yielded problems with efficacy and/or safety, thus hindering the translation of GF-based regenerative techniques. Hydrogel scaffolds are commonly used as biocompatible delivery vehicles for GFs. Yet hydrogels do not afford spatial or temporal control of GF release - two critical parameters for tissue regeneration. Controlled delivery of GFs is critical for angiogenesis, which is a crucial process in tissue engineering that provides oxygen and nutrients to cells within an implanted hydrogel scaffold. Angiogenesis requires multiple GFs that are presented with distinct spatial and temporal profiles. Thus, controlled release of GFs with spatiotemporal modulation would significantly improve tissue regeneration by recapitulating endogenous GF presentation. In order to achieve this goal, we have developed acoustically-responsive scaffolds (ARSs), which are fibrin hydrogels doped with sonosensitive perfluorocarbon (PFC) emulsions capable of encapsulating various payloads. Focused, mega-Hertz range, ultrasound (US) can modulate the release of a payload non-invasively and in an on-demand manner from ARSs via physical mechanisms termed acoustic droplet vaporization (ADV) and inertial cavitation (IC). This work presents the relationship between the ADV/IC thresholds and various US and hydrogel parameters. These physical mechanisms were used for the controlled release of fluorescent dextran in vitro and in vivo to determine the ARS and US parameters that yielded optimal payload release. The optimal ARS and US parameters were used to demonstrate the controlled release of basic fibroblast growth factor from an in vivo subcutaneous implant model - leading to enhanced angiogenesis and perfusion. Additionally, different acoustic parameters and PFCs were tested and optimized to demonstrate the controlled release of two encapsulated payloads within an ARS. Overall, ARSs are a promising platform for GF delivery in tissue regeneration applications.
Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.
Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S
2014-07-01
This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.
Dib, H; Jamont, M; Sauphanor, B; Capowiez, Y
2016-04-01
Augmentative biological control is not commonly used in commercial orchards. We used an exclusion system to evaluate the potential of early-season releases of the European earwig (Forficula auricularia L., Dermaptera: Forficulidae) for control of the rosy apple aphid (Dysaphis plantaginea Passerini, Hemiptera: Aphididae) in the spring of 2009 in two pesticide-free apple orchards. In order to conduct this experiment we successfully reared earwigs with a high survival rate of nymphs (more than 96%) which may have commercial application. There were three treatments in the study: (i) a 'release treatment' where we confined the released earwigs in the canopy by using a barrier system; (ii) an 'exclusion treatment' where we blocked free access of earwigs into the canopy using the same barrier system; and (iii) a 'control treatment' that represented the natural situation. Contrary to expectations, earwig releases did not reduce D. plantaginea populations. In general, the abundance of natural enemies and their groups did not differ significantly among treatments, except for earwigs. We observed that the exclusion systems we used successfully kept both earwigs and ants away from tree canopies; total numbers on trees in the 'exclusion treatment' were significantly lower than on the other two treatments. Due to the complexity and difficulty of evaluating augmentative releases of natural enemies in open orchard conditions, we conclude that new technical approaches to control site conditions are needed when conducting such studies.
Intra, Janjira; Glasgow, Justin M; Mai, Hoang Q; Salem, Aliasger K
2008-05-08
We demonstrate, for the first time, a robust novel polydimethylsiloxane (PDMS) chip that can provide controlled pulsatile release of DNA based molecules, proteins and oligonucleotides without external stimuli or triggers. The PDMS chip with arrays of wells was constructed by replica molding. Poly(lactic acid-co-glycolic acid) (PLGA) polymer films of varying composition and thickness were used as seals to the wells. The composition, molecular weight and thickness of the PLGA films were all parameters used to control the degradation rate of the seals and therefore the release profiles. Degradation of the films followed the PLGA composition order of 50:50 PLGA>75:25 PLGA>85:15 PLGA at all time-points beyond week 1. Scanning electron microscopy images showed that films were initially smooth, became porous and ruptured as the osmotic pressure pushed the degrading PLGA film outwards. Pulsatile release of DNA was controlled by the composition and thickness of the PLGA used to seal the well. Transfection experiments in a model Human Embryonic Kidney 293 (HEK293) cell line showed that plasmid DNA loaded in the wells was functional after pulsatile release in comparison to control plasmid DNA at all time-points. Thicker films degraded faster than thinner films and could be used to fine-tune the release of DNA over day length periods. Finally the PDMS chip was shown to provide repeated sequential release of CpG oligonucleotides and a model antigen, Ovalbumin (OVA), indicating significant potential for this device for vaccinations or applications that require defined complex release patterns of a variety of chemicals, drugs and biomolecules.
Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya
2017-08-01
Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network, therefore, providing a longer therapeutic effect. Our strategy demonstrates the efficacy of using NDs as an essential component for the design of a novel injectable nanocomposite system with improved release capabilities. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
75 FR 77922 - Nuveen Asset Management, et al.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... SECURITIES AND EXCHANGE COMMISSION [Investment Company Act Release No. 29522; File No. 812-13839] Nuveen Asset Management, et al.; Notice of Application December 8, 2010. AGENCY: Securities and Exchange... company's voting stock to be owned by investment companies and companies controlled by them. 2. Section 12...
Manipulation of insect behavior with Specialized Pheromone & Lure Application Technology (SPLAT®)
Agenor Mafra-Neto; Frédérique M. de Lame; Christopher J. Fettig; A. Steven Munson; Thomas M. Perring; Lukasz L. Stelinski; Lyndsie Stoltman; Leandro E.J. Mafra; Rafael Borges; Roger I. Vargas
2013-01-01
SPLAT® (Specialized Pheromone and Lure Application Technology) emulsion is a unique controlled-release technology that can be adapted to dispense and protect a wide variety of compounds from degradation, including semiochemicals, pesticides, and phagostimulants, in diverse environments. ISCA Technologies, Inc., in collaboration with colleagues in academia, government,...
A simultaneous spin/eject mechanism for aerospace payloads
NASA Technical Reports Server (NTRS)
Palmer, G. D.; Banks, T. N.
1976-01-01
A simultaneous spin/eject mechanism was developed for aerospace applications requiring a compact, passive device which would accommodate payload support and controlled-release functions, and which would provide a highly accurate spin-ejection motion to the payload. The mechanism satisfied the requirements and is adaptable to other deployment applications.
Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics
Pang, Bo; Yang, Xuan; Xia, Younan
2016-01-01
Gold nanocages are hollow nanostructures with ultrathin, porous walls. They are bio-inert and their surface can be readily modified with functional groups to specifically interact with the biological system of interest. They have remarkable optical properties, including localized surface plasmon resonance peaks tunable to the near-infrared region, strong absorption and scattering, as well as two- and three-photon luminescence. With the establishment of robust protocols for both synthesis and surface functionalization, Au nanocages have been extensively explored for various biomedical applications. In this review, we begin with a brief account of the synthesis and properties of Au nanocages, and then highlight some of the recent developments in applying them to an array of biomedical applications related to optical imaging, controlled release and cancer theranostics. PMID:27348546
Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites
NASA Astrophysics Data System (ADS)
Xiong, J.; Ghori, M. Z.; Henkel, B.; Strunskus, T.; Schürmann, U.; Deng, M.; Kienle, L.; Faupel, F.
2017-07-01
Silver/titania nanocomposites with strong bactericidal effects and good biocompatibility/environmental safety show a high potential for antibacterial applications. Tailoring the silver ion release is thus highly promising to optimize the antibacterial properties of such coatings and to preserve biocompatibility. Reactive sputtering is a fast and versatile method for the preparation of such Ag/TiOx nanocomposites coatings. The present work is concerned with the influence of sputter parameters on the surface morphology and silver ion release properties of reactively sputtered Ag/TiOx nanocomposites coatings showing a silver nanoparticle size distribution in the range from 1 to 20 nm. It is shown that the silver ion release rate strongly depends on the total pressure: the coatings prepared at lower pressure present a lower but long-lasting release behavior. The much denser structure produced under these conditions reduces the transport of water molecules into the coating. In addition, the influence of microstructure and thickness of titanium oxide barriers on the silver ion release were investigated intensively. Moreover, for the coatings prepared at high total pressure, it was demonstrated that stable and long-lasting silver release can be achieved by depositing a barrier with a high rate. Nanocomposites produced under these conditions show well controllable silver ion release properties for applications as antibacterial coatings.
Spray-dried nanofibrillar cellulose microparticles for sustained drug release.
Kolakovic, Ruzica; Laaksonen, Timo; Peltonen, Leena; Laukkanen, Antti; Hirvonen, Jouni
2012-07-01
Nanofibrillar cellulose (also referred to as cellulose nanofibers, nanocellulose, microfibrillated or nanofibrillated cellulose) has gained a lot of attention in recent years in different research areas including biomedical applications. In this study we have evaluated the applicability of nanofibrillar cellulose (NFC) as a material for the formation of matrix systems for sustained drug delivery. For that purpose, drug loaded NFC microparticles were produced by a spray drying method. The microparticles were characterized in terms of size and morphology, total drug loading, and physical state of the encapsulated drug. Drug release from the microparticles was assessed by dissolution tests, and suitable mathematical models were used to explain the drug releasing kinetics. The particles had spherical shapes with diameters of around 5 μm; the encapsulated drug was mainly in amorphous form. The controlled drug release was achieved. The drug releasing curves were fitted to a mathematical model describing the drug releasing kinetics from a spherical matrix. Different drugs had different release kinetics, which was a consequence of several factors, including different solubilities of the drugs in the chosen medium and different affinities of the drugs to the NFC. It can be concluded that NFC microparticles can sustain drug release by forming a tight fiber network and thus limit drug diffusion from the system. Copyright © 2012 Elsevier B.V. All rights reserved.
Alhusein, Nour; Blagbrough, Ian S; De Bank, Paul A
2012-12-01
We report the controlled release of tetracycline (Tet) HCl from a three-layered electrospun matrix for the first time. Five formulations of electrospun poly-ε-caprolactone (PCL) and poly(ethylene-co-vinyl acetate) (PEVA) have been designed, prepared as micro/nanofibre layers, and assayed for the controlled release of the clinically useful antibiotic Tet HCl with potential applications in wound healing and especially in complicated skin and skin-structure infections. Tet HCl was also chosen as a model drug possessing a good ultraviolet (UV) chromophore and capable of fluorescence together with limited stability. Tet HCl was successfully incorporated (essentially quantitatively at 3 %, w/w) and provided controlled release from multilayered electrospun matrices. The Tet HCl release test was carried out by a total immersion method on 2 × 2 cm(2) electrospun fibrous mats in Tris or phosphate-buffered saline heated to 37 °C. The formulation PCL/PEVA/PCL with Tet HCl in each layer gave a large initial (burst) release followed by a sustained release. Adding a third layer to the two-layered formulations led to release being sustained from 6 days to more than 15 days. There was no detectable loss of Tet chemical stability (as shown by UV and NMR) or bioactivity (as shown by a modified Kirby-Bauer disc assay). Using Tet HCl-sensitive bacteria, Staphylococcus aureus (ATCC 25923), the Tet HCl-loaded three-layered matrix formulations were still showing significantly higher antibacterial effects on days 4 and 5 than commercially available Antimicrobial Susceptibility Test Discs of Tet HCl. Electrospinning provides good encapsulation efficiency of Tet HCl within PCL/PEVA/PCL polymers in micro/nanofibre layers which display sustained antibiotic release.
Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim
2017-10-01
A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.
Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases
NASA Astrophysics Data System (ADS)
Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.
We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.
Dasgupta, Queeny; Movva, Sahitya; Chatterjee, Kaushik; Madras, Giridhar
2017-08-07
This work reports the synthesis of a novel, aspirin-loaded, linear poly (anhydride ester) and provides mechanistic insights into the release of aspirin from this polymer for anti-inflammatory activity. As compared to conventional drug delivery systems that rely on diffusion based release, incorporation of bioactives in the polymer backbone is challenging and high loading is difficult to achieve. In the present study, we exploit the pentafunctional sugar alcohol (xylitol) to provide sites for drug (aspirin) attachment at its non-terminal OH groups. The terminal OH groups are polymerized with a diacid anhydride. The hydrolysis of the anhydride and ester bonds under physiological conditions release aspirin from the matrix. The resulting poly(anhydride ester) has high drug loading (53%) and displays controlled release kinetics of aspirin. The polymer releases 8.5 % and 20%, of the loaded drug in one and four weeks, respectively and has a release rate constant of 0.0035h -0.61 . The release rate is suitable for its use as an anti-inflammatory agent without being cytotoxic. The polymer exhibits good cytocompatibility and anti-inflammatory properties and may find applications as injectable or as an implantable bioactive material. The physical insights into the release mechanism can provide development of other drug loaded polymers. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yazhou; Zhang, Yiqiong; Wang, Bochu; Cao, Yang; Yu, Qingsong; Yin, Tieying
2013-06-01
The study aimed at constructing a novel drug delivery system for programmable multiple drug release controlled with core-shell structure. The core-shell structure consisted of chitosan nanoparticles as core and polyvinylpyrrolidone micro/nanocoating as shell to form core-shell micro/nanoparticles, which was fabricated by ionic gelation and emulsion electrospray methods. As model drug agents, Naproxen and rhodamine B were encapsulated in the core and shell regions, respectively. The core-shell micro/nanoparticles thus fabricated were characterized and confirmed by scanning electron microscope, transmission electron microscope, and fluorescence optical microscope. The core-shell micro/nanoparticles showed good release controllability through drug release experiment in vitro. It was noted that a programmable release pattern for dual drug agents was also achieved by adjusting their loading regions in the core-shell structures. The results indicate that emulsion electrospraying technology is a promising approach in fabrication of core-shell micro/nanoparticles for programmable dual drug release. Such a novel multi-drug delivery system has a potential application for the clinical treatment of cancer, tuberculosis, and tissue engineering.
Perez, Jonas J; Francois, Nora J
2016-09-05
The present study examines the agrochemical application of macrospheres prepared with chitosan and chitosan-starch blends by an easy dripping technique, using a sodium tripolyphosphate aqueous solution as the crosslinking agent. These biopolymers form hydrogels that could be a viable alternative method to obtain controlled-release fertilizers (CRFs). Three different concentrations (ranging from 20 to 100wt/wt% of chitosan) and two crosslinking times (2 or 4h) were used. The resulting polymeric matrices were examined by scanning electron microscopy coupled with energy dispersive X-ray, X-ray diffraction, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance, thermogravimetric analysis and differential scanning calorimetry. Ionotropic gelation and neutralization induced the formation of the macrospheres. The crosslinking time and the composition of the polymeric hydrogel controlled the crosslinking degree, the swelling behavior and the fertilizer loading capability. Potassium nitrate-loaded beads were shown to be useful as a controlled-release fertilizer. After 14days of continuous release into distilled water, the cumulative concentration in the release medium reached between 70 and 93% of the initially loaded salt, depending on the matrix used. The prepared beads showed properties that make them suitable for use in the agrochemical industry as CRFs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anti-biofilm effect of a butenolide/polymer coating and metatranscriptomic analyses.
Ding, Wei; Ma, Chunfeng; Zhang, Weipeng; Chiang, Hoyin; Tam, Chunkit; Xu, Ying; Zhang, Guangzhao; Qian, Pei-Yuan
2018-01-01
Butenolide is an environmentally friendly antifouling natural product, but its efficiency and mechanism in preventing biofilm formation have not been examined. Furthermore, controlling the release of butenolide from paints into seawater is technically challenging. A coating was developed by mixing butenolide with a biodegradable polymer, poly (ε-caprolactone)-based polyurethane, and a one-month in situ anti-biofilm test was conducted in a subtidal area. The constant release of butenolide from the surface suggested that its release was well controlled. Direct observation and confocal microscope investigation indicated that the coating was effective against both biofilm formation and attachment of large fouling organisms. Metatranscriptomic analysis of biofilm samples implied that the coating selectively inhibited the adhesion of microbes from a variety of phyla and targeted particular functional pathways including energy metabolism, drug transport and toxin release. These integrated analyses demonstrated the potential application of this butenolide/polymer coating as an anti-biofilm material.
FY17Q4 Ristra project: Release Version 1.0 of a production toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hungerford, Aimee L.; Daniel, David John
2017-09-21
The Next Generation Code project will release Version 1.0 of a production toolkit for multi-physics application development on advanced architectures. Features of this toolkit will include remap and link utilities, control and state manager, setup, visualization and I/O, as well as support for a variety of mesh and particle data representations. Numerical physics packages that operate atop this foundational toolkit will be employed in a multi-physics demonstration problem and released to the community along with results from the demonstration.
Industrial application of low voltage bidirectional automatic release of reserve
NASA Astrophysics Data System (ADS)
Popa, G. N.; Diniş, C. M.; Iagăr, A.; Deaconu, S. I.; Popa, I.
2018-01-01
The paper presents an analysis on low voltage industrial electrical installation controlled by bidirectional automatic release of reserve. Industrial electrical installation is for removing smoke in case of fire from a textile company. The main parts of the installation of removing smoke in case of fire are: general electrical panel; reserve electrical panel; three-phase induction motors for driven fans; electrical actuators for inlet and outlet valves; clean air inlet pipe, respectively, the outlet pipe for smoke. The operation and checking of bidirectional automatic release of reserve are present in the paper.
Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites.
Gupta, Rashmi; Bajpai, A K
2011-01-01
Tailored with superparamagnetic properties the magnetic nanocomposites have been thoroughly investigated in recent past because of their potential applications in the fields of biomedicine and bioengineering such as protein detection, magnetic targeted drug carriers, bioseparation, magnetic resonance imaging contrast agents and hyperthermia. Magnetic drug targeting has come up as a safe and effective drug-delivery technology, i.e., with the least amount of magnetic particles a maximum of drug may be easily administered and transported to the site of choice. In the present work novel magnetic drug-targeting carriers consisting of magnetic nanoparticles encapsulated within a smart polymer matrix with potential of controlled drug release is described. To make such magnetic polymeric drug-delivery systems, both the magnetic nanoparticles and antibiotic drug (ciprofloxacin) were incorporated into the hydrogel. The controlled release process and release profiles were investigated as a function of experimental protocols such as percent loading of drug, chemical composition of the nanocomposite, pH of release media and strength of magnetic field on the release profiles. The structure, morphology and compositions of magnetic hydrogel nanocomposites were characterized by FT-IR, TEM, XRD and VSM techniques. It was found that magnetic nanocomposites were biocompatible and superparamagnetic in nature and could be used as a smart drug carrier for controlled and targeted drug delivery.
Mackay, Sean M.; Wui Tan, Eng
2016-01-01
External control over rapid and precise release of chemicals in the brain potentially provides a powerful interface with neural activity. Optical manipulation techniques, such as optogenetics and caged compounds, enable remote control of neural activity and behavior with fine spatiotemporal resolution. However, these methods are limited to chemicals that are naturally present in the brain or chemically suitable for caging. Here, we demonstrate the ability to interface with neural functioning via a wide range of neurochemicals released by stimulating loaded liposomal nanostructures with femtosecond lasers. Using a commercial two-photon microscope, we released inhibitory or excitatory neurochemicals to evoke subthreshold and suprathreshold changes in membrane potential in a live mouse brain slice. The responses were repeatable and could be controlled by adjusting laser stimulation characteristics. We also demonstrate the release of a wider range of chemicals—which previously were impossible to release by optogenetics or uncaging—including synthetic analogs of naturally occurring neurochemicals. In particular, we demonstrate the release of a synthetic receptor-specific agonist that exerts physiological effects on long-term synaptic plasticity. Further, we show that the loaded liposomal nanostructures remain functional for weeks in a live mouse. In conclusion, we demonstrate new techniques capable of interfacing with live neurons, and extendable to in vivo applications. PMID:27896311
Polymer-xerogel composites for controlled release wound dressings.
Costache, Marius C; Qu, Haibo; Ducheyne, Paul; Devore, David I
2010-08-01
Many polymers and composites have been used to prepare active wound dressings. These materials have typically exhibited potentially toxic burst release of the drugs within the first few hours followed by a much slower, potentially ineffective drug release rate thereafter. Many of these materials also degraded to produce inflammatory and cytotoxic products. To overcome these limitations, composite active wound dressings were prepared here from two fully biodegradable and tissue compatible components, silicon oxide sol-gel (xerogel) microparticles that were embedded in tyrosine-poly(ethylene glycol)-derived poly(ether carbonate) copolymer matrices. Sustained, controlled release of drugs from these composites was demonstrated in vitro using bupivacaine and mepivacaine, two water-soluble local anesthetics commonly used in clinical applications. By systematically varying independent compositional parameters of the composites, including the hydrophilic:hydrophobic balance of the tyrosine-derived monomers and poly(ethylene glycol) in the copolymers and the porosity, weight ratio and drug content of the xerogels, drug release kinetics approaching zero-order were obtained. Composites with xerogel mass fractions up to 75% and drug payloads as high as 13% by weight in the final material were fabricated without compromising the physical integrity or the controlled release kinetics. The copolymer-xerogel composites thus provided a unique solution for the sustained delivery of therapeutic agents from tissue compatible wound dressings. 2010 Elsevier Ltd. All rights reserved.
Wang, Lexi; Wang, Aiping; Zhao, Xiaolei; Liu, Ximing; Wang, Dan; Sun, Fengying; Li, Youxin
2012-05-10
Two kinds of in situ forming implants (ISFIs) of atypical antipsychotics, risperidone and its 9-hydroxy active metabolite, paliperidone, using poly(lactide-co-glycolide)(PLGA) as carrier, were investigated. Significant difference was observed in the solution-gel transition mechanism of the two systems: homogeneous system of N-methyl-2-pyrrolidone (NMP) ISFI, in which drug was dissolved, and heterogeneous system of dimethyl sulfoxide (DMSO) ISFI, in which drug was dispersed. Fast solvent extractions were found in both systems, but in comparison with the high drug release rate from homogeneous system of drug/polymer/NMP, a fast solvent extraction from the heterogeneous system of drug/polymer/DMSO was not accompanied by a high drug release rate but a rapid solidification of the implant, which resulted in a high drug retention, well-controlled initial burst and slow release of the drug. In vivo study on beagle dogs showed a more than 3-week sustained release with limited initial burst. Pharmacologic evaluation on optimized paliperidone ISFIs presented a sustained-suppressing effect from 1 day to 38 day on the MK-801 induced schizophrenic behavior mice model. A long sustained-release antipsychotic ISFI of 50% drug loading and controlled burst release was achieved, which indicated a good potential in clinic application. Copyright © 2012 Elsevier B.V. All rights reserved.
Han, Daewoo; Steckl, Andrew J
2017-12-13
Core-sheath fibers using different Eudragit materials were successfully produced, and their controlled multi-pH responses have been demonstrated. Core-sheath fibers made of Eudragit L 100 (EL100) core and Eudragit S 100 (ES100) sheath provide protection and/or controlled release of core material at pH 6 by adjusting the sheath thickness (controlled by the flow rate of source polymer solution). The thickest sheath (∼250 nm) provides the least core release ∼1.25%/h, while the thinnest sheath (∼140 nm) provides much quicker release ∼16.75%/h. Furthermore, switching core and sheath material dramatically altered the pH response. Core-sheath fibers made of ES100 core and EL100 sheath can provide a consistent core release rate, while the sheath release rate becomes higher as the sheath layer becomes thinner. For example, the thinnest sheath (∼120 nm) provides a core and sheath release ratio of 1:2.5, while the thickest sheath (∼200 nm) shows only a ratio of 1:1.7. All core-sheath Eudragit fibers show no noticeable release at pH 5, while they are completely dissolved at pH 7. Extremely high surface area in the porous network of the fiber membranes provides much faster (>30 times) response to external pH changes as compared to that of equivalent cast films.
pH-controlled drug loading and release from biodegradable microcapsules.
Zhao, Qinghe; Li, Bingyun
2008-12-01
Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine, including their use as controlled drug delivery devices. The present study makes use of the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized calcium carbonate (CaCO3) particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between sodium carbonate and calcium nitrate tetrahydrate solutions suspended with CS macromolecules. Oppositely charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to cross-link the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix (i.e., CS) permitted the subsequent selective control of drug loading and release. The CS-integrated microcapsules were loaded with a model drug, bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS-integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy.
2011-01-01
Background Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Results Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. Conclusions This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative environments, smart theranostic applications combining drug delivery with imaging of platform localization are within reach. The modular design of these USPIO nanoclusters enables future development of platforms for imaging and drug delivery targeted towards proteolytic activity in tumors and in advanced atherosclerotic plaques. PMID:21352596
NASA Astrophysics Data System (ADS)
Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi
2016-02-01
The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.
Controlled release of agrochemicals intercalated into montmorillonite interlayer space.
Wanyika, Harrison
2014-01-01
Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.
Controlled Release of Agrochemicals Intercalated into Montmorillonite Interlayer Space
2014-01-01
Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil. PMID:24696655
Daoud, Walid A; Ngan, Mandy; Cheuk, Kevin
2010-02-01
In this study, nanocapsules of poly(L-lactic acid) (PLLA) containing lavender oil were synthesized by solvent evaporation emulsion. Poly(L-lactic acid) is a biodegradable aliphatic polyester derived from lactic acid formed by bacterial fermentation of glucose-rich substances. Lavender oil is a plant extract that finds uses in phytotherapy. It is reputed as anti-septic, anti-depressant and sleep promoter. Encapsulation is a technique used to encase tiny oil droplets with a thin and permeable coating that allows for a controlled release of the volatile oil. The size and morphology of the nanocapsules were characterized by scanning electron microscope. The particle size and distribution were measured by photon correlation spectroscopy. The time-controlled release of the lavender oil was studied and the use of the lavender capsules in the remedy of sleep disorder was investigated.
Applications of terahertz-pulsed technology in the pharmaceutical industry
NASA Astrophysics Data System (ADS)
Taday, Philip F.
2010-02-01
Coatings are applied to pharmaceutical tablets (or pills) to for either cosmetic or release control reasons. Cosmetic coatings control the colour or to mask the taste of an active ingredient; the thickness of these coating is not critical to the performance of the product. On the other hand the thickness and uniformity of a controlled release coating has been found affect the release of the active ingredient. In this work we have obtained from a pharmacy single brand of pantoprazole tablet and mapped them using terahertz pulsed imaging (TPI) prior to additional dissolution testing. Three terahertz parameters were derived for univariate analysis for each layer: coating thickness, terahertz electric field peak strength and terahertz interface index. These parameters were then correlated dissolution tested. The best fit was found to be with combined coating layer thickness of the inert layer and enteric coating. The commercial tablets showed a large variation in coating thickness.
75 FR 26841 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... initiating a full service brake application in the event of a hardware or software failure that could impair the ability of the engineer to apply or release the brakes or; (ii) Access to direct manual control of... petition that the full service brake application is transmitted electronically to each MU's Friction Brake...
Peles, Zachi; Zilberman, Meital
2012-01-01
Naturally derived materials are becoming widely used in the biomedical field. Soy protein has advantages over various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the current study soy protein isolate (SPI) was investigated as a matrix for wound dressing applications. The antibiotic drug gentamicin was incorporated into the matrix for local controlled release and, thus, protection against bacterial infection. Homogeneous yellowish films were cast from aqueous solutions. After cross-linking they combined high tensile strength and Young's modulus with the desired ductility. The plasticizer type, cross-linking agent and method of cross-linking were found to strongly affect the tensile properties of the SPI films. Selected SPI films were tested for relevant physical properties and the gentamicin release profile. The cross-linking method affected the degree of water uptake and the weight loss profile. The water vapor transmission rate of the films was in the desired range for wound dressings (∼2300 g m(-2) day(-1)) and was not affected by the cross-linking method. The gentamicin release profile exhibited a moderate burst effect followed by a decreasing release rate which was maintained for at least 4 weeks. Diffusion was the dominant release mechanism of gentamicin from cross-linked SPI films. Appropriate selection of the process parameters yielded SPI wound dressings with the desired mechanical and physical properties and drug release behavior to protect against bacterial infection. These unique structures are thus potentially useful as burn and ulcer dressings. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ceca, Diego; Elvira, Laura; Guzmán, José F; Pablos, Ana
2017-01-01
Fibromyalgia (FM) is a disease with symptoms that significantly limit the life of affected patients. Earlier studies have shown that the application of self-myofascial release provides benefits in variables such as fatigue, range of motion (ROM) or perceived muscle pain in a healthy population. Despite this, the self-myofascial release technique has not yet been used in people with FM. This study aimed to find out the benefits of applying a self-myofascial release program on health-related quality of life in people with FM. Sixty-six participants with FM were randomized into two groups, intervention (N.=33) and control (N.=33). The intervention group (IG) participated in the self-myofascial release program for twenty weeks. The study assessed the impact of a self-myofascial release program on cervical spine, shoulder and hip ROM and self-reported disease impact. Two measurements were performed, one at baseline (preintervention) and one postintervention. Two-way mixed-effect (between-within) ANOVA was used for the statistical analysis. Significant changes (P<0.05) were achieved between the two measurements and between groups for final Fibromyalgia Impact Questionnaire (FIQ-S) Score and for five of its seven subscales, including: days per week feeling good, pain intensity, fatigue, stiffness and depression/sadness, as well as all the ROM variables evaluated (neck flexion, neck extension, lateral neck flexion and rotation (bilateral), shoulder flexion and abduction and hip abduction) excluding hip flexion. The application of a self-myofascial release program can improve the health-related quality of life of people with FM, provided that regular, structured practice is carried out.
Controlled Release of Multiple Therapeutics from Silicone Hydrogel Contact Lenses.
White, Charles James; DiPasquale, Stephen Anthony; Byrne, Mark Edward
2016-04-01
The majority of contact lens wearers experience a significant level of ocular discomfort associated with lens wear, often within hours of wear, related to dry lenses, inflammation, protein adhesion to the lens surface, etc. Application of controlled drug release techniques has focused on the incorporation and/or release of a single comfort molecule from a lens including high molecular weight comfort agents or pharmaceutical agents. Previous studies have sought to mitigate the occurrence of only single propagators of discomfort. Clinical studies with eye drop solutions have shown that a mixture of diverse comfort agents selected to address multiple propagators of discomfort provide the greatest and longest lasting sensations of comfort for the patient. In this paper, multiple propagators of discomfort are addressed through the simultaneous release of four molecules from a novel contact lens to ensure high level of lens wear comfort. Silicone hydrogel contact lenses were engineered via molecular imprinting strategies to simultaneously release up to four template molecules including hydropropyl methylcellulose (HPMC), trehalose, ibuprofen, and prednisolone. By adjusting the ratio of functional monomer to comfort molecule, a high level of control was demonstrated over the release rate. HPMC, trehalose, ibuprofen, and prednisolone were released at therapeutically relevant concentrations with varying rates from a single lens. The results indicate use as daily disposable lenses for single day release or extended-wear lenses with multiple day release. Imprinted lenses are expected to lead to higher efficacy for patients compared to topical eye drops by improving compliance and mitigating concentration peaks and valleys associated with multiple drops.
Controlled Release of Multiple Therapeutics from Silicone Hydrogel Contact Lenses
White, Charles J.; DiPasquale, Stephen A.; Byrne, Mark E.
2016-01-01
Purpose The majority of contact lens wearers experience a significant level of ocular discomfort associated with lens wear, often within hours of wear, related to dry lenses, inflammation, protein adhesion to the lens surface, etc. Application of controlled drug release techniques has focused on the incorporation and/or release of a single comfort molecule from a lens including high molecular weight comfort agents or pharmaceutical agents. Previous studies have sought to mitigate the occurrence of only single propagators of discomfort. Clinical studies with eye drop solutions have shown that a mixture of diverse comfort agents selected to address multiple propagators of discomfort provide the greatest and longest lasting sensations of comfort for the patient. In this paper, multiple propagators of discomfort are addressed through the simultaneous release of four molecules from a novel contact lens to ensure high level of lens wear comfort. Methods Silicone hydrogel contact lenses were engineered via molecular imprinting strategies to simultaneously release up to four template molecules including hydropropyl methylcellulose (HPMC), trehalose, ibuprofen, and prednisolone. Results By adjusting the ratio of functional monomer to comfort molecule, a high level of control was demonstrated over the release rate. HPMC, trehalose, ibuprofen, and prednisolone were released at therapeutically relevant concentrations with varying rates from a single lens. Conclusions The results indicate use as daily disposable lenses for single day release or extended-wear lenses with multiple day release. Imprinted lenses are expected to lead to higher efficacy for patients compared to topical eye drops by improving compliance and mitigating concentration peaks and valleys associated with multiple drops. PMID:26945177
NASA Astrophysics Data System (ADS)
Miroiu, Floralice Marimona; Stefan, Nicolaie; Visan, Anita Ioana; Nita, Cristina; Luculescu, Catalin Romeo; Rasoga, Oana; Socol, Marcela; Zgura, Irina; Cristescu, Rodica; Craciun, Doina; Socol, Gabriel
2015-11-01
Composite silk fibroin-poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) (SF-PHBV) biodegradable coatings were grown by Matrix Assisted Pulsed Laser Evaporation on titanium substrates. Their physico-chemical properties and particularly the degradation behavior in simulated body fluid at 37 °C were studied as first step of applicability in local controlled release for tissue regeneration applications. SF and PHBV, natural biopolymers with excellent biocompatibility, but different biodegradability and tensile strength properties, were combined in a composite to improve their properties as coatings for biomedical uses. FTIR analyses showed the stoichiometric transfer from targets to coatings by the presence in the spectra of the main absorption maxima characteristic of both polymers. XRD investigations confirmed the FTIR results showing differences in crystallization behavior with respect to the SF and PHBV content. Contact angle values obtained through wettability measurements indicated the MAPLE deposited coatings were highly hydrophilic; surfaces turning hydrophobic with the increase of the PHBV component. Degradation assays proved that higher PHBV contents resulted in enhanced resistance and a slower degradation rate of composite coatings in SBF. Distinct drug-release schemes could be obtained by adjusting the SF:PHBV ratio to controllably tuning the coatings degradation rate, from rapid-release formulas, where SF predominates, to prolonged sustained ones, for larger PHBV content.
Hori, Kuniko; Sotozono, Chie; Hamuro, Junji; Yamasaki, Kenta; Kimura, Yu; Ozeki, Makoto; Tabata, Yasuhiko; Kinoshita, Shigeru
2007-04-02
We designed a new ophthalmic drug-delivery system for epidermal growth factor (EGF) from the biodegradable hydrogel of cationized gelatin. We placed a cationized gelatin hydrogel (CGH) with incorporated (125)I-labelled EGF in the conjunctival sac of mice and measured the residual radioactivity at different times to evaluate the in vivo profile of EGF release. Approximately 60-67% and 10-12% of EGF applied initially remained 1 and 7 days after application, respectively; whereas EGF delivered in topically applied solution or via EGF impregnation of soft contact lenses disappeared within the first day. We also placed CGH films with 5.0 mug of incorporated EGF on round corneal defects in rabbits to evaluate the healing process using image analysis software and to assess epithelial proliferation immunohistochemically by counting the number of Ki67-positive cells. The application of a CGH film with incorporated EGF resulted in a reduction in the epithelial defect in rabbit corneas accompanied by significantly enhanced epithelial proliferation compared with the reduction seen after the topical application of EGF solution or the placement of an EGF-free CGH film. The controlled release of EGF from a CGH placed over a corneal epithelial defect accelerated ocular surface wound healing.
The fate of mercury in coal utilization byproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
William Aljoe; Thomas Feeley; James Murphy
2005-05-01
The US Department of Energy National Energy Technology Laboratory's (DOE/NETL's) research has helped to further scientific understanding of the environmental characteristics of coal-utilization by-products (CUBs) in both disposal and beneficial utilization applications. The following general observations can be drawn from results of the research that has been carried out to date: There appears to be only minimal mercury release to the environment in typical disposal or utilization applications for CUBs generated using activated carbon injection (ACI) control technologies; There appears to be only minimal mercury release to the environment in typical disposal and utilization applications for CUBs generated using wetmore » FGD control technologies. The potential release of mercury from wet FGD gypsum during the manufacture of wallboard is still under evaluation; The amount of mercury leached from CUB samples tested by DOE/NETL is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life; in many cases, leachate concentrations were below the standard test method detection limits. DOE/NETL will continue to partner with industry and other key stakeholders in carrying out research to better understand the fate of mercury and other trace elements in the byproducts from coal combustion. 16 refs., 6 tabs.« less
USDA-ARS?s Scientific Manuscript database
CO2 is known as an attractant for many soil-dwelling pests. To implement an attract-and-kill strategy for soil pest control, CO2 emitting formulations need to be developed. This work aimed at the development of a slow release bead system in order to bridge the gap between application and hatching of...
Hollow polycaprolactone composite fibers for controlled magnetic responsive antifungal drug release.
Wang, Baolin; Zheng, Hongxia; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song
2016-09-01
Hollow magnetic fibers for trigger based drug release were synthesized using one-step co-axial electrospinning (COX-ES). This was achieved by encapsulating the antifungal active 'ketoconazole' (KCZ) and iron oxide (Fe3O4) nanoparticles (NPs) in composite form within the core shell polymeric matrix material (polycaprolactone, PCL) during the COX-ES process. Dimethyl silicone oil was used as the inner core (liquid) of co-flowing solutions, which subsequently perfused out of the two-phase electrospun microstructures to form hollow fibers. Resulting drug-loaded magnetic hollow fibers were characterized using optical microscopy, scanning electron microscopy and Fourier Transform Infra-Red. The tensile strength and magnetization properties of composite fibers were also assessed. KCZ drug concentration in electrospinning solutions strongly influenced resulting fiber morphology, drug loading efficiency and release. Expedited drug release during a slow-sustained phase was demonstrated through the application of an auxiliary magnetic field. Variations in tensile strength (∼1.3-6.3MPa) were due to composite fiber components compromising polymer chain integrity. In-vitro cell studies (using human cervical carcinoma cell lines) demonstrated fiber biocompatibility. The present study demonstrates the potential application of magnetic hollow fibers for controlled treatment of fungal infections and antimicrobial indications. Copyright © 2016 Elsevier B.V. All rights reserved.
Nezhad, Zhaleh Kashkouli; Nagai, Nobuhiro; Yamamoto, Kotaro; Kaji, Hirokazu; Nishizawa, Matsuhiko; Saya, Hideyuki; Nakazawa, Toru; Abe, Toshiaki
2015-09-01
Age-related macular degeneration is the leading cause of legal blindness among older individuals. Therefore, the development of new therapeutic agents and optimum drug delivery systems for its treatment are crucial. In this study, we investigate whether clotrimazole (CLT) is capable of protecting retinal cells against oxidative-induced injury and the possible inhibitory effect of a sustained CLT-release device against light-induced retinal damage in rats. In vitro results indicated pretreatment of immortalized retinal pigment epithelium cells (RPE-J cells) with 10-50 µM CLT before exposure to oxygen/glucose deprivation conditions for 48 h decreased the extent of cell death, attenuated the percentage of reactive oxygen species-positive cells, and decreased the levels of cleaved caspase-3. The device consists of a separately fabricated reservoir, a CLT formulation, and a controlled release cover, which are made of poly(ethyleneglycol) dimethacrylate (PEGDM) and tri(ethyleneglycol) dimethacrylate (TEGDM). The release rate of CLT was successfully tuned by changing the ratio of PEGDM/TEGDM in the cover. In vivo results showed that use of a CLT-loaded device lessened the reduction of electroretinographic amplitudes after light exposure. These findings indicate that the application of a polymeric CLT-loaded device may be a promising method for the treatment of some retinal disorders.
Brickner, Philip W; Vincent, Richard L; First, Melvin; Nardell, Edward; Murray, Megan; Kaufman, Will
2003-01-01
Bioterrorism is an area of increasing public health concern. The intent of this article is to review the air cleansing technologies available to protect building occupants from the intentional release of bioterror agents into congregate spaces (such as offices, schools, auditoriums, and transportation centers), as well as through outside air intakes and by way of recirculation air ducts. Current available technologies include increased ventilation, filtration, and ultraviolet germicidal irradiation (UVGI) UVGI is a common tool in laboratories and health care facilities, but is not familiar to the public, or to some heating, ventilation, and air conditioning engineers. Interest in UVGI is increasing as concern about a possible malicious release of bioterror agents mounts. Recent applications of UVGI have focused on control of tuberculosis transmission, but a wide range of airborne respiratory pathogens are susceptible to deactivation by UVGI. In this article, the authors provide an overview of air disinfection technologies, and an in-depth analysis of UVGI-its history, applications, and effectiveness.
Novel sol-gel organic-inorganic hybrid materials for drug delivery.
Catauro, Michelina; Verardi, Duilio; Melisi, Daniela; Belotti, Federico; Mustarelli, Piercarlo
2010-01-01
The aim of the present study was to synthetize and characterize novel sol-gel organic-inorganic hybrid materials to be used for controlled drug delivery application. Organic-inorganic hybrid class I materials based on poly(epsilon-caprolactone) (PCL 6, 12, 24 and 50 wt%) and zirconia-yttria (ZrO2-5%Y2O3) were synthesized by a sol-gel method, from a multicomponent solution containing zirconium propoxide [Zr(OC2H7)4], yttrium chloride (YCl3), PCL, water and chloroform (CHCl3). The structure of the hybrids was obtained by means of hydrogen bonds between the Zr-OH group (H-donor) in the sol-gel intermediate species and the carboxylic group (H-acceptor) in the repeating units of the polymer. The presence of hydrogen bonds between organic-inorganic components of the hybrid materials was suggested by Fourier transform infrared (FTIR) analysis, and strongly supported by solid-state NMR. A single-step, sol-gel process was then used to precipitate microspheres containing ketoprofen or indomethacin for controlled drug delivery applications. Release kinetics in a simulated body fluid (SBF) were subsequently investigated. The amount of drug released was detected by UV-VIS spectroscopy. Pure anti-inflammatory agents exhibited linear release with time, in contrast drugs entrapped in the organic-inorganic hybrids were released with a logarithmic time dependence, starting with an initial burst effect followed by a gradual decrease. The synthesis of amorphous materials containing drugs, obtained by sol-gel methods, helps to devise new strategies for controlled drug delivery system design.
Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin
Saha, Dipendu; Moken, Tara; Chen, Jihua; ...
2015-02-24
Here, we have demonstrated the potential of meso- and microporous carbons in controlled release applications and targeted oral drug delivery. We have employed two mesoporous and two microporous carbons for the sustained release of one water-soluble drug (antipyrine) and one water-insoluble drug (indomethacin), using these as models to examine the controlled release characteristics. The micro-/mesoporous carbons were characterized as having a BET surface area of 372–2251 m 2 g –1 and pore volume 0.63–1.03 cm 3 g –1. The toxicity studies with E. coli bacterial cells did not reveal significant toxicity, which is in accordance with our previous studies onmore » human cells with similar materials. Mucin adsorption tests with type III pork mucin demonstrated 20–30% mucin adsorption by the carbon samples and higher mucin adsorption could be attributed to higher surface area and more oxygen functionalities. Antipyrine and indomethacin loading was 6–78% in these micro-/mesoporous carbons. The signatures in thermogravimetric studies revealed the presence of drug molecules within the porous moieties of the carbon. The partial shifting of the decomposition peak of the drug adsorbed within the carbon pores was caused by the confinement of drug molecules within the narrow pore space of the carbon. The release profiles of both drugs were examined in simulated gastric fluid (pH = 1.2) and in three other release media with respective pH values of 4.5, 6.8 and 7.4, along with varying residence times to simulate the physiological conditions of the stomach, duodenum, small intestine and colon, respectively. All the release profiles manifested diffusion controlled sustained release that corroborates the effective role of micro-/mesoporous carbons as potential drug carriers.« less
Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Dipendu; Moken, Tara; Chen, Jihua
Here, we have demonstrated the potential of meso- and microporous carbons in controlled release applications and targeted oral drug delivery. We have employed two mesoporous and two microporous carbons for the sustained release of one water-soluble drug (antipyrine) and one water-insoluble drug (indomethacin), using these as models to examine the controlled release characteristics. The micro-/mesoporous carbons were characterized as having a BET surface area of 372–2251 m 2 g –1 and pore volume 0.63–1.03 cm 3 g –1. The toxicity studies with E. coli bacterial cells did not reveal significant toxicity, which is in accordance with our previous studies onmore » human cells with similar materials. Mucin adsorption tests with type III pork mucin demonstrated 20–30% mucin adsorption by the carbon samples and higher mucin adsorption could be attributed to higher surface area and more oxygen functionalities. Antipyrine and indomethacin loading was 6–78% in these micro-/mesoporous carbons. The signatures in thermogravimetric studies revealed the presence of drug molecules within the porous moieties of the carbon. The partial shifting of the decomposition peak of the drug adsorbed within the carbon pores was caused by the confinement of drug molecules within the narrow pore space of the carbon. The release profiles of both drugs were examined in simulated gastric fluid (pH = 1.2) and in three other release media with respective pH values of 4.5, 6.8 and 7.4, along with varying residence times to simulate the physiological conditions of the stomach, duodenum, small intestine and colon, respectively. All the release profiles manifested diffusion controlled sustained release that corroborates the effective role of micro-/mesoporous carbons as potential drug carriers.« less
NASA Astrophysics Data System (ADS)
Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.
2007-01-01
The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.
Molecularly Imprinted Polymers: Novel Discovery for Drug Delivery.
Dhanashree, Surve; Priyanka, Mohite; Manisha, Karpe; Vilasrao, Kadam
2016-01-01
Molecularly imprinted polymers (MIP) are novel carriers synthesized by imprinting of a template over a polymer. This paper presents the recent application of MIP for diagnostic and therapeutic drug delivery. MIP owing to their 3D polymeric structures and due to bond formation with the template serves as a reservoir of active causing stimuli sensitive, enantioselective, targetted and/or controlled release. The review elaborates about key factors for optimization of MIP, controlled release by MIP for various administration routes various forms like patches, contact lenses, nanowires along with illustrations. To overcome the limitation of organic solvent usage causing increased cost, water compatible MIP and use of supercritical fluid technology for molecular imprinting were developed. Novel methods for developing water compatible MIP like pickering emulsion polymerization, co-precipitation method, cyclodextrin imprinting, surface grafting, controlled/living radical chain polymerization methods are described with illustration in this review. Various protein imprinting methods like bulk, epitope and surface imprinting are described along with illustrations. Further, application of MIP in microdevices as biomimetic sensing element for personalized therapy is elaborated. Although development and application of MIP in drug delivery is still at its infancy, constant efforts of researchers will lead to a novel intelligent drug delivery with commercial value. Efforts should be directed in developing solid oral dosage forms consisting of MIP for therapeutic protein and peptide delivery and targeted release of potent drugs addressing life threatening disease like cancer. Amalgamation of bio-engineering and pharmaceutical techniques can make these future prospects into reality.
Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang
2014-06-01
Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.
Formation of Uniform Hollow Silica microcapsules
NASA Astrophysics Data System (ADS)
Yan, Huan; Kim, Chanjoong
2012-02-01
Microcapsules are small containers with diameters in the range of 0.1 -- 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.
Formation of Uniform Hollow Silica microcapsules
NASA Astrophysics Data System (ADS)
Yan, Huan; Kim, Chanjoong
2013-03-01
Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.
A concise review on smart polymers for controlled drug release.
Aghabegi Moghanjoughi, Arezou; Khoshnevis, Dorna; Zarrabi, Ali
2016-06-01
Design and synthesis of efficient drug delivery systems are of critical importance in health care management. Innovations in materials chemistry especially in polymer field allows introduction of advanced drug delivery systems since polymers could provide controlled release of drugs in predetermined doses over long periods, cyclic and tunable dosages. To this end, researchers have taken advantages of smart polymers since they can undergo large reversible, chemical, or physical fluctuations as responses to small changes in environmental conditions, for instance, in pH, temperature, light, and phase transition. The present review aims to highlight various kinds of smart polymers, which are used in controlled drug delivery systems as well as mechanisms of action and their applications.
Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug.
Fizir, Meriem; Dramou, Pierre; Zhang, Kai; Sun, Cheng; Pham-Huy, Chuong; He, Hua
2017-11-01
In this research, novel polymer grafted-magnetic halloysite nanotubes with norfloxacin loaded (NOR-MHNTs) and controlled-release, was achieved by surface-initiated precipitation polymerization. The magnetic halloysite nanotubes exhibited better adsorption of NOR (72.10mgg -1 ) compared with the pristine HNTs (30.80mgg -1 ). Various parameters influencing the drug adsorption of the MHNTs for NOR were studied. Polymer grafted NOR-MHNTs has been designed using flexible docking in computer simulation to choose optimal monomers. NOR-MHNTs/poly (methacrylic acid or acrylamide-co-ethylene glycol dimethacrylate) nanocomposite were synthesized using NOR-MHNTs, methacrylic acid (MAA) or acrylamide (AM), ethylene glycol dimethacrylate (EGDMA) and AIBN as nanotemplate, monomers, cross linker and initiator, respectively. The magnetic nanocomposites were characterized by FTIR, TEM, XRD and VSM. The magnetic nanocomposites show superparamagnetic property and fast magnetic response (12.09emug -1 ). The copolymerization of monomers and cross linker led to a better sustained release of norfloxacin (>60h) due to the strong interaction formed between monomers and this cationic drug. The cumulative release rate of NOR is closely related to the cross linker amount. In conclusion, combining the advantages of the high adsorption capacity and magnetic proprieties of this biocompatible clay nanotube and the advantages of polymer shell in the enhancement of controlled-sustained release of cationic drug, a novel formulation for the sustained-controlled release of bioactive agents is developed and may have considerable potential application in targeting drug delivery system. Copyright © 2017. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Coulbert, C. D.
1978-01-01
A method for predicting the probable course of fire development in an enclosure is presented. This fire modeling approach uses a graphic plot of five fire development constraints, the relative energy release criteria (RERC), to bound the heat release rates in an enclosure as a function of time. The five RERC are flame spread rate, fuel surface area, ventilation, enclosure volume, and total fuel load. They may be calculated versus time based on the specified or empirical conditions describing the specific enclosure, the fuel type and load, and the ventilation. The calculation of these five criteria, using the common basis of energy release rates versus time, provides a unifying framework for the utilization of available experimental data from all phases of fire development. The plot of these criteria reveals the probable fire development envelope and indicates which fire constraint will be controlling during a criteria time period. Examples of RERC application to fire characterization and control and to hazard analysis are presented along with recommendations for the further development of the concept.
Gumus, Arife; Karagoz, Mehmet; Shapiro-Ilan, David; Hazir, Selcuk
2015-09-01
As a new application approach, we tested the efficacy of releasing live insect hosts that were pre-infected with entomopathogenic nematodes against insect pests living in cryptic habitats. We hypothesized that the pre-infected hosts could carry the next generation of emerging nematode infective juveniles to hard-to-reach target sites, and thereby facilitate enhanced control in cryptic habitats. Thus, the infected hosts act as "living insect bombs" against the target pest. We tested this approach using two model insect pests: a chestnut tree pest, the goat moth Cossus cossus (Lepidiptera: Cossidae), and a lawn caterpillar, Spodoptera cilium (Lepidoptera: Noctuidae). One pest is considered hard-to-reach via aqueous spray (C. cossus) and the other is more openly exposed in the environment (S. cilium). C. cossus and S. cilium studies were conducted in chestnut logs and Bermudagrass arenas, respectively. The living bomb approach was compared with standard nematode application in aqueous spray and controls (without nematode application); Steinernema carpocapsae (Rize isolate) was used in all experiments. The percentage larval mortality of C. cossus was 86% in the living insect bomb treatment, whereas, all other treatments and controls exhibited less than 4% mortality. The new approach (living bomb) was equally successful as standard aqueous application for the control of S. cilium larvae. Both methods exhibited more than 90% mortality in the turfgrass arena. Our new approach showed an immense potential to control insect pests living in hard-to-reach cryptic habitats. Copyright © 2015 Elsevier Inc. All rights reserved.
Application of ion exchange resin in floating drug delivery system.
Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant
2008-10-01
The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... rate, type of control devices, process parameters (e.g., maximum heat input), and non-process... control systems (if applicable) and explain why the conditions are worst-case. (c) Number of test runs... located at the outlet of the control device and prior to any releases to the atmosphere. (e) Collection of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... rate, type of control devices, process parameters (e.g., maximum heat input), and non-process... control systems (if applicable) and explain why the conditions are worst-case. (c) Number of test runs... located at the outlet of the control device and prior to any releases to the atmosphere. (e) Collection of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... rate, type of control devices, process parameters (e.g., maximum heat input), and non-process... control systems (if applicable) and explain why the conditions are worst-case. (c) Number of test runs... located at the outlet of the control device and prior to any releases to the atmosphere. (e) Collection of...
Photocontrol of Drug Release from Supramolecular Hydrogels with Green Light.
Karcher, Johannes; Pianowski, Zbigniew
2018-06-26
Photoresponsive smart materials transform light energy into sophisticated functions. They find increasing biomedical applications in light-induced drug release and photopharmacology, as they can locally provide the desired therapeutic effect due to precise spatiotemporal dosage control. However, the majority of reported studies rely on cytotoxic UV light that poorly penetrates tissues. Here we report the first drug-releasing system based on photochromic low molecular weight supramolecular hydrogels that is triggered with visible light. We demonstrated green-light-induced release of structurally unmodified antibiotic, anticancer, and anti-inflammatory drugs under physiological conditions. Using the antibiotic-loaded gel, we selectively inhibited bacterial growth with green light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Injectable nanocomposite cryogels for versatile protein drug delivery.
Koshy, Sandeep T; Zhang, David K Y; Grolman, Joshua M; Stafford, Alexander G; Mooney, David J
2018-01-01
Sustained, localized protein delivery can enhance the safety and activity of protein drugs in diverse disease settings. While hydrogel systems are widely studied as vehicles for protein delivery, they often suffer from rapid release of encapsulated cargo, leading to a narrow duration of therapy, and protein cargo can be denatured by incompatibility with the hydrogel crosslinking chemistry. In this work, we describe injectable nanocomposite hydrogels that are capable of sustained, bioactive, release of a variety of encapsulated proteins. Injectable and porous cryogels were formed by bio-orthogonal crosslinking of alginate using tetrazine-norbornene coupling. To provide sustained release from these hydrogels, protein cargo was pre-adsorbed to charged Laponite nanoparticles that were incorporated within the walls of the cryogels. The presence of Laponite particles substantially hindered the release of a number of proteins that otherwise showed burst release from these hydrogels. By modifying the Laponite content within the hydrogels, the kinetics of protein release could be precisely tuned. This versatile strategy to control protein release simplifies the design of hydrogel drug delivery systems. Here we present an injectable nanocomposite hydrogel for simple and versatile controlled release of therapeutic proteins. Protein release from hydrogels often requires first entrapping the protein in particles and embedding these particles within the hydrogel to allow controlled protein release. This pre-encapsulation process can be cumbersome, can damage the protein's activity, and must be optimized for each protein of interest. The strategy presented in this work simply premixes the protein with charged nanoparticles that bind strongly with the protein. These protein-laden particles are then placed within a hydrogel and slowly release the protein into the surrounding environment. Using this method, tunable release from an injectable hydrogel can be achieved for a variety of proteins. This strategy greatly simplifies the design of hydrogel systems for therapeutic protein release applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tailorable Release of Small Molecules Utilizing Plant Viral Nanoparticles and Fibrous Matrix
NASA Astrophysics Data System (ADS)
Cao, Jing
We have engineered Red clover necrotic mosaic virus (RCNMV) derived plant viral nanoparticles (PVNs) within a fibrous matrix to optimize its application for delivery and controlled release of active ingredients. RCNMV's structure and unique response to divalent cation depletion and re-addition enables the infusion of small molecules into its viral capsid through a pore formation mechanism. While this PVN technology shows a potential use in nano-scale therapeutic drug delivery, its inherent molecular dynamics to environmental stimuli places a constraint on its application and functionality as a vehicle for tailorable release of loading cargo. In this study, we enhance the understanding of the PVN technology by elucidating its mechanism for loading and triggered release of doxorubicin (Dox), a chemotherapeutic drug for breast cancer. Of critical importance is the methodology for manipulation of Dox's loading capacity and its binding location on either the exterior or interior of the virion capsid. The ability to control the active ingredient binding location provides an additional approach of tunable release from the PVN delivery vehicle besides its inherent pH- and ion- responsive release of loading cargo. The efficacious and controlled release strategy for agricultural active ingredients, such as nematicides, is also a large social need right now. Crop infestation of plant parasite nematodes causes in excess of 157 billion in worldwide crop damage annually. If an effective control strategy for these pests could be developed, it is estimated that the current market for effective nematicides is between 700 million and $1 billion each year worldwide. In this study, we report on the utilization of PVN technology to encapsulate the biological nematicide, abamectin (Abm), within the PVN's interior capsid (PVNAbm). Creating PVNAbm addresses Abm's issues of soil immobility while rendering a controlled release strategy for its bioavailability to root knot nematodes (RKNs). The encapsulation by a PVN carrier also improves the stability of Abm as well as further isolates its toxicity from the end-user. We used this crop treatment methodology by applying PVNAbm to tomato seedlings that we artificially inoculated with RKN M. hapla. We show that the zone of root protection from RKN that is limited by free Abm in the soil is improved; contributing to the enhanced nematicide performance in crop protection. Lignocellulosic materials were engineered as a supporting fibrous matrix to distribute PVNAbm or free Abm in a field-deployable matrix. This enables a cost-effective, environmentally sound method for simply applying the crop protection agent at the point of seed planting. An approach designed to be useful for smallholder farmers in East Africa regions. In addition, the chemical and physical properties of the fibrous matrix provide an additional release mechanism for transporting active ingredients. Varying the source of lignocellulosic materials and pre-processing pulping methods results in fibrous matrices with distinct difference in their cargo release rate for both Abm in free form or encapsulated in PVN. The relative slow and sustainable cargo release is achieved by incorporating with banana lignocellulosic matrix that contains higher amount of lignin in the bulk, which enables a delayed and long-term activity against nematodes. On the other hand, the decreased amount of lignin in abaca lignocellulosic matrix give rise to a burst release of loaded Abm or PVNAbm, which exhibits a simultaneous effectiveness against nematodes, but compromises the crop protection around the growing plant in the long-term. In summary, our work demonstrates the potential for utilization of a PVN-matrix hybrid system for active ingredient delivery, where manipulating the properties and interactions among these components, active ingredient, PVN and fibrous matrix, provides unlimited possibilities for the tailorable release of active ingredients in any given application.
NASA Technical Reports Server (NTRS)
Fox, D. A.
1977-01-01
Solid-state relay (SSR), containing multinode control logic, is operated as normally open, normally closed, or latched. Moreover several can be paralleled to form two-pole or double-throw relays. Versatile unit ends need to design custom control circuit for every relay application. Technique can be extended to incorporate selectable time delay, on operation or release, or pulsed output.
Rahman, Masoud; Yu, Erick; Forman, Evan; ...
2014-08-20
Triblock copolymers comprised of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, or trade name Pluronic) interact with lipid bilayers to increase their permeability. Here we demonstrate a novel application of Pluronic L61 and L64 as modification agents in tailoring the release rate of a molecular indicator species from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer-coated superparamagnetic Fe 3O 4/mesoporous silica coreshell nanoparticles. Lastly, we show there is a direct relationship between Pluronic concentration and the indicator molecule release, suggesting Pluronic may be useful for the controlled release of drugs from lipid bilayer-coated carriers.
Tunable controlled release of molecular species from Halloysite nanotubes
NASA Astrophysics Data System (ADS)
Elumalai, Divya Narayan
Encouraged by potential applications in rust coatings, self-healing composites, selective delivery of drugs, and catalysis, the transport of molecular species through Halloysite nanotubes (HNTs), specifically the storage and controlled release of these molecules, has attracted strong interest in recent years. HNTs are a naturally occurring biocompatible nanomaterial that are abundantly and readily available. They are alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame-retardant agents, drugs, or proteins, allowing for a sustained release of these agents for hours. The release times can be further tuned for days and months by the addition of tube end-stoppers. In this work a three-dimensional, time-quantified Monte Carlo model that efficiently describes diffusion through and from nanotubes is implemented. Controlled delivery from Halloysite Nanotubes (HNT) is modeled based on interactions between the HNT's inner wall and the nanoparticles (NP) and among NPs themselves. The model was validated using experimental data published in the literature. The validated model is then used to study the effect of multiple parameters like HNT diameter and length, particle charge, ambient temperature and the creation of smart caps at the tube ends on the release of encapsulated NPs. The results show that release profiles depend on the size distribution of the HNT batch used for the experiment, as delivery is sensitive to HNT lumen and length. The effect of the addition of end-caps to the HNTs, on the rate of release of encapsulated NPs is also studied here. The results show that the release profiles are significantly affected by the addition of end caps to the HNTs and is sensitive to the end-cap pore lumen. A very good agreement with the experiment is observed when a weight averaged release profile is compared to the experimental profile. Although the NP dynamics is temperature dependent, the effect is minimum within the range of temperatures relevant to biomedical applications, but will be relevant for other applications at temperatures significantly different from room temperature. This model can be used to predict the best conditions for a particular delivery need. One of the possible outcomes of this work is the development of more complex models for HNT-NP interaction various materials used in bioanalytical devices. These models will then be introduced into continuum models of transport in such devices. This work will leverage interaction potential development efforts under the LA-SiGMA grant, to enable multi-scale simulations involving interactions between biomaterials for which such potentials are unknown.
Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.
Dolinina, Ekaterina S; Parfenyuk, Elena V
2017-01-01
Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Multifaceted Applications of Chitosan in Cancer Drug Delivery and Therapy.
Babu, Anish; Ramesh, Rajagopal
2017-03-27
Chitosan is a versatile polysaccharide of biological origin. Due to the biocompatible and biodegradable nature of chitosan, it is intensively utilized in biomedical applications in scaffold engineering as an absorption enhancer, and for bioactive and controlled drug release. In cancer therapy, chitosan has multifaceted applications, such as assisting in gene delivery and chemotherapeutic delivery, and as an immunoadjuvant for vaccines. The present review highlights the recent applications of chitosan and chitosan derivatives in cancer therapy.
Multifaceted Applications of Chitosan in Cancer Drug Delivery and Therapy
Babu, Anish; Ramesh, Rajagopal
2017-01-01
Chitosan is a versatile polysaccharide of biological origin. Due to the biocompatible and biodegradable nature of chitosan, it is intensively utilized in biomedical applications in scaffold engineering as an absorption enhancer, and for bioactive and controlled drug release. In cancer therapy, chitosan has multifaceted applications, such as assisting in gene delivery and chemotherapeutic delivery, and as an immunoadjuvant for vaccines. The present review highlights the recent applications of chitosan and chitosan derivatives in cancer therapy. PMID:28346381
Efficacy of oxygen-supplying capacity of Azolla in a controlled life support system
NASA Astrophysics Data System (ADS)
Chen, Min; Deng, Sufang; Yang, Youquan; Huang, Yibing; Liu, Chongchu
2012-02-01
Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805-0.0831 L kg-1 h-1 and the level of CO2 emission was 0.0705-0.0736 L kg-1 h-1; O2 consumption by the two trial volunteers was 19.71 L h-1 and the volume of respiration-released CO2 was 18.90 L h-1. Under 7000-8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.
Sanna, Vanna; Roggio, Anna Maria; Siliani, Silvia; Piccinini, Massimo; Marceddu, Salvatore; Mariani, Alberto; Sechi, Mario
2012-01-01
Background Resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability, which limits the therapeutic application of its beneficial effects. The development of innovative formulation strategies, able to overcome physicochemical and pharmacokinetic limitations of this compound, may be achieved via suitable carriers able to associate controlled release and protection. In this context, nanotechnology is proving to be a powerful strategy. In this study, we developed novel cationic chitosan (CS)- and anionic alginate (Alg)-coated poly(d,l-lactide-co-glycolide) nanoparticles (NPs) loaded with the bioactive polyphenolic trans-(E)-resveratrol (RSV) for biomedical applications. Methods NPs were prepared by the nanoprecipitation method and characterized in terms of morphology, size and zeta potential, encapsulation efficiency, Raman spectroscopy, swelling properties, differential scanning calorimetry, and in vitro release studies. The protective effect of the nanosystems under the light-stressed RSV and long-term stability were investigated. Results NPs turned out to be spherical in shape, with size ranging from 135 to about 580 nm, depending on the composition and the amount of polyelectrolytes, while the encapsulation efficiencies increased from 8% of uncoated poly(d,l-lactide-co-glycolide) (PLGA) to 23% and 32% of Alg- and CS-coated PLGA NPs, respectively. All nanocarriers are characterized by a biphasic release pattern, and more effective controlled release rates are obtained for NPs formulated with higher polyelectrolyte concentrations. Stability studies revealed that encapsulation provides significant protection against light-exposure degradation, by reducing the trans–cis photoisomerization reaction. Moreover, the nanosystems are able to prevent the degradation of trans isoform and the leakage of RSV from the carrier for a period of 6 months. Conclusion Our findings indicated that the newly developed CS- and Alg-coated PLGA NPs are suitable to be used for the delivery of bioactive RSV. The encapsulation of RSV into optimized polymeric NPs provides improved drug loading, effective controlled release, and protection against light-exposure degradation, thus opening new perspectives for the delivery of bioactive related phytochemicals to be used for (nano)chemoprevention/chemotherapy. PMID:23093904
Data Acquisition Backbone Core DABC release v1.0
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Essel, H. G.; Kurz, N.; Linev, S.
2010-04-01
The Data Acquisition Backbone Core (DABC) is a general purpose software framework designed for the implementation of a wide-range of data acquisition systems - from various small detector test beds to high performance systems. DABC consists of a compact data-flow kernel and a number of plug-ins for various functional components like data inputs, device drivers, user functional modules and applications. DABC provides configurable components for implementing event building over fast networks like InfiniBand or Gigabit Ethernet. A generic Java GUI provides the dynamic control and visualization of control parameters and commands, provided by DIM servers. A first set of application plug-ins has been implemented to use DABC as event builder for the front-end components of the GSI standard DAQ system MBS (Multi Branch System). Another application covers the connection to DAQ readout chains from detector front-end boards (N-XYTER) linked to read-out controller boards (ROC) over UDP into DABC for event building, archiving and data serving. This was applied for data taking in the September 2008 test beamtime for the CBM experiment at GSI. DABC version 1.0 is released and available from the website.
NASA Astrophysics Data System (ADS)
Guo, Zhen; Du, Yu; Liu, Xianbin; Ng, Siu-Choon; Chen, Yuan; Yang, Yanhui
2010-04-01
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
Panizzon, Gean Pier; Bueno, Fernanda Giacomini; Ueda-Nakamura, Tânia; Nakamura, Celso Vataru; Dias Filho, Benedito Prado
2014-01-01
The most bioactive soy isoflavones (SI), daidzein (DAI) and genistein (GEN) have poor water solubility, which reduces their bioavailability and health benefits and limits their use in industry. The goal of this study was to develop and characterize a new gelatin matrix to microencapsulate DAI and GEN from soy extract (SE) by spray drying, in order to obtain solid dispersions to overcome solubility problems and to allow controlled release. The influences of 1:2 (MP2) and 1:3 (MP3) SE/polymer ratios on the solid state, yield, morphology, encapsulation efficiency, particle size distribution, release kinetics and cumulative release were evaluated. Analyses showed integral microparticles and high drug content. MP3 and MP2 yield were 43.6% and 55.9%, respectively, with similar mean size (p > 0.05), respectively. X-ray diffraction revealed the amorphous solid state of SE. In vitro release tests showed that dissolution was drastically increased. The results indicated that SE microencapsulation might offer a good system to control SI release, as an alternative to improve bioavailability and industrial applications. PMID:25494200
pH-controlled drug loading and release from biodegradable microcapsules
Zhao, Qinghe; Li, Bingyun
2013-01-01
Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine including their use as controlled drug delivery devices. The present study employs the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized CaCO3 particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between Na2CO3 and Ca(NO3)2 solutions suspended with CS macromolecules. Oppositely-charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to crosslink the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix, i.e. CS, enabled the subsequent selective control of drug loading and release. The CS integrated microcapsules were loaded with a model drug, i.e. bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy. PMID:18657478
Controlled Release of Antimicrobial ClO2 Gas from a Two-Layer Polymeric Film System.
Bai, Zhifeng; Cristancho, Diego E; Rachford, Aaron A; Reder, Amy L; Williamson, Alexander; Grzesiak, Adam L
2016-11-16
We report a two-component label system comprising a chlorite-containing polymer film and an acid-containing polymer film that can release antimicrobial ClO 2 gas upon adhering the two films together to enable a reaction of the chlorite and acid under moisture exposure. The chlorite-containing film comprises a commercial acrylate-based pressure-sensitive adhesive polymer impregnated with sodium chlorite. The acid-containing film comprises a commercial poly(vinyl alcohol) polymer loaded with tartaric acid. Both of the films were prepared on low ClO 2 -absorbing substrate films from stable aqueous systems of the polymers with high reagent loading. Rapid and sustained releases of significant amounts of ClO 2 gas from the label system were observed in an in situ quantification system using UV-vis spectroscopy. It was found that the ClO 2 release is slower at a lower temperature and can be accelerated by moisture in the atmosphere and the films. Controlled release of ClO 2 gas from the label system was demonstrated by tailoring film composition and thickness. A model was developed to extract release kinetics and revealed good conversions of the label system. This two-component system can potentially be applied as a two-part label without premature release for applications in food packaging.
Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants.
Zhang, Zhiling; Nong, Jia; Zhong, Yinghui
2015-08-01
Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg(2+)-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.
Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants
NASA Astrophysics Data System (ADS)
Zhang, Zhiling; Nong, Jia; Zhong, Yinghui
2015-08-01
Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.
Universal breakaway steel post for other applications.
DOT National Transportation Integrated Search
2014-04-01
The Universal Breakaway Steel Post (UBSP) was developed and evaluated to replace the existing Controlled Release : Terminal (CRT) wood posts which were used in the original bullnose guardrail system. Previously, three full-scale crash : tests were pe...
pH-controlled drug release for dental applications
NASA Astrophysics Data System (ADS)
Wironen, John Francis
A large proportion of the dental fillings replaced at present are revised because of the perceived presence of a recurrent caries under or adjacent to the restoration. Many of these perceived caries may not exist, while others may go undetected. This work describes the preparation of drug loaded polymer microspheres that sense the presence of the bacteria that cause caries by the associated presence of acid by-products of digestion. These microspheres are designed to swell and release their antimicrobial drugs once the pH drops to a level that would normally cause caries. The preparation of the microspheres as well as their loading with potassium fluoride, chlorhexidine digluconate, chlorhexidine dihydrochloride, chlorhexidine diacetate, and tetracycline hydrochloride are described. A detailed study of the controlled release behavior of fluoride as a function of polymer composition and pH is presented first. A study of the release kinetics of potassium fluoride, chlorhexidine digluconate, diacetate, dihydrochloride, and tetracycline hydrochloride as a function of pH in the same polymer system is then presented. Additional studies of the swelling kinetics of chlorhexidine-loaded microspheres in various pH buffers are discussed with special reference to correlations with the controlled-release data. Finally, an experiment in which the microspheres are tested in an in vitro bacteria model that includes Streptococcus mutans is presented and discussed in detail.
Shadrack, Daniel M; Swai, Hulda S; Munissi, Joan J E; Mubofu, Egid B; Nyandoro, Stephen S
2018-06-12
Clinical applications of many small molecules are limited due to poor solubility and lack of controlled release besides lack of other desirable properties. Experimental and computational studies have reported on the therapeutic potential of polyamidoamine (PAMAM) dendrimers as solubility enhancers in pre-clinical and clinical settings. Besides formulation strategies, factors such as pH, PAMAM dendrimer generation, PAMAM dendrimer concentration, nature of the PAMAM core, special ligand and surface modifications of PAMAM dendrimer have an influence on drug solubility and other recommendable pharmacological properties. This review, therefore, compiles the recently reported applications of PAMAM dendrimers in pre-clinical and clinical uses as enhancers of solubility and other desirable properties such as sustained and controlled release, bioavailability, bio-distribution, toxicity reduction or enhancement, and targeted delivery of small molecules with emphasis on cancer treatment.
Bactericidal Activity of Usnic Acid-Loaded Electrospun Fibers.
Araújo, Evando S; Pereira, Eugênia C; da Costa, Mateus M; da Silva, Nicácio H; de Oliveira, Helinando P
2016-01-01
Usnic acid has been progressively reported in the literature as one of the most important lichen metabolites characterized by a rich diversity of applications such as antifungal, antimicrobial, antiprotozoal and antiviral agent. Particularly, antimicrobial activity of usnic acid can be improved by encapsulation of active molecules in enteric electrospun fibers, allowing the controlled release of active molecule at specific pH. Few relevant patents to the topic have been reviewed and cited. Bactericidal activity of usnic acid-loaded electrospun fibers of Eudragit L-100 and polyvinylpyrrolidone was examined against Staphylococcus aureus using inhibition hales methodology. The controlled release of active material at high pH is established after 10 minutes of interaction with media and results in reasonable activity against S. aureus, as detected by inhibition hales. The strong biological activity of usnic acid-loaded electrospun fibers provides a promising application for corresponding material as a bactericidal agent for wound healing treatment.
Gimeno, Marina; Pinczowski, Pedro; Pérez, Marta; Giorello, Antonella; Martínez, Miguel Ángel; Santamaría, Jesús; Arruebo, Manuel; Luján, Lluís
2015-01-01
A new device for local delivery of antibiotics is presented, with potential use as a drug-eluting fixation pin for orthopedic applications. The implant consists of a stainless steel hollow tubular reservoir packed with the desired antibiotic. Release takes place through several orifices previously drilled in the reservoir wall, a process that does not compromise the mechanical properties required for the implant. Depending on the antibiotic chosen and the number of orifices, the release profile can be tailored from a rapid release of the load (ca. 20 h) to a combination of rapid initial release and slower, sustained release for a longer period of time (ca. 200 h). An excellent bactericidal action is obtained, with 4-log reductions achieved in as little as 2 h, and total bacterial eradication in 8 h using 6-pinholed implants filled with cefazolin. PMID:26297104
Polymer Coated Echogenic Lipid Nanoparticles with Dual Release Triggers
Nahire, Rahul; Haldar, Manas K.; Paul, Shirshendu; Mergoum, Anaas; Ambre, Avinash H.; Katti, Kalpana S.; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku
2013-01-01
Although lipid nanoparticles are promising drug delivery vehicles, passive release of encapsulated contents at the target site is often slow. Herein, we report contents release from targeted, polymer coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger and simultaneously enhanced by diagnostic frequency ultrasound. The lipid nanoparticles were polymerized on the external leaflet using a disulfide cross-linker. In the presence of cytosolic concentrations of glutathione, the lipid nanoparticles released 76% of encapsulated contents. Plasma concentrations of glutathione failed to release the encapsulated contents. Application of 3 MHz ultrasound for 2 minutes simultaneously with the reducing agent enhanced the release to 96%. Folic acid conjugated, doxorubicin loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressing the folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be used as multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging. PMID:23394107
Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats
Ortiz, Andrea N.; Osterhaus, Gregory L.; Lauderdale, Kelli; Mahoney, Luke; Fowler, Stephen C.; von Hörsten, Stephan; Riess, Olaf; Johnson, Michael A.
2013-01-01
Huntington’s disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15 months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats. PMID:22418060
Yu, Zhan; Yu, Min; Zhou, Zhimin; Zhang, Zhibao; Du, Bo; Xiong, Qingqing
2014-01-01
Controlled-release carriers for local drug delivery have attracted increasing attention for inner-ear treatment recently. In this paper, flower-shaped bovine serum albumin (FBSA) particles were prepared by a modified desolvation method followed by glutaraldehyde or heat denaturation. The size of the FBSA particles varied from 10 μm to 100 μm, and most were 50-80 μm. Heat-denatured FBSA particles have good cytocompatibility with a prolonged survival time for L929 cells. The FBSA particles were utilized as carriers to investigate the release behaviors of the model drug - rhodamine B. Rhodamine B showed a sustained-release effect and penetrated the round-window membrane of guinea pigs. We also confirmed the attachment of FBSA particles onto the round-window membrane by microscopy. The FBSA particles, with good biocompatibility, drug-loading capacity, adhesive capability, and biodegradability, may have potential applications in the field of local drug delivery for inner-ear disease treatment.
Blaustein, Ryan A; Pachepsky, Yakov A; Shelton, Daniel R; Hill, Robert L
2015-09-01
Microbial pathogens present a leading cause of impairment to rivers, bays, and estuaries in the United States, and agriculture is often viewed as the major contributor to such contamination. Microbial indicators and pathogens are released from land-applied animal manure during precipitation and irrigation events and are carried in overland and subsurface flow that can reach and contaminate surface waters and ground water used for human recreation and food production. Simulating the release and removal of manure-borne pathogens and indicator microorganisms is an essential component of microbial fate and transport modeling regarding food safety and water quality. Although microbial release controls the quantities of available pathogens and indicators that move toward human exposure, a literature review on this topic is lacking. This critical review on microbial release and subsequent removal from manure and animal waste application areas includes sections on microbial release processes and release-affecting factors, such as differences in the release of microbial species or groups; bacterial attachment in turbid suspensions; animal source; animal waste composition; waste aging; manure application method; manure treatment effect; rainfall intensity, duration, and energy; rainfall recurrence; dissolved salts and temperature; vegetation and soil; and spatial and temporal scale. Differences in microbial release from liquid and solid manures are illustrated, and the influential processes are discussed. Models used for simulating release and removal and current knowledge gaps are presented, and avenues for future research are suggested. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Wang, J; Ng, C W; Win, K Y; Shoemakers, P; Lee, T K Y; Feng, S S; Wang, C H
2003-01-01
Paclitaxel is a promising anti-cancer drug as well as a radiosensitizer for chemotherapy and radiotherapy applications. Because of the poor solubility of paclitaxel in water and most pharmaceutical reagents, it is usually formulated with an adjuvant called Cremophor EL, which causes severe side effects. This work develops new dosage forms of paclitaxel for controlled release application, which do not require the adjuvant and, thus, can avoid its associated side effects. Paclitaxel was encapsulated into the PLGA matrix with various additives such as polyethylene glycol (PEG), isopropyl myristate (IPM) and d-alpha tocopheryl polyethylene glycol (Vitamin E TPGS). These additives were used to enhance the release rate of paclitaxel from the polymer matrix. Spray-drying and an hydraulic press were used to prepare paclitaxel-PLGA microspheres and discs. The microspheres and discs were given different irradiation doses to investigate their effects on the surface morphology (characterized by SEM, AFM and XPS) and in vitro release properties. There seems to be a small effect of the ionizing radiation on various formulations. Although the irradiation did not cause observable changes on the morphology of the polymer matrix, the release rate can be enhanced by a few per cent. It was found that PEG has the highest enhancement effect for release rate among all the additives investigated in this study.
NASA Astrophysics Data System (ADS)
Franklin-Ford, Travelle
Hydroxyapatite interfaces have demonstrated strong protein binding and protein selection from a passing solution and can serve as a biocompatible carrier for controlled protein delivery. Hydroxyapatite is a major component of long bones and tooth enamel and is the most stable of all calcium phosphate isoforms in aqueous solutions at physiologic pH, providing a sensitive chromatographic mechanism for separating proteins. Here we describe an approach to create a synthetic hydroxyapatite coating through a biomimetic, heterogeneous nucleation from a modified simulated body fluid--supersaturated with calcium and phosphate ions on the surface of injectable polymer microspheres. We are able to bind and release bioactive growth factors into a variety of in vitro and in vivo conditions, demonstrating the functionality and advantage of the biomaterial. Creating a hydroxyapatite layer on the Poly(D,L-lactide-co-glycolide) (PLG) microsphere surface, avails the microsphere interior for another application that will not compete with protein binding and release. Encapsulating an imaging agent within the aqueous phase of the emulsion provides a visual reference for the injectable therapy upon microsphere fabrication. Another advantage of this system is that the mineral coating and subsequent protein binding is not compromised by the encapsulated imaging agent. This dual function delivery vehicle is not only advantageous for spatial tracking therapeutic applications, but also determining the longevity of the delivery vehicle once injected. In the broader sense, providing a mechanism to image and track our temporally controlled, sustained delivery system gives more evidence to support the effects of released protein on in vivo responses (bioactivity) and locate microspheres within different biological systems.
Controlled-release biodegradable nanoparticles: From preparation to vaginal applications.
Martínez-Pérez, Beatriz; Quintanar-Guerrero, David; Tapia-Tapia, Melina; Cisneros-Tamayo, Ricardo; Zambrano-Zaragoza, María L; Alcalá-Alcalá, Sergio; Mendoza-Muñoz, Néstor; Piñón-Segundo, Elizabeth
2018-03-30
This study aimed to prepare poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with chitosan (CTS) surface modification to be used as a vaginal delivery system for antimycotic drugs. Clotrimazole was encapsulated with entrapment efficiencies of 86.1 and 68.9% into Clotrimazole-PLGA-NPs (CLT-PLGA-NPs) and PLGA-NPs with CTS-modified surface (CLT-PLGA-CTS-NPs), respectively. The later NPs exhibited a larger size and higher positive zeta potential (Z potential) in comparison to unmodified NPs. In vitro release kinetic studies indicated that Clotrimazole was released in percentages of >98% from both nanoparticulate systems after 18days. Antifungal activity and mucoadhesive properties of NPs were enhanced when CTS was added onto the surface. In summary, these results suggested that Clotrimazole loaded into PLGA-CTS-NPs has great potential for vaginal applications in treating vaginal infections generated by Candida albicans. Copyright © 2018 Elsevier B.V. All rights reserved.
Calcium phosphate ceramics in drug delivery
NASA Astrophysics Data System (ADS)
Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit
2011-04-01
Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.
Enzyme-Responsive Nanomaterials for Controlled Drug Delivery
Hu, Quanyin; Katti, Prateek S.; Gu, Zhen
2015-01-01
Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials for controlled drug release have achieved significant development and been studied as an important class of drug delivery devices in nanomedicine. In this review, we describe enzymes such as proteases, phospholipase and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area. PMID:25251024
Genetic engineering: regulation issue is resurrected by EPA.
Budiansky, Stephen
1983-08-18
The Environmental Protection Agency is asserting regulatory control over the commercial production of genetically-engineered microorganisms, such as oil-eating bacteria, intended for release into the environment. EPA's legally-complex claim that such organisms are "new chemical substances," and thus subject to the Toxic Substances Control Act (TSCA), raises a challenge to the adequacy of regulation by the National Institute of Health's Recombinant DNA Advisory Committee (RAC) over the commercial and ecological implications of environmental release. Industry, which has been voluntarily adhering to the RAC guidelines, is reluctant to challenge application of the relatively lenient TSCA requirements but eager to see the legal uncertainties resolved.
Enzyme-responsive nanomaterials for controlled drug delivery
NASA Astrophysics Data System (ADS)
Hu, Quanyin; Katti, Prateek S.; Gu, Zhen
2014-10-01
Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials used for controlled drug release have achieved significant development and have been studied as an important class of drug delivery strategies in nanomedicine. In this review, we describe enzymes such as proteases, phospholipases and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area.
Yang, Zi Yi; Lu, Yan; Tang, Xing
2008-12-01
Pseudoephedrine hydrochloride is an active very highly water soluble substance. In order to control release of a drug with this property, we developed the application of a combination of hot-melt subcoating and polymer coating was developed. The main objective was to investigate the influence of this combination on the release of highly water soluble drug and how it works. Hot-melt subcoating was achieved by using a coating pan. Subsequently, the outer polymer coating was prepared by fluidized bed, and the drug release was determined by high-performance liquid chromatograph (HPLC) method. Hot-melt subcoating can form a barrier between the drug-loaded pellets and the polymer coating layer, which prevents migration of the drug during film application. Consequently, the level of polymer coating can be reduced significantly, and the effectiveness of the polymer coating increased. In this study, the release profile of pellets with a 10% hot-melt subcoating and 5% polymer coating weight gain met the dissolution requirement of USP29 for pseudoephedrine hydrochloride extended-release capsules. Compared with pellets only polymer coated (10% level), the polymer coating level of pellets prepared by this technology was reduced by half due to hot-melt subcoating. By means of this hot-melt subcoating and polymer coating, sustained-release pellets containing pseudoephedrine hydrochloride were successfully prepared.
Madrigal, Justin L; Sharma, Shonit N; Campbell, Kevin T; Stilhano, Roberta S; Gijsbers, Rik; Silva, Eduardo A
2018-03-15
Alginate hydrogels are widely used as delivery vehicles due to their ability to encapsulate and release a wide range of cargos in a gentle and biocompatible manner. The release of encapsulated therapeutic cargos can be promoted or stunted by adjusting the hydrogel physiochemical properties. However, the release from such systems is often skewed towards burst-release or lengthy retention. To address this, we hypothesized that the overall magnitude of burst release could be adjusted by combining microgels with distinct properties and release behavior. Microgel suspensions were generated using a process we have termed on-chip polymer blending to yield composite suspensions of a range of microgel formulations. In this manner, we studied how alginate percentage and degradation relate to the release of lentivectors. Whereas changes in alginate percentage had a minimal impact on lentivector release, microgel degradation led to a 3-fold increase, and near complete release, over 10 days. Furthermore, by controlling the amount of degradable alginate present within microgels the relative rate of release can be adjusted. A degradable formulation of microgels was used to deliver vascular endothelial growth factor (VEGF)-encoding lentivectors in the chick chorioallantoic membrane (CAM) assay and yielded a proangiogenic response in comparison to the same lentivectors delivered in suspension. The utility of blended microgel suspensions may provide an especially appealing platform for the delivery of lentivectors or similarly sized therapeutics. Genetic therapeutics hold considerable potential for the treatment of diseases and disorders including ischemic cardiovascular diseases. To realize this potential, genetic vectors must be precisely and efficiently delivered to targeted regions of the body. However, conventional methods of delivery do not provide sufficient spatial and temporal control. Here, we demonstrate how alginate microgels provide a basis for developing systems for controlled genetic vector release. We adjust the physiochemical properties of alginate for quicker or slower release, and we demonstrate how combining distinct formulations of microgels can tune the release of the overall composite microgel suspension. These composite suspensions are generated using a straightforward and powerful application of droplet microfluidics which allows for the real-time generation of a composite suspension. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The Trojan female technique: a novel, effective and humane approach for pest population control.
Gemmell, Neil J; Jalilzadeh, Aidin; Didham, Raphael K; Soboleva, Tanya; Tompkins, Daniel M
2013-12-22
Humankind's ongoing battle with pest species spans millennia. Pests cause or carry disease, damage or consume food crops and other resources, and drive global environmental change. Conventional approaches to pest management usually involve lethal control, but such approaches are costly, of varying efficiency and often have ethical issues. Thus, pest management via control of reproductive output is increasingly considered an optimal solution. One of the most successful such 'fertility control' strategies developed to date is the sterile male technique (SMT), in which large numbers of sterile males are released into a population each generation. However, this approach is time-consuming, labour-intensive and costly. We use mathematical models to test a new twist on the SMT, using maternally inherited mitochondrial (mtDNA) mutations that affect male, but not female reproductive fitness. 'Trojan females' carrying such mutations, and their female descendants, produce 'sterile-male'-equivalents under natural conditions over multiple generations. We find that the Trojan female technique (TFT) has the potential to be a novel humane approach for pest control. Single large releases and relatively few small repeat releases of Trojan females both provided effective and persistent control within relatively few generations. Although greatest efficacy was predicted for high-turnover species, the additive nature of multiple releases made the TFT applicable to the full range of life histories modelled. The extensive conservation of mtDNA among eukaryotes suggests this approach could have broad utility for pest control.
Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A. Levent; Kizilel, Seda
2014-01-01
Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite. PMID:24516593
Vemmer, Marina; Schumann, Mario; Beitzen-Heineke, Wilhelm; French, Bryan W; Vidal, Stefan; Patel, Anant V
2016-11-01
CO 2 is known as an attractant for many soil-dwelling pests. To implement an attract-and-kill strategy for soil pest control, CO 2 -emitting formulations need to be developed. The aim of the present work was to develop a slow-release bead system in order to bridge the gap between application and hatching of western corn rootworm larvae. We compared different Ca-alginate beads containing Saccharomyces cerevisiae for their potential to release CO 2 over a period of several weeks. The addition of starch improved CO 2 release, resulting in significantly higher CO 2 concentrations in soil for at least 4 weeks. The missing amylase activity was compensated for either by microorganisms present in the soil or by coencapsulation of Beauveria bassiana. Formulations containing S. cerevisiae, starch and B. bassiana were attractive for western corn rootworm larvae within the first 4 h following exposure; however, when considering the whole testing period, the maize root systems remained more attractive for the larvae. Coencapsulation of S. cerevisiae, starch and B. bassiana is a promising approach for the development of attractive formulations for soil applications. For biological control strategies, the attractiveness needs to be increased by phagostimuli to extend contact between larvae and the entomopathogenic fungus growing out of these formulations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Setti, Chiara; Suarato, Giulia; Perotto, Giovanni; Athanassiou, Athanassia; Bayer, Ilker S
2018-06-18
Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for in vivo controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi ® , and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi ® /alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells. Copyright © 2018. Published by Elsevier B.V.
Tellurium-containing polymer micelles: competitive-ligand-regulated coordination responsive systems.
Cao, Wei; Gu, Yuwei; Meineck, Myriam; Li, Tianyu; Xu, Huaping
2014-04-02
Nanomaterials capable of achieving tunable cargo release kinetics are of significance in a fundamental sense and various biological or medical applications. We report a competitive coordination system based on a novel tellurium-containing polymer and its ligand-regulated release manners. Tellurium was introduced to water-soluble polymers for the first time as drug delivery vehicles. The coordination chemistry between platinum and tellurium was designed to enable the load of platinum-based drugs. Through the competitive coordination of biomolecules, the drugs could be released in a controlled manner. Furthermore, the release kinetics could be modulated by the competitive ligands involved due to their different coordination ability. This tellurium-containing polymer may enrich the family of delivery systems and provide a new platform for future biomedical nanotechnologies.
Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M; Paik, Pradip
2016-03-29
Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (∼279 and ∼480 ng μg(-1), respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ∼96.6%). Our nanoformulation arrests the cell divisions due to 'cellular scenescence' and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.
NASA Astrophysics Data System (ADS)
Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M.; Paik, Pradip
2016-03-01
Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (˜279 and ˜480 ng μg-1, respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ˜96.6%). Our nanoformulation arrests the cell divisions due to ‘cellular scenescence’ and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.
Radiological effluents released from US continental tests, 1961 through 1992. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoengold, C.R.; DeMarre, M.E.; Kirkwood, E.M.
1996-08-01
This report documents all continental tests from September 15, 1961, through September 23, 1992, from which radioactive effluents were released. The report includes both updated information previously published in the publicly available May, 1990 report, DOE/NV-317, ``Radiological Effluents Released from Announced US Continental Tests 1961 through 1988``, and effluent release information on formerly unannounced tests. General information provided for each test includes the date, time, location, type of test, sponsoring laboratory and/or agency or other sponsor, depth of burial, purpose, yield or yield range, extent of release (onsite only or offsite), and category of release (detonation-time versus post-test operations). Wheremore » a test with simultaneous detonations is listed, location, depth of burial and yield information are given for each detonation if applicable, as well as the specific source of the release. A summary of each release incident by type of release is included. For a detonation-time release, the effluent curies are expressed at R+12 hours. For a controlled releases from tunnel-tests, the effluent curies are expressed at both time of release and at R+12 hours. All other types are listed at the time of the release. In addition, a qualitative statement of the isotopes in the effluent is included for detonation-time and controlled releases and a quantitative listing is included for all other types. Offsite release information includes the cloud direction, the maximum activity detected in the air offsite, the maximum gamma exposure rate detected offsite, the maximum iodine level detected offsite, and the maximum distance radiation was detected offsite. A release summary incudes whatever other pertinent information is available for each release incident. This document includes effluent release information for 433 tests, some of which have simultaneous detonations. However, only 52 of these are designated as having offsite releases.« less
Xylitol concentrations in artificial saliva after application of different xylitol dental varnishes
PEREIRA, Agnes de Fátima Faustino; da SILVA, Thiago Cruvinel; da SILVA, Thelma Lopes; CALDANA, Magali de Lourdes; BASTOS, José Roberto Magalhães; BUZALAF, Marília Afonso Rabelo
2012-01-01
Objective The present study analyzed xylitol concentrations in artificial saliva over time after application of varnishes containing 10% and 20% xylitol. Material and Methods Fifteen bovine enamel specimens (8x4 mm) were randomly allocated to 3 groups (n=5/group), according to the type of varnish used: 10% xylitol, 20% xylitol and no xylitol (control). After varnish application (4 mg), specimens were immersed in vials containing 500 µL of artificial saliva. Saliva samples were collected in different times (1, 8, 12, 16, 24, 48 and 72 h) and xylitol concentrations were analyzed. Data were assessed by two-way repeated-measures ANOVA (p<0.05). Results Colorimetric analysis was not able to detect xylitol in saliva samples of the control group. Salivary xylitol concentrations were significantly higher up to 8 h after application of the 20% xylitol varnish. Thereafter, the 10% xylitol varnish released larger amounts of that polyol in artificial saliva. Conclusions Despite the results in short-term, sustained xylitol releases could be obtained when the 10% xylitol varnish was used. These varnishes seem to be viable alternatives to increase salivary xylitol levels, and therefore, should be clinically tested to confirm their effectiveness. PMID:22666828
Moncion, Alexander; Arlotta, Keith J.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Carson, Paul L.; Putnam, Andrew J.; Franceschi, Renny T.; Fabiilli, Mario L.
2015-01-01
Hydrogel scaffolds are used in tissue engineering as a delivery vehicle for regenerative growth factors (GFs). Spatiotemporal patterns of GF signaling are critical for tissue regeneration, yet most scaffolds afford limited control of GF release, especially after implantation. We previously demonstrated that acoustic droplet vaporization (ADV) can control GF release from a fibrin scaffold doped with a perfluorocarbon emulsion. This study investigates properties of the acoustically responsive scaffold (ARS) critical for further translation. At 2.5 MHz, ADV and inertial cavitation thresholds ranged from 1.5 – 3.0 MPa and 2.0 – 7.0 MPa peak rarefactional pressure, respectively, for ARSs of varying compositions. Viability of C3H10T1/2 cells, encapsulated in the ARS, did not decrease significantly for pressures below 4 MPa. ARSs with perfluorohexane emulsions displayed higher stability versus perfluoropentane emulsions, while surrogate payload release was minimal without ultrasound. These results enable the selection of ARS compositions and acoustic parameters needed for optimized spatiotemporal control. PMID:26526782
Temtem, M; Pompeu, D; Jaraquemada, G; Cabrita, E J; Casimiro, T; Aguiar-Ricardo, A
2009-07-06
Cyclodextrin-containing polymers have proved themselves to be useful for controlled release. Herein we describe the preparation of membranes of poly(methylmethacrylate) (PMMA) containing hydroxypropyl-beta-cyclodextrins (HP-beta-CDs) using a supercritical CO(2)-assisted phase inversion method, for potential application as drug delivery devices. Results are reported on the membrane preparation, physical properties, and drug elution profile of a model drug. The polymeric membranes were obtained with HP-beta-CD contents ranging from 0 to 33.4 wt%, by changing the composition of the casting solution, and were further impregnated with ibuprofen using supercritical carbon dioxide (scCO(2)) in batch mode. The influence of the membrane functionalization in the controlled release of ibuprofen was studied by performing in vitro experiments in buffer solution pH at 7.4. The release of the anti-inflammatory drug could be tuned by varying the cyclodextrin content on the membranes.
Tran, Thao T D; Tran, Phuong H L
2017-01-01
Poorly water-soluble drugs, which commonly face the issue of poor absorption and low bioavailability, have been under ongoing research of many formulation scientists for the past few decades. Solid dispersion is one of the most effective strategies in concerns for improving bioavailability of poorly water-soluble drugs. Either application of solid dispersions in dissolution enhancement of poorly water-soluble drugs or the use of swellable polymers in controlled drug release has been reported in pharmaceutical designs widely. However, a review of strategies of using swellable polymers in solid dispersion to take a full advantage of these polymers as a current perspective in facilitating drug bioavailability enhancement is still missing. In this review, we aim to provide a summary of techniques used to formulate a swellable polymer in solid dispersion especially a description of a suitable fabrication method in design of a controlled release solid dispersion. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bringing novel semiochemical formulations to the market
USDA-ARS?s Scientific Manuscript database
SPLAT® (Specialized Pheromone and Lure Application Technology) matrix is a unique controlled-release technology that can be adapted to dispense and protect a wide variety of compounds from degradation, including semi chemicals, pesticides, and phagostimulants, in diverse environments. ISCA Technolog...
García, Mónica C; Cuggino, Julio C; Rosset, Clarisa I; Páez, Paulina L; Strumia, Miriam C; Manzo, Ruben H; Alovero, Fabiana L; Alvarez Igarzabal, Cecilia I; Jimenez-Kairuz, Alvaro F
2016-12-01
The development and characterization of a novel, gel-type material based on a dendronized polymer (DP) loaded with ciprofloxacin (CIP), and the evaluation of its possible use for controlled drug release, are presented in this work. DP showed biocompatible and non-toxic behaviors in cultured cells, both of which are considered optimal properties for the design of a final material for biomedical applications. These results were encouraging for the use of the polymer loaded with CIP (as a drug model), under gel form, in the development of a new controlled-release system to be evaluated for topical administration. First, DP-CIP ionic complexes were obtained by an acid-base reaction using the high density of carboxylic acid groups of the DP and the amine groups of the CIP. The complexes obtained in the solid state were broadly characterized using FTIR spectroscopy, XRP diffraction, DSC-TG analysis and optical microscopy techniques. Gels based on the DP-CIP complexes were easily prepared and presented excellent mechanical behaviors. In addition, optimal properties for application on mucosal membranes and skin were achieved due to their high biocompatibility and acute skin non-irritation. Slow and sustained release of CIP toward simulated physiological fluids was observed in the assays (in vitro), attributed to ion exchange phenomenon and to the drug reservoir effect. An in vitro bacterial growth inhibition assay showed significant CIP activity, corresponding to 38 and 58% of that exhibited by a CIP hydrochloride solution at similar CIP concentrations, against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. However, CIP delivery was appropriate, both in terms of magnitude and velocity to allow for a bactericidal effect. In conclusion, the final product showed promising behavior, which could be exploited for the treatment of topical and mucosal opportunistic infections in human or veterinary applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Costa, Rui R; Custódio, Catarina A; Arias, Francisco J; Rodríguez-Cabello, José C; Mano, João F
2013-10-01
Multilayer capsules conceived at the nano- and microscales are receiving increasing interest due to their potential role as carriers of biomolecules for drug delivery and tissue engineering. Herein we report the construction of microcapsules by the sequential adsorption of chitosan and a biomimetic elastin-like recombinamer into nanostructured layers on inorganic microparticle templates. The release profile of bovine serum albumin, which was studied at 25 and 37 °C, shows higher retention and Fickian diffusion at physiological temperature. The self-assembled multilayers act as a barrier and allowed for sustained release over 14 days. The capsules studied are non-cytotoxic towards L929 cells, thereby suggesting multiple applications in the fields of biotechnology and bioengineering, where high control of the delivery of therapeutics and growth/differentiation factors is required. In this paper, the construction of microcapsules by sequential adsorption of chitosan and a biomimetic, elastin-like recombinamer into nanostructured layers on inorganic microparticle templates is reported. The layers demonstrated sustained drug release over 14 days. These microcapsules are non-cytotoxic toward L929 cells, suggesting multiple applications where high control of drug or growth factor delivery is required. Copyright © 2013 Elsevier Inc. All rights reserved.
Hybrid hydrogels produced by ionizing radiation technique
NASA Astrophysics Data System (ADS)
Oliveira, M. J. A.; Amato, V. S.; Lugão, A. B.; Parra, D. F.
2012-09-01
The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling.
Application of supercritical antisolvent method in drug encapsulation: a review
Kalani, Mahshid; Yunus, Robiah
2011-01-01
The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO2 flow rate, and the liquid phase flow rate on particle size and its distribution. PMID:21796245
An optimization formulation for characterization of pulsatile cortisol secretion.
Faghih, Rose T; Dahleh, Munther A; Brown, Emery N
2015-01-01
Cortisol is released to relay information to cells to regulate metabolism and reaction to stress and inflammation. In particular, cortisol is released in the form of pulsatile signals. This low-energy method of signaling seems to be more efficient than continuous signaling. We hypothesize that there is a controller in the anterior pituitary that leads to pulsatile release of cortisol, and propose a mathematical formulation for such controller, which leads to impulse control as opposed to continuous control. We postulate that this controller is minimizing the number of secretory events that result in cortisol secretion, which is a way of minimizing the energy required for cortisol secretion; this controller maintains the blood cortisol levels within a specific circadian range while complying with the first order dynamics underlying cortisol secretion. We use an ℓ0-norm cost function for this controller, and solve a reweighed ℓ1-norm minimization algorithm for obtaining the solution to this optimization problem. We use four examples to illustrate the performance of this approach: (i) a toy problem that achieves impulse control, (ii) two examples that achieve physiologically plausible pulsatile cortisol release, (iii) an example where the number of pulses is not within the physiologically plausible range for healthy subjects while the cortisol levels are within the desired range. This novel approach results in impulse control where the impulses and the obtained blood cortisol levels have a circadian rhythm and an ultradian rhythm that are in agreement with the known physiology of cortisol secretion. The proposed formulation is a first step in developing intermittent controllers for curing cortisol deficiency. This type of bio-inspired pulse controllers can be employed for designing non-continuous controllers in brain-machine interface design for neuroscience applications.
Microfluidic approach for encapsulation via double emulsions.
Wang, Wei; Zhang, Mao-Jie; Chu, Liang-Yin
2014-10-01
Double emulsions, with inner drops well protected by the outer shells, show great potential as compartmentalized systems to encapsulate multiple components for protecting actives, masking flavor, and targetedly delivering and controllably releasing drugs. Precise control of the encapsulation characteristics of each component is critical to achieve an optimal therapeutic efficacy for pharmaceutical applications. Such controllable encapsulation can be realized by using microfluidic approaches for producing monodisperse double emulsions with versatile and controllable structures as the encapsulation system. The size, number and composition of the emulsion drops can be accurately manipulated for optimizing the encapsulation of each component for pharmaceutical applications. In this review, we highlight the outstanding advantages of controllable microfluidic double emulsions for highly efficient and precisely controllable encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced composite applications for sub-micron biologically derived microstructures
NASA Technical Reports Server (NTRS)
Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas
1991-01-01
A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.
Yu, Kui; Zhu, Tonghe; Wu, Yu; Zhou, Xiangxiang; Yang, Xingxing; Wang, Juan; Fang, Jun; El-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei
2017-03-01
A dual drug-loaded system is a promising alternative for the sustained drug release system and skin tissue engineering. In this study, a natural sodium montmorillonite (Na-MMT) modified by cetyl trimethyl ammonium bromide (CTAB) was prepared as a carrier to load a model drug - amoxicillin (AMX), the modified organic montmorillonite (CTAB-OMMT) loaded with AMX was marked as AMX@CTAB-OMMT and was subsequently incorporated into poly(ester-urethane) urea (PEUU) and gelatin hybrid nanofibers via electrospinning, resulting in a new drug-loaded nanofibrous scaffold (AMX@CTAB-OMMT-PU75). The scanning electron microscopy (SEM) result showed that the fiber morphology did not change after the embedding of AMX@CTAB-OMMT. Meanwhile, there was a significant increase of mechanical properties for PEUU/Gelatin hybrid nanofibers (PU75) after the incorporation of AMX@CTAB-OMMT and CTAB-OMMT. Importantly, AMX@CTAB-OMMT-PU75 nanofibers showed a kind of sustained drug release property which could be justified reasonably for the controlled release of AMX depending on the various application. The sustained release property could be identified roughly by the result of antibacterial test. The anaphylactic reaction test proved that there was no any anaphylactic reaction or inflammation on the back of rat for AMX@CTAB-OMMT-PU75 nanofibers. Consequently, the prepared drug-loaded AMX@CTAB-OMMT-PU75 nanofibrous scaffold is a promising candidate for application in the skin tissue engineering field and controlled drug release system. Copyright © 2016 Elsevier B.V. All rights reserved.
The Potential of Improving Medical Textile for Cutaneous Diseases
NASA Astrophysics Data System (ADS)
Radu, C. D.; Cerempei, A.; Salariu, M.; Parteni, O.; Ulea, E.; Campagne, Chr
2017-10-01
The paper dwells on the prospect of medical textiles designed to release a drug/active principle to the dermis of patients suffering from cutaneous disease (allergic dermatitis, psoriasis, bacterial/infectious conditions and inflammatory conditions). The paper is an overview of general and experimental data from textile applications. An adequate medical textile may have a cellulosic structure, mainly knitted cotton fabric. In special cases, one may use woven fabric for multilayer drug-releasing systems. As far as controlled release systems are concerned, we carried out a critical comparison between the systems described in literature and our experimental findings as concerns cyclodextrin, hydrogel, film charged with active principles and multilayer system.
Buchmann, Stefan; Sandmann, Gunther H; Walz, Lars; Reichel, Thomas; Beitzel, Knut; Wexel, Gabriele; Tian, Weiwei; Battmann, Achim; Vogt, Stephan; Winter, Gerhard; Imhoff, Andreas B
2015-04-10
Biological augmentation of rotator cuff repair is of growing interest to improve biomechanical properties and prevent re-tearing. But intraoperative single shot growth factor application appears not sufficient to provide healing support in the physiologic growth factor expression peaks. The purpose of this study was to establish a sustained release of granulocyte-colony stimulating factor (G-CSF) from injectable vesicular phospholipid gels (VPGs) in vitro and to examine biocompatibility and influence on histology and biomechanical behavior of G-CSF loaded VPGs in a chronic supraspinatus tear rat model. G-CSF loaded VPGs were produced by dual asymmetric centrifugation. In vitro the integrity, stability and release rate were analyzed. In vivo supraspinatus tendons of 60 rats were detached and after 3 weeks a transosseous refixation with G-CSF loaded VPGs augmentation (n = 15; control, placebo, 1 and 10 μg G-CSF/d) was performed. 6 weeks postoperatively the healing site was analyzed histologically (n = 9; H&E by modified MOVIN score/Collagen I/III) and biomechanically (n = 6). In vitro testing revealed stable proteins after centrifugation and a continuous G-CSF release of up to 4 weeks. Placebo VPGs showed histologically no negative side effects on the healing process. Histologically in vivo testing demonstrated significant advantages for G-CSF 1 μg/d but not for G-CSF 10 μg/d in Collagen III content (p = 0.035) and a higher Collagen I/III ratio compared to the other groups. Biomechanically G-CSF 1 μg/d revealed a significant higher load to failure ratio (p = 0.020) compared to control but no significant differences in stiffness. By use of VPGs a continuous growth factor release could be obtained in vitro. The in vivo results demonstrate an improvement of immunohistology and biomechanical properties with a low dose G-CSF application via VPG. The VPG itself was well tolerated and had no negative influence on the healing behavior. Due to the favorable properties (highly adhesive, injectable, biocompatible) VPGs are a very interesting option for biologic augmentation. The study may serve as basis for further research in growth factor application models.
Monitoring fugitive methane and natural gas emissions, validation of measurement techniques.
NASA Astrophysics Data System (ADS)
Robinson, Rod; Innocenti, Fabrizio; Gardiner, Tom; Helmore, Jon; Finlayson, Andrew; Connor, Andy
2017-04-01
The detection and quantification of fugitive and diffuse methane emissions has become an increasing priority in recent years. As the requirements for routine measurement to support industry initiatives increase there is a growing requirement to assess and validate the performance of fugitive emission measurement technologies. For reported emissions traceability and comparability of measurements is important. This talk will present recent work addressing these needs. Differential Absorption Lidar (DIAL) is a laser based remote sensing technology, able to map the concentration of gases in the atmosphere and determine emission fluxes for fugitive emissions. A description of the technique and its application for determining fugitive emissions of methane from oil and gas operations and waste management sites will be given. As DIAL has gained acceptance as a powerful tool for the measurement and quantification of fugitive emissions, and given the rich data it produces, it is being increasingly used to assess and validate other measurement approaches. In addition, to support the validation of technologies, we have developed a portable controlled release facility able to simulate the emissions from area sources. This has been used to assess and validate techniques which are used to monitor emissions. The development and capabilities of the controlled release facility will be described. This talk will report on recent studies using DIAL and the controlled release facility to validate fugitive emission measurement techniques. This includes side by side comparisons of two DIAL systems, the application of both the DIAL technique and the controlled release facility in a major study carried out in 2015 by South Coast Air Quality Management District (SCAQMD) in which a number of optical techniques were assessed and the development of a prototype method validation approach for techniques used to measure methane emissions from shale gas sites. In conclusion the talk will provide an update on the current status in the development of a European Standard for the measurement of fugitive emissions of VOCs and the use of validation data in the standardisation process and discuss the application of this to methane measurement.
Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles.
Zhang, Yulong; Dong, Rui; Park, Yujin; Bohner, Marc; Zhang, Xinli; Ting, Kang; Soo, Chia; Wu, Benjamin M
2016-09-10
NEL-like molecule-1 (NELL-1) is a novel osteogenic protein that showing high specificity to osteochondral cells. It was widely used in bone regeneration research by loading onto carriers such as tricalcium phosphate (TCP) particles. However, there has been little research on protein controlled release from this material and its potential application. In this study, TCP was first modified with a hydroxyapatite coating followed by a chitosan coating to prepare chitosan/hydroxyapatite-coated TCP particles (Chi/HA-TCP). The preparation was characterized by SEM, EDX, FTIR, XRD, FM and Zeta potential measurements. The NELL-1 loaded Chi/HA-TCP particles and the release kinetics were investigated in vitro. It was observed that the Chi/HA-TCP particles prepared with the 0.3% (wt/wt) chitosan solution were able to successfully control the release of NELL-1 and maintain a slow, steady release for up to 28 days. Furthermore, more than 78% of the loaded protein's bioactivity was preserved in Chi/HA-TCP particles over the period of the investigation, which was significantly higher than that of the protein released from hydroxyapatite coated TCP (HA-TCP) particles. Collectively, this study suggests that the osteogenic protein NELL-1 showed a sustained release pattern after being encapsulated into the modified Chi/HA-TCP particles, and the NELL-1 integrated composite of Chi/HA-TCP showed a potential to function as a protein delivery carrier and as an improved bone matrix for use in bone regeneration research. Copyright © 2016 Elsevier B.V. All rights reserved.
Díaz-Rodríguez, P; Rey-Rico, A; Madry, H; Landin, M; Cucchiarini, M
2015-12-30
Viral vectors are common tools in gene therapy to deliver foreign therapeutic sequences in a specific target population via their natural cellular entry mechanisms. Incorporating such vectors in implantable systems may provide strong alternatives to conventional gene transfer procedures. The goal of the present study was to generate different hydrogel structures based on alginate (AlgPH155) and poloxamer PF127 as new systems to encapsulate and release recombinant adeno-associated viral (rAAV) vectors. Inclusion of rAAV in such polymeric capsules revealed an influence of the hydrogel composition and crosslinking temperature upon the vector release profiles, with alginate (AlgPH155) structures showing the fastest release profiles early on while over time vector release was more effective from AlgPH155+PF127 [H] capsules crosslinked at a high temperature (50°C). Systems prepared at room temperature (AlgPH155+PF127 [C]) allowed instead to achieve a more controlled release profile. When tested for their ability to target human mesenchymal stem cells, the different systems led to high transduction efficiencies over time and to gene expression levels in the range of those achieved upon direct vector application, especially when using AlgPH155+PF127 [H]. No detrimental effects were reported on either cell viability or on the potential for chondrogenic differentiation. Inclusion of PF127 in the capsules was also capable of delaying undesirable hypertrophic cell differentiation. These findings are of promising value for the further development of viral vector controlled release strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Rhodamine/Nanodiamond as a System Model for Drug Carrier.
Reina, G; Orlanducci, S; Cairone, C; Tamburri, E; Lenti, S; Cianchetta, I; Rossi, M; Terranova, M L
2015-02-01
In this paper we present some strategies that are being developed in our labs towards enabling nanodiamond-based applications for drug delivery. Rhodamine B (RhB) has been choosen as model molecule to study the loading of nanodiamonds with active moieties and the conditions for their controlled release. In order to test the chemical/physical interactions between functionalized detonation nanodiamond (DND) and complex molecules, we prepared and tested different RhB@DND systems, with RhB adsorbed or linked by ionic bonding to the DND surface. The chemical state of the DND surfaces before conjugation with the RhB molecules, and the chemical features of the DND-RhB interactions have been deeply analysed by coupling DND with Au nanoparticles and taking advantage of surface enhanced Raman spectroscopy SERS. The effects due to temperature and pH variations on the process of RhB release from the DND carrier have been also investigated. The amounts of released molecules are consistent with those required for effective drug action in conventional therapeutic applications, and this makes the DND promising nanostructured cargos for drug delivery applications.
Direct writing of bio-functional coatings for cardiovascular applications.
Perkins, Jessica; Hong, Yi; Ye, Sang-Ho; Wagner, William R; Desai, Salil
2014-12-01
The surface modification of metallic biomaterials is of critical importance to enhance the biocompatibility of surgical implant materials and devices. This article investigates the use of a direct-write inkjet technique for multilayer coatings of a biodegradable polymer (polyester urethane urea (PEUU)) embedded with an anti-proliferation drug paclitaxel (Taxol). The direct-write inkjet technique provides selective patterning capability for depositing multimaterial coatings on three-dimensional implant devices such as pins, screws, and stents for orthopedic and vascular applications. Drug release profiles were studied to observe the influence of drug loading and coating thickness for obtaining tunable release kinetics. Platelet deposition studies were conducted following ovine blood contact and significant reduction in platelet deposition was observed on the Taxol loaded PEUU substrate compared with the unloaded control. Rat smooth muscle cells were used for cell proliferation studies. Significant reduction in cell growth was observed following the release of anti-proliferative drug from the biopolymer thin film. This research provides a basis for developing anti-proliferative biocompatible coatings for different biomedical device applications. © 2014 Wiley Periodicals, Inc.
Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection
NASA Astrophysics Data System (ADS)
Pang, Bin
Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant frequency was reduced by more than 20 dB with controlled liquid fuel injection method. Scaling issues were also investigated in this dump combustor to test the effectiveness of using pulsed liquid fuel injection strategies to suppress instabilities at higher power output conditions. With the liquid fuel injection control method, it was possible to suppress strong instabilities with initial amplitude of +/-5 psi down to the background noise level. The stable combustor operating range was also expanded from equivalence ratio of 0.75 to beyond 0.9.
NASA Astrophysics Data System (ADS)
de Barros, Felipe P. J.
2018-07-01
Quantifying the uncertainty in solute mass discharge at an environmentally sensitive location is key to assess the risks due to groundwater contamination. Solute mass fluxes are strongly affected by the spatial variability of hydrogeological properties as well as release conditions at the source zone. This paper provides a methodological framework to investigate the interaction between the ubiquitous heterogeneity of the hydraulic conductivity and the mass release rate at the source zone on the uncertainty of mass discharge. Through the use of perturbation theory, we derive analytical and semi-analytical expressions for the statistics of the solute mass discharge at a control plane in a three-dimensional aquifer while accounting for the solute mass release rates at the source. The derived solutions are limited to aquifers displaying low-to-mild heterogeneity. Results illustrate the significance of the source zone mass release rate in controlling the mass discharge uncertainty. The relative importance of the mass release rate on the mean solute discharge depends on the distance between the source and the control plane. On the other hand, we find that the solute release rate at the source zone has a strong impact on the variance of the mass discharge. Within a risk context, we also compute the peak mean discharge as a function of the parameters governing the spatial heterogeneity of the hydraulic conductivity field and mass release rates at the source zone. The proposed physically-based framework is application-oriented, computationally efficient and capable of propagating uncertainty from different parameters onto risk metrics. Furthermore, it can be used for preliminary screening purposes to guide site managers to perform system-level sensitivity analysis and better allocate resources.
NASA Astrophysics Data System (ADS)
Hill, Laura E.; Gomes, Carmen L.
2014-12-01
The goal of this study was to develop an effective method to synthesize poly-n-isopropylacrylamide (PNIPAAM) nanoparticles with entrapped cinnamon bark extract (CBE) to improve its delivery to foodborne pathogens and control its release with temperature stimuli. CBE was used as a model for hydrophobic natural antimicrobials. A top-down procedure using crosslinked PNIPAAM was compared to a bottom-up procedure using NIPAAM monomer. Both processes relied on self-assembly of the molecules into micelles around the CBE at 40 °C. Processing conditions were compared including homogenization time of the polymer, hydration time prior to homogenization, lyophilization, and the effect of particle ultrafiltration. The top-down versus bottom-up synthesis methods yielded particles with significantly different characteristics, especially their release profiles and antimicrobial activities. The synthesis methods affected particle size, with the bottom-up procedure resulting in smaller (P < 0.05) diameters than the top-down procedure. The controlled release profile of CBE from nanoparticles was dependent on the release media temperature. A faster, burst release was observed at 40 °C and a slower, more sustained release was observed at lower temperatures. PNIPAAM particles containing CBE were analyzed for their antimicrobial activity against Salmonella enterica serovar Typhimurium LT2 and Listeria monocytogenes Scott A. The PNIPAAM particles synthesized via the top-down procedure had a much faster release, which led to a greater (P < 0.05) antimicrobial activity. Both of the top-down nanoparticles performed similarly, therefore the 7 min homogenization time nanoparticles would be the best for this application, as the process time is shorter and little improvement was seen by using a slightly longer homogenization.
Chen, Pei-Ru; Chen, Ming-Hong; Lin, Feng-Huei; Su, Wen-Yu
2005-11-01
The gelatin-tricalcium phosphate membranes were cross-linking with low concentration glutaraldehyde solution (GTG). This material has good mechanical property, biocompatibility, and is feasible for surgical manipulation. For axonal regeneration, nerve growth factors (NGF) were immobilized onto the composite (GTG) with carbodiimide. The purpose of this study was to evaluate the release characteristics and bioactivity of NGF after covalent immobilization onto the GTG membranes (GEN). NGF immobilized onto and released from the composite was quantified using ELISA method. PC 12 cells were cultured on the GTG and GEN composites. Cell survival, cytotoxicity, and cellular activity were evaluated by total protein content, LDH activity, and MTT assay respectively. Neurite outgrowth assay was used to evaluate the biological activity of NGF released from GEN composite. From ELISA measurement, the releasing curve for NGF showing two distinctive parts with different slopes indicated that NGF were released from the composite in diffusion-controlled mechanism and degradation-controlled mechanism respectively. While culturing with PC 12 cells, LDH leakage results implied that whether GTG composite cross-linked with NGF or not showed little cytotoxicity. The total protein content and cellular activity of PC 12 cells were lower on GTG and GEN membranes than control group. However, 56%+/-3.98 of PC 12 cells showed significant neurite outgrowth on GEN membranes which was statistically higher than GTG without NGF immobilization. In addition, sustained release of bioactive NGF for two months had been demonstrated by neurite outgrowth assay. From these experiments, it can be concluded that the technique used in the present study is capable of immobilizing NGF onto GTG membranes covalently and remaining the bioactivity of NGF. Therefore, GEN composite can be materials for sustained release of bioactive NGF and a candidate for future therapeutic application in nerve repair.
Kulinowski, Piotr; Hudy, Wiktor; Mendyk, Aleksander; Juszczyk, Ewelina; Węglarz, Władysław P; Jachowicz, Renata; Dorożyński, Przemysław
2016-06-01
In the last decade, imaging has been introduced as a supplementary method to the dissolution tests, but a direct relationship of dissolution and imaging data has been almost completely overlooked. The purpose of this study was to assess the feasibility of relating magnetic resonance imaging (MRI) and dissolution data to elucidate dissolution profile features (i.e., kinetics, kinetics changes, and variability). Commercial, hydroxypropylmethyl cellulose-based quetiapine fumarate controlled-release matrix tablets were studied using the following two methods: (i) MRI inside the USP4 apparatus with subsequent machine learning-based image segmentation and (ii) dissolution testing with piecewise dissolution modeling. Obtained data were analyzed together using statistical data processing methods, including multiple linear regression. As a result, in this case, zeroth order release was found to be a consequence of internal structure evolution (interplay between region's areas-e.g., linear relationship between interface and core), which eventually resulted in core disappearance. Dry core disappearance had an impact on (i) changes in dissolution kinetics (from zeroth order to nonlinear) and (ii) an increase in variability of drug dissolution results. It can be concluded that it is feasible to parameterize changes in micro/meso morphology of hydrated, controlled release, swellable matrices using MRI to establish a causal relationship between the changes in morphology and drug dissolution. Presented results open new perspectives in practical application of combined MRI/dissolution to controlled-release drug products.
Kesisoglou, Filippos; Hermans, Andre; Neu, Colleen; Yee, Ka Lai; Palcza, John; Miller, Jessica
2015-09-01
Although in vitro-in vivo correlations (IVIVCs) are commonly pursued for modified-release products, there are limited reports of successful IVIVCs for immediate-release (IR) formulations. This manuscript details the development of a Multiple Level C IVIVC for the amorphous solid dispersion formulation of suvorexant, a BCS class II compound, and its application to establishing dissolution specifications and in-process controls. Four different 40 mg batches were manufactured at different tablet hardnesses to produce distinct dissolution profiles. These batches were evaluated in a relative bioavailability clinical study in healthy volunteers. Although no differences were observed for the total exposure (AUC) of the different batches, a clear relationship between dissolution and Cmax was observed. A validated Multiple Level C IVIVC against Cmax was developed for the 10, 15, 20, 30, and 45 min dissolution time points and the tablet disintegration time. The relationship established between tablet tensile strength and dissolution was subsequently used to inform suitable tablet hardness ranges within acceptable Cmax limits. This is the first published report for a validated Multiple Level C IVIVC for an IR solid dispersion formulation demonstrating how this approach can facilitate Quality by Design in formulation development and help toward clinically relevant specifications and in-process controls. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason; Miyazono, Kohei; Gelovani, Juri G.; Kataoka, Kazunori; Brinker, C. Jeffrey; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata
2016-01-01
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407
NASA Astrophysics Data System (ADS)
Barreto, A. C. H.; Santiago, V. R.; Mazzetto, S. E.; Denardin, J. C.; Lavín, R.; Mele, Giuseppe; Ribeiro, M. E. N. P.; Vieira, Icaro G. P.; Gonçalves, Tamara; Ricardo, N. M. P. S.; Fechine, P. B. A.
2011-12-01
Quercetin belongs to the chemical class of flavonoids and can be found in many common foods, such as apples, nuts, berries, etc. It has been demonstrated that quercetin has a wide array of biological effects that are considered beneficial to health treatment, mainly as anticancer. However, therapeutic applications of quercetin have been restricted to oral administration due to its sparing solubility in water and instability in physiological medium. A drug delivery methodology was proposed in this work to study a new quercetin release system in the form of magnetite-quercetin-copolymer (MQC). These materials were characterized through XRD, TEM, IR, and Thermal analysis. In addition, the magnetization curves and quercetin releasing experiments were performed. It was observed a nanoparticle average diameter of 11.5 and 32.5 nm at Fe3O4 and MQC, respectively. The presence of magnetic nanoparticles in this system offers the promise of targeting specific organs within the body. These results indicate the great potential for future applications of the MQC to be used as a new quercetin release system.
Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2016-02-16
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; ...
2016-02-02
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less
NASA Astrophysics Data System (ADS)
Porta-i-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J.; Marsal, Lluis F.
2016-08-01
Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.
NASA Astrophysics Data System (ADS)
Gayam, Srivardhan Reddy; Venkatesan, Parthiban; Sung, Yi-Ming; Sung, Shuo-Yuan; Hu, Shang-Hsiu; Hsu, Hsin-Yun; Wu, Shu-Pao
2016-06-01
The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material. Electronic supplementary information (ESI) available: Synthesis and characterization of the functional molecules and MSNPs is available in the ESI. See DOI: 10.1039/c6nr03525f
Stability of lipid encapsulated ferulic acid particles
USDA-ARS?s Scientific Manuscript database
Encapsulation of bioactive compounds by a solid lipid matrix provides stability and a mechanism for controlled release in formulated products. Phenolic compounds exhibit antioxidant and antimicrobial activities and have applications as functional food and feed additives. Ferulic acid, a common pheno...
Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes.
Zaher, A; Li, S; Wolf, K T; Pirmoradi, F N; Yassine, O; Lin, L; Khashab, N M; Kosel, J
2015-09-01
Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5-2 μg/h for higher release rate designs, and 12-40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.
Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes
Zaher, A.; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, O.; Lin, L.; Khashab, N. M.; Kosel, J.
2015-01-01
Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source. PMID:26487899
Three-dimensional printing in pharmaceutics: promises and problems.
Yu, Deng Guang; Zhu, Li-Min; Branford-White, Christopher J; Yang, Xiang Liang
2008-09-01
Three-dimensional printing (3DP) is a rapid prototyping (RP) technology. Prototyping involves constructing specific layers that uses powder processing and liquid binding materials. Reports in the literature have highlighted the many advantages of the 3DP system over other processes in enhancing pharmaceutical applications, these include new methods in design, development, manufacture, and commercialization of various types of solid dosage forms. For example, 3DP technology is flexible in that it can be used in applications linked to linear drug delivery systems (DDS), colon-targeted DDS, oral fast disintegrating DDS, floating DDS, time controlled, and pulse release DDS as well as dosage form with multiphase release properties and implantable DDS. In addition 3DP can also provide solutions for resolving difficulties relating to the delivery of poorly water-soluble drugs, peptides and proteins, preparation of DDS for high toxic and potent drugs and controlled-release of multidrugs in a single dosage forms. Due to its flexible and highly reproducible manufacturing process, 3DP has some advantages over conventional compressing and other RP technologies in fabricating solid DDS. This enables 3DP to be further developed for use in pharmaceutics applications. However, there are some problems that limit the further applications of the system, such as the selections of suitable excipients and the pharmacotechnical properties of 3DP products. Further developments are therefore needed to overcome these issues where 3DP systems can be successfully combined with conventional pharmaceutics. Here we present an overview and the potential 3DP in the development of new drug delivery systems.
Automatic Control and Data Acquisition System for Combustion Laboratory Applications.
1982-10-01
O VPI Access~.ion FCr- 1473 2 UNCLASSIFIED Approved for public release; distribution unlimited JAutomatic Control and Data Acquisition System for...unit. The CPU/ROK board includes a 16 bit microprocessor chip which decodes and executes all in- structions, and controls all data transfers. The 12K...in the limited memory space of 32K of the HP-85 33 ACQDTA’ 1) Controls DevicesCRAIN ,2) Acquires Photodiods Output$ 3) Stores Data o Disc 1
CO2-switchable fluorescence of a dendritic polymer and its applications
NASA Astrophysics Data System (ADS)
Gao, Chunmei; Lü, Shaoyu; Liu, Mingzhu; Wu, Can; Xiong, Yun
2015-12-01
The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release.The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06729d
Pham, Minh Nguyet; Van Vo, Toi; Tran, Van-Thanh; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh
2017-10-01
Microemulsion has the potentials to enhance dissolution as well as facilitate absorption and permeation of poorly water-soluble drugs through biological membranes. However, its application to govern a controlled release buccal delivery for local treatment has not been discovered. The aim of this study is to develop microemulsion-based mucoadhesive wafers for buccal delivery based on an incorporation of the microemulsion with mucoadhesive agents and mannitol. Ratio of oil to surfactant to water in the microemulsion significantly impacted quality of the wafers. Furthermore, the combination of carbopol and mannitol played a key role in forming the desired buccal wafers. The addition of an extra 50% of water to the formulation was suitable for wafer formation by freeze-drying, which affected the appearance and distribution of carbopol in the wafers. The amount of carbopol was critical for the enhancement of mucoadhesive properties and the sustained drug release patterns. Release study presented a significant improvement of the drug release profile following sustained release for 6 h. Ex vivo mucoadhesive studies provided decisive evidence to the increased retention time of wafers along with the increased carbopol content. The success of this study indicates an encouraging strategy to formulate a controlled drug delivery system by incorporating microemulsions into mucoadhesive wafers.
Fine, Daniel; Grattoni, Alessandro; Hosali, Sharath; Ziemys, Arturas; De Rosa, Enrica; Gill, Jaskaran; Medema, Ryan; Hudson, Lee; Kojic, Milos; Milosevic, Miljan; Brousseau Iii, Louis; Goodall, Randy; Ferrari, Mauro; Liu, Xuewu
2010-11-21
This manuscript demonstrates a mechanically robust implantable nanofluidic membrane capable of tunable long-term zero-order release of therapeutic agents in ranges relevant for clinical applications. The membrane, with nanochannels as small as 5 nm, allows for the independent control of both dosage and mechanical strength through the integration of high-density short nanochannels parallel to the membrane surface with perpendicular micro- and macrochannels for interfacing with the ambient solutions. These nanofluidic membranes are created using precision silicon fabrication techniques on silicon-on-insulator substrates enabling exquisite control over the monodispersed nanochannel dimensions and surface roughness. Zero-order release of analytes is achieved by exploiting molecule to surface interactions which dominate diffusive transport when fluids are confined to the nanoscale. In this study we investigate the nanofluidic membrane performance using custom diffusion and gas testing apparatuses to quantify molecular release rate and process uniformity as well as mechanical strength using a gas based burst test. The kinetics of the constrained zero-order release is probed with molecules presenting a range of sizes, charge states, and structural conformations. Finally, an optimal ratio of the molecular hydrodynamic diameter to the nanochannel dimension is determined to assure zero-order release for each tested molecule.
Dynamic regulation of erythropoiesis: A computer model of general applicability
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1979-01-01
A mathematical model for the control of erythropoiesis was developed based on the balance between oxygen supply and demand at a renal oxygen detector which controls erythropoietin release and red cell production. Feedback regulation of tissue oxygen tension is accomplished by adjustments of hemoglobin levels resulting from the output of a renal-bone marrow controller. Special consideration was given to the determinants of tissue oxygenation including evaluation of the influence of blood flow, capillary diffusivity, oxygen uptake and oxygen-hemoglobin affinity. A theoretical analysis of the overall control system is presented. Computer simulations of altitude hypoxia, red cell infusion hyperoxia, and homolytic anemia demonstrate validity of the model for general human application in health and disease.
Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications.
Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Lai, Yue-Kun
To address the limitations of traditional drug delivery, TiO 2 nanotubes (TNTs) are recognized as a promising material for localized drug delivery systems. With regard to the excellent biocompatibility and physicochemical properties, TNTs prepared by a facile electrochemical anodizing process have been used to fabricate new drug-releasing implants for localized drug delivery. This review discusses the development of TNTs applied in localized drug delivery systems, focusing on several approaches to control drug release, including the regulation of the dimensions of TNTs, modification of internal chemical characteristics, adjusting pore openings by biopolymer coatings, and employing polymeric micelles as drug nanocarriers. Furthermore, rational strategies on external conditions-triggered stimuli-responsive drug release for localized drug delivery systems are highlighted. Finally, the review concludes with the recent advances on TNTs for controlled drug delivery and corresponding prospects in the future.
Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes.
Niskanen, Jukka; Zhang, Issan; Xue, Yanming; Golberg, Dmitri; Maysinger, Dusica; Winnik, Françoise M
2016-01-01
To evaluate the response of cells to boron nitride nanotubes (BNNTs) carrying fluorescent probes or drugs in their inner channel by assessment of the cellular localization of the fluorescent cargo, evaluation of the in vitro release and biological activity of a drug (curcumin) loaded in BNNTs. Cells treated with curcumin-loaded BNNTs and stimulated with lipopolysaccharide were assessed for nitric oxide release and stimulation of IL-6 and TNF-α. The cellular trafficking of two cell-permeant dyes and a non-cell-permeant dye loaded within BNNTs was imaged. BNNTs loaded with up to 13 wt% fluorophores were internalized by cells and controlled release of curcumin triggered cellular pathways associated with the known anti-inflammatory effects of the drug. The overall findings indicate that BNNTs can function as nanocarriers of biologically relevant probes/drugs allowing one to examine/control their local intracellular localization and biochemical effects, leading the way to applications as intracellular nanosensors.
Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications
Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Lai, Yue-Kun
2017-01-01
To address the limitations of traditional drug delivery, TiO2 nanotubes (TNTs) are recognized as a promising material for localized drug delivery systems. With regard to the excellent biocompatibility and physicochemical properties, TNTs prepared by a facile electrochemical anodizing process have been used to fabricate new drug-releasing implants for localized drug delivery. This review discusses the development of TNTs applied in localized drug delivery systems, focusing on several approaches to control drug release, including the regulation of the dimensions of TNTs, modification of internal chemical characteristics, adjusting pore openings by biopolymer coatings, and employing polymeric micelles as drug nanocarriers. Furthermore, rational strategies on external conditions-triggered stimuli-responsive drug release for localized drug delivery systems are highlighted. Finally, the review concludes with the recent advances on TNTs for controlled drug delivery and corresponding prospects in the future. PMID:28053530
Thomas, Courtney R; Ferris, Daniel P; Lee, Jae-Hyun; Choi, Eunjoo; Cho, Mi Hyeon; Kim, Eun Sook; Stoddart, J Fraser; Shin, Jeon-Soo; Cheon, Jinwoo; Zink, Jeffrey I
2010-08-11
Mesoporous silica nanoparticles are useful nanomaterials that have demonstrated the ability to contain and release cargos with mediation by gatekeepers. Magnetic nanocrystals have the ability to exhibit hyperthermic effects when placed in an oscillating magnetic field. In a system combining these two materials and a thermally sensitive gatekeeper, a unique drug delivery system can be produced. A novel material that incorporates zinc-doped iron oxide nanocrystals within a mesoporous silica framework that has been surface-modified with pseudorotaxanes is described. Upon application of an AC magnetic field, the nanocrystals generate local internal heating, causing the molecular machines to disassemble and allowing the cargos (drugs) to be released. When breast cancer cells (MDA-MB-231) were treated with doxorubicin-loaded particles and exposed to an AC field, cell death occurred. This material promises to be a noninvasive, externally controlled drug delivery system with cancer-killing properties.
NASA Astrophysics Data System (ADS)
Yu, Zhan; Yu, Min; Zhang, Zhibao; Hong, Ge; Xiong, Qingqing
2014-07-01
Nanoparticles have attracted increasing attention for local drug delivery to the inner ear recently. Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method followed by glutaraldehyde fixation or heat denaturation. The nanoparticles were spherical in shape with an average diameter of 492 nm. The heat-denatured nanoparticles had good cytocompatibility. The nanoparticles could adhere on and penetrate through the round window membrane of guinea pigs. The nanoparticles were analyzed as drug carriers to investigate the loading capacity and release behaviors. Rhodamine B was used as a model drug in this paper. Rhodamine B-loaded nanoparticles showed a controlled release profile and could be deposited on the osseous spiral lamina. We considered that the bovine serum albumin nanoparticles may have potential applications in the field of local drug delivery in the treatment of inner ear disorders.
Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system.
Giray, Seda; Bal, Tuğba; Kartal, Ayse M; Kızılel, Seda; Erkey, Can
2012-05-01
A novel composite material consisting of a silica aerogel core coated by a poly(ethylene) glycol (PEG) hydrogel was developed. The potential of this novel composite as a drug delivery system was tested with ketoprofen as a model drug due to its solubility in supercritical carbon dioxide. The results indicated that both drug loading capacity and drug release profiles could be tuned by changing hydrophobicity of aerogels, and that drug loading capacity increased with decreased hydrophobicity, while slower release rates were achieved with increased hydrophobicity. Furthermore, higher concentration of PEG diacrylate in the prepolymer solution of the hydrogel coating delayed the release of the drug which can be attributed to the lower permeability at higher PEG diacrylate concentrations. The novel composite developed in this study can be easily implemented to achieve the controlled delivery of various drugs and/or proteins for specific applications. Copyright © 2012 Wiley Periodicals, Inc.
Liang, Yuan; Cao, Xinde; Zhao, Ling; Xu, Xiaoyun; Harris, Willie
2014-07-01
Land application of animal manure often risks excessive phosphorus (P) release into the surrounding water. The aim of this study was to convert the dairy manure into biochar, followed by their application into soil, and then to investigate P release from the manure and its derived biochar as well as from the manure- and biochar-amended soil. The results showed that P release was reduced when the manure was converted into biochar due to formation of less-soluble whitlockite [(Ca, Mg)(PO)]. The cumulative P released from biochar over 240 h was 0.26 g kg, a 76% reduction of that from the manure (1.07 g kg). The kinetic release of P from the manure was determined by the fast desorption process and was better fitted to Elovich equation, whereas P release from biochar was initially controlled by the diffusion process and then by slow but steady dissolution of (Ca,Mg)(PO), following the parabolic diffusion and linear models, respectively. When the manure or biochar was incorporated into the soil, P release in the CaCl and simulated acid rain water extraction from biochar-amended soil was consistently lower than that from the manure-amended soil during 210-d incubation. The lower P release in the biochar-amended soil was determined by stable P form (Ca, Mg)(PO) in the biochar itself, but less from the soil property effect. Results indicated that initial high P release from manure can be mitigated by converting the manure into biochar. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Zhang, Zhiling; Nix, Camilla A.; Ercan, Utku K.; Gerstenhaber, Jonathan A.; Joshi, Suresh G.; Zhong, Yinghui
2014-01-01
Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca2+ is less stable at acidic pH, enabling ‘smart’ drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca2+ concentration, and Ca2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca2+ binding affinity, enabling its use in a variety of biomedical applications. PMID:24409292
Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming
2014-01-01
Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.
Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming
2014-01-01
Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug–fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug–fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid. PMID:25114504
Yvete K. Ortega; Dean E. Pearson
2010-01-01
Broadleaf herbicides are commonly used to suppress exotic weeds with the intent of releasing native species from negative impacts of invasion. However, weed control measures can also have unintended consequences that should be considered along with intended effects. We conducted a controlled field experiment within bunchgrass communities of western Montana to examine...
Therapeutic applications of hydrogels in oral drug delivery
Sharpe, Lindsey A; Daily, Adam M; Horava, Sarena D; Peppas, Nicholas A
2015-01-01
Introduction Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. Areas covered This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. Expert opinion Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest. PMID:24848309
AHPCRC (Army High Performance Computing Research Center) Bulletin. Volume 3, Issue 1
2011-01-01
release; distribution is unlimited. Multiscale Modeling of Materials The rotating reflector antenna associated with airport traffic control systems is...batteries and phased-array antennas . Power and efficiency studies evaluate on-board HPC systems and advanced image processing applications. 2010 marked...giving way in some applications to a newer technology called the phased array antenna system (sometimes called a beamformer, example shown at right
Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release
Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou
2016-01-01
Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946
The application of halloysite tubule nanoclay in drug delivery.
Lvov, Yuri M; DeVilliers, Melgardt M; Fakhrullin, Rawil F
2016-07-01
Natural and biocompatible clay nanotubes are among the best inorganic materials for drug nanoformulations. These halloysite tubes with SiO2 on the outermost surface have diameter of ca. 50 nm, length around 1 micrometer and may be loaded with drugs at 10-30 wt. %. Narrow tube openings allow for controllable sustained drug release for hours, days or even weeks. Physical-chemical properties of these nanotubes are described followed by examples of drug-loading capabilities, release characteristics, and control of duration of release through the end tube capping with polymers. Development of halloysite-polymer composites such as tissue scaffolds and bone cement/dentist resin formulations with enhanced mechanical properties and extension of the drug release to 2-3 weeks are described. Examples of the compression properties of halloysite in tablets and capsules are also shown. We expect that clay nanotubes will be used primarily for non-injectable drug formulations, such as topical and oral dosage forms, cosmetics, as well as for composite materials with enhanced therapeutic effects. These include tissue scaffolds, bone cement and dentist resins with sustained release of antimicrobial and cell growth-promoting medicines (including proteins and DNA) as well as other formulations such as compounds for antiseptic treatment of hospitals.
Park, Man; Lee, Chang-Il; Seo, Young Jin; Woo, Sang Ryung; Shin, Dongill; Choi, Jyung
2010-01-01
Heavy application of highly toxic synthetic pesticides has been committed to protect crops against insects and diseases, which have brought about serious environmental problems. Thus, an inevitable and fundamental issue has been how to protect crops without harmful effects on nature. As a fascinating nature-compatible approach, we have attempted to hybridize soil-compatible layered double hydroxides (LDHs) with natural antibiotic substances. Only a few of natural antibiotic substances are available for pest control mainly because of their inherent properties such as easy degradability, high minimum inhibition concentration for practical application, and often extremely low availability, whereas LDHs exhibit unique properties such as anion exchange capacity, acid lability, and high affinity to ubiquitous carbonate ion which make them an excellent inorganic matrix to carry labile biomolecules in soils. This study focuses on the behavior of cinnamate-LDH hybrid in soils and the evaluation of its potentials as a green pesticide. The cinnamate-LDH hybrid was synthesized by a typical coprecipitation method. Cinnamic acid was analyzed by high performance liquid chromatography which was operated at 280 nm with C18 column. Its controlled release property was evaluated in a cultivated soil as well as a simulated soil solution. Its antifungal activity was examined against the growth of Phytophyhora capsici in a potato dextrose agar medium and a red pepper seedling, respectively. Structural characterization by X-ray diffraction, infra-red, and thermal analysis indicates that cinnamate molecules are safely intercalated into the interlayer space of inorganic layers of LDH by the electrostatic interaction to have an empirical formula of Mg(3)Al(OH)(8).CAN . 3.1H(2)O. The overall release pattern of the intercalated cinnamate in the soil solution could be best described by the power-function equation [Formula: see text]. This suggests that diffusion-controlled processes besides simple ion-exchange process play an important role in release of the intercalated cinnamate. Furthermore, its behavior in a cultivated soil clearly shows that hybridization leads to protection of cinnamate against the degradation as well as to a controlled release in soils. Its antifungal activity against the growth of P. capsici in a potato dextrose agar medium and a red pepper seedling definitely shows that the hybrid is very effective in controlling the root rot of red pepper. This study demonstrates that the hybridization of natural antibiotic substances with layered double hydroxides could be a fascinating alternative for green formulation of pesticides. This unique hybrid system leads to the salient features such as protection of the substances against chemical and microbial degradations, controlled release, and nature compatibility. This study suggests one of the sound strategies to make a breakthrough in the formulation of green pesticides. Hybridization with inorganic matrixes not only enables the natural antibiotic substances to replace the synthetic ingredients but also adjuvants to be excluded from the formulations. Furthermore, the resulting hybrid exhibits a controlled release of the intercalated substances. Although substantiated further, this study is expected to attract a great deal of attention to reliable application of natural antibiotic substances in green protection of crops and agricultural products.
Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles.
Oliveira, Rodinelli B; Nascimento, Thais L; Lima, Eliana M
2012-01-01
Ketoprofen is a non-steroid anti-inflammatory drug (NSAID) used in the treatment of rheumatic diseases and in mild to moderate pain. Ketoprofen has a short biological half-life and the commercially available conventional release formulations require dosages to be administered at least 2-3 times a day. Due to these characteristics, ketoprofen is a good candidate for the preparation of controlled release formulations. In this work, a multiparticulate-sustained release dosage form containing ketoprofen in a carnauba wax matrix was developed. Particles were prepared by an emulsion congealing technique. System variables were optimized using fractional factorial and response surface experimental design. Characterization of the particles included size and morphology, flow rate, drug loading and in vitro drug release. Spherical particles were obtained with high drug load and sustained drug release profile. The optimized particles had an average diameter of approximately 200 µm, 50% (w/w) drug load, good flow properties and prolonged ketoprofen release for more than 24 h. Carnauba wax microspheres prepared in this work represent a new multiparticulate-sustained release system for the NSAID ketoprofen, exhibiting good potential for application in further pharmaceutical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Jarrett; Siriwardane, Ranjani; Tian, Hanjing
Chemical Looping Gasification (CLG) is an emerging technology that shows promise for efficient coal gasification by eliminating the need for energy intensive gas separations to achieve a non-nitrogen diluted syngas stream. Oxygen from oxygen carriers, such as CaFe 2O 4, are used for coal gasification in place of conventionally produced gaseous oxygen from cryogenic separation of air. These oxygen carriers are unique for their ability to selectively oxidize coal to form syngas and show limited reactivity with syngas components (H 2, CO). To gain a deeper understanding of how these unique oxygen carriers perform and to offer a first attemptmore » at the reaction modeling of solid mediated interactions of this nature, this study was carried out to determine the kinetic parameters associated with the selective oxidation of coal derived char (Wyodak and Illinois #6) with a metal ferrite, CaFe 2O 4. Using thermogravimetric analysis (TGA) coupled with mass spectrometry, the selective oxygen release of metal ferrite in the presence of char by proximal contact was examined. The application of combinatory model fitting approaches was used to describe controlling resistances during oxygen release. A combination of the modified shrinking core model (SCM) with planar oxygen ion diffusion control and reaction order based models was used for kinetic parameter determination. CaFe 2O 4 particle size plays a major role in the prevailing mode of oxygen release. Particle sizes on the order of 40–50 μm tend to favor first order kinetically controlled regimes independent of geometric and diffusion controls. The probability for oxygen ion diffusion controlling regimes increased when the particle size range of the oxygen carrier was increased up to 350 μm. Char type also impacted the prevalence of the controlling regime. Higher ranked chars react in a slower manner, limiting the gradient for oxygen ion release from the oxygen carrier. Activation energies determined for this process range from 120–200kJ/mol and oxygen ion diffusion coefficients are on the order of 10-8 cm 2/s. It is suggested that oxygen ion movement is regulated by lattice diffusion out of partially reduced phases (Ca 2Fe 2O 5) and through reduced outer layers composed of CaO and Fe. The controlled movement of oxygen ions influences the rate of carbon oxidation in the char and therefore the selectivity towards partial oxidation products, which are desirable in CLG applications.« less
Riley, Jarrett; Siriwardane, Ranjani; Tian, Hanjing; ...
2017-05-20
Chemical Looping Gasification (CLG) is an emerging technology that shows promise for efficient coal gasification by eliminating the need for energy intensive gas separations to achieve a non-nitrogen diluted syngas stream. Oxygen from oxygen carriers, such as CaFe 2O 4, are used for coal gasification in place of conventionally produced gaseous oxygen from cryogenic separation of air. These oxygen carriers are unique for their ability to selectively oxidize coal to form syngas and show limited reactivity with syngas components (H 2, CO). To gain a deeper understanding of how these unique oxygen carriers perform and to offer a first attemptmore » at the reaction modeling of solid mediated interactions of this nature, this study was carried out to determine the kinetic parameters associated with the selective oxidation of coal derived char (Wyodak and Illinois #6) with a metal ferrite, CaFe 2O 4. Using thermogravimetric analysis (TGA) coupled with mass spectrometry, the selective oxygen release of metal ferrite in the presence of char by proximal contact was examined. The application of combinatory model fitting approaches was used to describe controlling resistances during oxygen release. A combination of the modified shrinking core model (SCM) with planar oxygen ion diffusion control and reaction order based models was used for kinetic parameter determination. CaFe 2O 4 particle size plays a major role in the prevailing mode of oxygen release. Particle sizes on the order of 40–50 μm tend to favor first order kinetically controlled regimes independent of geometric and diffusion controls. The probability for oxygen ion diffusion controlling regimes increased when the particle size range of the oxygen carrier was increased up to 350 μm. Char type also impacted the prevalence of the controlling regime. Higher ranked chars react in a slower manner, limiting the gradient for oxygen ion release from the oxygen carrier. Activation energies determined for this process range from 120–200kJ/mol and oxygen ion diffusion coefficients are on the order of 10-8 cm 2/s. It is suggested that oxygen ion movement is regulated by lattice diffusion out of partially reduced phases (Ca 2Fe 2O 5) and through reduced outer layers composed of CaO and Fe. The controlled movement of oxygen ions influences the rate of carbon oxidation in the char and therefore the selectivity towards partial oxidation products, which are desirable in CLG applications.« less
NASA Astrophysics Data System (ADS)
Carpenter, Alexis Wells
Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to <7 days. An alternative strategy for increasing NO release duration involved directly stabilizing the N-diazeniumdiolate using O2-protecting groups. O2-Methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 μmol NO/mg and an NO release half-life of 23 d. Doping the MOM-Pip/NO-modified particles into resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered Streptococcus mutans was observed with the MOM-Pip/NO-doped composites compared to undoped controls. The greater chemical flexibility of macromolecular scaffolds is a major advantage over LMW NO donors as it allows for the incorporation of multiple functionalities onto a single scaffold. To demonstrate this advantage, dual functional particles were synthesized by covalently binding quaternary ammonium (QA) functionalities to the surface of NO-releasing silica particles. The QA functionality proved more effective against Staphylococcus aureus than P. aeruginosa, and increasing alkyl chain length correlated with increased efficacy. Nitric oxide-releasing QA-functionalized particles were found to be more effective against S. aureus compared to monofunctional particles.
Brain-Emulating Cognition and Control Architecture (BECCA) v. 0.2 beta
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROHRER, BRANDON; & MORROW, JAMES
2009-06-16
BECCA is a learning and control method based on the function of the human brain. The goal behind its creation is to learn to control robots in unfamiliar environments in a way that is very robust, similar to the way that an infant learns to interact with her environment by trial and error. As of this release, this software contains an application for controlling robot hardware through a socket. The code was created so as to make it extensible to new applications. It is modular, object-oriented code in which the portions of the code that are specific to one robotmore » are easily separable from those portions that are the constant between implementations. BECCA makes very few assumptions about the robot and environment it is learning, and so is applicable to a wide range of learning and control problems.« less
Evaluation of the effects of nitric oxide-releasing nanoparticles on plants
NASA Astrophysics Data System (ADS)
Pereira, A. E. S.; Narciso, A. M.; Seabra, A. B.; Fraceto, L. F.
2015-05-01
Nowadays, there are several commercially available products containing nanostructured materials. Meanwhile, despite the many benefits that can be obtained from nanotechnology, it is still necessary to understand the mechanisms in which nanomaterials interact with the environment, and to obtain information concerning their possible toxic effects. In agriculture, nanotechnology has been used in different applications, such as nanosensors to detect pathogens, nanoparticles as controlled release systems for pesticides, and biofilms to deliver nutrients to plants and to protect food products against degradation. Moreover, plants can be used as models to study the toxicity of nanoparticles. Indeed, phytotoxicity assays are required to identify possible negative effects of nanostructured systems, prior to their implementation in agriculture. Nitric oxide (NO) plays a key role in plant growth and defense, and recently, several papers described the beneficial effects due to application of exogenous NO donors in plants. The tripeptide glutathione (GSH) is an important anti-oxidant molecule and is the precursor of the NO donor, S-nitrosoglutathione (GSNO). In this context, the present work investigates the effects of different concentrations of alginate/chitosan nanoparticles, containing either GSH or GSNO, on the development of two test species (Zea mays and Glycine sp.). The results showed that the alginate/chitosan nanoparticles present a size average range from 300 to 550 nm with a polydispersity index of 0.35, and encapsulation efficiency of GSH between 45 - 56%. The NO release kinetics from the alginate/chitosan nanoparticles containing GSNO showed sustained and controlled NO release over several hours. Plant assays showed that at the concentrations tested (1, 5 and 10 mM of GSH or GSNO), polymeric nanoparticles showed no significant inhibitory effects on the development of the species Zea mays and Glycine sp., considering the variables shoot height, root length, and dry mass. Therefore, these nanoparticles seem to have promissing uses in agriculture, and might be potencially used as controlled release systems applied by the foliar route.
Wang, Yu; Gao, Zideng; Shen, Feng; Li, Yang; Zhang, Sainan; Ren, Xueqin; Hu, Shuwen
2015-06-03
Chlorpyrifos' application and delivery to the target substrate needs to be controlled to improve its use. Herein, poly(butyl acrylate-co-styrene) (poly(BA/St)) and poly(BA/St/ethylene glycol dimethacrylate (EGDMA)) microcapsules loaded with chlorpyrifos as a slow release formulation were prepared by emulsion polymerization. The effects of structural characteristics on the chlorpyrifos microcapsule particle size, entrapment rate (ER), pesticide loading (PL), and release behaviors in ethyl alcohol were investigated. Fourier transform infrared and thermogravimetric analysis confirmed the successful entrapment of chlorpyrifos. The ER and PL varied with the BA/St monomer ratio, chlorpyrifos/monomer core-to-shell ratio, and EGDMA cross-linker content with consequence that suitable PL was estimated to be smaller than 3.09% and the highest ER was observed as 96.74%. The microcapsule particle size (88.36-101.8 nm) remained mostly constant. The extent of sustainable release decreased with increasing content of BA, St, or chlorpyrifos in the oil phase. Specifically, an adequate degree of cross-linking with EGMDA (0.5-2.5%) increased the extent of sustainable release considerably. However, higher levels of cross-linking with EGDMA (5-10%) reduced the extent of sustainable release. Chlorpyrifos release from specific microcapsules (monomer ratio 1:2 with 0.5% EGDMA or 5 g chlopyrifos) tended to be a diffusion-controlled process, while for others, the kinetics probably indicated the initial rupture release.
Blow spinning of food-grade-gelatin nanofibers (abstract)
USDA-ARS?s Scientific Manuscript database
Nanofibers have been examined for many diverse applications, including catalysis, filtration, controlled release of drugs and active agents, sensor, and tissue engineering and as texturized food ingredients. The primary advantage of nanofibers over larger diameter fibers is the larger surface area t...
40 CFR 141.719 - Additional filtration toolbox components.
Code of Federal Regulations, 2013 CFR
2013-07-01
... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... Eucalyptus. ArborGen is requesting that trees be allowed to flower at four locations in Alabama, Florida and... have indicated they will not allow these trees to flower at these locations. Permit application 11-052...
ENVIRONMENTALLY SAFE NO/VOC AUTOMOTIVE COATINGS/PREVENTION AND CONTROLS OF VOCS - PHASE I
Automotive paints provide reasonable protection against the elements but release substantial amounts of dangerous volatile organic components (VOCs) to the atmosphere during application. Foster-Miller proposes to extend their successful development of No VOC aircraft coatings to ...
40 CFR 141.719 - Additional filtration toolbox components.
Code of Federal Regulations, 2014 CFR
2014-07-01
... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...
40 CFR 141.719 - Additional filtration toolbox components.
Code of Federal Regulations, 2012 CFR
2012-07-01
... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...
Multi-unit dosage formulations of theophylline for controlled release applications.
Uhumwangho, Michael U; Okor, Roland S
2007-01-01
The study was carried out to investigate the drug release profiles of multi-unit dosage formulations of theophylline consisting of both the fast and slow release components in a unit dose. The fast release component consisted of conventional granules of theophylline formed by mixing the drug powder with starch mucilage (20% w/v) while the slow release component consisted of wax granulations of theophylline formed by triturating the drug powder with a melted Carnauba wax (drug:wax ratio, 4:1). The granules were either filled into capsules or tabletted. In the study design, the drug release characteristics of the individual fast or slow release particles were first determined separately and then mixed in various proportions for the purpose of optimizing the drug release profiles. The evaluating parameters were the prompt release in the first 1 h (mp), the maximum release (m infinity) and the time to attain it (t infinity). Total drug content in each capsule or tablet was 300 mg and two of such were used in dissolution studies. The release kinetics and hence the release mechanism was confirmed by measuring the linear regression coefficient (R2 values) of the release data. The release kinetics was generally most consistent with the Higuchi square root of time relationship (R2 = 0.95). indicating a diffusion-controlled mechanism. The mp (mg) and t infinity (h) values for capsules and tablets of the conventional granules were (420 mg, 3 h) and (348 mg, 5 h), respectively, while for the capsules and tablets of the wax granulations mp and t infinity values were (228 mg, 9 h) and (156 mg, 12 h), respectively, indicating that a combination of wax granulation and tableting markedly retarded drug release. In the multi-unit dose formulations where the conventional and wax granulations were mixed in the ratios 2:1, 1:1 and 1:2 (conventional: matrix), the m infinity and t infinity values for the capsules were (378 mg, 6 h), (326 mg, 6 h) and (272 mg, 7 h), reSpectively. The corresponding values of m infinity and t infinity for the tablets were (240 mg, 9 h), (180 mg, 11 h) and (128 mg, 12 h) against the set target (200 mg, 12 h). The indication is that tableting rather than encapsulation can more effectively control drug release from the systems.
Keohane, Kieran; Brennan, Des; Galvin, Paul; Griffin, Brendan T
2014-06-05
The increasing realisation of the impact of size and surface properties on the bio-distribution of drug loaded colloidal particles has driven the application of micro fabrication technologies for the precise engineering of drug loaded microparticles. This paper demonstrates an alternative approach for producing size controlled drug loaded PLGA based microparticles using silicon Microfluidic Flow Focusing Devices (MFFDs). Based on the precise geometry and dimensions of the flow focusing channel, microparticle size was successfully optimised by modifying the polymer type, disperse phase (Qd) flow rate, and continuous phase (Qc) flow rate. The microparticles produced ranged in sizes from 5 to 50 μm and were highly monodisperse (coefficient of variation <5%). A comparison of Ciclosporin (CsA) loaded PLGA microparticles produced by MFFDs vs conventional production techniques was also performed. MFFDs produced microparticles with a narrower size distribution profile, relative to the conventional approaches. In-vitro release kinetics of CsA was found to be influenced by the production technique, with the MFFD approach demonstrating the slowest rate of release over 7 days (4.99 ± 0.26%). Finally, MFFDs were utilised to produce pegylated microparticles using the block co-polymer, PEG-PLGA. In contrast to the smooth microparticles produced using PLGA, PEG-PLGA microparticles displayed a highly porous surface morphology and rapid CsA release, with 85 ± 6.68% CsA released after 24h. The findings from this study demonstrate the utility of silicon MFFDs for the precise control of size and surface morphology of PLGA based microparticles with potential drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Periodically patterned structures for nanoplasmonic and biomedical applications
NASA Astrophysics Data System (ADS)
Peer, Akshit
Periodically patterned nanostructures have imparted profound impact on diverse scientific disciplines. In physics, chemistry, and materials science, artificially engineered photonic crystals have demonstrated an unprecedented ability to control the propagation of photons through light concentration and diffraction. The field of photonic crystals has led to many technical advances in fabricating periodically patterned nanostructures in dielectric/metallic materials and controlling the light-matter interactions at the nanoscale. In the field of biomaterials, it is of great interest to apply our knowledge base of photonic materials and explore how such periodically patterned structures control diverse biological functions by varying the available surface area, which is a key attribute for surface hydrophobicity, cell growth and drug delivery. Here we describe closely related scientific applications of large-scale periodically patterned polymers and metal nanostructures. The dissertation starts with nanoplasmonics for improving photovoltaic devices, where we design and optimize experimentally realizable light-trapping nanostructures using rigorous scattering matrix simulations for enhancing the performance of organic and perovskite solar cells. The use of periodically patterned plasmonic metal cathode in conjunction with polymer microlens array significantly improves the absorption in solar cells, providing new opportunities for photovoltaic device design. We further show the unprecedented ability of nanoplasmonics to concentrate light at the nanoscale by designing a large-area plasmonic nanocup array with frequency-selective optical transmission. The fabrication of nanostructure is achieved by coating non-uniform gold layer over a submicron periodic nanocup array imprinted on polystyrene using soft lithography. The gold nanocup array shows extraordinary optical transmission at a wavelength close to the structure period. The resonance wavelength for transmission can be tuned by changing the period of the gold nanocup array, which opens up new avenues in subwavelength optics for designing optoelectronic devices and biological sensors. We then demonstrate strong exciton-plasmon coupling between non-toxic CuInS2/ZnS quantum dots in solution and plasmonic gold nanocup array. The photoluminescence decay rate of quantum dots can be enhanced by more than an order of magnitude due to the high electric field intensity enhancement inside the plasmonic nanocup cavity. This solution based metal-nanocrystal coupled system has great promise for biological applications such as biosensing and biolabeling. Moving to the area of biomedical applications, we fabricate nanopatterned biopolymers as templates for controlling the release of therapeutic drugs coated on the polymer surface. From careful drug release experiments performed over extended time periods (e.g. eight days), we find that nanopatterned polymers release the drug slower as compared to the flat polymer surfaces. The slow-down in the drug release from nanopatterned surfaces is attributed to increase in the surface hydrophobicity confirmed by the contact angle measurements and microfluidic simulations. This nanoscale drug release control scheme has great promise for improving the performance of drug-eluting stents in cardiac therapies.
Hong, Jinkee; Alvarez, Luis M.; Shah, Nisarg J.; Griffith, Linda G.; Kim, Byeong-Su; Char, Kookheon; Hammond, Paula T.
2014-01-01
The promise of cellular therapy lies in healing damaged tissues and organs in vivo as well as generating tissue constructs in vitro for subsequent transplantation. Adult stem cells are ideally suited for cellular therapies due to their pulripotency and the ease with which they can be cultured on novel functionalized substrates. Creating environments to control and successively driving their differentiation toward a lineage of choice is one of the most important challenges of current cell-based engineering strategies. In recent years, a variety of biomedical platforms have been prepared for stem cell cultures, primarily to provide efficient delivery of growth or survival factors to cells and a conducive microenvironment for their growth. Here, we demonstrate that repeating tetralayer structures composed of biocompatible poly(methacrylic acid) (PMAA)/poly(acryl amide) (PAAm)/poly(methacrylic acid) (PMAA)/poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) micelles arrayed in layer-by-layer (LbL) films can serve as a payload region for dexamethasone (dex) delivery to human mesenchymal stem cells (MSCs). This architecture can induce MSC differentiation into osteoblasts in a dose-dependent manner. The amount of dex loaded in the films is controlled by varying the deposition conditions and the film thickness. Furthermore, release of dex is also controlled by changing the amount of covalent crosslinking of multilayers via thermal treatments. The multilayer architecture including payload and cell-adhesion region introduced here are well suited for extended cell culture thus affording the important and protective effect of both dex release and immobilization. These films may find applications in the local delivery of immobilized therapeutics for biomedical applications, as they can be deposited on a wide range of substrates with different shapes, sizes, and composition. PMID:25485185
NASA Astrophysics Data System (ADS)
Hervault, Aziliz; Dunn, Alexander E.; Lim, May; Boyer, Cyrille; Mott, Derrick; Maenosono, Shinya; Thanh, Nguyen T. K.
2016-06-01
Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxorubicin (DOX) to the pH- and thermo-responsive MNCs via acid-cleavable imine linker provides advanced features for the targeted delivery of DOX molecules via the combination of magnetic targeting, and dual pH- and thermo-responsive behaviour which offers spatial and temporal control over the release of DOX. The iron oxide cores exhibit a superparamagnetic behaviour with a saturation magnetization around 70 emu g-1. The MNCs contained 8.1 wt% of polymer and exhibit good heating properties in an alternating magnetic field. The drug release experiments confirmed that only a small amount of DOX was released at room temperature and physiological pH, while the highest drug release of 85.2% was obtained after 48 h at acidic tumour pH under hyperthermia conditions (50 °C). The drug release kinetic followed Korsmeyer-Peppas model and displayed Fickian diffusion mechanism. From the results obtained it can be concluded that this smart magnetic nanocarrier is promising for applications in multi-modal cancer therapy, to target and efficiently deliver heat and drug specifically to the tumour.Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxorubicin (DOX) to the pH- and thermo-responsive MNCs via acid-cleavable imine linker provides advanced features for the targeted delivery of DOX molecules via the combination of magnetic targeting, and dual pH- and thermo-responsive behaviour which offers spatial and temporal control over the release of DOX. The iron oxide cores exhibit a superparamagnetic behaviour with a saturation magnetization around 70 emu g-1. The MNCs contained 8.1 wt% of polymer and exhibit good heating properties in an alternating magnetic field. The drug release experiments confirmed that only a small amount of DOX was released at room temperature and physiological pH, while the highest drug release of 85.2% was obtained after 48 h at acidic tumour pH under hyperthermia conditions (50 °C). The drug release kinetic followed Korsmeyer-Peppas model and displayed Fickian diffusion mechanism. From the results obtained it can be concluded that this smart magnetic nanocarrier is promising for applications in multi-modal cancer therapy, to target and efficiently deliver heat and drug specifically to the tumour. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07773g
Majumder, Sujan; Shakil, Najam A; Kumar, Jitendra; Banerjee, Tirthankar; Sinha, Parimal; Singh, Braj B; Garg, Parul
2016-12-01
Controlled release (CR) nano-formulations of Mancozeb (manganese-zinc double salt of N,N-bisdithiocarbamic acid), a protective fungicide, have been prepared using laboratory-synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers without using any surfactants or external additives. The release kinetics of the developed Mancozeb CR formulations were studied and compared with that of commercially available 42% suspension concentrate and 75% wettable powder. Maximum amount of Mancozeb was released on 42nd day for PEG-600 and octyl chain, PEG-1000 and octyl chain, and PEG-600 and hexadecyl chain, on 35th day for PEG-1000 and hexadecyl chain, on 28th day for PEG-1500 and octyl chain, PEG-2000 and octyl chain, PEG-1500 and hexadecyl chain, and PEG-2000 and hexadecyl chain in comparison to both commercial formulations (15th day). The diffusion exponent (n value) of Mancozeb in water ranged from 0.42 to 0.62 in tested formulations. The half-release (t 1/2 ) values ranged from 17.35 to 35.14 days, and the period of optimum availability of Mancozeb ranged from 18.54 to 35.42 days. Further, the in vitro bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Alternaria solani and Sclerotium rolfsii by poison food technique. Effective dose for 50% inhibition in mgL -1 (ED 50 ) values of developed formulations varied from 1.31 to 2.79 mg L -1 for A. solani, and 1.60 to 3.14 mg L -1 for S. rolfsii. The present methodology is simple, economical, and eco-friendly for the development of environment-friendly CR formulations of Mancozeb. These formulations can be used to optimize the release of Mancozeb to achieve disease control for the desired period depending upon the matrix of the polymer used. Importantly, the maximum amount of active ingredient remains available for a reasonable period after application. In addition, the developed CR formulations were found to be suitable for fungicidal applications, allowing use of Mancozeb in lower doses.
Models for integrated pest control and their biological implications.
Tang, Sanyi; Cheke, Robert A
2008-09-01
Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.
Halloysite clay nanotubes for controlled delivery of chemically active agents
NASA Astrophysics Data System (ADS)
Abdullayev, Elshard
In this work we explored the capabilities of halloysite nanotubes as capsules for encapsulation and controlled delivery of the chemically and biologically active substances. Halloysite is a two-layered aluminosilicate which has a predominantly hollow tubular structure in the submicron range and is chemically similar to kaolinite [1, 2]. In the first section of this work, we analyzed the structure of the halloysite nanotubes as well as its capability to encapsulate and deliver biologically and chemically active agents, similarities and differences between release characteristics of different agents and how these differences relate with their chemical structure. Models were used to describe the release characteristics of the active agents. Study of the interaction between loaded agents and halloysite nanotubes provides better understanding of the release characteristics of the loaded agents and how halloysite can be implemented for technological and medical applications. The second part of the work deals with self-healing coatings produced on the basis of halloysite nanotubes loaded with corrosion inhibitors. Self-healing coatings are one of the effective methods to protect metals from corrosion and deterioration. The difference between self-healing coatings and the usual coatings is the ability of the first to recover after the formation of the damages due to external or internal stresses. High efficiency of the self- healing coatings produced by halloysite nanotubes were demonstrated on 110 Copper alloys and 2024 aluminum alloys. Controlled delivery of the corrosion inhibitors with additional encapsulation of the halloysite nanotubes by synthesizing stoppers at tube endings was also demonstrated. Additional encapsulation of the halloysite nanotubes may be necessary when slow release of the loaded agents is required or rapid convection of the liquid in the surrounding environment takes place (since this may cause rapid release of the loaded agents without additional encapsulation). The third part of this work deals with pharmaceutical applications of the halloysite nanotubes. Toxicity analysis was performed by using MCF-7 and HeLa cells since this is the main issue to be considered before using halloysite for any technological and medical applications. Halloysite nanotubes were readily taken up by the cells and cells survived for a reasonably long time after uptake indicating the biocompatible nature of the halloysite nanotubes. The possibility to encapsulate glycerol, a skin moisturizing agent, was also demonstrated for pharmaceutical applications. It was shown that halloysite has a huge capability for encapsulating a wide range of pharmaceuticals and effectively deliver over a long time range which may increase the quality of pharmaceutical products.
Luan, Jingjing; Zhang, Dianrui; Hao, Leilei; Li, Caiyun; Qi, Lisi; Guo, Hejian; Liu, Xinquan; Zhang, Qiang
2013-11-01
Amoitone B, a novel compound chemically synthesized as the analogue of cytosporone B, has been proved to own superior affinity with Nur77 than its parent compound and exhibit notable anticancer activity. However, its application is seriously restricted due to the water-insolubility and short biological half-time. The aim of this study was to construct an effective delivery system for Amoitone B to realize sustained release, thus prolong drug circulation time in body and improve the bioavailability. Nanostructured lipid carriers (NLC) act as a new type of colloidal drug delivery system, which offer the advantages of improved drug loading and sustained release. Amoitone B-loaded NLC (AmB-NLC) containing glyceryl monostearate (GMS) and various amounts of medium chain triglycerides (MCT) were successfully prepared by emulsion-evaporation and low temperature-solidification technology with a particle size of about 200 nm and a zeta potential value of about -20 mV. The results of X-ray diffraction and DSC analysis showed amorphous crystalline state of Amoitone B in NLC. Furthermore, the drug entrapment efficacy (EE) was improved compared with solid lipid nanoparticles (SLN). The EE range was from 71.1% to 84.7%, enhanced with the increase of liquid lipid. In vitro drug release studies revealed biphasic drug release patterns with burst release initially and prolonged release afterwards and the release was accelerated with augment of liquid lipid. These results demonstrated that AmB-NLC could be a promising delivery system to control drug release and improve loading capacity, thus prolong drug action time in body and enhance the bioavailability.
Photo-Modulated Therapeutic Protein Release from a Hydrogel Depot Using Visible Light.
Basuki, Johan S; Qie, Fengxiang; Mulet, Xavier; Suryadinata, Randy; Vashi, Aditya V; Peng, Yong Y; Li, Lingli; Hao, Xiaojuan; Tan, Tianwei; Hughes, Timothy C
2017-01-19
The use of biomacromolecular therapeutics has revolutionized disease treatment, but frequent injections are required owing to their short half-life in vivo. Thus there is a need for a drug delivery system that acts as a reservoir and releases the drug remotely "on demand". Here we demonstrate a simple light-triggered local drug delivery system through photo-thermal interactions of polymer-coated gold nanoparticles (AuNPs) inside an agarose hydrogel as therapeutic depot. Localized temperature increase induced by the visible light exposure caused reversible softening of the hydrogel matrix to release the pre-loaded therapeutics. The release profile can be adjusted by AuNPs and agarose concentrations, light intensity and exposure time. Importantly, the biological activity of the released bevacizumab was highly retained. In this study we demonstrate the potential application of this facile AuNPs/hydrogel system for ocular therapeutics delivery through its versatility to release multiple biologics, compatibility to ocular cells and spatiotemporal control using visible light. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ikeuchi-Takahashi, Yuri; Kobayashi, Ayaka; Onishi, Hiraku
2017-06-01
Topical drug application has the advantage of avoiding systemic side effects. We attempted to develop a long-acting matrix-type tablet containing indomethacin (IM) with low physical stimulus and potent mucoadhesive force to treat pain caused by oral aphtha. A mixture of polyethylene glycol (PEG) and hard fat was used as the tablet base. Ethylcellulose was added to the base in an attempt to control drug release. Tablets with PEG as a base were also prepared for comparison. Polyvinyl alcohols (PVAs) with various degrees of saponification were added to increase the mucoadhesive force. From the optical microscopic observations, formulations using PEG and hard fat exhibit PEG/hard fat dispersions caused by the stabilizing effects of PVA. Although the tablets using PEG and hard fat showed sufficient adhesiveness and sustained drug release, those using PEG as the base did not. Drug release was controlled by the amount of hard fat and the saponification degree of PVA. The drug release rate was most increased in a tablet containing PVA with an intermediate degree of saponification, PEG and hard fat. From differential scanning calorimetry and powder X-ray diffraction, IM was considered to exist in the molecular phase. From the results of buccal administration of tablets to rats, highest tissue concentrations were observed in the tablet containing PVA with the intermediate degree of saponification using PEG and hard fat, and the plasma concentrations were sufficiently low in comparison.
Temperature-Controlled Clamping and Releasing Mechanism
NASA Technical Reports Server (NTRS)
Rosing, David; Ford, Virginia
2005-01-01
A report describes the development of a mechanism that automatically clamps upon warming and releases upon cooling between temperature limits of approx. =180 K and approx. =293 K. The mechanism satisfied a need specific to a program that involved repeated excursions of a spectrometer between a room-temperature atmospheric environment and a cryogenic vacuum testing environment. The mechanism was also to be utilized in the intended application of the spectrometer, in which the spectrometer would be clamped for protection during launch of a spacecraft and released in the cold of outer space to allow it to assume its nominal configuration for scientific observations. The mechanism is passive in the sense that its operation does not depend on a control system and does not require any power other than that incidental to heating and cooling. The clamping and releasing action is effected by bolt-preloaded stacks of shape-memory-alloy (SMA) cylinders. In designing this mechanism, as in designing other, similar SMA mechanisms, it was necessary to account for the complex interplay among thermal expansion, elastic and inelastic deformation under load, and SMA thermomechanical properties.
Xu, Chunli; Zhou, Zhaolu; Cao, Chong; Zhu, Feng; Li, Fengmin; Huang, Qiliang
2018-01-01
Controllable pesticide release in response to environmental stimuli is highly desirable for better efficacy and fewer adverse effects. Combining the merits of natural and synthetic polymers, pH and temperature dual-responsive chitosan copolymer (CS-g-PDMAEMA) was facilely prepared through free radical graft copolymerization with 2-(dimethylamino) ethyl 2-methacrylate (DMAEMA) as the vinyl monomer. An emulsion chemical cross-linking method was used to expediently fabricate pyraclostrobin microcapsules in situ entrapping the pesticide. The loading content and encapsulation efficiency were 18.79% and 64.51%, respectively. The pyraclostrobin-loaded microcapsules showed pH-and thermo responsive release. Microcapsulation can address the inherent limitation of pyraclostrobin that is photo unstable and highly toxic on aquatic organisms. Compared to free pyraclostrobin, microcapsulation could dramatically improve its photostability under ultraviolet light irradiation. Lower acute toxicity against zebra fish on the first day and gradually similar toxicity over time with that of pyraclostrobin technical concentrate were in accordance with the release profiles of pyraclostrobin microcapsules. This stimuli-responsive pesticide delivery system may find promising application potential in sustainable plant protection. PMID:29538323
Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok
2015-01-01
The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.
Li, Pengfei; Lu, Jianwei; Hou, Wenfeng; Pan, Yonghui; Wang, Yang; Khan, Muhammad Rizwan; Ren, Tao; Cong, Rihuan; Li, Xiaokun
2017-04-01
Controlled release fertilizer can reduce nitrogen losses to the environment while increasing grain yield and improving apparent nitrogen recovery (ANR) of rice. However, few studies have evaluated the comparative efficacy of different polymer-coated urea products on nitrogen (N) losses, ANR, and N uptake of rice. A 2-year field experiment was conducted to compare the effects of three different types of polymer-coated urea fertilizer on nitrogen losses through NH 3 volatilization and surface runoff to the environment, ANR, grain yield, and N uptake as compared to conventional urea of rice. Six treatments including (1) control with 0 kg N ha -1 (CK), (2) basal application of urea (U b ), (3) split application (U s ) of urea (50% at transplanting, 25% at tillering, and 25% at panicle stages), (4) CRU-1 (polyurethane-coated urea), (5) CRU-2 (degradable polymer-coated urea), and (6) CRU-3 (water-based polymer-coated urea) all applied at 165 kg N ha -1 . It was found that CRU-2 resulted in the highest grain yield and panicle numbers among the N fertilization treatments in 2013 and 2014. Applying CRU could help increase N uptake in rice, reduce N losses through NH 3 volatilization and surface runoff, and hence improve ANR. Its single dose can meet the nutrient demand of the rice plant. Controlled release urea could be adopted as an effective mitigation alternative to retard N losses through NH 3 volatilization and surface runoff while improving ANR of double cropping of late rice.
An integral projection model with YY-males and application to evaluating grass carp control
Erickson, Richard A.; Eager, Eric A.; Brey, Marybeth; Hansen, Michael J.; Kocovsky, Patrick
2017-01-01
Invasive fish species disrupt ecosystems and cause economic damage. Several methods have been discussed to control populations of invasive fish including the release of YY-males. YY-males are fish that have 2 male chromosomes compared to a XY-male. When YY-males mate, they only produce male (XY) offspring. This decreases the female proportion of the population and can, in theory, eradicate local populations by biasing the sex-ratio. YY-males have been used as a population control tool for brook trout in montane streams and lakes in Idaho, USA. The YY-male control method has been discussed for grass carp in Lake Erie, North America. We developed and presented an integral projection model for grass carp to model the use of YY-males as a control method for populations in this lake. Using only the YY-male control method, we found that high levels of YY-males would need to be release annually to control the species. Specifically, these levels were the same order of magnitude as the baseline adult population (e.g., 1000 YY-males needed to be released annual for 20 years to control a baseline adult population of 2500 grass carp). These levels may not be reasonable or obtainable for fisheries managers given the impacts of YY-males on aquatic vegetation and other constraints of natural resource management.
Zhao, Pengkun; Liu, Hongyu; Deng, Hongbing; Xiao, Ling; Qin, Caiqin; Du, Yumin; Shi, Xiaowen
2014-11-01
In this study, the complex pH and electro responsive system made of chitosan hydrogel with embedded mesoporous silica nanoparticles (MSNs) was evaluated as a tunable drug release system. As a model drug, ibuprofen (IB) was used; its adsorption in MSNs was evidenced by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG). In order to prepare the complex drug release system, the loaded particles IB-MSNs were dispersed in chitosan solution and then the complex IB-MSNs/chitosan film of 2mm thickness was deposited as a hydrogel on the titanium electrode. The codeposition of components was performed under a negative biasing of the titanium electrode at -0.75 mA/cm2 current density during 30 min. The IB release from the IB-MSNs/chitosan hydrogel film was studied as dependent on pH of the release media and electrical conditions applied to the titanium plate. When incubating the complex hydrogel film in buffers with different pH, the IB release followed a near zero-order profile, though its kinetics varied. Compared to the spontaneous IB release from the hydrogel in 0.9% NaCl solution (at 0 V), the application of negative biases to the coated titanium plate had profound effluences on the release behavior. The release was retarded when -1.0 V was applied, but a faster kinetics was observed at -5.0 V. These results imply that a rapid, mild and facile electrical process for covering titanium implants by complex IB-MSNs/chitosan hydrogel films can be used for controlled drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Adjustable release of mitomycin C for inhibition of scar tissue formation after filtration surgery.
Merritt, Sonia R; Velasquez, Gia; von Recum, Horst A
2013-11-01
The aim of this study is to demonstrate a drug delivery system with the capacity to adjust the release of mitomycin C (MMC), based on polymer composition, and inhibit fibroblast proliferation to a better effect than is currently used in glaucoma filtration surgery. The polymer used in this work is made from the oligosaccharide cyclodextrin, from which others and we have demonstrated adjustable release of small molecule drugs due to specific molecular interactions or "affinity" between drug and the cyclodextrin polymer. To adjust release rate, cyclodextrin polymers were synthesized in either dimethylformamide (DMF) or dimethyl sulfoxide, (DMSO) at a crosslinking ratio of 1:0.16 or 1:0:32 (molecule of glucose: molecule of crosslinker). The polymers were then loaded with mitomycin C, dried, and release evaluated in a physiological environment. Drug release was determined by visible spectroscopy. Released aliquots of mitomycin C were incubated with 3T3 fibroblast cells to determine cytotoxic or inhibitory effect through a cell proliferation assay. We show that by using affinity between drug and polymer, we can adjust MMC release rates to be slower and more sustained than from conventional, diffusion-only polymers, for both the DMF polymers (p = 0.00526) and the DMSO polymers (p = 0.0113). The incorporated and released MMC maintains inhibition of fibroblast proliferation much longer than is possible with a one-time application. Affinity polymers with 1:0.16 and 1:0.32 crosslink ratio showed significant inhibition of proliferation for up to 100 h (p = 0.018 and p = 0.014 respectively). The use of our controlled drug delivery technology applied after surgery could have a greater therapeutic impact than the current one-time applications of MMC. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adjustable release of mitomycin C for inhibition of scar tissue formation after filtration surgery
Merritt, Sonia R.; Velasquez, Gia; von Recum, Horst A.
2016-01-01
The aim of this study is to demonstrate a drug delivery system with the capacity to adjust the release of mitomycin C (MMC), based on polymer composition, and inhibit fibroblast proliferation to a better effect than is currently used in glaucoma filtration surgery. The polymer used in this work is made from the oligosaccharide cyclodextrin, from which others and we have demonstrated adjustable release of small molecule drugs due to specific molecular interactions or “affinity” between drug and the cyclodextrin polymer. To adjust release rate, cyclodextrin polymers were synthesized in either dimethylformamide (DMF) or dimethyl sulfoxide, (DMSO) at a crosslinking ratio of 1:0.16 or 1:0:32 (molecule of glucose: molecule of crosslinker). The polymers were then loaded with mitomycin C, dried, and release evaluated in a physiological environment. Drug release was determined by visible spectroscopy. Released aliquots of mitomycin C were incubated with 3T3 fibroblast cells to determine cytotoxic or inhibitory effect through a cell proliferation assay. We show that by using affinity between drug and polymer, we can adjust MMC release rates to be slower and more sustained than from conventional, diffusion-only polymers, for both the DMF polymers (p = 0.00526) and the DMSO polymers (p = 0.0113). The incorporated and released MMC maintains inhibition of fibroblast proliferation much longer than is possible with a one-time application. Affinity polymers with 1:0.16 and 1:0.32 crosslink ratio showed significant inhibition of proliferation for up to 100 h (p = 0.018 and p = 0.014 respectively). The use of our controlled drug delivery technology applied after surgery could have a greater therapeutic impact than the current one-time applications of MMC. PMID:23911951
Venugopalarao, Gojjala; Lakshmipathy, Rajasekhar; Sarada, Nallani Chakravarthula
2015-01-01
Background The application of antibiotics has been limited due to weak biodistribution and pharmacokinetics. Encapsulation of these drugs in lipid vesicles might be a good solution for obtaining the required properties. Liposomes are one of the most suitable drug-delivery systems to deliver the drug to the target organ and minimize the distribution of the drug to non-target tissues. Objective The study reported here aimed to develop cefditoren pivoxil liposomes by thin-film hydration, characterize them in terms of physical interactions, and undertake in vitro and in vivo release studies. Methodology The pre-formulation studies were carried out using Fourier-transform infrared spectroscopy and differential scanning calorimetry. Cefditoren pivoxil liposomal formulations were formulated by thin-film hydration using biomaterials ie, soya lecithin and cholesterol in different molar ratios. The best molar ratio was determined by in vitro studies such as entrapment efficacy, particle size distribution, and diffusion. Results From the in vitro release studies, it was found that the formulation that contained soya lecithin and cholesterol in a 1.0:0.6 molar ratio gave good entrapment of 72.33% and drug release of 92.5% at 36 hours. Further, the formulation’s zeta potential and surface morphology were examined and stability and in vivo studies were undertaken evaluating the pharmacokinetic parameters, which showed promising results. Conclusion Formulation CPL VI showed the maximum drug-loading capacity of 72.3% with good controlled release and acceptable stability when compared with the other formulations. In vivo studies in rabbits showed that the drug release from the liposomes was successfully retarded with good controlled release behavior which can be used to treat many bacterial infections with a minimal dose. PMID:26491316
Nanostructured Diclofenac Sodium Releasing Material
NASA Astrophysics Data System (ADS)
Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppälä, J.; Ashammakhi, N.
2008-02-01
Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(ɛ-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.
Yang, Xiao-Li; Luo, Yan-Ling; Xu, Feng; Chen, Ya-Shao
2014-02-01
Block copolymer micelles are extensively used as drug controlled release carriers, showing promising application prospects. The comb or brush copolymers are especially of great interest, whose densely-grafted side chains may be important for tuning the physicochemical properties and conformation in selective solvents, even in vitro drug release. The purpose of this work was to synthesize novel block copolymer combs via atom transfer radical polymerization, to evaluate its physicochemical features in solution, to improve drug release behavior and to enhance the bioavailablity, and to decrease cytotoxicity. The physicochemical properties of the copolymer micelles were examined by modulating the composition and the molecular weights of the building blocks. A dialysis method was used to load hydrophobic camptothecin (CPT), and the CPT release and stability were detected by UV-vis spectroscopy and high-performance liquid chromatography, and the cytotoxicity was evaluated by MTT assays. The copolymers could self-assemble into well-defined spherical core-shell micelle aggregates in aqueous solution, and showed thermo-induced micellization behavior, and the critical micelle concentration was 2.96-27.64 mg L(-1). The micelles were narrow-size-distribution, with hydrodynamic diameters about 128-193 nm, depending on the chain length of methoxy polyethylene glycol (mPEG) blocks and poly(N-isopropylacrylamide) (PNIPAM) graft chains or/and compositional ratios of mPEG to PNIPAM. The copolymer micelles could stably and effectively load CPT but avoid toxicity and side-effects, and exhibited thermo-dependent controlled and targeted drug release behavior. The copolymer micelles were safe, stable and effective, and could potentially be employed as CPT controlled release carriers.
Fuel Evaluation for a Missouri Pine Plantation Released by Aerial Spraying
Robert M. Loomis; John S. Crosby
1968-01-01
Fuel changes resulting from aerial herbicide application to control hardwoods competing with 13-year-old underplanted pine in Missouri are described. Fuel hazard is generally maximum about the fifth year after treatment and is affected by relative pine and hardwood densities.
Study of soybean oil-based polymers for controlled release anticancer drugs
USDA-ARS?s Scientific Manuscript database
Soybean oil-based polymers were prepared by the ring-opening polymerization of epoxidized soybean oil with Lewis acid catalyst. The formed polymers (HPESO) could be converted into hydrogels through hydrolysis. Characterization and viscoelastic properties of this soy hydrogel and application in contr...
Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.
Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran
2017-08-01
We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs.
Li, Qianwen; Cai, Tiange; Huang, Yinghong; Xia, Xi; Cole, Susan P C; Cai, Yu
2017-05-27
Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid-polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core-shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs', PNPs', and PLNs' structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system.
A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs
Li, Qianwen; Cai, Tiange; Huang, Yinghong; Xia, Xi; Cole, Susan P. C.; Cai, Yu
2017-01-01
Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid–polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core–shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs’, PNPs’, and PLNs’ structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system. PMID:28554993
Gand, Adeline; Hindié, Mathilde; Chacon, Diane; Van Tassel, Paul R; Pauthe, Emmanuel
2014-01-01
Biomaterials capable of delivering controlled quantities of bioactive agents, while maintaining mechanical integrity, are needed for a variety of cell contacting applications. We describe here a nanotemplating strategy toward porous, polyelectrolyte-based thin films capable of controlled biomolecular loading and release. Films are formed via the layer-by-layer assembly of charged polymers and nanoparticles (NP), then chemically cross-linked to increase mechanical rigidity and stability, and finally exposed to tetrahydrofuran to dissolve the NP and create an intra-film porous network. We report here on the loading and release of the growth factor bone morphogenetic protein 2 (BMP-2), and the influence of BMP-2 loaded films on contacting murine C2C12 myoblasts. We observe nanotemplating to enable stable BMP-2 loading throughout the thickness of the film, and find the nanotemplated film to exhibit comparable cell adhesion, and enhanced cell differentiation, compared with a non-porous cross-linked film (where BMP-2 loading is mainly confined to the film surface).
NASA Astrophysics Data System (ADS)
Chang, Ying; Li, Yang; Yu, Shirong; Mao, Jie; Liu, Cheng; Li, Qi; Yuan, Conghui; He, Ning; Luo, Weiang; Dai, Lizong
2015-01-01
Polymer assemblies with good biocompatibility, stimuli-responsive properties and clinical imaging capability are desirable carriers for future biomedical applications. Herein, we report on the synthesis of a novel anthracenecarboxaldehyde-decorated poly(N-(4-aminophenyl) methacryl amide-oligoethyleneglycolmonomethylether methacrylate) (P(MAAPAC-MAAP-MAPEG)) copolymer, comprising fluorescent chromophore and acid-labile moiety. This copolymer can assemble into micelles in aqueous solution and shows a spherical shape with well-defined particle size and narrow particle size distribution. The pH-responsive property of the micelles has been evaluated by the change of particle size and the controlled release of guest molecules. The intrinsic fluorescence property endows the micelles with excellent cell/tissue imaging capability. Cell viability evaluation with human hepatocellular carcinoma BEL-7402 cells demonstrates that the micelles are nontoxic. The cellular uptake of the micelles indicates a time-dependent behavior. The H22-tumor bearing mice treated with the micelles clearly exhibits the tumor accumulation. These multi-functional nanocarriers may be of great interest in the application of drug delivery.
A multiple functional connector for high-resolution optical satellites
NASA Astrophysics Data System (ADS)
She, Fengke; Zheng, Gangtie
2017-11-01
For earth observation satellites, perturbations from actuators, such as CMGs and momentum wheels, and thermal loadings from support structures often have significant impact on the image quality of an optical. Therefore, vibration isolators and thermal deformation releasing devices nowadays often become important parts of an image satellite. However, all these devices will weak the connection stiffness between the optical instrument and the satellite bus structure. This will cause concern of the attitude control system design for worrying about possible negative effect on the attitude control. Therefore, a connection design satisfying all three requirements is a challenge of advanced image satellites. Chinese scientists have proposed a large aperture high-resolution satellite for earth observation. To meet all these requirements and ensure image quality, specified multiple function connectors are designed to meet these challenging requirements, which are: isolating vibration, releasing thermal deformation and ensuring whole satellite dynamic properties [1]. In this paper, a parallel spring guide flexure is developed for both vibration isolation and thermal deformation releasing. The stiffness of the flexure is designed to meet the vibration isolation requirement. To attenuate vibration, and more importantly to satisfy the stability requirement of the attitude control system, metal damping, which has many merits for space applications, are applied in this connecter to provide a high damping ratio and nonlinear stiffness. The capability of the connecter for vibration isolation and attenuation is validated through numerical simulation and experiments. Connecter parameter optimization is also conducted to meet both requirements of thermal deformation releasing and attitude control. Analysis results show that the in-orbit attitude control requirement is satisfied while the thermal releasing performance is optimized. The design methods and analysis results are also provided in the present paper.
Fang, Jiang B; Robertson, Vivian K; Rawat, Archana; Flick, Tawnya; Tang, Zhe J; Cauchon, Nina S; McElvain, James S
2010-10-04
Dissolution testing is frequently used to determine the rate and extent at which a drug is released from a dosage form, and it plays many important roles throughout drug product development. However, the traditional dissolution approach often emphasizes its application in quality control testing and usually strives to obtain 100% drug release. As a result, dissolution methods are not necessarily biorelevant and meaningful application of traditional dissolution methods in the early phases of drug product development can be very limited. This article will describe the development of a biorelevant in vitro dissolution method using USP apparatus 4, biorelevant media, and real-time online UV analysis. Several case studies in the areas of formulation selection, lot-to-lot variability, and food effect will be presented to demonstrate the application of this method in early phase formulation development. This biorelevant dissolution method using USP apparatus 4 provides a valuable tool to predict certain aspects of the in vivo drug release. It can be used to facilitate the formulation development/selection for pharmacokinetic (PK) and clinical studies. It may also potentially be used to minimize the number of PK studies, and to aid in the design of more efficient PK and clinical studies.
Electrically controlled drug release from nanostructured polypyrrole coated on titanium
NASA Astrophysics Data System (ADS)
Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J.
2011-02-01
Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s - 1. Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.
Long-term impact of aerial application of 2,4,5-T to longleaf pine (Pinus palustris)
J.L. Michael
1980-01-01
Twenty years after aerial application of 2.24 kg ae/ha of the butoxy ethanol ester of 2,4,5-T [(2,4,5-trichlorophenoxy) acetic acid] to release grass stage longleaf pine (Pinus palustris Mill.) seedlings, stocking was the same for each of the three treated and control 4-ha plots. Treated plots, however, had significantly greater tree diameter (10%),...
Application of the Sterility Principle for Tsetse Fly Eradication or Control. Revision.
1981-08-14
1977. Digestive processes of haematophagous insects . XIII. Evidence for the digestive function of midgut proleinases in Glossina morsitans morsitans...FOOD AND AGRICULTURAL DEVELOPMENT ABSTRACT This review deals with the conditions required for the successful application of the sterile insect ...numbers of sterile male insects are released into a wild population so that they can disperse and compete with the fertile males of the natural population
Control Strategies for Guided Collective Motion
2015-01-30
Control, Atlanta, GA, USA, December 2010, pp. 5468-5473. [19] C. Rorres and H. Anton , “ Elementary linear algebra applications version,” 9th Edition...work addresses and analyses deviated linear cyclic pursuit in which an Distribution Code A: Approved for public release, distribution is unlimited...Pursuit 6. D. Mukherjee and D. Ghose: Deviated Linear Cyclic Pursuit 7. D. Mukherjee and D. Ghose; On Synchronous and Asynchronous Heterogeneous Cyclic
NASA Astrophysics Data System (ADS)
Jia, Li; Ding, Lin; Tian, Jiangwei; Bao, Lei; Hu, Yaoping; Ju, Huangxian; Yu, Jun-Sheng
2015-09-01
In this work we designed a MoS2 nanoplate-based nanoprobe for fluorescence imaging of intracellular ATP and photodynamic therapy (PDT) via ATP-mediated controllable release of 1O2. The nanoprobe was prepared by simply assembling a chlorine e6 (Ce6) labelled ATP aptamer on MoS2 nanoplates, which have favorable biocompatibility, unusual surface-area-to-mass ratio, strong affinity to single-stranded DNA, and can quench the fluorescence of Ce6. After the nanoprobe was internalized into the cells and entered ATP-abundant lysosomes, its recognition to ATP led to the release of the single-stranded aptamer from MoS2 nanoplates and thus recovered the fluorescence of Ce6 at an excitation wavelength of 633 nm, which produced a highly sensitive and selective method for imaging of intracellular ATP. Meanwhile, the ATP-mediated release led to the generation of 1O2 under 660 nm laser irradiation, which could induce tumor cell death with a lysosomal pathway. The controllable PDT provided a model approach for design of multifunctional theranostic nanoprobes. These results also promoted the development and application of MoS2 nanoplate-based platforms in biomedicine.In this work we designed a MoS2 nanoplate-based nanoprobe for fluorescence imaging of intracellular ATP and photodynamic therapy (PDT) via ATP-mediated controllable release of 1O2. The nanoprobe was prepared by simply assembling a chlorine e6 (Ce6) labelled ATP aptamer on MoS2 nanoplates, which have favorable biocompatibility, unusual surface-area-to-mass ratio, strong affinity to single-stranded DNA, and can quench the fluorescence of Ce6. After the nanoprobe was internalized into the cells and entered ATP-abundant lysosomes, its recognition to ATP led to the release of the single-stranded aptamer from MoS2 nanoplates and thus recovered the fluorescence of Ce6 at an excitation wavelength of 633 nm, which produced a highly sensitive and selective method for imaging of intracellular ATP. Meanwhile, the ATP-mediated release led to the generation of 1O2 under 660 nm laser irradiation, which could induce tumor cell death with a lysosomal pathway. The controllable PDT provided a model approach for design of multifunctional theranostic nanoprobes. These results also promoted the development and application of MoS2 nanoplate-based platforms in biomedicine. Electronic supplementary information (ESI) available: Supplementary figures. See DOI: 10.1039/c5nr02224j
Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine.
Xing, Pengyao; Zhao, Yanli
2016-09-01
Supramolecular self-assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self-assembly and materials science. The dynamic and adaptive nature of self-assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small-organic-molecule self-assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure-property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up-to-date research developments in the field are provided and research challenges to be overcome in future studies are revealed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Collins, R; Paul, Z; Reynolds, D B; Short, R F; Wasuwanich, S
1997-01-01
Chronic diseases and pathological medical conditions requiring the administration of longterm pharmaceutical dosages have in the past been treated by oral administrations of tablets, pills and capsules or through the use of creams and ointments, suppositories, aerosols, and injectables. Such forms of drug delivery, which are still currently used today, provide a prompt release of the drug, but with significant fluctuations in the drug levels within various regions of the body. Repeated administrations of the drug are often needed, at rather precise intervals of time, in order to maintain these levels within a relatively narrow therapeutic range as a means of assuring effectiveness at the low end and of minimizing adverse effects at the higher end of the fluctuation spectrum. Recent technical advances now permit one to control the rate of drug delivery. The required therapeutic levels may thus be maintained over long periods of months and years through implanted rate-controlled drug release capsules. Two such novel drug delivery systems currently employed are implanted erodible polymeric and ceramic capsules. Mathematical modeling and computer simulations can be very effective in improving and optimizing the performance of the self-regulating release of therapeutic drugs into specific regions of the body. Further development is needed for the optimal design of such capsules. It is in this area, in particular, that a review will be presented of the mathematical modeling techniques susceptible to refine the development of a reliable tool for designing and predicting the resulting pharmaceutical dosages as a function of time and space. Of primary importance in such models are the time-varying effective permeability of the capsule to the various molecules composing the drug, the effective solubility and diffusion coefficients of the drug and its metabolites in the surrounding tissues and fluids and, finally, the uptake of the drug at the target organ. Mathematical models are presented for the diffusional release of a solute from an erodible matrix in which the initial drug loading c0 is greater than the solubility limit cs. An inward moving diffusional front separates the reservoir (unextracted region) containing the undissolved drug from the partially extracted region. The mathematical formulation of such moving boundary problems has wide application to heat transfer with melting phase transitions and diffusion-controlled growth of particles, in addition to our topic of controlled-release drug delivery. In spite of this diversity of applications, only a very few mathematical descriptions have been published for the analysis of release kinetics of a dispersed solute from polymeric or ceramic matrices. In these rare instances, perfect sink conditions are assumed, while matrix swelling, concentration-dependence of the solute diffusion coefficient and the external mass transfer resistance have been largely neglected. The ultimate goal of such an investigation is to provide a reliable design tool for the fabrication of specialized implantable capsule/drug combinations which will deliver pre-specified and reproducible dosages over a wide spectrum of conditions and required durations of therapeutic treatment. Such a mathematical/computational tool can also prove effective in the prediction of suitable dosages for other drugs of differing chemical and molecular properties which have not been subjected to time-consuming animal laboratory testing. Finally, such models may permit more realistic scaling of the required dosages of therapeutic drug for variations in diverse factors such as body weight or organ size and capacity of the patient (clinical medicine) or animal (veterinary medicine for farm animals). Additional applications of controlled-release drug delivery for insecticide and pesticide use in agriculture, and the control of pollution in lakes, rivers, marshes, etc. in which a pre-programmed dose-time schedule is necessary, further
Characterization Methods of Encapsulates
NASA Astrophysics Data System (ADS)
Zhang, Zhibing; Law, Daniel; Lian, Guoping
Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence, reliable methods which can be used to characterize these properties of encapsulates are vital. In this chapter, the state-of-art of these methods, their principles and applications, and release mechanisms are described as follows.
Viruses, Artificial Viruses and Virus-Based Structures for Biomedical Applications.
van Rijn, Patrick; Schirhagl, Romana
2016-06-01
Nanobiomaterials such as virus particles and artificial virus particles offer tremendous opportunities to develop new biomedical applications such as drug- or gene-delivery, imaging and sensing but also improve understanding of biological mechanisms. Recent advances within the field of virus-based systems give insights in how to mimic viral structures and virus assembly processes as well as understanding biodistribution, cell/tissue targeting, controlled and triggered disassembly or release and circulation times. All these factors are of high importance for virus-based functional systems. This review illustrates advances in mimicking and enhancing or controlling these aspects to a high degree toward delivery and imaging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jang, Si-Hoon; Jang, So-Ri; Lee, Gyeong-Min; Ryu, Jee-Hoon; Park, Su-Il; Park, No-Hyung
2017-09-01
Halloysite nanotubes (HNTs), which are natural nanomaterials, have a hollow tubular structure with about 15 nm inner and 50 nm outer diameters. Because of their tubular shape, HNTs loaded with various materials have been investigated as functional nanocapsules. In this study, thyme essential oil (TO) was encapsulated successfully in HNTs using vacuum pulling methods, followed by end-capping or a layer-by-layer surface coating process for complete encapsulation. Nanocapsules loaded with TO were mixed with flexographic ink and coated on a paper for applications as food packaging materials. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the nanocapsules and to confirm the TO loading of the nanocapsules. Fourier transform infrared spectroscopy and thermogravimetric analyses analysis were used to complement the structural information. In addition, the controlled release of TO from the nanocapsules showed sustained release properties over a period of many days. The results reveal that the release properties of TO in these nanocapsules could be controlled by surface modifications such as end-capping and/or surface coating of bare nanocapsules. The packaging paper with TO-loaded HNT capsules was effective in eliminating against Escherichia coli during the first 5 d and showed strong antibacterial activity for about 10 d. © 2017 Institute of Food Technologists®.
Controlled growth factor release from synthetic extracellular matrices
NASA Astrophysics Data System (ADS)
Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.
2000-12-01
Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.
Poh, Chye Khoon; Ng, Suxiu; Lim, Tee Yong; Tan, Hark Chuan; Loo, Joachim; Wang, Wilson
2012-11-01
Following bone implant surgery, prolonged ischemic conditions at the implant site often result in postsurgical complications like failure of osseointegration at the bone-implant interface which can lead to implant failure. Thus, restoration of the vascular supply is paramount to the proper development of the bone. High surface area mesostructured materials have been shown to be attractive candidates for bone regeneration to enhance cell adhesion and cell proliferation. This study uses hydroxyapatite, a naturally occurring mineral in the bone, fabricated to a range of suitable pore sizes, infused with vascular endothelial growth factor (VEGF), to be progressively released to stimulate revascularization. In this study, several characterizations including nitrogen adsorption analysis, Fourier-transformed infrared spectroscopy, X-ray diffraction, field emission scanning electron microscope, and transmission electron microscope were used to evaluate the synthesized mesoporous hydroxyapatite (MHA). The results showed that MHA can gradually release VEGF for enhancing revascularization, which is beneficial for orthopedic applications. Copyright © 2012 Wiley Periodicals, Inc.
Xu, Lu; Wang, Yitong; Wei, Guangcheng; Feng, Lei; Dong, Shuli; Hao, Jingcheng
2015-12-14
Here we construct for the first time ordered surfactant-DNA hybrid nanospheres of double-strand (ds) DNA and cationic surfactants with magnetic counterion, [FeCl3Br](-). The specificity of the magnetic cationic surfactants that can compact DNA at high concentrations makes it possible for building ordered nanospheres through aggregation, fusion, and coagulation. Cationic surfactants with conventional Br(-) cannot produce spheres under the same condition because they lose the DNA compaction ability. When a light-responsive magnetic cationic surfactant is used to produce nanospheres, a dual-controllable drug-delivery platform can be built simply by the applications of external magnetic force and alternative UV and visible light. These nanospheres obtain high drug absorption efficiency, slow release property, and good biocompatibility. There is potential for effective magnetic-field-based targeted drug delivery, followed by photocontrollable drug release. We deduce that our results might be of great interest for making new functional nucleic-acid-based nanomachines and be envisioned to find applications in nanotechnology and biochemistry.
Formulating nanoparticles by flash nanoprecipitation for drug delivery and sustained release
NASA Astrophysics Data System (ADS)
Liu, Ying
This dissertation provides a fundamental understanding of the process for generating nanoparticles with controlled size distribution and of predicting nanoparticle stability for drug delivery and sustained release. We developed and characterized a novel technology to generate organic and inorganic nanoparticles protected by biocompatible and biodegradable polymers with precisely controlled size and size distribution. Computational fluid mechanics (CFD) together with experimental results provided details of the micromixing in the mixer. The particle size dependence on Reynolds number and supersaturation was illustrated. The study of the fundamental mass transfer phenomena leading to Ostwald ripening enables quantitative prediction of the time evolution of nanoparticles with monodistribution and relatively broader multi-distribution using beta-carotene and polystyrene-b-poly(ethylene oxide) (PS-b-PEO) as a model system. Negatively charged latex particles were used to exam the attachment of the diblock copolymer, PS-b-PEO, on the surface. The stability provided by the Columbic repulsion was replaced by steric stabilization. The attachment of the block copolymers on the surface of the colloids depends on the flow field, i.e. Reynolds number, of the mixing process. The slow degradation of poly(epsilon-caprolactone) (PCL) and poly(gamma-methyl-epsilon-caprolactone) (PMCL) was demonstrated. The slow degradation ensures long-term stability and long-term blood circulation of the polymeric nanoparticles. As a practical application, we formulate the anti-tuberculosis drug, rifampicin, into nanoparticles by conjugation to other hydrophobic molecules (such as vitamin E, PCL and 2-ethylhexyl vinyl ether) by pH sensitive cleavable chemical bonds to increase the drug loading, return stability of the nanoparticle suspension, and control drug release. The in vitro release profiles were provided by using HPLC and E.coli growth inhibition on LB agar plates. The prodrug nanoparticle suspensions were spray dried to form low density porous micro-particles for the purpose of aerosol drug delivery. The simultaneous encapsulation of imaging agents and therapeutic agents provides a method for studying the fate of nanoparticles and for medical imaging with treatment. As another example, bifenthrin nanoparticle suspensions with various stabilizers were formulated. The pesticide, bifenthrin, was used to test whether nanoparticles provided an advantage in increasing the effectiveness of pesticide formulations. Larvae mortality with the application of nanoparticle suspension was about 2.5 times of the mortality with the application of bifenthrin mineral oil solution. Nanoparticles at very low bifenthrin concentration showed sustained release for fourteen days.
Chitosan nanoparticle based delivery systems for sustainable agriculture.
Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia
2015-01-01
Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome. Copyright © 2015 Elsevier B.V. All rights reserved.
Kumari, Neeraj; Pathak, Kamla
2012-01-01
In situ gelling syringeable periodontal sol capable of dual controlled delivery of metronidazole benzoate and serratiopeptidase was designed based on 2(3) factorial design with drug, poloxamer 407 and aerosil as independent variables and sol gel transition characteristics, %CDR(48h) and palatability as responses. The sols had agreeable taste, were mucoadhesive, syringeable and inverted into gels at periodontal cavity temperature. F8 with optimal drug release was identified as the best formulation. The dispersion characteristics of poloxamer significantly affected the pharmacotechnical properties of the in situ gelling systems. Extra design checkpoint generated using Design Expert software 8.02 (Stat-Ease, USA) validated the experimental design. Thus a thermoreversible, in situ gelling and syringeable periodontal sol with acceptable taste characteristics that offered controlled release of metronidazole benzoate and serratiopeptidase was developed for application into the periodontal pocket. The developed optimized sol was satisfactory in terms of taste, syringeability, palatability and incorporation of serratiopeptidase as anti-inflammatory agent, has the potential of developing a therapeutically efficacious system for treatment of periodontal inflammatory anaerobic infections.
Li, Dongpo; Wu, Zhijie; Chen, Lijun; Liang, Chenghua; Zhang, Lili; Wang, Weicheng; Yang, Defu
2006-06-01
With pot experiment and simulating field ecological environment, this paper studied the effects of different slow/ controlled release N fertilizers on the soil nitrate - reductase and urease activities and microbial biomass C and N at maize seedling stage. The results showed that granular urea amended with dicyandiamide (DCD) and N-(n-bultyl) thiophosphoric triamide (NBPT) induced the highest soil nitrate-reductase activity, granular urea brought about the highest soil urease activity and microbial biomass C and N, while starch acetate (SA)-coated granular urea, SA-coated granular urea amended with DCD, methyl methacrylate (MMA) -coated granular urea amended with DCD, and no N fertilization gave a higher soil urease activity. Soil microbial C and N had a similar variation trend after applying various kinds of test slow/controlled release N fertilizers, and were the lowest after applying SA-coated granular urea amended with DCD and NBPT. Coated granular urea amended with inhibitors had a stronger effect on soil biological activities than coated granular urea, and MMA-coating had a better effect than SA-coating.
Evaluation of peptides release using a natural rubber latex biomembrane as a carrier.
Miranda, M C R; Borges, F A; Barros, N R; Santos Filho, N A; Mendonça, R J; Herculano, R D; Cilli, E M
2018-05-01
The biomembrane natural (NRL-Natural Rubber Latex), manipulated from the latex obtained from the rubber tree Hevea brasiliensis, has shown great potential for application in biomedicine and biomaterials. Reflecting the biocompatibility and low bounce rate of this material, NRL has been used as a physical barrier to infectious agents and for the controlled release of drugs and extracts. The aim of the present study was to evaluate the incorporation and release of peptides using a latex biomembrane carrier. After incorporation, the release of material from the membrane was observed using spectrophotometry. Analyses using HPLC and mass spectroscopy did not confirm the release of the antimicrobial peptide [W 6 ]Hylin a1 after 24 h. In addition, analysis of the release solution showed new compounds, indicating the degradation of the peptide by enzymes contained in the latex. Additionally, the release of a peptide with a shorter sequence (Ac-WAAAA) was evaluated, and degradation was not observed. These results showed that the use of NRL as solid matrices as delivery systems of peptide are sequence dependent and could to be evaluated for each sequence.
Xu, Xiaolong; Qiu, Sujun; Zhang, Yuxian; Yin, Jie; Min, Shaoxiong
2017-03-01
Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.
Aligned Carbon Nanotube Carpets on Carbon Substrates for High Power Electronic Applications
2016-06-01
SiOx by a vapor-solid-solid mechanism ,” J. Am. Chem. Soc., vol. 133, pp. 197–199, 2011. [146] B. Liu, W. Ren, C. Liu, C.-H. Sun , L. Gao, S. Li, C... Mechanical and Thermal Systems Branch Power and Control Division JUNE 2016 Interim Report DISTRIBUTION STATEMENT A: Approved for public release...Advisor Program Engineer Mechanical and Thermal Systems Branch Mechanical and Thermal Systems Branch Power and Control Division Power and Control
Harper, Robert A; Sucher, Mark G; Giordani, Mauro; Nedopil, Alexander J
2017-11-01
Perioperative blood loss after total knee arthroplasty (TKA) affects postoperative recovery. Tranexamic acid is safe and efficient in reducing blood loss without increasing thromboembolic events. Epsilon-aminocaproic acid (ε-ACA) is less expensive than and as safe as tranexamic acid. Its efficiency when locally applied in TKA is unknown. The authors retrospectively followed 240 consecutive patients treated by 1 surgeon with TKA from January 2012 to August 2016. From January 2013 to May 2015, the authors topically applied 5 g of ε-ACA to the open wound after tourniquet release and before closure (ε-ACA-after-tourniquet-release group). From August 2015 to August 2016, the authors topically applied 5 g of ε-ACA intraoperatively to the open wound 3 minutes before tourniquet release (ε-ACA-before-tourniquet-release group). The last 80 patients not receiving ε-ACA (control group), the 80 patients in the ε-ACA-after-tourniquet-release group, and the 80 patients in the ε-ACA-before-tourniquet-release group were compared regarding blood loss, treatment costs, and thromboembolic complications. The mean±SD calculated blood loss was 1478.8±367.1 mL for the control group, 1424.0±249.3 mL for the ε-ACA-after-tourniquet-release group, and 1052.3±419.1 mL for the ε-ACA-before-tourniquet-release group (P<.05). Using ε-ACA before tourniquet release reduced the length of hospital stay by 0.7 days (P<.05) compared with not using ε-ACA, leading to cost savings of $1547.37 per patient. One patient in the ε-ACA-before-tourniquet-release group and 1 patient in the control group developed a venous thromboembolism in the postoperative period. Epsilon-aminocaproic acid significantly reduces blood loss after TKA when topically applied before tourniquet release. Its application reduced costs by decreasing the length of hospital stay and did not increase thromboembolic events. [Orthopedics. 2017; 40(6):e1044-e1049.]. Copyright 2017, SLACK Incorporated.
Intravaginal ring delivery of the reverse transcriptase inhibitor TMC 120 as an HIV microbicide.
Woolfson, A David; Malcolm, R Karl; Morrow, Ryan J; Toner, Clare F; McCullagh, Stephen D
2006-11-15
TMC 120 (Dapivirine) is a potent non-nucleoside reverse transcriptase inhibitor that is presently being developed as a vaginal HIV microbicide. To date, most vaginal microbicides under clinical investigation have been formulated as single-dose semi-solid gels, designed for application to the vagina before each act of intercourse. However, a clear rationale exists for providing long-term, controlled release of vaginal microbicides in order to afford continuous protection against heterosexually transmitted HIV infection and to improve user compliance. In this study we report on the incorporation of various pharmaceutical excipients into TMC 120 silicone, reservoir-type intravaginal rings (IVRs) in order to modify the controlled release characteristics of the microbicide. The results demonstrate that TMC 120 is released in zero-order fashion from the rings over a 28-day period and that release parameters could be modified by the inclusion of release-modifying excipients in the IVR. The hydrophobic liquid excipient isopropyl myristate had little effect on steady-state daily release rates, but did increase the magnitude and duration of burst release in proportion to excipient loading in the IVR. By comparison, the hydrophobic liquid poly(dimethylsiloxane) had little effect on TMC 120 release parameters. A hydrophilic excipient, lactose, had the surprising effect of decreasing TMC 120 burst release while increasing the apparent steady-state daily release in a concentration-dependent manner. Based on previous cell culture data and vaginal physiology, TMC120 is released from the various ring formulations in amounts potentially capable of maintaining a protective vaginal concentration. It is further predicted that the observed release rates may be maintained for at least a period of 1 year from a single ring device. TMC 120 release profiles and the mechanical properties of rings could be modified by the physicochemical nature of hydrophobic and hydrophilic excipients incorporated into the IVRs.
Properties and biomedical applications of magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Regmi, Rajesh Kumar
Magnetic nanoparticles have a number of unique properties, making them promising agents for applications in medicine including magnetically targeted drug delivery, magnetic hyperthermia, magnetic resonance imaging, and radiation therapy. They are biocompatible and can also be coated with biocompatible surfactants, which may be further functionalized with optically and therapeutically active molecules. These nanoparticles can be manipulated with non-invasive external magnetic field to produce heat, target specific site, and monitor their distribution in vivo. Within this framework, we have investigated a number of biomedical applications of these nanoparticles. We synthesized a thermosensitive microgel with iron oxide adsorbed on its surface. An alternating magnetic field applied to these nanocomposites heated the system and triggered the release of an anticancer drug mitoxantrone. We also parameterized the chain length dependence of drug release from dextran coated iron oxide nanoparticles, finding that both the release rate and equilibrium release fraction depend on the molecular mass of the surfactant. Finally, we also localized dextran coated iron oxide nanoparticles labeled with tat peptide to the cell nucleus, which permits this system to be used for a variety of biomedical applications. Beyond investigating magnetic nanoparticles for biomedical applications, we also studied their magnetohydrodynamic and dielectric properties in solution. Magnetohydrodynamic properties of ferrofluid can be controlled by appropriate selection of surfactant and deielctric measurement showed magnetodielectric coupling in this system. We also established that some complex low temperature spin structures are suppressed in Mn3O4 nanoparticles, which has important implications for nanomagnetic devices. Furthermore, we explored exchange bias effects in Ni-NiO core-shell nanoparticles. Finally, we also performed extensive magnetic studies in nickel metalhydride (NiMH) batteries to determine the size of Ni clusters, which plays important role on catalyzing the electrochemical reaction and powering Ni-MH batteries.
Organogel polymers from 10-undecenoic acid and poly(vinyl acetate)
USDA-ARS?s Scientific Manuscript database
Organogels are used in a variety of high value applications including the removal of toxic solvents from aqueous environments and the time-controlled release of compounds. One of the most promising gelators is a polyvinyl polymer containing medium chain length carboxylic acids. The existing producti...
Clay-based Formulations to Reduce the Environmental Impact of the Herbicide Terbuthylazine
USDA-ARS?s Scientific Manuscript database
Controlled release formulations of pesticides are receiving increasing attention as a way to reduce the environmental impact of pesticides after their application to agricultural soils. Natural and modified clay minerals have been proved to be efficient adsorbents for many pesticides and, accordingl...
Zhang, Ning; Gao, Tianlin; Wang, Yu; Wang, Zongliang; Zhang, Peibiao; Liu, Jianguo
2015-01-01
To explore the controlled delivery of protein drugs in micro-environment established by osteoblasts or osteoclasts, the loading/release properties of bovine serum albumin (BSA) depending on pH environment were assessed. The adsorption amounts over mesoporous hydroxyapatite (MHA) or hydroxyapatite (HA) decreased as the pH increased, negatively correlating with zeta-potential values. The adsorption behavior over MHA fits well with the Freundlich and Langmuir models at different pHs. The results suggest that the adsorbed amount of protein on MHA or HA depended on the pH of protein solution. MHA adsorbed BSA at basic pH (MHApH 8.4) exhibited a different release kinetics compared with those in acid and neutral environments (MHApH 4.7 and MHApH 7.4), indicating that the release of protein could be regulated by environmental pH at which MHAs adsorb protein. MHApH 8.4 showed a sustained release for 6h before a gradual release when immersing in acidic environment, which is 2h longer than that in neutral environment. This suggests that MHApH 8.4 showed a more sustained release in acidic environment, which can be established by osteoclasts. The variation of adsorption strength between protein and MHA may be responsible for these behaviors. Our findings may be very useful for the development of MHA applications on both bone repair and protein delivery. Copyright © 2014. Published by Elsevier B.V.
Kassem, Abeer Ahmed; Ismail, Fatma Ahmed; Naggar, Vivian Fahim; Aboulmagd, Elsayed
2014-08-01
In situ gelling formulations allow easy application to the target area. Gelation is induced by physiological stimuli at the site of application where the formula attains semisolid properties and exerts sustained drug release. In situ gelling formulations containing either 3% meloxicam (Mx) or 2% minocycline HCl (MH) were prepared for local application into the periodontal pockets. Gel formulations were based on the thermosensitive Pluronic(®) (Pl) and the pH-sensitive Carbopol(®) (C) polymers. C gels were prepared in combination with HPMC (H) to decrease its acidity. The total percent drug released from Pl formulae was 21.72% after 1 week for Mx and 85% after 3 days for MH. Their release kinetics data indicated anomalous non-Fickian behavior that could be controlled by both diffusion and chain relaxation. Addition of MH to C/H gels (1:2.5) resulted in liquefaction, followed by drug precipitation. Regarding C/H gel containing Mx, it showed a prolonged release rate up to 7 days with an initial burst effect; the kinetics data revealed Fickian-diffusion mechanism. The in vitro antibacterial activity studies for MH gel in Pl revealed that the drug released exceeded the minimum inhibitory concentration (MIC) of MH against Staphylococcus aureus ATCC 6538; placebo gel showed no effect on the microorganism. Clinical evaluation of Pl gels containing either Mx or MH showed significant improvement in chronic periodontitis patients, manifested by decrease in pocket depth and gingival index and increase in bone density.
Mechanisms of monoclonal antibody stabilization and release from silk biomaterials
Guziewicz, Nicholas A.; Massetti, Andrew J.; Perez-Ramirez, Bernardo J.; Kaplan, David L.
2013-01-01
The availability of stabilization and sustained delivery systems for antibody therapeutics remains a major clinical challenge, despite the growing development of antibodies for a wide range of therapeutic applications due to their specificity and efficacy. A mechanistic understanding of protein-matrix interactions is critical for the development of such systems and is currently lacking as a mode to guide the field. We report mechanistic insight to address this need by using well-defined matrices based on silk gels, in combination with a monoclonal antibody. Variables including antibody loading, matrix density, charge interactions, hydrophobicity and water access were assessed to clarify mechanisms involved in the release of antibody from the biomaterial matrix. The results indicate that antibody release is primarily governed by hydrophobic interactions and hydration resistance, which are controlled by silk matrix chemistry, peptide domain distribution and protein density. Secondary ionic repulsions are also critical in antibody stabilization and release. Matrix modification by free methionine incorporation was found to be an effective strategy for mitigating encapsulation induced antibody oxidation. Additionally, these studies highlight a characterization approach to improve the understanding and development of other protein sustained delivery systems, with broad applicability to the rapidly developing monoclonal antibody field. PMID:23859659
Long-Term Delivery of Protein Therapeutics
Vaishya, Ravi; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K
2015-01-01
Introduction Proteins are effective biotherapetics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. Areas covered This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. Expert opinion Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery related issues. A large number of protein molecules are under clinical trials and hence there is an urgent need to develop new methods to deliver these highly potent biologics. PMID:25251334
Long-term delivery of protein therapeutics.
Vaishya, Ravi; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K
2015-03-01
Proteins are effective biotherapeutics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability, frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel-based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery-related issues. A large number of protein molecules are under clinical trials, and hence, there is an urgent need to develop new methods to deliver these highly potent biologics.
Mianehrow, Hanieh; Moghadam, Mohamad Hasan Mohamadzadeh; Sharif, Farhad; Mazinani, Saeedeh
2015-04-30
Stabilization of graphene oxide (GO) in physiological solution is performed using hydroxyethyl cellulose (HEC) to make the resultant nanohybrid suitable for targeted drug delivery purposes. Short and long term stability of GO suspensions with different ionic strengths were assessed using ultraviolet-visible spectroscopy (UV-vis), atomic force microscopy (AFM) and zeta potential measurements. Results depicted that HEC effectively stabilized GO in electrolyte solutions and the mechanism of stabilization appeares to be depended on HEC content. Drug loading and release behavior of folic acid (FA) as a model drug, from GO-HEC nanohybrid were studied to assess its application in drug delivery systems. Results showed the nanohybrid could be highly loaded by folic acid. Moreover, HEC content in the nanohybrid played an important role in final application to make it applicable either as a carrier for controllable drug release or as a folate-targeted drug carrier. In addition, according to cytotoxicity results, the nanohybrid showed good biocompatibility which indeed confirms its potential application as a drug carrier. Copyright © 2015 Elsevier B.V. All rights reserved.
Encapsulation of cosmetic active ingredients for topical application--a review.
Casanova, Francisca; Santos, Lúcia
2016-02-01
Microencapsulation is finding increasing applications in cosmetics and personal care markets. This article provides an overall discussion on encapsulation of cosmetically active ingredients and encapsulation techniques for cosmetic and personal care products for topical applications. Some of the challenges are identified and critical aspects and future perspectives are addressed. Many cosmetics and personal care products contain biologically active substances that require encapsulation for increased stability of the active materials. The topical and transdermal delivery of active cosmetic ingredients requires effective, controlled and safe means of reaching the target site within the skin. Preservation of the active ingredients is also essential during formulation, storage and application of the final cosmetic product. Microencapsulation offers an ideal and unique carrier system for cosmetic active ingredients, as it has the potential to respond to all these requirements. The encapsulated agent can be released by several mechanisms, such as mechanical action, heat, diffusion, pH, biodegradation and dissolution. The selection of the encapsulation technique and shell material depends on the final application of the product, considering physical and chemical stability, concentration, required particle size, release mechanism and manufacturing costs.
Pizarro, G; Csernoch, L; Uribe, I; Ríos, E
1992-01-01
1. Intramembrane charge movements and changes in intracellular calcium concentration were recorded simultaneously in voltage clamped cut skeletal muscle fibres of the frog in the presence and absence of tetracaine. 2. Extracellular application of 20 microM tetracaine reduced the increase in myoplasmic [Ca2+]. The effect on the underlying calcium release flux from the sarcoplasmic reticulum was to suppress the peak of the release while sparing the steady level attained at the end of 100 ms clamp depolarizations. 3. While the peak of the release flux at corresponding voltages was reduced by 62% after the addition of tetracaine, the rate of inactivation was the same when the pulses elicited release fluxes of similar amplitude. 4. Higher concentrations of tetracaine, 0.2 mM, abolished the calcium signal in stretched fibres whereas in slack fibres this concentration left a non-inactivating calcium release flux. 5. Lowering the extracellular pH antagonized the effect of the drug both on charge movements and on calcium signals. The permanently charged analogue tetracaine methobromide lacked effects on excitation-contraction coupling. 6. These results imply that the two kinetic components of calcium release flux have very different tetracaine sensitivities. They are also consistent with an intracellular site of action of the drug at low concentration. Taken together they strongly suggest that the inactivating and non-inactivating components of calcium release correspond to different pathways: one that inactivates, is sensitive to tetracaine and is controlled by calcium, and another that does not inactivate, is much less sensitive to tetracaine and is directly controlled by voltage. PMID:1297844
Liu, Jun; Kang, Huaizhi; Donovan, Michael; Zhu, Zhi
2017-01-01
Hydrogels are water-retainable materials, made from cross-linked polymers, that can be tailored to applications in bioanalysis and biomedicine. As technology advances, an increasing number of molecules have been used as the components of hydrogel systems. However, the shortcomings of these systems have prompted researchers to find new materials that can be incorporated into them. Among all of these emerging materials, aptamers have recently attracted substantial attention because of their unique properties, for example biocompatibility, selective binding, and molecular recognition, all of which make them promising candidates for target-responsive hydrogel engineering. In this work, we will review how aptamers have been incorporated into hydrogel systems to enable colorimetric detection, controlled drug release, and targeted cancer therapy. PMID:22052153
Wenk, Esther; Meinel, Anne J; Wildy, Sarah; Merkle, Hans P; Meinel, Lorenz
2009-05-01
The development of prototype scaffolds for either direct implantation or tissue engineering purposes and featuring spatiotemporal control of growth factor release is highly desirable. Silk fibroin (SF) scaffolds with interconnective pores, carrying embedded microparticles that were loaded with insulin-like growth factor I (IGF-I), were prepared by a porogen leaching protocol. Treatments with methanol or water vapor induced water insolubility of SF based on an increase in beta-sheet content as analyzed by FTIR. Pore interconnectivity was demonstrated by SEM. Porosities were in the range of 70-90%, depending on the treatment applied, and were better preserved when methanol or water vapor treatments were prior to porogen leaching. IGF-I was encapsulated into two different types of poly(lactide-co-glycolide) microparticles (PLGA MP) using uncapped PLGA (50:50) with molecular weights of either 14 or 35 kDa to control IGF-I release kinetics from the SF scaffold. Embedded PLGA MP were located in the walls or intersections of the SF scaffold. Embedment of the PLGA MP into the scaffolds led to more sustained release rates as compared to the free PLGA MP, whereas the hydrolytic degradation of the two PLGA MP types was not affected. The PLGA types used had distinct effects on IGF-I release kinetics. Particularly the supernatants of the lower molecular weight PLGA formulations turned out to release bioactive IGF-I. Our studies justify future investigations of the developed constructs for tissue engineering applications.
Dextran based Polymeric Micelles as Carriers for Delivery of Hydrophobic Drugs.
Mocanu, Georgeta; Nichifor, Marieta; Sacarescu, Liviu
2017-01-01
The improvement of drugs bioavailability, especially of the hydrophobic ones, by using various nanoparticles is a very exciting field of the modern research. The applicability of nano-sized shell crosslinked micelles based on dextran as supports for controlled release of several hydrophobic drugs (nystatin, rifampicin, resveratrol, and curcumin) was investigated by in vitro drug loading/release experiments. The synthesized crosslinked micelles were loaded with drugs of various hydrophobicities and their retention/release behavior was followed by dialysis procedure. Crosslinked micelles obtained from dextran with octadecyl end groups, with or without N-(2- hydroxypropyl)-N,N-dimethyl-N-benzylammonium chloride groups attached to the main dextran chains, could retain the drugs in amounts which increased with increasing drug hydrophobicity (water insolubility), as follows: 30-60 mg rifampicin/g, 70-100 mg nystatin/g, 120-144 mg resveratrol/g and 146-260 mg curcumin/g. The rate of drug release from the loaded micelles was also dependent on the drug hydrophobicity and was always slower than the free drug recovery. Antioxidant activity of curcumin and resveratrol released from the loaded micelles was preserved. The results highlighted the potential of the new nano-sized micelles as carriers for prolonged and controlled delivery of various hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zhang, Yang; Xu, Juan
2018-01-01
This paper proposes a novel type of multifunctional envelope-type mesoporous silica nanoparticle (MSN) to achieve cancer cell targeting and drug-controlled release. In this system, MSNs were first modified by active targeting moiety hyaluronic acid (HA) for breast cancer cell targeting and hyaluronidases (Hyal)-induced intracellular drug release. Then gelatin, a proteinaceous biopolymer, was grafted onto the MSNs to form a capping layer via glutaraldehyde-mediated cross-linking. To shield against unspecific uptake of cells and prolong circulation time, the nanoparticles were further decorated with poly(ethylene glycol) polymers (PEG) to obtain MSN@HA-gelatin-PEG (MHGP). Doxorubicin (DOX), as a model drug, was loaded into PEMSN to assess the breast cancer cell targeting and drug release behaviours. In vitro study revealed that PEG chains protect the targeting ligand and shield against normal cells. After reaching the breast cancer cells, MMP-2 overpressed by cells hydrolyses gelatin layer to deshield PEG and switch on the function of HA. As a result, DOX-loaded MHGP was selectively trapped by cancer cells through HA receptor-mediated endocytosis and subsequently release DOX due to Hyal-catalysed degradation of HA. This system presents successful bienzyme-responsive targeting drug delivery in an optimal fashion and provides potential applications for targeted cancer therapy.
Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone).
Parisi, Ortensia Ilaria; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Cirillo, Giuseppe; Spizzirri, Umile Gianfranco; Picci, Nevio
2013-01-01
Flavonoids preservation and release. Synthesis of a polymeric material able to prevent thermal and photo degradation of a flavonoid model compound, such as (+)-catechin, and suitable for a controlled/sustained delivery of this molecule in gastro-intestinal simulating fluids. Methacrylic acid (MAA) was grafted onto poly(N-vinyl-pyrrolidone) (PVP) by a free radical grafting procedure involving a single-step reaction at room temperature. For this purpose, hydrogen peroxide/ascorbic acid redox pair was employed as water-soluble and biocompatible initiator system. FT-IR spectra confirmed the insertion of MAA onto the polymeric chain. Stability studies, performed under various conditions, such as freeze-thaw cycles, exposure to strong light, thermal stability studies under constant humidity and with light protection at different temperatures, showed the preservative properties of the polymeric material towards flavonoids. Furthermore, the biocompatibility was highlighted by Hen's Egg Test-Chorioallantoic Membrane assay and in vitro release studies demonstrated the possibility to employ PVP-MAA copolymer as a device for gastro-intestinal release of flavonoids. The coupling of good preservative properties together with biocompatibility and the usefulness as carrier in controlled release make this kind of material very interesting from an industrial point of view for different applications in food, pharmaceutical, and cosmetic fields.
Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao
2016-07-20
A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP.
Chen, Lin; Zhang, Huan; Zheng, Jing; Yu, Shiping; Du, Jinglei; Yang, Yongzhen; Liu, Xuguang
2018-03-01
A multifunctional nanoplatform based on thermo-sensitively and magnetically ordered mesoporous carbon nanospheres (TMOMCNs) is developed for effective targeted controlled release of doxorubicin hydrochloride (DOX) and hyperthermia in this work. The morphology, specific surface area, porosity, thermo-stability, thermo-sensitivity, as well as magnetism properties of TMOMCNs were verified by high resolution transmission electron microscopy, field emission scanning electron microscopy, thermo-gravimetric analysis, X-ray diffraction, Brunauer-Emmeltt-Teller surface area analysis, dynamic light scattering and vibrating sample magnetometry measurement. The results indicate that TMOMCNs have an average diameter of ~146nm with a lower critical solution temperature at around 39.5°C. They are superparamagnetic with a magnetization of 10.15emu/g at 20kOe. They generate heat when inductive magnetic field is applied to them and have a normalized specific absorption rate of 30.23W/g at 230kHz and 290Oe, showing good potential for hyperthermia. The DOX loading and release results illustrate that the loading capacity is 135.10mg/g and release performance could be regulated by changing pH and temperature. The good targeting, DOX loading and release and hyperthermia properties of TMOMCNs offer new probabilities for high effectiveness and low toxicity of cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Alginate/sodium caseinate aqueous-core capsules: a pH-responsive matrix.
Ben Messaoud, Ghazi; Sánchez-González, Laura; Jacquot, Adrien; Probst, Laurent; Desobry, Stéphane
2015-02-15
Alginate capsules have several applications. Their functionality depends considerably on their permeability, chemical and mechanical stability. Consequently, the creation of composite system by addition of further components is expected to control mechanical and release properties of alginate capsules. Alginate and alginate-sodium caseinate composite liquid-core capsules were prepared by a simple extrusion. The influence of the preparation pH and sodium caseinate concentration on capsules physico-chemical properties was investigated. Results showed that sodium caseinate influenced significantly capsules properties. As regards to the membrane mechanical stability, composite capsules prepared at pH below the isoelectric point of sodium caseinate exhibited the highest surface Young's modulus, increasing with protein content, explained by potential electrostatic interactions between sodium caseinate amino-groups and alginate carboxylic group. The kinetic of cochineal red A release changed significantly for composite capsules and showed a pH-responsive release. Sodium caseinate-dye mixture studied by absorbance and fluorescence spectroscopy confirmed complex formation at pH 2 by electrostatic interactions between sodium caseinate tryptophan residues and cochineal red sulfonate-groups. Consequently, the release mechanism was explained by membrane adsorption process. This global approach is useful to control release mechanism from macro and micro-capsules by incorporating guest molecules which can interact with the entrapped molecule under specific conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Exploiting for medical and biological applications
NASA Astrophysics Data System (ADS)
Giano, Michael C.
Biotherapeutics are an emerging class of drug composed of molecules ranging in sizes from peptides to large proteins. Due to their poor stability and mucosal membrane permeability, biotherapeutics are administered by a parenteral method (i.e., syringe, intravenous or intramuscular). Therapeutics delivered systemically often experience short half-lives. While, local administration may involve invasive surgical procedures and suffer from poor retention at the site of application. To compensate, the patient receives frequent doses of highly concentrated therapeutic. Unfortunately, the off-target side effects and discomfort associated with multiple injections results in poor patient compliance. Therefore, new delivery methods which can improve therapeutic retention, reduce the frequency of administration and may aid in decreasing the off-target side effects is a necessity. Hydrogels are a class of biomaterials that are gaining interests for tissue engineering and drug delivery applications. Hydrogel materials are defined as porous, 3-dimensional networks that are primarily composed of water. Generally, they are mechanically rigid, cytocompatible and easily chemically functionalized. Collectively, these properties make hydrogels fantastic candidates to perform as drug delivery depots. Current hydrogel delivery systems physically entrap the target therapeutic which is then subsequently released over time at the site of administration. The swelling and degradation of the material effect the diffusion of the therapy from the hydrogel, and therefore should be controlled. Although these strategies provide some regulation over therapeutic release, full control of the delivery is not achieved. Newer approaches are focused on designing hydrogels that exploit known interactions, covalently attach the therapy or respond to an external stimulus in an effort to gain improved control over the therapy's release. Unfortunately, the biotherapeutic is typically required to be chemically functionalized which can lead to loss in function. Additionally, cytotoxic crosslinkers are employed to formulate hydrogels, providing another obstacle for their application. Therefore, newer materials that can provide various delivery profiles, remain cytocompatible with little or no loss in therapeutic activity are required. This thesis is focused on controlling material degradation and protein loading to modulate the release and activity of therapeutic proteins. In the first part of this thesis a series of five hydrogels prepared from self-assembling beta-hairpin peptides were designed to be enzymatically degraded by matrix metalloproteinase-13 (MMP-13) at controllable rates with the potential to effect on demand release of biotherapies. Hydrogel degradation products were characterized by high performance liquid chromatography and identified by mass spectrometry. Oscillatory rheology showed that various degradation profiles can be achieved by changing the primary amino acid sequence. An in vitro migration study showed that a model cell line was capable of degrading, invading and migrating through select hydrogels is possible. For applications that require steady delivery of a therapeutic, an alternative approach to controlling hydrogel degradation is to design a material whose degradation is dictated by hydrolysis. In the second part of the dissertation, the design and study of a novel bioadhesive hydrogel formed by mixing solutions of dextran-aldehyde and target protein(s) was studied for its potential use as a localized steady delivery system. The effect of changing the dextran chain length, dextran percent oxidiation, dextran concentration and crosslinking protein concentration on the mechanical and bioadhesive properties was explored with dynamic oscillatory rheology and lap-shear uniaxial tension measurements, respectively. Model degradation and release studies were performed in vitro and in vivo with a model fluorescent protein (eGFP). In addition, a therapeutically relevant recombinant interleukin-2 (rIL-2) was co-crosslinked with BSA and biologic function was assessed upon its release from the hydrogel network to gain insight into the hydrogels ability to delivery biotherapeutics. Lastly, the utility of the dextran-aldehyde crosslinked with polyethylenimine (PEI) bioadhesive hydrogel to prevent surgical site infections was explored. Surgical site infections that occur during the implantation of wound fillers can delay wound healing, resulting in increased antibiotic administration, longer hospital stays and, in the most severe cases, sepsis. To prevent bacterial infection during wound filling a new injectable bioadhesive antibacterial hydrogel was designed exploiting dextran-aldehyde crosslinked networks. Mechanical analysis, mammalian cytocompatibility and antibacterial properties of the material will be discussed.
Surface Grafting of Thermoresponsive Microgel Nanoparticles (Postprint)
2011-01-01
and cell immobilization, as biosensors, and for in vivo drug delivery .33,34,36,49–53 PNIPAM-containing microgels have been synthesized and...2007, 25, 577–583. 51 J. Jagur-Grodzinski, Polym. Adv. Technol., 2010, 21, 27–47.Soft Matter52 M. Hamidi, A. Azadi and P. Rafiei,Adv. Drug Delivery ...prospective applications in micro- and nanofluidics, biocompatible materials, controlled drug release, nano- and biotribology, controlled cell growth
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2015-01-01
This paper summarizes the procedures of (1) generating control volumes anchored at the nodes of a mesh; and (2) generating staggered control volumes via mesh reconstructions, in terms of either mesh realignment or mesh refinement, as well as presents sample results from their applications to the numerical solution of a single-element LDI combustor using a releasable edition of the National Combustion Code (NCC).
Bulk-scaffolded hydrogen storage and releasing materials and methods for preparing and using same
Autrey, S Thomas [West Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Gutowska, Anna [Richland, WA; Li, Liyu [Richland, WA; Li, Xiaohong S [Richland, WA; Shin, Yongsoon [Richland, WA
2011-06-21
Compositions are disclosed for storing and releasing hydrogen and methods for preparing and using same. These hydrogen storage and releasing materials exhibit fast release rates at low release temperatures without unwanted side reactions, thus preserving desired levels of purity and enabling applications in combustion and fuel cell applications.
Two-stage controlled release system possesses excellent initial and long-term efficacy.
Luo, Jian; Jing, Tong-Fang; Zhang, Da-Xia; Zhang, Xian-Peng; Li, Beixing; Liu, Feng
2018-05-24
In this work, a series of polyurea-based lambda-cyhalothrin-loaded microcapsules (MCs) with three different size distributions (average diameters of 1.35 μm, MC-S; 5.13 μm, MC-M; and 21.48 μm, MC-L) were prepared and characterized. The results indicated that MCs with a smaller particle size distribution had a faster release rate and excellent initial efficacy against pests. MC-L had a remarkably slow incipient release rate, outstanding photostability and better later-stage efficacy than that of the other tested MCs. The results clarified that the diameter distribution of MCs is the key factor in determining the release property and bioactivity of the MC formulations. Subsequently, the binary mixture MC formulations of MC(+M), MC(S+L) and MC(M+L) were obtained by mixing MC-S, MC-M or MC-L at 1:1 to establish a two-stage release system utilized for foliar application situations. Greenhouse and field experiments showed that MC(S+L) provided an optimal efficacy, and its effective duration was much longer than that of the emulsifiable concentrate (EC) group. Therefore, the release system established in this study was simple and workable for regulating the initial and long-term efficacy by adjusting the particle size distribution; in addition, this system has potential applications in other fields such as drug delivery devices. Copyright © 2018 Elsevier B.V. All rights reserved.
CARPET AS A SINK FOR CHLORPYRIFOS FOLLOWING THE USE OF TOTAL RELEASE AEROSOLS IN THE EPA TEST HOUSE
Pesticides may be found in homes from indoor applications to control pests or by their translocation from outdoor sources. Contaminants may persist adsorbed to surfaces and/or particles in "sinks" where over time they may dissociate as airborne vapors. Experiments wer...
75 FR 10546 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... centre --Explanatory notes for the application of the safe return to port requirements --Recommendation... --Amendments to chapter II-2 related to the releasing controls and means of escape for spaces protected by fixed carbon dioxide systems --Means of escape from machinery spaces --Review of fire protection for on...
10 CFR 72.24 - Contents of application: Technical information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... components provided for the prevention of accidents and the mitigation of the consequences of accidents... radiation exposures within the limits given in part 20 of this chapter, and for meeting the objective of... outside the controlled area from accidents or natural phenomena events that result in the release of...
10 CFR 72.24 - Contents of application: Technical information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... components provided for the prevention of accidents and the mitigation of the consequences of accidents... radiation exposures within the limits given in part 20 of this chapter, and for meeting the objective of... outside the controlled area from accidents or natural phenomena events that result in the release of...
10 CFR 72.24 - Contents of application: Technical information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... components provided for the prevention of accidents and the mitigation of the consequences of accidents... radiation exposures within the limits given in part 20 of this chapter, and for meeting the objective of... outside the controlled area from accidents or natural phenomena events that result in the release of...
Photodynamic dye adsorption and release performance of natural zeolite
NASA Astrophysics Data System (ADS)
Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen
2017-03-01
Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment.
Photodynamic dye adsorption and release performance of natural zeolite.
Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen
2017-03-31
Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment.
Catiau, Lucie; Delval-Dubois, Véronique; Guillochon, Didier; Nedjar-Arroume, Naïma
2011-11-01
Alpha-lactalbumin hydrolysate is of significant interest, due to its potential application as a source of bioactive peptides in nutraceutical and pharmaceutical domains. This study was focused on the cholecystokinin (CCK) family compounds which are small peptides involved in the satiety control. The action of chymotryptic hydrolysate of alpha-lactalbumin on cholecystokinin release from intestinal endocrine STC-1 cells was investigated. We demonstrated for the first time that a chymotryptic hydrolysate of alpha-lactalbumin was able to highly stimulate CCK-releasing activity from STC-1 cells. The peptidic hydrolysate was characterized by LC/MS and MS/MS, thus highlighting the presence of 11 fractions containing 21 peptides, each potentially having the desired activity.
Relaxation training methods for nurse managers in Hong Kong: a controlled study.
Yung, Paul M B; Fung, Man Yi; Chan, Tony M F; Lau, Bernard W K
2004-12-01
Nurse managers are under increased stress because of excessive workloads and hospitals' restructuring which is affecting their work tasks. High levels of stress could affect their mental health. Yet, few stress management training programmes are provided for this population. The purpose of this study was to apply stretch-release relaxation and cognitive relaxation training to enhance the mental health for nurse managers. A total of 65 nurse managers in Hong Kong were randomly assigned to stretch-release relaxation (n = 17), cognitive relaxation (n = 18), and a test control group (n = 35). Mental health status was assessed using the Chinese version of State-Trait Anxiety Inventory and the Chinese version of the General Health Questionnaire. Participants were assessed at the pretreatment session, the fourth posttreatment session, and at the 1-month follow-up session. The results revealed both the stretch-release and cognitive relaxation training enhanced mental health in nurse managers in Hong Kong. The application of relaxation training in enhancing mental health status for nurses and health professionals is discussed.
Biological Impact of Bioactive Glasses and Their Dissolution Products.
Hoppe, Alexander; Boccaccini, Aldo R
2015-01-01
For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. © 2015 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Shum, Henry; Yashin, Victor; Balazs, Anna
We model a system of synthetic microcapsules that communicate chemically by releasing nanoparticles or signaling molecules. These signaling species bind to receptors on the shells of capsules and modulate the target shell's permeability, thereby controlling nanoparticle release from the target capsule. Using the repressilator regulatory network motif, whereby three species suppress the production of the next in a cyclic fashion, we show that large amplitude oscillations in nanoparticle release can emerge when many capsules are close together. This exemplifies quorum sensing, which is the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. We present a physically realizable model in which the oscillations exhibited in crowded populations induce aggregation of the microcapsules, mimicking complex biological behavior of the slime mold Dictyostelium discoideum with only simple, synthetic components. We also show that the clusters can be dispersed and reformed repeatedly and controllably by addition of chemical stimuli, demonstrating possible applications in creating reconfigurable or programmable materials.
Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release.
Li, Ping; Dou, Xiao-Qiu; Tang, Yi-Tian; Zhu, Shenmin; Gu, Jiajun; Feng, Chuan-Liang; Zhang, Di
2012-12-01
In this paper, 1,4-bi(phenylalanine-diglycol)-benzene (PDB) based Low-Molecular-Weight-Gelator (LMWG) hydrogels are modified using hydrophilic polysaccharide (sodium alginate). A set of techniques including Fourier transform infrared (FT-IR) spectroscopy, (1)H Nuclear Magnetic Resonance ((1)H NMR), X-ray powder diffraction (XRD), Ultraviolet-Visible (UV-Vis), and circular dichroism (CD) had confirmed a β-turn arrangement of PDB gelators and a semi-interpenetrating network (semi-IPN), which was formed through hydrogen bonds between LMWG fibers and polysaccharide chains. The evaluation of physicochemical properties of hydrogels indicates that gelator-polysaccharide hybrid hydrogels possess better mechanical and water retention properties than LMWG hydrogels. The release study of dyes (model drug) from both LMWG and hybrid hydrogels was carried out. Compared with PDB based hydrogels, hybrid hydrogels show a selective and controllable release property for certain dyes. The results suggest LMWG-polysaccharide hybrid gels may find potential applications as promising drug delivery vehicles for drug molecules. Copyright © 2012 Elsevier Inc. All rights reserved.
Novel Brassinosteroid-Modified Polyethylene Glycol Micelles for Controlled Release of Agrochemicals.
Pérez Quiñones, Javier; Brüggemann, Oliver; Kjems, Jørgen; Shahavi, Mohammad Hassan; Peniche Covas, Carlos
2018-02-21
Two synthetic analogues of brassinosteroids (DI31 and S7) exhibit good plant growth enhancer activity. However, their hydrophobicity and quick metabolism in plants have limited their application and benefits in agriculture. Our objective was to prepare novel brassinosteroid-modified polyethylene glycol (PEG) micelles to achieve controlled release with extended stability while retaining agrochemical activity. Spectroscopic studies confirmed quantitative disubstitution of studied PEGs with the brassinosteroids, while elemental analysis assessed purity of the synthesized conjugates. Conjugates were also characterized by X-ray diffraction and thermal analysis. Dynamic and static light scattering showed stable and homogeneous approximately spherical micelles with average hydrodynamic diameters of 22-120 nm and almost neutral ζ potential. Spherical 30-140 nm micelles were observed by electron microscopy. Sustained in vitro releases at pH 5.5 were extended up to 96 h. Prepared PEG micelles showed good agrochemical activity in the radish seed bioassay and no cytotoxicity to the human microvascular endothelial cell line in the MTS test.
Nachajski, Michal Jakub; Zgoda, Marian Mikołaj
2010-01-01
Pre-formulation research was conducted on the application of Ex. Echinaceae aq. siccum in the production of a quickly disintegrating suspension tablet, a lozenge with kariostatic sugar alcohols (mannitol, sorbitol), and, above all, a solid drug form with controlled release of therapeutic agents included in the extract. Morphological parameters of tablets obtained in the course of experiment were estimated and the profiles of the release (diffusion) ofhydrophilic therapeutic agents into model receptor fluids with varying values of osmolarity (0.1 mol HCl approximately 200 mOsm/l, hypotonic hydrating fluid approximately 143 mOsm/l, and compensatory paediatric fluid approximately 272 mOsm/l) were examined. The study focused on the technological problem of determining the effect of hydrogel Carbopol structure on the ordering of diffusion ofhydrophilic therapeutic agents from a model drug form (a tablet) into model fluids with variable osmolarity.
Light-switchable systems for remotely controlled drug delivery.
Shim, Gayong; Ko, Seungbeom; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Lee, Jaiwoo; Kwon, Taekhyun; Choi, Han-Gon; Kim, Young Bong; Oh, Yu-Kyoung
2017-12-10
Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Sung Hye
Hydrogel systems for controlled delivery therapeutic growth factors have been developed in a wide spectrum of strategies: these systems aim for the release of growth factors via a passive diffusion, electrostatic interaction, degradation of hydrogels, and responsiveness to external stimuli. Heparin, a highly sulfated glycosaminoglycan (GAG), was employed for a targeted delivery system of vascular endothelial growth factor (VEGF) to endothelial cells overexpressing a relevant receptor VEGFR-2. Addition of dimeric VEGF to 4-arm star-shaped poly(ethylene glycol) (PEG) immobilized with low-molecular weight heparin (LMWH) afforded a non-covalently assembled hydrogel via interaction between heparin and VEGF, with storage modulus 10 Pa. The release of VEGF and hydrogel erosion reached maximum 100 % at day 4 in the presence of VEGFR-2 overexpressing pocine aortic endothelial cell (PAE/KDR), while those of 80% were achieved via passive release at day 5 in the presence of PAE cell lacking VEGFR-2 or in the absence of cell, indicating that the release of VEGF was in targeted manner toward cell receptor. The proliferation of PAE/KDR in the presence of [PEG-LMWH/VEGF] hydrogel was greater by ca. 30% at day 4 compared to that of PAE, confirming that the release of VEGF was in response to the cellular demand. The phosphorylation fraction of VEGFR-2 on PAE/KDR was greater in the presence of [PEG-LMWH/VEGF] hydrogel, increasing from 0.568 at day 1 to 0.790 at day 4, whereas it was maintained at 0.230 at day 4 in the presence of [PEG-LMWH] hydrogel. This study has proven that this hydrogel, assembled via bio-inspired non-covalent interaction, liberating VEGFon celluar demand to target cell, eroding upon VEGF release, and triggering endothelial cell proliferation, could be used in multiple applications including targeted delivery and angiogenesis. Heparin has been widely exploited in growth factor delivery systems owing to its ability to bind many growth factors through the flexible patterns of functional groups. However, heterogeneity in the composition and in the polydispersity of heparin has been problematic in controlled delivery system and thus motivated the development of homogeneous heparin mimics. Peptides of appropriate sequence and chemical function have therefore recently emerged as potential replacements for heparin in select applications. Studied was the assessment of the binding affinities of multiple sulfated peptides (SPs) for a set of heparin-binding peptides (HBPs) and for VEGF; these binding partners have application in the selective immobilization of proteins and in hydrogel formation through non-covalent interactions. Sulfated peptides were produced via solid-phase methods, and their affinity for the HBPs and VEGF was assessed via affinity liquid chromatography (ALC), surface plasmon resonance (SPR), and in select cases, isothermal titration calorimetry (ITC). The shortest peptide, SPa, showed the highest affinity binding of HBPs and VEGF165 in both ALC and SPR measurements, with slight exceptions. Of the investigated HBPs, a peptide based on the heparin-binding domain of human platelet factor 4 showed greatest binding affinities toward all of the SPs, consistent with its stronger binding to heparin. The affinity between SPa and PF4ZIP was indicated via SPR ( KD = 5.27 muM) and confirmed via ITC (KD = 8.09 muM). The binding by SPa of both VEGF and HBPs suggests its use as a binding partner to multiple species, and the use of these interactions in assembly of materials. Given that the peptide sequences can be varied to control binding affinity and selectivity, opportunities are also suggested for the production of a wider array of matrices with selective binding and release properties useful for biomaterials applications. Hydrogel consisting of SPa was formed via a covalent Michael Addition reaction between maleimide- and thiol-terminated multi-arm PEGs and Cys-SPa. The mechanical property of hydrogel was tunable from ca. 186 to 1940 Pa. by varing the cross-linking density, suggesting its flexible applications depending on matrix needs. The non-anti-coagulative property of SPa, assessed via activated partial thromboplastin time (APTT) and HeptestRTM in comparison to LMWH, implied its usefulness in applications without excessive bleeding. The VEGF released from [PEG-SPa] hydrogel showed up to ca. 400% greater bioactivity on proliferation of human umbilical vein endothelical cell (HUVEC) compared to the VEGF incubated in solution for the same period: this was significantly higher than that of [PEG] hydrogel (ca. 280%), suggesting the SPa may protect the bioactivity of VEGF when bound. The release of dual growth factor, i.e. VEGF and fibroblast growth factor-2 (FGF-2), were investigated on [PEG-SPa] hydrogel: the release of bFGF was lower than that of VEGF due to weaker binding affinity to matrix-bound SPa. The HUVEC culture on dual growth factor loaded [PEG-SPa] showed that the synergistic effects of dual system in select concentrations, suggesting the opportunity of manipulating cell responses. Given that sulfated peptides for various binding targets with desired affinity can be identified, applications are suggested in multiple growth factors delivery where an integrated action of multiple growth factors is required, such as angiogenesis.
The sterile-male-release technique in Great Lakes sea lamprey management
Bergstedt, Roger A.; Twohey, Michael B.
2005-01-01
The parasitic sea lamprey (Petromyzon marinus) has been a serious pest since its introduction into the Great Lakes, where it contributed to severe imbalances in the fish communities by selectively removing large predators (Smith 1968; Christie 1974; Schneider et al.1996). Since the 1950s, restoration and maintenance of predator-prey balance has depended on the Great Lakes Fishery Commission (GLFC) sea lamprey management program. Initially, management relied primarily on stream treatments with a selective lampricide to kill larvae, on barriers to migration, and on trapping to remove potential spawners (Smith and Tibbles 1980). By the late 1970s, however, it was clear that the future of sea lamprey management lay in development of a larger array of control strategies, including more alternatives to lampricide applications (Sawyer 1980). Since then the only new alternative to chemical control to reach operational status is the release of sterilized male sea lampreys. Research on the concept began at the USGS, Hammond Bay Biological Station in Millersburg, MI (HBBS) during the 1970s (Hanson and Manion 1980). Development and evaluation continued through the 1980s, leading to the release of sterilized males in Great Lakes tributaries since 1991 (Twohey et al. 2003a). The objectives of this paper are 1) to review the implementation and evaluations of sterile-male-release technique (SMRT) as it is being applied against sea lampreys in the Great Lakes, 2) to review our current understanding of its efficacy, and 3) to identify additional research areas and topics that would increase either the efficacy of SMRT or expand its geographic potential for application.
Critical evaluation of biodegradable polymers used in nanodrugs
Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina
2013-01-01
Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720
Multi-pulse drug delivery from a resorbable polymeric microchip device
NASA Astrophysics Data System (ADS)
Grayson, Amy C. Richards; Choi, Insung S.; Tyler, Betty M.; Wang, Paul P.; Brem, Henry; Cima, Michael J.; Langer, Robert
2003-11-01
Controlled-release drug delivery systems have many applications, including treatments for hormone deficiencies and chronic pain. A biodegradable device that could provide multi-dose drug delivery would be advantageous for long-term treatment of conditions requiring pulsatile drug release. In this work, biodegradable polymeric microchips were fabricated that released four pulses of radiolabelled dextran, human growth hormone or heparin in vitro. Heparin that was released over 142 days retained on average 96 +/- 12% of its bioactivity. The microchips were 1.2 cm in diameter, 480-560 μm thick and had 36 reservoirs that could each be filled with a different chemical. The devices were fabricated from poly(L-lactic acid) and had poly(D,L-lactic-co-glycolic acid) membranes of different molecular masses covering the reservoirs. A drug delivery system can be designed with the potential to release pulses of different drugs at intervals after implantation in a patient by using different molecular masses or materials for the membrane.
Chong, Yong-Bing; Zhang, He; Yue, Chee Yoon; Yang, Jinglei
2018-05-09
In this study, double-layer polyurethane/poly(urea-formaldehyde) (PU/PUF) shell microcapsules containing clove oil with antibacterial properties were successfully synthesized via in situ and interfacial polymerization reactions in an oil-in-water emulsion. The morphology, core-shell structure, and composition of the microcapsules were investigated systematically. Additionally, the release behaviors of microcapsules synthesized under different reaction parameters were studied. It was found that the release rate of clove oil can be controlled by tuning the amount of PU reactants and the length of PUF deposition time. The release profile fitted well against the Baker-Lonsdale model, which indicates diffusion as the primary release mechanism. Experimental results based on the ASTM E2315 time kill test revealed that the fabricated microcapsules have great antibacterial activities against the marine bacteria Vibrio coralliilyticus, Escherichia coli, Exiguobacterium aestuarii, and marine biofilm-forming bacteria isolated from the on-site contaminated samples, showing their great potential as an eco-friendly solution to replace existing toxic antifouling agent.
Thonggoom, O; Punrattanasin, N; Srisawang, N; Promawan, N; Thonggoom, R
2016-05-01
In this study, a micellar delivery system with an amphiphilic diblock copolymer of poly (ethylene glycol) and poly (ɛ-caprolactone) was synthesised and used to incorporate hydrophobic clove essential oil (CEO). To determine an optimal delivery system, the effects of the copolymer's hydrophobic block length and the CEO-loading content on the encapsulation of CEO were investigated. Percentages of entrapment efficiency (%EE), CEO loading (%CEO), and in vitro release profiles were determined. The size, size distribution, zeta potential, and morphology of the obtained micelles were determined by DLS, FE-SEM, and TEM. The %EE, %CEO, and in vitro release profiles of CEO incorporated in micelles were analysed by HPLC. The study revealed a sustained release profile of CEO from CEO-loaded micelles. The results indicate the successful formulation of CEO-loaded PEG-b-PCL micelle nanoparticles. It is suggested that this micelle system has considerably potential applications in the sustained release of CEO in intravascular drug delivery.
Marras-Marquez, T; Peña, J; Veiga-Ochoa, M D
2014-03-15
Anionic or non-ionic surfactants have been introduced in agarose-based hydrogels aiming to tailor the release of drugs with different solubility. The release of a hydrophilic model drug, Theophylline, shows the predictable release enhancement that varies depending on the surfactant. However, when the hydrophobic Tolbutamide is considered, an unexpected retarded release is observed. This effect can be explained not only considering the interactions established between the drug loaded micelles and agarose but also to the alteration of the freeze-dried hydrogels microstructure. It has been observed that the modification of the porosity percentage as well as the pore size distribution during the lyophilization plays a critical role in the different phenomena that take place as soon as desiccated hydrogel is rehydrated. The possibility of tailoring the pore architecture as a function of the surfactant nature and percentage can be applied from drug control release to the widespread and growing applications of materials based on hydrogel matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mangindaan, Dave; Chen, Chao-Ting; Wang, Meng-Jiy
2012-12-01
A controlled release system composed of surface modified porous polycaprolactone (PCL) membranes combined with a layer of tetraorthosilicate (TEOS)-chitosan sol-gel was reported in this study. PCL is a hydrophobic, semi-crystalline, and biodegradable polymer with a relatively slow degradation rate. The drugs chosen for release experiments were silver-sulfadiazine (AgSD) and ketoprofen which were impregnated in the TEOS-chitosan sol-gel. The surface modification was achieved by O2 plasma and the surfaces were characterized by water contact angle (WCA) measurements, atomic force microscope (AFM), scanning electron microscope and electron spectroscopy for chemical analysis (ESCA). The results showed that the release of AgSD on O2 plasma treated porous PCL membranes was prolonged when compared with the pristine sample. On the contrary, the release rate of ketoprofen revealed no significant difference on pristine and plasma treated PCL membranes. The prepared PCL membranes showed good biocompatibility for the wound dressing biomaterial applications.
Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming
2014-05-01
In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze-thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Study on O2-supplying characteristics of Azolla in Controlled Ecological Life Support System
NASA Astrophysics Data System (ADS)
Chen, Min; Deng, Sufang; Yang, Youquang; Huang, Yibing; Liu, Zhongzhu
Azolla has high growth and propagation rate, strong photosynthetic O2-releasing ability and rich nutrient value. It is able to be used as salad-type vegetable, and can also be cultured on wet bed in multi-layer condition. Hence, it possesses a potential functioning as providing O2, fresh vegetable and absorbing CO2 for Controlled Ecological Life Support System in space. In this study, we try to make clear the O2-providing characteristics of Azolla in controlled close chamber under manned condition in order to lay a foundation for Azolla as a biological component in the next ground simulated experiment and space application. A closed test cham-ber of Controlled Ecological Life Support System and Azolla wet-culturing devices were built to measure the changes of atmospheric O2-CO2 concentration inside chamber under "Azolla-fish -men" coexisting condition. The results showed that, the amount of O2 consumption is 80.49 83.07 ml/h per kilogram fish, the amount of CO2 emissions is 70.49 73.56 ml/(kg • h); O2 consumption of trial volunteers is 19.71 L/h, the volume of respiration release CO2 18.90 L/h .Artificial light intensity of Azolla wet culture under 70009000 Lx, people respiration and Azolla photosynthesis complemented each other, the atmospheric O2-CO2 concentration inside chamber maintained equilibration. Elevated atmospheric CO2 concentrations in close chamber have obvious effects on enhancing Azolla net photosynthesis efficiency. This shows that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2-CO2 concentration inside chamber in favor of human survival, and then verifies the prospect of Azolla in space application.
Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite.
Elliott Donaghue, Irja; Shoichet, Molly S
2015-10-01
Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG). Specifically, we demonstrate the differentiation of neural stem and progenitor cells to oligodendrocytes, similar to what is observed with the addition of fresh PDGFAA. A differentiated oligodendrocyte population is a key strategy in central nervous system regeneration. This work is the first demonstration of controlled PDGF-AA release, and also brings new insights to the broader field of protein encapsulation. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Alibolandi, Mona; Mohammadi, Marzieh; Taghdisi, Seyed Mohammad; Abnous, Khalil; Ramezani, Mohammad
2017-10-30
There is a clinical need for a novel, more efficient therapy for full thickness wound healing. In the current study, curcumin encapsulated PEG-PLA [poly(lactide)-block-poly(ethylene glycol)] nanomicelles were incorporated into dextran hydrogel for a full thickness dermal wound healing application. To assess the application of the hydrogel as a therapeutic wound dressing, its morphology, swelling pattern, kinetics of degradation, and capacity to control curcumin release were evaluated. It was found that the prepared hybrid hydrogel had acceptable biocompatibility, incorporation capacity of curcumin nanomicelles, and mechanical properties. An in vitro release experiment also demonstrated the sustained release of curcumin from dextran hydrogel, which was first controlled by the diffusion of curcumin from hydrogel and continued through hydrogel matrix erosion at the terminal phase. An in vivo wound healing experiment was carried out using dressing hydrogels on full thickness wounds in BALB/c mice. An histological study demonstrated that the application of curcumin nanomicelles incorporated hydrogel could significantly augment the re-epithelialization of epidermis and collagen deposition in the wound area. Expression of CD31 and vimentin in wound tissue was investigated using immunohistochemistry tests on the eighth day post wounding. The results obtained demonstrated that curcumin nanomicelles incorporated hydrogel could significantly accelerate angiogenesis, fibroblast accumulation, and the process of wound healing. Together, the data indicate that the prepared hybrid curcumin PEG-PLA nanomicelles incorporated dextran hydrogel is a promising candidate for full thickness wound treatment that increases re-epithelialization, collagen deposition, angiogenesis, and tissue granulation. Copyright © 2017 Elsevier B.V. All rights reserved.
In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release.
Oh, Seung Soo; Plakos, Kory; Xiao, Yi; Eisenstein, Michael; Soh, H Tom
2013-11-26
Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.
Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration.
Song, Jiankang; Leeuwenburgh, Sander Cg
2014-08-01
Local delivery of therapeutic biomolecules to stimulate bone regeneration has matured considerably during the past decades, but control over the release of these biomolecules still remains a major challenge. To this end, suitable carriers that allow for tunable spatial and temporal delivery of biomolecules need to be developed. Gelatin is one of the most widely used natural polymers for the controlled and sustained delivery of biomolecules because of its biodegradability, biocompatibility, biosafety and cost-effectiveness. The current study reviews the applications of gelatin as carriers in form of bulk hydrogels, microspheres, nanospheres, colloidal gels and composites for the programmed delivery of commonly used biomolecules for applications in bone regeneration with a specific focus on the relationship between carrier properties and delivery characteristics.
Franca, Juçara R; De Luca, Mariana P; Ribeiro, Tatiana G; Castilho, Rachel O; Moreira, Allyson N; Santos, Vagner R; Faraco, André A G
2014-12-12
Dental caries is the most prevalent oral disease in several Asian and Latin American countries. It is an infectious disease and different types of bacteria are involved in the process. Synthetic antimicrobials are used against this disease; however, many of these substances cause unwarranted undesirable effects like vomiting, diarrhea and tooth staining. Propolis, a resinous substance collected by honeybees, has been used to control the oral microbiota. So, the objective of this study was to develop and characterize sustained-release propolis-based chitosan varnish useful on dental cariogenic biofilm prevention, besides the in vitro antimicrobial activity. Three formulations of propolis - based chitosan varnish (PCV) containing different concentrations (5%, 10% and 15%) were produced by dissolution of propolis with chitosan on hydro-alcoholic vehicle. Bovine teeth were used for testing adhesion of coatings and to observe the controlled release of propolis associated with varnish. It was characterized by infrared spectroscopy, scanning electron microscopy, casting time, diffusion test in vitro antimicrobial activity and controlled release. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were tested for the main microorganisms involved in the cariogenic biofilm through the microdilution test in 96-well plates. The formulations presented a tooth surface adherence and were able to form films very fast on bovine tooth surface. Also, propolis-based chitosan varnishes have shown antimicrobial activity similar to or better than chlorhexidine varnish against all oral pathogen bacteria. All microorganisms were sensitive to propolis varnish and chitosan. MIC and MBC for microorganisms of cariogenic biofilme showed better results than chlorhexidine. Propolis active components were released for more than one week. All developed formulations turn them, 5%, 10% and 15% propolis content varnish, into products suitable for clinical application on dental caries prevention field, deserving clinical studies to confirm its in vivo activity.
DNA Microcapsule for Photo-Triggered Drug Release Systems.
Kamiya, Yukiko; Yamada, Yoshinobu; Muro, Takahiro; Matsuura, Kazunori; Asanuma, Hiroyuki
2017-12-19
In this study we constructed spherical photo-responsive microcapsules composed of three photo-switchable DNA strands. These strands first formed a three-way junction (TWJ) motif that further self-assembled to form microspheres through hybridization of the sticky-end regions of each branch. To serve as the photo-switch, multiple unmodified azobenzene (Azo) or 2,6-dimethyl-4-(methylthio)azobenzene (SDM-Azo) were introduced into the sticky-end regions via a d-threoninol linker. The DNA capsule structure deformed upon trans-to-cis isomerization of Azo or SDM-Azo induced by specific light irradiation. In addition, photo-triggered release of encapsulated small molecules from the DNA microcapsule was successfully achieved. Moreover, we demonstrated that photo-triggered release of doxorubicin caused cytotoxicity to cultured cells. This biocompatible photo-responsive microcapsule has potential application as a photo-controlled drug-release system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baek, Jong-Suep; Choo, Chee Chong; Tan, Nguan Soon; Loo, Say Chye Joachim
2017-10-06
Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.
Sustained release carrier for adenosine triphosphate as signaling molecule.
Wischke, Christian; Weigel, Judith; Bulavina, Larisa; Lendlein, Andreas
2014-12-10
Adenosine triphosphate (ATP) is a molecule with a fascinating variety of intracellular and extracellular biological functions that go far beyond energy metabolism. Due to its limited passive diffusion through biological membranes, controlled release systems may allow to interact with ATP-mediated extracellular processes. In this study, two release systems were explored to evaluate the capacity for either long-term or short-term release: (i) Poly[(rac-lactide)-co-glycolide] (PLGA) implant rods were capable of ATP release over days to weeks, depending on the PLGA molecular weight and end-group capping, but were also associated with partial hydrolytic degradation of ATP to ADP and AMP, but not adenosine. (ii) Thermosensitive methylcellulose hydrogels with a gelation occurring at body temperature allowed combining adjustable loading levels and the capacity for injection, with injection forces less than 50N even for small 27G needles. Finally, a first in vitro study illustrated purinergic-triggered response of primary murine microglia to ATP released from hydrogels, demonstrating the potential relevance for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Statz, Andrea; Finlay, John; Dalsin, Jeffrey; Callow, Maureen; Callow, James A; Messersmith, Phillip B
2006-01-01
The marine antifouling and fouling-release performance of titanium surfaces coated with a bio-inspired polymer was investigated. The polymer consisted of methoxy-terminated poly(ethylene glycol) (mPEG) conjugated to the adhesive amino acid l-3,4-dihydroxyphenylalanine (DOPA) and was chosen based on its successful resistance to protein and mammalian cell fouling. Biofouling assays for the settlement and release of the diatom Navicula perminuta and settlement, growth and release of zoospores and sporelings (young plants) of the green alga Ulva linza were carried out. Results were compared to glass, a poly(dimethylsiloxane) elastomer (Silastic T2) and uncoated Ti. The mPEG-DOPA3 modified Ti surfaces exhibited a substantial decrease in attachment of both cells of N. perminuta and zoospores of U. linza as well as the highest detachment of attached cells under flow compared to control surfaces. The superior performance of this polymer over a standard silicone fouling-release coating in diatom assays and approximately equivalent performance in zoospore assays suggests that this bio-inspired polymer may be effective in marine antifouling and fouling-release applications.
PEG modulated release of etanidazole from implantable PLGA/PDLA discs.
Wang, Fangjing; Lee, Timothy; Wang, Chi-Hwa
2002-09-01
In this work, etanidazole (one type of hypoxic radiosensitizer) is encapsulated into spray dried poly(D),L-lactide-co-glycolide) (PLGA) microspheres and then compressed into discs for controlled release applications. Etanidazole is characterized by intracellular glutathione depletion and glutathione transferases inhibition, thereby enhancing sensitivity to radiation. It is also cytotoxic to tumor cells and can chemosensitize some alkylating agents by activating their tumor cell killing capabilities. We observed the release characteristics of etanidazole in the dosage forms of microspheres and discs, subjected to different preparation conditions. The release characteristics, morphology changes, particle size, and encapsulation efficiency of microspheres are also investigated. The release rate of etanidazole from implantable discs (13 mm in diameter, 1 mm in thickness, fabricated by a press) is much lower than microspheres due to the reduced specific surface. After the initial burst of 1% release for the first day, the cumulative release within the first week is less than 2% until a secondary burst of release (caused by polymer degradation) occurs after one month. Some key preparation conditions such as drug loadings, disc thickness and diameter, and compression pressure can affect the initial burst of etanidazole from the discs. However, none of them can significantly make the release more uniform. In contrast, the incorporation of polyethylene glycol (PEG) can greatly enhance the release rate of discs and also reduces the secondary burst effect, thereby achieving a sustained release for about 2 months.
Polymer-based delivery systems for support and delivery of bacteriophages
NASA Astrophysics Data System (ADS)
Brown, Alyssa Marie
One of the most urgent problems in the fields of medicine and agriculture is the decreasing effectiveness of antibiotics. Once a miracle drug, antibiotics have recently become associated with the creation of antibiotic-resistant bacteria. The main limitations of these treatments include lack of both adaptability and specificity. To overcome these shortcomings of current antibiotic treatments, there has been a renewed interest in bacteriophage research. Bacteriophages are naturally-occurring viruses that lyse bacteria. They are highly specific, with each bacteriophage type lysing a narrow range of bacteria strains. Bacteriophages are also ubiquitous biological entities, populating environments where bacterial growth is supported. Just as humans are exposed to bacteria in their daily lives, we are exposed to bacteriophages as well. To use bacteriophages in practical applications, they must be delivered to the site of an infection in a controlled-release system. Two systems were studied to observe their support of bacteriophage lytic activity, as well as investigate the possibility of controlling bacteriophage release rates. First, hydrogels were studied, using crosslinking and blending techniques to achieve a range of release profiles. Second, polyanhydride microparticles were studied, evaluating release rates as a function of monomer chemistries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammage, R.B.
1981-07-30
This report is divisible into the following four sections that pertain to the nature, application, and performance of urea-formaldehyde (UF) resins and foams in regard to their formaldehyde outgassing characteristics: elements of basic chemistry that affect hydrolysis and stability; pertinent experimental findings of several studies on the release of formaldehyde from urea-formaldehyde foam insulation (UFFI); studies that model the diffusion of formaldehyde through drywall and correlate the rate of formaldehyde emission with the air exchange rate and the concentration of formaldehyde; and, viability of materials and equipment for the controlled production of UFFI. Results indicate that UFFI is a complexmore » and intrinsically unstable material that releases formaldehyde over long-time periods. Even the best foams available in the US, prepared from low formaldehyde resins according to eight different manufacturers' specifications, have abundant potential for long-term or chronic release of formaldehyde. At the present time it is not possible to state that UFFI is a material whose long-term formaldehyde release characteristics can be adequately controlled or predicted.« less
Wagner, Michael C.; Hanson, James E.; Meckley, Trevor D.; Johnson, Nicholas; Bals, Jason D.
2018-01-01
Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms.
Meckley, Trevor D.; Johnson, Nicholas S.; Bals, Jason D.
2018-01-01
Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms. PMID:29897927
Wagner, C Michael; Hanson, James E; Meckley, Trevor D; Johnson, Nicholas S; Bals, Jason D
2018-01-01
Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms.
76 FR 21399 - Endangered and Threatened Wildlife and Plants; Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... immobilization, assess and treat health conditions, implant isotopes, salvage, and release) gray wolf (Canis... applicant requests a permit renewal to take (capture and release) Indiana bats (Myotissodalis) and gray bats..., OH. The applicant requests a permit renewal to take (capture and release) Indiana bats and gray bats...
Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells.
Nie, Yan; Zhang, Kaiyue; Zhang, Shuaiqiang; Wang, Dan; Han, Zhibo; Che, Yongzhe; Kong, Deling; Zhao, Qiang; Han, Zhongchao; He, Zuo-Xiang; Liu, Na; Ma, Fengxia; Li, Zongjin
2017-11-01
Transplantation of endothelial cells (ECs) holds great promise for treating various kinds of ischemic diseases. However, the major challenge in ECs-based therapy in clinical applications is to provide high quality and enough amounts of cells. In this study, we developed a simple and efficient system to direct endothelial differentiation of mouse embryonic stem cells (ESCs) using a controllable chitosan nitric oxide (NO)-releasing hydrogel (CS-NO). ESCs were plated onto the hydrogel culture system, and the expressions of differentiation markers were measured. We found that the expression of Flk-1 (early ECs marker) and VE-cadherin (mature ECs marker) increased obviously under the controlled NO releasing environment. Moreover, the Flk-1 upregulation was accompanied by the activation of the phospho-inositide-3 kinase (PI3K)/Akt signaling. We also found that in the presence of the PI3K inhibitor (LY294002), the endothelial commitment of ESCs was abolished, indicating the importance of Akt phosphorylation in the endothelial differentiation of ESCs. Interestingly, in the absence of NO, the activation of Akt phosphorylation alone by using AKT activator (SC-79) did not profoundly promote the endothelial differentiation of ESCs, suggesting an interdependent relationship between NO and the Akt phosphorylation in driving endothelial fate specification of ESCs. Taken together, we demonstrated that NO releasing in a continuous and controlled manner is a simple and efficient method for directing the endothelial differentiation of ESCs without adding growth factors. Fascinating data continues to show that artificial stem cell niche not only serve as a physical supporting scaffold for stem cells proliferation, but also as a novel platform for directing stem cell differentiation. Because of the lack of proper microenvironment for generating therapeutic endothelial cells (ECs) in vitro, the source of ECs for transplantation is the major limitation in ECs-based therapy to clinical applications. The current study established a feeder cell-free, 2-dimensional culture system for promoting the differentiation processes of embryonic stem cells (ESCs) committed to the endothelial lineage via using a nitric oxide (NO) controlled releasing hydrogel (CS-NO). Notably, the NO releasing from the hydrogel could selectively up-regulate Flk-1 (early ECs marker) and VE-cadherin (mature ECs marker) in the absence of growth factors, which was of crucial importance in the endothelial differentiation of ESCs. In summary, the current study proposes a simple and efficient method for directing the endothelial differentiation of ESCs without extra growth factors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
2005-08-01
Prepas, E. E., Ferguson, M. E., Serediak, M., Guy, M., and Hoist, M. (2001). "The effects of lime addition on aquatic macrophytes in hard water : In...ERDC/TN APCRP-EA-10 August 2005 Experimental Effects of Lime Application on Aquatic Macrophytes: 1. Growth Response Versus Concentration by William F...used primarily as a lake rehabilitation technique for limiting algal growth by controlling phosphorus availability in the water column and its release
Spreckelmeyer, Katja N; Paulzen, Michael; Raptis, Mardjan; Baltus, Thomas; Schaffrath, Sabrina; Van Waesberghe, Julia; Zalewski, Magdalena M; Rösch, Frank; Vernaleken, Ingo; Schäfer, Wolfgang M; Gründer, Gerhard
2011-10-15
Preclinical data implicate the reinforcing effects of alcohol to be mediated by interaction between the opioid and dopamine systems of the brain. Specifically, alcohol-induced release of β-endorphins stimulates μ-opioid receptors (MORs), which is believed to cause dopamine release in the brain reward system. Individual differences in opioid or dopamine neurotransmission have been suggested to be responsible for enhanced liability to abuse alcohol. In the present study, a single dose of the MOR agonist remifentanil was administered in detoxified alcohol-dependent patients and healthy control subjects to mimic the β-endorphin-releasing properties of ethanol and to assess the effects of direct MOR stimulation on dopamine release in the mesolimbic reward system. Availability of D(2/3) receptors was assessed before and after single-dose administration of the MOR agonist remifentanil in 11 detoxified alcohol-dependent patients and 11 healthy control subjects with positron emission tomography with the radiotracer [(18)F]fallypride. Severity of dependence as assessed with the Alcohol Use Disorders Identification Test was compared with remifentanil-induced percentage change in [(18)F]fallypride binding (Δ%BP(ND)). The [(18)F]fallypride binding potentials (BP(ND)s) were significantly reduced in the ventral striatum, dorsal putamen, and amygdala after remifentanil application in both patients and control subjects. In the patient group, ventral striatum Δ%BP(ND) was correlated with the Alcohol Use Disorders Identification Test score. The data provide evidence for a MOR-mediated interaction between the opioid and the dopamine system, supporting the assumption that one way by which alcohol unfolds its rewarding effects is via a MOR-(γ-aminobutyric acid)-dopamine pathway. No difference in dopamine release was found between patients and control subjects, but evidence for a patient-specific association between sensitivity to MOR stimulation and severity of alcohol dependence was found. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
2014-07-01
spread to include the southern and western United States and disjunct northern populations ( US Department of Agriculture/ Natural Resources...waterhyacinth in Louisiana currently exceeds $4 million.3 Primary control methods include the use of herbicides and release of insect biological control...C with natural daylight (Figure 4). Reverse osmosis (RO) water was used in the tanks with periodic application of nutrients. Waterhyacinth was
Production of silver ions from colloidal silver by nanoparticle iontophoresis system.
Tseng, Kuo-Hsiung; Liao, Chih-Yu
2011-03-01
Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.
Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen.
Chen, Zhi; Wang, Ting; Yan, Qing
2018-02-01
Development of a delivery system which can effectively carry hydrophobic drugs and have pH response is becoming necessary. Here we demonstrate that through preparation of β-cyclodextrin polymer (β-CDP), a hydrophobic drug molecule of ibuprofen (IBU) was incorporated into our prepared β-CDP inner cavities, aiming to improve the poor water solubility of IBU. A core-shell capsule structure has been designed for achieving the drug pH targeted and sustained release. This delivery system was built with polysaccharide polymer of Sodium alginate (SA), sodium carboxymethylcellulose (CMC) and hydroxyethyl cellulose (HEC) by physical cross-linking. The drug pH-response control release is this hydrogel system's chief merit, which has potential value for synthesizing enteric capsule. Besides, due to our simple preparing strategy, optimal conditions can be readily determined and the synthesis process can be accurately controlled, leading to consistent and reproducible hydrogel capsules. In addition, phase-solubility method was used to investigate the solubilization effect of IBU by β-CDP. SEM was used to prove the forming of core and shell structure. FT-IR and 1 H-NMR were also used to perform structural characteristics. By the technique of UV determination, the pH targeted and sustained release study were also performed. The results have proved that our prepared polysaccharide hydrogel capsule delivery system has potential applications as oral drugs delivery in the field of biomedical materials.
Jin, Zhiyuan; Güven, Güray; Bocharova, Vera; Halámek, Jan; Tokarev, Ihor; Minko, Sergiy; Melman, Artem; Mandler, Daniel; Katz, Evgeny
2012-01-01
Novel biocompatible hybrid-material composed of iron-ion-cross-linked alginate with embedded protein molecules has been designed for the signal-triggered drug release. Electrochemically controlled oxidation of Fe(2+) ions in the presence of soluble natural alginate polymer and drug-mimicking protein (bovine serum albumin, BSA) results in the formation of an alginate-based thin-film cross-linked by Fe(3+) ions at the electrode interface with the entrapped protein. The electrochemically generated composite thin-film was characterized by electrochemistry and atomic force microscopy (AFM). Preliminary experiments demonstrated that the electrochemically controlled deposition of the protein-containing thin-film can be performed at microscale using scanning electrochemical microscopy (SECM) as the deposition tool producing polymer-patterned spots potentially containing various entrapped drugs. Application of reductive potentials on the modified electrode produced Fe(2+) cations which do not keep complexation with alginate, thus resulting in the electrochemically triggered thin-film dissolution and the protein release. Different experimental parameters, such as the film-deposition time, concentrations of compounds and applied potentials, were varied in order to demonstrate that the electrodepositon and electrodissolution of the alginate composite film can be tuned to the optimum performance. A statistical modeling technique was applied to find optimal conditions for the formation of the composite thin-film for the maximal encapsulation and release of the drug-mimicking protein at the lowest possible potential. © 2011 American Chemical Society
Egozi, Dana; Baranes-Zeevi, Maya; Ullmann, Yehuda; Gilhar, Amos; Keren, Aviad; Matanes, Elias; Berdicevsky, Israela; Krivoy, Norberto; Zilberman, Meital
2015-11-01
There is growing interest in the development of biodegradable materials from renewable biopolymers, such as soy protein, for biomedical applications. Soy protein is a major fraction of natural soybean and has the advantages of being economically competitive, biodegradable and biocompatible. It presents good water resistance as well as storage stability. In the current study, homogenous antibiotic-loaded soy protein films were cast from aqueous solutions. The antibiotic drug gentamicin was incorporated into the films in order to inhibit bacterial growth, and thus prevent or combat infection, upon its controlled release to the surrounding tissue. The current in vivo study of the dressing material in contaminated deep second-degree burn wounds in guinea pigs (n=20) demonstrated its ability to accelerate epithelialization with 71% epithelial coverage compared to an unloaded format of the soy material (62%) and a significant improved epithelial coverage as compared to the conventional dressing material (55%). Our new platform of antibiotic-eluting wound dressings is advantageous over currently used popular dressing materials that provide controlled release of silver ions, due to its gentamicin release profile, which is safer. Another advantage of our novel concept is that it is based on a biodegradable natural polymer and therefore does not require bandage changes and offers a potentially valuable and economic approach for treating burn-related infections. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruisbrink, J.; Boer, G.J.
1984-12-01
Based on drug release by microporous hollow fibers and the recent introduction of microporous polymers, a new technique was developed for controlled delivery of peptides. Small-diameter microporous polypropylene tubing, lumen-loaded with microgram quantities of vasopressin, and coated with collodion, releases vasopressin after in vitro immersion slowly (1-100 ng/d) and constantly for months. The mechanism of pseudo-zero-order delivery is based on high adsorption of vasopressin, keeping the void volume concentration of dissolved vasopressin constant, which is consequently a constant driving force of outward diffusion. The collodion coating prevents the entry of proteinaceous compounds which would result in rapid desorption of vasopressin.more » The present delivery module provides a lasting release for other peptides as well (lysine-vasopressin, oxytocin, alpha-melanocyte-stimulating hormone and, to a lesser extent, Met-enkephalin). The microporous polymer-collodion device is biocompatible and, loaded with vasopressin, successfully alleviates the diabetes insipidus of Brattleboro rats deficient for vasopressin. Subcutaneous implantation normalized diuresis for a period of 60 d and constant urine vasopressin excretion is observed. When the commercially available osmotic minipump is too large for implantation, the small size of the present controlled-delivery system allows peptide treatment of young and immature laboratory rats, even if located in utero.« less
NASA Astrophysics Data System (ADS)
Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A.; Wanichwecharungruang, Supason P.
2008-05-01
Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin.
Simões, M G; Alves, P; Carvalheiro, Manuela; Simões, P N
2017-04-01
The development of polymer-liposome complexes (PLCs), in particular for biomedical applications, has grown significantly in the last decades. The importance of these studies comes from the emerging need in finding intelligent controlled release systems, more predictable, effective and selective, for applications in several areas, such as treatment and/or diagnosis of cancer, neurological, dermatological, ophthalmic and orthopedic diseases, gene therapy, cosmetic treatments, and food engineering. This work reports the development and characterization of a pH sensitive system for controlled release based on PLCs. The selected hydrophilic polymer was poly(acrylic acid) (PAA) synthesized by atom transfer radical polymerization (ATRP) with a cholesterol (CHO) end-group to improve the anchoring of the polymer into the lipid bilayer. The polymer was incorporated into liposomes formulated from soybean lecithin and stearylamine, with different stearylamine/phospholipid and polymer/phospholipid ratios (5, 10 and 20%). The developed PLCs were characterized in terms of particle size, polydispersity, zeta potential, release profiles, and encapsulation efficiency. Cell viability studies were performed to assess the cytotoxic potential of PLCs. The results showed that the liposomal formulation with 5% of stearylamine and 10% of polymer positively contribute to the stabilization of the complexes. Afterwards, the carboxylic acid groups of the polymer present at the surface of the liposomes were crosslinked and the same parameters analyzed. The crosslinked complexes showed to be more stable at physiologic conditions. In addition, the release profiles at different pHs (2-12) revealed that the obtained complexes released all their content at acidic conditions. In summary, the main accomplishments of this work are: (i) innovative synthesis of cholesterol-poly(acrylic acid) (CHO-PAA) by ATRP; (ii) stabilization of the liposomal formulation by incorporation of stearylamine and CHO-PAA; (iii) new approach for CHO-PAA crosslinking, resulting in more stable PLCs at physiological conditions; (iv) destabilization of PLCs upon slight changes of pH, showing their pH sensitivity; and (v) the PLCs do not exhibit cellular toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Bioerodible System for Sequential Release of Multiple Drugs
Sundararaj, Sharath C.; Thomas, Mark V.; Dziubla, Thomas D.; Puleo, David A.
2013-01-01
Because many complex physiological processes are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the objective of the present research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. The polymers used were cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule. PMID:24096151
Tahir, Nayab; Madni, Asadullah; Balasubramanian, Vimalkumar; Rehman, Mubashar; Correia, Alexandra; Kashif, Prince Muhammad; Mäkilä, Ermei; Salonen, Jarno; Santos, Hélder A
2017-11-25
Lipid-polymer hybrid nanoparticles (LPHNPs) are emerging platforms for drug delivery applications. In the present study, methotrexate loaded LPHNPs consisted of PLGA and Lipoid S100 were fabricated by employing a single-step modified nanoprecipitation method combined with self-assembly. A three factor, three level Box Behnken design using Design-Expert ® software was employed to access the influence of three independent variables on the particle size, drug entrapment and percent drug release. The optimized formulation was selected through numeric optimization approach. The results were supported with the ANOVA analysis, regression equations and response surface plots. Transmission electron microscope images indicated the nanosized and spherical shape of the LPHNPs with fair size distribution. The nanoparticles ranged from 176 to 308nm, which increased with increased polymer concentration. The increase in polymer and lipid concentration also increased the drug entrapment efficiency. The in vitro drug release was in range 70.34-91.95% and the release mechanism follow the Higuchi model (R 2 =0.9888) and Fickian diffusion (n<0.5). The in vitro cytotoxicity assay and confocal microscopy of the optimized formulation demonstrate the good safety and better internalization of the LPHNPs. The cell antiproliferation showed the spatial and controlled action of the nanoformulation as compared to the plain drug solution. The results suggest that LPHNPs can be a promising delivery system envisioned to safe, stable and potentially controlled delivery of methotrexate to the cancer cells to achieve better therapeutic outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.
Spitzer, Martin S; Sat, Macarena; Schramm, Charlotte; Schnichels, Sven; Schultheiss, Maximilian; Yoeruek, Efdal; Dzhelebov, Dimitar; Szurman, Peter
2012-06-01
To analyze the release kinetics and the clinical and histological effects of UV-cross-linked hyaluronic acid as a release-system for the transforming growth factor β-2 antagonist tranilast with anti-phlogistic properties on intraocular pressure after trabeculectomy in an aggressive scarring animal model. Hyaluronate acid was UV-cross linked and loaded with tranilast. The release of tranilast into a buffered salt solution was assessed spectrophotometrically. Glaucoma filtration surgery, similar to that performed in clinical practice, was performed on chinchilla rabbits. The rabbits were divided in 3 groups. (Group A: trabeculectomy alone, group B: trabeculectomy with a cross-linked hyaluronic acid gel preparation and group C: trabeculectomy with cross-linked hyaluronic gel preparation mixed with tranilast). Antifibrotic efficacy was established by clinical response and histologic examination. The cross-linked gels released tranilast for up to 26 h. The release plotted as a function of the square root of time was consistent with a largely diffusion-controlled release system. Both the gel preparation alone and the gel preparation mixed with tranilast were well tolerated in vivo. No adverse effects such as inflammation, corneal toxicity or blurring of the optical media were observed. The intraocular pressure reached preoperative levels within 9 days after surgery in control animals and group B, but remained significantly reduced (p = 0.00016) in the group with tranilast until day 22. The data of this pilot study suggest that the intraoperative application of UV-crossed linked hyaluronic acid used as a slow release system for tranilast may improve the surgical outcome of glaucoma filtration surgery.
Han, J; Castell-Perez, M E; Moreira, R G
2008-03-01
We investigated the effect of electron beam irradiation, storage conditions, and model food pH on the release characteristics of trans-cinnamaldehyde incorporated into polyamide-coated low-density polyethylene (LDPE) films. Active agent release rate on irradiated films (up to 20.0 kGy) decreased by 69% compared with the nonirradiated controls, from 0.252 to 0.086 microg/mL/h. Storage temperature (4, 21, and 35 degrees C) and pH (4, 7, and 10) of the food simulant solutions (10% aqueous ethanol) affected the release rate of trans-cinnamaldehyde. As expected, antimicrobial release rate decreased to 0.013 microg/mL/h at the refrigerated temperature (4 degrees C) compared to the higher temperatures (0.029 and 0.035 microg/mL/h at 21 and 35 degrees C). The fastest release rate occurred when exposed to the acidic food simulant solution (pH 4). In aqueous solution, trans-cinnamaldehyde was highly unstable to ionizing radiation, with loss in concentration from 24.50 to 1.36 microg/mL after exposure to 2.0 kGy. Fourier transform infrared (FTIR) analysis revealed that exposure to ionizing radiation up to 10.0 kGy did not affect the structural conformation of LDPE/polyamide films and the trans-cinnamaldehyde in the films, though it induced changes in the functional group of trans-cinnamaldehyde when dose increased up to 20.0 kGy. Studies with a radiation-stable compound (naphthalene) showed that ionizing radiation induced the crosslinking in polymer networks of LDPE/polyamide film and caused slow and gradual release of the compound. This study demonstrated that irradiation serves as a controlling factor for release of active compounds, with potential applications in the development of antimicrobial packaging systems.
Xu, Yi; Kong, Jian
2013-07-01
The rapid release of intracellular enzymes into the curd by the autolysis of lactic acid bacteria starters is universally recognized as a critical biological process to accelerate cheese ripening. Lactobacillus casei is typically the dominant nonstarter lactic acid bacterium in the ripening cheese. In this study, two controlled autolytic systems were established in L. casei BL23, based on the exploitation of the autolysins sourced from Lactococcus lactis (AcmA) and Enterococcus faecalis (AtlA). The lysis abilities of the systems were demonstrated both in broth and a model cheese, in which a fivefold increase in lactate dehydrogenase activity was detected in the curd with sufficient viable starter cells being maintained, indicating that they could lead to the timely release of intracellular enzymes.
Zhang, Min; Liu, Jia; Kuang, Ying; Li, Qilin; Zheng, Di-Wei; Song, Qiongfang; Chen, Hui; Chen, Xueqin; Xu, Yanglin; Li, Cao; Jiang, Bingbing
2017-05-01
In this work, dextran, a polysaccharide with excellent biocompatibility, is applied as the "gatekeeper" to fabricate the pH-sensitive dextran/mesoporous silica nanoparticles (MSNs) based drug delivery systems for controlled intracellular drug release. Dextran encapsulating on the surface of MSNs is oxidized by NaIO 4 to obtain three kinds of dextran dialdehydes (PADs), which are then coupled with MSNs via pH-sensitive hydrazone bond to fabricate three kinds of drug carriers. At pH 7.4, PADs block the pores to prevent premature release of anti-cancer drug doxorubicin hydrochloride (DOX). However, in the weakly acidic intracellular environment (pH∼5.5) the hydrazone can be ruptured; and the drug can be released from the carriers. The drug loading capacity, entrapment efficiency and release rates of the drug carriers can be adjusted by the amount of NaIO 4 applied in the oxidation reaction. And from which DOX@MSN-NH-N=C-PAD 10 is chosen as the most satisfactory one for the further in vitro cytotoxicity studies and cellular uptake studies. The results demonstrate that DOX@MSN-NH-N=C-PAD 10 with an excellent pH-sensitivity can enter HeLa cells to release DOX intracellular due to the weakly acidic pH intracellular and kill the cells. In our opinion, the ingenious pH-sensitive drug delivery systems have application potentials for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
A porphyrin-based metal-organic framework as a pH-responsive drug carrier
NASA Astrophysics Data System (ADS)
Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong
2016-05-01
A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.
USDA-ARS?s Scientific Manuscript database
Chitosan–tripolyphosphate nanoparticles have been extensively studied during the last decade because of their numerous applications. In this study, we describe conditions to optimize chitosan nanoparticles as potential nano-fillers in edible films. The ionic cross-linking between the cationic amino ...
Application of 2D Correlation Spectroscopy with MCR in the Preparation of Glycerol Polyesters
USDA-ARS?s Scientific Manuscript database
The condensation of glycerol and adipic acid was studied by midrange FTIR to identify spectral changes associated with the polymerization reaction. This biobased polymer is being evaluated for use as a controlled release matrix where the extent of reaction is a key performance parameter. A spectrosc...
USDA-ARS?s Scientific Manuscript database
Indole-3-carbinol (I3C) and diindolylmethane (DIM) are two bioactive compounds from Cruciferous vegetables. Their stabilities are the major challenges for their pharmaceutical applications. In this study, zein and zein/carboxymethyl chitosan (zein/CMCS) nanoparticles have been prepared to encapsulat...
ERIC Educational Resources Information Center
Ormerod, C. S.; Nelson, M.
2017-01-01
Various applied mathematics undergraduate skills are demonstrated via an adaptation of Crank's axisymmetric spherical diffusion model. By the introduction of a one-parameter Heaviside initial condition, the pharmaceutically problematic initial mass flux is attenuated. Quantities germane to the pharmaceutical industry are examined and the model is…
Tel-Vered, Ran; Kahn, Jason S; Willner, Itamar
2016-01-06
Layered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals. The crosslinking of the metal NP composites with molecular receptors, or the imprinting of molecular recognition sites into the electropolymerized NP matrices lead to selective and chiroselective sensing interfaces. Furthermore, the electrosynthesis of redox-active, imprinted, bis-aniline bridged Au NP composites yields electrochemically triggered "sponges" for the switchable uptake and release of electron-acceptor substrates, and results in conductive surfaces of electrochemically controlled wettability. Also, photosensitizer-relay-crosslinked Au NP composites, or electrochemically polymerized layered semiconductor quantum dot/metal NP matrices on electrodes, are demonstrated as functional nanostructures for photoelectrochemical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Gibson, James S.; Barnes, Michael J.; Ostermiller, Daniel L.
1993-01-01
A set of programs was written to test the functionality and performance of the Alsys Ada implementation of the Catalogue of Interface Features and Options (CIFO), a set of optional Ada packages for real-time applications. No problems were found with the task id, preemption control, or shared-data packages. Minor problems were found with the dispatching control, dynamic priority, events, non-waiting entry call, semaphore, and scheduling packages. The Alsys implementation is derived mostly from Release 2 of the CIFO standard, but includes some of the features of Release 3 and some modifications unique to Alsys. Performance measurements show that the semaphore and shared-data features are an order-of-magnitude faster than the same mechanisms using an Ada rendezvous. The non-waiting entry call is slightly faster than a standard rendezvous. The existence of errors in the implementation, the incompleteness of the documentation from the published standard impair the usefulness of this implementation. Despite those short-comings, the Alsys CIFO implementation might be of value in the development of real-time applications.
Imre, I.; Brown, G.E.; Bergstedt, R.A.; McDonald, R.
2010-01-01
Sea lamprey invaded the Great Lakes in the early 20th century and caused an abrupt decline in the population densities of several native fish species. The integrated management of this invasive species is composed of chemical (lampricide) applications, low-head barrier dams, adult trapping and sterile male release. Recently, there has been an increased emphasis on the development of control methods alternative to lampricide applications. We propose as an alternative-control method the use of chemosensory cues as repellents for sea lamprey population management. Based on the available evidence at this time, we suggest that injury-released chemical alarm cues show promise as repellents for sea lamprey and further research should be directed at determining whether sea lamprey show an avoidance response to these types of chemosensory cues. From a management perspective, these chemosensory cues could be used to restrict sea lamprey access to spawning grounds. Repellents could also be used together with attractants like sex pheromones to manipulate sea lamprey behavior, similar to the "push-pull" strategies utilized with insect pests. ?? 2010 Elsevier B.V.
Jayalekshmi, A C; Sharma, Chandra P
2015-02-01
The present study discusses the development of a biodegradable polymer encapsulated-nanogold incorporated-bioactive glass composite (AuPBG) by a low-temperature method. The composite was analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), fluorescence and dissolution analysis. The composite exhibited aggregation behaviour in solid and solution states and exhibited negative zeta potential (-13.3 ± 1.4 mV). The composite exhibited fast degradation starting from the 5(th) day onwards in phosphate buffered saline (PBS) for a period of 14 days. The composite showed fluorescence quenching effect at pH 7 and the fluorescence recovered at pH 5. The composite has been found to be suitable for the release of doxorubicin at high rates at acidic pH (∼ 5) which is the intracellular pH of tumour cells. The drug loading ratio is also high and it exhibited a controlled release for a period of 8 days in PBS. The system serves as a promising material for targeted drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Mattos, Bruno D; Tardy, Blaise L; Magalhães, Washington L E; Rojas, Orlando J
2017-09-28
We review biocide delivery systems (BDS), which are designed to deter or control harmful organisms that damage agricultural crops, forests and forest products. This is a timely topic, given the growing socio-economical concerns that have motivated major developments in sustainable BDS. Associated designs aim at improving or replacing traditional systems, which often consist of biocides with extreme behavior as far as their solubility in water. This includes those that compromise or pollute soil and water (highly soluble or volatile biocides) or those that present low bioavailability (poorly soluble biocides). Major breakthroughs are sought to mitigate or eliminate consequential environmental and health impacts in agriculture and silviculture. Here, we consider the most important BDS vehicles or carriers, their synthesis, the environmental impact of their constituents and interactions with the active components together with the factors that affect their rates of release such as environmental factors and interaction of BDS with the crops or forest products. We put in perspective the state-of-the-art nanostructured carriers for controlled release, which need to address many of the challenges that exist in the application of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.
Electronic Activation of a DNA Nanodevice Using a Multilayer Nanofilm.
Jeong, Hyejoong; Ranallo, Simona; Rossetti, Marianna; Heo, Jiwoong; Shin, Jooseok; Park, Kwangyong; Ricci, Francesco; Hong, Jinkee
2016-10-01
A method to control activation of a DNA nanodevice by supplying a complementary DNA (cDNA) strand from an electro-responsive nanoplatform is reported. To develop functional nanoplatform, hexalayer nanofilm is precisely designed by layer-by-layer assembly technique based on electrostatic interaction with four kinds of materials: Hydrolyzed poly(β-amino ester) can help cDNA release from the film. A cDNA is used as a key building block to activate DNA nanodevice. Reduced graphene oxides (rGOs) and the conductive polymer provide conductivity. In particular, rGOs efficiently incorporate a cDNA in the film via several interactions and act as a barrier. Depending on the types of applied electronic stimuli (reductive and oxidative potentials), a cDNA released from the electrode can quantitatively control the activation of DNA nanodevice. From this report, a new system is successfully demonstrated to precisely control DNA release on demand. By applying more advanced form of DNA-based nanodevices into multilayer system, the electro-responsive nanoplatform will expand the availability of DNA nanotechnology allowing its improved application in areas such as diagnosis, biosensing, bioimaging, and drug delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brouillet, F; Bataille, B; Cartilier, L
2008-05-22
High-amylose sodium carboxymethyl starch (HASCA), produced by spray-drying (SD), was previously shown to have interesting properties as a promising pharmaceutical sustained drug-release tablet excipient for direct compression, including ease of manufacture and high crushing strength. This study describes the effects of some important formulation parameters, such as compression force (CF), tablet weight (TW), drug-loading and electrolyte particle size, on acetaminophen-release performances from sustained drug-release matrix tablets based on HASCA. An interesting linear relationship between TW and release time was observed for a typical formulation of the system consisting of 40% (w/w) acetaminophen as model drug and 27.5% NaCl as model electrolyte dry-mixed with HASCA. Application of the Peppas and Sahlin model gave a better understanding of the mechanisms involved in drug-release from the HASCA matrix system, which is mainly controlled by surface gel layer formation. Indeed, augmenting TW increased the contribution of the diffusion mechanism. CFs ranging from 1 to 2.5 tonnes/cm(2) had no significant influence on the release properties of tablets weighing 400 or 600 mg. NaCl particle size did not affect the acetaminophen-release profile. Finally, these results prove that the new SD process developed for HASCA manufacture is suitable for obtaining similar-quality HASCA in terms of release and compression performances.
Chemoresponsive Colloidosomes via Ag⁺ Soldering of Surface-Assembled Nanoparticle Monolayers.
Liu, Miao; Tian, Qian; Li, Yulin; You, Bo; Xu, An; Deng, Zhaoxiang
2015-04-28
Colloidosomes with a hollow interior and a porous plasmonic shell are highly desired for many applications including nanoreactors, surface-enhanced Raman scattering (SERS), photothermal therapy, and controlled drug release. We herein report a silica nanosphere-templated electrostatic self-assembly in conjunction with a newly developed Ag(+) soldering to fabricate gold colloidosomes toward multifunctionality and stimuli-responsibility. The gold colloidosomes are capable of capturing a nanosized object and releasing it via structural dissociation upon responding to a biochemical input (GSH, glutathione) at a concentration close to its cellular level. In addition, the colloidosomes have a tunable nanoporous shell composed of strongly coupled gold nanoparticles, which exhibit broadened near-infrared plasmon resonance. These features along with the simplicity and high tunability of the fabrication process make the gold colloidosomes quite promising for applications in a chemical or cellular environment.