Empirical evidence for multi-scaled controls on wildfire size distributions in California
NASA Astrophysics Data System (ADS)
Povak, N.; Hessburg, P. F., Sr.; Salter, R. B.
2014-12-01
Ecological theory asserts that regional wildfire size distributions are examples of self-organized critical (SOC) systems. Controls on SOC event-size distributions by virtue are purely endogenous to the system and include the (1) frequency and pattern of ignitions, (2) distribution and size of prior fires, and (3) lagged successional patterns after fires. However, recent work has shown that the largest wildfires often result from extreme climatic events, and that patterns of vegetation and topography may help constrain local fire spread, calling into question the SOC model's simplicity. Using an atlas of >12,000 California wildfires (1950-2012) and maximum likelihood estimation (MLE), we fit four different power-law models and broken-stick regressions to fire-size distributions across 16 Bailey's ecoregions. Comparisons among empirical fire size distributions across ecoregions indicated that most ecoregion's fire-size distributions were significantly different, suggesting that broad-scale top-down controls differed among ecoregions. One-parameter power-law models consistently fit a middle range of fire sizes (~100 to 10000 ha) across most ecoregions, but did not fit to larger and smaller fire sizes. We fit the same four power-law models to patch size distributions of aspect, slope, and curvature topographies and found that the power-law models fit to a similar middle range of topography patch sizes. These results suggested that empirical evidence may exist for topographic controls on fire sizes. To test this, we used neutral landscape modeling techniques to determine if observed fire edges corresponded with aspect breaks more often than expected by random. We found significant differences between the empirical and neutral models for some ecoregions, particularly within the middle range of fire sizes. Our results, combined with other recent work, suggest that controls on ecoregional fire size distributions are multi-scaled and likely are not purely SOC. California wildfire ecosystems appear to be adaptive, governed by stationary and non-stationary controls, which may be either exogenous or endogenous to the system.
Preparing rock powder specimens of controlled size distribution
NASA Technical Reports Server (NTRS)
Blum, P.
1968-01-01
Apparatus produces rock powder specimens of the size distribution needed in geological sampling. By cutting grooves in the surface of the rock sample and then by milling these shallow, parallel ridges, the powder specimen is produced. Particle size distribution is controlled by changing the height and width of ridges.
The problem of predicting the size distribution of sediment supplied by hillslopes to rivers
NASA Astrophysics Data System (ADS)
Sklar, Leonard S.; Riebe, Clifford S.; Marshall, Jill A.; Genetti, Jennifer; Leclere, Shirin; Lukens, Claire L.; Merces, Viviane
2017-01-01
Sediments link hillslopes to river channels. The size of sediments entering channels is a key control on river morphodynamics across a range of scales, from channel response to human land use to landscape response to changes in tectonic and climatic forcing. However, very little is known about what controls the size distribution of particles eroded from bedrock on hillslopes, and how particle sizes evolve before sediments are delivered to channels. Here we take the first steps toward building a geomorphic transport law to predict the size distribution of particles produced on hillslopes and supplied to channels. We begin by identifying independent variables that can be used to quantify the influence of five key boundary conditions: lithology, climate, life, erosion rate, and topography, which together determine the suite of geomorphic processes that produce and transport sediments on hillslopes. We then consider the physical and chemical mechanisms that determine the initial size distribution of rock fragments supplied to the hillslope weathering system, and the duration and intensity of weathering experienced by particles on their journey from bedrock to the channel. We propose a simple modeling framework with two components. First, the initial rock fragment sizes are set by the distribution of spacing between fractures in unweathered rock, which is influenced by stresses encountered by rock during exhumation and by rock resistance to fracture propagation. That initial size distribution is then transformed by a weathering function that captures the influence of climate and mineralogy on chemical weathering potential, and the influence of erosion rate and soil depth on residence time and the extent of particle size reduction. Model applications illustrate how spatial variation in weathering regime can lead to bimodal size distributions and downstream fining of channel sediment by down-valley fining of hillslope sediment supply, two examples of hillslope control on river sediment size. Overall, this work highlights the rich opportunities for future research into the controls on the size of sediments produced on hillslopes and delivered to channels.
Rock sampling. [method for controlling particle size distribution
NASA Technical Reports Server (NTRS)
Blum, P. (Inventor)
1971-01-01
A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.
The Microphysical Structure of Extreme Precipitation as Inferred from Ground-Based Raindrop Spectra.
NASA Astrophysics Data System (ADS)
Uijlenhoet, Remko; Smith, James A.; Steiner, Matthias
2003-05-01
The controls on the variability of raindrop size distributions in extreme rainfall and the associated radar reflectivity-rain rate relationships are studied using a scaling-law formalism for the description of raindrop size distributions and their properties. This scaling-law formalism enables a separation of the effects of changes in the scale of the raindrop size distribution from those in its shape. Parameters controlling the scale and shape of the scaled raindrop size distribution may be related to the microphysical processes generating extreme rainfall. A global scaling analysis of raindrop size distributions corresponding to rain rates exceeding 100 mm h1, collected during the 1950s with the Illinois State Water Survey raindrop camera in Miami, Florida, reveals that extreme rain rates tend to be associated with conditions in which the variability of the raindrop size distribution is strongly number controlled (i.e., characteristic drop sizes are roughly constant). This means that changes in properties of raindrop size distributions in extreme rainfall are largely produced by varying raindrop concentrations. As a result, rainfall integral variables (such as radar reflectivity and rain rate) are roughly proportional to each other, which is consistent with the concept of the so-called equilibrium raindrop size distribution and has profound implications for radar measurement of extreme rainfall. A time series analysis for two contrasting extreme rainfall events supports the hypothesis that the variability of raindrop size distributions for extreme rain rates is strongly number controlled. However, this analysis also reveals that the actual shapes of the (measured and scaled) spectra may differ significantly from storm to storm. This implies that the exponents of power-law radar reflectivity-rain rate relationships may be similar, and close to unity, for different extreme rainfall events, but their prefactors may differ substantially. Consequently, there is no unique radar reflectivity-rain rate relationship for extreme rain rates, but the variability is essentially reduced to one free parameter (i.e., the prefactor). It is suggested that this free parameter may be estimated on the basis of differential reflectivity measurements in extreme rainfall.
Aspects of droplet and particle size control in miniemulsions
NASA Astrophysics Data System (ADS)
Saygi-Arslan, Oznur
Miniemulsion polymerization has become increasingly popular among researchers since it can provide significant advantages over conventional emulsion polymerization in certain cases, such as production of high-solids, low-viscosity latexes with better stability and polymerization of highly water-insoluble monomers. Miniemulsions are relatively stable oil (e.g., monomer) droplets, which can range in size from 50 to 500 nm, and are normally dispersed in an aqueous phase with the aid of a surfactant and a costabilizer. These droplets are the primary locus of the initiation of the polymerization reaction. Since particle formation takes place in the monomer droplets, theoretically, in miniemulsion systems the final particle size can be controlled by the initial droplet size. The miniemulsion preparation process typically generates broad droplet size distributions and there is no complete treatment in the literature regarding the control of the mean droplet size or size distribution. This research aims to control the miniemulsion droplet size and its distribution. In situ emulsification, where the surfactant is synthesized spontaneously at the oil/water interface, has been put forth as a simpler method for the preparation of miniemulsions-like systems. Using the in situ method of preparation, emulsion stability and droplet and particle sizes were monitored and compared with conventional emulsions and miniemulsions. Styrene emulsions prepared by the in situ method do not demonstrate the stability of a comparable miniemulsion. Upon polymerization, the final particle size generated from the in situ emulsion did not differ significantly from the comparable conventional emulsion polymerization; the reaction mechanism for in situ emulsions is more like conventional emulsion polymerization rather than miniemulsion polymerization. Similar results were found when the in situ method was applied to controlled free radical polymerizations (CFRP), which have been advanced as a potential application of the method. Molecular weight control was found to be achieved via diffusion of the CFRP agents through the aqueous phase owing to limited water solubilities. The effects of adsorption rate and energy on the droplet size and size distribution of miniemulsions using different surfactants (sodium lauryl sulfate (SLS), sodium dodecylbenzene sulfonate (SDBS), Dowfax 2A1, Aerosol OT-75PG, sodium n-octyl sulfate (SOS), and sodium n-hexadecyl sulfate (SHS)) were analyzed. For this purpose, first, the dynamics of surfactant adsorption at an oil/water interface were examined over a range of surfactant concentrations by the drop volume method and then adsorption rates of the different surfactants were determined for the early stages of adsorption. The results do not show a direct relationship between adsorption rate and miniemulsion droplet size and size distribution. Adsorption energies of these surfactants were also calculated by the Langmuir adsorption isotherm equation and no correlation between adsorption energy and miniemulsion droplet size was found. In order to understand the mechanism of miniemulsification process, the effects of breakage and coalescence processes on droplet size distributions were observed at different surfactant concentrations, monomer ratios, and homogenization conditions. A coalescence and breakup mechanism for miniemulsification is proposed to explain the size distribution of droplets. The multimodal droplet size distribution of ODMA miniemulsions was controlled by the breakage mechanism. The results also showed that, at a surfactant concentration when 100% surface coverage was obtained, the droplet size distribution became unimodal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmuth, R.A.
1979-03-01
Progress is reported on the energy conservation potential of Portland cement particle size distribution control. Results of preliminary concrete tests, Series IIIa and Series IIIb, effects of particle size ranges on strength and drying shrinkage, are presented. Series IV, effects of mixing and curing temperature, tests compare the properties of several good particle size controlled cements with normally ground cements at low and high temperatures. The work on the effects of high alkali and high sulfate clinker cements (Series V) has begun.
focuses on integration and optimization of distributed energy resources, specifically cost-optimal sizing Campus team which is focusing on NREL's own control system integration and energy informatics sizing and dispatch of distributed energy resources Integration of building and utility control systems
Geological duration of ammonoids controlled their geographical range of fossil distribution.
Wani, Ryoji
2017-01-01
The latitudinal distributions in Devonian-Cretaceous ammonoids were analyzed at the genus level, and were compared with the hatchling sizes (i.e., ammonitella diameters) and the geological durations. The results show that (1) length of temporal ranges of ammonoids effected broader ranges of fossil distribution and paleobiogeography of ammonoids, and (2) the hatchling size was not related to the geographical range of fossil distribution of ammonoids. Reducing the influence of geological duration in this analysis implies that hatchling size was one of the controlling factors that determined the distribution of ammonoid habitats at any given period in time: ammonoids with smaller hatchling sizes tended to have broader ammonoid habitat ranges. These relationships were somewhat blurred in the Devonian, Carboniferous, Triassic, and Jurassic, which is possibly due to (1) the course of development of a reproductive strategy with smaller hatchling sizes in the Devonian and (2) the high origination rates after the mass extinction events.
Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan
2016-01-01
Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.
Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles
Huber, Dale L [Albuquerque, NM
2011-07-05
A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.
Spatiotemporal variability of wildland fuels in US Northern Rocky Mountain forests
Robert E. Keane
2016-01-01
Fire regimes are ultimately controlled by wildland fuel dynamics over space and time; spatial distributions of fuel influence the size, spread, and intensity of individual fires, while the temporal distribution of fuel deposition influences fire's frequency and controls fire size. These "shifting fuel mosaics" are both a cause and a consequence...
Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi
NASA Astrophysics Data System (ADS)
Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.
2017-12-01
It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.
Method for producing ceramic particles and agglomerates
Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku
2001-01-01
A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.
Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition
NASA Astrophysics Data System (ADS)
Hufschmid, Ryan; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.
2015-06-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular application.
Analysis of Noise Mechanisms in Cell-Size Control.
Modi, Saurabh; Vargas-Garcia, Cesar Augusto; Ghusinga, Khem Raj; Singh, Abhyudai
2017-06-06
At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth). Analysis reveals that variation in cell size is most sensitive to errors in partitioning of volume among daughter cells, and not surprisingly, this process is well regulated among microbes. Moreover, depending on the dominant noise mechanism, different size-control strategies (or a combination of them) provide efficient buffering of size variations. We further explore mixer models of size control, where a timer phase precedes/follows an adder, as has been proposed in Caulobacter crescentus. Although mixing a timer and an adder can sometimes attenuate size variations, it invariably leads to higher-order moments growing unboundedly over time. This results in a power-law distribution for the cell size, with an exponent that depends inversely on the noise in the timer phase. Consistent with theory, we find evidence of power-law statistics in the tail of C. crescentus cell-size distribution, although there is a discrepancy between the observed power-law exponent and that predicted from the noise parameters. The discrepancy, however, is removed after data reveal that the size added by individual newborns in the adder phase itself exhibits power-law statistics. Taken together, this study provides key insights into the role of noise mechanisms in size homeostasis, and suggests an inextricable link between timer-based models of size control and heavy-tailed cell-size distributions. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Confinement of surface waves at the air-water interface to control aerosol size and dispersity
NASA Astrophysics Data System (ADS)
Nazarzadeh, Elijah; Wilson, Rab; King, Xi; Reboud, Julien; Tassieri, Manlio; Cooper, Jonathan M.
2017-11-01
The precise control over the size and dispersity of droplets, produced within aerosols, is of great interest across many manufacturing, food, cosmetic, and medical industries. Amongst these applications, the delivery of new classes of high value drugs to the lungs has recently attracted significant attention from pharmaceutical companies. This is commonly achieved through the mechanical excitation of surface waves at the air liquid interface of a parent liquid volume. Previous studies have established a correlation between the wavelength on the surface of liquid and the final aerosol size. In this work, we show that the droplet size distribution of aerosols can be controlled by constraining the liquid inside micron-sized cavities and coupling surface acoustic waves into different volumes of liquid inside micro-grids. In particular, we show that by reducing the characteristic physical confinement size (i.e., either the initial liquid volume or the cavities' diameters), higher harmonics of capillary waves are revealed with a consequent reduction of both aerosol mean size and dispersity. In doing so, we provide a new method for the generation and fine control of aerosols' sizes distribution.
Effect of rapid thermal annealing temperature on the dispersion of Si nanocrystals in SiO2 matrix
NASA Astrophysics Data System (ADS)
Saxena, Nupur; Kumar, Pragati; Gupta, Vinay
2015-05-01
Effect of rapid thermal annealing temperature on the dispersion of silicon nanocrystals (Si-NC's) embedded in SiO2 matrix grown by atom beam sputtering (ABS) method is reported. The dispersion of Si NCs in SiO2 is an important issue to fabricate high efficiency devices based on Si-NC's. The transmission electron microscopy studies reveal that the precipitation of excess silicon is almost uniform and the particles grow in almost uniform size upto 850 °C. The size distribution of the particles broadens and becomes bimodal as the temperature is increased to 950 °C. This suggests that by controlling the annealing temperature, the dispersion of Si-NC's can be controlled. The results are supported by selected area diffraction (SAED) studies and micro photoluminescence (PL) spectroscopy. The discussion of effect of particle size distribution on PL spectrum is presented based on tight binding approximation (TBA) method using Gaussian and log-normal distribution of particles. The study suggests that the dispersion and consequently emission energy varies as a function of particle size distribution and that can be controlled by annealing parameters.
Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir
2013-12-01
Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.
Droplet size and velocity distributions for spray modelling
NASA Astrophysics Data System (ADS)
Jones, D. P.; Watkins, A. P.
2012-01-01
Methods for constructing droplet size distributions and droplet velocity profiles are examined as a basis for the Eulerian spray model proposed in Beck and Watkins (2002,2003) [5,6]. Within the spray model, both distributions must be calculated at every control volume at every time-step where the spray is present and valid distributions must be guaranteed. Results show that the Maximum Entropy formalism combined with the Gamma distribution satisfy these conditions for the droplet size distributions. Approximating the droplet velocity profile is shown to be considerably more difficult due to the fact that it does not have compact support. An exponential model with a constrained exponent offers plausible profiles.
NASA Technical Reports Server (NTRS)
Tiemsin, Pacita I.; Wohl, Christopher J.
2012-01-01
Flow visualization using polystyrene microspheres (PSL)s has enabled researchers to learn a tremendous amount of information via particle based diagnostic techniques. To better accommodate wind tunnel researchers needs, PSL synthesis via dispersion polymerization has been carried out at NASA Langley Research Center since the late 1980s. When utilizing seed material for flow visualization, size and size distribution are of paramount importance. Therefore, the work described here focused on further refinement of PSL synthesis and characterization. Through controlled variation of synthetic conditions (chemical concentrations, solution stirring speed, temperature, etc.) a robust, controllable procedure was developed. The relationship between particle size and salt concentration, MgSO4, was identified enabling the determination of PSL diameters a priori. Suggestions of future topics related to PSL synthesis, stability, and size variation are also described.
Controlling Release Kinetics of PLG Microspheres Using a Manufacturing Technique
NASA Astrophysics Data System (ADS)
Berchane, Nader
2005-11-01
Controlled drug delivery offers numerous advantages compared with conventional free dosage forms, in particular: improved efficacy and patient compliance. Emulsification is a widely used technique to entrap drugs in biodegradable microspheres for controlled drug delivery. The size of the formed microspheres has a significant influence on drug release kinetics. Despite the advantages of controlled drug delivery, previous attempts to achieve predetermined release rates have seen limited success. This study develops a tool to tailor desired release kinetics by combining microsphere batches of specified mean diameter and size distribution. A fluid mechanics based correlation that predicts the average size of Poly(Lactide-co-Glycolide) [PLG] microspheres from the manufacturing technique, is constructed and validated by comparison with experimental results. The microspheres produced are accurately represented by the Rosin-Rammler mathematical distribution function. A mathematical model is formulated that incorporates the microsphere distribution function to predict the release kinetics from mono-dispersed and poly-dispersed populations. Through this mathematical model, different release kinetics can be achieved by combining different sized populations in different ratios. The resulting design tool should prove useful for the pharmaceutical industry to achieve designer release kinetics.
PARTICLE SIZE DISTRIBUTIONS FOR AN OFFICE AEROSOL
The article discusses an evaluation of the effect of percent outdoor air supplied and occupation level on the particle size distributions and mass concentrations for a typical office building. (NOTE: As attention has become focused on indoor air pollution control, it has become i...
NASA Astrophysics Data System (ADS)
Zhang, Boyu; Wang, Jun; Yaer, Xinba; Huo, Zhenzhen; Wu, Yin; Li, Yan; Miao, Lei; Liu, Chengyan; Zou, Tao; Ma, Wen
2015-07-01
Effect of crystal size distribution on thermoelectric performance of Lanthanum-doped strontium titanate (La-SrTiO3) ceramics are investigated in this study. Thermoelectric performance measurement, coupled with microstructure studies, shows that the electrical conductivity strongly depends on the crystal size, potential barrier on the grain boundary and porosity. Meantime, because the average potential barriers height are increased along with the reduction of crystal size, the Seebeck coefficients are increased by energy filtering effect at the large number of grain boundaries. As a result, by controlling of crystal size distribution, ZT value of La-SrTiO3 is improved.
Experimental study on pore structure and performance of sintered porous wick
NASA Astrophysics Data System (ADS)
He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng
2018-02-01
Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.
Cell Size Regulation in Bacteria
NASA Astrophysics Data System (ADS)
Amir, Ariel
2014-05-01
Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.
USDA-ARS?s Scientific Manuscript database
The study of health impacts, emission estimation of particulate matter (PM), and development of new control technologies require knowledge of PM characteristics. Among these PM characteristics, the particle size distribution (PSD) is perhaps the most important physical parameter governing particle b...
NASA Astrophysics Data System (ADS)
Lv, Yan; Li, Xiang; Xu, Ting Ting; Cheng, Tian Tao; Yang, Xin; Chen, Jian Min; Iinuma, Yoshiteru; Herrmann, Hartmut
2016-03-01
In order to better understand the particle size distribution of polycyclic aromatic hydrocarbons (PAHs) and their source contribution to human respiratory system, size-resolved PAHs have been studied in ambient aerosols at a megacity Shanghai site during a 1-year period (2012-2013). The results showed the PAHs had a bimodal distribution with one mode peak in the fine-particle size range (0.4-2.1 µm) and another mode peak in the coarse-particle size range (3.3-9.0 µm). Along with the increase in ring number of PAHs, the intensity of the fine-mode peak increased, while the coarse-mode peak decreased. Plotting of log(PAH / PM) against log(Dp) showed that all slope values were above -1, suggesting that multiple mechanisms (adsorption and absorption) controlled the particle size distribution of PAHs. The total deposition flux of PAHs in the respiratory tract was calculated as being 8.8 ± 2.0 ng h-1. The highest lifetime cancer risk (LCR) was estimated at 1.5 × 10-6, which exceeded the unit risk of 10-6. The LCR values presented here were mainly influenced by accumulation mode PAHs which came from biomass burning (24 %), coal combustion (25 %), and vehicular emission (27 %). The present study provides us with a mechanistic understanding of the particle size distribution of PAHs and their transport in the human respiratory system, which can help develop better source control strategies.
NASA Astrophysics Data System (ADS)
Nurfadhilah, M.; Nolia, I.; Handayani, W.; Imawan, C.
2018-05-01
The silver nanoparticles generated by biosynthesis have a quite diverse result, both in size and shape. Structures of silver nanoparticles can be controlled by modifying the parameters of the biosynthesis such as the ratio between the precursors and reducing agents, as well as pH of the solution. In this study, the pH of Diospyros discolor (Bisbul) leaves aqueous extract was varied to 4, 7, 9, and 11. The extract then was added to 1 mM AgNO3 precursor (1:2; v/v ratio). The result of the silver nanoparticles characterized using spectrophotometer UV-Vis to find if there was any absorbance peak formed between 400 nm to 500 nm. TEM characterization was used to determine the size and shape of silver nanoparticles, and PSA was used to see their size distribution and stability. The higher pH tends to produce smaller silver nanoparticles rapidly. The synthesis parameters that were varied in this research have affected the size, size distribution patterns, and stability of silver nanoparticles.
NASA Astrophysics Data System (ADS)
Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.
2017-10-01
Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.
Perez, Aurora; Hernández, Rebeca; Velasco, Diego; Voicu, Dan; Mijangos, Carmen
2015-03-01
Microfluidic techniques are expected to provide narrower particle size distribution than conventional methods for the preparation of poly (lactic-co-glycolic acid) (PLGA) microparticles. Besides, it is hypothesized that the particle size distribution of poly (lactic-co-glycolic acid) microparticles influences the settling behavior and rheological properties of its aqueous dispersions. For the preparation of PLGA particles, two different methods, microfluidic and conventional oil-in-water emulsification methods were employed. The particle size and particle size distribution of PLGA particles prepared by microfluidics were studied as a function of the flow rate of the organic phase while particles prepared by conventional methods were studied as a function of stirring rate. In order to study the stability and structural organization of colloidal dispersions, settling experiments and oscillatory rheological measurements were carried out on aqueous dispersions of PLGA particles with different particle size distributions. Microfluidics technique allowed the control of size and size distribution of the droplets formed in the process of emulsification. This resulted in a narrower particle size distribution for samples prepared by MF with respect to samples prepared by conventional methods. Polydisperse samples showed a larger tendency to aggregate, thus confirming the advantages of microfluidics over conventional methods, especially if biomedical applications are envisaged. Copyright © 2014 Elsevier Inc. All rights reserved.
Particle size distribution control of Pt particles used for particle gun
NASA Astrophysics Data System (ADS)
Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.
2017-07-01
The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.
Zhang, Changwang; Xia, Yong; Zhang, Zhiming; ...
2017-03-22
A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Changwang; Xia, Yong; Zhang, Zhiming
A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less
Effect of Bimodal Grain Size Distribution on Scatter in Toughness
NASA Astrophysics Data System (ADS)
Chakrabarti, Debalay; Strangwood, Martin; Davis, Claire
2009-04-01
Blunt-notch tests were performed at -160 °C to investigate the effect of a bimodal ferrite grain size distribution in steel on cleavage fracture toughness, by comparing local fracture stress values for heat-treated microstructures with uniformly fine, uniformly coarse, and bimodal grain structures. An analysis of fracture stress values indicates that bimodality can have a significant effect on toughness by generating high scatter in the fracture test results. Local cleavage fracture values were related to grain size distributions and it was shown that the largest grains in the microstructure, with an area percent greater than approximately 4 pct, gave rise to cleavage initiation. In the case of the bimodal grain size distribution, the large grains from both the “fine grain” and “coarse grain” population initiate cleavage; this spread in grain size values resulted in higher scatter in the fracture stress than in the unimodal distributions. The notch-bend test results have been used to explain the difference in scatter in the Charpy energies for the unimodal and bimodal ferrite grain size distributions of thermomechanically controlled rolled (TMCR) steel, in which the bimodal distribution showed higher scatter in the Charpy impact transition (IT) region.
NASA Astrophysics Data System (ADS)
Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu
2015-12-01
We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d
Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust
Chubb, Lauren G.; Cauda, Emanuele G.
2017-01-01
Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139
Interpretations of family size distributions: The Datura example
NASA Astrophysics Data System (ADS)
Henych, Tomáš; Holsapple, Keith A.
2018-04-01
Young asteroid families are unique sources of information about fragmentation physics and the structure of their parent bodies, since their physical properties have not changed much since their birth. Families have different properties such as age, size, taxonomy, collision severity and others, and understanding the effect of those properties on our observations of the size-frequency distribution (SFD) of family fragments can give us important insights into the hypervelocity collision processes at scales we cannot achieve in our laboratories. Here we take as an example the very young Datura family, with a small 8-km parent body, and compare its size distribution to other families, with both large and small parent bodies, and created by both catastrophic and cratering formation events. We conclude that most likely explanation for the shallower size distribution compared to larger families is a more pronounced observational bias because of its small size. Its size distribution is perfectly normal when its parent body size is taken into account. We also discuss some other possibilities. In addition, we study another common feature: an offset or "bump" in the distribution occurring for a few of the larger elements. We hypothesize that it can be explained by a newly described regime of cratering, "spall cratering", which controls the majority of impact craters on the surface of small asteroids like Datura.
NASA Astrophysics Data System (ADS)
Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.
2012-12-01
Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.
NASA Astrophysics Data System (ADS)
Carlson, William D.
1989-09-01
The spatial disposition, compositional zoning profiles, and size distributions of garnet crystals in 11 specimens of pelitic schist from the Picuris Range of New Mexico (USA) demonstrate that the kinetics of intergranular diffusion controlled the nucleation and growth mechanisms of porphyroblasts in these rocks. An ordered disposition of garnet centers and a significant correlation between crystal radius and near-neighbor distances manifest suppressed nucleation of new crystals in diffusionally depleted zones surrounding pre-existing crystals. Compositional zoning profiles require diffusionally controlled growth, the rate of which increases exponentially as temperature increases with time; an acceleration factor for growth rate can be estimated from a comparison of compositional profiles for crystals of different sizes in each specimen. Crystal size distributions are interpreted as the result of nucleation rates that accelerate exponentially with increasing temperature early in the crystallization process, but decline in the later stages because of suppression effects in the vicinity of earlier-formed nuclei. Simulations of porphyroblast crystallization, based upon thermally accelerated diffusionally influenced nucleation kinetics and diffusionally controlled growth kinetics, quantitatively replicate textural relations in the rocks. The simulations employ only two variable parameters, which are evaluated by fitting of crystal size distributions. Both have physical significance. The first is an acceleration factor for nucleation, with a magnitude reflecting the prograde increase during the nucleation interval of the chemical affinity for the reaction in undepleted regions of the rock. The second is a measure of the relative sizes of the porphyroblast and the diffusionally depleted zone surrounding it. Crystal size distributions for the Picuris Range garnets correspond very closely to those in the literature from a variety of other localities for garnet and other minerals. The same kinetic model accounts quantitatively for crystal size distributions of porphyroblastic garnet, phlogopite, sphene, and pyroxene in rocks from both regional and contact metamorphic occurrences. These commonalities indicate that intergranular diffusion may be the dominant kinetic factor in the crystallization of porphyroblasts in a wide variety of metamorphic environments.
NASA Astrophysics Data System (ADS)
Zhou, Yali; Zhang, Qizhi; Yin, Yixin
2015-05-01
In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.
NASA Astrophysics Data System (ADS)
Coleman, Victoria A.; Jämting, Åsa K.; Catchpoole, Heather J.; Roy, Maitreyee; Herrmann, Jan
2011-10-01
Nanoparticles and products incorporating nanoparticles are a growing branch of nanotechnology industry. They have found a broad market, including the cosmetic, health care and energy sectors. Accurate and representative determination of particle size distributions in such products is critical at all stages of the product lifecycle, extending from quality control at point of manufacture to environmental fate at the point of disposal. Determination of particle size distributions is non-trivial, and is complicated by the fact that different techniques measure different quantities, leading to differences in the measured size distributions. In this study we use both mono- and multi-modal dispersions of nanoparticle reference materials to compare and contrast traditional and novel methods for particle size distribution determination. The methods investigated include ensemble techniques such as dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS), as well as single particle techniques such as transmission electron microscopy (TEM) and microchannel resonator (ultra high-resolution mass sensor).
Tyagi, Himanshu; Kushwaha, Ajay; Kumar, Anshuman; Aslam, Mohammed
2016-12-01
The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.
Vagne, Quentin; Turner, Matthew S.; Sens, Pierre
2015-01-01
The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912
An engineering approach to design of dextran microgels size fabricated by water/oil emulsification.
Salimi-Kenari, Hamed; Imani, Mohammad; Nodehi, Azizollah; Abedini, Hossein
2016-09-01
A correlation, based on fluid mechanics, has been investigated for the mean particle diameter of crosslinked dextran microgels (CDMs) prepared via a water/oil emulsification methodology conducted in a single-stirred vessel. To this end, non-dimensional correlations were developed to predict the mean particle size of CDMs as a function of Weber number, Reynolds number and viscosity number similar to ones introduced for liquid-liquid dispersions. Moreover, a Rosin-Rammler distribution function has been successfully applied to the microgel particle size distributions. The correlations were validated using experimentally obtained mean particle sizes for CDMs prepared at different stirring conditions. The validated correlation is especially applicable to medical and pharmaceutical applications where strict control on the mean particle size and size distribution of CDMs are extremely essential. [Formula: see text].
Miura, Hiroki; Bon, Volodymyr; Senkovska, Irena; Ehrling, Sebastian; Watanabe, Satoshi; Ohba, Masaaki; Kaskel, Stefan
2017-10-17
Controlled nucleation in a micromixer and further crystal growth were used to synthesize Ni 2 (2,6-ndc) 2 dabco (2,6-ndc - 2,6-naphthalenedicarboxylate, dabco - 1,4-diazabicyclo[2.2.2]octane), also termed DUT-8(Ni) (DUT = Dresden University of Technology), with narrow particle size distribution in a range of a few nm to several μm. The crystal size was found to significantly affect the switching characteristics, in particular the gate opening pressure in nitrogen adsorption isotherms at 77 K for this highly porous and flexible network. Below a critical size of about 500 nm, a type Ia isotherm typical of rigid MOFs is observed, while above approximately 1000 nm a pronounced gating behaviour is detected, starting at p/p 0 = 0.2. With increasing crystal size this transition gate becomes steeper indicating a more uniform distribution of activation energies within the crystal ensemble. At an intermediate size (500-1000 nm), the DUT-8(Ni) crystals close during activation but cannot be reopened by nitrogen at 77 K possibly indicating monodomain switching.
Snovski, Ron; Grinblat, Judith; Margel, Shlomo
2011-09-06
Magnetic poly(divinyl benzene)/Fe(3)O(4) microspheres with a narrow size distribution were produced by entrapping the iron pentacarbonyl precursor within the pores of uniform porous poly(divinyl benzene) microspheres prepared in our laboratory, followed by the decomposition in a sealed cell of the entrapped Fe(CO)(5) particles at 300 °C under an inert atmosphere. Magnetic onionlike fullerene microspheres with a narrow size distribution were produced by annealing the obtained PDVB/Fe(3)O(4) particles at 500, 600, 800, and 1100 °C, respectively, under an inert atmosphere. The formation of carbon graphitic layers at low temperatures such as 500 °C is unique and probably obtained because of the presence of the magnetic iron nanoparticles. The annealing temperature allowed control of the composition, size, size distribution, crystallinity, porosity, and magnetic properties of the produced magnetic microspheres. © 2011 American Chemical Society
Estrada, Nicolas; Oquendo, W F
2017-10-01
This article presents a numerical study of the effects of grain size distribution (GSD) on the microstructure of two-dimensional packings of frictionless disks. The GSD is described by a power law with two parameters controlling the size span and the shape of the distribution. First, several samples are built for each combination of these parameters. Then, by means of contact dynamics simulations, the samples are densified in oedometric conditions and sheared in a simple shear configuration. The microstructure is analyzed in terms of packing fraction, local ordering, connectivity, and force transmission properties. It is shown that the microstructure is notoriously affected by both the size span and the shape of the GSD. These findings confirm recent observations regarding the size span of the GSD and extend previous works by describing the effects of the GSD shape. Specifically, we find that if the GSD shape is varied by increasing the proportion of small grains by a certain amount, it is possible to increase the packing fraction, increase coordination, and decrease the proportion of floating particles. Thus, by carefully controlling the GSD shape, it is possible to obtain systems that are denser and better connected, probably increasing the system's robustness and optimizing important strength properties such as stiffness, cohesion, and fragmentation susceptibility.
Distribution of Different Sized Ocular Surface Vessels in Diabetics and Normal Individuals.
Banaee, Touka; Pourreza, Hamidreza; Doosti, Hassan; Abrishami, Mojtaba; Ehsaei, Asieh; Basiry, Mohsen; Pourreza, Reza
2017-01-01
To compare the distribution of different sized vessels using digital photographs of the ocular surface of diabetic and normal individuals. In this cross-sectional study, red-free conjunctival photographs of diabetic and normal individuals, aged 30-60 years, were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The image areas occupied by vessels (AOV) of different diameters were calculated. The main outcome measure was the distribution curve of mean AOV of different sized vessels. Secondary outcome measures included total AOV and standard deviation (SD) of AOV of different sized vessels. Two hundred and sixty-eight diabetic patients and 297 normal (control) individuals were included, differing in age (45.50 ± 5.19 vs. 40.38 ± 6.19 years, P < 0.001), systolic (126.37 ± 20.25 vs. 119.21 ± 15.81 mmHg, P < 0.001) and diastolic (78.14 ± 14.21 vs. 67.54 ± 11.46 mmHg, P < 0.001) blood pressures. The distribution curves of mean AOV differed between patients and controls (smaller AOV for larger vessels in patients; P < 0.001) as well as between patients without retinopathy and those with non-proliferative diabetic retinopathy (NPDR); with larger AOV for smaller vessels in NPDR ( P < 0.001). Controlling for the effect of confounders, patients had a smaller total AOV, larger total SD of AOV, and a more skewed distribution curve of vessels compared to controls. Presence of diabetes mellitus is associated with contraction of larger vessels in the conjunctiva. Smaller vessels dilate with diabetic retinopathy. These findings may be useful in the photographic screening of diabetes mellitus and retinopathy.
NASA Astrophysics Data System (ADS)
Li, Chunfang; Li, Dongxiang; Wan, Gangqiang; Xu, Jie; Hou, Wanguo
2011-07-01
The citrate reduction method for the synthesis of gold nanoparticles (GNPs) has known advantages but usually provides the products with low nanoparticle concentration and limits its application. Herein, we report a facile method to synthesize GNPs from concentrated chloroauric acid (2.5 mM) via adding sodium hydroxide and controlling the temperature. It was found that adding a proper amount of sodium hydroxide can produce uniform concentrated GNPs with low size distribution; otherwise, the largely distributed nanoparticles or instable colloids were obtained. The low reaction temperature is helpful to control the nanoparticle formation rate, and uniform GNPs can be obtained in presence of optimized NaOH concentrations. The pH values of the obtained uniform GNPs were found to be very near to neutral, and the pH influence on the particle size distribution may reveal the different formation mechanism of GNPs at high or low pH condition. Moreover, this modified synthesis method can save more than 90% energy in the heating step. Such environmental-friendly synthesis method for gold nanoparticles may have a great potential in large-scale manufacturing for commercial and industrial demand.
NASA Astrophysics Data System (ADS)
Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin
2018-01-01
Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.
NASA Astrophysics Data System (ADS)
Singleton, Adrian A.; Schmidt, Amanda H.; Bierman, Paul R.; Rood, Dylan H.; Neilson, Thomas B.; Greene, Emily Sophie; Bower, Jennifer A.; Perdrial, Nicolas
2017-01-01
Grain-size dependencies in fallout radionuclide activity have been attributed to either increase in specific surface area in finer grain sizes or differing mineralogical abundances in different grain sizes. Here, we consider a third possibility, that the concentration and composition of grain coatings, where fallout radionuclides reside, controls their activity in fluvial sediment. We evaluated these three possible explanations in two experiments: (1) we examined the effect of sediment grain size, mineralogy, and composition of the acid-extractable materials on the distribution of 7Be, 10Be, 137Cs, and unsupported 210Pb in detrital sediment samples collected from rivers in China and the United States, and (2) we periodically monitored 7Be, 137Cs, and 210Pb retention in samples of known composition exposed to natural fallout in Ohio, USA for 294 days. Acid-extractable materials (made up predominately of Fe, Mn, Al, and Ca from secondary minerals and grain coatings produced during pedogenesis) are positively related to the abundance of fallout radionuclides in our sediment samples. Grain-size dependency of fallout radionuclide concentrations was significant in detrital sediment samples, but not in samples exposed to fallout under controlled conditions. Mineralogy had a large effect on 7Be and 210Pb retention in samples exposed to fallout, suggesting that sieving sediments to a single grain size or using specific surface area-based correction terms may not completely control for preferential distribution of these nuclides. We conclude that time-dependent geochemical, pedogenic, and sedimentary processes together result in the observed differences in nuclide distribution between different grain sizes and substrate compositions. These findings likely explain variability of measured nuclide activities in river networks that exceeds the variability introduced by analytical techniques as well as spatial and temporal differences in erosion rates and processes. In short, we suggest that presence and amount of pedogenic grain coatings is more important than either specific surface area or surface charge in setting the distribution of fallout radionuclides.
Yi, Honghong; Hao, Jiming; Duan, Lei; Li, Xinghua; Guo, Xingming
2006-09-01
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.
Matilda: A mass filtered nanocluster source
NASA Astrophysics Data System (ADS)
Kwon, Gihan
Cluster science provides a good model system for the study of the size dependence of electronic properties, chemical reactivity, as well as magnetic properties of materials. One of the main interests in cluster science is the nanoscale understanding of chemical reactions and selectivity in catalysis. Therefore, a new cluster system was constructed to study catalysts for applications in renewable energy. Matilda, a nanocluster source, consists of a cluster source and a Retarding Field Analyzer (RFA). A moveable AJA A310 Series 1"-diameter magnetron sputtering gun enclosed in a water cooled aggregation tube served as the cluster source. A silver coin was used for the sputtering target. The sputtering pressure in the aggregation tube was controlled, ranging from 0.07 to 1torr, using a mass flow controller. The mean cluster size was found to be a function of relative partial pressure (He/Ar), sputtering power, and aggregation length. The kinetic energy distribution of ionized clusters was measured with the RFA. The maximum ion energy distribution was 2.9 eV/atom at a zero pressure ratio. At high Ar flow rates, the mean cluster size was 20 ˜ 80nm, and at a 9.5 partial pressure ratio, the mean cluster size was reduced to 1.6nm. Our results showed that the He gas pressure can be optimized to reduce the cluster size variations. Results from SIMION, which is an electron optics simulation package, supported the basic function of an RFA, a three-element lens and the magnetic sector mass filter. These simulated results agreed with experimental data. For the size selection experiment, the channeltron electron multiplier collected ionized cluster signal at different positions during Ag deposition on a TEM grid for four and half hours. The cluster signal was high at the position for neutral clusters, which was not bent by a magnetic field, and the signal decreased rapidly far away from the neutral cluster region. For cluster separation according to mass to charge ratio in a magnetic sector mass filter, the ion energy of the cluster and its distribution must be precisely controlled by acceleration or deceleration. To verify the size separation, a high resolution microscope was required. Matilda provided narrow particle sized distribution from atomic scale to 4nm in size with different pressure ratio without additional mass filter. It is very economical way to produce relatively narrow particle size distribution.
Jędrak, Jakub; Ochab-Marcinek, Anna
2016-09-01
We study a stochastic model of gene expression, in which protein production has a form of random bursts whose size distribution is arbitrary, whereas protein decay is a first-order reaction. We find exact analytical expressions for the time evolution of the cumulant-generating function for the most general case when both the burst size probability distribution and the model parameters depend on time in an arbitrary (e.g., oscillatory) manner, and for arbitrary initial conditions. We show that in the case of periodic external activation and constant protein degradation rate, the response of the gene is analogous to the resistor-capacitor low-pass filter, where slow oscillations of the external driving have a greater effect on gene expression than the fast ones. We also demonstrate that the nth cumulant of the protein number distribution depends on the nth moment of the burst size distribution. We use these results to show that different measures of noise (coefficient of variation, Fano factor, fractional change of variance) may vary in time in a different manner. Therefore, any biological hypothesis of evolutionary optimization based on the nonmonotonic dependence of a chosen measure of noise on time must justify why it assumes that biological evolution quantifies noise in that particular way. Finally, we show that not only for exponentially distributed burst sizes but also for a wider class of burst size distributions (e.g., Dirac delta and gamma) the control of gene expression level by burst frequency modulation gives rise to proportional scaling of variance of the protein number distribution to its mean, whereas the control by amplitude modulation implies proportionality of protein number variance to the mean squared.
NASA Astrophysics Data System (ADS)
Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Roldin, P.; Williams, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R. M.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.
2010-12-01
Particle mobility size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide application in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. This article results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research). Under controlled laboratory conditions, the number size distribution from 20 to 200 nm determined by mobility size spectrometers of different design are within an uncertainty range of ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. Instruments with identical design agreed within ±3% in the peak number concentration when all settings were done carefully. Technical standards were developed for a minimum requirement of mobility size spectrometry for atmospheric aerosol measurements. Technical recommendations are given for atmospheric measurements including continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyser. In cooperation with EMEP (European Monitoring and Evaluation Program), a new uniform data structure was introduced for saving and disseminating the data within EMEP. This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.
Tighe, Paula; Duthie, Garry; Brittenden, Julie; Vaughan, Nicholas; Mutch, William; Simpson, William G.; Duthie, Susan; Horgan, Graham W.; Thies, Frank
2013-01-01
Introduction Epidemiological studies suggest three daily servings of whole-grain foods (WGF) might lower cardiovascular disease risk, at least partly by lowering serum lipid levels. We have assessed the effects of consuming three daily portions of wholegrain food (provided as wheat or a mixture of wheat and oats) on lipoprotein subclass size and concentration in a dietary randomised controlled trial involving middle aged healthy individuals. Methods After a 4-week run-in period on a refined diet, volunteers were randomly allocated to a control (refined diet), wheat, or wheat + oats group for 12 weeks. Our servings were determined in order to significantly increase the intakes of non starch polysaccharides to the UK Dietary Reference Value of 18 g per day in the whole grain groups (18.5 g and 16.8 g per day in the wheat and wheat + oats groups respectively in comparison with 11.3 g per day in the control group). Outcome measures were serum lipoprotein subclasses' size and concentration. Habitual dietary intake was assessed prior and during the intervention. Of the 233 volunteers recruited, 24 withdrew and 3 were excluded. Results At baseline, significant associations were found between lipoprotein size and subclasses' concentrations and some markers of cardiovascular risk such as insulin resistance, blood pressure and serum Inter cellular adhesion molecule 1 concentration. Furthermore, alcohol and vitamin C intake were positively associated with an anti-atherogenic lipoprotein profile, with regards to lipoprotein size and subclasses' distribution. However, none of the interventions with whole grain affected lipoprotein size and profile. Conclusion Our results indicate that three portions of wholegrain foods, irrelevant of the type (wheat or oat-based) do not reduce cardiovascular risk by beneficially altering the size and distribution of lipoprotein subclasses. Trial Registration www.Controlled-Trials.com ISRCTN 27657880. PMID:23940575
Mensah, F K; Willett, E V; Simpson, J; Smith, A G; Roman, E
2007-09-15
Substantial heterogeneity has been observed among case-control studies investigating associations between non-Hodgkin's lymphoma and familial characteristics, such as birth order and sibship size. The potential role of selection bias in explaining such heterogeneity is considered within this study. Selection bias according to familial characteristics and socioeconomic status is investigated within a United Kingdom-based case-control study of non-Hodgkin's lymphoma diagnosed during 1998-2001. Reported distributions of birth order and maternal age are each compared with expected reference distributions derived using national birth statistics from the United Kingdom. A method is detailed in which yearly data are used to derive expected distributions, taking account of variability in birth statistics over time. Census data are used to reweight both the case and control study populations such that they are comparable with the general population with regard to socioeconomic status. The authors found little support for an association between non-Hodgkin's lymphoma and birth order or family size and little evidence for an influence of selection bias. However, the findings suggest that between-study heterogeneity could be explained by selection biases that influence the demographic characteristics of participants.
NASA Astrophysics Data System (ADS)
Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim
2007-07-01
A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.
Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda
2015-10-20
Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Size and modal analyses of fines and ultrafines from some Apollo 17 samples
NASA Technical Reports Server (NTRS)
Greene, G. M.; King, D. T., Jr.; Banholzer, G. S., Jr.; King, E. A.
1975-01-01
Scanning electron and optical microscopy techniques have been used to determine the grain-size frequency distributions and morphology-based modal analyses of fine and ultrafine fractions of some Apollo 17 regolith samples. There are significant and large differences between the grain-size frequency distributions of the less than 10-micron size fraction of Apollo 17 samples, but there are no clear relations to the local geologic setting from which individual samples have been collected. This may be due to effective lateral mixing of regolith particles in this size range by micrometeoroid impacts. None of the properties of the frequency distributions support the idea of selective transport of any fine grain-size fraction, as has been proposed by other workers. All of the particle types found in the coarser size fractions also occur in the less than 10-micron particles. In the size range from 105 to 10 microns there is a strong tendency for the percentage of regularly shaped glass to increase as the graphic mean grain size of the less than 1-mm size fraction decreases, both probably being controlled by exposure age.
Concurrent changes in aggregation and swelling of coal particles in solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioka, M.
1995-12-31
A new method of coal swelling has been developed tinder the condition of low coal concentrations with continuous mixing of coal and solvent. The change in particle size distributions by a laser scattering procedure was used for the evaluation of coal swelling. Particle size distributions in good and poor solvents were nearly equal, but reversibly changed in good solvents from time to time. The effects of solubles and coal concentrations on the distributions were small. It was concluded that aggregate d coal particles disaggregate in good solvents, and that an increase in the particle size distribution due to swelling inmore » good solvents are compensated by a decrease in the particle size due to disaggregation. Therefore, the behavior of coal particles in solvents is controlled by aggregation in addition to coal swelling. This implies that an increase in the particle size due to coal swelling in actual processes is not so large as expected by the results obtained from the conventional coal swelling methods.« less
Ryon, Allen D.; Haas, Paul A.; Vavruska, John S.
1984-01-01
The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.
NASA Astrophysics Data System (ADS)
González, M.; Crespo, M.; Baselga, J.; Pozuelo, J.
2016-05-01
Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials. Electronic supplementary information (ESI) available: Scheme of hydrogenated derivative of diglycidyl ether of bisphenol-A (HDGEBA) and m-xylylenediamine; X-ray diffractograms of pristine CNT and oxidized CNT; glass transition temperatures of composites; electromagnetic shielding analysis in the 1-18 GHz frequency range. See DOI: 10.1039/c6nr02133f
Does Litter Size Variation Affect Models of Terrestrial Carnivore Extinction Risk and Management?
Devenish-Nelson, Eleanor S.; Stephens, Philip A.; Harris, Stephen; Soulsbury, Carl; Richards, Shane A.
2013-01-01
Background Individual variation in both survival and reproduction has the potential to influence extinction risk. Especially for rare or threatened species, reliable population models should adequately incorporate demographic uncertainty. Here, we focus on an important form of demographic stochasticity: variation in litter sizes. We use terrestrial carnivores as an example taxon, as they are frequently threatened or of economic importance. Since data on intraspecific litter size variation are often sparse, it is unclear what probability distribution should be used to describe the pattern of litter size variation for multiparous carnivores. Methodology/Principal Findings We used litter size data on 32 terrestrial carnivore species to test the fit of 12 probability distributions. The influence of these distributions on quasi-extinction probabilities and the probability of successful disease control was then examined for three canid species – the island fox Urocyon littoralis, the red fox Vulpes vulpes, and the African wild dog Lycaon pictus. Best fitting probability distributions differed among the carnivores examined. However, the discretised normal distribution provided the best fit for the majority of species, because variation among litter-sizes was often small. Importantly, however, the outcomes of demographic models were generally robust to the distribution used. Conclusion/Significance These results provide reassurance for those using demographic modelling for the management of less studied carnivores in which litter size variation is estimated using data from species with similar reproductive attributes. PMID:23469140
Does litter size variation affect models of terrestrial carnivore extinction risk and management?
Devenish-Nelson, Eleanor S; Stephens, Philip A; Harris, Stephen; Soulsbury, Carl; Richards, Shane A
2013-01-01
Individual variation in both survival and reproduction has the potential to influence extinction risk. Especially for rare or threatened species, reliable population models should adequately incorporate demographic uncertainty. Here, we focus on an important form of demographic stochasticity: variation in litter sizes. We use terrestrial carnivores as an example taxon, as they are frequently threatened or of economic importance. Since data on intraspecific litter size variation are often sparse, it is unclear what probability distribution should be used to describe the pattern of litter size variation for multiparous carnivores. We used litter size data on 32 terrestrial carnivore species to test the fit of 12 probability distributions. The influence of these distributions on quasi-extinction probabilities and the probability of successful disease control was then examined for three canid species - the island fox Urocyon littoralis, the red fox Vulpes vulpes, and the African wild dog Lycaon pictus. Best fitting probability distributions differed among the carnivores examined. However, the discretised normal distribution provided the best fit for the majority of species, because variation among litter-sizes was often small. Importantly, however, the outcomes of demographic models were generally robust to the distribution used. These results provide reassurance for those using demographic modelling for the management of less studied carnivores in which litter size variation is estimated using data from species with similar reproductive attributes.
NASA Astrophysics Data System (ADS)
Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.
2012-03-01
Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.
González, M; Crespo, M; Baselga, J; Pozuelo, J
2016-05-19
Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.
Cell size control and homeostasis in bacteria
NASA Astrophysics Data System (ADS)
Bradde, Serena; Taheri, Sattar; Sauls, John; Hill, Nobert; Levine, Petra; Paulsson, Johan; Vergassola, Massimo; Jun, Suckjoon
2015-03-01
How cells control their size is a fundamental question in biology. The mechanisms for sensing size, time, or a combination of the two are not supported by experimental evidence. By analysing distributions of size at division at birth and generation time of hundreds of thousands of Gram-negative E. coli and Gram-positive B. subtilis cells under a wide range of tightly controlled steady-state growth conditions, we are now in the position to validate different theoretical models. In this talk I will present all possible models in details and present a general mechanism that quantitatively explains all measurable aspects of growth and cell division at both population and single-cell levels.
Shemesh, Noam; Ozarslan, Evren; Basser, Peter J; Cohen, Yoram
2010-01-21
NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.
Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yan; Tan, Jiawei; Wang, Jiexin
2014-12-15
Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.
Aksnes, D W; Kimtys, L
2004-01-01
The pore size distributions of four controlled pore glasses and three silica gels with nominal diameters in the range 4-24 nm were determined by measuring the 1H and 2H NMR signals from the non-frozen fraction of confined benzene and perdeuterated benzene as a function of temperature, in steps of ca. 0.1-1 K. The liquid and solid components of the adsorbate were distinguished, on the basis of the spin-spin relaxation time T2, by employing a spin-echo sequence. The experimental intensity curves of the liquid component are well represented by a sum of two error functions. The mean melting point depression of benzene and perdeuterated benzene confined in the four controlled pore glasses, with pore radius R, follows the simplified Gibbs-Thompson equation DeltaT=kp/R with a kp value of 44 K nm. As expected, the kp value mainly determines the position of the pore size distribution curve, i.e., the mean pore radius, while the transition width determines the shape of the pore size distribution curve. The excellent agreement between the results from the 1H and 2H measurements shows that the effect of the background absorption from protons in physisorbed water and silanol groups is negligible under the experimental conditions used. The overall pore size distributions determined by NMR are in reasonable agreement with the results specified by the manufacturer, or measured by us using the N2 sorption technique. The NMR method, which is complementary to the conventional gas sorption method, is particularly appropriate for studying pore sizes in the mesoporous range.
Pore size engineering applied to starved electrochemical cells and batteries
NASA Technical Reports Server (NTRS)
Abbey, K. M.; Thaller, L. H.
1982-01-01
To maximize performance in starved, multiplate cells, the cell design should rely on techniques which widen the volume tolerance characteristics. These involve engineering capillary pressure differences between the components of an electrochemical cell and using these forces to promote redistribution of electrolyte to the desired optimum values. This can be implemented in practice by prescribing pore size distributions for porous back-up plates, reservoirs, and electrodes. In addition, electrolyte volume management can be controlled by incorporating different pore size distributions into the separator. In a nickel/hydrogen cell, the separator must contain pores similar in size to the small pores of both the nickel and hydrogen electrodes in order to maintain an optimum conductive path for the electrolyte. The pore size distributions of all components should overlap in such a way as to prevent drying of the separator and/or flooding of the hydrogen electrode.
Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu
2015-12-28
We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO(4) photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.
NASA Astrophysics Data System (ADS)
George, Freya; Gaidies, Fred
2016-04-01
Analysis of porphyroblast distribution in metamorphic rocks yields insight into the processes controlling metamorphic reaction rates. By coupling this textural record with microprobe analysis and phase-equilibria and diffusion modelling, a detailed view of the nucleation and growth history of metamorphic minerals can be obtained. In this study, we comprehensively characterise the 3D distribution and compositional variation of a garnet population in a garnet-grade pelitic schist of the Lesser Himalayan Sequence (Sikkim), in order to investigate both the rates and kinetic controls of porphyroblastic crystallisation. Quantification of the size, shape and spatial distribution of garnet using high-resolution μ-computed X-ray tomography and statistical analysis reveals a log-normal crystal size distribution, systematic variation of aspect ratio with crystal size, and a significantly clustered garnet texture in the study sample. The latter is indicative of interface-controlled nucleation and growth, with nucleation sites controlled principally by a heterogeneous precursor assemblage. At length-scales less than 0.7 mm, there is evidence for adjacent grains that are on average smaller than the mean size of the population; this minor ordering is attributed to secondary redistribution of porphyroblast centers and reduction of crystal sizes due to syn-kinematic growth and resorption, respectively. Geochemical traverses through centrally sectioned garnet crystals of variable size highlight several features: (1) core compositions of even the smallest crystals preserve primary prograde growth zonation, with little evidence for diffusional modification in any crystal size; (2) rim compositions are within error between grains, suggestive of sample-scale equilibration of the growth medium at the time of cessation of crystallisation; (3) different grains of equal radii display equivalent compositional zoning; and (4) gradients of compositional profiles display a steepening trend in progressively smaller grain sizes, converse to anticipated trends based on classic kinetic crystallisation theory. The observed systematic behaviour is interpreted to reflect interface-controlled rates of crystallisation, with a decrease in the rate of crystal growth of newly nucleated grains as the crystallisation interval proceeds. Numerical simulations of garnet growth successfully reproduce observed core and rim compositions, and simulations of intracrystalline diffusion yield rapid heating/cooling rates along the P-T path, in excess of 100 °C/Ma. Radial garnet crystallisation is correspondingly rapid, with minimum growth rates of 1.5 mm/Ma in the smallest crystals. Simulations suggest progressive nucleation of new generations of garnet occurred with an exponentially decreasing frequency along the prograde path; however, measured gradients indicate that core compositions developed more slowly than predicted by the model, potentially resulting in a more evenly distributed pattern of nucleation.
Family size, the physical environment, and socioeconomic effects across the stature distribution.
Carson, Scott Alan
2012-04-01
A neglected area in historical stature studies is the relationship between stature and family size. Using robust statistics and a large 19th century data set, this study documents a positive relationship between stature and family size across the stature distribution. The relationship between material inequality and health is the subject of considerable debate, and there was a positive relationship between stature and wealth and an inverse relationship between stature and material inequality. After controlling for family size and wealth variables, the paper reports a positive relationship between the physical environment and stature. Copyright © 2012 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Roda-Boluda, Duna; D'Arcy, Mitch; Whittaker, Alex; McDonald, Jordan
2017-04-01
Sediment supply from hillslopes -including volumes, rates and grain size distributions- controls the sediment fluxes from upland areas and modulates how landscapes respond to tectonics. Here, we present new field data from tectonically-active areas in southern Italy that quantifies how lithology and rock-mass strength control the delivery processes and grain size distributions of sediment supplied from hillslopes. We evaluate the influence of landslides on sediment supply along 8 normal faults with excellent tectonic constraints. Frequency-area analysis of the landslide inventory, and a new field-calibrated area-volume scaling relationship, reveal that landsliding in the area is not dominated by large landslides (β ˜2), with 83% of landslides being < 0.1 km2 and shallower than 3 m. Based on volumetric estimates and published erosion rates, we infer that our inventory likely represents the integrated record of landsliding over 1-3 kyrs, implying minimum sediment fluxes between 6.90 x 102 and 2.07 x 103 m3/yr. We demonstrate that outcrop-scale rock-mass strength controls both landslide occurrence and the grain sizes supplied by bedrock weathering, for different lithologies. Comparisons of particle size distributions from bedrock weathering with those measured on landslide deposits demonstrates that landslides supply systematically coarser material, with lithology influencing the degree of coarsening. Finally, we evaluate the effect of landslide supply on fluvial sediment export, and show that D84 grain size increases by ˜ 6 mm for each 100-m increment in incision depth, due to the combination of enhanced landsliding and transport capacity in more incised catchments. Our results reveal a dual control of lithology and rock-mass strength on both the sediment volumes and grain sizes supplied to the fluvial system, which we demonstrate has a significant impact on sediment export from upland areas. This study provides a uniquely detailed field data set for studying how tectonics and lithology control hillslope erosion and sediment characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken
2015-05-18
We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizesmore » of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.« less
49 CFR 192.181 - Distribution line valves.
Code of Federal Regulations, 2010 CFR
2010-10-01
... line valves. (a) Each high-pressure distribution system must have valves spaced so as to reduce the... pressure, the size of the mains, and the local physical conditions. (b) Each regulator station controlling the flow or pressure of gas in a distribution system must have a valve installed on the inlet piping...
Breath Figures under Electrowetting: Electrically Controlled Evolution of Drop Condensation Patterns
NASA Astrophysics Data System (ADS)
Baratian, Davood; Dey, Ranabir; Hoek, Harmen; van den Ende, Dirk; Mugele, Frieder
2018-05-01
We show that electrowetting (EW) with structured electrodes significantly modifies the distribution of drops condensing onto flat hydrophobic surfaces by aligning the drops and by enhancing coalescence. Numerical calculations demonstrate that drop alignment and coalescence are governed by the drop-size-dependent electrostatic energy landscape that is imposed by the electrode pattern and the applied voltage. Such EW-controlled migration and coalescence of condensate drops significantly alter the statistical characteristics of the ensemble of droplets. The evolution of the drop size distribution displays self-similar characteristics that significantly deviate from classical breath figures on homogeneous surfaces once the electrically induced coalescence cascades set in beyond a certain critical drop size. The resulting reduced surface coverage, coupled with earlier drop shedding under EW, enhances the net heat transfer.
Silver electrodeposition on nanostructured gold: from nanodots to nanoripples.
Dos Santos Claro, P C; Fonticelli, M; Benítez, G; Azzaroni, O; Schilardi, P L; Luque, N B; Leiva, E; Salvarezza, R C
2006-07-28
Silver nanodots and nanoripples have been grown on nanocavity-patterned polycrystalline Au templates by controlled electrodeposition. The initial step is the growth of a first continuous Ag monolayer followed by preferential deposition at nanocavities. The Ag-coated nanocavities act as preferred sites for instantaneous nucleation and growth of the three-dimensional metallic centres. By controlling the amount of deposited Ag, dots of approximately 50 nm average size and approximately 4 nm average height can be grown with spatial and size distributions dictated by the template. The dots are in a metastable state. Further Ag deposition drives the dot surface structure to nanoripple formation. Results show that electrodeposition on nanopatterned electrodes can be used to prepare a high density of nanostructures with a narrow size distribution and spatial order.
Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suchomel, Petr; Kvitek, Libor; Prucek, Robert
The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less
Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity
Suchomel, Petr; Kvitek, Libor; Prucek, Robert; ...
2018-03-15
The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less
Distribution of the two-sample t-test statistic following blinded sample size re-estimation.
Lu, Kaifeng
2016-05-01
We consider the blinded sample size re-estimation based on the simple one-sample variance estimator at an interim analysis. We characterize the exact distribution of the standard two-sample t-test statistic at the final analysis. We describe a simulation algorithm for the evaluation of the probability of rejecting the null hypothesis at given treatment effect. We compare the blinded sample size re-estimation method with two unblinded methods with respect to the empirical type I error, the empirical power, and the empirical distribution of the standard deviation estimator and final sample size. We characterize the type I error inflation across the range of standardized non-inferiority margin for non-inferiority trials, and derive the adjusted significance level to ensure type I error control for given sample size of the internal pilot study. We show that the adjusted significance level increases as the sample size of the internal pilot study increases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution
NASA Astrophysics Data System (ADS)
Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J.; Meyer, Jannik C.; Kromka, Alexander; Rezek, Bohuslav
2016-12-01
Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous.
High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution
Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J.; Meyer, Jannik C.; Kromka, Alexander; Rezek, Bohuslav
2016-01-01
Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous. PMID:27910924
High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution.
Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J; Meyer, Jannik C; Kromka, Alexander; Rezek, Bohuslav
2016-12-02
Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous.
Particle Size Reduction in Geophysical Granular Flows: The Role of Rock Fragmentation
NASA Astrophysics Data System (ADS)
Bianchi, G.; Sklar, L. S.
2016-12-01
Particle size reduction in geophysical granular flows is caused by abrasion and fragmentation, and can affect transport dynamics by altering the particle size distribution. While the Sternberg equation is commonly used to predict the mean abrasion rate in the fluvial environment, and can also be applied to geophysical granular flows, predicting the evolution of the particle size distribution requires a better understanding the controls on the rate of fragmentation and the size distribution of resulting particle fragments. To address this knowledge gap we are using single-particle free-fall experiments to test for the influence of particle size, impact velocity, and rock properties on fragmentation and abrasion rates. Rock types tested include granodiorite, basalt, and serpentinite. Initial particle masses and drop heights range from 20 to 1000 grams and 0.1 to 3.0 meters respectively. Preliminary results of free-fall experiments suggest that the probability of fragmentation varies as a power function of kinetic energy on impact. The resulting size distributions of rock fragments can be collapsed by normalizing by initial particle mass, and can be fit with a generalized Pareto distribution. We apply the free-fall results to understand the evolution of granodiorite particle-size distributions in granular flow experiments using rotating drums ranging in diameter from 0.2 to 4.0 meters. In the drums, we find that the rates of silt production by abrasion and gravel production by fragmentation scale with drum size. To compare these rates with free-fall results we estimate the particle impact frequency and velocity. We then use population balance equations to model the evolution of particle size distributions due to the combined effects of abrasion and fragmentation. Finally, we use the free-fall and drum experimental results to model particle size evolution in Inyo Creek, a steep, debris-flow dominated catchment, and compare model results to field measurements.
Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montlucon, D.B.; Hedges, J.I.
1997-01-01
A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays. Copyright ?? 1997 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.
1997-03-01
A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.
Donegan, Thomas M.
2018-01-01
Abstract Existing models for assigning species, subspecies, or no taxonomic rank to populations which are geographically separated from one another were analyzed. This was done by subjecting over 3,000 pairwise comparisons of vocal or biometric data based on birds to a variety of statistical tests that have been proposed as measures of differentiation. One current model which aims to test diagnosability (Isler et al. 1998) is highly conservative, applying a hard cut-off, which excludes from consideration differentiation below diagnosis. It also includes non-overlap as a requirement, a measure which penalizes increases to sample size. The “species scoring” model of Tobias et al. (2010) involves less drastic cut-offs, but unlike Isler et al. (1998), does not control adequately for sample size and attributes scores in many cases to differentiation which is not statistically significant. Four different models of assessing effect sizes were analyzed: using both pooled and unpooled standard deviations and controlling for sample size using t-distributions or omitting to do so. Pooled standard deviations produced more conservative effect sizes when uncontrolled for sample size but less conservative effect sizes when so controlled. Pooled models require assumptions to be made that are typically elusive or unsupported for taxonomic studies. Modifications to improving these frameworks are proposed, including: (i) introducing statistical significance as a gateway to attributing any weighting to findings of differentiation; (ii) abandoning non-overlap as a test; (iii) recalibrating Tobias et al. (2010) scores based on effect sizes controlled for sample size using t-distributions. A new universal method is proposed for measuring differentiation in taxonomy using continuous variables and a formula is proposed for ranking allopatric populations. This is based first on calculating effect sizes using unpooled standard deviations, controlled for sample size using t-distributions, for a series of different variables. All non-significant results are excluded by scoring them as zero. Distance between any two populations is calculated using Euclidian summation of non-zeroed effect size scores. If the score of an allopatric pair exceeds that of a related sympatric pair, then the allopatric population can be ranked as species and, if not, then at most subspecies rank should be assigned. A spreadsheet has been programmed and is being made available which allows this and other tests of differentiation and rank studied in this paper to be rapidly analyzed. PMID:29780266
NASA Astrophysics Data System (ADS)
Watkins, Stephen E.; Whittaker, Alexander C.; Bell, Rebecca E.; Brooke, Sam A. S.; McNeill, Lisa C.; Gawthorpe, Robert L.
2017-04-01
The volumes, grain sizes and characteristics of sediment supplied from source catchments fundamentally controls basin stratigraphy. However, to date, few studies have constrained sediment budgets, including grain size, released into an active rift basin at a regional scale. The Gulf of Corinth, central Greece, is one of the most rapidly extending rifts in the world, with geodetic measurements of 5 mm/yr in the East to 15 mm/yr in the West. It has well-constrained climatic and tectonic boundary conditions and bedrock lithologies are well-characterised. It is therefore an ideal natural laboratory to study the grain-size export for a rift. In the field, we visited the river mouths of 49 catchments draining into the Corinth Gulf, which in total drain 83% of the rift. At each site, hydraulic geometries, surface grain-size of channel bars and full-weighted grain-size distributions of river sediment were obtained. The surface grain-size was measured using the Wolman point count method and the full-weighted grain-size distribution of the bedload by in-situ sieving. In total, approximately 17,000 point counts and 3 tonnes of sediment were processed. The grain-size distributions show an overall increase from East to West on the southern coast of the gulf, with largest grain-sizes exported from the Western rift catchments. D84 ranges from 20 to 110 mm, however 50% of D84 grain-sizes are less than 40 mm. Subsequently, we derived the full Holocene sediment budget for the Corinth Gulf by combining our grain size data with catchment sediment fluxes, constrained using the BQART model and calibrated to known Holocene sediment volumes in the basin from seismic data (c.f. Watkins et al., in review). This is the first time such a budget has been derived for the Corinth Rift. Finally, our estimates of sediment budgets and grain sizes were compared to regional uplift constraints, fault distributions, slip rates and lithology to identify the relative importance of these controls on sediment supply to the basin.
NASA Astrophysics Data System (ADS)
Fernández-Ruiz, Ramón; Friedrich K., E. Josue; Redrejo, M. J.
2018-02-01
The main goal of this work was to investigate, in a systematic way, the influence of the controlled modulation of the particle size distribution of a representative solid sample with respect to the more relevant analytical parameters of the Direct Solid Analysis (DSA) by Total-reflection X-Ray Fluorescence (TXRF) quantitative method. In particular, accuracy, uncertainty, linearity and detection limits were correlated with the main parameters of their size distributions for the following elements; Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb. In all cases strong correlations were finded. The main conclusion of this work can be resumed as follows; the modulation of particles shape to lower average sizes next to a minimization of the width of particle size distributions, produce a strong increment of accuracy, minimization of uncertainties and limit of detections for DSA-TXRF methodology. These achievements allow the future use of the DSA-TXRF analytical methodology for development of ISO norms and standardized protocols for the direct analysis of solids by mean of TXRF.
Christians, S; Schluender, S; van Treel, N D; Behr-Gross, M-E
2016-01-01
Molecular-size distribution by size-exclusion chromatography (SEC) [1] is used for the quantification of unwanted aggregated forms in therapeutic polyclonal antibodies, referred to as human immunoglobulins (Ig) in the European Pharmacopoeia. Considering not only the requirements of the monographs for human normal Ig (0338, 0918 and 2788) [2-4], but also the general chapter on chromatographic techniques (2.2.46) [5], several chromatographic column types are allowed for performing this test. Although the EDQM knowledge database gives only 2 examples of suitable columns as a guide for the user, these monographs permit the use of columns with different lengths and diameters, and do not prescribe either particle size or pore size, which are considered key characteristics of SEC columns. Therefore, the columns used may differ significantly from each other with regard to peak resolution, potentially resulting in ambiguous peak identity assignment. In some cases, this may even lead to situations where the manufacturer and the Official Medicines Control Laboratory (OMCL) in charge of Official Control Authority Batch Release (OCABR) have differing molecular-size distribution profiles for aggregates of the same batch of Ig, even though both laboratories follow the requirements of the relevant monograph. In the present study, several formally acceptable columns and the peak integration results obtained therewith were compared. A standard size-exclusion column with a length of 60 cm and a particle size of 10 µm typically detects only 3 Ig fractions, namely monomers, dimers and polymers. This column type was among the first reliable HPLC columns on the market for this test and very rapidly became the standard for many pharmaceutical manufacturers and OMCLs for batch release testing. Consequently, the distribution of monomers, dimers and polymers was established as the basis for the interpretation of the results of the molecular-size distribution test in the relevant monographs. However, modern columns with a smaller particle size provide better resolution and also reveal a class of components designated here as oligomers. This publication addresses the interpretation of the SEC test for Ig with respect to the following questions: - how can molecular-size distribution tests benefit from the use of the most recent column technology without changing the sense of well-established quality parameters? - is it possible to mathematically define a way to interpret chromatograms generated with various column types with the same fractionation range but different resolution power? - how should oligomers be considered regarding compliance with compendial specifications?
Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel
2015-01-01
This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p < 0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.
Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel
2015-01-01
This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p<0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.
Sanyal, Udishnu; Jagirdar, Balaji R
2012-12-03
A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.
Bai, Kelvin; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K
2017-04-01
Characterization of submicron protein particles continues to be challenging despite active developments in the field. NTA is a submicron particle enumeration technique, which optically tracks the light scattering signal from suspended particles undergoing Brownian motion. The submicron particle size range NTA can monitor in common protein formulations is not well established. We conducted a comprehensive investigation with several protein formulations along with corresponding placebos using NTA to determine submicron particle size distributions and shed light on potential non-particle origin of size distribution in the range of approximately 50-300 nm. NTA and DLS are performed on polystyrene size standards as well as protein and placebo formulations. Protein formulations filtered through a 20 nm filter, with and without polysorbate-80, show NTA particle counts. As such, particle counts above 20 nm are not expected in these solutions. Several other systems including positive and negative controls were studied using NTA and DLS. These apparent particles measured by NTA are not observed in DLS measurements and may not correspond to real particles. The intent of this article is to raise awareness about the need to interpret particle counts and size distribution from NTA with caution.
Pessi, Jenni; Lassila, Ilkka; Meriläinen, Antti; Räikkönen, Heikki; Hæggström, Edward; Yliruusi, Jouko
2016-08-01
We introduce a robust, stable, and reproducible method to produce nanoparticles based on expansion of supercritical solutions using carbon dioxide as a solvent. The method, controlled expansion of supercritical solution (CESS), uses controlled mass transfer, flow, pressure reduction, and particle collection in dry ice. CESS offers control over the crystallization process as the pressure in the system is reduced according to a specific profile. Particle formation takes place before the exit nozzle, and condensation is the main mechanism for postnucleation particle growth. A 2-step gradient pressure reduction is used to prevent Mach disk formation and particle growth by coagulation. Controlled particle growth keeps the production process stable. With CESS, we produced piroxicam nanoparticles, 60 mg/h, featuring narrow size distribution (176 ± 53 nm). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Biggs, C A; Prall, C; Tait, S; Ashley, R
2005-01-01
The changes in particle size of sewer sediment particles rapidly eroded from a previously deposited sediment bed are described, using a rotating annular flume as a laboratory scale sewer simulator. This is the first time that particle size distributions of eroded sewer sediments from a previously deposited sediment bed have been monitored in such a controlled experimental environment. Sediments from Loenen, The Netherlands and Dundee, UK were used to form deposits in the base of the annular flume (WL Delft Netherlands) with varying conditions for consolidation in order to investigate the effect of changing consolidation time, temperature and sediment type on the amount and size of particles eroded from a bed under conditions of increasing shear. The median size of the eroded particles did not change significantly with temperature, although the eroded suspended solids concentration was greater for the higher temperature under the same shear stresses, indicating a weaker bed deposit. An increase in consolidation time caused an increase in median size of eroded solids at higher bed shear stresses, and this was accompanied by higher suspended solids concentrations. As the shear stress increased, the solids eroded from the bed developed under a longer consolidation time (56 hours) tended towards a broad unimodal distribution, whilst the size distribution of solids eroded from beds developed under shorter consolidation times (18 or 42 hours) retained a bi- or tri-modal distribution. Using different types of sediment in the flume had a marked effect on the size of particles eroded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thiago A. R. M.; Ilavsky, Jan; Hammons, Joshua
Hydroxyapatite (HAP) scaffolds with a hierarchical porous architecture were prepared by a new dual-template (corn starch and cetyltrimethylammonium bromide (CTAB) surfactant) used to cast HAP nanoparticles and development scaffolds with size hierarchical porous distribution. The Powder X-Ray diffraction (XRD) results showed that only the HAP crystalline phase is present in the samples after calcination; the Scanning Electron Microscopy (SEM) combined with Small Angle (SAXS) and Ultra-Small Angle X-ray Scattering (USAXS) techniques showed that the porous arrangement is promoted by needle-like HAP nanoparticles, and that the pore size distributions depend on the drip-order of the calcium and the phosphate solutions duringmore » the template preparation stage.« less
Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone
NASA Astrophysics Data System (ADS)
Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter
2016-09-01
Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ˜100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ˜100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering—volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.
Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel
2012-07-03
In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.
Red mud flocculation process in alumina production
NASA Astrophysics Data System (ADS)
Fedorova, E. R.; Firsov, A. Yu
2018-05-01
The process of thickening and washing red mud is a gooseneck of alumina production. The existing automated systems of the thickening process control involve stabilizing the parameters of the primary technological circuits of the thickener. The actual direction of scientific research is the creation and improvement of models and systems of the thickening process control by model. But the known models do not fully consider the presence of perturbing effects, in particular the particle size distribution in the feed process, distribution of floccules by size after the aggregation process in the feed barrel. The article is devoted to the basic concepts and terms used in writing the population balance algorithm. The population balance model is implemented in the MatLab environment. The result of the simulation is the particle size distribution after the flocculation process. This model allows one to foreseen the distribution range of floccules after the process of aggregation of red mud in the feed barrel. The mud of Jamaican bauxite was acting as an industrial sample of red mud; Cytec Industries of HX-3000 series with a concentration of 0.5% was acting as a flocculant. When simulating, model constants obtained in a tubular tank in the laboratories of CSIRO (Australia) were used.
Driver electronics design and control for a total artificial heart linear motor.
Unthan, Kristin; Cuenca-Navalon, Elena; Pelletier, Benedikt; Finocchiaro, Thomas; Steinseifer, Ulrich
2018-01-27
For any implantable device size and efficiency are critical properties. Thus, a linear motor for a Total Artificial Heart was optimized with focus on driver electronics and control strategies. Hardware requirements were defined from power supply and motor setup. Four full bridges were chosen for the power electronics. Shunt resistors were set up for current measurement. Unipolar and bipolar switching for power electronics control were compared regarding current ripple and power losses. Here, unipolar switching showed smaller current ripple and required less power to create the necessary motor forces. Based on calculations for minimal power losses Lorentz force was distributed to the actor's four coils. The distribution was determined as ratio of effective magnetic flux through each coil, which was captured by a force test rig. Static and dynamic measurements under physiological conditions analyzed interaction of control and hardware and all efficiencies were over 89%. In conclusion, the designed electronics, optimized control strategy and applied current distribution create the required motor force and perform optimal under physiological conditions. The developed driver electronics and control offer optimized size and efficiency for any implantable or portable device with multiple independent motor coils. Graphical Abstract ᅟ.
Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi
2013-01-01
We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.
Dynamics of protein aggregation and oligomer formation governed by secondary nucleation
NASA Astrophysics Data System (ADS)
Michaels, Thomas C. T.; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J.
2015-08-01
The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.
Dynamics of protein aggregation and oligomer formation governed by secondary nucleation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, Thomas C. T., E-mail: tctm3@cam.ac.uk; Lazell, Hamish W.; Arosio, Paolo
2015-08-07
The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial tomore » progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.« less
Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure
NASA Astrophysics Data System (ADS)
Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team
Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.
Novel fluorescence adjustable photonic crystal materials
NASA Astrophysics Data System (ADS)
Zhu, Cheng; Liu, Xiaoxia; Ni, Yaru; Fang, Jiaojiao; Fang, Liang; Lu, Chunhua; Xu, Zhongzi
2017-11-01
Novel photonic crystal materials (PCMs) with adjustable fluorescence were fabricated by distributing organic fluorescent powders of Yb0.2Er0.4Tm0.4(TTA)3Phen into the opal structures of self-assembled silica photonic crystals (PCs). Via removing the silica solution in a constant speed, PCs with controllable thicknesses and different periodic sizes were obtained on glass slides. Yb0.2Er0.4Tm0.4(TTA)3Phen powders were subsequently distributed into the opal structures. The structures and optical properties of the prepared PCMs were investigated. Finite-difference-time-domain (FDTD) calculation was used to further analyze the electric field distributions in PCs with different periodic sizes while the relation between periodic sizes and fluorescent spectra of PCMs was discussed. The results showed that the emission color of the PCMs under irradiation of 980 nm laser can be easily adjusted from green to blue by increasing the periodic size from 250 to 450 nm.
Strategies for Tailoring the Pore-Size Distribution of Virus Retention Filter Papers.
Gustafsson, Simon; Mihranyan, Albert
2016-06-08
The goal of this work is to demonstrate how the pore-size distribution of the nanocellulose-based virus-retentive filter can be tailored. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. green algae using the hot-press drying at varying drying temperatures. The produced filters were characterized using scanning electron microscopy, atomic force microscopy, and N2 gas sorption analysis. Further, hydraulic permeability and retention efficiency toward surrogate 20 nm model particles (fluorescent carboxylate-modified polystyrene spheres) were assessed. It was shown that by controlling the rate of water evaporation during hot-press drying the pore-size distribution can be precisely tailored in the region between 10 and 25 nm. The mechanism of pore formation and critical parameters are discussed in detail. The results are highly valuable for development of advanced separation media, especially for virus-retentive size-exclusion filtration.
Rees, Terry F.
1990-01-01
Colloidal materials, dispersed phases with dimensions between 0.001 and 1 μm, are potential transport media for a variety of contaminants in surface and ground water. Characterization of these colloids, and identification of the parameters that control their movement, are necessary before transport simulations can be attempted. Two techniques that can be used to determine the particle-size distribution of colloidal materials suspended in natural waters are compared. Photon correlation Spectroscopy (PCS) utilizes the Doppler frequency shift of photons scattered off particles undergoing Brownian motion to determine the size of colloids suspended in water. Photosedimentation analysis (PSA) measures the time-dependent change in optical density of a suspension of colloidal particles undergoing centrifugation. A description of both techniques, important underlying assumptions, and limitations are given. Results for a series of river water samples show that the colloid-size distribution means are statistically identical as determined by both techniques. This also is true of the mass median diameter (MMD), even though MMD values determined by PSA are consistently smaller than those determined by PCS. Because of this small negative bias, the skew parameters for the distributions are generally smaller for the PCS-determined distributions than for the PSA-determined distributions. Smaller polydispersity indices for the distributions are also determined by PCS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, Michael P.; Hendricks, Mark P.; Beecher, Alexander N.
Here, we report a tunable library of N,N,N'-trisubstituted selenourea precursors and their reaction with lead oleate at 60–150 °C to form carboxylate-terminated PbSe nanocrystals in quantitative yields. Single exponential conversion kinetics can be tailored over 4 orders of magnitude by adjusting the selenourea structure. The wide range of conversion reactivity allows the extent of nucleation ([nanocrystal] = 4.6–56.7 μM) and the size following complete precursor conversion (d = 1.7–6.6 nm) to be controlled. Narrow size distributions (σ = 0.5–2%) are obtained whose spectral line widths are dominated (73–83%) by the intrinsic single particle spectral broadening, as observed using spectral holemore » burning measurements. Here, the intrinsic broadening decreases with increasing size (fwhm = 320–65 meV, d = 1.6–4.4 nm) that derives from exciton fine structure and exciton–phonon coupling rather than broadening caused by the size distribution.« less
Campos, Michael P.; Hendricks, Mark P.; Beecher, Alexander N.; ...
2017-01-19
Here, we report a tunable library of N,N,N'-trisubstituted selenourea precursors and their reaction with lead oleate at 60–150 °C to form carboxylate-terminated PbSe nanocrystals in quantitative yields. Single exponential conversion kinetics can be tailored over 4 orders of magnitude by adjusting the selenourea structure. The wide range of conversion reactivity allows the extent of nucleation ([nanocrystal] = 4.6–56.7 μM) and the size following complete precursor conversion (d = 1.7–6.6 nm) to be controlled. Narrow size distributions (σ = 0.5–2%) are obtained whose spectral line widths are dominated (73–83%) by the intrinsic single particle spectral broadening, as observed using spectral holemore » burning measurements. Here, the intrinsic broadening decreases with increasing size (fwhm = 320–65 meV, d = 1.6–4.4 nm) that derives from exciton fine structure and exciton–phonon coupling rather than broadening caused by the size distribution.« less
Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors.
Young, Christine; Lin, Jianjian; Wang, Jie; Ding, Bing; Zhang, Xiaogang; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Hossain, Shahriar A; Khan, Junayet Hossain; Ide, Yusuke; Kim, Jeonghun; Henzie, Joel; Wu, Kevin C-W; Kobayashi, Naoya; Yamauchi, Yusuke
2018-04-20
Mesoporous carbon can be synthesized with good control of surface area, pore-size distribution, and porous architecture. Although the relationship between porosity and supercapacitor performance is well known, there are no thorough reports that compare the performance of numerous types of carbon samples side by side. In this manuscript, we describe the performance of 13 porous carbon samples in supercapacitor devices. We suggest that there is a "critical pore size" at which guest molecules can pass through the pores effectively. In this context, the specific surface area (SSA) and pore-size distribution (PSD) are used to show the point at which the pore size crosses the threshold of critical size. These measurements provide a guide for the development of new kinds of carbon materials for supercapacitor devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparing particle-size distributions in modern and ancient sand-bed rivers
NASA Astrophysics Data System (ADS)
Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.
2011-12-01
Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical particle-size analysis, and statistical characterization in both modern and ancient settings. We consider potential error contributions and evaluate the degree to which this uncertainty might be significant in modern sediment-transport studies and ancient paleomorphodynamic reconstructions.
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; King, R. B.; Fordyce, J. S.
1974-01-01
The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.
Online submicron particle sizing by dynamic light scattering using autodilution
NASA Technical Reports Server (NTRS)
Nicoli, David F.; Elings, V. B.
1989-01-01
Efficient production of a wide range of commercial products based on submicron colloidal dispersions would benefit from instrumentation for online particle sizing, permitting real time monitoring and control of the particle size distribution. Recent advances in the technology of dynamic light scattering (DLS), especially improvements in algorithms for inversion of the intensity autocorrelation function, have made it ideally suited to the measurement of simple particle size distributions in the difficult submicron region. Crucial to the success of an online DSL based instrument is a simple mechanism for automatically sampling and diluting the starting concentrated sample suspension, yielding a final concentration which is optimal for the light scattering measurement. A proprietary method and apparatus was developed for performing this function, designed to be used with a DLS based particle sizing instrument. A PC/AT computer is used as a smart controller for the valves in the sampler diluter, as well as an input-output communicator, video display and data storage device. Quantitative results are presented for a latex suspension and an oil-in-water emulsion.
Eberl, Dennis D.; Drits, V.A.; Srodon, J.
2000-01-01
GALOPER is a computer program that simulates the shapes of crystal size distributions (CSDs) from crystal growth mechanisms. This manual describes how to use the program. The theory for the program's operation has been described previously (Eberl, Drits, and Srodon, 1998). CSDs that can be simulated using GALOPER include those that result from growth mechanisms operating in the open system, such as constant-rate nucleation and growth, nucleation with a decaying nucleation rate and growth, surface-controlled growth, supply-controlled growth, and constant-rate and random growth; and those that result from mechanisms operating in the closed system such as Ostwald ripening, random ripening, and crystal coalescence. In addition, CSDs for two types weathering reactions can be simulated. The operation of associated programs also is described, including two statistical programs used for comparing calculated with measured CSDs, a program used for calculating lognormal CSDs, and a program for arranging measured crystal sizes into size groupings (bins).
Overlap between treatment and control distributions as an effect size measure in experiments.
Hedges, Larry V; Olkin, Ingram
2016-03-01
The proportion π of treatment group observations that exceed the control group mean has been proposed as an effect size measure for experiments that randomly assign independent units into 2 groups. We give the exact distribution of a simple estimator of π based on the standardized mean difference and use it to study the small sample bias of this estimator. We also give the minimum variance unbiased estimator of π under 2 models, one in which the variance of the mean difference is known and one in which the variance is unknown. We show how to use the relation between the standardized mean difference and the overlap measure to compute confidence intervals for π and show that these results can be used to obtain unbiased estimators, large sample variances, and confidence intervals for 3 related effect size measures based on the overlap. Finally, we show how the effect size π can be used in a meta-analysis. (c) 2016 APA, all rights reserved).
Continuous twin screw granulation of controlled release formulations with various HPMC grades.
Vanhoorne, V; Janssens, L; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C
2016-09-25
HPMC is a popular matrix former to formulate tablets with extended drug release. Tablets with HPMC are preferentially produced by direct compression. However, granulation is often required prior to tableting to overcome poor flowability of the formulation. While continuous twin screw granulation has been extensively evaluated for granulation of immediate release formulations, twin screw granulation of controlled release formulations including the dissolution behavior of the formulations received little attention. Therefore, the influence of the HPMC grade (viscosity and substitution degree) and the particle size of theophylline on critical quality attributes of granules (continuously produced via twin screw granulation) and tablets was investigated in the current study. Formulations with 20 or 40% HPMC, 20% theophylline and lactose were granulated with water at fixed process parameters via twin screw granulation. The torque was influenced by the viscosity and substitution degree of HPMC, but was not a limiting factor for the granulation process. An optimal L/S ratio was selected for each formulation based on the granule size distribution. The granule size distributions were influenced by the substitution degree and concentration of HPMC and the particle size of theophylline. Raman and UV spectroscopic analysis on 8 sieve fractions of granules indicated an inhomogeneous distribution of theophylline over the size fractions. However, this phenomenon was not correlated with the hydration rate or viscosity of HPMC. Controlled release of theophylline could be obtained over 24h with release profiles close to zero-order. The release of theophylline could be tailored via selection of the substitution degree and viscosity of HPMC. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultrasonically controlled particle size distribution of explosives: a safe method.
Patil, Mohan Narayan; Gore, G M; Pandit, Aniruddha B
2008-03-01
Size reduction of the high energy materials (HEM's) by conventional methods (mechanical means) is not safe as they are very sensitive to friction and impact. Modified crystallization techniques can be used for the same purpose. The solute is dissolved in the solvent and crystallized via cooling or is precipitated out using an antisolvent. The various crystallization parameters such as temperature, antisolvent addition rate and agitation are adjusted to get the required final crystal size and morphology. The solvent-antisolvent ratio, time of crystallization and yield of the product are the key factors for controlling antisolvent based precipitation process. The advantages of cavitationally induced nucleation can be coupled with the conventional crystallization process. This study includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solvent antisolvent based precipitation process. CL20, a high-energy explosive compound, is a polyazapolycyclic caged polynitramine. CL-20 has greater energy output than existing (in-use) energetic ingredients while having an acceptable level of insensitivity to shock and other external stimuli. The size control and size distribution manipulation of the high energy material (CL20) has been successfully carried out safely and quickly along with an increase in the final mass yield, compared to the conventional antisolvent based precipitation process.
Mazis, N; Papachristou, D J; Zouboulis, P; Tyllianakis, M; Scopa, C D; Megas, P
2009-12-01
Previous studies examining the multifidus fiber characteristics among low back pain (LBP) patients have not considered the variable of physical activity. The present study sought to investigate the muscle fiber size and type distribution of the lumbar multifidus muscle among LBP patient groups with different physical activity levels and healthy controls. Sixty-four patients were assigned to one of three groups named according to the physical activity level, determined for each patient by the International Physical Activity Questionnaire. These were low (LPA), medium (MPA) and high (HPA) physical activity groups. A control group comprising of 17 healthy individuals was also recruited. Muscle biopsy samples were obtained from the multifidus muscle at the level L4-L5. contrast with the control group, LBP patient groups showed a significantly higher Type II fiber distribution as well as reduced diameter in both fiber types (P<0.05). The physical activity level did not have an effect on multifidus characteristics since no significant differences were observed in fiber type and diameter (P>0.05) among LPA, MPA and HPA patient groups. Various pathological conditions were detected which were more pronounced in LBP groups compared to the control (P<0.05). Males had a larger fiber diameter compared to females for both fiber types (P<0.05). The results showed that the level of physical activity did not affect muscle fiber size and type distribution among LBP patients groups. These findings suggest that not only inactivity but also high physical activity levels can have an adverse effect on the multifidus muscle fiber characteristics.
Ryon, A.D.; Haas, P.A.; Vavruska, J.S.
1982-01-19
The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. This is accomplished by subjecting aqueous dispersions of a sol, within a water-immiscible organic liquid to a turbulent flow. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.
Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen
2013-06-01
Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00495c
Liu, Wei; Yang, Xiang-Liang; Ho, W S Winston
2011-01-01
Much attention has in recent years been paid to fine applications of drug delivery systems, such as multiple emulsions, micro/nano solid lipid and polymer particles (spheres or capsules). Precise control of particle size and size distribution is especially important in such fine applications. Membrane emulsification can be used to prepare uniform-sized multiple emulsions and micro/nano particulates for drug delivery. It is a promising technique because of the better control of size and size distribution, the mildness of the process, the low energy consumption, easy operation and simple equipment, and amendable for large scale production. This review describes the state of the art of membrane emulsification in the preparation of monodisperse multiple emulsions and micro/nano particulates for drug delivery in recent years. The principles, influence of process parameters, advantages and disadvantages, and applications in preparing different types of drug delivery systems are reviewed. It can be concluded that the membrane emulsification technique in preparing emulsion/particulate products for drug delivery will further expand in the near future in conjunction with more basic investigations on this technique. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Study into the correlation of dominant pore throat size and SIP relaxation frequency
NASA Astrophysics Data System (ADS)
Kruschwitz, Sabine; Prinz, Carsten; Zimathies, Annett
2016-12-01
There is currently a debate within the SIP community about the characteristic textural length scale controlling relaxation time of consolidated porous media. One idea is that the relaxation time is dominated by the pore throat size distribution or more specifically the modal pore throat size as determined in mercury intrusion capillary pressure tests. Recently new studies on inverting pore size distributions from SIP data were published implying that the relaxation mechanisms and controlling length scale are well understood. In contrast new analytical model studies based on the Marshall-Madden membrane polarization theory suggested that two relaxation processes might compete: the one along the short narrow pore (the throat) with one across the wider pore in case the narrow pores become relatively long. This paper presents a first systematically focused study into the relationship of pore throat sizes and SIP relaxation times. The generality of predicted trends is investigated across a wide range of materials differing considerably in chemical composition, specific surface and pore space characteristics. Three different groups of relaxation behaviors can be clearly distinguished. The different behaviors are related to clay content and type, carbonate content, size of the grains and the wide pores in the samples.
Number size distribution of particulate emissions of heavy-duty engines in real world test cycles
NASA Astrophysics Data System (ADS)
Lehmann, Urs; Mohr, Martin; Schweizer, Thomas; Rütter, Josef
Five in-service engines in heavy-duty trucks complying with Euro II emission standards were measured on a dynamic engine test bench at EMPA. The particulate matter (PM) emissions of these engines were investigated by number and mass measurements. The mass of the total PM was evaluated using the standard gravimetric measurement method, the total number concentration and the number size distribution were measured by a Condensation Particle Counter (lower particle size cut-off: 7 nm) and an Electrical Low Pressure Impactor (lower particle size: 32 nm), respectively. The transient test cycles used represent either driving behaviour on the road (real-world test cycles) or a type approval procedure. They are characterised by the cycle power, the average cycle power and by a parameter for the cycle dynamics. In addition, the particle number size distribution was determined at two steady-state operating modes of the engine using a Scanning Mobility Particle Sizer. For quality control, each measurement was repeated at least three times under controlled conditions. It was found that the number size distributions as well as the total number concentration of emitted particles could be measured with a good repeatability. Total number concentration was between 9×10 11 and 1×10 13 particles/s (3×10 13-7×10 14 p/kWh) and mass concentration was between 0.09 and 0.48 g/kWh. For all transient cycles, the number mean diameter of the distributions lay typically at about 120 nm for aerodynamic particle diameter and did not vary significantly. In general, the various particle measurement devices used reveal the same trends in particle emissions. We looked at the correlation between specific gravimetric mass emission (PM) and total particle number concentration. The correlation tends to be influenced more by the different engines than by the test cycles.
Lu, Jennifer Q; Yi, Sung Soo
2006-04-25
A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.
Integrated microfluidic system with simultaneous emulsion generation and concentration.
Koppula, Karuna S; Fan, Rong; Veerapalli, Kartik R; Wan, Jiandi
2016-03-15
Because the size, size distribution, and concentration of emulsions play an important role in most of the applications, controlled emulsion generation and effective concentration are of great interest in fundamental and applied studies. While microfluidics has been demonstrated to be able to produce emulsion drops with controlled size, size distribution, and hierarchical structures, progress of controlled generation of concentrated emulsions is limited. Here, we present an effective microfluidic emulsion generation system integrated with an orifice structure to separate aqueous droplets from the continuous oil phase, resulting in concentrated emulsion drops in situ. Both experimental and simulation results show that the efficiency of separation is determined by a balance between pressure drop and droplet accumulation near the orifice. By manipulating this balance via changing flow rates and microfluidic geometry, we can achieve monodisperse droplets on chip that have a concentration as high as 80,000 drops per microliter (volume fraction of 66%). The present approach thus provides insights to the design of microfluidic device that can be used to concentrate emulsions (drops and bubbles), colloidal particles (drug delivery polymer particles), and biological particles (cells and bacteria) when volume fractions as high as 66% are necessary. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1980-01-01
Twenty-four functional requirements were prepared under six categories and serve to indicate how to integrate dispersed storage generation (DSG) systems with the distribution and other portions of the electric utility system. Results indicate that there are no fundamental technical obstacles to prevent the connection of dispersed storage and generation to the distribution system. However, a communication system of some sophistication is required to integrate the distribution system and the dispersed generation sources for effective control. The large-size span of generators from 10 KW to 30 MW means that a variety of remote monitoring and control may be required. Increased effort is required to develop demonstration equipment to perform the DSG monitoring and control functions and to acquire experience with this equipment in the utility distribution environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaripouya, Hamidreza; Wang, Yubo; Chu, Peter
2016-07-26
This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy ofmore » the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.« less
Size-controlled synthesis of Pd nanocrystals using a specific multifunctional peptide
NASA Astrophysics Data System (ADS)
Chiu, Chin-Yi; Li, Yujing; Huang, Yu
2010-06-01
Here we report a peptide-mediated synthesis of Pd NCs in aqueous solution with controllable size in the sub-10 nanometre regime. The specific multifunctional peptide Q7 selected using the phage display technique can bind to the Pd NC surface and act as a stabilizer to mediate Pd crystal nucleation and growth. At the nucleation stage, Q7 bound to and helped stabilize the different-sized small Pd NC nuclei achieved using different concentrations of the external reducing agent, NaBH4. At the growth stage, Q7 played the dual role of binding to and reducing the precursor onto the existing nuclei, which led to the further controllable growth of the Pd NCs. By using the variable sizes of nuclei as seeds, and by introducing different amounts of precursors Pd NCs with tunable sizes from 2.6 to 6.6 nm were achieved with good size distribution.Here we report a peptide-mediated synthesis of Pd NCs in aqueous solution with controllable size in the sub-10 nanometre regime. The specific multifunctional peptide Q7 selected using the phage display technique can bind to the Pd NC surface and act as a stabilizer to mediate Pd crystal nucleation and growth. At the nucleation stage, Q7 bound to and helped stabilize the different-sized small Pd NC nuclei achieved using different concentrations of the external reducing agent, NaBH4. At the growth stage, Q7 played the dual role of binding to and reducing the precursor onto the existing nuclei, which led to the further controllable growth of the Pd NCs. By using the variable sizes of nuclei as seeds, and by introducing different amounts of precursors Pd NCs with tunable sizes from 2.6 to 6.6 nm were achieved with good size distribution. Electronic Supplementary Information (ESI) available. Experimental details for peptide selection, peptide synthesis and Pd NCs synthesis; Q7 peptide sequence molecular structure and characterization; TEM images of Pd NCs. See DOI: 10.1039/c0nr00194e/
Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan
2004-11-01
The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.
Nakamura, Michihiro; Ozaki, Shuji; Abe, Masahiro; Doi, Hiroyuki; Matsumoto, Toshio; Ishimura, Kazunori
2010-08-01
Thiol-organosilica particles of a narrow size distribution, made from 3-mercaptopropyltrimethoxysilane (MPMS), were prepared by means of a one-pot synthesis. We examined three synthetic conditions at high temperature (100 degrees C), including the Stöber synthesis and two entirely aqueous syntheses. Under all conditions, the sizes of MPMS particles were well controlled, and the average of the coefficient of variation for the size distribution was less than 20%. The incubation times required for formation of MPMS particles were shorter at high temperature than at low temperature. MPMS particles internally functionalized with fluorescent dye were also prepared by means of the same one-pot synthesis. On flow cytometry analysis these MPMS particles showed distinct peaks of scattering due to well-controlled sizes of particles as well as due to fluorescence signals. Real-time observation of interaction between fluorescent MPMPS particles and cultured cells could be observed under fluorescent microscopy with bright light. The surface of the as-prepared MPMS particles contained exposed mercaptopropyl residues, and the ability to adsorb proteins was at least 6 times higher than that of gold nanopaticles. In addition, fluorescein-labeled proteins adsorbed to the surface of the particles were quantitatively detected at the pg/ml level by flow cytometry. MPMS particles surface functionalized with anti-CD20 antibody using adsorption could bind with lymphoma cells expressing CD20 specifically. In this paper, we demonstrated the possibility of size-controlled thiol-organosilica particles for wild range of biological applications. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.
2016-12-01
Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size distributions and the predominant driver of sediment transport controls the potential for geomorphic change on societally relevant time scales in multiple settings.
NASA Astrophysics Data System (ADS)
Kang, Jongeun; Lee, Hyunseung; Kim, Young-Nam; Yeom, Areum; Jeong, Heejeong; Lim, Yong Taik; Hong, Kwan Soo
2013-09-01
Magnetic nanoparticle (MNP)-based magnetic resonance imaging (MRI) contrast agents (CAs) have been the subject of extensive research over recent decades. The particle size of MNPs varies widely and is known to influence their physicochemical and pharmacokinetic properties. There are two commonly used methods for synthesizing MNPs, organometallic and aqueous solution coprecipitation. The former has the advantage of being able to control the particle size more effectively; however, the resulting particles require a hydrophilic coating in order to be rendered water soluble. The MNPs produced using the latter method are intrinsically water soluble, but they have a relatively wide particle size distribution. Size-controlled water-soluble MNPs have great potential as MRI CAs and in cell sorting and labeling applications. In the present study, we synthesized CoFe2O4 MNPs using an aqueous solution coprecipitation method. The MNPs were subsequently separated into four groups depending on size, by the use of centrifugation at different speeds. The crystal shapes and size distributions of the particles in the four groups were measured and confirmed by transmission electron microscopy and dynamic light scattering. Using X-ray diffraction analysis, the MNPs were found to have an inverse spinel structure. Four MNP groups with well-selected semi-Gaussian-like diameter distributions were obtained, with measured T2 relaxivities ( r 2) at 4.7 T and room temperature in the range of 60 to 300 mM-1s-1, depending on the particle size. This size regulation method has great promise for applications that require homogeneous-sized MNPs made by an aqueous solution coprecipitation method. Any group of the CoFe2O4 MNPs could be used as initial base cores of MRI T2 CAs, with almost unique T2 relaxivity owing to size regulation. The methodology reported here opens up many possibilities for biosensing applications and disease diagnosis.
Settling Efficiency of Urban Particulate Matter Transported by Stormwater Runoff.
Carbone, Marco; Penna, Nadia; Piro, Patrizia
2015-09-01
The main purpose of control measures in urban areas is to retain particulate matter washed out by stormwater over impermeable surfaces. In stormwater control measures, particulate matter removal typically occurs via sedimentation. Settling column tests were performed to examine the settling efficiency of such units using monodisperse and heterodisperse particulate matter (for which the particle size distributions were measured and modelled by the cumulative gamma distribution). To investigate the dependence of settling efficiency from the particulate matter, a variant of the evolutionary polynomial regression (EPR), a Microsoft Excel function based on multi-objective EPR technique (EPR-MOGA), called EPR MOGA XL, was used as a data-mining strategy. The results from this study have shown that settling efficiency is a function of the initial total suspended solids (TSS) concentration and of the median diameter (d50 index), obtained from the particle size distributions (PSDs) of the samples.
Investigations of grain size dependent sediment transport phenomena on multiple scales
NASA Astrophysics Data System (ADS)
Thaxton, Christopher S.
Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for distributed rainfall infiltration and land cover matched observations. Although a unique set of governing equations applies to each scale, an improved physics-based understanding of small and medium scale behavior may yield more accurate parameterization of key variables used in large scale predictive models.
Wan, Gwo-Hwa; Wu, Chieh-Liang; Chen, Yi-Fang; Huang, Sheng-Hsiu; Wang, Yu-Ling; Chen, Chun-Wan
2014-01-01
Humans produce exhaled breath particles (EBPs) during various breath activities, such as normal breathing, coughing, talking, and sneezing. Airborne transmission risk exists when EBPs have attached pathogens. Until recently, few investigations had evaluated the size and concentration distributions of EBPs from mechanically ventilated patients with different ventilation mode settings. This study thus broke new ground by not only evaluating the size concentration distributions of EBPs in mechanically ventilated patients, but also investigating the relationship between EBP level and positive expiratory end airway pressure (PEEP), tidal volume, and pneumonia. This investigation recruited mechanically ventilated patients, with and without pneumonia, aged 20 years old and above, from the respiratory intensive care unit of a medical center. Concentration distributions of EBPs from mechanically ventilated patients were analyzed with an optical particle analyzer. This study finds that EBP concentrations from mechanically ventilated patients during normal breathing were in the range 0.47-2,554.04 particles/breath (0.001-4.644 particles/mL). EBP concentrations did not differ significantly between the volume control and pressure control modes of the ventilation settings in the mechanically ventilated patients. The patient EBPs were sized below 5 µm, and 80% of them ranged from 0.3 to 1.0 µm. The EBPs concentrations in patients with high PEEP (> 5 cmH₂O) clearly exceeded those in patients with low PEEP (≤ 5 cmH₂O). Additionally, a significant negative association existed between pneumonia duration and EBPs concentration. However, tidal volume was not related to EBPs concentration.
The application of a linear algebra to the analysis of mutation rates.
Jones, M E; Thomas, S M; Clarke, K
1999-07-07
Cells and bacteria growing in culture are subject to mutation, and as this mutation is the ultimate substrate for selection and evolution, the factors controlling the mutation rate are of some interest. The mutational event is not observed directly, but is inferred from the phenotype of the original mutant or of its descendants; the rate of mutation is inferred from the number of such mutant phenotypes. Such inference presumes a knowledge of the probability distribution for the size of a clone arising from a single mutation. We develop a mathematical formulation that assists in the design and analysis of experiments which investigate mutation rates and mutant clone size distribution, and we use it to analyse data for which the classical Luria-Delbrück clone-size distribution must be rejected. Copyright 1999 Academic Press.
Ahfir, Nasre-Dine; Hammadi, Ahmed; Alem, Abdellah; Wang, HuaQing; Le Bras, Gilbert; Ouahbi, Tariq
2017-03-01
The effects of porous media grain size distribution on the transport and deposition of polydisperse suspended particles under different flow velocities were investigated. Selected Kaolinite particles (2-30μm) and Fluorescein (dissolved tracer) were injected in the porous media by step input injection technique. Three sands filled columns were used: Fine sand, Coarse sand, and a third sand (Mixture) obtained by mixing the two last sands in equal weight proportion. The porous media performance on the particle removal was evaluated by analysing particles breakthrough curves, hydro-dispersive parameters determined using the analytical solution of convection-dispersion equation with a first order deposition kinetics, particles deposition profiles, and particle-size distribution of the recovered and the deposited particles. The deposition kinetics and the longitudinal hydrodynamic dispersion coefficients are controlled by the porous media grain size distribution. Mixture sand is more dispersive than Fine and Coarse sands. More the uniformity coefficient of the porous medium is large, higher is the filtration efficiency. At low velocities, porous media capture all sizes of suspended particles injected with larger ones mainly captured at the entrance. A high flow velocity carries the particles deeper into the porous media, producing more gradual changes in the deposition profile. The median diameter of the deposited particles at different depth increases with flow velocity. The large grain size distribution leads to build narrow pores enhancing the deposition of the particles by straining. Copyright © 2016. Published by Elsevier B.V.
The particle size distributions, morphologies, and chemical composition distributions of 14 coal fly ash (CFA) samples produced by the combustion of four western U.S. coals (two subbituminous, one lignite, and one bituminous) and three eastern U.S. coals (all bituminous) have bee...
Size control of Au NPs supported by pH operation
NASA Astrophysics Data System (ADS)
Ichiji, Masumi; Akiba, Hiroko; Hirasawa, Izumi
2017-07-01
Au NPs are expected to become useful functional particles, as particle gun used for plant gene transfer and also catalysts. We have studied PSD (particle size distribution) control of Au NPs by reduction crystallization. Previous study found out importance of seeds policy and also feeding profile. In this paper, effect of pH in the reduction crystallization was investigated to clarify the possibility of Au NPs PSD control by pH operation and also their growth process. Au NPs of size range 10-600 nm were obtained in single-jet system using ascorbic acid (AsA) as a reducing agent with adjusting pH of AsA. Au NPs are found to grow in the process of nucleation, agglomeration, agglomeration growth and surface growth. Au NPs tend to grow by agglomeration and become larger size in lower pH regions, and to grow only by surface growth and become smaller size in higher pH regions.
Flight Dynamics and Control of a Morphing UAV: Bio inspired by Natural Fliers
2017-02-17
Approved for public release: distribution unlimited. IV Modelling and Sizing Tornado Vortex Lattice Method (VLM) was used for aerodynamic prediction... Tornado is a Vortex Lattice Method software programmed in MATLAB; it was selected due to its fast solving time and ability to be controlled through...custom MATLAB scripts. Tornado VLM models the wing as thin sheet of discrete vortices and computes the pressure and force distributions around the
Intelligent Systems for Power Management and Distribution
NASA Technical Reports Server (NTRS)
Button, Robert M.
2002-01-01
The motivation behind an advanced technology program to develop intelligent power management and distribution (PMAD) systems is described. The program concentrates on developing digital control and distributed processing algorithms for PMAD components and systems to improve their size, weight, efficiency, and reliability. Specific areas of research in developing intelligent DC-DC converters and distributed switchgear are described. Results from recent development efforts are presented along with expected future benefits to the overall PMAD system performance.
Jorgez, Carolina J; Bischoff, Farideh Z
2009-01-01
Among the pitfalls of using cell-free fetal DNA in plasma for prenatal diagnosis is quality of the recovered DNA fragments and concomitant presence of maternal DNA (>95%). Our objective is to provide alternative methods for achieving enrichment and high-quality fetal DNA from plasma. Cell-free DNA from 31 pregnant women and 18 controls (10 males and 8 females) were size separated using agarose gel electrophoresis. DNA fragments of 100-300, 500-700 and 1,500-2,000 bp were excised and extracted, followed by whole genome amplification (WGA) of recovered fragments. Levels of beta-globin and DYS1 were measured. Distribution of beta-globin size fragments was similar among pregnant women and controls. Among control male cases, distribution of size fragments was the same for both beta-globin and DYS1. Among maternal cases confirmed to be male, the smallest size fragment (100-300 bp) accounted for nearly 50% (39.76 +/- 17.55%) of the recovered DYS1-DNA (fetal) and only 10% (10.40 +/- 6.49%) of beta-globin (total) DNA. After WGA of plasma fragments from pregnant women, DYS1 sequence amplification was best observed when using the 100-300 bp fragments as template. Combination of electrophoresis for size separation and WGA led to enriched fetal DNA from plasma. This novel combination of strategies is more likely to permit universal clinical applications of cell-free fetal DNA. Copyright 2009 S. Karger AG, Basel.
Sharifi Dehsari, Hamed; Harris, Richard Anthony; Ribeiro, Anielen Halda; Tremel, Wolfgang; Asadi, Kamal
2018-06-05
Despite the great progress in the synthesis of iron oxide nanoparticles (NPs) using a thermal decomposition method, the production of NPs with low polydispersity index is still challenging. In a thermal decomposition synthesis, oleic acid (OAC) and oleylamine (OAM) are used as surfactants. The surfactants bind to the growth species, thereby controlling the reaction kinetics and hence playing a critical role in the final size and size distribution of the NPs. Finding an optimum molar ratio between the surfactants oleic OAC/OAM is therefore crucial. A systematic experimental and theoretical study, however, on the role of the surfactant ratio is still missing. Here, we present a detailed experimental study on the role of the surfactant ratio in size distribution. We found an optimum OAC/OAM ratio of 3 at which the synthesis yielded truly monodisperse (polydispersity less than 7%) iron oxide NPs without employing any post synthesis size-selective procedures. We performed molecular dynamics simulations and showed that the binding energy of oleate to the NP is maximized at an OAC/OAM ratio of 3. The optimum OAC/OAM ratio of 3 is allowed for the control of the NP size with nanometer precision by simply changing the reaction heating rate. The optimum OAC/OAM ratio has no influence on the crystallinity and the superparamagnetic behavior of the Fe 3 O 4 NPs and therefore can be adopted for the scaled-up production of size-controlled monodisperse Fe 3 O 4 NPs.
NASA Astrophysics Data System (ADS)
Gulliver, Eric A.
The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered particle-size distributions or mixture composition. Control charts based on tessellation measurements were used for direct, quantitative comparisons between real and simulated mixtures. Four sets of simulated and real mixtures were examined. Data from real mixture was matched with simulated data when the samples were well mixed and the particle size distributions and volume fractions of the components were identical. Analysis of mixture components that occupied less than approximately 10 vol% of the mixture was not practical unless the particle size of the component was extremely small and excellent quality high-resolution compositional micrographs of the real sample are available. These methods of analysis should allow future researchers to systematically evaluate and predict the impact and importance of variables such as component volume fraction and component particle size distribution as they pertain to the uniformity of powder mixture microstructures.
Workplace exposure to nanoparticles from gas metal arc welding process
NASA Astrophysics Data System (ADS)
Zhang, Meibian; Jian, Le; Bin, Pingfan; Xing, Mingluan; Lou, Jianlin; Cong, Liming; Zou, Hua
2013-11-01
Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding ( P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000-18,000 and 560-320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace exposure to nanoparticles.
A Phase Field Study of the Effect of Microstructure Grain Size Heterogeneity on Grain Growth
NASA Astrophysics Data System (ADS)
Crist, David J. D.
Recent studies conducted with sharp-interface models suggest a link between the spatial distribution of grain size variance and average grain growth rate. This relationship and its effect on grain growth rate was examined using the diffuse-interface Phase Field Method on a series of microstructures with different degrees of grain size gradation. Results from this work indicate that the average grain growth rate has a positive correlation with the average grain size dispersion for phase field simulations, confirming previous observations. It is also shown that the grain growth rate in microstructures with skewed grain size distributions is better measured through the change in the volume-weighted average grain size than statistical mean grain size. This material is based upon work supported by the National Science Foundation under Grant No. 1334283. The NSF project title is "DMREF: Real Time Control of Grain Growth in Metals" and was awarded by the Civil, Mechanical and Manufacturing Innovation division under the Designing Materials to Revolutionize and Engineer our Future (DMREF) program.
Analysis of the typical small watershed of warping dams in the sand properties
NASA Astrophysics Data System (ADS)
Li, Li; Yang, Ji Shan; Sun, Wei Ying; Shen, Sha Sha
2018-06-01
Coarse sediment with a particle size greater than 0.05mm is the main deposit of riverbed in the lower Yellow River, the Loess Plateau is one of the concentrated source of coarse sediment, warping dam is one of the important engineering measures for gully control. Jiuyuangou basin is a typical small basin in the first sub region of hilly-gullied loess region, twenty warping dams in Jiuyuangou basin was selected as research object, samples of sediment along the main line of dam from upper, middle to lower reaches of dam fields and samples of undisturbed soil in slope of dam control basin were taken to carry out particle gradation analysis, in the hope of clearing reducing capacity on coarse sediment of different types of warping dam through the experimental data. The results show that the undisturbed soil in slope of dam control basin has characteristics of standard loess, the particle size are mainly distributed in 0.025 0.05mm, and the 0.05mm particle size of Jiuyuangou basinof loess is an obvious boundary; Particle size of sediment in 15 warping dam of Jiuyuangou basin are mainly distributed in 0.031 0.05mm with the dam tail is greater than dam front in general. The separation effect of horizontal pipe drainage is better than shaft drainage for which particle size greater than 0.05mm, notch dam is for particle size between 0.025 0.1 mm, and fill dam is for particle size between 0.016 0.1 mm, they all have a certain function in the sediment sorting.
A flow-free droplet-based device for high throughput polymorphic crystallization.
Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi
2015-06-21
Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing crystal sizes can be precisely controlled by microwell sizes with high uniformity. This new method can be used to reliably fabricate monodispersed crystals for pharmaceutical applications.
On geological interpretations of crystal size distributions: Constant vs. proportionate growth
Eberl, D.D.; Kile, D.E.; Drits, V.A.
2002-01-01
Geological interpretations of crystal size distributions (CSDs) depend on understanding the crystal growth laws that generated the distributions. Most descriptions of crystal growth, including a population-balance modeling equation that is widely used in petrology, assume that crystal growth rates at any particular time are identical for all crystals, and, therefore, independent of crystal size. This type of growth under constant conditions can be modeled by adding a constant length to the diameter of each crystal for each time step. This growth equation is unlikely to be correct for most mineral systems because it neither generates nor maintains the shapes of lognormal CSDs, which are among the most common types of CSDs observed in rocks. In an alternative approach, size-dependent (proportionate) growth is modeled approximately by multiplying the size of each crystal by a factor, an operation that maintains CSD shape and variance, and which is in accord with calcite growth experiments. The latter growth law can be obtained during supply controlled growth using a modified version of the Law of Proportionate Effect (LPE), an equation that simulates the reaction path followed by a CSD shape as mean size increases.
Aerosol Properties Observed in the Subtropical North Pacific Boundary Layer
NASA Astrophysics Data System (ADS)
Royalty, T. M.; Phillips, B. N.; Dawson, K. W.; Reed, R.; Meskhidze, N.; Petters, M. D.
2017-09-01
The impact of anthropogenic aerosol on climate forcing remains uncertain largely due to inadequate representation of natural aerosols in climate models. The marine boundary layer (MBL) might serve as a model location to study natural aerosol processes. Yet source and sink mechanisms controlling the MBL aerosol number, size distribution, chemical composition, and hygroscopic properties remain poorly constrained. Here aerosol size distribution and water uptake measurements were made aboard the R/V Hi'ialakai from 27 June to 3 July 2016 in the subtropical North Pacific Ocean. Size distributions were predominantly bimodal with an average integrated number concentration of 197 ± 98 cm-3. Hygroscopic growth factors were measured using the tandem differential mobility analyzer technique for dry 48, 96, and 144 nm particles. Mode kappa values for these were 0.57 ± 0.12, 0.51 ± 0.09, and 0.52 ± 0.08, respectively. To better understand remote MBL aerosol sources, a new algorithm was developed which decomposes hygroscopicity distributions into three classes: carbon-containing particles, sulfate-like particles, and sodium-containing particles. Results from this algorithm showed low and steady sodium-containing particle concentrations while the sulfate-like and carbon-containing particle concentrations varied during the cruise. According to the classification scheme, carbon-containing particles contributed at least 3-7%, sulfate-like particles contributed at most 77-88% and sodium-containing particles at least contributed 9-16% to the total aerosol number concentration. Size distribution and hygroscopicity data, in conjunction with air mass back trajectory analysis, suggested that the aerosol budget in the subtropical North Pacific MBL may be controlled by aerosol entrainment from the free troposphere.
Study of sandy soil grain-size distribution on its deformation properties
NASA Astrophysics Data System (ADS)
Antropova, L. B.; Gruzin, A. V.; Gildebrandt, M. I.; Malaya, L. D.; Nikulina, V. B.
2018-04-01
As a rule, new oil and gas fields' development faces the challenges of providing construction objects with material and mineral resources, for example, medium sand soil for buildings and facilities footings of the technological infrastructure under construction. This problem solution seems to lie in a rational usage of the existing environmental resources, soils included. The study was made of a medium sand soil grain-size distribution impact on its deformation properties. Based on the performed investigations, a technique for controlling sandy soil deformation properties was developed.
The role of membrane fluidization in the gel-assisted formation of giant polymersomes
Greene, Adrienne C.; Henderson, Ian M.; Gomez, Andrew; ...
2016-07-13
Polymersomes are being widely explored as synthetic analogs of lipid vesicles based on their enhanced stability and potential uses in a wide variety of applications in (e.g., drug delivery, cell analogs, etc.). Controlled formation of giant polymersomes for use in membrane studies and cell mimetic systems, however, is currently limited by low-yield production methodologies. Here, we describe for the first time, how the size distribution of giant poly(ethylene glycol)-poly(butadiene) (PEO-PBD) polymersomes formed by gel-assisted rehydration may be controlled based on membrane fluidization. We first show that the average diameter and size distribution of PEO-PBD polymersomes may be readily increased bymore » increasing the temperature of the rehydration solution. Further, we describe a correlative relationship between polymersome size and membrane fluidization through the addition of sucrose during rehydration, enabling the formation of PEO-PBD polymersomes with a range of diameters, including giant-sized vesicles (>100 μm). This correlative relationship suggests that sucrose may function as a small molecule fluidizer during rehydration, enhancing polymer diffusivity during formation and increasing polymersome size. Altogether the ability to easily regulate the size of PEO-PBD polymersomes based on membrane fluidity, either through temperature or fluidizers, has broadly applicability in areas including targeted therapeutic delivery and synthetic biology.« less
Real-time feedback control of twin-screw wet granulation based on image analysis.
Madarász, Lajos; Nagy, Zsombor Kristóf; Hoffer, István; Szabó, Barnabás; Csontos, István; Pataki, Hajnalka; Démuth, Balázs; Szabó, Bence; Csorba, Kristóf; Marosi, György
2018-06-04
The present paper reports the first dynamic image analysis-based feedback control of continuous twin-screw wet granulation process. Granulation of the blend of lactose and starch was selected as a model process. The size and size distribution of the obtained particles were successfully monitored by a process camera coupled with an image analysis software developed by the authors. The validation of the developed system showed that the particle size analysis tool can determine the size of the granules with an error of less than 5 µm. The next step was to implement real-time feedback control of the process by controlling the liquid feeding rate of the pump through a PC, based on the real-time determined particle size results. After the establishment of the feedback control, the system could correct different real-life disturbances, creating a Process Analytically Controlled Technology (PACT), which guarantees the real-time monitoring and controlling of the quality of the granules. In the event of changes or bad tendencies in the particle size, the system can automatically compensate the effect of disturbances, ensuring proper product quality. This kind of quality assurance approach is especially important in the case of continuous pharmaceutical technologies. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hyman, J. D.; Aldrich, G.; Viswanathan, H.; Makedonska, N.; Karra, S.
2016-08-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.
NASA Astrophysics Data System (ADS)
Hyman, J.; Aldrich, G. A.; Viswanathan, H. S.; Makedonska, N.; Karra, S.
2016-12-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semi-correlation, and non-correlation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same.We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.
Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland
2017-01-01
For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623
Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin
2017-01-01
Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of Protection and Control Unit for Distribution Substation
NASA Astrophysics Data System (ADS)
Iguchi, Fumiaki; Hayashi, Hideyuki; Takeuchi, Motohiro; Kido, Mitsuyasu; Kobayashi, Takashi; Yanaoka, Atsushi
The Recently, electronics and IT technologies have been rapidly innovated and have been introduced to power system protection & control system to achieve high reliability, maintainability and more functionality. Concerning the distribution substation application, digital relays have been applied for more than 10 years. Because of a number of electronic devices used for it, product cost becomes higher. Also, products installed during the past high-growth period will be at the end of lifetime and will be replaced. Therefore, replacing market is expected to grow and the reduction of cost is demanded. Considering above mentioned background, second generation digital protection and control unit as a successor is designed to have following concepts. Functional integration based on advanced digital technologies, Ethernet LAN based indoor communication network, cost reduction and downsizing. Pondering above concepts, integration of protection and control function is adopted in contrary to the functional segregation applied to the previous system in order to achieve one-unit concept. Also the adoption of Ethernet LAN for inter-unit communication is objective. This report shows the development of second-generation digital relay for distribution substation, which is equipped with control function and Ethernet LAN by reducing the size of auxiliary transformer unit and the same size as previous product is realized.
NASA Astrophysics Data System (ADS)
Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.
2018-02-01
In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.
Design and analysis of three-arm trials with negative binomially distributed endpoints.
Mütze, Tobias; Munk, Axel; Friede, Tim
2016-02-20
A three-arm clinical trial design with an experimental treatment, an active control, and a placebo control, commonly referred to as the gold standard design, enables testing of non-inferiority or superiority of the experimental treatment compared with the active control. In this paper, we propose methods for designing and analyzing three-arm trials with negative binomially distributed endpoints. In particular, we develop a Wald-type test with a restricted maximum-likelihood variance estimator for testing non-inferiority or superiority. For this test, sample size and power formulas as well as optimal sample size allocations will be derived. The performance of the proposed test will be assessed in an extensive simulation study with regard to type I error rate, power, sample size, and sample size allocation. For the purpose of comparison, Wald-type statistics with a sample variance estimator and an unrestricted maximum-likelihood estimator are included in the simulation study. We found that the proposed Wald-type test with a restricted variance estimator performed well across the considered scenarios and is therefore recommended for application in clinical trials. The methods proposed are motivated and illustrated by a recent clinical trial in multiple sclerosis. The R package ThreeArmedTrials, which implements the methods discussed in this paper, is available on CRAN. Copyright © 2015 John Wiley & Sons, Ltd.
Logsdon, Michelle M; Aldridge, Bree B
2018-01-01
Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.
NASA Astrophysics Data System (ADS)
Taheriniya, Shabnam; Parhizgar, Sara Sadat; Sari, Amir Hossein
2018-06-01
To study the alumina template pore size distribution as a function of Al thin film grain size distribution, porous alumina templates were prepared by anodizing sputtered aluminum thin films. To control the grain size the aluminum samples were sputtered with the rate of 0.5, 1 and 2 Å/s and the substrate temperature was either 25, 75 or 125 °C. All samples were anodized for 120 s in 1 M sulfuric acid solution kept at 1 °C while a 15 V potential was being applied. The standard deviation value for samples deposited at room temperature but with different rates is roughly 2 nm in both thin film and porous template form but it rises to approximately 4 nm with substrate temperature. Samples with the average grain size of 13, 14, 18.5 and 21 nm respectively produce alumina templates with an average pore size of 8.5, 10, 15 and 16 nm in that order which shows the average grain size limits the average pore diameter in the resulting template. Lateral correlation length and grain boundary effect are other factors that affect the pore formation process and pore size distribution by limiting the initial current density.
Size-controlled synthesis of nanocrystalline CdSe thin films by inert gas condensation
NASA Astrophysics Data System (ADS)
Sharma, Jeewan; Singh, Randhir; Kumar, Akshay; Singh, Tejbir; Agrawal, Paras; Thakur, Anup
2018-02-01
Size, shape and structure are considered to have significant influence on various properties of semiconducting nanomaterials. Different properties of these materials can be tailored by controlling the size. Size-controlled CdSe crystallites ranging from ˜ 04 to 95 nm were deposited by inert gas-condensation technique (IGC). In IGC method, by controlling the inert gas pressure in the condensation chamber and the substrate temperature or both, it was possible to produce nanoparticles with desired size. Structure and crystallite size of CdSe thin films were determined from Hall-Williamson method using X-ray diffraction data. The composition of CdSe samples was estimated by X-ray microanalysis. It was confirmed that CdSe thin film with different nanometer range crystallite sizes were synthesized with this technique, depending upon the synthesis conditions. The phase of deposited CdSe thin films also depend upon deposition conditions and cubic to hexagonal phase transition was observed with increase in substrate temperature. The effect of crystallite size on optical and electrical properties of these films was also studied. The crystallite size affects the optical band gap, electrical conductivity and mobility activation of nanocrystalline CdSe thin films. Mobility activation study suggested that there is a quasi-continuous linear distribution of three different trap levels below the conduction band.
Arcade: A Web-Java Based Framework for Distributed Computing
NASA Technical Reports Server (NTRS)
Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.
Dimensions of stabident intraosseous perforators and needles.
Ramlee, R A; Whitworth, J
2001-09-01
Problems can be encountered inserting intraosseous injection needles through perforation sites. This in vitro study examined the variability and size compatibility of Stabident intraosseous injection components. The diameters of 40 needles and perforators from a single Stabident kit were measured in triplicate with a toolmakers microscope. One-way ANOVA revealed that mean needle diameter (0.411 mm) was significantly narrower than mean perforator diameter (0.427 mm) (p < 0.001). A frequency distribution plot revealed that needle diameter followed a normal distribution, indicating tight quality control during manufacture. The diameter of perforators was haphazardly distributed, with a clustering of 15% at the lower limit of the size range. However on no occasion was the diameter of a perforator smaller than that of an injection needle. We conclude that components of the Stabident intraosseous anaesthetic system are size-compatible, but there is greater and more haphazard variability in the diameter of perforators than injection needles.
Vesiculation of basaltic magma during eruption
Mangan, Margaret T.; Cashman, Katharine V.; Newman, Sally
1993-01-01
Vesicle size distributions in vent lavas from the Pu'u'O'o-Kupaianaha eruption of Kilauea volcano are used to estimate nucleation and growth rates of H2O-rich gas bubbles in basaltic magma nearing the earth's surface (≤120 m depth). By using well-constrained estimates for the depth of volatile exsolution and magma ascent rate, nucleation rates of 35.9 events ⋅ cm-3 ⋅ s-1 and growth rates of 3.2 x 10-4cm/s are determined directly from size-distribution data. The results are consistent with diffusion-controlled growth as predicted by a parabolic growth law. This empirical approach is not subject to the limitations inherent in classical nucleation and growth theory and provides the first direct measurement of vesiculation kinetics in natural settings. In addition, perturbations in the measured size distributions are used to examine bubble escape, accumulation, and coalescence prior to the eruption of magma.
NASA Astrophysics Data System (ADS)
Sklar, L. S.; Mahmoudi, M.
2016-12-01
Landscape evolution models rarely represent sediment size explicitly, despite the importance of sediment size in regulating rates of bedload sediment transport, river incision into bedrock, and many other processes in channels and on hillslopes. A key limitation has been the lack of a general model for predicting the size of sediments produced on hillslopes and supplied to channels. Here we present a framework for such a model, as a first step toward building a `geomorphic transport law' that balances mechanistic realism with computational simplicity and is widely applicable across diverse landscapes. The goal is to take as inputs landscape-scale boundary conditions such as lithology, climate and tectonics, and predict the spatial variation in the size distribution of sediments supplied to channels across catchments. The model framework has two components. The first predicts the initial size distribution of particles produced by erosion of bedrock underlying hillslopes, while the second accounts for the effects of physical and chemical weathering during transport down slopes and delivery to channels. The initial size distribution can be related to the spacing and orientation of fractures within bedrock, which depend on the stresses and deformation experienced during exhumation and on rock resistance to fracture propagation. Other controls on initial size include the sizes of mineral grains in crystalline rocks, the sizes of cemented particles in clastic sedimentary rocks, and the potential for characteristic size distributions produced by tree throw, frost cracking, and other erosional processes. To model how weathering processes transform the initial size distribution we consider the effects of erosion rate and the thickness of soil and weathered bedrock on hillslope residence time. Residence time determines the extent of size reduction, for given values of model terms that represent the potential for chemical and physical weathering. Chemical weathering potential is parameterized in terms of mean annual precipitation and temperature, and the fraction of soluble minerals. Physical weathering potential can be parameterized in terms of topographic attributes, including slope, curvature and aspect. Finally, we compare model predictions with field data from Inyo Creek in the Sierra Nevada Mtns, USA.
Ghanma, M A; Rider, R V; Sirageldin, I
1984-01-01
The Lorenz Curve, originally developed to measure the concentration of wealth in a population, was used to describe the distribution of contraceptive practice in Jordan. Data from the 1976 Jordan Fertility Study, carried out as part of the World Fertility Survey program, was used in the analysis. The application of the Automatic Interaction Detector program to the survey's sample population of 3611 women of reproductive age divided the sample into 6 mutually exclusive groups on the basis of residence, education, and whether desired family size was attained or not attained. These 3 characteristics accounted for a major portion of the variation in contraceptive practice. These subgroups, in ascending order by the proportion practicing contraception, were: 1) rural women with unattained desired family size; 2) urban, illiterate women with unattained desired family size; 3) rural women with attained desired family size; 4) urban, literate women with unattained desired family size; 5) urban, illiterate women with attained desired family size; and 6) urban, literate women with attained desired family size. The cumulative proportion of the sample in each ordered subdivision was plotted on the X axis of a graph, and the cumulative proportion of those practicing contraception was plotted on the Y axis of the graph. A line connecting the intersection of the points on the X and Y axis was then drawn. The resultant line was a concave ascending line. If contraceptive practice was evenly distributed in the population, the line would be a straight diagonal line. The plotted curved line indicated that contraceptive practice was unevenly distributed in the population. 2 indexes for measuring the area between the diagonal and the line resulting from plotting the observed distribution for each subgroup was used to assess the degree of concentration of contraceptive practice in the population. The indexes also indicated that contraceptive practice was unequally distributed. When separate curves were plotted for the subgroups with attained desired family size and the subgroups without attained desired family size, it was apparent that the distribution of contraceptive practice was more uniform among those with attained desired family size than among the other 3 subgroups. A curve for the distribution of births was then plotted on the same graph. This curve was not a true application of the Lorenz Curve since it was based on the order of the subdivisions by birth rates. The resultant line approached the straight diagonal line and indicated that the distribution of births was fairly evenly distributed in the population. The uneven distribution of contraceptive practice and the uniform distribution of births suggests that contraceptive practice in this population is ineffective. This may be a characteristic of populations in the early stages of fertility control.
Bed Surface Adjustments to Spatially Variable Flow in Low Relative Submergence Regimes
NASA Astrophysics Data System (ADS)
Monsalve, A.; Yager, E. M.
2017-11-01
In mountainous rivers, large relatively immobile grains partly control the local and reach-averaged flow hydraulics and sediment fluxes. When the flow depth is similar to the size of these grains (low relative submergence), heterogeneous flow structures and plunging flow cause spatial distributions of bed surface elevations, textures, and sedimentation rates. To explore how the bed surface responds to these flow variations we conducted a set of experiments in which we varied the relative submergence of staggered hemispheres (simulated large boulders) between runs. All experiments had the same average sediment transport capacity, upstream sediment supply, and initial bed thickness and grain size distribution. We combined our laboratory measurements with a 3-D flow model to obtain the detailed flow structure around the hemispheres. The local bed shear stress field displayed substantial variability and controlled the bed load transport rates and direction in which sediment moved. The divergence in bed shear stress caused by the hemispheres promoted size-selective bed load deposition, which formed patches of coarse sediment upstream of the hemisphere. Sediment deposition caused a decrease in local bed shear stress, which combined with the coarser grain size, enhanced the stability of this patch. The region downstream of the hemispheres was largely controlled by a recirculation zone and had little to no change in grain size, bed elevation, and bed shear stress. The formation, development, and stability of sediment patches in mountain streams is controlled by the bed shear stress divergence and magnitude and direction of the local bed shear stress field.
Influence of Microphysical Variability on Stochastic Condensation in Turbulent Clouds
NASA Astrophysics Data System (ADS)
Desai, N.; Chandrakar, K. K.; Chang, K.; Glienke, S.; Cantrell, W. H.; Fugal, J. P.; Shaw, R. A.
2017-12-01
We investigate the influence of variability in droplet number concentration and radius on the evolution of cloud droplet size distributions. Measurements are made on the centimeter scale using digitial inline holography, both in a controlled laboratory setting and in the field using HOLODEC measurements from CSET. We created steady state cloud conditions in the laboratory Pi Chamber, in which a turbulent cloud can be sustained for long periods of time. Using holographic imaging, we directly observe the variations in local number concentration and droplet size distribution and, thereby, the integral radius. We interpret the measurements in the context of stochastic condensation theory to determine how fluctuations in integral radius contribute to droplet growth. We find that the variability in integral radius is primarily driven by variations in the droplet number concentration and not the droplet radius. This variability does not contribute significantly to the mean droplet growth rate, but contributes significantly to the rate of increase of the size distribution width. We compare these results with in-situ measurements and find evidence for microphysical signatures of stochastic condensation. The results suggest that supersaturation fluctuations lead to broader size distributions and allow droplets to reach the collision-coalescence stage.
Aerosol and CCN in southwest Saudi Arabia
NASA Astrophysics Data System (ADS)
Collins, Don; Li, Runjun; Axisa, Duncan; Kucera, Paul; Burger, Roelof
2010-05-01
As part of an ongoing study of the microphysical and dynamical controls on precipitation in southwest Saudi Arabia, a number of surface and aircraft-based instruments were used in summer / fall 2009 to measure the size distribution, hygroscopic properties, and cloud droplet nucleation efficiency of the local aerosol. Submicron size distributions were measured using differential mobility analyzers both on the ground and on board the aircraft, while an aerodynamic particle sizer and a forward scattering spectrometer probe were used to measure the supermicron size distributions on the ground and from on board the aircraft, respectively. Identical continuous flow cloud condensation nuclei counters were used to measure CCN spectra at the surface and aloft and a humidified tandem differential mobility analyzer was operated on the ground to measure size-resolved hygroscopicity. The aerosol in this arid environment is characterized by a persistent accumulation mode having hygroscopic and CCN efficiency properties consistent with a sulfate-rich aged aerosol. The particles in that background aerosol are generally sufficiently large and hygroscopic to activate at those supersaturations expected in the convective clouds responsible for most of the regional precipitation, which consequently acts as a lower bound on the resulting cloud droplet concentrations. Though the concentration, size distribution, and properties of the submicron aerosol generally changed very slowly over periods of several hours, abrupt ~doubling in concentration almost always accompanied the arrival of the sea breeze front that began along the Red Sea. Interestingly, the hygroscopicity and the shape of the size distribution differed little in the pre- and post-sea breeze air masses. The dust-dominated coarse mode typically contributed significantly more to the aerosol mass concentration than did the submicron mode and likely controlled the ice nuclei concentration, though no direct measurements were made to confirm this. Results of routine flight patterns designed to examine the spatial, vertical, and day-to-day variability of the aerosol will be presented and the link between the aerosol at the surface and aloft will be quantified. This presentation will emphasize the regional character of the aerosol and will assess its influence on cloud microphysics.
NASA Astrophysics Data System (ADS)
Deng, Jinyu; Li, Huihui; Dong, Kaifeng; Li, Run-Wei; Peng, Yingguo; Ju, Ganping; Hu, Jiangfeng; Chow, Gan Moog; Chen, Jingsheng
2018-03-01
We find that the misfit strain may lead to the oscillatory size distributions of heteroepitaxial nanostructures. In heteroepitaxial FePt thin films grown on single-crystal MgO substrate, ⟨110 ⟩ -oriented mazelike and granular patterns with "quantized" feature sizes are realized in scanning-electron-microscope images. The physical mechanism responsible for the size oscillations is related to the oscillatory nature of the misfit strain energy in the domain-matching epitaxial FePt /MgO system, which is observed by transmission electron microscopy. Based on the experimental observations, a model is built and the results suggest that when the FePt island sizes are an integer times the misfit dislocation period, the misfit strain can be completely canceled by the misfit dislocations. With applying the mechanism, small and uniform grain is obtained on the TiN (200) polycrystalline underlayer, which is suitable for practical application. This finding may offer a way to synthesize nanostructured materials with well-controlled size and size distribution by tuning the lattice mismatch between the epitaxial-grown heterostructure.
Real-Time Load-Side Control of Electric Power Systems
NASA Astrophysics Data System (ADS)
Zhao, Changhong
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Chiou, Pey-Tsyr; Chen, Po-Hsiang; Lee, Ching-Ming; Chu, Yu-De; Yu, Hsiang; Hsiung, Kuei-Ching; Tsai, Yi-Tzang; Lee, Chi-Chang; Chang, Yu-Sun; Chan, Shih-Peng; Tan, Bertrand Chin-Ming; Lo, Szecheng J.
2015-01-01
Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms. Here, through a series of loss-of-function analyses, we report that the nucleolar size is regulated by a circuitry composed of microRNA let-7, translation repressor NCL-1, and a major nucleolar pre-rRNA processing protein FIB-1/fibrillarin. In cooperation with RNA binding proteins PUF and NOS, NCL-1 suppressed the translation of FIB-1/fibrillarin, while let-7 targeted the 3’UTR of ncl-1 and inhibited its expression. Consequently, the abundance of FIB-1 is tightly controlled and correlated with the nucleolar size. Together, our findings highlight a novel genetic cascade by which post-transcriptional regulators interplay in developmental control of nucleolar size and function. PMID:26492166
NASA Astrophysics Data System (ADS)
Ivanov, A. S.
2017-11-01
Experimental study was carried out to investigate the influence of particle size distribution function on the temperature dependent magneto-controllable first-order phase transition of the "gas-liquid" type in magnetic fluids. The study resolves one crisis situation in ferrohydrodynamic experiment made by several research groups in the 1980-1990s. It is shown that due to polydispersity magnetic fluids exhibit phase diagrams which are divided into three regions by vaporus and liquidus curves. Granulometric data states the primary role of the width of the particle size distribution function in the process of spinodal decomposition. New modified Langevin parameter is introduced for unification of liquidus curves of different ferrofluids despite the significant difference between the curves (one order of magnitude) in (H, T) coordinates.
Oliveira, Marcos L S; Navarro, Orlando G; Crissien, Tito J; Tutikian, Bernardo F; da Boit, Kátia; Teixeira, Elba C; Cabello, Juan J; Agudelo-Castañeda, Dayana M; Silva, Luis F O
2017-10-01
There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Friese, Carmen A.; van der Does, Michèlle; Merkel, Ute; Iversen, Morten H.; Fischer, Gerhard; Stuut, Jan-Berend W.
2016-09-01
The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxy for trade-wind speed. However, there are still large uncertainties with respect to the seasonality of the particle sizes of deposited Saharan dust off northwestern Africa and the factors influencing this seasonality. We investigated a three-year time-series of grain-size data from two sediment-trap moorings off Cape Blanc, Mauritania and compared them to observed wind-speed and precipitation as well as satellite images. Our results indicate a clear seasonality in the grain-size distributions: during summer the modal grain sizes were generally larger and the sorting was generally less pronounced compared to the winter season. Gravitational settling was the major deposition process during winter. We conclude that the following two mechanisms control the modal grain size of the collected dust during summer: (1) wet deposition causes increased deposition fluxes resulting in coarser modal grain sizes and (2) the development of cold fronts favors the emission and transport of coarse particles off Cape Blanc. Individual dust-storm events throughout the year could be recognized in the traps as anomalously coarse-grained samples. During winter and spring, intense cyclonic dust-storm events in the dust-source region explained the enhanced emission and transport of a larger component of coarse particles off Cape Blanc. The outcome of our study provides important implications for climate modellers and paleo-climatologists.
Controlling coarse woody debris inventory quality: taper and relative size methods
C.W. Woodall; J.A. Westfall
2008-01-01
Accurately measuring the dimensions of coarse woody debris (CWD) is critical for ensuring the quality of CWD estimates and, hence, for accurately estimating forest ecosystem attributes (e.g., CWD carbon stocks). To improve the quality of CWD dimensional measurements, the distribution of taper (ratio of change in diameter and length) and relative size (RS; ratio of...
Optimum target sizes for a sequential sawing process
H. Dean Claxton
1972-01-01
A method for solving a class of problems in random sequential processes is presented. Sawing cedar pencil blocks is used to illustrate the method. Equations are developed for the function representing loss from improper sizing of blocks. A weighted over-all distribution for sawing and drying operations is developed and graphed. Loss minimizing changes in the control...
NASA Astrophysics Data System (ADS)
Agliardi, Federico; Galletti, Laura; Riva, Federico; Zanchi, Andrea; Crosta, Giovanni B.
2017-04-01
An accurate characterization of the geometry and intensity of discontinuities in a rock mass is key to assess block size distribution and degree of freedom. These are the main controls on the magnitude and mechanisms of rock slope instabilities (structurally-controlled, step-path or mass failures) and rock mass strength and deformability. Nevertheless, the use of over-simplified discontinuity characterization approaches, unable to capture the stochastic nature of discontinuity features, often hampers a correct identification of dominant rock mass behaviour. Discrete Fracture Network (DFN) modelling tools have provided new opportunities to overcome these caveats. Nevertheless, their ability to provide a representative picture of reality strongly depends on the quality and scale of field data collection. Here we used DFN modelling with FracmanTM to investigate the influence of fracture intensity, characterized on different scales and with different techniques, on the geometry and size distribution of generated blocks, in a rock slope stability perspective. We focused on a test site near Lecco (Southern Alps, Italy), where 600 m high cliffs in thickly-bedded limestones folded at the slope scale impend on the Lake Como. We characterized the 3D slope geometry by Structure-from-Motion photogrammetry (range: 150-1500m; point cloud density > 50 pts/m2). Since the nature and attributes of discontinuities are controlled by brittle failure processes associated to large-scale folding, we performed a field characterization of meso-structural features (faults and related kinematics, vein and joint associations) in different fold domains. We characterized the discontinuity populations identified by structural geology on different spatial scales ranging from outcrops (field surveys and photo-mapping) to large slope sectors (point cloud and photo-mapping). For each sampling domain, we characterized discontinuity orientation statistics and performed fracture mapping and circular window analyses in order to measure fracture intensity (P21) and persistence (trace length distributions). Then, we calibrated DFN models for different combinations of P21/P32 and trace length distributions, characteristic of data collected on different scale. Comparing fracture patterns and block size distributions obtained from different models, we outline the strong influence of field data quality and scale on the rock mass behaviours predicted by DFN. We show that accounting for small scale features (close but short fractures) results in smaller but more interconnected blocks, eventually characterized by low removability and partly supported by intact rock strength. On the other hand, DFN based on data surveyed on slope scale enhance the structural control of persistent fracture on the kinematic degree-of freedom of medium-sized blocks, with significant impacts on the selection and parametrization of rock slope stability modelling approaches.
Microfluidic Reactors for the Controlled Synthesis of Nanoparticles
NASA Astrophysics Data System (ADS)
Erdem, Emine Yegan
Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes -- or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the structure of nanoparticles dramatically; therefore when the conditions vary locally in the reaction vessel, different sized nanoparticles form, causing polydispersity. In widely-used batch wise synthesis techniques, large sized reaction vessels are used to mix and heat reagents. In these types of systems, it is very hard to avoid thermal gradients and to achieve rapid mixing times as well as to control residence times. Also it is not possible to make rapid changes in the reaction parameters during the synthesis. The other drawback of conventional methods is that it is not possible to separate the nucleation of nanoparticles from their growth; this leads to combined nucleation and growth and subsequently results in polydisperse size distributions. Microfluidics is an alternative method by which the limitations of conventional techniques can be addressed. Due to the small size, it is possible to control temperature and concentration of reagents precisely as well as to make rapid changes in mixing ratios of reagents or temperature of the reaction zones. There have been several microfluidic reactors -- (microreactors) in literature that were designed to improve the size distribution of nanoparticles. In this work, two novel microfluidic systems were developed for achieving controlled synthesis of nanoparticles. The first microreactor was made out of a chemically robust polymer, polyurethane, and it was used for low temperature nanoparticle synthesis. This microreactor was fabricated by using a CO 2-laser printer, which is an inexpensive method for fabricating microfluidic devices and it is a relatively fast way compared to other fabrication techniques. Iron oxide nanoparticle synthesis was demonstrated using this reactor and size distributions with a standard deviation of 10% was obtained. The second microreactor presented in this work was designed to produce monodisperse nanoparticles by utilizing thermally isolated heated and cooled regions for separating nucleation and growth processes. This microreactor was made out of silicon and it was used to demonstrate the synthesis of TiO 2 nanoparticles. Size distributions with less than 10% standard deviation were achieved. This microreactor also provides a platform for studying the effects of temperature and residence times which is very important to understand the reaction kinetics of nanoparticle synthesis. In this work, two microfluidic techniques for retrieving nanoparticles from the microreactors were also discussed. The first method was based on trapping the aqueous droplet phase inside the microchannel and the second method was utilizing a micropost array to direct droplets from the oil solution to the pure water. As a final step, a printing technique was used to print nanoparticles synthesized inside the microreactors for future applications. This ability is important for achieving smart surfaces that can utilize the properties of nanoparticles for sensing applications in the future.
Selbig, William R.; Bannerman, Roger T.
2011-01-01
The U.S Geological Survey, in cooperation with the Wisconsin Department of Natural Resources (WDNR) and in collaboration with the Root River Municipal Stormwater Permit Group monitored eight urban source areas representing six types of source areas in or near Madison, Wis. in an effort to improve characterization of particle-size distributions in urban stormwater by use of fixed-point sample collection methods. The types of source areas were parking lot, feeder street, collector street, arterial street, rooftop, and mixed use. This information can then be used by environmental managers and engineers when selecting the most appropriate control devices for the removal of solids from urban stormwater. Mixed-use and parking-lot study areas had the lowest median particle sizes (42 and 54 (u or mu)m, respectively), followed by the collector street study area (70 (u or mu)m). Both arterial street and institutional roof study areas had similar median particle sizes of approximately 95 (u or mu)m. Finally, the feeder street study area showed the largest median particle size of nearly 200 (u or mu)m. Median particle sizes measured as part of this study were somewhat comparable to those reported in previous studies from similar source areas. The majority of particle mass in four out of six source areas was silt and clay particles that are less than 32 (u or mu)m in size. Distributions of particles ranging from 500 (u or mu)m were highly variable both within and between source areas. Results of this study suggest substantial variability in data can inhibit the development of a single particle-size distribution that is representative of stormwater runoff generated from a single source area or land use. Continued development of improved sample collection methods, such as the depth-integrated sample arm, may reduce variability in particle-size distributions by mitigating the effect of sediment bias inherent with a fixed-point sampler.
NASA Astrophysics Data System (ADS)
Wang, Y.; Pinterich, T.; Spielman, S. R.; Hering, S. V.; Wang, J.
2017-12-01
Aerosol size distribution and hygroscopicity are among key parameters in determining the impact of atmospheric aerosols on global radiation and climate change. In situ submicron aerosol size distribution measurements commonly involve a scanning mobility particle sizer (SMPS). The SMPS scanning time is in the scale of minutes, which is often too slow to capture the variation of aerosol size distribution, such as for aerosols formed via nucleation processes or measurements onboard research aircraft. To solve this problem, a Fast Integrated Mobility Spectrometer (FIMS) based on image processing was developed for rapid measurements of aerosol size distributions from 10 to 500 nm. The FIMS consists of a parallel plate classifier, a condenser, and a CCD detector array. Inside the classifier an electric field separates charged aerosols based on electrical mobilities. Upon exiting the classifier, the aerosols pass through a three stage growth channel (Pinterich et al. 2017; Spielman et al. 2017), where aerosols as small as 7 nm are enlarged to above 1 μm through water or heptanol condensation. Finally, the grown aerosols are illuminated by a laser sheet and imaged onto a CCD array. The images provide both aerosol concentration and position, which directly relate to the aerosol size distribution. By this simultaneous measurement of aerosols with different sizes, the FIMS provides aerosol size spectra nearly 100 times faster than the SMPS. Recent deployment onboard research aircraft demonstrated that the FIMS is capable of measuring aerosol size distributions in 1s (Figure), thereby offering a great advantage in applications requiring high time resolution (Wang et al. 2016). In addition, the coupling of the FIMS with other conventional aerosol instruments provides orders of magnitude more rapid characterization of aerosol optical and microphysical properties. For example, the combination of a differential mobility analyzer, a relative humidity control unit, and a FIMS was used to measure aerosol hygroscopic growth. Such a system reduced the time of measuring the hygroscopic properties of submicron aerosols (six sizes) to less than three minutes in total, with an error within 1%. Pinterich et al. (2017) Aerosol Sci. Technol. accepted Spielman et al. (2017) Aerosol Sci. Technol. accepted Wang et al. (2016) Nature 539:416-419
Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii
2016-12-01
The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.
Exactly solvable random graph ensemble with extensively many short cycles
NASA Astrophysics Data System (ADS)
Aguirre López, Fabián; Barucca, Paolo; Fekom, Mathilde; Coolen, Anthony C. C.
2018-02-01
We introduce and analyse ensembles of 2-regular random graphs with a tuneable distribution of short cycles. The phenomenology of these graphs depends critically on the scaling of the ensembles’ control parameters relative to the number of nodes. A phase diagram is presented, showing a second order phase transition from a connected to a disconnected phase. We study both the canonical formulation, where the size is large but fixed, and the grand canonical formulation, where the size is sampled from a discrete distribution, and show their equivalence in the thermodynamical limit. We also compute analytically the spectral density, which consists of a discrete set of isolated eigenvalues, representing short cycles, and a continuous part, representing cycles of diverging size.
Individuality and universality in the growth-division laws of single E. coli cells
NASA Astrophysics Data System (ADS)
Kennard, Andrew S.; Osella, Matteo; Javer, Avelino; Grilli, Jacopo; Nghe, Philippe; Tans, Sander J.; Cicuta, Pietro; Cosentino Lagomarsino, Marco
2016-01-01
The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.
Keohane, Kieran; Brennan, Des; Galvin, Paul; Griffin, Brendan T
2014-06-05
The increasing realisation of the impact of size and surface properties on the bio-distribution of drug loaded colloidal particles has driven the application of micro fabrication technologies for the precise engineering of drug loaded microparticles. This paper demonstrates an alternative approach for producing size controlled drug loaded PLGA based microparticles using silicon Microfluidic Flow Focusing Devices (MFFDs). Based on the precise geometry and dimensions of the flow focusing channel, microparticle size was successfully optimised by modifying the polymer type, disperse phase (Qd) flow rate, and continuous phase (Qc) flow rate. The microparticles produced ranged in sizes from 5 to 50 μm and were highly monodisperse (coefficient of variation <5%). A comparison of Ciclosporin (CsA) loaded PLGA microparticles produced by MFFDs vs conventional production techniques was also performed. MFFDs produced microparticles with a narrower size distribution profile, relative to the conventional approaches. In-vitro release kinetics of CsA was found to be influenced by the production technique, with the MFFD approach demonstrating the slowest rate of release over 7 days (4.99 ± 0.26%). Finally, MFFDs were utilised to produce pegylated microparticles using the block co-polymer, PEG-PLGA. In contrast to the smooth microparticles produced using PLGA, PEG-PLGA microparticles displayed a highly porous surface morphology and rapid CsA release, with 85 ± 6.68% CsA released after 24h. The findings from this study demonstrate the utility of silicon MFFDs for the precise control of size and surface morphology of PLGA based microparticles with potential drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.
A ubiquitous ice size bias in simulations of tropical deep convection
NASA Astrophysics Data System (ADS)
Stanford, McKenna W.; Varble, Adam; Zipser, Ed; Strapp, J. Walter; Leroy, Delphine; Schwarzenboeck, Alfons; Potts, Rodney; Protat, Alain
2017-08-01
The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) joint field campaign produced aircraft retrievals of total condensed water content (TWC), hydrometeor particle size distributions (PSDs), and vertical velocity (w) in high ice water content regions of mature and decaying tropical mesoscale convective systems (MCSs). The resulting dataset is used here to explore causes of the commonly documented high bias in radar reflectivity within cloud-resolving simulations of deep convection. This bias has been linked to overly strong simulated convective updrafts lofting excessive condensate mass but is also modulated by parameterizations of hydrometeor size distributions, single particle properties, species separation, and microphysical processes. Observations are compared with three Weather Research and Forecasting model simulations of an observed MCS using different microphysics parameterizations while controlling for w, TWC, and temperature. Two popular bulk microphysics schemes (Thompson and Morrison) and one bin microphysics scheme (fast spectral bin microphysics) are compared. For temperatures between -10 and -40 °C and TWC > 1 g m-3, all microphysics schemes produce median mass diameters (MMDs) that are generally larger than observed, and the precipitating ice species that controls this size bias varies by scheme, temperature, and w. Despite a much greater number of samples, all simulations fail to reproduce observed high-TWC conditions ( > 2 g m-3) between -20 and -40 °C in which only a small fraction of condensate mass is found in relatively large particle sizes greater than 1 mm in diameter. Although more mass is distributed to large particle sizes relative to those observed across all schemes when controlling for temperature, w, and TWC, differences with observations are significantly variable between the schemes tested. As a result, this bias is hypothesized to partly result from errors in parameterized hydrometeor PSD and single particle properties, but because it is present in all schemes, it may also partly result from errors in parameterized microphysical processes present in all schemes. Because of these ubiquitous ice size biases, the frequently used microphysical parameterizations evaluated in this study inherently produce a high bias in convective reflectivity for a wide range of temperatures, vertical velocities, and TWCs.
NASA Astrophysics Data System (ADS)
Nishikawa, T.; Ide, S.
2014-12-01
There are clear variations in maximum earthquake magnitude among Earth's subduction zones. These variations have been studied extensively and attributed to differences in tectonic properties in subduction zones, such as relative plate velocity and subducting plate age [Ruff and Kanamori, 1980]. In addition to maximum earthquake magnitude, the seismicity of medium to large earthquakes also differs among subduction zones, such as the b-value (i.e., the slope of the earthquake size distribution) and the frequency of seismic events. However, the casual relationship between the seismicity of medium to large earthquakes and subduction zone tectonics has been unclear. Here we divide Earth's subduction zones into over 100 study regions following Ide [2013] and estimate b-values and the background seismicity rate—the frequency of seismic events excluding aftershocks—for subduction zones worldwide using the maximum likelihood method [Utsu, 1965; Aki, 1965] and the epidemic type aftershock sequence (ETAS) model [Ogata, 1988]. We demonstrate that the b-value varies as a function of subducting plate age and trench depth, and that the background seismicity rate is related to the degree of slab bending at the trench. Large earthquakes tend to occur relatively frequently (lower b-values) in shallower subduction zones with younger slabs, and more earthquakes occur in subduction zones with deeper trench and steeper dip angle. These results suggest that slab buoyancy, which depends on subducting plate age, controls the earthquake size distribution, and that intra-slab faults due to slab bending, which increase with the steepness of the slab dip angle, have influence on the frequency of seismic events, because they produce heterogeneity in plate coupling and efficiently inject fluid to elevate pore fluid pressure on the plate interface. This study reveals tectonic factors that control earthquake size distribution and seismicity rate, and these relationships between seismicity and tectonic properties may be useful for seismic risk assessment.
Distributed Environment Control Using Wireless Sensor/Actuator Networks for Lighting Applications
Nakamura, Masayuki; Sakurai, Atsushi; Nakamura, Jiro
2009-01-01
We propose a decentralized algorithm to calculate the control signals for lights in wireless sensor/actuator networks. This algorithm uses an appropriate step size in the iterative process used for quickly computing the control signals. We demonstrate the accuracy and efficiency of this approach compared with the penalty method by using Mote-based mesh sensor networks. The estimation error of the new approach is one-eighth as large as that of the penalty method with one-fifth of its computation time. In addition, we describe our sensor/actuator node for distributed lighting control based on the decentralized algorithm and demonstrate its practical efficacy. PMID:22291525
Advances and new directions in crystallization control.
Nagy, Zoltan K; Braatz, Richard D
2012-01-01
The academic literature on and industrial practice of control of solution crystallization processes have seen major advances in the past 15 years that have been enabled by progress in in-situ real-time sensor technologies and driven primarily by needs in the pharmaceutical industry for improved and more consistent quality of drug crystals. These advances include the accurate measurement of solution concentrations and crystal characteristics as well as the first-principles modeling and robust model-based and model-free feedback control of crystal size and polymorphic identity. Research opportunities are described in model-free controller design, new crystallizer designs with enhanced control of crystal size distribution, strategies for the robust control of crystal shape, and interconnected crystallization systems for multicomponent crystallization.
NASA Astrophysics Data System (ADS)
Xu, R.; Prodanovic, M.
2017-12-01
Due to the low porosity and permeability of tight porous media, hydrocarbon productivity strongly depends on the pore structure. Effective characterization of pore/throat sizes and reconstruction of their connectivity in tight porous media remains challenging. Having a representative pore throat network, however, is valuable for calculation of other petrophysical properties such as permeability, which is time-consuming and costly to obtain by experimental measurements. Due to a wide range of length scales encountered, a combination of experimental methods is usually required to obtain a comprehensive picture of the pore-body and pore-throat size distributions. In this work, we combine mercury intrusion capillary pressure (MICP) and nuclear magnetic resonance (NMR) measurements by percolation theory to derive pore-body size distribution, following the work by Daigle et al. (2015). However, in their work, the actual pore-throat sizes and the distribution of coordination numbers are not well-defined. To compensate for that, we build a 3D unstructured two-scale pore throat network model initialized by the measured porosity and the calculated pore-body size distributions, with a tunable pore-throat size and coordination number distribution, which we further determine by matching the capillary pressure vs. saturation curve from MICP measurement, based on the fact that the mercury intrusion process is controlled by both the pore/throat size distributions and the connectivity of the pore system. We validate our model by characterizing several core samples from tight Middle East carbonate, and use the network model to predict the apparent permeability of the samples under single phase fluid flow condition. Results show that the permeability we get is in reasonable agreement with the Coreval experimental measurements. The pore throat network we get can be used to further calculate relative permeability curves and simulate multiphase flow behavior, which will provide valuable insights into the production optimization and enhanced oil recovery design.
Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery.
Zattoni, Andrea; Roda, Barbara; Borghi, Francesco; Marassi, Valentina; Reschiglian, Pierluigi
2014-01-01
Structured nanoparticles (NPs) with controlled size distribution and novel physicochemical features present fundamental advantages as drug delivery systems with respect to bulk drugs. NPs can transport and release drugs to target sites with high efficiency and limited side effects. Regulatory institutions such as the US Food and Drug Administration (FDA) and the European Commission have pointed out that major limitations to the real application of current nanotechnology lie in the lack of homogeneous, pure and well-characterized NPs, also because of the lack of well-assessed, robust routine methods for their quality control and characterization. Many properties of NPs are size-dependent, thus the particle size distribution (PSD) plays a fundamental role in determining the NP properties. At present, scanning and transmission electron microscopy (SEM, TEM) are among the most used techniques to size characterize NPs. Size-exclusion chromatography (SEC) is also applied to the size separation of complex NP samples. SEC selectivity is, however, quite limited for very large molar mass analytes such as NPs, and interactions with the stationary phase can alter NP morphology. Flow field-flow fractionation (F4) is increasingly used as a mature separation method to size sort and characterize NPs in native conditions. Moreover, the hyphenation with light scattering (LS) methods can enhance the accuracy of size analysis of complex samples. In this paper, the applications of F4-LS to NP analysis used as drug delivery systems for their size analysis, and the study of stability and drug release effects are reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.
2017-01-01
We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment. PMID:28178779
Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus
NASA Astrophysics Data System (ADS)
Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo
The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.
Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland
2016-11-20
For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Size, Composition, and Source Profiles of Inhalable Bioaerosols from Colorado Dairies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, Joshua W; Reynolds, Stephen; Magzamen, Sheryl
Particulate matter emissions from agricultural livestock operations contain both chemical and biological constituents that represent a potential human health hazard. The size and composition of these dusts, however, have not been well described. We evaluated the full size distribution (from 0 to 100 μm in aerodynamic diameter) and chemical/biological composition of inhalable dusts inside several Colorado dairy parlors. Four aerodynamic size fractions (<3, 3-10, 10-30, and >30 μm) were collected and analyzed using a combination of physiochemical techniques to understand the structure of bacterial communities and chemical constituents. Airborne particulate mass followed a bimodal size distribution (one mode at 3more » μm and a second above 30 μm), which also correlated with the relative concentrations of the following microbiological markers: bacterial endotoxin, 3-hydroxy fatty acids, and muramic acid. Sequencing of the 16S- rRNA components of this aerosol revealed a microbiome derived predominantly from animal sources. Bacterial genera included Staphlyococcus, Pseudomonas, and Streptococcus, all of which have proinflammatory and pathogenic capacity. Our results suggest that the size distribution of bioaerosols emitted by dairy operations extends well above 10 μm in diameter and contains a diverse mixture of potentially hazardous constituents and opportunistic pathogens. These findings should inform the development of more effective emissions control strategies.« less
Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; ...
2016-08-01
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less
Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors.
Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen
2013-07-21
Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.
NASA Astrophysics Data System (ADS)
Chávez, G. Moreno; Sarocchi, D.; Santana, E. Arce; Borselli, L.
2015-12-01
The study of grain size distribution is fundamental for understanding sedimentological environments. Through these analyses, clast erosion, transport and deposition processes can be interpreted and modeled. However, grain size distribution analysis can be difficult in some outcrops due to the number and complexity of the arrangement of clasts and matrix and their physical size. Despite various technological advances, it is almost impossible to get the full grain size distribution (blocks to sand grain size) with a single method or instrument of analysis. For this reason development in this area continues to be fundamental. In recent years, various methods of particle size analysis by automatic image processing have been developed, due to their potential advantages with respect to classical ones; speed and final detailed content of information (virtually for each analyzed particle). In this framework, we have developed a novel algorithm and software for grain size distribution analysis, based on color image segmentation using an entropy-controlled quadratic Markov measure field algorithm and the Rosiwal method for counting intersections between clast and linear transects in the images. We test the novel algorithm in different sedimentary deposit types from 14 varieties of sedimentological environments. The results of the new algorithm were compared with grain counts performed manually by the same Rosiwal methods applied by experts. The new algorithm has the same accuracy as a classical manual count process, but the application of this innovative methodology is much easier and dramatically less time-consuming. The final productivity of the new software for analysis of clasts deposits after recording field outcrop images can be increased significantly.
Size distributions and failure initiation of submarine and subaerial landslides
ten Brink, Uri S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.
2009-01-01
Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area affected by subaerial landslides is comparable to that calculated by slope stability analysis for submarine landslides. The area distribution of subaerial landslides from a single event may be determined by the size distribution of the morphology of the affected area, not by the initiation process. ?? 2009 Elsevier B.V.
Effect of sodium azide addition and aging storage on casein micelle size
NASA Astrophysics Data System (ADS)
Sinaga, H.; Deeth, H.; Bhandari, B.
2018-02-01
Casein micelles affected most of milk properties, therefore the use sodium azide as milk preservation is not expected to alter milk properties during storage, including the casein micelle size. The aim of this study was to analyse casein micelle size after the addition of sodium azide during storage. The experiment was performed as a complete block randomised design with three replications. The addition of 0.02-0.10% Na-azide do not lead to any noticeable differences in average casein size at the same day and show similar trend after 14 day-storage. At concentration of 0.02% sodium azide (Na-azide), the size of pasteurised milk did not change up to 12 days, while the size of raw skim milk slightly increased by ageing time at day 5. The treated concentration did not affect the size distribution, except for milk with 0.02% Na-azide which had narrower distribution compared to other treated and control milk. The finding from this study suggests that the role of Na-azide in this experiments during storage at 4°C is only for preventing the microbial growth.
NASA Astrophysics Data System (ADS)
Sun, Ning-Chen; de Grijs, Richard; Cioni, Maria-Rosa L.; Rubele, Stefano; Subramanian, Smitha; van Loon, Jacco Th.; Bekki, Kenji; Bell, Cameron P. M.; Ivanov, Valentin D.; Marconi, Marcella; Muraveva, Tatiana; Oliveira, Joana M.; Ripepi, Vincenzo
2018-05-01
In this paper we report a clustering analysis of upper main-sequence stars in the Small Magellanic Cloud, using data from the VMC survey (the VISTA near-infrared YJK s survey of the Magellanic system). Young stellar structures are identified as surface overdensities on a range of significance levels. They are found to be organized in a hierarchical pattern, such that larger structures at lower significance levels contain smaller ones at higher significance levels. They have very irregular morphologies, with a perimeter–area dimension of 1.44 ± 0.02 for their projected boundaries. They have a power-law mass–size relation, power-law size/mass distributions, and a log-normal surface density distribution. We derive a projected fractal dimension of 1.48 ± 0.03 from the mass–size relation, or of 1.4 ± 0.1 from the size distribution, reflecting significant lumpiness of the young stellar structures. These properties are remarkably similar to those of a turbulent interstellar medium, supporting a scenario of hierarchical star formation regulated by supersonic turbulence.
NASA Astrophysics Data System (ADS)
Stanford, McKenna W.
The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaign produced aircraft retrievals of total condensed water content (TWC), hydrometeor particle size distributions, and vertical velocity (w) in high ice water content regions of tropical mesoscale convective systems (MCSs). These observations are used to evaluate deep convective updraft properties in high-resolution nested Weather Research and Forecasting (WRF) simulations of observed MCSs. Because simulated hydrometeor properties are highly sensitive to the parameterization of microphysics, three commonly used microphysical parameterizations are tested, including two bulk schemes (Thompson and Morrison) and one bin scheme (Fast Spectral Bin Microphysics). A commonly documented bias in cloud-resolving simulations is the exaggeration of simulated radar reflectivities aloft in tropical MCSs. This may result from overly strong convective updrafts that loft excessive condensate mass and from simplified approximations of hydrometeor size distributions, properties, species separation, and microphysical processes. The degree to which the reflectivity bias is a separate function of convective dynamics, condensate mass, and hydrometeor size has yet to be addressed. This research untangles these components by comparing simulated and observed relationships between w, TWC, and hydrometer size as a function of temperature. All microphysics schemes produce median mass diameters that are generally larger than observed for temperatures between -10 °C and -40 °C and TWC > 1 g m-3. Observations produce a prominent mode in the composite mass size distribution around 300 microm, but under most conditions, all schemes shift the distribution mode to larger sizes. Despite a much greater number of samples, all simulations fail to reproduce observed high TWC or high w conditions between -20 °C and -40 °C in which only a small fraction of condensate mass is found in relatively large particle sizes. Increasing model resolution and employing explicit cloud droplet nucleation decrease the size bias, but not nearly enough to reproduce observations. Because simulated particle sizes are too large across all schemes when controlling for temperature, w, and TWC, this bias is hypothesized to partly result from errors in parameterized microphysical processes in addition to overly simplified hydrometeor properties such as mass-size relationships and particle size distribution parameters.
Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen
2017-09-15
High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle formation from the as-deposited Au film. The byproduct of self-catalyzed In 2 Se 3 nanoplates can be inhibited by lowering the precursors and growth temperatures.
Design and characterization of a cough simulator.
Zhang, Bo; Zhu, Chao; Ji, Zhiming; Lin, Chao-Hsin
2017-02-23
Expiratory droplets from human coughing have always been considered as potential carriers of pathogens, responsible for respiratory infectious disease transmission. To study the transmission of disease by human coughing, a transient repeatable cough simulator has been designed and built. Cough droplets are generated by different mechanisms, such as the breaking of mucus, condensation and high-speed atomization from different depths of the respiratory tract. These mechanisms in coughing produce droplets of different sizes, represented by a bimodal distribution of 'fine' and 'coarse' droplets. A cough simulator is hence designed to generate transient sprays with such bimodal characteristics. It consists of a pressurized gas tank, a nebulizer and an ejector, connected in series, which are controlled by computerized solenoid valves. The bimodal droplet size distribution is characterized for the coarse droplets and fine droplets, by fibrous collection and laser diffraction, respectively. The measured size distributions of coarse and fine droplets are reasonably represented by the Rosin-Rammler and log-normal distributions in probability density function, which leads to a bimodal distribution. To assess the hydrodynamic consequences of coughing including droplet vaporization and polydispersion, a Lagrangian model of droplet trajectories is established, with its ambient flow field predetermined from a computational fluid dynamics simulation.
Heavy-tailed distribution of cyber-risks
NASA Astrophysics Data System (ADS)
Maillart, T.; Sornette, D.
2010-06-01
With the development of the Internet, new kinds of massive epidemics, distributed attacks, virtual conflicts and criminality have emerged. We present a study of some striking statistical properties of cyber-risks that quantify the distribution and time evolution of information risks on the Internet, to understand their mechanisms, and create opportunities to mitigate, control, predict and insure them at a global scale. First, we report an exceptionnaly stable power-law tail distribution of personal identity losses per event, Pr(ID loss ≥ V) ~ 1/Vb, with b = 0.7 ± 0.1. This result is robust against a surprising strong non-stationary growth of ID losses culminating in July 2006 followed by a more stationary phase. Moreover, this distribution is identical for different types and sizes of targeted organizations. Since b < 1, the cumulative number of all losses over all events up to time t increases faster-than-linear with time according to ≃ t1/b, suggesting that privacy, characterized by personal identities, is necessarily becoming more and more insecure. We also show the existence of a size effect, such that the largest possible ID losses per event grow faster-than-linearly as ~S1.3 with the organization size S. The small value b ≃ 0.7 of the power law distribution of ID losses is explained by the interplay between Zipf’s law and the size effect. We also infer that compromised entities exhibit basically the same probability to incur a small or large loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chajekshaul, T.; Hayek, T.; Walsh, A.
1991-08-01
Transgenic mice carrying the human apolipoprotein (apo) A-I gene (HuAITg mice) were used to examine the effects of overexpression of the human gene on high density lipoprotein (HDL) particle size distribution and metabolism. On a chow diet, control mice had HDL cholesterol and apo A-I levels of 49 {plus minus} 2 and 137 {plus minus} 12 mg/dl of plasma, respectively. HuAITg mice had HDL cholesterol, human apo A-I, and mouse apo A-I levels of 88 {plus minus} 2, 255 {plus minus} 19, and 16 {plus minus} 2 mg/dl, respectively. Nondenaturing gradient gel electrophoresis revealed control mouse plasma HDL to bemore » primarily monodisperse with a particle diameter of 10.2 nm, whereas HuAITg mouse plasma HDL was polydisperse with particles of diameter 11.4, 10.2, and 8.7 nm, which correspond in size to human HDL1, HDL2, and HDL3, respectively. In vivo turnover studies of HDL labeled with (3H)cholesteryl linoleyl ether and 125I-apo A-I were performed. In control animals, the fractional catabolic rate (FCR) for HDL cholesteryl ester was significantly more than the apo A-I FCR. In the HuAITg mice, the HDL cholesteryl ester FCR was the same as the apo A-I FCR. There were no significant differences between control and HuAITg animals in the sites of tissue removal of HDL cholesteryl ester, with the liver extracting most of the injected radioactivity. Control and HuAITg animals had comparable liver and intestinal cholesterol synthesis and LDL FCR. In conclusion, HuAITg mice have principally human and not mouse apo A-I in their plasma. This apparently causes a change in HDL particle size distribution in the transgenic mice to one resembling the human pattern. The replacement of mouse by human apo A-I also apparently causes the loss of the selective uptake pathway of HDL cholesteryl esters present in control mice.« less
A controlled experiment on the impact of software structure on maintainability
NASA Technical Reports Server (NTRS)
Rombach, Dieter H.
1987-01-01
The impact of software structure on maintainability aspects including comprehensibility, locality, modifiability, and reusability in a distributed system environment is studied in a controlled maintenance experiment involving six medium-size distributed software systems implemented in LADY (language for distributed systems) and six in an extended version of sequential PASCAL. For all maintenance aspects except reusability, the results were quantitatively given in terms of complexity metrics which could be automated. The results showed LADY to be better suited to the development of maintainable software than the extension of sequential PASCAL. The strong typing combined with high parametrization of units is suggested to improve the reusability of units in LADY.
Janjua, Muhammad Ramzan Saeed Ashraf; Jamil, Saba; Jahan, Nazish; Khan, Shanza Rauf; Mirza, Saima
2017-05-31
Morphologically controlled synthesis of ferric oxide nano/micro particles has been carried out by using solvothermal route. Structural characterization displays that the predominant morphologies are porous hollow spheres, microspheres, micro rectangular platelets, octahedral and irregular shaped particles. It is also observed that solvent has significant effect on morphology such as shape and size of the particles. All the morphologies obtained by using different solvents are nearly uniform with narrow size distribution range. The values of full width at half maxima (FWHM) of all the products were calculated to compare their size distribution. The FWHM value varies with size of the particles for example small size particles show polydispersity whereas large size particles have shown monodispersity. The size of particles increases with decrease in polarity of the solvent whereas their shape changes from spherical to rectangular/irregular with decrease in polarity of the solvent. The catalytic activities of all the products were investigated for both dry and wet processes such as thermal decomposition of ammonium per chlorate (AP) and reduction of 4-nitrophenol in aqueous media. The results indicate that each product has a tendency to act as a catalyst. The porous hollow spheres decrease the thermal decomposition temperature of AP by 140 °C and octahedral Fe 3 O 4 particles decrease the decomposition temperature by 30 °C. The value of apparent rate constant (k app ) of reduction of 4-NP has also been calculated.
Burst nucleation by hot injection for size controlled synthesis of ε-cobalt nanoparticles.
Zacharaki, Eirini; Kalyva, Maria; Fjellvåg, Helmer; Sjåstad, Anja Olafsen
2016-01-01
Reproducible growth of narrow size distributed ε-Co nanoparticles with a specific size requires full understanding and identification of the role of essential synthesis parameters for the applied synthesis method. For the hot injection methodology, a significant discrepancy with respect to obtained sizes and applied reaction conditions is reported. Currently, a systematic investigation controlling key synthesis parameters as injection-temperature and time, metal to surfactant ratio and reaction holding time in terms of their impact on mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameter using dichlorobenzene (DCB), Co2(CO)8 and oleic acid (OA) as the reactant matrix is lacking. A series of solution-based ε-Co nanoparticles were synthesized using the hot injection method. Suspensions and obtained particles were analyzed by DLS, ICP-OES, (synchrotron)XRD and TEM. Rietveld refinements were used for structural analysis. Mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameters were calculated with basis in measurements of 250-500 particles for each synthesis. 95 % bias corrected confidence intervals using bootstrapping were calculated for syntheses with three or four replicas. ε-Co NPs in the size range ~4-10 nm with a narrow size distribution are obtained via the hot injection method, using OA as the sole surfactant. Typically the synthesis yield is ~75 %, and the particles form stable colloidal solutions when redispersed in hexane. Reproducibility of the adopted synthesis procedure on replicate syntheses was confirmed. We describe in detail the effects of essential synthesis parameters, such as injection-temperature and time, metal to surfactant ratio and reaction holding time in terms of their impact on mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameter. The described synthesis procedure towards ε-Co nanoparticles (NPs) is concluded to be robust when controlling key synthesis parameters, giving targeted particle diameters with a narrow size distribution. We have identified two major synthesis parameters which control particle size, i.e., the metal to surfactant molar ratio and the injection temperature of the hot OA-DCB solution into which the cobalt precursor is injected. By increasing the metal to surfactant molar ratio, the mean particle diameter of the ε-Co NPs has been found to increase. Furthermore, an increase in the injection temperature of the hot OA-DCB solution into which the cobalt precursor is injected, results in a decrease in the mean particle diameter of the ε-Co NPs, when the metal to surfactant molar ratio [Formula: see text] is fixed at ~12.9.
Li, Huai; Wu, Wei; Tian, Yong-jing; Huang, Tian-yin
2016-02-15
The particle size distribution (PSD) and its transformation processes in the stormwater runoffs in the ancient town of Suzhou were studied based on the particles size analyses, the water-quality monitoring data and the parameters of the rainfall-runoff models. The commercial districts, the modern residential area, the old residential area, the traffic area and the landscape tourist area were selected as the five functional example areas in the ancient town of Suzhou. The effects of antecedent dry period, the rainfall intensity and the amount of runoffs on the particle size distributions were studied, and the existing forms of the main pollutants in different functional areas and their possible relations were analyzed as well. The results showed that the particle size distribution, the migration processes and the output characteristics in the stormwater runoffs were greatly different in these five functional areas, which indicated different control measures for the pollution of the runoffs should be taken in the design process. The antecedent dry period, the rainfall intensity and the amount of runoffs showed significant correlations with the particle size distribution, showing these were the important factors. The output of the particles was greatly influenced by the flow scouring in the early period of the rainfall, and the correlations between the amount of runoffs and the particle migration ability presented significant difference in 30% (early period) and 70% (later period) of the runoff volume. The major existence form of the output pollutants was particle, and the correlation analyses of different diameter particles showed that the particles smaller than 150 microm were the dominant carrier of the pollutants via adsorption and accumulation processes.
Bidisperse and polydisperse suspension rheology at large solid fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F.
At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study ofmore » bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.« less
Alam, Shah Jamal; Zhang, Xinyu; Romero-Severson, Ethan Obie; Henry, Christopher; Zhong, Lin; Volz, Erik M.; Brenner, Bluma G.; Koopman, James S.
2013-01-01
Episodic high-risk sexual behavior is common and can have a profound effect on HIV transmission. In a model of HIV transmission among men who have sex with men (MSM), changing the frequency, duration and contact rates of high-risk episodes can take endemic prevalence from zero to 50% and more than double transmissions during acute HIV infection (AHI). Undirected test and treat could be inefficient in the presence of strong episodic risk effects. Partner services approaches that use a variety of control options will be likely to have better effects under these conditions, but the question remains: What data will reveal if a population is experiencing episodic risk effects? HIV sequence data from Montreal reveals genetic clusters whose size distribution stabilizes over time and reflects the size distribution of acute infection outbreaks (AIOs). Surveillance provides complementary behavioral data. In order to use both types of data efficiently, it is essential to examine aspects of models that affect both the episodic risk effects and the shape of transmission trees. As a demonstration, we use a deterministic compartmental model of episodic risk to explore the determinants of the fraction of transmissions during acute HIV infection (AHI) at the endemic equilibrium. We use a corresponding individual-based model to observe AIO size distributions and patterns of transmission within AIO. Episodic risk parameters determining whether AHI transmission trees had longer chains, more clustered transmissions from single individuals, or different mixes of these were explored. Encouragingly for parameter estimation, AIO size distributions reflected the frequency of transmissions from acute infection across divergent parameter sets. Our results show that episodic risk dynamics influence both the size and duration of acute infection outbreaks, thus providing a possible link between genetic cluster size distributions and episodic risk dynamics. PMID:23438430
Size control mechanism of ZnO nanoparticles obtained in microwave solvothermal synthesis
NASA Astrophysics Data System (ADS)
Wojnarowicz, Jacek; Chudoba, Tadeusz; Koltsov, Iwona; Gierlotka, Stanislaw; Dworakowska, Sylwia; Lojkowski, Witold
2018-02-01
The aim of the paper is to explain the mechanism of zinc oxide (ZnO) nanoparticle (NP) size control, which enables the size control of ZnO NPs obtained in microwave solvothermal synthesis (MSS) within the size range between circa 20 and 120 nm through the control of water content in the solution of zinc acetate in ethylene glycol. Heavy water was used in the tests. The mechanism of ZnO NPs size control was explained, discussed and experimentally verified. The discovery and investigation of this mechanism was possible by tracking the fate of water molecules during the whole synthesis process. All the synthesis products were identified. It was indicated that the MSS of ZnO NPs proceeded through the formation and conversion of intermediates such as Zn5(OH)8(CH3COO)2 · xH2O. Esters and H2O were the by-products of the MSS reaction of ZnO NPs. We justified that the esterification reaction is the decisive stage that is a prerequisite of the formation of ZnO NPs. The following parameters of the obtained ZnO NPs and of the intermediate were determined: pycnometric density, specific surface area, phase purity, average particles size, particles size distribution and chemical composition. The ZnO NPs morphology and structure were determined using scanning electron microscopy.
VOLTTRON™: Tech-to-Market Best-Practices Guide for Small- and Medium-Sized Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cort, Katherine A.; Haack, Jereme N.; Katipamula, Srinivas
VOLTTRON™ is an open-source distributed control and sensing platform developed by Pacific Northwest National Laboratory for the U.S. Department of Energy. It was developed to be used by the Office of Energy Efficiency and Renewable Energy to support transactive controls research and deployment activities. VOLTTRON is designed to be an overarching integration platform that could be used to bring together vendors, users, and developers and enable rapid application development and testing. The platform is designed to support modern control strategies, including the use of agent- and transaction-based controls. It also is designed to support the management of a wide rangemore » of applications, including heating, ventilation, and air-conditioning systems; electric vehicles; and distributed-energy and whole-building loads. This report was completed as part of the Building Technologies Office’s Technology-to-Market Initiative for VOLTTRON’s Market Validation and Business Case Development efforts. The report provides technology-to-market guidance and best practices related to VOLTTRON platform deployments and commercialization activities for use by entities serving small- and medium-sized commercial buildings. The report characterizes the platform ecosystem within the small- and medium-sized commercial building market and articulates the value proposition of VOLTTRON for three core participants in this ecosystem: 1) platform owners/adopters, 2) app developers, and 3) end-users. The report also identifies key market drivers and opportunities for open platform deployments in the small- and medium-sized commercial building market. Possible pathways to the market are described—laboratory testing to market adoption to commercialization. We also identify and address various technical and market barriers that could hinder deployment of VOLTTRON. Finally, we provide “best practice” tech-to-market guidance for building energy-related deployment efforts serving small- and medium-sized commercial buildings.« less
Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P
2002-01-01
Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.
NASA Technical Reports Server (NTRS)
Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.;
2006-01-01
If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.
Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly
Cho, Nam-Joon; Hwang, Lisa Y.; Solandt, Johan J.R.; Frank, Curtis W.
2013-01-01
Lipid vesicles are an important class of biomaterials that have a wide range of applications, including drug delivery, cosmetic formulations and model membrane platforms on solid supports. Depending on the application, properties of a vesicle population such as size distribution, charge and permeability need to be optimized. Preparation methods such as mechanical extrusion and sonication play a key role in controlling these properties, and yet the effects of vesicle preparation method on vesicular properties and integrity (e.g., shape, size, distribution and tension) remain incompletely understood. In this study, we prepared vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid by either extrusion or sonication, and investigated the effects on vesicle size distribution over time as well as the concomitant effects on the self-assembly of solid-supported planar lipid bilayers. Dynamic light scattering (DLS), quartz crystal microbalance with dissipation (QCM-D) monitoring, fluorescence recovery after photobleaching (FRAP) and atomic force microscopy (AFM) experiments were performed to characterize vesicles in solution as well as their interactions with silicon oxide substrates. Collectively, the data support that sonicated vesicles offer more robust control over the self-assembly of homogenous planar lipid bilayers, whereas extruded vesicles are vulnerable to aging and must be used soon after preparation. PMID:28811437
Sawtarie, Nader; Cai, Yuhang; Lapitsky, Yakov
2017-09-01
Nanoparticles prepared through the ionotropic gelation of chitosan with tripolyphosphate (TPP) have been extensively studied as vehicles for drug and gene delivery. Though a number of these works have focused on preparing particles with narrow size distributions, the monodisperse particles produced by these methods have been limited to narrow size ranges (where the average particle size was not varied by more than twofold). Here we show how, by tuning the NaCl concentration in the parent chitosan and TPP solutions, low-polydispersity particles with z-average diameters ranging between roughly 100 and 900nm can be prepared. Further, we explore how the size of these particles depends on the method by which the TPP is mixed into the chitosan solution, specifically comparing: (1) single-shot mixing; (2) dropwise addition; and (3) a dilution technique, where chitosan and TPP are codissolved at a high (gelation-inhibiting) ionic strength and then diluted to lower ionic strengths to trigger gelation. Though the particle size increases sigmoidally with the NaCl concentration for all three mixing methods, the dilution method delivers the most uniform/gradual size increase - i.e., it provides the most precise control. Also investigated are the effects of mixture composition and mixing procedure on the particle yield. These reveal the particle yield to increase with the chitosan/TPP concentration, decrease with the NaCl concentration, and vary only weakly with the mixing protocol; thus, at elevated NaCl concentrations, it may be beneficial to increase chitosan and TPP concentrations to ensure high particle yields. Finally, possible pitfalls of the salt-assisted size control strategy (and their solutions) are discussed. Taken together, these findings provide a simple and reliable method for extensively tuning chitosan/TPP particle size while maintaining narrow size distributions. Copyright © 2017 Elsevier B.V. All rights reserved.
Large scale crystallization of protein pharmaceuticals in microgravity via temperature change
NASA Technical Reports Server (NTRS)
Long, Marianna M.
1992-01-01
The major objective of this research effort is the temperature driven growth of protein crystals in large batches in the microgravity environment of space. Pharmaceutical houses are developing protein products for patient care, for example, human insulin, human growth hormone, interferons, and tissue plasminogen activator or TPA, the clot buster for heart attack victims. Except for insulin, these are very high value products; they are extremely potent in small quantities and have a great value per gram of material. It is feasible that microgravity crystallization can be a cost recoverable, economically sound final processing step in their manufacture. Large scale protein crystal growth in microgravity has significant advantages from the basic science and the applied science standpoints. Crystal growth can proceed unhindered due to lack of surface effects. Dynamic control is possible and relatively easy. The method has the potential to yield large quantities of pure crystalline product. Crystallization is a time honored procedure for purifying organic materials and microgravity crystallization could be the final step to remove trace impurities from high value protein pharmaceuticals. In addition, microgravity grown crystals could be the final formulation for those medicines that need to be administered in a timed release fashion. Long lasting insulin, insulin lente, is such a product. Also crystalline protein pharmaceuticals are more stable for long-term storage. Temperature, as the initiation step, has certain advantages. Again, dynamic control of the crystallization process is possible and easy. A temperature step is non-invasive and is the most subtle way to control protein solubility and therefore crystallization. Seeding is not necessary. Changes in protein and precipitant concentrations and pH are not necessary. Finally, this method represents a new way to crystallize proteins in space that takes advantage of the unique microgravity environment. The results from two flights showed that the hardware performed perfectly, many crystals were produced, and they were much larger than their ground grown controls. Morphometric analysis was done on over 4,000 crystals to establish crystal size, size distribution, and relative size. Space grown crystals were remarkably larger than their earth grown counterparts and crystal size was a function of PCF volume. That size distribution for the space grown crystals was a function of PCF volume may indicate that ultimate size was a function of temperature gradient. Since the insulin protein concentration was very low, 0.4 mg/ml, the size distribution could also be following the total amount of protein in each of the PCF's. X-ray analysis showed that the bigger space grown insulin crystals diffracted to higher resolution than their ground grown controls. When the data were normalized for size, they still indicated that the space crystals were better than the ground crystals.
Grain refinement control in TIG arc welding
NASA Technical Reports Server (NTRS)
Iceland, W. F.; Whiffen, E. L. (Inventor)
1975-01-01
A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.
NASA Astrophysics Data System (ADS)
Auras-Schudnagies, Anabelle; Kroon, Dick; Ganssen, Gerald; Hemleben, Christoph; Van Hinte, Jan E.
1989-10-01
Living planktonic foraminiferal and pteropod distribution patterns in the western Arabian Sea, Gulf of Aden and Red Sea, collected during two summer cruises (1984, 1985), reflect the hydrographical system that is mainly controlled by a combination of monsoonal winds and evaporation rates. Spinose species constitute the majority of the planktonic foraminiferal assemblages in the Red Sea during both monsoonal seasons. The non-spinose species Globorotalia menardii, Neogloboquadrina dutertrei and Pulleniatina obliquiloculata, which are always abundant in the Arabian Sea, are present only during winter inflow. The intensity and duration of these inflowing surface currents control their distribution pattern. Stable oxygen isotope ratios show that G. menardii survives but ceases to grow north of Bab el Mandeb, while N. dutertrei continues to grow. Trends in the foraminiferal distribution in surface waters compare well with those of the sea floor, as far as larger specimens (>250 μm) are concerned, but differ for the small ones. Surface distribution patterns of small-sized specimens and juvenile/neanic stages of large-sized fully grown species do not correspond to those in the core top samples. The distribution pattern of living pteropods in the Red Sea is closely related to distinct water masses and corresponds to the distribution in top core sediments. Pteropods are absent in the sediments of the Gulf of Aden and the western Arabian Sea due to dissolution. Peak abundances of various pteropods and foraminifers indicate the presence of local upwelling processes in the Bab el Mandeb area. Determining these dynamics allows for the reconstruction of ancient oceanic environments and climatic interactions in the area.
Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels
NASA Astrophysics Data System (ADS)
Xu, Kun; Thomas, Brian G.
2012-03-01
The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.
Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L
2016-09-06
Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.
Atomizing apparatus for making polymer and metal powders and whiskers
Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert
2003-03-18
Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.
Percolation in three-dimensional fracture networks for arbitrary size and shape distributions
NASA Astrophysics Data System (ADS)
Thovert, J.-F.; Mourzenko, V. V.; Adler, P. M.
2017-04-01
The percolation threshold of fracture networks is investigated by extensive direct numerical simulations. The fractures are randomly located and oriented in three-dimensional space. A very wide range of regular, irregular, and random fracture shapes is considered, in monodisperse or polydisperse networks containing fractures with different shapes and/or sizes. The results are rationalized in terms of a dimensionless density. A simple model involving a new shape factor is proposed, which accounts very efficiently for the influence of the fracture shape. It applies with very good accuracy in monodisperse or moderately polydisperse networks, and provides a good first estimation in other situations. A polydispersity index is shown to control the need for a correction, and the corrective term is modelled for the investigated size distributions.
Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.
2012-01-01
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531
Capacitively Coupled RF Plasmas for the Synthesis of Silicon Nanocrystals: Scaling and Mechanisms
NASA Astrophysics Data System (ADS)
Markosyan, Aram H.; Le Picard, Romain; Porter, David H.; Girshick, Steven L.; Kushner, Mark J.
2015-09-01
Silicon nanocrystals (SNCs) are of interest for light emitting electronics, photovoltaics, and biotechnology. SNCs are produced in low pressure capacitively coupled plasmas (CCPs) sustained in SiH4 containing mixtures. To optimize these applications, it is necessary to control the size distribution of the SNCs. Particles 3-5 nm diameter are typically tailored by flow rates and power, however the fundamental processes responsible for this size control are not well understood. We developed a 2-d computer model for RF powered CCPs to predict the synthesis of SNCs. An aerosol sectional model was incorporated into the Hybrid Plasma Equipment Model. The reactor is a quartz tube a few mm in diameter through which 100 sccm Ar and 15 sccm He/SiH4 = 95/5 at 2 Torr are flowed. The SNC residence time is 1-2 ms in the dense plasma region near the electrodes. We found that the distribution of plasma potential is important in determining the growth and size distribution of the SNCs. The SNCs having long residence times in the plasma, thereby enabling growth, are usually negatively charged. To ultimately allow these SNCs to flow out of the plasma, the distribution of the plasma potential must enable the particles to be entrained in the neutral gas flow without a significant potential barrier. We also found that agglomeration of particles of <1 nm is important in the rate of growth of SNCs. Work supported by DOE (DE-SC0001939) and NSF (CHE-124752).
Empirical study of the tails of mutual fund size
NASA Astrophysics Data System (ADS)
Schwarzkopf, Yonathan; Farmer, J. Doyne
2010-06-01
The mutual fund industry manages about a quarter of the assets in the U.S. stock market and thus plays an important role in the U.S. economy. The question of how much control is concentrated in the hands of the largest players is best quantitatively discussed in terms of the tail behavior of the mutual fund size distribution. We study the distribution empirically and show that the tail is much better described by a log-normal than a power law, indicating less concentration than, for example, personal income. The results are highly statistically significant and are consistent across fifteen years. This contradicts a recent theory concerning the origin of the power law tails of the trading volume distribution. Based on the analysis in a companion paper, the log-normality is to be expected, and indicates that the distribution of mutual funds remains perpetually out of equilibrium.
NASA Astrophysics Data System (ADS)
Conti, J.; De Coninck, J.; Ghazzal, M. N.
2018-04-01
The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.
A novel method for fabrication of size-controlled metallic nanoparticles by laser ablation
NASA Astrophysics Data System (ADS)
Choudhury, Kaushik; Singh, R. K.; Ranjan, Mukesh; Kumar, Ajai; Srivastava, Atul
2017-12-01
Time resolved experimental investigation of laser produced plasma-induced shockwaves has been carried out in the presence of confining walls placed along the lateral directions using a Mach Zehnder interferometer in air ambient. Copper was used as target material. The primary and the reflected shock waves and their effects on the evolution of medium density and the plasma density have been studied. The reflected shock wave has been seen to be affecting the shape and density of the plasma plume in the confined geometry. The same experiments were performed with water and isopropyl alcohol as the ambient liquids and the produced nanoparticles were characterised for size and size distribution. Significant differences in the size and size distribution are seen in case of the nanoparticles produced from the ablation of the targets with and without confining boundary. The observed trend has been attributed to the presence of confining boundary and the way it affects the thermalisation time of the plasma plume. The experiments also show the effect of medium density on the mean size of the copper nanoparticles produced.
Kim, Min-Soo; Song, Ha-Seung; Park, Hee Jun; Hwang, Sung-Joo
2012-01-01
The aims of this study were to identify how the solvent selection affects particle formation and to examine the effect of the initial drug solution concentration on mean particle size and particle size distribution in the supercritical antisolvent (SAS) process. Amorphous atorvastatin calcium was precipitated from seven different solvents using the SAS process. Particles with mean particle size ranging between 62.6 and 1493.7 nm were obtained by varying organic solvent type and solution concentration. By changing the solvent, we observed large variations in particle size and particle size distribution, accompanied by different particle morphologies. Particles obtained from acetone and tetrahydrofuran (THF) were compact and spherical fine particles, whereas those from N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO) were agglomerated, with rough surfaces and relatively larger particle sizes. Interestingly, the mean particle size of atorvastatin calcium increased with an increase in the boiling point of the organic solvent used. Thus, for atorvastatin particle formation via the SAS process, particle size was determined mainly by evaporation of the organic solvent into the antisolvent phase. In addition, the mean particle size was increased with increasing drug solution concentration. In this study, from the aspects of particle size and solvent toxicity, acetone was the better organic solvent for controlling nanoparticle formation of atorvastatin calcium.
Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation
2010-01-01
Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications. PMID:20652132
Single-Cycle Versus Multicycle Proof Testing
NASA Technical Reports Server (NTRS)
Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.
1992-01-01
Report compares single-cycle with multiple-cycle mechanical-stress tests of parts under mechanical stresses. Objective of proof testing: to screen out gross manufacturing or material deficiencies and provide additional assurance of quality. Report concludes that changes in distribution of crack sizes during multicycle proof testing depend on initial distribution, number of cycles, relationship between resistance of material and elastic/plastic fracture-mechanics parameter, relationship between load control and displacement control, and magnitude of applied load or displacement. Whether single-cycle or multicycle testing used depends on shape, material, and technique of fabrication of components tested.
Quantitative experimental modelling of fragmentation during explosive volcanism
NASA Astrophysics Data System (ADS)
Thordén Haug, Ø.; Galland, O.; Gisler, G.
2012-04-01
Phreatomagmatic eruptions results from the violent interaction between magma and an external source of water, such as ground water or a lake. This interaction causes fragmentation of the magma and/or the host rock, resulting in coarse-grained (lapilli) to very fine-grained (ash) material. The products of phreatomagmatic explosions are classically described by their fragment size distribution, which commonly follows power laws of exponent D. Such descriptive approach, however, considers the final products only and do not provide information on the dynamics of fragmentation. The aim of this contribution is thus to address the following fundamental questions. What are the physics that govern fragmentation processes? How fragmentation occurs through time? What are the mechanisms that produce power law fragment size distributions? And what are the scaling laws that control the exponent D? To address these questions, we performed a quantitative experimental study. The setup consists of a Hele-Shaw cell filled with a layer of cohesive silica flour, at the base of which a pulse of pressurized air is injected, leading to fragmentation of the layer of flour. The fragmentation process is monitored through time using a high-speed camera. By varying systematically the air pressure (P) and the thickness of the flour layer (h) we observed two morphologies of fragmentation: "lift off" where the silica flour above the injection inlet is ejected upwards, and "channeling" where the air pierces through the layer along sub-vertical conduit. By building a phase diagram, we show that the morphology is controlled by P/dgh, where d is the density of the flour and g is the gravitational acceleration. To quantify the fragmentation process, we developed a Matlab image analysis program, which calculates the number and sizes of the fragments, and so the fragment size distribution, during the experiments. The fragment size distributions are in general described by power law distributions of exponents D. This procedure allows, for the first time, to determine the scaling laws that govern the number of fragments (N), the average size of the fragments (A) and D. We show that (1) N scales with P^(1/2), (2) A scales with P^(-2/3), (3) D scales with P^(1/5). Our experimental procedure thus appears as a unique tool to unravel the complex physics of fragmentation during phreatomagmatic explosions.
[Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].
Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang
2014-08-01
Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.
Aronin, C.E. Petrie; Cooper, J.A.; Sefcik, L.S.; Tholpady, S.S.; Ogle, R.C.; Botchwey, E.A.
2008-01-01
A novel scaffold fabrication method utilizing both polymer blend extrusion and gas foaming techniques to control pore size distribution is presented. Seventy five per cent of all pores produced using polymer blend extrusion alone were less than 50 μm. Introducing a gas technique provided better control of pore size distribution, expanding the range from 0-50 to 0-350 μm. Varying sintering time, annealing temperature and foaming pressure also helped reduced the percentage of pore sizes below 50 μm. Scaffolds chosen for in vitro cellular studies had a pore size distribution of 0-300 μm, average pore size 66 ± 17 μm, 0.54 ± 0.02% porosity and 98% interconnectivity, measured by micro computed tomography (microCT) analysis. The ability of the scaffolds to support osteogenic differentiation and cranial defect repair was evaluated by static and dynamic (0.035 ± 0.006 m s-1 terminal velocity) cultivation with dura mater stem cells (DSCs). In vitro studies showed minimal increases in proliferation over 28 days in culture in osteogenic media. Alkaline phosphatase expression remained constant throughout the study. Moderate increases in matrix deposition, as assessed by histochemical staining and microCT analysis, occurred at later time points, days 21 and 28. Although constructs cultured dynamically showed greater mineralization than static conditions, these trends were not significant. It remains unclear whether bioreactor culture of DSCs is advantageous for bone tissue engineering applications. However, these studies show that polycaprolactone (PCL) scaffolds alone, without the addition of other co-polymers or ceramics, support long-term attachment and mineralization of DSCs throughout the entire porous scaffold. PMID:18434267
Zhou, Tong; Wu, Longhua; Luo, Yongming; Christie, Peter
2018-01-01
Soil particulate organic matter (POM) has rapid turnover and metal enrichment, but the interactions between organic matter (OM) and metals have not been well studied. The present study aimed to investigate changes in the OM concentration and composition of the POM fraction and their corresponding effects on metal distribution and extractability in long-term polluted paddy soils. Soil 2000-53 μm POM size fractions had higher contents of C-H and C=O bonds, C-H/C=O ratios and concentrations of fulvic acid (FA), humic acid (HA), cadmium (Cd) and zinc (Zn) than the bulk soils. Cadmium and Zn stocks in soil POM fractions were 24.5-27.9% and 7.12-16.7%, respectively, and were more readily EDTA-extractable. Compared with the control soil, the 2000-250 μm POM size fractions had higher organic carbon concentrations and C/N ratios in the polluted soils. However, there were no significant differences in the contents in C-H and C=O bonds or C-H/C=O ratios of POM fractions among the control, slightly and highly polluted soils. In accordance with the lower contents of C=O bonds and FA and HA concentrations, the Cd and Zn concentrations in 250-53 μm POM size fractions were lower than those in 2000-250 μm POM size fractions. Enrichment of Cd in POM fractions increased with increasing soil pollution level. These results support the view that changes in the OM concentration and the size and composition of POM fractions play a key role in determining the distribution of Cd and Zn in paddy soils. Copyright © 2017. Published by Elsevier Ltd.
Control of particle size by coagulation of novel condensation aerosols in reservoir chambers.
Hong, John N; Hindle, Michael; Byron, Peter R
2002-01-01
The coagulation growth behavior of capillary aerosol generator (CAG) condensation aerosols was investigated in a series of reservoir chambers. Aerosols consisted of a condensed system of 0.7% w/w benzil (model drug) in propylene glycol (vehicle). These were generated into 250-, 500-, 1,000-, and 2,000-mL reservoirs in both flowing air-stream and static air experiments. Changes in drug and total aerosol particle size were measured by a MOUDI cascade impactor. In both series of experiments the CAG aerosols grew in size. Growth in flowing air-stream experiments was attributed to the amount of accumulation aerosols experienced in reservoirs during sampling and increased with increasing reservoir volume. Mean (SD) MMAD's for the total mass distribution measured for the 250- and 2,000-mL reservoirs were 0.70 (0.02) and 0.87 (0.03) microm, respectively. For the benzil mass distribution, they were 0.64 (0.02) and 0.87 (0.06) microm, respectively. Growth in static air experiments was dependent on the volume aerosol boluses were restricted to and increased with decreasing reservoir volume. Mean (SD) initial MMAD's for the benzil mass distribution for the 250- and 2,000-mL reservoirs were 1.44 (0.03) and 1.24 (0.08) microm, respectively. Holding aerosols for up to 60 sec further increased their size. Mean (SD) MMAD's for benzil after holding for 60 sec in these reservoirs were 2.28 (0.04) and 1.67 (0.09) microm, respectively. The coagulation behavior and therefore particle size of CAG aerosols may be modified and controlled by reservoir chambers for drug targeting within the respiratory tract.
Hutchings, Graham J; Kiely, Christopher J
2013-08-20
The discovery that supported gold nanoparticles are exceptionally effective catalysts for redox reactions has led to an explosion of interest in gold nanoparticles. In addition, incorporating a second metal as an alloy with gold can enhance the catalyst performance even more. The addition of small amounts of gold to palladium, in particular, and vice versa significantly enhances the activity of supported gold-palladium nanoparticles as redox catalysts through what researchers believe is an electronic effect. In this Account, we describe and discuss methodologies for the synthesis of supported gold-palladium nanoparticles and their use as heterogeneous catalysts. In general, three key challenges need to be addressed in the synthesis of bimetallic nanoparticles: (i) control of the particle morphology, (ii) control of the particle size distribution, and (iii) control of the nanoparticle composition. We describe three methodologies to address these challenges. First, we discuss the relatively simple method of coimpregnation. Impregnation allows control of particle morphology during alloy formation but does not control the particle compositions or the particle size distribution. Even so, we contend that this method is the best preparation method in the catalyst discovery phase of any project, since it permits the investigation of many different catalyst structures in one experiment, which may aid the identification of new catalysts. A second approach, sol-immobilization, allows enhanced control of the particle size distribution and the particle morphology, but control of the composition of individual nanoparticles is not possible. Finally, a modified impregnation method can allow the control of all three of these crucial parameters. We discuss the effect of the different methodologies on three redox reactions: benzyl alcohol oxidation, toluene oxidation, and the direct synthesis of hydrogen peroxide. We show that the coimpregnation method provides the best reaction selectivity for benzyl alcohol oxidation and the direct synthesis of hydrogen peroxide. However, because of the reaction mechanism, the sol-immobilzation method gives very active and selective catalysts for toluene oxidation. We discuss the possible nature of the preferred active structures of the supported nanoparticles for these reactions. This paper is based on the IACS Heinz Heinemann Award Lecture entitled "Catalysis using gold nanoparticles" which was given in Munich in July 2012.
NASA Astrophysics Data System (ADS)
Motzkus, C.; Macé, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A.; Dirscherl, K.; Hodoroaba, V.-D.; Popov, I.; Popov, O.; Kuselman, I.; Takahata, K.; Ehara, K.; Ausset, P.; Maillé, M.; Michielsen, N.; Bondiguel, S.; Gensdarmes, F.; Morawska, L.; Johnson, G. R.; Faghihi, E. M.; Kim, C. S.; Kim, Y. H.; Chu, M. C.; Guardado, J. A.; Salas, A.; Capannelli, G.; Costa, C.; Bostrom, T.; Jämting, Å. K.; Lawn, M. A.; Adlem, L.; Vaslin-Reimann, S.
2013-10-01
Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—"Properties of Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 "Techniques for characterizing size distribution of airborne nanoparticles". Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2-46.6 nm and 80.2-89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.
Experiments in structural dynamics and control using a grid
NASA Technical Reports Server (NTRS)
Montgomery, R. C.
1985-01-01
Future spacecraft are being conceived that are highly flexible and of extreme size. The two features of flexibility and size pose new problems in control system design. Since large scale structures are not testable in ground based facilities, the decision on component placement must be made prior to full-scale tests on the spacecraft. Control law research is directed at solving problems of inadequate modelling knowledge prior to operation required to achieve peak performance. Another crucial problem addressed is accommodating failures in systems with smart components that are physically distributed on highly flexible structures. Parameter adaptive control is a method of promise that provides on-orbit tuning of the control system to improve performance by upgrading the mathematical model of the spacecraft during operation. Two specific questions are answered in this work. They are: What limits does on-line parameter identification with realistic sensors and actuators place on the ultimate achievable performance of a system in the highly flexible environment? Also, how well must the mathematical model used in on-board analytic redundancy be known and what are the reasonable expectations for advanced redundancy management schemes in the highly flexible and distributed component environment?
Kile, D.E.; Eberl, D.D.
1999-01-01
The Crystal Peak area of the Pikes Peak batholith, near Lake George in central Colorado, is world-renowned for its crystals of amazonite (the blue-green variety of microcline) and smoky quartz. Such crystals, collected from individual miarolitic pegmatites, have a remakably small variation in crystal size within each pegmatite, and the shapes of plots of their crystal size distributions (CSDs) are invariably lognormal or close to lognormal in all cases. These observations are explained by a crystal growth mechanism that was governed initially by surface-controlled kinetics, during which crystals tended to grow larger in proportion to their size, thereby establishing lognormal CSDs. Surface-controlled growth was followed by longer periods of supply controlled growth, during which growth rate was predominantly size-independent, consequently preserving the lognormal shapes of the CSDs and the small size variation. The change from surface- to supply controlled growth kinetics may have resulted from an increasing demand for nutrients that exceeded diffusion limitations of the system. The proposed model for crystal growth in this locality appears to be common in the geologic record, and can be used with other information, such as isotopic data, to deduce physico-chemical conditions during crystal formation.
On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.
Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun
2016-07-01
Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Qian; Zhang, Qionghua; Dzakpasu, Mawuli; Lian, Bin; Wu, Yaketon; Wang, Xiaochang C
2018-03-01
Stormwater particles washed from road-deposited sediments (RDS) are traditionally characterized as either turbidity or total suspended solids (TSS). Although these parameters are influenced by particle sizes, neither of them characterizes the particle size distribution (PSD), which is of great importance in pollutant entrainment and treatment performance. Therefore, the ratio of turbidity to TSS (Tur/TSS) is proposed and validated as a potential surrogate for the bulk PSD and quality of stormwater runoff. The results show an increasing trend of Tur/TSS with finer sizes of both RDS and stormwater runoff. Taking heavy metals (HMs, including Cu, Pb, Zn, Cr, and Ni) as typical pollutants in stormwater runoff, the concentrations (mg/kg) were found to vary significantly during rainfall events and tended to increase significantly with Tur/TSS. Therefore, Tur/TSS is a valid parameter to characterize the PSD and quality of stormwater. The high negative correlations between Tur/TSS and rainfall intensity demonstrate that stormwater with higher Tur/TSS generates under low intensity and, thus, characterizes small volume, finer sizes, weak settleability, greater mobility, and bioavailability. Conversely, stormwater with lower Tur/TSS generates under high intensity and, thus, characterizes large volume, coarser sizes, good settleability, low mobility, and bioavailability. These results highlight the need to control stormwater with high Tur/TSS. Moreover, Tur/TSS can aid the selection of stormwater control measures with appropriate detention storage, pollution loading, and removal effectiveness of particles.
Energetic tradeoffs control the size distribution of aquatic mammals
NASA Astrophysics Data System (ADS)
Gearty, William; McClain, Craig R.; Payne, Jonathan L.
2018-04-01
Four extant lineages of mammals have invaded and diversified in the water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic clades are larger bodied, on average, than their closest land-dwelling relatives, but the extent to which potential ecological, biomechanical, and physiological controls contributed to this pattern remains untested quantitatively. Here, we use previously published data on the body masses of 3,859 living and 2,999 fossil mammal species to examine the evolutionary trajectories of body size in aquatic mammals through both comparative phylogenetic analysis and examination of the fossil record. Both methods indicate that the evolution of an aquatic lifestyle is driving three of the four extant aquatic mammal clades toward a size attractor at ˜500 kg. The existence of this body size attractor and the relatively rapid selection toward, and limited deviation from, this attractor rule out most hypothesized drivers of size increase. These three independent body size increases and a shared aquatic optimum size are consistent with control by differences in the scaling of energetic intake and cost functions with body size between the terrestrial and aquatic realms. Under this energetic model, thermoregulatory costs constrain minimum size, whereas limitations on feeding efficiency constrain maximum size. The optimum size occurs at an intermediate value where thermoregulatory costs are low but feeding efficiency remains high. Rather than being released from size pressures, water-dwelling mammals are driven and confined to larger body sizes by the strict energetic demands of the aquatic medium.
Fang, Xiuqi; Cheng, Xiaoqian; Zhang, Yuerou; Zhang, Lijie Grace; Keidar, Michael
2018-01-01
A novel highly controllable process of Carbon Encapsulated Magnetic Nanoparticles (CEMNs) synthesis in arc discharge plasma has been developed. In this work, both the size distribution and the purity of the CEMNs have been made more controllable by adding an external magnetic field. It is shown that with the increase of the external magnetic field, the CEMNs get a better separation from the carbon impurities and the size distribution become narrower. This conclusion is valid for Fe, Ni and Fe+Ni CEMNs synthesis. In order to assess biomedical potential of these CEMNs, the cytotoxicity has also been measured for the human breast adenocarcinoma cell line MDA-MB-231. It was concluded that the CEMNs with the concentration in cell of about 0.0001-0.01ug/ml are not toxic. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamic Modeling of Yield and Particle Size Distribution in Continuous Bayer Precipitation
NASA Astrophysics Data System (ADS)
Stephenson, Jerry L.; Kapraun, Chris
Process engineers at Alcoa's Point Comfort refinery are using a dynamic model of the Bayer precipitation area to evaluate options in operating strategies. The dynamic model, a joint development effort between Point Comfort and the Alcoa Technical Center, predicts process yields, particle size distributions and occluded soda levels for various flowsheet configurations of the precipitation and classification circuit. In addition to rigorous heat, material and particle population balances, the model includes mechanistic kinetic expressions for particle growth and agglomeration and semi-empirical kinetics for nucleation and attrition. The kinetic parameters have been tuned to Point Comfort's operating data, with excellent matches between the model results and plant data. The model is written for the ACSL dynamic simulation program with specifically developed input/output graphical user interfaces to provide a user-friendly tool. Features such as a seed charge controller enhance the model's usefulness for evaluating operating conditions and process control approaches.
Sonochemical synthesis of silica particles and their size control
NASA Astrophysics Data System (ADS)
Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan
2016-09-01
Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.
Berchane, N S; Carson, K H; Rice-Ficht, A C; Andrews, M J
2007-06-07
The need to tailor release rate profiles from polymeric microspheres is a significant problem. Microsphere size, which has a significant effect on drug release rate, can potentially be varied to design a controlled drug delivery system with desired release profile. In this work the effects of microspheres mean diameter, polydispersity, and polymer degradation on drug release rate from poly(lactide-co-glycolide) (PLG) microspheres are described. Piroxicam containing PLG microspheres were fabricated at 20% loading, and at three different impeller speeds. A portion of the microspheres was then sieved giving five different size distributions. In vitro release kinetics were determined for each preparation. Based on these experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the microsphere size was increased. The mathematical model gave a good fit to the experimental release data. For highly polydisperse populations (polydispersity parameter b<3), incorporating the microsphere size distribution into the mathematical model gave a better fit to the experimental results than using the representative mean diameter. The validated mathematical model can be used to predict small-molecule drug release from PLG microsphere populations.
A scattering methodology for droplet sizing of e-cigarette aerosols.
Pratte, Pascal; Cosandey, Stéphane; Goujon-Ginglinger, Catherine
2016-10-01
Knowledge of the droplet size distribution of inhalable aerosols is important to predict aerosol deposition yield at various respiratory tract locations in human. Optical methodologies are usually preferred over the multi-stage cascade impactor for high-throughput measurements of aerosol particle/droplet size distributions. Evaluate the Laser Aerosol Spectrometer technology based on Polystyrene Sphere Latex (PSL) calibration curve applied for the experimental determination of droplet size distributions in the diameter range typical of commercial e-cigarette aerosols (147-1361 nm). This calibration procedure was tested for a TSI Laser Aerosol Spectrometer (LAS) operating at a wavelength of 633 nm and assessed against model di-ethyl-hexyl-sebacat (DEHS) droplets and e-cigarette aerosols. The PSL size response was measured, and intra- and between-day standard deviations calculated. DEHS droplet sizes were underestimated by 15-20% by the LAS when the PSL calibration curve was used; however, the intra- and between-day relative standard deviations were < 3%. This bias is attributed to the fact that the index of refraction of PSL calibrated particles is different in comparison to test aerosols. This 15-20% does not include the droplet evaporation component, which may reduce droplet size prior a measurement is performed. Aerosol concentration was measured accurately with a maximum uncertainty of 20%. Count median diameters and mass median aerodynamic diameters of selected e-cigarette aerosols ranged from 130-191 nm to 225-293 nm, respectively, similar to published values. The LAS instrument can be used to measure e-cigarette aerosol droplet size distributions with a bias underestimating the expected value by 15-20% when using a precise PSL calibration curve. Controlled variability of DEHS size measurements can be achieved with the LAS system; however, this method can only be applied to test aerosols having a refractive index close to that of PSL particles used for calibration.
NASA Astrophysics Data System (ADS)
Mahmoudi, M.; Sklar, L. S.; Leclere, S.; Davis, J. D.; Stine, A.
2017-12-01
The size distributions of sediment produced on hillslopes and supplied to river channels influence a wide range of fluvial processes, from bedrock river incision to the creation of aquatic habitats. However, the factors that control hillslope sediment size are poorly understood, limiting our ability to predict sediment size and model the evolution of sediment size distributions across landscapes. Recently separate field and theoretical investigations have begun to address this knowledge gap. Here we compare the predictions of several emerging modeling approaches to landscapes where high quality field data are available. Our goals are to explore the sensitivity and applicability of the theoretical models in each field context, and ultimately to provide a foundation for incorporating hillslope sediment size into models of landscape evolution. The field data include published measurements of hillslope sediment size from the Kohala peninsula on the island of Hawaii and tributaries to the Feather River in the northern Sierra Nevada mountains of California, and an unpublished data set from the Inyo Creek catchment of the southern Sierra Nevada. These data are compared to predictions adapted from recently published modeling approaches that include elements of topography, geology, structure, climate and erosion rate. Predictive models for each site are built in ArcGIS using field condition datasets: DEM topography (slope, aspect, curvature), bedrock geology (lithology, mineralogy), structure (fault location, fracture density), climate data (mean annual precipitation and temperature), and estimates of erosion rates. Preliminary analysis suggests that models may be finely tuned to the calibration sites, particularly when field conditions most closely satisfy model assumptions, leading to unrealistic predictions from extrapolation. We suggest a path forward for developing a computationally tractable method for incorporating spatial variation in production of hillslope sediment size distributions in landscape evolution models. Overall, this work highlights the need for additional field data sets as well as improved theoretical models, but also demonstrates progress in predicting the size distribution of sediments produced on hillslopes and supplied to channels.
Rainford, James L; Hofreiter, Michael; Mayhew, Peter J
2016-01-08
Skewed body size distributions and the high relative richness of small-bodied taxa are a fundamental property of a wide range of animal clades. The evolutionary processes responsible for generating these distributions are well described in vertebrate model systems but have yet to be explored in detail for other major terrestrial clades. In this study, we explore the macro-evolutionary patterns of body size variation across families of Hexapoda (insects and their close relatives), using recent advances in phylogenetic understanding, with an aim to investigate the link between size and diversity within this ancient and highly diverse lineage. The maximum, minimum and mean-log body lengths of hexapod families are all approximately log-normally distributed, consistent with previous studies at lower taxonomic levels, and contrasting with skewed distributions typical of vertebrate groups. After taking phylogeny and within-tip variation into account, we find no evidence for a negative relationship between diversification rate and body size, suggesting decoupling of the forces controlling these two traits. Likelihood-based modeling of the log-mean body size identifies distinct processes operating within Holometabola and Diptera compared with other hexapod groups, consistent with accelerating rates of size evolution within these clades, while as a whole, hexapod body size evolution is found to be dominated by neutral processes including significant phylogenetic conservatism. Based on our findings we suggest that the use of models derived from well-studied but atypical clades, such as vertebrates may lead to misleading conclusions when applied to other major terrestrial lineages. Our results indicate that within hexapods, and within the limits of current systematic and phylogenetic knowledge, insect diversification is generally unfettered by size-biased macro-evolutionary processes, and that these processes over large timescales tend to converge on apparently neutral evolutionary processes. We also identify limitations on available data within the clade and modeling approaches for the resolution of trees of higher taxa, the resolution of which may collectively enhance our understanding of this key component of terrestrial ecosystems.
Power laws, discontinuities and regional city size distributions
Garmestani, A.S.; Allen, Craig R.; Gallagher, C.M.
2008-01-01
Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classes in the city size distributions are snapshots of stable states within urban systems in flux.
NASA Astrophysics Data System (ADS)
Careno, Stéphanie; Boutin, Olivier; Badens, Elisabeth
2012-03-01
The aim of this study is to improve mixing in supercritical anti-solvent process (SAS) with impinging jets in order to form finer particles of sulfathiazole, a poorly water-soluble drug. The influence of several process parameters upon the powder characteristics is studied. Parameters are jets' velocity (0.25 m s-1 to 25.92 m s-1), molar ratio solvent/CO2 (2.5% to 20%), temperature (313 K to 343 K), pressure (10 MPa to 20 MPa) and sulfathiazole concentration in the organic solution (0.5% to 1.8%). Two solvents are used: acetone and methanol. Smaller particles with a more homogeneous morphology are obtained from acetone solutions. For the smallest jets' velocity, corresponding to a non-atomized jet, the stable polymorphic form is obtained, pure or in mixture. At this velocity, pressure is the most influential parameter controlling the polymorphic nature of the powder formed. The pure stable polymorph is formed at 20 MPa. Concerning the particle size, the most influential parameters are temperature and sulfathiazole concentration. The use of impinging jets with different process parameters allows the crystallization of four polymorphs among the five known, and particle sizes are varied. This work demonstrates the studied device ability of the polymorph and the size control. A comparison with the classical SAS process shows that particle size, size distribution and morphology of particles crystallized with impinging jets are different from the ones obtained with classical SAS introduction device in similar operating conditions. Mean particle sizes are significantly smaller and size distributions are narrower with impinging jets device.
UV-VIS depolarization from Arizona Test Dust particles at exact backscattering angle
NASA Astrophysics Data System (ADS)
Miffre, Alain; Mehri, Tahar; Francis, Mirvatte; Rairoux, Patrick
2016-01-01
In this paper, a controlled laboratory experiment is performed to accurately evaluate the depolarization from mineral dust particles in the exact backward scattering direction (ϴ=180.0±0.2°). The experiment is carried out at two wavelengths simultaneously (λ=355 nm, λ=532 nm), on a determined size and shape distribution of Arizona Test Dust (ATD) particles, used as a proxy for mineral dust particles. After validating the set-up on spherical water droplets, two determined ATD-particle size distributions, representative of mineral dust after long-range transport, are generated to accurately retrieve the UV-VIS depolarization from ATD-particles at exact backscattering angle, which is new. The measured depolarization reaches at most 37.5% at λ=355 nm (35.5% at λ=532 nm), and depends on the particle size distribution. Moreover, these laboratory findings agree with T-matrix numerical simulations, at least for a determined particle size distribution and at a determined wavelength, showing the ability of the spheroidal model to reproduce mineral dust particles in the exact backward scattering direction. However, the spectral dependence of the measured depolarization could not be reproduced with the spheroidal model, even for not evenly distributed aspect ratios. Hence, these laboratory findings can be used to evaluate the applicability of the spheroidal model in the backward scattering direction and moreover, to invert UV-VIS polarization lidar returns, which is useful for radiative transfer and climatology, in which mineral dust particles are strongly involved.
Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa
2004-10-29
Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.
NASA Astrophysics Data System (ADS)
Thiruvengadam, V.; Vitta, Satish
2016-06-01
The interparticle interactions in the magnetic nanocomposites play a dominant role in controlling phase transitions: superparamagnetic to superspin glass and to superferromagnetic. These interactions can be tuned by controlling the size and number density of nanoparticles. The aerogel composites, 0.3Ni-BC and 0.7Ni-BC, consisting of Ni nanoparticles distributed in the bacterial cellulose have been used as a model system to study these interactions. Contrary to conventional approach, size of Ni-nanoparticles is not controlled and allowed to form naturally in bacterial cellulose template. The uncontrolled growth of Ni results in the formation of nanoparticles with 3 different size distributions - <10 nm particles along the length of fibrils, 50 nm particles in the intermediate spaces between the fibrils, and >100 nm particles in voids formed by reticulate structure. At room temperature, the composites exhibit a weakly ferromagnetic behaviour with a coercivity of 40 Oe, which increases to 160 Oe at 10 K. The transition from weakly ferromagnetic state to superferromagnetic state at low temperatures is mediated by the superspin glass state at intermediate temperatures via the interparticle interactions aided by nanoparticles present along the length of fibres. A temperature dependent microstructural model has been developed to understand the magnetic behaviour of nanocomposite aerogels.
Evaluating the importance of grain size sensitive creep in terrestrial ice sheet rheology
NASA Astrophysics Data System (ADS)
Maaijwee, C. N. P. J.; de Bresser, J. H. P.
2009-04-01
The rheology of ice in terrestrial ice sheets is generally considered to be independent of the size of the grains (crystals), and appears well described by Glen's flow law. In recent years, however, new laboratory deformation experiments on ice as well as analysis of in situ measurements of deformation at glaciers suggested that grain size and variations therein should not be discarded as important parameters in the deformation of ice in nature. Ice, just like crystalline rock materials, exhibits distributed grain sizes. Taking now that not only grain size insensitive (GSI; dislocation) mechanisms, but also grain size sensitive (GSS; diffusion and/or grain boundary sliding) mechanisms may be operative in ice, variations in the shape of the distribution (e.g. the width) can be expected to affect the rheological behaviour. To evaluate this effect, we have derived a composite GSI+GSS flow law and combined this with full grain size distributions. The constitutive flow equations for end-member GSI and GSS creep of ice were taken from the work of Goldsby and Kohlstedt (2001, J.Geophys.Res., vol. 106). We used their description of grain boundary sliding controlled creep as representative of GSS creep. The grain size data largely came from published measurements from the top 800-1000 m of two Greenland ice cores (NorthGRIP and GRIP) and one Antarctic ice core (Epica, Dome Concordia). Temperature profiles were available for both core settings. The grain size data show a close to lognormal distribution in all three settings, with the median grain size increasing with depth. We constructed a synthetic grain size profile up to a depth of 3100 m (cf. GRIP) by allowing the median grain size and standard deviation of the distribution to linearly increase with depth. The percentage GSS creep contributing to the total strain rate has been calculated for a range of strain rates that were assumed constant along the ice core axes. The results of our calculations show that at realistic strain rates in the order of 10-11 to 10-12 s-1, GSS mechanisms can be expected to dominate creep in the parts of the ice sheets investigated (i.e. the top ~1000 m). In the synthetic core, the GSS contribution decreases if going to greater depth (~2500 m), but increases again close to the contact with the bedrock (at 3100 m). Although many assumptions have been made in our approach, the results confirm the important role that grain size might play in ice sheet rheology. The application of full grain size distributions in composite flow equations helps to come to reliable extrapolation of lab data to nature.
Discrete epidemic models with arbitrary stage distributions and applications to disease control.
Hernandez-Ceron, Nancy; Feng, Zhilan; Castillo-Chavez, Carlos
2013-10-01
W.O. Kermack and A.G. McKendrick introduced in their fundamental paper, A Contribution to the Mathematical Theory of Epidemics, published in 1927, a deterministic model that captured the qualitative dynamic behavior of single infectious disease outbreaks. A Kermack–McKendrick discrete-time general framework, motivated by the emergence of a multitude of models used to forecast the dynamics of epidemics, is introduced in this manuscript. Results that allow us to measure quantitatively the role of classical and general distributions on disease dynamics are presented. The case of the geometric distribution is used to evaluate the impact of waiting-time distributions on epidemiological processes or public health interventions. In short, the geometric distribution is used to set up the baseline or null epidemiological model used to test the relevance of realistic stage-period distribution on the dynamics of single epidemic outbreaks. A final size relationship involving the control reproduction number, a function of transmission parameters and the means of distributions used to model disease or intervention control measures, is computed. Model results and simulations highlight the inconsistencies in forecasting that emerge from the use of specific parametric distributions. Examples, using the geometric, Poisson and binomial distributions, are used to highlight the impact of the choices made in quantifying the risk posed by single outbreaks and the relative importance of various control measures.
New particle formation in the Svalbard region 2006-2015
NASA Astrophysics Data System (ADS)
Heintzenberg, Jost; Tunved, Peter; Galí, Martí; Leck, Caroline
2017-05-01
Events of new particle formation (NPF) were analyzed in a 10-year data set of hourly particle size distributions recorded on Mt. Zeppelin, Spitsbergen, Svalbard. Three different types of NPF events were identified through objective search algorithms. The first and simplest algorithm utilizes short-term increases in particle concentrations below 25 nm (PCT (percentiles) events). The second one builds on the growth of the sub-50 nm diameter median (DGR (diameter growth) events) and is most closely related to the classical banana type
of event. The third and most complex, multiple-size approach to identifying NPF events builds on a hypothesis suggesting the concurrent production of polymer gel particles at several sizes below ca. 60 nm (MEV (multi-size growth) events). As a first and general conclusion, we can state that NPF events are a summer phenomenon and not related to Arctic haze, which is a late winter to early spring feature. The occurrence of NPF events appears to be somewhat sensitive to the available data on precipitation. The seasonal distribution of solar flux suggests some photochemical control that may affect marine biological processes generating particle precursors and/or atmospheric photochemical processes that generate condensable vapors from precursor gases. Notably, the seasonal distribution of the biogenic methanesulfonate (MSA) follows that of the solar flux although it peaks before the maxima in NPF occurrence. A host of ancillary data and findings point to varying and rather complex marine biological source processes. The potential source regions for all types of new particle formation appear to be restricted to the marginal-ice and open-water areas between northeastern Greenland and eastern Svalbard. Depending on conditions, yet to be clarified new particle formation may become visible as short bursts of particles around 20 nm (PCT events), longer events involving condensation growth (DGR events), or extended events with elevated concentrations of particles at several sizes below 100 nm (MEV events). The seasonal distribution of NPF events peaks later than that of MSA and DGR, and in particular than that of MEV events, which reach into late summer and early fall with open, warm, and biologically active waters around Svalbard. Consequently, a simple model to describe the seasonal distribution of the total number of NPF events can be based on solar flux and sea surface temperature, representing environmental conditions for marine biological activity and condensation sink, controlling the balance between new particle nucleation and their condensational growth. Based on the sparse knowledge about the seasonal cycle of gel-forming marine microorganisms and their controlling factors, we hypothesize that the seasonal distribution of DGR and, more so, MEV events reflect the seasonal cycle of the gel-forming phytoplankton.
NASA Astrophysics Data System (ADS)
Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.
2014-12-01
Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data. Laboratory data are compared with longitudinal evolution of grain size and angularity of particles deposited by debris flows along Inyo Creek, Sierra Nevada, California. Preliminary results suggest wear rates can be scaled across drum sizes and to field conditions using non-dimensional metrics of flow dynamics including Savage, Bagnold, and Froude numbers.
Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent
NASA Astrophysics Data System (ADS)
Kien, Le Anh
2017-09-01
Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.
Wilder, Shawn M; Rypstra, Ann L
2008-09-01
Sexual cannibalism varies widely among spiders, but no general evolutionary hypothesis has emerged to explain its distribution across taxa. Sexual size dimorphism (SSD) also varies widely among spiders and could affect the vulnerability of males to cannibalistic attacks by females. We tested for a relationship between SSD and sexual cannibalism within and among species of spiders, using a broad taxonomic data set. For most species, cannibalism was more likely when males were much smaller than females. In addition, using phylogenetically controlled and uncontrolled analyses, there was a strong positive relationship between average SSD of a species and the frequency of sexual cannibalism. This is the first evidence that the degree of size difference between males and females is related to the phylogenetic distribution of sexual cannibalism among a broad range of spiders.
A Facile and Eco-friendly Route to Fabricate Poly(Lactic Acid) Scaffolds with Graded Pore Size.
Scaffaro, Roberto; Lopresti, Francesco; Botta, Luigi; Maio, Andrea; Sutera, Fiorenza; Mistretta, Maria Chiara; La Mantia, Francesco Paolo
2016-10-17
Over the recent years, functionally graded scaffolds (FGS) gaineda crucial role for manufacturing of devices for tissue engineering. The importance of this new field of biomaterials research is due to the necessity to develop implants capable of mimicking the complex functionality of the various tissues, including a continuous change from one structure or composition to another. In this latter context, one topic of main interest concerns the design of appropriate scaffolds for bone-cartilage interface tissue. In this study, three-layered scaffolds with graded pore size were achieved by melt mixing poly(lactic acid) (PLA), sodium chloride (NaCl) and polyethylene glycol (PEG). Pore size distributions were controlled by NaCl granulometry and PEG solvation. Scaffolds were characterized from a morphological and mechanical point of view. A correlation between the preparation method, the pore architecture and compressive mechanical behavior was found. The interface adhesion strength was quantitatively evaluated by using a custom-designed interfacial strength test. Furthermore, in order to imitate the human physiology, mechanical tests were also performed in phosphate buffered saline (PBS) solution at 37 °C. The method herein presented provides a high control of porosity, pore size distribution and mechanical performance, thus offering the possibility to fabricate three-layered scaffolds with tailored properties by following a simple and eco-friendly route.
Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert
2001-01-09
Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.
NASA Astrophysics Data System (ADS)
Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.
2016-09-01
The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.
NASA Astrophysics Data System (ADS)
García, T.; Velo, A.; Fernandez-Bastero, S.; Gago-Duport, L.; Santos, A.; Alejo, I.; Vilas, F.
2005-02-01
This paper examines the linkages between the space-distribution of grain sizes and the relative percentage of the amount of mineral species that result from the mixing process of siliciclastic and carbonate sediments at the Ria de Vigo (NW of Spain). The space-distribution of minerals was initially determined, starting from a detailed mineralogical study based on XRD-Rietveld analysis of the superficial sediments. Correlations between the maps obtained for grain sizes, average fractions of either siliciclastic or carbonates, as well as for individual-minerals, were further stabilised. From this analysis, spatially organized patterns were found between carbonates and several minerals involved in the siliciclastic fraction. In particular, a coupled behaviour is observed between plagioclases and carbonates, in terms of their relative percentage amounts and the grain size distribution. In order to explain these results a conceptual model is proposed, based on the interplay between chemical processes at the seawater-sediment interface and hydrodynamical factors. This model suggests the existence of chemical control mechanisms that, by selective processes of dissolution-crystallization, constrain the mixed environment's long-term evolution, inducing the formation of self-organized sedimentary patterns.
Rodríguez-López, A; Cruz-Rivera, J J; Elías-Alfaro, C G; Betancourt, I; Ruiz-Silva, H; Antaño-López, R
2015-01-01
The effects of varying the surfactant concentration and the anodic pulse potential on the properties and electrochemical behaviors of magnetite nanoparticles were investigated. The nanoparticles were synthesized with an electrochemical method based on applying dissymmetric potential pulses, which offers the advantage that can be used to tune the particle size distribution very precisely in the range of 10 to 50 nm. Under the conditions studied, the surfactant concentration directly affects the size distribution, with higher concentrations producing narrower distributions. Linear voltammetry was used to characterize the electrochemical behavior of the synthesized nanoparticles in both the anodic and cathodic regions, which are attributed to the oxidation of Fe(2+) and the reduction of Fe(3+); these species are part of the spinel structure of magnetite. Electrochemical impedance spectroscopy data indicated that the reduction and oxidation reactions of the nanoparticles are not controlled by the mass transport step, but by the charge transfer step. The sample with the highest saturation magnetization was that synthesized in the presence of polyethylene glycol. Copyright © 2014 Elsevier B.V. All rights reserved.
Interdependent networks: the fragility of control
Morris, Richard G.; Barthelemy, Marc
2013-01-01
Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404
New insight on the formation of whey protein microbeads by a microfluidic system
NASA Astrophysics Data System (ADS)
Andoyo, Robi; Guyomarc'h, Fanny; Tabuteau, Hervé; Famelart, Marie-Hélène
2018-02-01
The current paper describes the formation of whey protein microbeads (WPM) having a spherical shape and a monodispersed size distribution. A microfluidic flow-focusing geometry was used to control the production of whey protein microdroplets in a hydrophobic phase. The microfluidic system consists of two inlet channels where the WPI solution and the lipophilic phase were separately injected towards the flow-focusing (FF) junction where they eventually meet, then co-flow. A whey protein isolate (WPI) solution of 150 g/kg protein and two types of hydrophobic phases, i.e. sunflower oil and n-dodecane, were tested as the continuous phase. The formation of WPM was observed microscopically. The aim of the present study was to describe the production of stable monodisperse WPM in suspension in milk ultrafiltrate using a microfluidic system. Hints to perform the control of the running parameters, i.e. choice of the hydrophobic phase or fluids flowrates, are provided. The results showed that in the sunflower oil, microdroplets had a large polydisperse size distribution, while in n-dodecane, microdroplets with narrow size distribution were obtained. Stabilization of the whey protein microdroplets through heat-gelation at 75 °C for 20 min in n-dodecane produced WPM and no change in shape nor size is observed. Meanwhile replacing the n-dodecane by MUF using centrifugation and washing caused the swelling of the WPM, but dispersity remained low. From this study, microfluidic system seemed to be a suitable method to be used for producing small quantities of monodisperse WPM.
Enhanced Radio Frequency (RF) Collection With Distributed Wireless Sensor Networks
2007-06-01
48 4. Controlling the Size of the Beamwidth ............................................50 C. SPECTRAL ESTIMATION...55 Figure 35. Spectral Estimation results 157 MHz. .............................................................58 Figure 36. Spectral ...Estimation results 800 MHz. .............................................................59 Figure 37. Spectral Estimation results 2.4 GHz
NASA Astrophysics Data System (ADS)
Manfredi, Sabato
2016-06-01
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.
Watershed Controls on the Proper Scale of Economic Markets for Pollution Reduction
NASA Astrophysics Data System (ADS)
Rigby, J.; Doyle, M. W.; Yates, A.
2010-12-01
Markets for tradable discharge permits (TDPs) are an increasingly popular policy instrument for obtaining cost-effective nutrient reduction targets across watersheds. Such markets are also an emerging, dynamic coupling between economic institutions and stream hydrology/biogeochemistry as trading markets become explicit determinants for the spatial distribution of stream nutrient loads. A central problem in any environmental market program is setting the size of the market, as there are distinct trade-offs for large versus small markets. While the overall cost-effectiveness of permit trading increases with the size of the market, the potential for localized and highly damaging nutrient concentrations, or “hotspots”, also increases. Smaller market size reduces the potential for hot spots by dispersing the location of trades, but this may increase the net costs of water quality compliance significantly through both the restriction of possible trading partners and price manipulation by market participants. This project couples a microeconomic model for TDPs (based on possible configurations of mutually exclusive trading zones within the basin) with a semi-distributed water quality model to examine watershed controls on the configuration and scale of such markets. Our results show a wide variation in total annual cost of pollution abatement based on choice of market design -- often with large differences in cost between very similar configurations. This framework is also applied to a 10-member trading program among wastewater treatment plants in the Neuse River, NC, in order to assess (1) the optimum market design for the Upper Neuse basin and (2) how these costs compare with expected costs under alternative market structures (e.g., trading ratio system) and (3) the cost improvements over traditional command-and-control regulatory frameworks. We find that the optimal zone configuration is almost always a lower cost option when compared to a trading ratio scheme and that the optimal design depends largely on the range of plant sizes and their geographic distribution within the stream network. Leveraging this model, we can develop a heuristic understanding of how the shape or topography of watersheds, and/or the spatial distribution of polluters may constrain the utility of market mechanisms in water quality regulation.
Metal oxide porous ceramic membranes with small pore sizes
Anderson, Marc A.; Xu, Qunyin
1992-01-01
A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.
Metal oxide porous ceramic membranes with small pore sizes
Anderson, Marc A.; Xu, Qunyin
1991-01-01
A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.
Rapid flow fractionation of particles combining liquid and particulate dielectrophoresis
NASA Technical Reports Server (NTRS)
King, Michael R. (Inventor); Lomakin, Oleg (Inventor); Jones, Thomas B. (Inventor); Ahmed, Rajib (Inventor)
2007-01-01
Rapid, size-based, deposition of particles from liquid suspension is accomplished using a nonuniform electric field created by coplanar microelectrode strips patterned on an insulating substrate. The scheme uses the dielectrophoretic force both to distribute aqueous liquid containing particles and, simultaneously, to separate the particles. Size-based separation is found within nanoliter droplets formed along the structure after voltage removal. Bioparticles or macromolecules of similar size can also be separated based on subtle differences in dielectric property, by controlling the frequency of the AC current supplied to the electrodes.
Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren
2015-11-01
We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Pore size distribution and accessible pore size distribution in bituminous coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurovs, Richard; He, Lilin; Melnichenko, Yuri B
2012-01-01
The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the restmore » from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10 nm to 50 nm size scales the pores in inertinites appeared to be completely accessible to CD{sub 4}, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50 nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately andin situusing crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormal size distribution.more » The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. This work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
Concepts for Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Thomas, Randy; Saus, Joseph
2007-01-01
Gas turbine engines for aero-propulsion systems are found to be highly optimized machines after over 70 years of development. Still, additional performance improvements are sought while reduction in the overall cost is increasingly a driving factor. Control systems play a vitally important part in these metrics but are severely constrained by the operating environment and the consequences of system failure. The considerable challenges facing future engine control system design have been investigated. A preliminary analysis has been conducted of the potential benefits of distributed control architecture when applied to aero-engines. In particular, reductions in size, weight, and cost of the control system are possible. NASA is conducting research to further explore these benefits, with emphasis on the particular benefits enabled by high temperature electronics and an open-systems approach to standardized communications interfaces.
NASA Astrophysics Data System (ADS)
Atta, Abdu; Yahaya, Sharipah; Zain, Zakiyah; Ahmed, Zalikha
2017-11-01
Control chart is established as one of the most powerful tools in Statistical Process Control (SPC) and is widely used in industries. The conventional control charts rely on normality assumption, which is not always the case for industrial data. This paper proposes a new S control chart for monitoring process dispersion using skewness correction method for skewed distributions, named as SC-S control chart. Its performance in terms of false alarm rate is compared with various existing control charts for monitoring process dispersion, such as scaled weighted variance S chart (SWV-S); skewness correction R chart (SC-R); weighted variance R chart (WV-R); weighted variance S chart (WV-S); and standard S chart (STD-S). Comparison with exact S control chart with regards to the probability of out-of-control detections is also accomplished. The Weibull and gamma distributions adopted in this study are assessed along with the normal distribution. Simulation study shows that the proposed SC-S control chart provides good performance of in-control probabilities (Type I error) in almost all the skewness levels and sample sizes, n. In the case of probability of detection shift the proposed SC-S chart is closer to the exact S control chart than the existing charts for skewed distributions, except for the SC-R control chart. In general, the performance of the proposed SC-S control chart is better than all the existing control charts for monitoring process dispersion in the cases of Type I error and probability of detection shift.
NASA Astrophysics Data System (ADS)
Gallego-Torres, David; Reolid, Matías; Nieto-Moreno, Vanesa; Martínez-Casado, Francisco Javier
2015-12-01
The Early Toarcian Oceanic Anoxic Event (T-OAE) represents one of the major alterations of the carbon cycle of the Mesozoic period. Despite being globally recognized, and particularly represented within the Tethys realm, its expression in the sedimentary record is highly variable depending on the studied section, which suggests local environmental factors exert a major control on the resulting lithological appearance of the event. We investigated the Fuente Vidriera section, in the eastern External Subbetic of the Betic Cordillera (Spain), where the Lower Jurassic is represented by alternate layers of marls and marly limestones, and the T-OAE is identified by a major δ13C excursion, micropalaeontological, ichnofacies and geochemical evidences. For this study, we analyzed pyrite framboid size distribution of the sedimentary sequence in Fuente Vidriera. The outcome, according to previous studies on pyrite framboid distribution, is contradictory when compared to all other evidences, suggesting oxygen depletion during the T-OAE. The results have been reinterpreted in the light of Crystal Size Distribution Theory and we conclude that not only growth time but also geochemical environment controls pyrite formation. Since growth time is directly related to burial rates, this approach allows us to reconstruct relative variations of sedimentation rates during the Early Jurassic in this location. Based on the obtained results, we provide new evidences for wide-spread transgression during the Early Toarcian in the South Iberian palaeomargin, which induced low sedimentation rate and lower energetic conditions, as well as favored oxygen impoverished bottom waters.
Ni, Xuewen; Ke, Fan; Xiao, Man; Wu, Kao; Kuang, Ying; Corke, Harold; Jiang, Fatang
2016-11-01
Konjac glucomannan (KGM)-based aerogels were prepared using a combination of sol-gel and freeze-drying methods. Preparation conditions were chosen to control ice crystal growth and aerogel structure formation. The ice crystals formed during pre-freezing were observed by low temperature polarizing microscopy, and images of aerogel pores were obtained by scanning electron microscopy. The size of ice crystals were calculated and size distribution maps were drawn, and similarly for aerogel pores. Results showed that ice crystal growth and aerogel pore sizes may be controlled by varying pre-freezing temperatures, KGM concentration and glyceryl monostearate concentration. The impact of pre-freezing temperatures on ice crystal growth was explained as combining ice crystal growth rate with nucleation rate, while the impacts of KGM and glyceryl monostearate concentration on ice crystal growth were interpreted based on their influences on sol network structure. Copyright © 2016 Elsevier B.V. All rights reserved.
The role of peripheral vision in saccade planning: learning from people with tunnel vision.
Luo, Gang; Vargas-Martin, Fernando; Peli, Eli
2008-12-22
Both visually salient and top-down information are important in eye movement control, but their relative roles in the planning of daily saccades are unclear. We investigated the effect of peripheral vision loss on saccadic behaviors in patients with tunnel vision (visual field diameters 7 degrees-16 degrees) in visual search and real-world walking experiments. The patients made up to two saccades per second to their pre-saccadic blind areas, about half of which had no overlap between the post- and pre-saccadic views. In the visual search experiment, visual field size and the background (blank or picture) did not affect the saccade sizes and direction of patients (n = 9). In the walking experiment, the patients (n = 5) and normal controls (n = 3) had similar distributions of saccade sizes and directions. These findings might provide a clue about the large extent of the top-down mechanism influence on eye movement control.
Role of peripheral vision in saccade planning: Learning from people with tunnel vision
Luo, Gang; Vargas-Martin, Fernando; Peli, Eli
2008-01-01
Both visually salient and top-down information are important in eye movement control, but their relative roles in the planning of daily saccades are unclear. We investigated the effect of peripheral vision loss on saccadic behaviors in patients with tunnel vision (visual field diameters 7°–16°) in visual search and real-world walking experiments. The patients made up to two saccades per second to their pre-saccadic blind areas, about half of which had no overlap between the post- and pre-saccadic views. In the visual search experiment, visual field size and the background (blank or picture) did not affect the saccade sizes and direction of patients (n=9). In the walking experiment, the patients (n=5) and normal controls (n=3) had similar distributions of saccade sizes and directions. These findings might provide a clue about the extent of the top-down mechanism influence on eye movement control. PMID:19146326
Li, Zhengkai; Spaulding, Malcolm L; French-McCay, Deborah
2017-06-15
A surface oil entrainment model and droplet size model have been developed to estimate the flux of oil under surface breaking waves. Both equations are expressed in dimensionless Weber number (We) and Ohnesorge number (Oh, which explicitly accounts for the oil viscosity, density, and oil-water interfacial tension). Data from controlled lab studies, large-scale wave tank tests, and field observations have been used to calibrate the constants of the two independent equations. Predictions using the new algorithm compared well with the observed amount of oil removed from the surface and the sizes of the oil droplets entrained in the water column. Simulations with the new algorithm, implemented in a comprehensive spill model, show that entrainment rates increase more rapidly with wind speed than previously predicted based on the existing Delvigne and Sweeney's (1988) model, and a quasi-stable droplet size distribution (d<~50μm) is developed in the near surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Determining size-specific emission factors for environmental tobacco smoke particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.
Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured everymore » minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.« less
Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.
Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid
2014-07-28
Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.
Initialization Method for Grammar-Guided Genetic Programming
NASA Astrophysics Data System (ADS)
García-Arnau, M.; Manrique, D.; Ríos, J.; Rodríguez-Patón, A.
This paper proposes a new tree-generation algorithm for grammarguided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods.
Growth of nanostructures with controlled diameter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos
2009-02-03
Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictablymore » prepared by selecting a suitable pore size of the framework structure.« less
Ejecta Production and Properties
NASA Astrophysics Data System (ADS)
Williams, Robin
2017-06-01
The interaction of an internal shock with the free surface of a dense material leads to the production of jets of particulate material from the surface into its environment. Understanding the processes which control the production of these jets -- both their occurrence, and properties such as the mass, velocity, and particle size distribution of material injected -- has been a topic of active research at AWE for over 50 years. I will discuss the effect of material physics, such as strength and spall, on the production of ejecta, drawing on experimental history and recent calculations, and consider the processes which determine the distribution of particle sizes which result as ejecta jets break up. British Crown Owned Copyright 2017/AWE.
Microfabrication of curcumin-loaded microparticles using coaxial electrohydrodynamic atomization
NASA Astrophysics Data System (ADS)
Yuan, Shuai; Si, Ting; Liu, Zhongfa; Xu, Ronald X.
2014-03-01
Encapsulation of curcumin in PLGA microparticles is performed by a coaxial electrohydrodynamic atomization device. To optimize the process, the effects of different control parameters on morphology and size distribution of resultant microparticles are studied systemically. Four main flow modes are identified as the applied electric field intensity increases. The stable cone-jet configuration is found to be available for fabricating monodisperse microparticles with core-shell structures. The results are compared with those observed in traditional emulsion. The drug-loading efficiency is also checked. The present system is advantageous for the enhancement of particle size distribution and drug-loading efficiency in various applications such as drug delivery, biomedicine and image-guided therapy.
Lee, Jong-Hee; Kamada, Kai; Enomoto, Naoya; Hojo, Junichi
2007-12-15
Polyhedral gold nanoparticles below 100 nm in size were fabricated by continuously delivered HAuCl(4) and PVP starting solutions into l-ascorbic acid aqueous solution in the presence of gold seeds, and under addition of sodium hydroxide (NaOH). By continuously delivered PVP and HAuCl(4) starting solutions in the presence of gold seed, the size and shape of polyhedral gold were achieved in relatively good uniformity (particle size distribution=65-95 nm). Morphological evolution was also attempted using different growth rates of crystal facets with increasing reaction temperature, and selective adsorption of PVP.
Deducing growth mechanisms for minerals from the shapes of crystal size distributions
Eberl, D.D.; Drits, V.A.; Srodon, J.
1998-01-01
Crystal size distributions (CSDs) of natural and synthetic samples are observed to have several distinct and different shapes. We have simulated these CSDs using three simple equations: the Law of Proportionate Effect (LPE), a mass balance equation, and equations for Ostwald ripening. The following crystal growth mechanisms are simulated using these equations and their modifications: (1) continuous nucleation and growth in an open system, during which crystals nucleate at either a constant, decaying, or accelerating nucleation rate, and then grow according to the LPE; (2) surface-controlled growth in an open system, during which crystals grow with an essentially unlimited supply of nutrients according to the LPE; (3) supply-controlled growth in an open system, during which crystals grow with a specified, limited supply of nutrients according to the LPE; (4) supply- or surface-controlled Ostwald ripening in a closed system, during which the relative rate of crystal dissolution and growth is controlled by differences in specific surface area and by diffusion rate; and (5) supply-controlled random ripening in a closed system, during which the rate of crystal dissolution and growth is random with respect to specific surface area. Each of these mechanisms affects the shapes of CSDs. For example, mechanism (1) above with a constant nucleation rate yields asymptotically-shaped CSDs for which the variance of the natural logarithms of the crystal sizes (??2) increases exponentially with the mean of the natural logarithms of the sizes (??). Mechanism (2) yields lognormally-shaped CSDs, for which ??2 increases linearly with ??, whereas mechanisms (3) and (5) do not change the shapes of CSDs, with ??2 remaining constant with increasing ??. During supply-controlled Ostwald ripening (4), initial lognormally-shaped CSDs become more symmetric, with ??2 decreasing with increasing ??. Thus, crystal growth mechanisms often can be deduced by noting trends in ?? versus ??2 of CSDs for a series of related samples.
Knouft, Jason H
2004-05-01
Many taxonomic and ecological assemblages of species exhibit a right-skewed body size-frequency distribution when characterized at a regional scale. Although this distribution has been frequently described, factors influencing geographic variation in the distribution are not well understood, nor are mechanisms responsible for distribution shape. In this study, variation in the species body size-frequency distributions of 344 regional communities of North American freshwater fishes is examined in relation to latitude, species richness, and taxonomic composition. Although the distribution of all species of North American fishes is right-skewed, a negative correlation exists between latitude and regional community size distribution skewness, with size distributions becoming left-skewed at high latitudes. This relationship is not an artifact of the confounding relationship between latitude and species richness in North American fishes. The negative correlation between latitude and regional community size distribution skewness is partially due to the geographic distribution of families of fishes and apparently enhanced by a nonrandom geographic distribution of species within families. These results are discussed in the context of previous explanations of factors responsible for the generation of species size-frequency distributions related to the fractal nature of the environment, energetics, and evolutionary patterns of body size in North American fishes.
Producing graphite with desired properties
NASA Technical Reports Server (NTRS)
Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.
1971-01-01
Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.
Hierarchical charge distribution controls self-assembly process of silk in vitro
NASA Astrophysics Data System (ADS)
Zhang, Yi; Zhang, Cencen; Liu, Lijie; Kaplan, David L.; Zhu, Hesun; Lu, Qiang
2015-12-01
Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.
Manga, Mohamed S; York, David W
2017-09-12
Stirred cell membrane emulsification (SCME) has been employed to prepare concentrated Pickering oil in water emulsions solely stabilized by fumed silica nanoparticles. The optimal conditions under which highly stable and low-polydispersity concentrated emulsions using the SCME approach are highlighted. Optimization of the oil flux rates and the paddle stirrer speeds are critical to achieving control over the droplet size and size distribution. Investigating the influence of oil volume fraction highlights the criticality of the initial particle loading in the continuous phase on the final droplet size and polydispersity. At a particle loading of 4 wt %, both the droplet size and polydispersity increase with increasing of the oil volume fraction above 50%. As more interfacial area is produced, the number of particles available in the continuous phase diminishes, and coincidently a reduction in the kinetics of particle adsorption to the interface resulting in larger polydisperse droplets occurs. Increasing the particle loading to 10 wt % leads to significant improvements in both size and polydispersity with oil volume fractions as high as 70% produced with coefficient of variation values as low as ∼30% compared to ∼75% using conventional homogenization techniques.
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; ...
2017-04-13
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
The Control of Welding Deformation of the Three-Section Arm of Placing Boom of HB48B Pump Truck
NASA Astrophysics Data System (ADS)
Wang, Zhi-ling
2018-02-01
The concrete pump truck is the construction equipment of conveying concrete with self contained base plate and distributing boom. It integrates the pump transport mechanism of the concrete pump, and the hydraulic roll-folding type distributing boom used to distribute materials, and the supporting mechanism into the automobile chassis, and it is the concrete conveying equipment with high efficient and the functions of driving, pumping, and distributing materials. The placing boom of the concrete pump truck is the main force member in the pump parts with bearing great pressure, and its stress condition is complex. Taking the HB48B placing boom as an example, this paper analyzes and studies the deformation produced by placing boom of pump truck, and then obtains some main factors affecting the welding deformation. Through the riveter “joint” size, we controlled the process parameters, post-welding processing, and other aspects. These measures had some practical significance to prevent, control, and reduce the deformation of welding.
Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu
2012-01-01
SUMMARY Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence. The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster. Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501–507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients. PMID:23074359
Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu
2012-09-01
Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence.The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster.Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501-507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients.
Kinetic energy distribution of multiply charged ions in Coulomb explosion of Xe clusters.
Heidenreich, Andreas; Jortner, Joshua
2011-02-21
We report on the calculations of kinetic energy distribution (KED) functions of multiply charged, high-energy ions in Coulomb explosion (CE) of an assembly of elemental Xe(n) clusters (average size (n) = 200-2171) driven by ultra-intense, near-infrared, Gaussian laser fields (peak intensities 10(15) - 4 × 10(16) W cm(-2), pulse lengths 65-230 fs). In this cluster size and pulse parameter domain, outer ionization is incomplete∕vertical, incomplete∕nonvertical, or complete∕nonvertical, with CE occurring in the presence of nanoplasma electrons. The KEDs were obtained from double averaging of single-trajectory molecular dynamics simulation ion kinetic energies. The KEDs were doubly averaged over a log-normal cluster size distribution and over the laser intensity distribution of a spatial Gaussian beam, which constitutes either a two-dimensional (2D) or a three-dimensional (3D) profile, with the 3D profile (when the cluster beam radius is larger than the Rayleigh length) usually being experimentally realized. The general features of the doubly averaged KEDs manifest the smearing out of the structure corresponding to the distribution of ion charges, a marked increase of the KEDs at very low energies due to the contribution from the persistent nanoplasma, a distortion of the KEDs and of the average energies toward lower energy values, and the appearance of long low-intensity high-energy tails caused by the admixture of contributions from large clusters by size averaging. The doubly averaged simulation results account reasonably well (within 30%) for the experimental data for the cluster-size dependence of the CE energetics and for its dependence on the laser pulse parameters, as well as for the anisotropy in the angular distribution of the energies of the Xe(q+) ions. Possible applications of this computational study include a control of the ion kinetic energies by the choice of the laser intensity profile (2D∕3D) in the laser-cluster interaction volume.
Taurocholate pool size and distribution in the fetal rat.
Little, J M; Richey, J E; Van Thiel, D H; Lester, R
1979-01-01
Taurocholate concentrations in fetal and neonatal rats were determined by radioimmunoassay. Total body taurocholate pool size varied from 0.0049 +/- 0.0008 to 203 +/- 8 nmol/g body weight from day 5 of gestation to 5 d after birth. A 50-fold increase in taurocholate pool size was observed between days 15 and 19 of gestation. The distribution of taurocholate between liver, intestine, and the remainder of the carcass was determined for rats of gestational age 19 d to 5 d after birth. The major fraction of total body taurocholate was in the liver and intestine, with less than 15% in the remainder of the carcass. The ratio of taurocholate in intestine to taurocholate in liver, which was 1:17 at 19 d of gestation, had altered substantially to a ratio of 6:1 by 5 d after birth. Treatment of pregnant rats with 60 microgram/d of dexamethasone from gestational day 9 until sacrifice increased fetal taurocholate pool size by 80% at 15 d, 40% at 19 d, and 16% at 1 d after birth. Administration of dexamethasone to the mother also changed the ratio of taurocholate in intestine to taurocholate in liver. At 19 d of gestation, dexamethasone-treated mothers had fetuses with approximately equal amounts of taurocholate in intestine and liver. This suggested that adrenocorticosteroids stimulate the early maturation of factors controlling taurocholate pool size and tissue distribution in the rat fetus. PMID:447826
Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models.
Hillier, John K; Kougioumtzoglou, Ioannis A; Stokes, Chris R; Smith, Michael J; Clark, Chris D; Spagnolo, Matteo S
2016-01-01
Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A 'stochastic instability' (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models.
Letelier, Ricardo M.; Whitmire, Amanda L.; Barone, Benedetto; Bidigare, Robert R.; Church, Matthew J.; Karl, David M.
2015-01-01
Abstract The particle size distribution (PSD) is a critical aspect of the oceanic ecosystem. Local variability in the PSD can be indicative of shifts in microbial community structure and reveal patterns in cell growth and loss. The PSD also plays a central role in particle export by influencing settling speed. Satellite‐based models of primary productivity (PP) often rely on aspects of photophysiology that are directly related to community size structure. In an effort to better understand how variability in particle size relates to PP in an oligotrophic ecosystem, we collected laser diffraction‐based depth profiles of the PSD and pigment‐based classifications of phytoplankton functional types (PFTs) on an approximately monthly basis at the Hawaii Ocean Time‐series Station ALOHA, in the North Pacific subtropical gyre. We found a relatively stable PSD in the upper water column. However, clear seasonality is apparent in the vertical distribution of distinct particle size classes. Neither laser diffraction‐based estimations of relative particle size nor pigment‐based PFTs was found to be significantly related to the rate of 14C‐based PP in the light‐saturated upper euphotic zone. This finding indicates that satellite retrievals of particle size, based on particle scattering or ocean color would not improve parameterizations of present‐day bio‐optical PP models for this region. However, at depths of 100–125 m where irradiance exerts strong control on PP, we do observe a significant linear relationship between PP and the estimated carbon content of 2–20 μm particles. PMID:27812434
White, Angelicque E; Letelier, Ricardo M; Whitmire, Amanda L; Barone, Benedetto; Bidigare, Robert R; Church, Matthew J; Karl, David M
2015-11-01
The particle size distribution (PSD) is a critical aspect of the oceanic ecosystem. Local variability in the PSD can be indicative of shifts in microbial community structure and reveal patterns in cell growth and loss. The PSD also plays a central role in particle export by influencing settling speed. Satellite-based models of primary productivity (PP) often rely on aspects of photophysiology that are directly related to community size structure. In an effort to better understand how variability in particle size relates to PP in an oligotrophic ecosystem, we collected laser diffraction-based depth profiles of the PSD and pigment-based classifications of phytoplankton functional types (PFTs) on an approximately monthly basis at the Hawaii Ocean Time-series Station ALOHA, in the North Pacific subtropical gyre. We found a relatively stable PSD in the upper water column. However, clear seasonality is apparent in the vertical distribution of distinct particle size classes. Neither laser diffraction-based estimations of relative particle size nor pigment-based PFTs was found to be significantly related to the rate of 14 C-based PP in the light-saturated upper euphotic zone. This finding indicates that satellite retrievals of particle size, based on particle scattering or ocean color would not improve parameterizations of present-day bio-optical PP models for this region. However, at depths of 100-125 m where irradiance exerts strong control on PP, we do observe a significant linear relationship between PP and the estimated carbon content of 2-20 μm particles.
Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki
2016-12-01
This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO 2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO 2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO 2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO 2 : anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO 2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO 2 nanoparticles.
Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B
2015-09-22
Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy.
Water pumping in mantle shear zones
Précigout, Jacques; Prigent, Cécile; Palasse, Laurie; Pochon, Anthony
2017-01-01
Water plays an important role in geological processes. Providing constraints on what may influence the distribution of aqueous fluids is thus crucial to understanding how water impacts Earth's geodynamics. Here we demonstrate that ductile flow exerts a dynamic control on water-rich fluid circulation in mantle shear zones. Based on amphibole distribution and using dislocation slip-systems as a proxy for syn-tectonic water content in olivine, we highlight fluid accumulation around fine-grained layers dominated by grain-size-sensitive creep. This fluid aggregation correlates with dislocation creep-accommodated strain that localizes in water-rich layers. We also give evidence of cracking induced by fluid pressure where the highest amount of water is expected. These results emphasize long-term fluid pumping attributed to creep cavitation and associated phase nucleation during grain size reduction. Considering the ubiquitous process of grain size reduction during strain localization, our findings shed light on multiple fluid reservoirs in the crust and mantle. PMID:28593947
Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride.
Lee, Judy; Ashokkumar, Muthupandian; Kentish, Sandra E
2014-01-01
Ultrasound is known to promote nucleation of crystals and produce a narrower size distribution in a controlled and reproducible manner for the crystallisation process. Although there are various theories that suggest cavitation bubbles are responsible for sonocrystallisation, most studies use power ultrasonic horns that generate both intense shear and cavitation and this can mask the role that cavitation bubbles play. High frequency ultrasound from a plate transducer can be used to examine the effect of cavitation bubbles without the intense shear effect. This study reports the crystal size and morphology with various mixing speeds and ultrasound frequencies. The results show high frequency ultrasound produced sodium chloride crystals of similar size distribution as an ultrasonic horn. In addition, ultrasound generated sodium chloride crystals having a more symmetrical cubic structure compared to crystals produced by a high shear mixer. Copyright © 2013 Elsevier B.V. All rights reserved.
Entropic determination of the phase transition in a coevolving opinion-formation model.
Burgos, E; Hernández, Laura; Ceva, H; Perazzo, R P J
2015-03-01
We study an opinion formation model by the means of a coevolving complex network where the vertices represent the individuals, characterized by their evolving opinions, and the edges represent the interactions among them. The network adapts to the spreading of opinions in two ways: not only connected agents interact and eventually change their thinking but an agent may also rewire one of its links to a neighborhood holding the same opinion as his. The dynamics, based on a global majority rule, depends on an external parameter that controls the plasticity of the network. We show how the information entropy associated to the distribution of group sizes allows us to locate the phase transition between a phase of full consensus and another, where different opinions coexist. We also determine the minimum size of the most informative sampling. At the transition the distribution of the sizes of groups holding the same opinion is scale free.
Robust synthesis of epoxy resin-filled microcapsules for application to self-healing materials.
Bolimowski, Patryk A; Bond, Ian P; Wass, Duncan F
2016-02-28
Mechanically and thermally robust microcapsules containing diglycidyl ether bisphenol A-based epoxy resin and a high-boiling-point organic solvent were synthesized in high yield using in situ polymerization of urea and formaldehyde in an oil-in-water emulsion. Microcapsules were characterized in terms of their size and size distribution, shell surface morphology and thermal resistance to the curing cycles of commercially used epoxy polymers. The size distribution of the capsules and characteristics such as shell thickness can be controlled by the specific parameters of microencapsulation, including concentrations of reagents, stirrer speed and sonication. Selected microcapsules, and separated core and shell materials, were analysed using thermogravimetric analysis and differential scanning calorimetry. It is demonstrated that capsules lose minimal 2.5 wt% at temperatures no higher than 120°C. These microcapsules can be applied to self-healing carbon fibre composite structural materials, with preliminary results showing promising performance. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Wu, Han; Wu, Chengping; Zhang, Nan; Zhu, Xiaonong; Ma, Xiuquan; Zhigilei, Leonid V.
2018-03-01
Laser ablation of metal targets is actively used for generation of chemically clean nanoparticles for a broad range of practical applications. The processes involved in the nanoparticle formation at all relevant spatial and temporal scales are still not fully understood, making the precise control of the size and shape of the nanoparticles challenging. In this paper, a combination of molecular dynamics simulations and experiments is applied to investigate femtosecond laser ablation of aluminum targets in vacuum and in 1 atm argon background gas. The results of the simulations reveal a strong effect of the background gas environment on the initial plume expansion and evolution of the nanoparticle size distribution. The suppression of the generation of small/medium-size Al clusters and formation of a dense layer at the front of the expanding ablation plume, observed during the first nanosecond of the plume expansion in a simulation performed in the gas environment, have important implications on the characteristics of the nanoparticles deposited on a substrate and characterized in the experiments. The nanoparticles deposited in the gas environment are found to be more round-shaped and less flattened as compared to those deposited in vacuum. The nanoparticle size distributions exhibit power-law dependences with similar values of exponents obtained from fitting experimental and simulated data. Taken together, the results of this study suggest that the gas environment may be effectively used to control size and shape of nanoparticles generated by laser ablation.
Voronoi Cell Patterns: theoretical model and application to submonolayer growth
NASA Astrophysics Data System (ADS)
González, Diego Luis; Einstein, T. L.
2012-02-01
We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.
Bober, David B.; Kumar, Mukal; Rupert, Timothy J.; ...
2015-12-28
Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantlymore » random high angle (73 pct). Furthermore, these grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways.« less
NASA Astrophysics Data System (ADS)
Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora
2015-04-01
Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes respectively pore sizes in the soil samples occurred by air pycnometer measurement and determination of soil moisture characteristic by evaporation method according to Wind/Schindler. The present study results can be useful to find a correlation between various soil types with different grain size distributions and the suitability of these soils for example for the infiltration of treated wastewater in the context of managed aquifer recharge (MAR) measures.
Constitutive heterochromatin of chromosome 1 and Duffy blood group alleles in schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosower, N.S.; Gerad, L.; Goldstein, M.
1995-04-24
Cytogenetic analysis was carried out in unrelated schizophrenic patients, unrelated controls and patients and family members in multiplex families. The size-distribution of chromosome 1 heterochromatic region (1qH, C-band variants) among 21 unrelated schizophrenic patients was different from that found in a group of 46 controls. The patient group had 1qH variants of smaller size than the control group (P < 0.01). Incubation of phytohemagglutinin-treated blood lymphocytes with 5-azacytidine (which causes decondensation and extension of the heterochromatin) led to a lesser degree of heterochromatin decondensation in a group of patients than in the controls (7 schizophrenic, 9 controls, P < 0.01).more » The distribution of phenotypes of Duffy blood group system (whose locus is linked to the 1qH region) among 28 schizophrenic patients was also different from that in the general population. Cosegregation of schizophrenia with a 1qH (C-band) variant and Duffy blood group allele was observed in one of six multiplex families. The overall results suggest that alterations within the Duffy/1qH region are involved in schizophrenia in some cases. This region contains the locus of D5 dopamine receptor pseudogene 2 (1q21.1), which is transcribed in normal lymphocytes. 33 refs., 1 fig., 2 tabs.« less
Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.
1988-01-01
If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.
Cornelissen, Katri K; Cornelissen, Piers L; Hancock, Peter J B; Tovée, Martin J
2016-05-01
A core feature of anorexia nervosa (AN) is an over-estimation of body size. Women with AN have a different pattern of eye-movements when judging bodies, but it is unclear whether this is specific to their diagnosis or whether it is found in anyone over-estimating body size. To address this question, we compared the eye movement patterns from three participant groups while they carried out a body size estimation task: (i) 20 women with recovering/recovered anorexia (rAN) who had concerns about body shape and weight and who over-estimated body size, (ii) 20 healthy controls who had normative levels of concern about body shape and who estimated body size accurately (iii) 20 healthy controls who had normative levels of concern about body shape but who did over-estimate body size. Comparisons between the three groups showed that: (i) accurate body size estimators tended to look more in the waist region, and this was independent of clinical diagnosis; (ii) there is a pattern of looking at images of bodies, particularly viewing the upper parts of the torso and face, which is specific to participants with rAN but which is independent of accuracy in body size estimation. Since the over-estimating controls did not share the same body image concerns that women with rAN report, their over-estimation cannot be explained by attitudinal concerns about body shape and weight. These results suggest that a distributed fixation pattern is associated with over-estimation of body size and should be addressed in treatment programs. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:507-518). © 2016 The Authors. International Journal of Eating Disorders published by Wiley Periodicals, Inc.
Gradually truncated log-normal in USA publicly traded firm size distribution
NASA Astrophysics Data System (ADS)
Gupta, Hari M.; Campanha, José R.; de Aguiar, Daniela R.; Queiroz, Gabriel A.; Raheja, Charu G.
2007-03-01
We study the statistical distribution of firm size for USA and Brazilian publicly traded firms through the Zipf plot technique. Sale size is used to measure firm size. The Brazilian firm size distribution is given by a log-normal distribution without any adjustable parameter. However, we also need to consider different parameters of log-normal distribution for the largest firms in the distribution, which are mostly foreign firms. The log-normal distribution has to be gradually truncated after a certain critical value for USA firms. Therefore, the original hypothesis of proportional effect proposed by Gibrat is valid with some modification for very large firms. We also consider the possible mechanisms behind this distribution.
Do small animals have a biogeography?
Valdecasas, A G; Camacho, A I; Peláez, M L
2006-01-01
It has been stated that small organisms do not have barriers for distribution and will not show biogeographic discreteness. General models for size-mediated biogeographies establish a transition region between ubiquitous dispersal and restricted biogeography at about 1-10 mm. We tested patterns of distribution versus size with water mites, a group of freshwater organisms with sizes between 300 microm and 10 mm. We compiled a list of all known water mite species for Sierra del Guadarrama (a mountain range in the centre of the Iberian Peninsula) from different authors and our own studies in the area. Recorded habitats include lotic, lentic and interstitial environments. Species body size and world distribution were drawn from our work and published specialized taxonomic literature. The null hypothesis was that distribution is size-independent. The relationship between distribution and size was approached via analysis of variance and between size and habitat via logistic regression. Contrary to expectations, there is no special relationship between water mite size and area size distribution. On the other hand, water mite size is differentially distributed among habitats, although this ecological sorting is very weak. Larger water mites are more common in lentic habitats and smaller water mites in lotic habitats. Size-dependent distribution in which small organisms tend to be cosmopolitan breaks down when the particular biology comes into play. Water mites do not fit a previously proposed size-dependent biogeographical distribution, and are in accordance with similar data published on Tardigrada, Rotifera, Gastrotricha and the like.
Size distributions of micro-bubbles generated by a pressurized dissolution method
NASA Astrophysics Data System (ADS)
Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.
2012-03-01
Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble number density is proposed, and the evaluated visibility agrees well with the visibility measured in the upper tank.
Enhancement of a 2D front-tracking algorithm with a non-uniform distribution of Lagrangian markers
NASA Astrophysics Data System (ADS)
Febres, Mijail; Legendre, Dominique
2018-04-01
The 2D front tracking method is enhanced to control the development of spurious velocities for non-uniform distributions of markers. The hybrid formulation of Shin et al. (2005) [7] is considered. A new tangent calculation is proposed for the calculation of the tension force at markers. A new reconstruction method is also proposed to manage non-uniform distributions of markers. We show that for both the static and the translating spherical drop test case the spurious currents are reduced to the machine precision. We also show that the ratio of the Lagrangian grid size Δs over the Eulerian grid size Δx has to satisfy Δs / Δx > 0.2 for ensuring such low level of spurious velocity. The method is found to provide very good agreement with benchmark test cases from the literature.
Key to enhance thermoelectric performance by controlling crystal size of strontium titanate
NASA Astrophysics Data System (ADS)
Wang, Jun; Ye, Xinxin; Yaer, Xinba; Wu, Yin; Zhang, Boyu; Miao, Lei
2015-09-01
One-step molten salt synthesis process was introduced to fabricate nano to micrometer sized SrTiO3 powders in which effects of synthesis temperature, oxide-to-flux ratios and raw materials on the generation of SrTiO3 powders were examined. 100 nm or above sized pure SrTiO3 particles were obtained at relatively lower temperature of 900∘C. Micro-sized rhombohedral crystals with a maximum size of approximately 12 μm were obtained from SrCO3 or Sr(NO3)2 strontium source with 1:1 O/S ratio. Controlled crystal size and morphology of Nb-doped SrTiO3 particles are prepared by using this method to confirm the performance of thermoelectric properties. The Seebeck coefficient obtained is significantly high when compared with the reported data, and the high ratio of nano particles in the sample has a positive effect on the increase of Seebeck coefficient too, which is likely due to the energy filtering effect at large numbers of grain boundaries resulting from largely distributed structure.
Kulkarni, Amol A; Sebastian Cabeza, Victor
2017-12-19
Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.
Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB6 nanoparticles
NASA Astrophysics Data System (ADS)
Machida, Keisuke; Adachi, Kenji
2015-07-01
An ensemble inhomogeneity of non-spherical LaB6 nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB6 particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent -3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB6 with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.
Amigó, Núria; Mallol, Roger; Heras, Mercedes; Martínez-Hervás, Sergio; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles; Plana, Núria; Yanes, Óscar; Masana, Lluís; Correig, Xavier
2016-01-01
Recent studies have shown that pharmacological increases in HDL cholesterol concentrations do not necessarily translate into clinical benefits for patients, raising concerns about its predictive value for cardiovascular events. Here we hypothesize that the size-modulated lipid distribution within HDL particles is compromised in metabolic disorders that have abnormal HDL particle sizes, such as type 2 diabetes mellitus (DM2). By using NMR spectroscopy combined with a biochemical volumetric model we determined the size and spatial lipid distribution of HDL subclasses in a cohort of 26 controls and 29 DM2 patients before and after two drug treatments, one with niacin plus laropiprant and another with fenofibrate as an add-on to simvastatin. We further characterized the HDL surface properties using atomic force microscopy and fluorescent probes to show an abnormal lipid distribution within smaller HDL particles, a subclass particularly enriched in the DM2 patients. The reduction in the size, force cholesterol esters and triglycerides to emerge from the HDL core to the surface, making the outer surface of HDL more hydrophobic. Interestingly, pharmacological interventions had no effect on this undesired configuration, which may explain the lack of clinical benefits in DM2 subjects. PMID:26778677
NASA Astrophysics Data System (ADS)
Farhat, Hassan I.; Aly, Walid
2018-05-01
This study was carried out to assess the effect of site on the spatial variations of sedimentological characteristics and heavy metal pollution of two semi-enclosed embayments of Lake Nasser. Grain Size, texture and mode of transportation as well as some heavy metals and organic matter were assessed in sediment samples from those embayments. The results indicated that the grain size of the lake sediments was affected by site variation. Moreover, heavy metal distribution in the sediments was mainly directed by grain size distribution and organic matter, though, the organic matter was more critical than grain size in controlling heavy metals distribution in each embayment. The main source of heavy metals in studied embayments was concluded to be the metals brought with flood waters rather than being of anthropogenic origin. The results also indicated the association of studied metals with Fe and Mn oxides of suspended matters and dissolved solids which come with flood water and trapped and settled to the bottom sediment in the stagnation period. Measured indices indicated that southern embayment is more polluted than northern one, which could be explained on the basis that the southern embayment reserves larger amounts of suspended matter coming with the flood than northern embayment.
Nicotine delivery from the refill liquid to the aerosol via high-power e-cigarette device.
Prévôt, Nathalie; de Oliveira, Fabien; Perinel-Ragey, Sophie; Basset, Thierry; Vergnon, Jean-Michel; Pourchez, Jérémie
2017-06-01
To offer an enhanced and well-controlled nicotine delivery from the refill liquid to the aerosol is a key point to adequately satisfy nicotine cravings using electronic nicotine delivery systems (ENDS). A recent high-power ENDS, exhibiting higher aerosol nicotine delivery than older technologies, was used. The particle size distribution was measured using a cascade impactor. The effects of the refill liquid composition on the nicotine content of each size-fraction in the submicron range were investigated. Nicotine was quantified by liquid chromatography coupled with tandem mass spectrometry. Particle size distribution of the airborne refill liquid and the aerosol nicotine demonstrated that the nicotine is equally distributed in droplets regardless of their size. Results also proved that the nicotine concentration in aerosol was significantly lower compared to un-puffed refill liquid. A part of the nicotine may be left in the ENDS upon depletion, and consequently a portion of the nicotine may not be transferred to the user. Thus, new generation high-power ENDS associated with propylene glycol/vegetable glycerin (PG/VG) based solvent were very efficient to generate carrier-droplets containing nicotine molecules with a constant concentration. Findings highlighted that a portion of the nicotine in the refill liquid may not be transferred to the user.
NIF ICCS network design and loading analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tietbohl, G; Bryant, R
The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow providemore » operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738).« less
Effects of particle size distribution in thick film conductors
NASA Technical Reports Server (NTRS)
Vest, R. W.
1983-01-01
Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.
NASA Astrophysics Data System (ADS)
Steer, Philippe; Lague, Dimitri; Gourdon, Aurélie; Croissant, Thomas; Crave, Alain
2016-04-01
The grain-scale morphology of river sediments and their size distribution are important factors controlling the efficiency of fluvial erosion and transport. In turn, constraining the spatial evolution of these two metrics offer deep insights on the dynamics of river erosion and sediment transport from hillslopes to the sea. However, the size distribution of river sediments is generally assessed using statistically-biased field measurements and determining the grain-scale shape of river sediments remains a real challenge in geomorphology. Here we determine, with new methodological approaches based on the segmentation and geomorphological fitting of 3D point cloud dataset, the size distribution and grain-scale shape of sediments located in river environments. Point cloud segmentation is performed using either machine-learning algorithms or geometrical criterion, such as local plan fitting or curvature analysis. Once the grains are individualized into several sub-clouds, each grain-scale morphology is determined using a 3D geometrical fitting algorithm applied on the sub-cloud. If different geometrical models can be conceived and tested, only ellipsoidal models were used in this study. A phase of results checking is then performed to remove grains showing a best-fitting model with a low level of confidence. The main benefits of this automatic method are that it provides 1) an un-biased estimate of grain-size distribution on a large range of scales, from centimeter to tens of meters; 2) access to a very large number of data, only limited by the number of grains in the point-cloud dataset; 3) access to the 3D morphology of grains, in turn allowing to develop new metrics characterizing the size and shape of grains. The main limit of this method is that it is only able to detect grains with a characteristic size greater than the resolution of the point cloud. This new 3D granulometric method is then applied to river terraces both in the Poerua catchment in New-Zealand and along the Laonong river in Taiwan, which point clouds were obtained using both terrestrial lidar scanning and structure from motion photogrammetry.
Cereceda-Balic, Francisco; Toledo, Mario; Vidal, Victor; Guerrero, Fabian; Diaz-Robles, Luis A; Petit-Breuilh, Ximena; Lapuerta, Magin
2017-04-15
The objective of this research was to determine emission factors (EF) for particulate matter (PM 2.5 ), combustion gases and particle size distribution generated by the combustion of Eucalyptus globulus (EG), Nothofagus obliqua (NO), both hardwoods, and Pinus radiata (PR), softwood, using a controlled combustion chamber (3CE). Additionally, the contribution of the different emissions stages associated with the combustion of these wood samples was also determined. Combustion experiments were performed using shaving size dried wood (0% humidity). The emission samples were collected with a tedlar bag and sampling cartridges containing quartz fiber filters. High reproducibility was achieved between experiment repetitions (CV<10%, n=3). The EF for PM 2.5 was 1.06gkg -1 for EG, 1.33gkg -1 for NO, and 0.84gkg -1 for PR. Using a laser aerosol spectrometer (0.25-34μm), the contribution of particle emissions (PM 2.5 ) in each stage of emission process (SEP) was sampled in real time. Particle size of 0.265μm were predominant during all stages, and the percentages emitted were PR (33%), EG (29%), and NO (21%). The distributions of EF for PM 2.5 in pre-ignition, flame and smoldering stage varied from predominance of the flame stage for PR (77%) to predominance of the smoldering stage for NO (60%). These results prove that flame phase is not the only stage contributing to emissions and on the contrary, pre-ignition and in especial post-combustion smoldering have also very significant contributions. This demonstrates that particle concentrations measured only in stationary state during flame stage may cause underestimation of emissions. Copyright © 2017 Elsevier B.V. All rights reserved.
The Italian primary school-size distribution and the city-size: a complex nexus
NASA Astrophysics Data System (ADS)
Belmonte, Alessandro; di Clemente, Riccardo; Buldyrev, Sergey V.
2014-06-01
We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features.
Method of making metal oxide ceramic membranes with small pore sizes
Anderson, Marc A.; Xu, Qunyin
1992-01-01
A method for the production of metal oxide ceramic membranes is composed of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.
Lattice-Boltzmann simulation of coalescence-driven island coarsening
Basagaoglu, H.; Green, C.T.; Meakin, P.; McCoy, B.J.
2004-01-01
The first-order phase separation in a thin fluid film was simulated using a two-dimensional lattice-Boltzman model (LBM) with fluid-fluid interactions. The effects of the domain size on the intermediate asymptotic island size distribution were also discussed. It was observed that the overall process is dominated by coalescence which is independent of island mass. The results show that the combined effects of growth, coalescence, and Ostwald ripening control the phase transition process in the LBM simulations.
NASA Astrophysics Data System (ADS)
Moebius, F.; Or, D.
2012-12-01
Dynamics of fluid fronts in porous media shape transport properties of the unsaturated zone and affect management of petroleum reservoirs and their storage properties. What appears macroscopically as smooth and continuous motion of a displacement fluid front may involve numerous rapid interfacial jumps often resembling avalanches of invasion events. Direct observations using high-speed camera and pressure sensors in sintered glass micro-models provide new insights on the influence of flow rates, pore size, and gravity on invasion events and on burst size distribution. Fundamental differences emerge between geometrically-defined pores and "functional" pores invaded during a single burst (invasion event). The waiting times distribution of individual invasion events and decay times of inertial oscillations (following a rapid interfacial jump) are characteristics of different displacement regimes. An invasion percolation model with gradients and including the role of inertia provide a framework for linking flow regimes with invasion sequences and phase entrapment. Model results were compared with measurements and with early studies on invasion burst sizes and waiting times distribution during slow drainage processes by Måløy et al. [1992]. The study provides new insights into the discrete invasion events and their weak links with geometrically-deduced pore geometry. Results highlight factors controlling pore invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment shaping hydraulic properties after the passage of a fluid front.
NASA Astrophysics Data System (ADS)
Hu, Chongya; Shen, Jianlei; Yan, Juan; Zhong, Jian; Qin, Weiwei; Liu, Rui; Aldalbahi, Ali; Zuo, Xiaolei; Song, Shiping; Fan, Chunhai; He, Dannong
2016-01-01
Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (~15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (~1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (~76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection.Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (~15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (~1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (~76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06919j
NASA Astrophysics Data System (ADS)
Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.
2015-08-01
The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia- Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidative properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosols (SIA = sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosols (OA) indicated that highly oxidized secondary OA (SOA) showed decreases similar to those of SIA during APEC. However, primary OA (POA) from cooking, traffic, and biomass burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation degrees during the aging processes were further illustrated in a case study of a severe haze episode. Our results elucidated a complex response of aerosol chemistry to emission controls, which has significant implications that emission controls over regional scales can substantially reduce secondary particulates. However, stricter emission controls for local source emissions are needed for further mitigating air pollution in the megacity of Beijing.
NASA Astrophysics Data System (ADS)
Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.
2015-12-01
The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidation properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosol (SIA: sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosol (OA) indicated that highly oxidized secondary organic aerosol (SOA) showed decreases similar to those of SIA during APEC. However, primary organic aerosol (POA) from cooking, traffic, and biomass-burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation degrees during the aging processes were further illustrated in a case study of a severe haze episode. Our results elucidated a complex response of aerosol chemistry to emission controls, which has significant implications that emission controls over regional scales can substantially reduce secondary particulates. However, stricter emission controls for local source emissions are needed for further mitigating air pollution in the megacity of Beijing.
Capturing the Complexity of Additively Manufactured Microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2016-05-12
The underlying mechanisms and kinetics controlling damage nucleation and growth as a function of material microstructure and loading paths are discussed. These experiments indicate that structural features such as grain boundaries, grain size distribution, grain morphology crystallographic texture are all factors that influence mechanical behavior.
Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption
USDA-ARS?s Scientific Manuscript database
We synthesized hydrothermally stable metal catalysts with controlled particle size and distribution, with the goal of determining which catalyst(s) can selectively catalyze the production of aromatics from bio-oil (from pyrolysis of biomass). Both precious and base transition metal catalysts (Ru, Pt...
NASA Astrophysics Data System (ADS)
Kaitna, Roland; Palucis, Marisa C.; Yohannes, Bereket; Hill, Kimberly M.; Dietrich, William E.
2016-02-01
Debris flows are typically a saturated mixture of poorly sorted particles and interstitial fluid, whose density and flow properties depend strongly on the presence of suspended fine sediment. Recent research suggests that grain size distribution (GSD) influences excess pore pressures (i.e., pressure in excess of predicted hydrostatic pressure), which in turn plays a governing role in debris flow behaviors. We report a series of controlled laboratory experiments in a 4 m diameter vertically rotating drum where the coarse particle size distribution and the content of fine particles were varied independently. We measured basal pore fluid pressures, pore fluid pressure profiles (using novel sensor probes), velocity profiles, and longitudinal profiles of the flow height. Excess pore fluid pressure was significant for mixtures with high fines fraction. Such flows exhibited lower values for their bulk flow resistance (as measured by surface slope of the flow), had damped fluctuations of normalized fluid pressure and normal stress, and had velocity profiles where the shear was concentrated at the base of the flow. These effects were most pronounced in flows with a wide coarse GSD distribution. Sustained excess fluid pressure occurred during flow and after cessation of motion. Various mechanisms may cause dilation and contraction of the flows, and we propose that the sustained excess fluid pressures during flow and once the flow has stopped may arise from hindered particle settling and yield strength of the fluid, resulting in transfer of particle weight to the fluid. Thus, debris flow behavior may be strongly influenced by sustained excess fluid pressures controlled by particle settling rates.
NASA Astrophysics Data System (ADS)
Lizano, Laura; Haun, Stefan
2014-05-01
Sediment transported by rivers start to settle when they enter a reservoir due to reduced flow velocities and turbulences. Reservoir sedimentation is a common problem today and eliminates about 1% of the worldwide existing storage capacity annually. However, depending on the climate conditions and the geology in the catchment area this value can increase up to 5% and higher. Among the results of reservoir deposition is the loss of the storage capacity, a loss of flood control benefits or even blockage of intakes due to sediment accumulation in front of the structure. As a consequence, management tasks have to be planned and conducted to guarantee a safe and economical reservoir operation. A major part of the sediment particles entering the reservoir is transported as suspended sediment load. Hence, accurate knowledge of the transport processes of these particles in the reservoir is advantageous for planning and predicting a sustainable reservoir operation. Of special interest is the spatial distribution of the grain sizes in the reservoir, for example, which grain sizes can be expected to enter the waterway and have a major contribution in turbine abrasion. The suspended sediment concentrations and the grain size distribution along the Sandillal reservoir in Costa Rica were measured in this study by using a Laser In-Situ Scattering and Transmissometry instrument (LISST-SL). The instrument measures sediment concentrations as well as the grain size distributions instantaneously (32 grain sizes in the range between 2.1 and 350 μm) with a frequency of 0.5 Hertz. The measurements were applied at different pre-specified transects along the reservoir, in order to assess the spatial distribution of the suspended sediment concentrations. The measurements were performed in vertical lines, at different depths and for a period of 60 seconds. Additionally, the mean grain size distribution was calculated from the data for each measured point. The measurements showed that the suspended sediment concentrations were low during the field campaign. However, they gave insight of the spatial distribution of the suspended sediments along the reservoir and at different depths. The measurements in front of the intake were especially interesting, since the concentration and the sizes of the particles, which will furthermore enter the intake, could be evaluated.
NASA Astrophysics Data System (ADS)
Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.
2016-06-01
Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The size distribution is particularly sensitive to the mass emissions flux, fire area, wind speed, and time, and we provide simplified fits of the aged size distribution to just these input variables. The simplified fits were tested against 11 aged biomass-burning size distributions observed at the Mt. Bachelor Observatory in August 2015. The simple fits captured over half of the variability in observed Dpm and modal width even though the freshly emitted Dpm and modal widths were unknown. These fits may be used in global and regional aerosol models. Finally, we show that coagulation generally leads to greater changes in the particle size distribution than OA evaporation/formation does, using estimates of OA production/loss from the literature.
Synthesis and Biological Response of Size-Specific, Monodisperse Drug-Silica Nanoconjugates
Tang, Li; Fan, Timothy M.; Borst, Luke B.; Cheng, Jianjun
2012-01-01
Drug-containing nanoparticles (NPs) with monodisperse, controlled particle sizes are highly desirable for drug delivery. Accumulating evidence suggests that NPs with sizes less than 50 nm demonstrate superior performance in vitro and in vivo. However, it is difficult to fabricate monodisperse, drug-containing NPs with discrete and incremental difference in sizes required for studying and characterizing existing relationships among particle size, biologic processing, and therapeutic functionality. Here, we report a scalable process of fabricating drug-silica conjugated nanoparticles, termed drug-silica nanoconjugates (drug-NCs), which possess monodisperse size distributions and desirable particle sizes as small as 20 nm. We found that 20-nm NCs are superior to their 50-nm and 200-nm NC analogues by 2–5 and 10–20 folds, respectively, with regard to tumor accumulation and penetration, and cellular internalization. These fundamental findings underscore the importance and necessity of further miniaturizing nanomedicine size for optimized drug delivery applications. PMID:22494403
Vitreous floaters (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kershaw, K.; Nguyen, Derek; Yee, Kenneth; Nguyen, Justin A.; Harrington, Michael G.; Sebag, Jerry
2017-02-01
BACKGROUND: Vitreous opacities and posterior vitreous detachment (PVD) disturb vision by degrading contrast sensitivity (AJO 172:7-12, 2016). Increased light scattering is the presumed mechanism. To test this hypothesis, dynamic light scattering (DLS) was performed on excised vitreous of patients with clinically significant floaters, and compared to macular pucker controls. METHODS: Undiluted, unfixed vitreous was procured during 25-gauge vitrectomy in 14 subjects (age = 59 +/- 6.6 years) with clinically significant vitreous floaters, and 6 controls (age = 66.5 +/- 8.7 years; P = 0.10) with macular pucker. Total protein concentration was determined by fluorescent Quant-iTTM protein assay kit (Invitrogen/Molecular Probes, Eugene, OR) with bovine serum albumin (0500 ng/ml) as a standard. Fluorescence (excitation at 470 nm and emission at 570 nm) was measured using a Gemini XPS Dual-Scanning Microplate Spectrofluorometer and data analyzed using SoftMax Pro software (Molecular Devices, Sunnyvale, CA). DLS (NS300, Malvern Instruments, Westborough, MA) measurements were performed in each specimen after 10-fold dilution in phosphate buffered saline to optimize concentration in each specimen and determine the mean number of particles, the particle size distributions, and the average particle sizes. RESULTS: Total protein concentration in vitreous specimens trended higher in macular pucker controls (1037 +/- 1038 μg/mL) than eyes with vitreous floaters (353.7 +/- 141.1 μg/mL P = 0.08). When normalized to total protein concentration, the number of particles in vitreous from floater eyes was more than 2-fold greater than controls (P < 0.04). Particle size distributions were similarly two-fold greater in vitreous from floater subjects as compared to controls (P < 0.05). The average particle size in vitreous from floater eyes was 315.8 +/- 194.6 nm, compared to 147.7 +/- 129.3 nm in macular pucker controls (P = 0.039). CONCLUSIONS: Vitreous from eyes with clinically significant floaters contains more particles of larger sizes as compared to controls, likely accounting for the degradation of contrast sensitivity previously found in these patients (Retina 34:1062-8, 2014; IOVS 56:1611-7, 2015; AJO 172:7-12, 2016). DLS could elucidate the underlying molecular abnormalities in patients afflicted with bothersome vitreous floaters and help develop clinical tools to better measure vitreous floaters as well as test the efficacy of various therapies.
A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions
Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.
2005-01-01
Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.
Characterization of an air jet haptic lump display.
Bianchi, Matteo; Gwilliam, James C; Degirmenci, Alperen; Okamura, Allison M
2011-01-01
During manual palpation, clinicians rely on distributed tactile information to identify and localize hard lumps embedded in soft tissue. The development of tactile feedback systems to enhance palpation using robot-assisted minimally invasive surgery (RMIS) systems is challenging due to size and weight constraints, motivating a pneumatic actuation strategy. Recently, an air jet approach has been proposed for generating a lump percept. We use this technique to direct a thin stream of air through an aperture directly on the finger pad, which indents the skin in a hemispherical manner, producing a compelling lump percept. We hypothesize that the perceived parameters of the lump (e.g. size and stiffness) can be controlled by jointly adjusting air pressure and the aperture size through which air escapes. In this work, we investigate how these control variables interact to affect perceived pressure on the finger pad. First, we used a capacitive tactile sensor array to measure the effect of aperture size on output pressure, and found that peak output pressure increases with aperture size. Second, we performed a psychophysical experiment for each aperture size to determine the just noticeable difference (JND) of air pressure on the finger pad. Subject-averaged pressure JND values ranged from 19.4-24.7 kPa, with no statistical differences observed between aperture sizes. The aperture-pressure relationship and the pressure JND values will be fundamental for future display control.
Primary and secondary fragmentation of crystal-bearing intermediate magma
NASA Astrophysics Data System (ADS)
Jones, Thomas J.; McNamara, Keri; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.; Scheu, Bettina; Edwards, Robyn
2016-11-01
Crystal-rich intermediate magmas are subjected to both primary and secondary fragmentation processes, each of which may produce texturally distinct tephra. Of particular interest for volcanic hazards is the extent to which each process contributes ash to volcanic plumes. One way to address this question is by fragmenting pyroclasts under controlled conditions. We fragmented pumice samples from Soufriere Hills Volcano (SHV), Montserrat, by three methods: rapid decompression in a shock tube-like apparatus, impact by a falling piston, and milling in a ball mill. Grain size distributions of the products reveal that all three mechanisms produce fractal breakage patterns, and that the fractal dimension increases from a minimum of 2.1 for decompression fragmentation (primary fragmentation) to a maximum of 2.7 by repeated impact (secondary fragmentation). To assess the details of the fragmentation process, we quantified the shape, texture and components of constituent ash particles. Ash shape analysis shows that the axial ratio increases during milling and that particle convexity increases with repeated impacts. We also quantify the extent to which the matrix is separated from the crystals, which shows that secondary processes efficiently remove adhering matrix from crystals, particularly during milling (abrasion). Furthermore, measurements of crystal size distributions before (using x-ray computed tomography) and after (by componentry of individual grain size classes) decompression-driven fragmentation show not only that crystals influence particular size fractions across the total grain size distribution, but also that free crystals are smaller in the fragmented material than in the original pumice clast. Taken together, our results confirm previous work showing both the control of initial texture on the primary fragmentation process and the contributions of secondary processes to ash formation. Critically, however, our extension of previous analyses to characterisation of shape, texture and componentry provides new analytical tools that can be used to assess contributions of secondary processes to ash deposits of uncertain or mixed origin. We illustrate this application with examples from SHV deposits.
NASA Astrophysics Data System (ADS)
Mulvey, Christine S.; Sherwood, Carly A.; Bigio, Irving J.
2009-11-01
Apoptosis-programmed cell death-is a cellular process exhibiting distinct biochemical and morphological changes. An understanding of the early morphological changes that a cell undergoes during apoptosis can provide the opportunity to monitor apoptosis in tissue, yielding diagnostic and prognostic information. There is avid interest regarding the involvement of apoptosis in cancer. The initial response of a tumor to successful cancer treatment is often massive apoptosis. Current apoptosis detection methods require cell culture disruption. Our aim is to develop a nondisruptive optical method to monitor apoptosis in living cells and tissues. This would allow for real-time evaluation of apoptotic progression of the same cell culture over time without alteration. Elastic scattering spectroscopy (ESS) is used to monitor changes in light-scattering properties of cells in vitro due to apoptotic morphology changes. We develop a simple instrument capable of wavelength-resolved ESS measurements from cell cultures in the backward direction. Using Mie theory, we also develop an algorithm that extracts the size distribution of scatterers in the sample. The instrument and algorithm are validated with microsphere suspensions. For cell studies, Chinese hamster ovary (CHO) cells are cultured to confluence on plates and are rendered apoptotic with staurosporine. Backscattering measurements are performed on pairs of treated and control samples at a sequence of times up to 6-h post-treatment. Initial results indicate that ESS is capable of discriminating between treated and control samples as early as 10- to 15-min post-treatment, much earlier than is sensed by standard assays for apoptosis. Extracted size distributions from treated and control samples show a decrease in Rayleigh and 150-nm scatterers, relative to control samples, with a corresponding increase in 200-nm particles. Work continues to correlate these size distributions with underlying morphology. To our knowledge, this is the first report of the use of backscattering spectral measurements to quantitatively monitor apoptosis in viable cell cultures in vitro.
Particle size distributions from laboratory-scale biomass fires using fast response instruments
S Hosseini; L. Qi; D. Cocker; D. Weise; A. Miller; M. Shrivastava; J.W. Miller; S. Mahalingam; M. Princevac; H. Jung
2010-01-01
Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in...
Resonance-induced multimodal body-size distributions in ecosystems
Lampert, Adam; Tlusty, Tsvi
2013-01-01
The size of an organism reflects its metabolic rate, growth rate, mortality, and other important characteristics; therefore, the distribution of body size is a major determinant of ecosystem structure and function. Body-size distributions often are multimodal, with several peaks of abundant sizes, and previous studies suggest that this is the outcome of niche separation: species from distinct peaks avoid competition by consuming different resources, which results in selection of different sizes in each niche. However, this cannot explain many ecosystems with several peaks competing over the same niche. Here, we suggest an alternative, generic mechanism underlying multimodal size distributions, by showing that the size-dependent tradeoff between reproduction and resource utilization entails an inherent resonance that may induce multiple peaks, all competing over the same niche. Our theory is well fitted to empirical data in various ecosystems, in which both model and measurements show a multimodal, periodically peaked distribution at larger sizes, followed by a smooth tail at smaller sizes. Moreover, we show a universal pattern of size distributions, manifested in the collapse of data from ecosystems of different scales: phytoplankton in a lake, metazoans in a stream, and arthropods in forests. The demonstrated resonance mechanism is generic, suggesting that multimodal distributions of numerous ecological characters emerge from the interplay between local competition and global migration. PMID:23248320
A new stochastic algorithm for inversion of dust aerosol size distribution
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Feng; Yang, Ma-ying
2015-08-01
Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.
NASA Astrophysics Data System (ADS)
Marrufo-Hernández, Norma Alejandra; Hernández-Guerrero, Maribel; Nápoles-Duarte, José Manuel; Palomares-Báez, Juan Pedro; Chávez-Rojo, Marco Antonio
2018-03-01
We present a computational model that describes the diffusion of a hard spheres colloidal fluid through a membrane. The membrane matrix is modeled as a series of flat parallel planes with circular pores of different sizes and random spatial distribution. This model was employed to determine how the size distribution of the colloidal filtrate depends on the size distributions of both, the particles in the feed and the pores of the membrane, as well as to describe the filtration kinetics. A Brownian dynamics simulation study considering normal distributions was developed in order to determine empirical correlations between the parameters that characterize these distributions. The model can also be extended to other distributions such as log-normal. This study could, therefore, facilitate the selection of membranes for industrial or scientific filtration processes once the size distribution of the feed is known and the expected characteristics in the filtrate have been defined.
Effects of a chirped bias voltage on ion energy distributions in inductively coupled plasma reactors
NASA Astrophysics Data System (ADS)
Lanham, Steven J.; Kushner, Mark J.
2017-08-01
The metrics for controlling reactive fluxes to wafers for microelectronics processing are becoming more stringent as feature sizes continue to shrink. Recent strategies for controlling ion energy distributions to the wafer involve using several different frequencies and/or pulsed powers. Although effective, these strategies are often costly or present challenges in impedance matching. With the advent of matching schemes for wide band amplifiers, other strategies to customize ion energy distributions become available. In this paper, we discuss results from a computational investigation of biasing substrates using chirped frequencies in high density, electronegative inductively coupled plasmas. Depending on the frequency range and chirp duration, the resulting ion energy distributions exhibit components sampled from the entire frequency range. However, the chirping process also produces transient shifts in the self-generated dc bias due to the reapportionment of displacement and conduction with frequency to balance the current in the system. The dynamics of the dc bias can also be leveraged towards customizing ion energy distributions.
NASA Astrophysics Data System (ADS)
Lee, H.; Seo, D.; McKee, P.; Corby, R.
2009-12-01
One of the large challenges in data assimilation (DA) into distributed hydrologic models is to reduce the large degrees of freedom involved in the inverse problem to avoid overfitting. To assess the sensitivity of the performance of DA to the dimensionality of the inverse problem, we design and carry out real-world experiments in which the control vector in variational DA (VAR) is solved at different scales in space and time, e.g., lumped, semi-distributed, and fully-distributed in space, and hourly, 6 hourly, etc., in time. The size of the control vector is related to the degrees of freedom in the inverse problem. For the assessment, we use the prototype 4-dimenational variational data assimilator (4DVAR) that assimilates streamflow, precipitation and potential evaporation data into the NWS Hydrology Laboratory’s Research Distributed Hydrologic Model (HL-RDHM). In this talk, we present the initial results for a number of basins in Oklahoma and Texas.
Subduction controls the distribution and fragmentation of Earth’s tectonic plates.
Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J
2016-07-07
The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.
Fabrication of PDMS-Based Microfluidic Devices: Application for Synthesis of Magnetic Nanoparticles
NASA Astrophysics Data System (ADS)
Thu, Vu Thi; Mai, An Ngoc; Le The Tam; Van Trung, Hoang; Thu, Phung Thi; Tien, Bui Quang; Thuat, Nguyen Tran; Lam, Tran Dai
2016-05-01
In this work, we have developed a convenient approach to synthesize magnetic nanoparticles with relatively high magnetization and controllable sizes. This was realized by combining the traditional co-precipitation method and microfluidic techniques inside microfluidic devices. The device was first designed, and then fabricated using simplified soft-lithography techniques. The device was utilized to synthesize magnetite nanoparticles. The synthesized nanomaterials were thoroughly characterized using field emission scanning electron microscopy and a vibrating sample magnetometer. The results demonstrated that the as-prepared device can be utilized as a simple and effective tool to synthesize magnetic nanoparticles with the sizes less than 10 nm and magnetization more than 50 emu/g. The development of these devices opens new strategies to synthesize nanomaterials with more precise dimensions at narrow size-distribution and with controllable behaviors.
Atomic engineering of mixed ferrite and core-shell nanoparticles.
Morrison, Shannon A; Cahill, Christopher L; Carpenter, Everett E; Calvin, Scott; Harris, Vincent G
2005-09-01
Nanoparticulate ferrites such as manganese zinc ferrite and nickel zinc ferrite hold great promise for advanced applications in power electronics. The use of these materials in current applications requires fine control over the nanoparticle size as well as size distribution to maximize their packing density. While there are several techniques for the synthesis of ferrite nanoparticles, reverse micelle techniques provide the greatest flexibility and control over size, crystallinity, and magnetic properties. Recipes for the synthesis of manganese zinc ferrite, nickel zinc ferrite, and an enhanced ferrite are presented along with analysis of the crystalline and magnetic properties. Comparisons are made on the quality of nanoparticles produced using different surfactant systems. The importance of various reaction conditions is explored with a discussion on the corresponding effects on the magnetic properties, particle morphology, stoichiometry, crystallinity, and phase purity.
The effect of Au amount on size uniformity of self-assembled Au nanoparticles
NASA Astrophysics Data System (ADS)
Chen, S.-H.; Wang, D.-C.; Chen, G.-Y.; Chen, K.-Y.
2008-03-01
The self-assembled fabrication of nanostructure, a dreaming approach in the area of fabrication engineering, is the ultimate goal of this research. A finding was proved through previous research that the size of the self-assembled gold nanoparticles could be controlled with the mole ratio between AuCl4- and thiol. In this study, the moles of Au were fixed, only the moles of thiol were adjusted. Five different mole ratios of Au/S with their effect on size uniformity were investigated. The mole ratios were 1:1/16, 1:1/8, 1:1, 1:8, 1:16, respectively. The size distributions of the gold nanoparticles were analyzed by Mac-View analysis software. HR-TEM was used to derive images of self-assembled gold nanoparticles. The result reached was also the higher the mole ratio between AuCl4- and thiol the bigger the self-assembled gold nanoparticles. Under the condition of moles of Au fixed, the most homogeneous nanoparticles in size distribution derived with the mole ratio of 1:1/8 between AuCl4- and thiol. The obtained nanoparticles could be used, for example, in uniform surface nanofabrication, leading to the fabrication of ordered array of quantum dots.
Kero, Ida; Naess, Mari K.; Tranell, Gabriella
2015-01-01
The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm – 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols. PMID:25380385
A continuum theory of grain size evolution and damage
NASA Astrophysics Data System (ADS)
Ricard, Y.; Bercovici, D.
2009-01-01
Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grain size (e.g., mylonites). Grain size reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear localization arising from this hypothesis are problematic because (1) they require the simultaneous action of two creep mechanisms (diffusion and dislocation creep) that occur in different deformation regimes (i.e., in grain size stress space) and (2) the grain growth ("healing") laws employed by these models are derived from normal grain growth or coarsening theory, which are valid in the absence of deformation, although the shear localization setting itself requires deformation. Here we present a new first principles grained-continuum theory, which accounts for both coarsening and damage-induced grain size reduction in a monomineralic assemblage undergoing irrecoverable deformation. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nuclei, and cataclastic breakdown of grains. The theory contains coupled macroscopic continuum mechanical and grain-scale statistical components. The continuum level of the theory considers standard mass, momentum, and energy conservation, as well as entropy production, on a statistically averaged grained continuum. The grain-scale element of the theory describes both the evolution of the grain size distribution and mechanisms for both continuous grain growth and discontinuous grain fracture and coalescence. The continuous and discontinuous processes of grain size variation are prescribed by nonequilibrium thermodynamics (in particular, the treatment of entropy production provides the phenomenological laws for grain growth and reduction); grain size evolution thus incorporates the free energy differences between grains, including both grain boundary surface energy (which controls coarsening) and the contribution of deformational work to these free energies (which controls damage). In the absence of deformation, only two mechanisms that increase the average grain size are allowed by the second law of thermodynamics. One mechanism, involving continuous diffusive mass transport from small to large grains, captures the essential components of normal grain growth theories of Lifshitz-Slyosov and Hillert. The second mechanism involves the aggregation of grains and is described using a Smoluchovski formalism. With the inclusion of deformational work and damage, the theory predicts two mechanisms for which the thermodynamic requirement of entropy positivity always forces large grains to shrink and small ones to grow. The first such damage-driven mechanism involving continuous mass transfer from large to small grains tends to homogenize the distribution of grain size toward its initial mean grain size. The second damage mechanism favors the creation of small grains by discontinuous division of larger grains and reduces the mean grain size with time. When considered separately, most of these mechanisms allow for self-similar grain size distributions whose scales (i.e., statistical moments such as the mean, variance, and skewness) can all be described by a single grain scale, such as the mean or maximum. However, the combination of mechanisms, e.g., one that captures the competition between continuous coarsening and mean grain size reduction by breakage, does not generally permit a self-similar solution for the grain size distribution, which contradicts the classic assumption that grain growth laws allowing for both coarsening and recrystallization can be treated with a single grain scale such as the mean size.
Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models
Kougioumtzoglou, Ioannis A.; Stokes, Chris R.; Smith, Michael J.; Clark, Chris D.; Spagnolo, Matteo S.
2016-01-01
Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A ‘stochastic instability’ (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models. PMID:27458921
SPECIATION OF GAS-PHASE AND FINE PARTICLE EMISSIONS FROM BURNING OF FOLIAR FUELS
Particle size distributions (10-1000 nm aerodynamic diameter), physical and chemical properties of fine particle matter (PM2.5) with aerodynamic diameter <2.5 micrometers, and gas-phase emissions from controlled open burning of assorted taxa were measured. Chemical speciation of ...
Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...
CHARACTERIZATION OF AEROSOLS FROM A WATER-BASED CLEANER APPLIED WITH A HAND-PUMP SPRAYER
The paper gives results of tests that were performed in a controlled-environment test room to measure particle concentrations and size distributions and concentrations of selected volatily organic compounds during, and following, application of water-based cleaners to realistic s...
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Stattegger, K.; Nittrouer, C.; Phung, P. V.; Liu, P.; DeMaster, D. J.; Bui, D. V.; Le, A. D.; Nguyen, T. N.
2016-02-01
Collected surface-sediment samples in coastal water around Mekong Delta (from distributary channels to Ca Mau Peninsula) were analyzed to determine surface-sediment grain-size distribution and sediment-transport trend in the subaqueous Mekong Delta. The grain-size data set of 238 samples was obtained by using the laser instrument Mastersizer 2000 and LS Particle Size Analyzer. Fourteen samples were selected for geochemical analysis (total-organic and carbonate content). These geochemical results were used to assist in interpreting variations of granulometricparamenters along the cross-shore transects. Nine transects were examined from CungHau river mouth to Ca Mau Peninsula and six thematic maps on the whole study area were made. The research results indicate that: (1) generally, the sediment becomes finer from the delta front downwards to prodelta and becomes coarser again and poorer sorted on the adjacent inner shelf due to different sources of sediment; (2) sediment-granulometry parameters vary among sedimentary sub-environments of the underwater part of Mekong Delta, the distance from sediment source and hydrodynamic regime controlling each region; (3) the net sediment transport is southwest toward the Ca Mau Peninsula.
NASA Astrophysics Data System (ADS)
Kaindl, T.; Oelke, J.; Pasc, A.; Kaufmann, S.; Konovalov, O. V.; Funari, S. S.; Engel, U.; Wixforth, A.; Tanaka, M.
2010-07-01
Highly uniform, strongly correlated domains of synthetically designed lipids can be incorporated into supported lipid membranes. The systematic characterization of membranes displaying a variety of domains revealed that the equilibrium size of domains significantly depends on the length of fluorocarbon chains, which can be quantitatively interpreted within the framework of an equivalent dipole model. A mono-dispersive, narrow size distribution of the domains enables us to treat the inter-domain correlations as two-dimensional colloidal crystallization and calculate the potentials of mean force. The obtained results demonstrated that both size and inter-domain correlation can precisely be controlled by the molecular structures. By coupling α-D-mannose to lipid head groups, we studied the adhesion behavior of the murine macrophage (J774A.1) on supported membranes. Specific adhesion and spreading of macrophages showed a clear dependence on the density of functional lipids. The obtained results suggest that such synthetic lipid domains can be used as a defined platform to study how cells sense the size and distribution of functional molecules during adhesion and spreading.
Predicting the particle size distribution of eroded sediment using artificial neural networks.
Lagos-Avid, María Paz; Bonilla, Carlos A
2017-03-01
Water erosion causes soil degradation and nonpoint pollution. Pollutants are primarily transported on the surfaces of fine soil and sediment particles. Several soil loss models and empirical equations have been developed for the size distribution estimation of the sediment leaving the field, including the physically-based models and empirical equations. Usually, physically-based models require a large amount of data, sometimes exceeding the amount of available data in the modeled area. Conversely, empirical equations do not always predict the sediment composition associated with individual events and may require data that are not always available. Therefore, the objective of this study was to develop a model to predict the particle size distribution (PSD) of eroded soil. A total of 41 erosion events from 21 soils were used. These data were compiled from previous studies. Correlation and multiple regression analyses were used to identify the main variables controlling sediment PSD. These variables were the particle size distribution in the soil matrix, the antecedent soil moisture condition, soil erodibility, and hillslope geometry. With these variables, an artificial neural network was calibrated using data from 29 events (r 2 =0.98, 0.97, and 0.86; for sand, silt, and clay in the sediment, respectively) and then validated and tested on 12 events (r 2 =0.74, 0.85, and 0.75; for sand, silt, and clay in the sediment, respectively). The artificial neural network was compared with three empirical models. The network presented better performance in predicting sediment PSD and differentiating rain-runoff events in the same soil. In addition to the quality of the particle distribution estimates, this model requires a small number of easily obtained variables, providing a convenient routine for predicting PSD in eroded sediment in other pollutant transport models. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.
2018-04-01
Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.
Hydrologic control on the root growth of Salix cuttings at the laboratory scale
NASA Astrophysics Data System (ADS)
Bau', Valentina; Calliari, Baptiste; Perona, Paolo
2017-04-01
Riparian plant roots contribute to the ecosystem functioning and, to a certain extent, also directly affect fluvial morphodynamics, e.g. by influencing sediment transport via mechanical stabilization and trapping. There is much both scientific and engineering interest in understanding the complex interactions among riparian vegetation and river processes. For example, to investigate plant resilience to uprooting by flow, one should quantify the probability that riparian plants may be uprooted during specific flooding event. Laboratory flume experiments are of some help to this regard, but are often limited to use grass (e.g., Avena and Medicago sativa) as vegetation replicate with a number of limitations due to fundamental scaling problems. Hence, the use of small-scale real plants grown undisturbed in the actual sediment and within a reasonable time frame would be particularly helpful to obtain more realistic flume experiments. The aim of this work is to develop and tune an experimental technique to control the growth of the root vertical density distribution of small-scale Salix cuttings of different sizes and lengths. This is obtained by controlling the position of the saturated water table in the sedimentary bed according to the sediment size distribution and the cutting length. Measurements in the rhizosphere are performed by scanning and analysing the whole below-ground biomass by means of the root analysis software WinRhizo, from which root morphology statistics and the empirical vertical density distribution are obtained. The model of Tron et al. (2015) for the vertical density distribution of the below-ground biomass is used to show that experimental conditions that allow to develop the desired root density distribution can be fairly well predicted. This augments enormously the flexibility and the applicability of the proposed methodology in view of using such plants for novel flow erosion experiments. Tron, S., Perona, P., Gorla, L., Schwarz, M., Laio, F., and L. Ridolfi (2015). The signature of randomness in riparian plant root distributions. Geophys. Res. Letts., 42, 7098-7106
The Italian primary school-size distribution and the city-size: a complex nexus
Belmonte, Alessandro; Di Clemente, Riccardo; Buldyrev, Sergey V.
2014-01-01
We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features. PMID:24954714
Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.
2014-01-01
Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions across terrestrial and aquatic ecosystems.
Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method
NASA Astrophysics Data System (ADS)
Bobadilla, L. F.; García, C.; Delgado, J. J.; Sanz, O.; Romero-Sarria, F.; Centeno, M. A.; Odriozola, J. A.
2012-11-01
The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution.
Tougas, Terrence P; Goodey, Adrian P; Hardwell, Gareth; Mitchell, Jolyon; Lyapustina, Svetlana
2017-02-01
The performance of two quality control (QC) tests for aerodynamic particle size distributions (APSD) of orally inhaled drug products (OIPs) is compared. One of the tests is based on the fine particle dose (FPD) metric currently expected by the European regulators. The other test, called efficient data analysis (EDA), uses the ratio of large particle mass to small particle mass (LPM/SPM), along with impactor sized mass (ISM), to detect changes in APSD for QC purposes. The comparison is based on analysis of APSD data from four products (two different pressurized metered dose inhalers (MDIs) and two dry powder inhalers (DPIs)). It is demonstrated that in each case, EDA is able to detect shifts and abnormalities that FPD misses. The lack of sensitivity on the part of FPD is due to its "aggregate" nature, since FPD is a univariate measure of all particles less than about 5 μm aerodynamic diameter, and shifts or changes within the range encompassed by this metric may go undetected. EDA is thus shown to be superior to FPD for routine control of OIP quality. This finding augments previously reported superiority of EDA compared with impactor stage groupings (favored by US regulators) for incorrect rejections (type I errors) when incorrect acceptances (type II errors) were adjusted to the same probability for both approaches. EDA is therefore proposed as a method of choice for routine quality control of OIPs in both European and US regulatory environments.
Ejected Particle Size Distributions from Shocked Metal Surfaces
Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; ...
2017-04-12
Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.
Ejected Particle Size Distributions from Shocked Metal Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauer, M. M.; Buttler, W. T.; Frayer, D. K.
Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.
Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size
Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.
2014-01-01
We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.
Exact Length Distribution of Filamentous Structures Assembled from a Finite Pool of Subunits.
Harbage, David; Kondev, Jané
2016-07-07
Self-assembling filamentous structures made of protein subunits are ubiquitous in cell biology. These structures are often highly dynamic, with subunits in a continuous state of flux, binding to and falling off of filaments. In spite of this constant turnover of their molecular parts, many cellular structures seem to maintain a well-defined size over time, which is often required for their proper functioning. One widely discussed mechanism of size regulation involves the cell maintaining a finite pool of protein subunits available for assembly. This finite pool mechanism can control the length of a single filament by having assembly proceed until the pool of free subunits is depleted to the point when assembly and disassembly are balanced. Still, this leaves open the question of whether the same mechanism can provide size control for multiple filamentous structures that are assembled from a common pool of protein subunits, as is often the case in cells. We address this question by solving the steady-state master equation governing the stochastic assembly and disassembly of multifilament structures made from a shared finite pool of subunits. We find that, while the total number of subunits within a multifilament structure is well-defined, individual filaments within the structure have a wide, power-law distribution of lengths. We also compute the phase diagram for two multifilament structures competing for the same pool of subunits and identify conditions for coexistence when both have a well-defined size. These predictions can be tested in cell experiments in which the size of the subunit pool or the number of filament nucleators is tuned.
Evidence of scattering effects on the sizes of interplanetary Type III radio bursts
NASA Technical Reports Server (NTRS)
Steinberg, J. L.; Hoang, S.; Dulk, G. A.
1985-01-01
An analysis is conducted of 162 interplanetary Type III radio bursts; some of these bursts have been observed in association with fast electrons and Langmuir wave events at 1 AU and, in addition, have been subjected to in situ plasma parameter measurements. It is noted that the sizes of burst sources are anomalously large, compared to what one would anticipate on the basis of the interplanetary plasma density distribution, and that the variation of source size with frequency, when compared with the plasma frequency variation measured in situ, implies that the source sizes expand with decreasing frequency to fill a cone whose apex is at the sun. It is also found that some local phenomenon near the earth controls the apparent size of low frequency Type III sources.
Xenon-Ion Drilling of Tungsten Films
NASA Technical Reports Server (NTRS)
Garner, C. E.
1986-01-01
High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.
Log-Normal Distribution of Cosmic Voids in Simulations and Mocks
NASA Astrophysics Data System (ADS)
Russell, E.; Pycke, J.-R.
2017-01-01
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.
Particle size distributions in chondritic meteorites: Evidence for pre-planetesimal histories
NASA Astrophysics Data System (ADS)
Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.
2018-07-01
Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (∼15-20%) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of chondrules. If ≥cm-sized aggregates of chondrules can form it will have implications for planet formation and suggests the sticking stage is where the preferential size physics is operating.
Particle Size Distributions in Chondritic Meteorites: Evidence for Pre-Planetesimal Histories
NASA Technical Reports Server (NTRS)
Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.
2018-01-01
Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (approximately 15-20 percent) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of chondrules. If greater than or equal to centimeter-sized aggregates of chondrules can form it will have implications for planet formation and suggests the sticking stage is where the preferential size physics is operating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Dong-Ning; Yang, Yang; Yan, Qiang
Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.
NASA Astrophysics Data System (ADS)
Zahari, Zakirah Mohd; Zubaidah Adnan, Siti; Kanthasamy, Ramesh; Saleh, Suriyati; Samad, Noor Asma Fazli Abdul
2018-03-01
The specification of the crystal product is usually given in terms of crystal size distribution (CSD). To this end, optimal cooling strategy is necessary to achieve the CSD. The direct design control involving analytical CSD estimator is one of the approaches that can be used to generate the set-point. However, the effects of temperature on the crystal growth rate are neglected in the estimator. Thus, the temperature dependence on the crystal growth rate needs to be considered in order to provide an accurate set-point. The objective of this work is to extend the analytical CSD estimator where Arrhenius expression is employed to cover the effects of temperature on the growth rate. The application of this work is demonstrated through a potassium sulphate crystallisation process. Based on specified target CSD, the extended estimator is capable of generating the required set-point where a proposed controller successfully maintained the operation at the set-point to achieve the target CSD. Comparison with other cooling strategies shows a reduction up to 18.2% of the total number of undesirable crystals generated from secondary nucleation using linear cooling strategy is achieved.
Particle size distribution as a useful tool for microbial detection.
Chavez, A; Jimenez, B; Maya, C
2004-01-01
Worldwide, raw or treated wastewater is used for irrigation. However, this practice implies that the microbial content must be controlled. Unfortunately, detection techniques for microorganisms are costly, time consuming, and require highly trained personnel. For these reasons, this study used particle size distribution to measure the microbial quality of wastewater through correlations between the number or volume of particles and the concentration of fecal coliforms, Salmonella spp. and helminth ova. Such correlations were obtained for both raw and chemically treated wastewater. The best fit was the one for helminth ova, which applies for both the influent and effluent and also for all the coagulants involved. This technique allows the on-line quantification of helminth ova at a cost of US$3 and it takes only 5 minutes, instead of the US$70 and 5 days for the standard technique. With respect to the coagulants applied, their behavior is different only for particles smaller than 8 microm, and thus this value is considered as the critical size for this particular treatment. The best coagulant was the aluminium polychloride. In addition, this work establishes the distribution of COD, TSS, nitrogen, and phosphorous for particles smaller and larger than 20 microm.
Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina
2015-03-24
The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.
Size-controlled synthesis of SnO2 quantum dots and their gas-sensing performance
NASA Astrophysics Data System (ADS)
Du, Jianping; Zhao, Ruihua; Xie, Yajuan; Li, Jinping
2015-08-01
Tin dioxide quantum dots (TQDs) with controllable size were synthesized by changing the amount of alkaline reagent in the hydrothermal process. The gas-sensing properties were investigated by operating chemoresistor type sensor. The morphology and structure were characterized by X-ray diffraction, scanning/transmission electron microscopy, UV-vis and Raman spectrometry. The as-synthesized SnO2 shows the characteristics of quantum dots and the narrowest size distribution is about 2-3 nm. The gas-sensing results indicate that the responses are strongly dependent on the size of quantum dots. TQDs with different sizes exhibit different sensitivities and selectivities to volatile toxic chemicals such as aldehyde, acetone, methanol, ethanol and amine. Especially, when the sensors are exposed to 100 ppm triethylamine (TEA), the sensing response value of TQDs with small size is two times higher than that of the large-size TQDs. The maximum response values of TQDs to 1 ppm and 100 ppm TEA are 15 and 153, respectively. The response time is 1 s and the recovery time is 47 s upon exposure to 1 ppm TEA. The results suggest that it is an effective method by regulating the size of SnO2 quantum dots to detect low-concentration hazardous volatile compounds.
McKenzie, Erica R; Young, Thomas M
2013-01-01
Size exclusion chromatography (SEC), which separates molecules based on molecular volume, can be coupled with online inductively coupled plasma mass spectrometry (ICP-MS) to explore size-dependent metal-natural organic matter (NOM) complexation. To make effective use of this analytical dual detector system, the operator should be mindful of quality control measures. Al, Cr, Fe, Se, and Sn all exhibited columnless attenuation, which indicated unintended interactions with system components. Based on signal-to-noise ratio and peak reproducibility between duplicate analyses of environmental samples, consistent peak time and height were observed for Mg, Cl, Mn, Cu, Br, and Pb. Al, V, Fe, Co, Ni, Zn, Se, Cd, Sn, and Sb were less consistent overall, but produced consistent measurements in select samples. Ultrafiltering and centrifuging produced similar peak distributions, but glass fiber filtration produced more high molecular weight (MW) peaks. Storage in glass also produced more high MW peaks than did plastic bottles.
Size-biased distributions in the generalized beta distribution family, with applications to forestry
Mark J. Ducey; Jeffrey H. Gove
2015-01-01
Size-biased distributions arise in many forestry applications, as well as other environmental, econometric, and biomedical sampling problems. We examine the size-biased versions of the generalized beta of the first kind, generalized beta of the second kind and generalized gamma distributions. These distributions include, as special cases, the Dagum (Burr Type III),...
NASA Astrophysics Data System (ADS)
Thomas, Michael A.; Quinodoz, Sofia; Schötz, Eva-Maria
2012-09-01
Asexual reproduction by division in higher organisms is rare, because a prerequisite is the ability to regenerate an entire organism from a piece of the original body. Freshwater planarians are one of the few animals that can reproduce this way, but little is known about the regulation of their reproduction cycles or strategies. We have previously shown that a planarian's reproduction strategy is randomized to include fragmentations, producing multiple offspring, as well as binary fissions, and can be partially explained by a maximum relative entropy principle. In this study we attempt to decompose the factors controlling their reproduction cycle. Based on recent studies on the cell cycle of budding yeast, which suggest that molecular noise in gene expression and cell size at birth together control cell cycle variability, we investigated whether the variability in planarian reproduction waiting times could be similarly regulated. We find that such a model can indeed explain the observed distribution of waiting times between birth and next reproductive event, suggesting that birth size and a stochastic noise term govern the reproduction dynamics of asexual planarians.
Szczurek, Andrzej; Plyushch, Artyom; Macutkevic, Jan
2018-01-01
Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF) resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM) properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated. PMID:29723961
Martell, D John; Kieffer, James D
2007-04-01
Muscle development and growth were investigated in haddock larvae (Melanogrammus aeglefinus L.) incubated under controlled temperatures (4, 6, 8 degrees C) and reared post-hatch through yolk-dependent and exogenous-feeding stages in a 6 degrees C post-hatch environment. Changes in cell number and size in superficial and deep myotomes within the epaxial muscle were investigated for 28 days following hatch. Distinct and significant differences in muscle cellularity following separate developmental strategies were observed in superficial and deep myotomes. The number of superficial myofibres increased with time and, although not in a manner proportional to temperature during the first 21 days post hatch (d.p.h.), there was observed a trend during the final 7 days of greater mean cell size that was strongly associated with increased temperature. In addition, there was an apparent correspondence between increased temperature and increased size between 21 and 28 d.p.h. Among all temperature groups the superficial myotome not only demonstrated a consistent unimodal myofibre-size distribution but one that increased in range proportional to temperature. In the deep muscle, myotomes from higher incubation temperatures had a broader range of fibre sizes and greater numbers of myofibres. The onset of a proliferative event, characterized by a significant recruitment of new smaller myofibres and a bimodal distribution of cell sizes, was directly proportional to incubation temperature such that it occurred at 14 d.p.h. at 8 degrees C but not until 28 d.p.h. at 4 degrees C. The magnitude of that recruitment was also directly proportional to temperature. Following hatch, those embryos from the greatest temperature groups had the largest mean deep muscle size but, as a result of the proliferative event, had the smallest-sized cells 28 days later. The muscle developmental and growth strategy as indicated by sequential changes in cellularity and cell-size distributions between myotomes in response to temperature are also discussed in light of whole animal growth and development.
Distributed Agent-Based Networks in Support of Advanced Marine Corps Command and Control Concept
2012-09-01
clusters of managers and clients that form a hierarchical management framework (Figure 14). However, since it is SNMP-based, due to the size and...that are much less computationally intensive than other proposed approaches such as multivariate calculations of Pareto boundaries (Bordetsky and
Engblom, Henrik; Heiberg, Einar; Erlinge, David; Jensen, Svend Eggert; Nordrehaug, Jan Erik; Dubois-Randé, Jean-Luc; Halvorsen, Sigrun; Hoffmann, Pavel; Koul, Sasha; Carlsson, Marcus; Atar, Dan; Arheden, Håkan
2016-03-09
Cardiac magnetic resonance (CMR) can quantify myocardial infarct (MI) size and myocardium at risk (MaR), enabling assessment of myocardial salvage index (MSI). We assessed how MSI impacts the number of patients needed to reach statistical power in relation to MI size alone and levels of biochemical markers in clinical cardioprotection trials and how scan day affect sample size. Controls (n=90) from the recent CHILL-MI and MITOCARE trials were included. MI size, MaR, and MSI were assessed from CMR. High-sensitivity troponin T (hsTnT) and creatine kinase isoenzyme MB (CKMB) levels were assessed in CHILL-MI patients (n=50). Utilizing distribution of these variables, 100 000 clinical trials were simulated for calculation of sample size required to reach sufficient power. For a treatment effect of 25% decrease in outcome variables, 50 patients were required in each arm using MSI compared to 93, 98, 120, 141, and 143 for MI size alone, hsTnT (area under the curve [AUC] and peak), and CKMB (AUC and peak) in order to reach a power of 90%. If average CMR scan day between treatment and control arms differed by 1 day, sample size needs to be increased by 54% (77 vs 50) to avoid scan day bias masking a treatment effect of 25%. Sample size in cardioprotection trials can be reduced 46% to 65% without compromising statistical power when using MSI by CMR as an outcome variable instead of MI size alone or biochemical markers. It is essential to ensure lack of bias in scan day between treatment and control arms to avoid compromising statistical power. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
CLUH couples mitochondrial distribution to the energetic and metabolic status.
Wakim, Jamal; Goudenege, David; Perrot, Rodolphe; Gueguen, Naig; Desquiret-Dumas, Valerie; Chao de la Barca, Juan Manuel; Dalla Rosa, Ilaria; Manero, Florence; Le Mao, Morgane; Chupin, Stephanie; Chevrollier, Arnaud; Procaccio, Vincent; Bonneau, Dominique; Logan, David C; Reynier, Pascal; Lenaers, Guy; Khiati, Salim
2017-06-01
Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status. © 2017. Published by The Company of Biologists Ltd.
Michaels, Chris A.; Cook, Robert F.
2016-01-01
Maps of residual stress distributions arising from anisotropic thermal expansion effects in a polycrystalline alumina are generated using fluorescence microscopy. The shifts of both the R1 and R2 ruby fluorescence lines of Cr in alumina are used to create maps with sub-µm resolution of either the local mean and shear stresses or local crystallographic a- and c-stresses in the material, with approximately ± 1 MPa stress resolution. The use of single crystal control materials and explicit correction for temperature and composition effects on line shifts enabled determination of the absolute values and distributions of values of stresses. Temperature correction is shown to be critical in absolute stress determination. Experimental determinations of average stress parameters in the mapped structure are consistent with assumed equilibrium conditions and with integrated large-area measurements. Average crystallographic stresses of order hundreds of MPa are determined with characteristic distribution widths of tens of MPa. The stress distributions reflect contributions from individual clusters of stress in the structure; the cluster size is somewhat larger than the grain size. An example application of the use of stress maps is shown in the calculation of stress-intensity factors for fracture in the residual stress field. PMID:27563163
Grain size and shape evolution of experimentally deformed sediments: the role of slip rate
NASA Astrophysics Data System (ADS)
Balsamo, Fabrizio; Storti, Fabrizio; De Paola, Nicola
2016-04-01
Sediment deformation within fault zones occurs with a broad spectrum of mechanisms which, in turn, depend on intrinsic material properties (porosity, grain size and shape, etc.) and external factors (burial depth, fluid pressure, stress configuration, etc.). Fieldworks and laboratory measurements conducted in the last years in sediments faulted at shallow depth showed that cataclasis and grain size reduction can occur very close to the Earth surface (<1-2 km), and that fault displacement is one of the parameters controlling the amount of grain size, shape, and microtextural modifications in fault cores. In this contribution, we present a new set of microstructural observations combined with grain size and shape distribution data obtained from quart-feldspatic loose sediments (mean grain diameter 0.2 mm) experimentally deformed at different slip rates from subseismic (0.01 mm/s, 0.1 mm/s, 1 mm/s, 1 cm/s, and 10 cm/s) to coseismic slip rates (1 m/s). The experiments were originally performed at sigma n=14 MPa, with the same amount of slip (1.3 m), to constrain the frictional properties of such sediments at shallow confining pressures (<1 km). After the experiments, the granular materials deformed in the 0.1-1 mm-thick slip zones were prepared for both grain size distribution analyses and microstructural and textural analyses in thin sections. Grain size distribution analyses were obtained with a Malvern Mastersizer 3000 particle size laser-diffraction analyser, whereas grain shape data (angularity) were obtained by using image analysis technique on selected SEM-photomicrographs. Microstructural observations were performed at different scales with a standard optical microscope and with a SEM. Results indicate that mean grain diameter progressively decreases with increasing slip rates up to ~20-30 m, and that granulometric curves systematically modify as well, shifting toward finer grain sizes. Obtained fractal dimensions (D) indicate that D increases from ~2.3 up to >3 moving from subseismic to coseismic slip rates. Grain angularity also changes with increasing slip rates, being particles more smoothed and rounded in sediments deformed at coseismic slip rates. As a whole, our results indicate that both grain size and shape distributions of experimentally deformed sediments progressively changes from subseismic to coseismic slip rate, thus helping to understand the deformation mechanisms in natural fault zones and to predict frictional and permeability properties of faults affecting shallow sediments.
Body size distribution of the dinosaurs.
O'Gorman, Eoin J; Hone, David W E
2012-01-01
The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.
Body Size Distribution of the Dinosaurs
O’Gorman, Eoin J.; Hone, David W. E.
2012-01-01
The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818
NASA Astrophysics Data System (ADS)
Chakrabarti, Anindya S.
2012-12-01
We address the issue of the distribution of firm size. To this end we propose a model of firms in a closed, conserved economy populated with zero-intelligence agents who continuously move from one firm to another. We then analyze the size distribution and related statistics obtained from the model. There are three well known statistical features obtained from the panel study of the firms i.e., the power law in size (in terms of income and/or employment), the Laplace distribution in the growth rates and the slowly declining standard deviation of the growth rates conditional on the firm size. First, we show that the model generalizes the usual kinetic exchange models with binary interaction to interactions between an arbitrary number of agents. When the number of interacting agents is in the order of the system itself, it is possible to decouple the model. We provide exact results on the distributions which are not known yet for binary interactions. Our model easily reproduces the power law for the size distribution of firms (Zipf’s law). The fluctuations in the growth rate falls with increasing size following a power law (though the exponent does not match with the data). However, the distribution of the difference of the firm size in this model has Laplace distribution whereas the real data suggests that the difference of the log of sizes has the same distribution.
NASA Technical Reports Server (NTRS)
Chao, Luen-Yuan; Shetty, Dinesh K.
1992-01-01
Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.
A comparison of single-cycle versus multiple-cycle proof testing strategies
NASA Technical Reports Server (NTRS)
Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.
1990-01-01
An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading.
The effect of particle size distribution on the design of urban stormwater control measures
Selbig, William R.; Fienen, Michael N.; Horwatich, Judy A.; Bannerman, Roger T.
2016-01-01
An urban pollutant loading model was used to demonstrate how incorrect assumptions on the particle size distribution (PSD) in urban runoff can alter the design characteristics of stormwater control measures (SCMs) used to remove solids in stormwater. Field-measured PSD, although highly variable, is generally coarser than the widely-accepted PSD characterized by the Nationwide Urban Runoff Program (NURP). PSDs can be predicted based on environmental surrogate data. There were no appreciable differences in predicted PSD when grouped by season. Model simulations of a wet detention pond and catch basin showed a much smaller surface area is needed to achieve the same level of solids removal using the median value of field-measured PSD as compared to NURP PSD. Therefore, SCMs that used the NURP PSD in the design process could be unnecessarily oversized. The median of measured PSDs, although more site-specific than NURP PSDs, could still misrepresent the efficiency of an SCM because it may not adequately capture the variability of individual runoff events. Future pollutant loading models may account for this variability through regression with environmental surrogates, but until then, without proper site characterization, the adoption of a single PSD to represent all runoff conditions may result in SCMs that are under- or over-sized, rendering them ineffective or unnecessarily costly.
The microscopic basis for strain localisation in porous media
NASA Astrophysics Data System (ADS)
Main, Ian; Kun, Ferenz; Pal, Gergo; Janosi, Zoltan
2017-04-01
The spontaneous emergence of localized cooperative deformation is an important phenomenon in the development of shear faults in porous media. It can be studied by empirical observation, by laboratory experiment or by numerical simulation. Here we investigate the evolution of damage and fragmentation leading up to and including system-sized failure in a numerical model of a porous rock, using discrete element simulations of the strain-controlled uni-axial compression of cylindrical samples of different finite size. As the system approaches macroscopic failure the number of fractures and the energy release rate both increase as a time-reversed Omori law, with scaling constants for the frequency-size distribution and the inter-event time, including their temporal evolution, that closely resemble those of natural experiments. The damage progressively localizes in a narrow shear band, ultimately a fault 'gouge' containing a large number of poorly-sorted non-cohesive fragments on a broad bandwidth of scales, with properties similar to those of natural and experimental faults. We determine the position and orientation of the central fault plane, the width of the deformation band and the spatial and mass distribution of fragments. The relative width of the deformation band decreases as a power law of the system size and the probability distribution of the angle of the damage plane converges to around 30 degrees, representing an emergent internal coefficient of friction of 0.7 or so. The mass of fragments is power law distributed, with an exponent that does not depend on scale, and is near that inferred for experimental and natural fault gouges. The fragments are in general angular, with a clear self-affine geometry. The consistency of this model with experimental and field results confirms the critical roles of preexisting heterogeneity, elastic interactions, and finite system size to grain size ratio on the development of faults, and ultimately to assessing the predictive power of forecasts of failure time in such media.
Nucleation, growth and localisation of microcracks: implications for predictability of rock failure
NASA Astrophysics Data System (ADS)
Main, I. G.; Kun, F.; Pál, G.; Jánosi, Z.
2016-12-01
The spontaneous emergence of localized co-operative deformation is an important phenomenon in the development of shear faults in porous media. It can be studied by empirical observation, by laboratory experiment or by numerical simulation. Here we investigate the evolution of damage and fragmentation leading up to and including system-sized failure in a numerical model of a porous rock, using discrete element simulations of the strain-controlled uniaxial compression of cylindrical samples of different finite size. As the system approaches macroscopic failure the number of fractures and the energy release rate both increase as a time-reversed Omori law, with scaling constants for the frequency-size distribution and the inter-event time, including their temporal evolution, that closely resemble those of natural experiments. The damage progressively localizes in a narrow shear band, ultimately a fault 'gouge' containing a large number of poorly-sorted non-cohesive fragments on a broad bandwidth of scales, with properties similar to those of natural and experimental faults. We determine the position and orientation of the central fault plane, the width of the deformation band and the spatial and mass distribution of fragments. The relative width of the deformation band decreases as a power law of the system size and the probability distribution of the angle of the damage plane converges to around 30 degrees, representing an emergent internal coefficient of friction of 0.7 or so. The mass of fragments is power law distributed, with an exponent that does not depend on scale, and is near that inferred for experimental and natural fault gouges. The fragments are in general angular, with a clear self-affine geometry. The consistency of this model with experimental and field results confirms the critical roles of pre-existing heterogeneity, elastic interactions, and finite system size to grain size ratio on the development of faults, and ultimately to assessing the predictive power of forecasts of failure time in such media.
A New Bond Albedo for Performing Orbital Debris Brightness to Size Transformations
NASA Technical Reports Server (NTRS)
Mulrooney, Mark K.; Matney, Mark J.
2008-01-01
We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed from the current RCS to size conversion methodology (SiBAM Size-Based Estimation Model) and optical data reduction standards, assures consistency in application with the prior canonical value of 0.1. Herein we present the empirical and mathematical arguments for this approach and by example apply it to a comprehensive set of photometric data acquired via NASA's Liquid Mirror Telescopes during the 2000-2001 observing season.
NASA Astrophysics Data System (ADS)
Belloul, M.; Bartolo, J.-F.; Ziraoui, B.; Coldren, F.; Taly, V.; El Abed, A. I.
2013-07-01
We investigate the effect of an applied ac high voltage on a confined stable nematic liquid crystal (LC) in a microfluidic device and show that this actuation leads to the formation of highly monodisperse microdroplets with an unexpected constant mean size over a large interval of the forcing frequency F and with a droplets production frequency f ≃2F. We show also that despite the nonlinear feature of the droplets formation mechanism, droplets size, and size distribution are governed simply by the LC flow rate Qd and the forcing frequency F.
Mudalige, Thilak K; Qu, Haiou; Linder, Sean W
2015-11-13
Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle. In the case of polydispersed samples, large numbers of particles are needed to obtain accurate size distribution data. Herein, we report a rapid methodology, demonstrating improved nanoparticle recovery and excellent size resolution, for the characterization of gold nanoparticles in dietary supplements using asymmetric flow field flow fractionation coupled with visible absorption spectrometry and inductively coupled plasma mass spectrometry. A linear relationship between gold nanoparticle size and retention times was observed, and used for characterization of unknown samples. The particle size results from unknown samples were compared to results from traditional size analysis by transmission electron microscopy, and found to have less than a 5% deviation in size for unknown product over the size range from 7 to 30 nm. Published by Elsevier B.V.
Preparation and Performance of Porous Polymer Electrolytes Doped with Nano-Al₂O₃.
Jiang, Qingbai; Liang, Bo; Tang, Siqi; Chen, Xu
2018-03-01
Porous polymer electrolytes (PPEs) doped with nano-Al2O3 were prepared by a joint application of ultrasonic treatment and control evaporation in vacuum oven. The morphology, pore size distribution, thermal, electrochemical and mechanical properties of the PPEs were investigated. The porosity distribution of PPEs was uniform and their pore size was relatively modest. The total resistance (Rt) of PPEs with 10% Al2O3 is only 9 Ω at 80 °C. The maximum tensile strength of the PPEs membranes reached to 24.43 MPa. The results show that nano-Al2O3 can improve the comprehensive performance of PPEs without compromising their conductivity and diplayed the good application prospects of Al2O3-modified PPEs for lithium-ion batteries.
Fan, Hailong; Jin, Zhaoxia
2014-04-28
Herein we report how to control the nanostructures and sizes of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) nanoparticles via manipulating freezing in solvent-exchange. By characterizing and analyzing the distinct structural features of the obtained nanoparticles, we recognized that micelle self-assembly happens in the precipitation of PS-b-P2VP when water is added into the block copolymer (BCP) solution. Solvent properties significantly influence micelle types that are vesicles in acetone/H2O and spherical micelles in tetrahydrofuran/H2O, respectively, thus further inducing different frozen nanostructures of the obtained nanoparticles, onion-like in acetone/H2O and large compound micelles in tetrahydrofuran/H2O. By changing the concentration of the block copolymers and the Vsolvent/VH2O ratio to modify the freezing stage at which block copolymer micelles are frozen, we can further control the size of the nanoparticles. Moreover, small molecules (phosphotungstic acid, pyrene, 1-pyrenebutyric acid) can be trapped into the block copolymer nanoparticles via the freezing process. Their distribution in the nanoparticles relies not only on the solvent property, but also on their interactions with block copolymers. The hybrid nanoparticles with ordered distribution of small molecules can be further changed to partially-void nanoparticles. Our study demonstrated that manipulating the freezing of block copolymers in the solvent exchange process is a simple and controllable fabrication method to generate BCP nanoparticles with different architectures.
A more powerful test based on ratio distribution for retention noninferiority hypothesis.
Deng, Ling; Chen, Gang
2013-03-11
Rothmann et al. ( 2003 ) proposed a method for the statistical inference of fraction retention noninferiority (NI) hypothesis. A fraction retention hypothesis is defined as a ratio of the new treatment effect verse the control effect in the context of a time to event endpoint. One of the major concerns using this method in the design of an NI trial is that with a limited sample size, the power of the study is usually very low. This makes an NI trial not applicable particularly when using time to event endpoint. To improve power, Wang et al. ( 2006 ) proposed a ratio test based on asymptotic normality theory. Under a strong assumption (equal variance of the NI test statistic under null and alternative hypotheses), the sample size using Wang's test was much smaller than that using Rothmann's test. However, in practice, the assumption of equal variance is generally questionable for an NI trial design. This assumption is removed in the ratio test proposed in this article, which is derived directly from a Cauchy-like ratio distribution. In addition, using this method, the fundamental assumption used in Rothmann's test, that the observed control effect is always positive, that is, the observed hazard ratio for placebo over the control is greater than 1, is no longer necessary. Without assuming equal variance under null and alternative hypotheses, the sample size required for an NI trial can be significantly reduced if using the proposed ratio test for a fraction retention NI hypothesis.
Hendricks, Charles D.
1988-01-01
A method is provided for producing commercially large quantities of high melting temperature solid or hollow spherical particles of a predetermined chemical composition and having a uniform and controlled size distribution. An end (18, 50, 90) of a solid or hollow rod (20, 48, 88) of the material is rendered molten by a laser beam (14, 44, 82). Because of this, there is no possibility of the molten rod material becoming contaminated with extraneous material. In various aspects of the invention, an electric field is applied to the molten rod end (18, 90), and/or the molten rod end (50, 90) is vibrated. In a further aspect of the invention, a high-frequency component is added to the electric field applied to the molten end of the rod (90). By controlling the internal pressure of the rod, the rate at which the rod is introduced into the laser beam, the environment of the process, the vibration amplitude and frequency of the molten rod end, the electric field intensity applied to the molten rod end, and the frequency and intensity of the component added to the electric field, the uniformity and size distribution of the solid or hollow spherical particles (122) produced by the inventive method is controlled. The polarity of the electric field applied to the molten rod end can be chosen to eliminate backstreaming electrons, which tend to produce run-away heating in the rod, from the process.
NASA Astrophysics Data System (ADS)
Li, Qifan; Chen, Yajie; Harris, Vincent G.
2018-05-01
This letter reports an extended effective medium theory (EMT) including particle-size distribution functions to maximize the magnetic properties of magneto-dielectric composites. It is experimentally verified by Co-Ti substituted barium ferrite (BaCoxTixFe12-2xO19)/wax composites with specifically designed particle-size distributions. In the form of an integral equation, the extended EMT formula essentially takes the size-dependent parameters of magnetic particle fillers into account. It predicts the effective permeability of magneto-dielectric composites with various particle-size distributions, indicating an optimal distribution for a population of magnetic particles. The improvement of the optimized effective permeability is significant concerning magnetic particles whose properties are strongly size dependent.
Freitas, S; Walz, A; Merkle, H P; Gander, B
2003-01-01
The potential of a static micromixer for the production of protein-loaded biodegradable polymeric microspheres by a modified solvent extraction process was examined. The mixer consists of an array of microchannels and features a simple set-up, consumes only very small space, lacks moving parts and offers simple control of the microsphere size. Scale-up from lab bench to industrial production is easily feasible through parallel installation of a sufficient number of micromixers ('number-up'). Poly(lactic-co-glycolic acid) microspheres loaded with a model protein, bovine serum albumin (BSA), were prepared. The influence of various process and formulation parameters on the characteristics of the microspheres was examined with special focus on particle size distribution. Microspheres with monomodal size distributions having mean diameters of 5-30 micro m were produced with excellent reproducibility. Particle size distributions were largely unaffected by polymer solution concentration, polymer type and nominal BSA load, but depended on the polymer solvent. Moreover, particle mean diameters could be varied in a considerable range by modulating the flow rates of the mixed fluids. BSA encapsulation efficiencies were mostly in the region of 75-85% and product yields ranged from 90-100%. Because of its simple set-up and its suitability for continuous production, static micromixing is suggested for the automated and aseptic production of protein-loaded microspheres.
A comparative review of methods for comparing means using partially paired data.
Guo, Beibei; Yuan, Ying
2017-06-01
In medical experiments with the objective of testing the equality of two means, data are often partially paired by design or because of missing data. The partially paired data represent a combination of paired and unpaired observations. In this article, we review and compare nine methods for analyzing partially paired data, including the two-sample t-test, paired t-test, corrected z-test, weighted t-test, pooled t-test, optimal pooled t-test, multiple imputation method, mixed model approach, and the test based on a modified maximum likelihood estimate. We compare the performance of these methods through extensive simulation studies that cover a wide range of scenarios with different effect sizes, sample sizes, and correlations between the paired variables, as well as true underlying distributions. The simulation results suggest that when the sample size is moderate, the test based on the modified maximum likelihood estimator is generally superior to the other approaches when the data is normally distributed and the optimal pooled t-test performs the best when the data is not normally distributed, with well-controlled type I error rates and high statistical power; when the sample size is small, the optimal pooled t-test is to be recommended when both variables have missing data and the paired t-test is to be recommended when only one variable has missing data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanping Guo; Abhishek Yadav; Tanju Karanfil
Adsorption of trichloroethylene (TCE) and atrazine, two synthetic organic contaminants (SOCs) having different optimum adsorption pore regions, by four activated carbons and an activated carbon fiber (ACF) was examined. Adsorbents included two coconut-shell based granular activated carbons (GACs), two coal-based GACs (F400 and HD4000) and a phenol formaldehyde-based activated carbon fiber. The selected adsorbents had a wide range of pore size distributions but similar surface acidity and hydrophobicity. Single solute and preloading (with a dissolved organic matter (DOM)) isotherms were performed. Single solute adsorption results showed that (i) the adsorbents having higher amounts of pores with sizes about the dimensionsmore » of the adsorbate molecules exhibited higher uptakes, (ii) there were some pore structure characteristics, which were not completely captured by pore size distribution analysis, that also affected the adsorption, and (iii) the BET surface area and total pore volume were not the primary factors controlling the adsorption of SOCs. The preloading isotherm results showed that for TCE adsorbing primarily in pores <10 {angstrom}, the highly microporous ACF and GACs, acting like molecular sieves, exhibited the highest uptakes. For atrazine with an optimum adsorption pore region of 10-20 {angstrom}, which overlaps with the adsorption region of some DOM components, the GACs with a broad pore size distribution and high pore volumes in the 10-20 {angstrom} region had the least impact of DOM on the adsorption. 25 refs., 3 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Colucci, Simone; de'Michieli Vitturi, Mattia; Landi, Patrizia
2016-04-01
It is well known that nucleation and growth of crystals play a fundamental role in controlling magma ascent dynamics and eruptive behavior. Size- and shape-distribution of crystal populations can affect mixture viscosity, causing, potentially, transitions between effusive and explosive eruptions. Furthermore, volcanic samples are usually characterized in terms of Crystal Size Distribution (CSD), which provide a valuable insight into the physical processes that led to the observed distributions. For example, a large average size can be representative of a slow magma ascent, and a bimodal CSD may indicate two events of nucleation, determined by two degassing events within the conduit. The Method of Moments (MoM), well established in the field of chemical engineering, represents a mesoscopic modeling approach that rigorously tracks the polydispersity by considering the evolution in time and space of integral parameters characterizing the distribution, the moments, by solving their transport differential-integral equations. One important advantage of this approach is that the moments of the distribution correspond to quantities that have meaningful physical interpretations and are directly measurable in natural eruptive products, as well as in experimental samples. For example, when the CSD is defined by the number of particles of size D per unit volume of the magmatic mixture, the zeroth moment gives the total number of crystals, the third moment gives the crystal volume fraction in the magmatic mixture and ratios between successive moments provide different ways to evaluate average crystal length. Tracking these quantities, instead of volume fraction only, will allow using, for example, more accurate viscosity models in numerical code for magma ascent. Here we adopted, for the first time, a quadrature based method of moments to track the temporal evolution of CSD in a magmatic mixture and we verified and calibrated the model again experimental data. We also show how the equations and the tool developed can be integrated in a magma ascent numerical model, with application to eruptive events occurred at Stromboli volcano (Italy).
Digital 3D holographic display using scattering layers for enhanced viewing angle and image size
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, KyeoReh; Park, Jongchan; Park, YongKeun
2017-05-01
In digital 3D holographic displays, the generation of realistic 3D images has been hindered by limited viewing angle and image size. Here we demonstrate a digital 3D holographic display using volume speckle fields produced by scattering layers in which both the viewing angle and the image size are greatly enhanced. Although volume speckle fields exhibit random distributions, the transmitted speckle fields have a linear and deterministic relationship with the input field. By modulating the incident wavefront with a digital micro-mirror device, volume speckle patterns are controlled to generate 3D images of micrometer-size optical foci with 35° viewing angle in a volume of 2 cm × 2 cm × 2 cm.
Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals.
Gresback, Ryan; Hue, Ryan; Gladfelter, Wayne L; Kortshagen, Uwe R
2011-01-12
Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs.
Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals
2011-01-01
Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs. PMID:21711589
Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals
NASA Astrophysics Data System (ADS)
Gresback, Ryan; Hue, Ryan; Gladfelter, Wayne L.; Kortshagen, Uwe R.
2011-12-01
Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs.
Pore-scale Investigation of Surfactant Induced Mobilization for the Remediation of LNAPL
NASA Astrophysics Data System (ADS)
Ghosh, J.; Tick, G. R.
2011-12-01
The presence of nonaqueous phase liquids within the subsurface can significantly limit the effectiveness of groundwater remediation. Specifically, light nonaqueous phase liquids (LNAPLs) present unique challenges as they can become "smeared" within zones above and below the water table. The aim of this research is to understand the interfacial phenomena at the pore scale influencing residual saturation of LNAPL distribution as function of media heterogeneity and remediation processes from various aquifer systems. A series of columns were packed with three types of unconsolidated sand of increasing heterogeneity in grain size distribution and were established with residual saturations of light and heavy crude oil fractions, respectively. These columns were then subjected to flooding with 0.1% anionic surfactant solution in various episodes to initiate mobilization and enhanced recovery of NAPL phase contamination. Synchrotron X-ray microtomography (SXM) imaging technology was used to study three-dimensional (3-D) distributions of crude-oil-blobs before and after sequential surfactant flooding events. Results showed that LNAPL blob distributions became more heterogeneous after each subsequent surfactant flooding episode for all porous-media systems. NAPL recovery was most effective from the homogenous porous medium whereby 100% recovery resulted after 5 pore volumes (PVs) of flushing. LNAPL within the mildly heterogeneous porous medium produced a limited but consistent reduction in saturation after each surfactant flooding episode (23% and 43% recovery for light and heavy after the 5-PV flood). The highly heterogeneous porous medium showed greater NAPL recovery potential (42% and 16% for light and heavy) only after multiple pore volumes of flushing, at which point the NAPL blobs become fragmented into the smaller fragments in response to the reduced interfacial tension. The heterogeneity of the porous media (i.e. grain-size distribution) was a dominant control on the NAPL-blob-size-distribution trapped as residual saturation. The mobility of the NAPL blobs, as a result of surfactant flooding, was primarily controlled by the relative permeability of the medium and the reduction of interfacial tension between the wetting phase (water) and NAPL phase.
Light absorption by coated nano-sized carbonaceous particles
NASA Astrophysics Data System (ADS)
Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth
The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.
Olive Oil Tracer Particle Size Analysis for Optical Flow Investigations in a Gas Medium
NASA Astrophysics Data System (ADS)
Harris, Shaun; Smith, Barton
2014-11-01
Seed tracer particles must be large enough to scatter sufficient light while being sufficiently small to follow the flow. These requirements motivate a desire for control over the particle size. For gas measurements, it is common to use atomized oil droplets as tracer particles. A Laskin nozzle is a device for generating oil droplets in air by directing high-pressure air through small holes under an oil surface. The droplet diameter frequency distribution can be varied by altering the hole diameter, the number of holes, or the inlet pressure. We will present a systematic study of the effect of these three parameters on the resultant particle distribution as it leaves the Laskin nozzle. The study was repeated for cases where the particles moved through a typical jet facility before their size was measured. While the jet facility resulted in an elimination of larger particles, the average particle diameter could be varied by a factor of two at both the seeder exit and downstream of the jet facility.
NASA Astrophysics Data System (ADS)
Afifah, M. R. Nurul; Aziz, A. Che; Roslan, M. Kamal
2015-09-01
Sediment samples were collected from the shallow marine from Kuala Besar, Kelantan outwards to the basin floor of South China Sea which consisted of quaternary bottom sediments. Sixty five samples were analysed for their grain size distribution and statistical relationships. Basic statistical analysis like mean, standard deviation, skewness and kurtosis were calculated and used to differentiate the depositional environment of the sediments and to derive the uniformity of depositional environment either from the beach or river environment. The sediments of all areas were varied in their sorting ranging from very well sorted to poorly sorted, strongly negative skewed to strongly positive skewed, and extremely leptokurtic to very platykurtic in nature. Bivariate plots between the grain-size parameters were then interpreted and the Coarsest-Median (CM) pattern showed the trend suggesting relationships between sediments influenced by three ongoing hydrodynamic factors namely turbidity current, littoral drift and waves dynamic, which functioned to control the sediments distribution pattern in various ways.
Kim, Dong-Hee; Gautam, Mridul; Gera, Dinesh
2002-05-01
This paper presents the results from a study that is aimed at predicting the nucleation, coagulation, and dynamics of particulate matter (PM) emissions from on-road heavy-duty diesel vehicles. The PM concentration is predicted from the composition of fuel, and operating and ambient conditions. A numerical algorithm for simultaneously solving the coagulation, condensation, and nucleation equations is developed. The effect of relative humidity on the nucleation rate and the nucleus size is also discussed. In addition, the effect of the ambient air dilution on PM size distribution is numerically predicted for a diesel-powered truck operating in a controlled environment at NASA Langley wind-tunnel facility. The particle size distribution and concentration are measured at four different locations in a turbulent plume from the diesel exhaust in the tunnel, and an excellent agreement between the measured and predicted PM concentration values at these locations inside the tunnel is observed.
Species distribution model transferability and model grain size - finer may not always be better.
Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin
2018-05-08
Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.
[Quantitative study of diesel/CNG buses exhaust particulate size distribution in a road tunnel].
Zhu, Chun; Zhang, Xu
2010-10-01
Vehicle emission is one of main sources of fine/ultra-fine particles in many cities. This study firstly presents daily mean particle size distributions of mixed diesel/CNG buses traffic flow by 4 days consecutive real world measurement in an Australia road tunnel. Emission factors (EFs) of particle size distribution of diesel buses and CNG buses are obtained by MLR methods, particle distributions of diesel buses and CNG buses are observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow are decomposed by two log-normal fitting curves for each 30 min interval mean scans, the degrees of fitting between combined fitting curves and corresponding in-situ scans for totally 90 fitting scans are from 0.972 to 0.998. Finally particle size distributions of diesel buses and CNG buses are quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters are 74.5-86.5 nm, geometric standard deviations are 1.88-2.05. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters are 19.9-22.9 nm, geometric standard deviations are 1.27-1.3.
LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu
2017-01-20
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less
NASA Astrophysics Data System (ADS)
Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio
2017-04-01
The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.
Coulomb Mechanics And Landscape Geometry Explain Landslide Size Distribution
NASA Astrophysics Data System (ADS)
Jeandet, L.; Steer, P.; Lague, D.; Davy, P.
2017-12-01
It is generally observed that the dimensions of large bedrock landslides follow power-law scaling relationships. In particular, the non-cumulative frequency distribution (PDF) of bedrock landslide area is well characterized by a negative power-law above a critical size, with an exponent 2.4. However, the respective role of bedrock mechanical properties, landscape shape and triggering mechanisms on the scaling properties of landslide dimensions are still poorly understood. Yet, unravelling the factors that control this distribution is required to better estimate the total volume of landslides triggered by large earthquakes or storms. To tackle this issue, we develop a simple probabilistic 1D approach to compute the PDF of rupture depths in a given landscape. The model is applied to randomly sampled points along hillslopes of studied digital elevation models. At each point location, the model determines the range of depth and angle leading to unstable rupture planes, by applying a simple Mohr-Coulomb rupture criterion only to the rupture planes that intersect downhill surface topography. This model therefore accounts for both rock mechanical properties, friction and cohesion, and landscape shape. We show that this model leads to realistic landslide depth distribution, with a power-law arising when the number of samples is high enough. The modeled PDF of landslide size obtained for several landscapes match the ones from earthquakes-driven landslides catalogues for the same landscape. In turn, this allows us to invert landslide effective mechanical parameters, friction and cohesion, associated to those specific events, including Chi-Chi, Wenchuan, Niigata and Gorkha earthquakes. The cohesion and friction ranges (25-35 degrees and 5-20 kPa) are in good agreement with previously inverted values. Our results demonstrate that reduced complexity mechanics is efficient to model the distribution of unstable depths, and show the role of landscape variability in landslide size distribution.
Examining procedural working memory processing in obsessive-compulsive disorder.
Shahar, Nitzan; Teodorescu, Andrei R; Anholt, Gideon E; Karmon-Presser, Anat; Meiran, Nachshon
2017-07-01
Previous research has suggested that a deficit in working memory might underlie the difficulty of obsessive-compulsive disorder (OCD) patients to control their thoughts and actions. However, a recent meta-analyses found only small effect sizes for working memory deficits in OCD. Recently, a distinction has been made between declarative and procedural working memory. Working memory in OCD was tested mostly using declarative measurements. However, OCD symptoms typically concerns actions, making procedural working-memory more relevant. Here, we tested the operation of procedural working memory in OCD. Participants with OCD and healthy controls performed a battery of choice reaction tasks under high and low procedural working memory demands. Reaction-times (RT) were estimated using ex-Gaussian distribution fitting, revealing no group differences in the size of the RT distribution tail (i.e., τ parameter), known to be sensitive to procedural working memory manipulations. Group differences, unrelated to working memory manipulations, were found in the leading-edge of the RT distribution and analyzed using a two-stage evidence accumulation model. Modeling results suggested that perceptual difficulties might underlie the current group differences. In conclusion, our results suggest that procedural working-memory processing is most likely intact in OCD, and raise a novel, yet untested assumption regarding perceptual deficits in OCD. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects
Zhang, Xiaojin; Li, Yan; Chen, Y. Eugene; Chen, Jihua; Ma, Peter X.
2016-01-01
MicroRNAs (miRNAs) are being developed to enhance tissue regeneration. Here we show that a hyperbranched polymer with high miRNA-binding affinity and negligible cytotoxicity can self-assemble into nano-sized polyplexes with a ‘double-shell' miRNA distribution and high transfection efficiency. These polyplexes are encapsulated in biodegradable microspheres to enable controllable two-stage (polyplexes and miRNA) delivery. The microspheres are attached to cell-free nanofibrous polymer scaffolds that spatially control the release of miR-26a. This technology is used to regenerate critical-sized bone defects in osteoporotic mice by targeting Gsk-3β to activate the osteoblastic activity of endogenous stem cells, thus addressing a critical challenge in regenerative medicine of achieving cell-free scaffold-based miRNA therapy for tissue engineering. PMID:26765931
Effenberger, Fernando B; Couto, Ricardo A; Kiyohara, Pedro K; Machado, Giovanna; Masunaga, Sueli H; Jardim, Renato F; Rossi, Liane M
2017-03-17
The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe 3 O 4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.
Magnetic properties of Apollo 14 breccias and their correlation with metamorphism.
NASA Technical Reports Server (NTRS)
Gose, W. A.; Pearce, G. W.; Strangway, D. W.; Larson, E. E.
1972-01-01
The magnetic properties of Apollo 14 breccias can be explained in terms of the grain size distribution of the interstitial iron which is directly related to the metamorphic grade of the sample. In samples 14049 and 14313 iron grains less than 500 A in diameter are dominant as evidenced by a Richter-type magnetic aftereffect and hysteresis measurements. Both samples are of lowest metamorphic grade. The medium metamorphic-grade sample 14321 and the high-grade sample 14312 both show a logarithmic time-dependence of the magnetization indicative of a wide range of relaxation times and thus grain sizes, but sample 14321 contains a stable remanent magnetization whereas sample 14312 does not. This suggests that small multidomain particles (less than 1 micron) are most abundant in sample 14321 while sample 14312 is magnetically controlled by grains greater than 1 micron. The higher the metamorphic grade, the larger the grain size of the iron controlling the magnetic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.
2009-03-01
The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and themore » derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.« less
Coker, Eric N.; Steen, William A.; Miller, Jeffrey T.; ...
2007-05-23
Small platinum clusters have been prepared in zeolite hosts through ion exchange and controlled calcination/reduction processes. In order to enable electrochemical application, the pores of the Pt-zeolite were filled with electrically conductive carbon via infiltration with carbon precursors, polymerization, and pyrolysis. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. The electrocatalysts were characterized by TEM, XRD, EXAFS, nitrogen adsorption and electrochemical techniques. Depending on the synthesis conditions, average Pt cluster sizes in the Pt/C catalysts ranged from 1.3 to 2.0 nm. The presence of orderedmore » porosity/structure in the catalysts was evident in TEM images as lattice fringes, and in XRD as a low-angle diffraction peak with d-spacing similar to the parent zeolite. The catalysts possess micro- and meso-porosity, with pore size distributions that depend upon synthesis variables. Finally, electroactive surface areas as high as 112 m 2 g Pt -1 have been achieved in Pt/C electrocatalysts which show oxygen reduction performance comparable to standard industrial catalysts.« less
Khaligh-Razavi, Seyed-Mahdi; Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2018-06-07
Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG-fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.
Zipf's law and city size distribution: A survey of the literature and future research agenda
NASA Astrophysics Data System (ADS)
Arshad, Sidra; Hu, Shougeng; Ashraf, Badar Nadeem
2018-02-01
This study provides a systematic review of the existing literature on Zipf's law for city size distribution. Existing empirical evidence suggests that Zipf's law is not always observable even for the upper-tail cities of a territory. However, the controversy with empirical findings arises due to sample selection biases, methodological weaknesses and data limitations. The hypothesis of Zipf's law is more likely to be rejected for the entire city size distribution and, in such case, alternative distributions have been suggested. On the contrary, the hypothesis is more likely to be accepted if better empirical methods are employed and cities are properly defined. The debate is still far from to be conclusive. In addition, we identify four emerging areas in Zipf's law and city size distribution research including the size distribution of lower-tail cities, the size distribution of cities in sub-national regions, the alternative forms of Zipf's law, and the relationship between Zipf's law and the coherence property of the urban system.
Determination of the cumulus size distribution from LANDSAT pictures
NASA Technical Reports Server (NTRS)
Karg, E.; Mueller, H.; Quenzel, H.
1983-01-01
Varying insolation causes undesirable thermic stress to the receiver of a solar power plant. The rapid change of insolation depends on the size distribution of the clouds; in order to measure these changes, it is suitable to determine typical cumulus size distributions. For this purpose, LANDSAT-images are adequate. Several examples of cumulus size distributions will be presented and their effects on the operation of a solar power plant are discussed.
Unfolding sphere size distributions with a density estimator based on Tikhonov regularization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weese, J.; Korat, E.; Maier, D.
1997-12-01
This report proposes a method for unfolding sphere size distributions given a sample of radii that combines the advantages of a density estimator with those of Tikhonov regularization methods. The following topics are discusses in this report to achieve this method: the relation between the profile and the sphere size distribution; the method for unfolding sphere size distributions; the results based on simulations; and the experimental data comparison.
Numerical Study on Focusing of Ultrasounds in Microbubble-enhanced HIFU
NASA Astrophysics Data System (ADS)
Matsumoto, Yoichiro; Okita, Kohei; Takagi, Shu
2011-11-01
The injection of microbubbles into the target tissue enhances tissue heating in High-Intensity Focused Ultrasound therapy, via inertial cavitation. The control of the inertial cavitation is required to achieve the efficient tissue ablation. Microbubbles between a transducer and a target disturb the ultrasound propagation depending on the conditions. A method to clear such microbubbles has been proposed by Kajiyama et al. [Physics Procedia 3 (2010) 305-314]. In the method, the irradiation of intense ultrasounds with a burst waveform fragmentize microbubbles in the pathways before the irradiation of ultrasounds for tissue heating. The vitro experiment using a gel containing microbubbles has showed that the method enables to heat the target correctly by controlling the microbubble distribution. Following the experiment, we simulate the focusing of ultrasounds through a mixture containing microbubbles with considering the size and number density distributions in space. The numerical simulation shows that the movement of the heating region from the transducer side to the target by controlling the microbubble distributions. The numerical results elucidate well the experimental ones.
Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces.
Jung, Sungmook; Kim, Ji Hoon; Kim, Jaemin; Choi, Suji; Lee, Jongsu; Park, Inhyuk; Hyeon, Taeghwan; Kim, Dae-Hyeong
2014-07-23
A novel method to produce porous pressure-sensitive rubber is developed. For the controlled size distribution of embedded micropores, solution-based procedures using reverse micelles are adopted. The piezosensitivity of the pressure sensitive rubber is significantly increased by introducing micropores. Using this method, wearable human-machine interfaces are fabricated, which can be applied to the remote control of a robot. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Pitts, D. E.; Badhwar, G.
1980-01-01
The development of agricultural remote sensing systems requires knowledge of agricultural field size distributions so that the sensors, sampling frames, image interpretation schemes, registration systems, and classification systems can be properly designed. Malila et al. (1976) studied the field size distribution for wheat and all other crops in two Kansas LACIE (Large Area Crop Inventory Experiment) intensive test sites using ground observations of the crops and measurements of their field areas based on current year rectified aerial photomaps. The field area and size distributions reported in the present investigation are derived from a representative subset of a stratified random sample of LACIE sample segments. In contrast to previous work, the obtained results indicate that most field-size distributions are not log-normally distributed. The most common field size observed in this study was 10 acres for most crops studied.
Boudreau, Mary D.; Imam, Mohammed S.; Paredes, Angel M.; Bryant, Matthew S.; Cunningham, Candice K.; Felton, Robert P.; Jones, Margie Y.; Davis, Kelly J.; Olson, Greg R.
2016-01-01
There are concerns within the regulatory and research communities regarding the health impact associated with consumer exposure to silver nanoparticles (AgNPs). This study evaluated particulate and ionic forms of silver and particle size for differences in silver accumulation, distribution, morphology, and toxicity when administered daily by oral gavage to Sprague Dawley rats for 13 weeks. Test materials and dose formulations were characterized by transmission electron microscopy (TEM), dynamic light scattering, and inductively coupled mass spectrometry (ICP-MS). Seven-week-old rats (10 rats per sex per group) were randomly assigned to treatments: AgNP (10, 75, and 110 nm) at 9, 18, and 36 mg/kg body weight (bw); silver acetate (AgOAc) at 100, 200, and 400 mg/kg bw; and controls (2 mM sodium citrate (CIT) or water). At termination, complete necropsies were conducted, histopathology, hematology, serum chemistry, micronuclei, and reproductive system analyses were performed, and silver accumulations and distributions were determined. Rats exposed to AgNP did not show significant changes in body weights or intakes of feed and water relative to controls, and blood, reproductive system, and genetic tests were similar to controls. Differences in the distributional pattern and morphology of silver deposits were observed by TEM: AgNP appeared predominantly within cells, while AgOAc had an affinity for extracellular membranes. Significant dose-dependent and AgNP size-dependent accumulations were detected in tissues by ICP-MS. In addition, sex differences in silver accumulations were noted for a number of tissues and organs, with accumulations being significantly higher in female rats, especially in the kidney, liver, jejunum, and colon. PMID:26732888
Contribution of ants in modifying of soil acidity and particle size distribution
NASA Astrophysics Data System (ADS)
Morgun, Alexandra; Golichenkov, Maxim
2015-04-01
Being a natural body, formed by the influence of biota on the upper layers of the Earth's crust, the soil is the most striking example of biogenic-abiogenic interactions in the biosphere. Invertebrates (especially ants that build soil nests) are important agents that change soil properties in well developed terrestrial ecosystems. Impact of soil microorganisms on soil properties is particularly described in numerous literature and concerns mainly chemical properties and general indicators of soil biological activity. Influence of ants (as representatives of the soil mesofauna) mostly appears as mechanical movement of soil particles and aggregates, and chemical effects caused by concentration of organic matter within the ant's nest. The aim of this research was to evaluate the effect of ants on physical and chemical soil attributes such as particle size distribution and soil acidity. The samples were taken from aerial parts of Lasius niger nests, selected on different elements of the relief (summit position, slope, terrace and floodplain) in the Arkhangelsk region (north of the European part of Russia) and compared with the specimens of the upper horizons of the reference soils. Particle size distribution was determined by laser diffraction method using laser diffraction particle size analyzer «Analysette 22 comfort» (FRITSCH, Germany). The acidity (pH) was determined by potentiometry in water suspension. Particle size distribution of the samples from the nests is more variable as compared to the control samples. For example, the content of 5-10 μm fraction ranges from 9% to 12% in reference soils, while in the anthill samples the variation is from 8% to 15%. Similarly, for 50-250 μm fraction - it ranges from 15% to 18% in reference soils, whereas in anthills - from 6% to 29%. The results of particle size analysis showed that the reference sample on the terrace has silty loam texture and nests soil L. niger are medium loam. The reference soil on the slope is characterized as medium loam, and ant's nest material has silty loam texture. The control samples of soil and ants nests on the summit position are similar and have medium loam texture. Generally we outline that the particle size distribution of anthill samples shows more variability. We assume that ants operate with small soil aggregates, in which fine fractions may link together coarser particles. pH measurements show that the reference soils have a strongly acidic reaction on the summit position (pH 4.6), slightly acidic on the slope (pH 5.5) and neutral on the terrace and on the floodplain (pH 7.2). While the material of the anthills tends to be slightly alkalinized on the summit (pH 4.8) and alkalinized on the slope (pH 7.2), but acidified to neutral on the floodplain and terrace (pH 6.4 and 5.7). Therefore, the ants form specific physico-chemical conditions that are different from the surrounding (native) soil, significantly increasing the complexity of soil cover structure. This is a clear example of ecosystem engineering functions of ants in nature. Increased complexity of soil pattern is the result of variations in pH and particle size distribution. Both cause the preconditions for the formation of new environmental niches and enhance biodiversity in natural ecosystems.
Mendoza, C.; Hartzell, S.H.
1988-01-01
We have inverted the teleseismic P waveforms recorded by stations of the Global Digital Seismograph Network for the 8 July 1986 North Palm Springs, California, the 28 October 1983 Borah Peak, Idaho, and the 19 September 1985 Michoacan, Mexico, earthquakes to recover the distribution of slip on each of the faults using a point-by-point inversion method with smoothing and positivity constraints. Results of the inversion indicate that the Global digital Seismograph Network data are useful for deriving fault dislocation models for moderate to large events. However, a wide range of frequencies is necessary to infer the distribution of slip on the earthquake fault. Although the long-period waveforms define the size (dimensions and seismic moment) of the earthquake, data at shorter period provide additional constraints on the variation of slip on the fault. Dislocation models obtained for all three earthquakes are consistent with a heterogeneous rupture process where failure is controlled largely by the size and location of high-strength asperity regions. -from Authors
Using response time distributions to examine top-down influences on attentional capture.
Burnham, Bryan R
2013-02-01
Three experiments examined contingent attentional capture, which is the finding that cuing effects are larger when cues are perceptually similar to a target than when they are dissimilar to the target. This study also analyzed response times (RTs) in terms of the underlying distributions for valid cues and invalid cues. Specifically, an ex-Gaussian analysis and a vincentile analysis examined the influence of top-down attentional control settings on the shift and skew of RT distributions and how the shift and the skew contributed to the cuing effects in the mean RTs. The results showed that cue/target similarity influenced the size of cuing effects. The RT distribution analyses showed that the cuing effects reflected only a shifting effect, not a skewing effect, in the RT distribution between valid cues and invalid cues. That is, top-down attentional control moderated the cuing effects in the mean RTs through distribution shifting, not distribution skewing. The results support the contingent orienting hypothesis (Folk, Remington, & Johnston, Journal of Experimental Psychology: Human Perception and Performance, 18, 1030-1044, 1992) over the attentional disengagement account (Theeuwes, Atchley, & Kramer, 2000) as an explanation for when top-down attentional settings influence the selection of salient stimuli.
Zhou, Jian; Zhang, Luqing; Yang, Duoxing; Braun, Anika; Han, Zhenhua
2017-07-21
Granite is a typical crystalline material, often used as a building material, but also a candidate host rock for the repository of high-level radioactive waste. The petrographic texture-including mineral constituents, grain shape, size, and distribution-controls the fracture initiation, propagation, and coalescence within granitic rocks. In this paper, experimental laboratory tests and numerical simulations of a grain-based approach in two-dimensional Particle Flow Code (PFC2D) were conducted on the mechanical strength and failure behavior of Alashan granite, in which the grain-like structure of granitic rock was considered. The microparameters for simulating Alashan granite were calibrated based on real laboratory strength values and strain-stress curves. The unconfined uniaxial compressive test and Brazilian indirect tensile test were performed using a grain-based approach to examine and discuss the influence of mineral grain size and distribution on the strength and patterns of microcracks in granitic rocks. The results show it is possible to reproduce the uniaxial compressive strength (UCS) and uniaxial tensile strength (UTS) of Alashan granite using the grain-based approach in PFC2D, and the average mineral size has a positive relationship with the UCS and UTS. During the modeling, most of the generated microcracks were tensile cracks. Moreover, the ratio of the different types of generated microcracks is related to the average grain size. When the average grain size in numerical models is increased, the ratio of the number of intragrain tensile cracks to the number of intergrain tensile cracks increases, and the UCS of rock samples also increases with this ratio. However, the variation in grain size distribution does not have a significant influence on the likelihood of generated microcracks.
Wright, David M; Allen, Adrian R; Mallon, Thomas R; McDowell, Stanley W J; Bishop, Stephen C; Glass, Elizabeth J; Bermingham, Mairead L; Woolliams, John A; Skuce, Robin A
2013-01-01
Strains of many infectious agents differ in fundamental epidemiological parameters including transmissibility, virulence and pathology. We investigated whether genotypes of Mycobacterium bovis (the causative agent of bovine tuberculosis, bTB) differ significantly in transmissibility and virulence, combining data from a nine-year survey of the genetic structure of the M. bovis population in Northern Ireland with detailed records of the cattle population during the same period. We used the size of herd breakdowns as a proxy measure of transmissibility and the proportion of skin test positive animals (reactors) that were visibly lesioned as a measure of virulence. Average breakdown size increased with herd size and varied depending on the manner of detection (routine herd testing or tracing of infectious contacts) but we found no significant variation among M. bovis genotypes in breakdown size once these factors had been accounted for. However breakdowns due to some genotypes had a greater proportion of lesioned reactors than others, indicating that there may be variation in virulence among genotypes. These findings indicate that the current bTB control programme may be detecting infected herds sufficiently quickly so that differences in virulence are not manifested in terms of outbreak sizes. We also investigated whether pathology of infected cattle varied according to M. bovis genotype, analysing the distribution of lesions recorded at post mortem inspection. We concentrated on the proportion of cases lesioned in the lower respiratory tract, which can indicate the relative importance of the respiratory and alimentary routes of infection. The distribution of lesions varied among genotypes and with cattle age and there were also subtle differences among breeds. Age and breed differences may be related to differences in susceptibility and husbandry, but reasons for variation in lesion distribution among genotypes require further investigation.
NASA Astrophysics Data System (ADS)
Lu, Junfang; Omotoso, Oladipo; Wiskel, J. Barry; Ivey, Douglas G.; Henein, Hani
2012-09-01
Microalloyed steels are used widely in oil and gas pipelines. They are a class of high-strength, low-carbon steels that contain small additions (in amounts less than 0.1 wt pct) of Nb, Ti, and/or V. The steels may contain other alloying elements, such as Mo, in amounts exceeding 0.1 wt pct. Precipitation in these steels can be controlled through thermomechanical-controlled processing, leading to precipitates with sizes that range from several microns to a few nanometers. Microalloyed steels have good strength, good toughness, and excellent weldability, which are attributed in part to the presence of the nanosized carbide and carbonitride precipitates. Because of their fine sizes, wide particle size distribution, and low volume fractions, conventional microscopic methods are not satisfactory for quantifying these precipitates. Matrix dissolution is a promising alternative to extract the precipitates for quantification. Relatively large volumes of material can be analyzed so that statistically significant quantities of precipitates of different sizes are collected. In this article, the microstructure features of a series of microalloyed steels (X70, X80, and X100) as well as a Grade 100 steel are characterized using optical microscopy (OM) and scanning electron microscopy (SEM). A chemical dissolution technique is used to extract the precipitates from the steels. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) are combined to analyze the chemical composition of these precipitates. Rietveld refinement of the XRD patterns is used to quantify fully the relative amounts of these precipitates. The size distribution of the nanosized precipitates is quantified using dark-field imaging (DF) in the TEM. The effects of microalloying content, finish rolling temperature (FRT), and coiling temperature (CT)/interrupted cooling temperature (ICT) on the grain size and the amount of nanoprecipitation are discussed. Individual strengthening contributions from grain size effects, solid-solution strengthening, and precipitation strengthening are quantified to understand fully the strengthening mechanisms for these steels.
Hardware/software codesign for embedded RISC core
NASA Astrophysics Data System (ADS)
Liu, Peng
2001-12-01
This paper describes hardware/software codesign method of the extendible embedded RISC core VIRGO, which based on MIPS-I instruction set architecture. VIRGO is described by Verilog hardware description language that has five-stage pipeline with shared 32-bit cache/memory interface, and it is controlled by distributed control scheme. Every pipeline stage has one small controller, which controls the pipeline stage status and cooperation among the pipeline phase. Since description use high level language and structure is distributed, VIRGO core has highly extension that can meet the requirements of application. We take look at the high-definition television MPEG2 MPHL decoder chip, constructed the hardware/software codesign virtual prototyping machine that can research on VIRGO core instruction set architecture, and system on chip memory size requirements, and system on chip software, etc. We also can evaluate the system on chip design and RISC instruction set based on the virtual prototyping machine platform.
Novel Biomedical Devices Utilizing Light-Emitting Nanostructures
NASA Technical Reports Server (NTRS)
Goldman, Rachel S.
2004-01-01
As part of the NASA project, we are investigating the formation, properties, and performance of QD heterostructures, to be incorporated into a novel biomedical device for detecting bacteria and/or viruses in fluids on board space vehicles. We are presently synthesizing the epitaxial quantum dot structures using molecular beam epitaxy. We recently developed a method for controlling the arrangement of QDs, based upon a combination of buffer layer growth and controlled annealing sequences. This method is promising for producing arrangements of QDs with a locally well-controlled distribution of sizes. In the future, we plan to explore selective pre-patterning of the starting surface using focused ion-beam nanopatterning, which will enable us to precisely tune the compositions, sizes, and placement of the QDs, in order laterally tune the emission and detection wavelengths of QD based devices.
Jiang, Sabrina Yanan; Kaul, Daya S; Yang, Fenhuan; Sun, Li; Ning, Zhi
2015-11-15
Metals in atmospheric particulate matter (PM) have been associated with various adverse health effects. Different factors contributing to the characterization and distribution of atmospheric metals in urban environments lead to uncertainty of the understanding of their impact on public health. However, few studies have provided a comprehensive picture of the spatial and seasonal variability of metal concentration, solubility and size distribution, all of which have important roles in their contribution to health effects. This study presents an experimental investigation on the characteristics of metals in PM2.5 and coarse PM in two seasons from four urban sites in Hong Kong. The PM samples were extracted separately with aqua regia and water, and a total of sixteen elements were analyzed using ICP-MS and ICP-OES to determine the size segregated concentration and solubility of metals. The concentrations of major metals were distributed in similar patterns with the same order of magnitude among different urban sites. Source apportionment using Positive Matrix Factorization (PMF) indicated that three sources namely road dust, vehicular exhaust and ship emission are major contributors to the urban atmospheric metal concentrations in Hong Kong with distinctly different profiles between coarse PM and PM2.5 fractions. The individual metals were assigned to different sources, consistent with literature documentation, except potassium emerging with substantial contribution from vehicle exhaust emission. Literature data from past studies on both local and other cities were compared to the results from the present study to investigate the impact of different emission sources and control policies on metal distribution in urban atmosphere. A large variation of solubility among the metals reflected that the majority of metals in PM2.5 were more soluble than those in coarse PM indicating size dependent chemical states of metals. The data from this study provides a rich dataset of metals in urban atmosphere and can be useful for targeted emission control to mitigate the adverse impact of metallic pollution on public health. Copyright © 2015 Elsevier B.V. All rights reserved.
Huntsman, Brock M.; Petty, J. Todd
2014-01-01
Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3–60 km2 and long-term average densities ranging from 0.335–0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem. PMID:24618602
Otolith chemical signature and growth of Chaetodon speculum in coastal areas of New Caledonia
NASA Astrophysics Data System (ADS)
Labonne, M.; Morize, E.; Kulbicki, M.; Ponton, D.; Marec, L.
2008-07-01
Coral reefs are one of the most diverse ecosystems on Earth. They are currently exposed to increasing levels of anthropogenic perturbations. Several recent reviews point to the lack of good indicators for these perturbations especially to monitor their effects on fish populations or fish assemblages. The SW lagoon of New Caledonia is an ideal location to test indicator species in this context as contrasting sites are present within a small geographical range. This study analysed fish from four sites, one with heavy industrial pollution, another dominated by domestic waste, a third with historic mining activities, and the fourth as a control. The butterfly fish, Chaetodon speculum, was chosen to determine C. speculum's potential as an indicator species due to its link to coral, its sedentary behaviour and its wide geographical distribution. The size distribution, growth rate, age distribution and whole otolith composition were analysed at each site. Age and mean growth rate were analysed from daily increments of the otoliths. The concentrations of eight elements (Li, Mg, Co, Ni, Cu, Rb, Sr, and Ba) were measured by ICP-MS in the otoliths of a subset of individuals. The sites under anthropogenic impact were distinct from the control site by fish size frequencies, age distributions, and the chemical content of their otoliths. The chemical elements Mg, Co, Ni, Cu, and Rb showed differences amongst sites. Fish belonging to the sites furthest from Nouméa could be discriminated in nearly 80% of samples or 60% of the cases when otolith weight or fish age respectively were taken into account. Ni concentrations of the otoliths were also higher in the bays where water concentrations of this element were known to be higher, but these differences were no longer significant once corrected for otolith weight. These results should be mitigated by the fact that: (1) despite significant differences between sites in age distribution and size frequencies there were no differences in growth rates or body condition; (2) differences in age or size were not correlated to perturbation levels; and (3) discrimination between sites based on chemical levels in the otoliths, even though significant, was not sufficient to identify the origin of the fish at a level useful for screening tests. The hypothesis that environmental differences between sites would be reflected in the otolith chemical composition is therefore not fully supported by our results.
Undersampling power-law size distributions: effect on the assessment of extreme natural hazards
Geist, Eric L.; Parsons, Thomas E.
2014-01-01
The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.
General herpetological collecting is size-based for five Pacific lizards
Rodda, Gordon H.; Yackel Adams, Amy A.; Campbell, Earl W.; Fritts, Thomas H.
2015-01-01
Accurate estimation of a species’ size distribution is a key component of characterizing its ecology, evolution, physiology, and demography. We compared the body size distributions of five Pacific lizards (Carlia ailanpalai, Emoia caeruleocauda, Gehyra mutilata, Hemidactylus frenatus, and Lepidodactylus lugubris) from general herpetological collecting (including visual surveys and glue boards) with those from complete censuses obtained by total removal. All species exhibited the same pattern: general herpetological collecting undersampled juveniles and oversampled mid-sized adults. The bias was greatest for the smallest juveniles and was not statistically evident for newly maturing and very large adults. All of the true size distributions of these continuously breeding species were skewed heavily toward juveniles, more so than the detections obtained from general collecting. A strongly skewed size distribution is not well characterized by the mean or maximum, though those are the statistics routinely reported for species’ sizes. We found body mass to be distributed more symmetrically than was snout–vent length, providing an additional rationale for collecting and reporting that size measure.
Body size distributions signal a regime shift in a lake ecosystem
Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.; Stow, Craig A.; Sundstrom, Shana M.
2016-01-01
Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts.
NASA Technical Reports Server (NTRS)
Kitchen, J. C.
1977-01-01
Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Cao, Zhimin; Lan, Dongzhao; Zheng, Zhichang; Li, Guihai
2008-09-01
Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.
NASA Astrophysics Data System (ADS)
Jasiulewicz-Kaczmarek, Małgorzata; Wyczółkowski, Ryszard; Gładysiak, Violetta
2017-12-01
Water distribution systems are one of the basic elements of contemporary technical infrastructure of urban and rural areas. It is a complex engineering system composed of transmission networks and auxiliary equipment (e.g. controllers, checkouts etc.), scattered territorially over a large area. From the water distribution system operation point of view, its basic features are: functional variability, resulting from the need to adjust the system to temporary fluctuations in demand for water and territorial dispersion. The main research questions are: What external factors should be taken into account when developing an effective water distribution policy? Does the size and nature of the water distribution system significantly affect the exploitation policy implemented? These questions have shaped the objectives of research and the method of research implementation.
Steele, Sarah E.; López-Fernández, Hernán
2014-01-01
Body size is an important correlate of life history, ecology and distribution of species. Despite this, very little is known about body size evolution in fishes, particularly freshwater fishes of the Neotropics where species and body size diversity are relatively high. Phylogenetic history and body size data were used to explore body size frequency distributions in Neotropical cichlids, a broadly distributed and ecologically diverse group of fishes that is highly representative of body size diversity in Neotropical freshwater fishes. We test for divergence, phylogenetic autocorrelation and among-clade partitioning of body size space. Neotropical cichlids show low phylogenetic autocorrelation and divergence within and among taxonomic levels. Three distinct regions of body size space were identified from body size frequency distributions at various taxonomic levels corresponding to subclades of the most diverse tribe, Geophagini. These regions suggest that lineages may be evolving towards particular size optima that may be tied to specific ecological roles. The diversification of Geophagini appears to constrain the evolution of body size among other Neotropical cichlid lineages; non-Geophagini clades show lower species-richness in body size regions shared with Geophagini. Neotropical cichlid genera show less divergence and extreme body size than expected within and among tribes. Body size divergence among species may instead be present or linked to ecology at the community assembly scale. PMID:25180970
Correlation between size distribution and luminescence properties of spool-shaped InAs quantum dots
NASA Astrophysics Data System (ADS)
Xie, H.; Prioli, R.; Torelly, G.; Liu, H.; Fischer, A. M.; Jakomin, R.; Mourão, R.; Kawabata, R.; Pires, M. P.; Souza, P. L.; Ponce, F. A.
2017-05-01
InAs QDs embedded in an AlGaAs matrix have been produced by MOVPE with a partial capping and annealing technique to achieve controllable QD energy levels that could be useful for solar cell applications. The resulted spool-shaped QDs are around 5 nm in height and have a log-normal diameter distribution, which is observed by TEM to range from 5 to 15 nm. Two photoluminescence peaks associated with QD emission are attributed to the ground and the first excited states transitions. The luminescence peak width is correlated with the distribution of QD diameters through the diameter dependent QD energy levels.
Stratospheric aerosols and precursor gases
NASA Technical Reports Server (NTRS)
1982-01-01
Measurements were made of the aerosol size, height and geographical distribution, their composition and optical properties, and their temporal variation with season and following large volcanic eruptions. Sulfur-bearing gases were measured in situ in the stratosphere, and studied of the chemical and physical processes which control gas-to-particle conversion were carried out in the laboratory.
Low diversity in the mitogenome of sperm whales revealed by next-generation sequencing
Alana Alexander; Debbie Steel; Beth Slikas; Kendra Hoekzema; Colm Carraher; Matthew Parks; Richard Cronn; C. Scott Baker
2012-01-01
Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20...
Preparation of U.sub.3 O.sub.8
Johnson, David R.
1980-01-01
A method is described for the preparation of U.sub.3 O.sub.8 nuclear fuel material by direct precipitation of uranyl formate monohydrate from uranyl nitrate solution. The uranyl formate monohydrate precipitate is removed, dried and calcined to produce U.sub.3 O.sub.8 having a controlled particle size distribution.
Synthesis of a New Family of Hexakisferrocenyl Hexagons and Their Electrochemical Behavior
Ghosh, Koushik; Zhao, Yue; Yang, Hai-Bo; Northrop, Brian H.
2009-01-01
The design and synthesis of two new hexakisferrocenyl hexagons has been achieved via coordination-driven self-assembly wherein the size and relative distribution of six ferrocene moieties has been precisely controlled. Insight into the structure and electronic properties of these supramolecules was obtained through electrochemical studies. PMID:18841907
Managing logging residue under the timber sale contract.
Thomas C. Adams
1980-01-01
Management of logging residue is becoming an important part of timber sale planning. This involves controlling the amount of residue remaining on the ground and its distribution by diameter size class. Some residue is beneficial.An interdisciplinary team specified a desired residue level for one clearcutting unit of this trial. For comparison another cutting...
2008-01-01
A second objective is to characterize variability in the volume scattering function and particle size distribution for various optical water types...volume scattering function (VSF) and the particle size distribution (PSD) • Analysis of in situ optical measurements and particle size distributions ...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY
Controlled formation of cyclopentane hydrate suspensions via capillary-driven jet break-up
NASA Astrophysics Data System (ADS)
Geri, Michela; McKinley, Gareth
2017-11-01
Clathrate hydrates are crystalline compounds that form when a lattice of hydrogen-bonded water molecules is filled by guest molecules sequestered from an adjacent gas or liquid phase. Being able to rapidly produce and transport synthetic hydrates is of great interest given their significant potential as a clean energy source and safe option for hydrogen storage. We propose a new method to rapidly produce cyclopentane hydrate suspensions at ambient pressure with tunable particle size distribution by taking advantage of the Rayleigh-Plateau instability to form a mono-disperse stream of droplets during the controlled break-up of a water jet. The droplets are immediately frozen into ice particles through immersion in a subcooled reservoir and converted into hydrates with a dramatic reduction in the nucleation induction time. By measuring the evolution of the rheological properties with time, we monitor the process of hydrates formation via surface crystallization and agglomeration with different droplet size distributions. This new method enables us to gain new insights into hydrate formation and transport which was previously hindered by uncontrolled droplet formation and hydrate nucleation processes. MITei Chevron Fellowship.
Investigation of thermal conduction in symmetric and asymmetric nanoporous structures
NASA Astrophysics Data System (ADS)
Yu, Ziqi; Ferrer-Argemi, Laia; Lee, Jaeho
2017-12-01
Nanoporous structures with a critical dimension comparable to or smaller than the phonon mean free path have demonstrated significant thermal conductivity reductions that are attractive for thermoelectric applications, but the presence of various geometric parameters complicates the understanding of governing mechanisms. Here, we use a ray tracing technique to investigate phonon boundary scattering phenomena in Si nanoporous structures of varying pore shapes, pore alignments, and pore size distributions, and identify mechanisms that are primarily responsible for thermal conductivity reductions. Our simulation results show that the neck size, or the smallest distance between nearest pores, is the key parameter in understanding nanoporous structures of varying pore shapes and the same porosities. When the neck size and the porosity are both identical, asymmetric pore shapes provide a lower thermal conductivity compared with symmetric pore shapes, due to localized heat fluxes. Asymmetric nanoporous structures show possibilities of realizing thermal rectification even with fully diffuse surface boundaries, in which optimal arrangements of triangular pores show a rectification ratio up to 13 when the injection angles are optimally controlled. For symmetric nanoporous structures, hexagonal-lattice pores achieve larger thermal conductivity reductions than square-lattice pores due to the limited line of sight for phonons. We also show that nanoporous structures of alternating pore size distributions from large to small pores yield a lower thermal conductivity compared with those of uniform pore size distributions in the given porosity. These findings advance the understanding of phonon boundary scattering phenomena in complex geometries and enable optimal designs of artificial nanostructures for thermoelectric energy harvesting and solid-state cooling systems.
Choate, LaDonna M; Ranville, James F; Bunge, Annette L; Macalady, Donald L
2006-10-01
In the evaluation of soil particle-size effects on environmental processes, particle-size distributions are measured by either wet or dry sieving. Commonly, size distributions determined by wet and dry sieving differ because some particles disaggregate in water. Whereas the dry-sieve distributions are most relevant to the study of soil adherence to skin, soil can be recovered from skin only by washing with the potential for disaggregation whether or not it is subsequently wet or dry sieved. Thus, the possibility exists that wet-sieving measurements of the particle sizes that adhered to the skin could be skewed toward the smaller fractions. This paper provides a method by which dry-sieve particle-size distributions can be reconstructed from wet-sieve particle-size distributions for the same soil. The approach combines mass balances with a series of experiments in which wet sieving was applied to dry-sieve fractions from the original soil. Unless the soil moisture content is high (i.e., greater than or equal to the water content after equilibration with water-saturated air), only the soil particles of diameters less than about 63 microm adhere to the skin. Because of this, the adhering particle-size distribution calculated using the reconstruction method was not significantly different from the wet-sieving determinations.
Low power, scalable multichannel high voltage controller
Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX
2006-03-14
A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.
Low power, scalable multichannel high voltage controller
Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX
2008-03-25
A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.
Hydrologic Controls on Shallow Landslide Location, Size, and Shape
NASA Astrophysics Data System (ADS)
Bellugi, D.; Milledge, D.; Perron, T.; McKean, J. A.; Dietrich, W.; Rulli, M.
2012-12-01
Shallow landslides, typically involving just the soil mantle, are principally controlled by topography, soil and root strengths, and soil thickness, and are typically triggered by storm-induced increases in pore water pressure. The response of a landscape to landslide-triggering storms will thus depend on factors such as rainfall totals, storm intensity and duration, and antecedent moisture conditions. The two dominant mechanisms that generate high pore water pressures at a point are topographically-steered lateral subsurface flow (over timescales of days to weeks), and rapid vertical infiltration (over timescales of minutes to hours). We aim to understand the impact of different storm characteristics and hydrologic regimes on shallow landslide location, size, and shape. We have developed a regional-scale model, which applies a low-parameter grid-based multi-dimensional slope stability model within a novel search algorithm, to generate discrete landslide predictions. This model shows that the spatial organization of parameters such as root strength and pore water pressure has a strong control on shallow landslide location, size, and shape. We apply this model to a field site near Coos Bay, OR, where a ten-year landslide inventory has been mapped onto high-resolution topographic data. Our model predicts landslide size generally increases with increasing rainfall intensity, except when root strength is extremely high and pore pressures are topographically steered. The distribution of topographic index values (the ratios of contributing area to slope) of predicted landslides is a clear signature of the pore water pressure generation mechanism: as laterally dominated flow increases, landslides develop in locations with lower slopes and higher contributing areas; in contrast, in the case of vertically-dominated pore pressure rise, landslides are consistently found in locations with higher slopes and lower contributing areas. While in both cases landslides are found in the hollows, where the soils are sufficiently deep to overcome the effects of root strength, in the laterally-dominated case they are predicted to occur further down the hollows (which matches field observations). The size distribution of landslides is better predicted in our model when vertical infiltration dominates, but the observed distribution of topographic index values follows that predicted when lateral flow dominates. This suggests that both mechanisms must be taken into account in order to capture both location and size of shallow landslides (consistent with field observations). These results suggest that this modeling approach could allow us to use observed landslide locations and geometries to infer the dominant hydrologic triggering mechanisms. Furthermore, as the spatial and temporal resolution of precipitation forecasting improves, this model will enable us to more accurately predict both location and size of shallow landslides.
New algorithm and system for measuring size distribution of blood cells
NASA Astrophysics Data System (ADS)
Yao, Cuiping; Li, Zheng; Zhang, Zhenxi
2004-06-01
In optical scattering particle sizing, a numerical transform is sought so that a particle size distribution can be determined from angular measurements of near forward scattering, which has been adopted in the measurement of blood cells. In this paper a new method of counting and classification of blood cell, laser light scattering method from stationary suspensions, is presented. The genetic algorithm combined with nonnegative least squared algorithm is employed to inverse the size distribution of blood cells. Numerical tests show that these techniques can be successfully applied to measuring size distribution of blood cell with high stability.
NASA Astrophysics Data System (ADS)
Palihawadana Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman; Naik, Ratna
Magnetic hyperthermia (MHT) has a great potential as a non-invasive cancer therapy technique. Specific absorption rate (SAR) which measures the efficiency of heat generation, mainly depends on magnetic properties of nanoparticles such as saturation magnetization (Ms) and magnetic anisotropy (K) which depend on the size and shape. Therefore, MHT applications of magnetic nanoparticles often require a controllable synthesis to achieve desirable magnetic properties. We have synthesized Fe3O4 nanoparticles using two different methods, co-precipitation (CP) and hydrothermal (HT) techniques to produce similar XRD crystallite size of 12 nm, and subsequently coated with dextran to prepare ferrofluids for MHT. However, TEM measurements show average particle sizes of 13.8 +/-3.6 nm and 14.6 +/-3.6 nm for HT and CP samples, implying the existence of an amorphous surface layer for both. The MHT data show the two samples have very different SAR values of 110 W/g (CP) and 40W/g (HT) at room temperature, although they have similar Ms of 70 +/-4 emu/g regardless of their different TEM sizes. We fitted the temperature dependent SAR using linear response theory to explain the observed results. CP sample shows a larger magnetic core with a narrow size distribution and a higher K value compared to that of HT sample.
Maji, Kanchan; Dasgupta, Sudip; Kundu, Biswanath; Bissoyi, Akalabya
2015-01-01
Hydroxyapatite-chitosan/gelatin (HA:Chi:Gel) nanocomposite scaffold has potential to serve as a template matrix to regenerate extra cellular matrix of human bone. Scaffolds with varying composition of hydroxyapatite, chitosan, and gelatin were prepared using lyophilization technique where glutaraldehyde (GTA) acted as a cross-linking agent for biopolymers. First, phase pure hydroxyapatite-chitosan nanocrystals were in situ synthesized by coprecipitation method using a solution of 2% acetic acid dissolved chitosan and aqueous solution of calcium nitrate tetrahydrate [Ca(NO3)2,4H2O] and diammonium hydrogen phosphate [(NH4)2H PO4]. Keeping solid loading constant at 30 wt% and changing the composition of the original slurry of gelatin, HA-chitosan allowed control of the pore size, its distribution, and mechanical properties of the scaffolds. Microstructural investigation by scanning electron microscopy revealed the formation of a well interconnected porous scaffold with a pore size in the range of 35-150 μm. The HA granules were uniformly dispersed in the gelatin-chitosan network. An optimal composition in terms of pore size and mechanical properties was obtained from the scaffold with an HA:Chi:Gel ratio of 21:49:30. The composite scaffold having 70% porosity with pore size distribution of 35-150 μm exhibited a compressive strength of 3.3-3.5 MPa, which is within the range of that exhibited by cancellous bone. The bioactivity of the scaffold was evaluated after conducting mesenchymal stem cell (MSC) - materials interaction and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay using MSCs. The scaffold found to be conducive to MSC's adhesion as evident from lamellipodia, filopodia extensions from cell cytoskeleton, proliferation, and differentiation up to 14 days of cell culture.
Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation
NASA Astrophysics Data System (ADS)
Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon
2018-02-01
Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.
Green chemistry synthesis of nano-cuprous oxide.
Ceja-Romero, L R; Ortega-Arroyo, L; Ortega Rueda de León, J M; López-Andrade, X; Narayanan, J; Aguilar-Méndez, M A; Castaño, V M
2016-04-01
Green chemistry and a central composite design, to evaluate the effect of reducing agent, temperature and pH of the reaction, were employed to produce controlled cuprous oxide (Cu2O) nanoparticles. Response surface method of the ultraviolet-visible spectroscopy is allowed to determine the most relevant factors for the size distribution of the nanoCu2O. X-ray diffraction reflections correspond to a cubic structure, with sizes from 31.9 to 104.3 nm. High-resolution transmission electron microscopy reveals that the different shapes depend strongly on the conditions of the green synthesis.
NASA Technical Reports Server (NTRS)
Rossow, W. B.
1977-01-01
An approximate numerical technique is used to investigate the influence of coagulation, sedimentation and turbulent motions on the observed droplet size distribution in the upper layers of the Venus clouds. If the cloud mass mixing ratio is less than 0.000001 at 250 K or the eddy diffusivity throughout the cloud is greater than 1,000,000 sq cm per sec, then coagulation is unimportant. In this case, the observed droplet size distribution is the initial size distribution produced by the condensation of the droplets. It is found that all cloud models with droplet formation near the cloud top (e.g., a photochemical model) must produce the observed droplet size distribution by condensation without subsequent modification by coagulation. However, neither meteoritic or surface dust can supply sufficient nucleating particles to account for the observed droplet number density. If the cloud droplets are formed near the cloud bottom, the observed droplet size distribution can be produced solely by the interaction of coagulation and dynamics; all information about the initial size distribution is lost. If droplet formation occurs near the cloud bottom, the lower atmosphere of Venus is oxidizing rather than reducing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Pinterich, Tamara; Wang, Jian
We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less
Wang, Yang; Pinterich, Tamara; Wang, Jian
2018-03-30
We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less
NASA Astrophysics Data System (ADS)
Yang, Feng; Li, Yong-gang; Wei, Ying-hui; Wei, Huan; Yan, Ze-ying; Hou, Li-feng
2018-03-01
A surface-porous Mg-Al eutectic alloy was fabricated at room temperature via electrochemical dealloying in a neutral, aqueous 0.6 M NaCl solution by controlling the applied potential and processing duration. Selective dissolution occurred on the alloy surface. The surface-porous formation mechanism is governed by the selective dissolution of the α-Mg phase, which leaves the Mg17Al12 phase as the porous layer framework. The pore characteristics (morphology, size, and distribution) of the dealloyed samples are inherited from the α-Mg phases of the precursor Mg70.5Al29.5 (at.%) alloy. Size control in the porous layer can be achieved by regulating the synthesis parameters.
Thin, nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth (Inventor); Hughes, Eli (Inventor)
2008-01-01
A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Thin, nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth (Inventor); Hughes, Eli (Inventor)
2007-01-01
A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.