NASA Astrophysics Data System (ADS)
Leukhin, R. I.; Shaykhutdinov, D. V.; Shirokov, K. M.; Narakidze, N. D.; Vlasov, A. S.
2017-02-01
Developing the experimental design of new electromagnetic constructions types in engineering industry enterprises requires solutions of two major problems: regulator’s parameters setup and comprehensive testing of electromagnets. A weber-ampere characteristic as a data source for electromagnet condition identification was selected. Present article focuses on development and implementation of the software for electromagnetic drive control system based on the weber-ampere characteristic measuring. The software for weber-ampere characteristic data processing based on artificial neural network is developed. Results of the design have been integrated into the program code in LabVIEW environment. The license package of LabVIEW graphic programming was used. The hardware is chosen and possibility of its use for control system implementation was proved. The trained artificial neural network defines electromagnetic drive effector position with minimal error. Developed system allows to control the electromagnetic drive powered by the voltage source, the current source and hybrid sources.
Assessment and control of spacecraft electromagnetic interference
NASA Technical Reports Server (NTRS)
1972-01-01
Design criteria are presented to provide guidance in assessing electromagnetic interference from onboard sources and establishing requisite control in spacecraft design, development, and testing. A comprehensive state-of-the-art review is given which covers flight experience, sources and transmission of electromagnetic interference, susceptible equipment, design procedure, control techniques, and test methods.
Electromagnetic attachment mechanism
NASA Technical Reports Server (NTRS)
Monford, Leo G., Jr. (Inventor)
1992-01-01
An electromagnetic attachment mechanism is disclosed for use as an end effector of a remote manipulator system. A pair of electromagnets, each with a U-shaped magnetic core with a pull-in coil and two holding coils, are mounted by a spring suspension system on a base plate of the mechanism housing with end pole pieces adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate of a grapple fixture affixed to a target object. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery backup is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary source. A centerline mounted camera and video monitor are used in cooperation with a target pattern on the reflective surface of the strike plate to effect targeting and alignment.
Grapple fixture for use with electromagnetic attachment mechanism
NASA Technical Reports Server (NTRS)
Monford, Jr., Leo G. (Inventor)
1995-01-01
An electromagnetic attachment mechanism for use as an end effector of a remote manipulator system. A pair of electromagnets 15A,15B, each with a U-shaped magnetic core with a pull-in coil 34 and two holding coils 35,36 are mounted by a spring suspension system 38,47 on a base plate 25 of the mechanism housing 30 with end pole pieces 21,22 adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate 65 of a grapple fixture 20 affixed to a target object 14. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery back-up 89A,89B is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary power source. A centerline mounted camera 31 and video monitor 70 are used in cooperation with a target pattern 19 on the reflective surface 67 of the strike plate to effect targeting and alignment.
Coherent hybrid electromagnetic field imaging
Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM
2008-08-26
An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.
Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces
Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona
2016-01-01
Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others. PMID:27739471
NASA Astrophysics Data System (ADS)
Liu, Changsheng; Lin, Jun; Zhou, Fengdao; Hu, Ruihua; Sun, Caitang
2013-12-01
The frequency-domain controlled-source electromagnetic method (FDCSEM) has played an important role in the terrestrial and oceanic exploration. However, the measuring manners and the detecting abilities in two kinds of environment are much different. This paper analyses the electromagnetic theories of the FDCSEM exploration on land and in ocean, simulates the electromagnetic responses in the two cases based on a united physical and mathematical model, and studies the physical mechanism leading to these differences. In this study, the relationship between the propagation paths and the detecting ability is illuminated and the way to improve the detecting ability of FDCSEM is brought forward. In terrestrial exploration, FDCSEM widely adopts the measuring manner of controlled-source audio-frequency magnetotelluric method (CSAMT), which records the electromagnetic fields in the far zone in the broadside direction of an electric dipole source. This manner utilizes the airwave (i.e. the Earth surface wave) and takes the stratum wave as interference. It is sensitive to the conductive target but insensitive to the resistive one. In oceanic exploration, FDCSEM usually adopts the measuring manner of marine controlled-source electromagnetic method (MCSEM), which records the electromagnetic fields, commonly the horizontal electric fields, in the in-line direction of the electric dipole source. This manner utilizes the stratum wave (i.e. the seafloor wave and the guided wave in resistive targets) and takes the airwave as interference. It is sensitive to the resistive target but relatively insensitive to the conductive one. The numerical simulation shows that both the airwave and the stratum wave contribute to the FDCSEM exploration. United utilization of them will enhance the anomalies of targets and congregate the advantages of CSAMT and MCSEM theories. At different azimuth and different offset, the contribution of the airwave and the stratum wave to electromagnetic anomaly is different. Observation at moderate offset in the in-line direction is the best choice for the exploration of resistive targets, no matter the environment is land or shallow sea. It is also the best choice for the exploration of conductive targets in terrestrial environment. As for the conductive targets in shallow sea, observation at moderate offset in the broadside direction is better. Synthetic and felicitous utilization of the airwave and the stratum wave will optimize the performance of FDCSEM.
NASA Astrophysics Data System (ADS)
Chen, Kai; Wei, Wen-Bo; Deng, Ming; Wu, Zhong-Liang; Yu, Gang
2015-09-01
In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.
[Organization of monitoring of electromagnetic radiation in the urban environment].
Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R
2008-01-01
The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.
Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.
2016-11-30
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.
Development of Simulated Disturbing Source for Isolation Switch
NASA Astrophysics Data System (ADS)
Cheng, Lin; Liu, Xiang; Deng, Xiaoping; Pan, Zhezhe; Zhou, Hang; Zhu, Yong
2018-01-01
In order to simulate the substation in the actual scene of the harsh electromagnetic environment, and then research on electromagnetic compatibility testing of electronic instrument transformer, On the basis of the original isolation switch as a harassment source of the electronic instrument transformer electromagnetic compatibility test system, an isolated switch simulation source system was developed, to promote the standardization of the original test. In this paper, the circuit breaker is used to control the opening and closing of the gap arc to simulate the operating of isolating switch, and the isolation switch simulation harassment source system is designed accordingly. Comparison with the actual test results of the isolating switch, it is proved that the system can meet the test requirements, and the simulation harassment source system has good stability and high reliability.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Daniels, Taumi S.
1990-01-01
The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.
NASA Astrophysics Data System (ADS)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura
2017-12-01
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.
Illumination system having a plurality of movable sources
Sweatt, William C.; Kubiak, Glenn D.
2002-01-01
An illumination system includes several discharge sources that are multiplexed together to reduce the amount of debris generated. The system includes: (a) a first electromagnetic radiation source array that includes a plurality of first activatable radiation source elements that are positioned on a first movable carriage; (b) a second electromagnetic radiation source array that includes a plurality of second activatable radiation source elements that are positioned on a second movable carriage; (c) means for directing electromagnetic radiation from the first electromagnetic radiation source array and electromagnetic radiation from the second electromagnetic radiation source array toward a common optical path; (d) means for synchronizing (i) the movements of the first movable carriage and of the second movable carriage and (ii) the activation of the first electromagnetic radiation source array and of the second electromagnetic radiation source array to provide an essentially continuous illumination of electromagnetic radiation along the common optical path.
Non-ionising electromagnetic environments on manned spacecraft.
Murphy, J R
1989-08-01
Future space travellers and settlers will be exposed to a variety of electromagnetic fields (EMFs). Extrinsic sources will include solar and stellar fluxes, planetary fluxes, and supernovae. Intrinsic sources may include fusion and ion engines, EMFs from electrical equipment, radar, lighting, superconduction energy storage systems, magnetic bearings on gyroscopic control and orientation systems, and magnetic rail microprobe launch systems. Communication sources may include radio and microwave frequencies, and laser generating systems. Magnetic fields may also be used for deflection of radiation. There is also a loss of the normal Geomagnetic field (GMF) which includes static, alternating, and time-varying components. This paper reviews exposure limits and the biological effects of EMFs, and evidence for an electromagnetic sense organ and a relationship between man and the Geomagnetic field.
Electric converters of electromagnetic strike machine with battery power
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.
2018-03-01
At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...
2017-10-17
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
Controllable Bidirectional dc Power Sources For Large Loads
NASA Technical Reports Server (NTRS)
Tripp, John S.; Daniels, Taumi S.
1995-01-01
System redesigned for greater efficiency, durability, and controllability. Modern electronically controlled dc power sources proposed to supply currents to six electromagnets used to position aerodynamic test model in wind tunnel. Six-phase bridge rectifier supplies load with large current at voltage of commanded magnitude and polarity. Current-feedback circuit includes current-limiting feature giving some protection against overload.
[Features of control of electromagnetic radiation emitted by personal computers].
Pal'tsev, Iu P; Buzov, A L; Kol'chugin, Iu I
1996-01-01
Measurements of PC electromagnetic irradiation show that the main sources are PC blocks emitting the waves of certain frequencies. Use of wide-range detectors measuring field intensity in assessment of PC electromagnetic irradiation gives unreliable results. More precise measurements by selective devices are required. Thus, it is expedient to introduce a term "spectral density of field intensity" and its maximal allowable level. In this case a frequency spectrum of PC electromagnetic irradiation is divided into 4 ranges, one of which is subjected to calculation of field intensity for each harmonic frequency, and others undergo assessment of spectral density of field intensity.
Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.
NASA Astrophysics Data System (ADS)
Liu, Y.; Li, Y.
2016-12-01
We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.
Formulation of a strategy for monitoring control integrity in critical digital control systems
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe
1991-01-01
Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.
Electric converters of electromagnetic strike machine with capacitor supply
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.
2018-03-01
The application of pulse linear electromagnetic engines in small power strike machines (energy impact is 0.01...1.0 kJ), where the characteristic mode of rare beats (pulse seismic vibrator, the arch crash device bins bulk materials), is quite effective. At the same time, the technical and economic performance of such machines is largely determined by the ability of the power source to provide a large instantaneous power of the supply pulses in the winding of the linear electromagnetic motor. The use of intermediate energy storage devices in power systems of rare-shock LEME makes it possible to obtain easily large instantaneous powers, forced energy conversion, and increase the performance of the machine. A capacitor power supply of a pulsed source of seismic waves is proposed for the exploration of shallow depths. The sections of the capacitor storage (CS) are connected to the winding of the linear electromagnetic motor by thyristor dischargers, the sequence of activation of which is determined by the control device. The charge of the capacitors to the required voltage is made directly from the battery source, or through the converter from a battery source with a smaller number of batteries.
Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics
Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.
1999-03-23
A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.
Laser-driven deflection arrangements and methods involving charged particle beams
Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA
2011-08-09
Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.
First results from experiment in South China Sea using marine controlled source electromagnetic
NASA Astrophysics Data System (ADS)
Li, Yuan; Wang, Lipeng; Deng, Ming
2016-04-01
We concentrated on the use of marine controlled-source electromagnetic (CSEM) sounding with a horizontal electric dipole source towed close to the seafloor and receivers anchored on the seafloor. We applied the CSEM method in South China Sea for the first time in 2014, which not only test the application of our instrument, but also test our data processing method. Electromagnetic fields transmitted by a towed electric dipole source in deep sea were measured by a linear array of six seafloor receivers, positioned 600 meter (m) apart. Our results provided two highly resistivity layers beneath the survey line and the gas hydrate saturation profile associated with the anomalous resistivity. In the letter, we discussed some anomalous layers during the interpretation steps. The most plausible explanation of the first resistivity layer anomalies is that large amounts of gas hydrate have accumulated at 200 m depth below the seep sites, and the second layers is considerable volumes of gas hydrate have accumulated the seafloor at survey line according to the conceptual model, during the resistivity compared with other evidence like seismic and well data from the same survey. We should try other observation like heat flow, geochemical or other evidence to test the statement in the future.
Kraus, Jr., Robert H.; Espy, Michelle A.; Matlachov, Andrei; Volegov, Petr
2010-06-01
An apparatus measures electromagnetic signals from a weak signal source. A plurality of primary sensors is placed in functional proximity to the weak signal source with an electromagnetic field isolation surface arranged adjacent the primary sensors and between the weak signal source and sources of ambient noise. A plurality of reference sensors is placed adjacent the electromagnetic field isolation surface and arranged between the electromagnetic isolation surface and sources of ambient noise.
The Characteristics of Electromagnetic Fields Induced by Different Type Sources
NASA Astrophysics Data System (ADS)
Di, Q.; Fu, C.; Wang, R.; Xu, C.; An, Z.
2011-12-01
Controlled source audio-frequence magnetotelluric (CSAMT) method has played an important role in the shallow exploration (less than 1.5km) in the field of resources, environment and engineering geology. In order to prospect the deeper target, one has to increase the strength of the source and offset. However, the exploration is nearly impossible for the heavy larger power transmitting source used in the deeper prospecting and mountain area. So an EM method using a fixed large power source, such as long bipole current source, two perpendicular "L" shape long bipole current source and large radius circle current source, is beginning to take shape. In order to increase the strength of the source, the length of the transmitting bipole in one direction or in perpendicular directions has to be much larger, such as L=100km, or the radius of the circle current source is much larger. The electric field strength are IL2and IL2/4π separately for long bipole source and circle current source with the same wire length. Just considering the effectiveness of source, the strength of the circle current source is larger than that of long bipole source if is large enough. However, the strength of the electromagnetic signal doesn't totally depend on the transmitting source, the effect of ionosphere on the electromagnetic (EM) field should be considered when observation is carried at a very far (about several thousands kilometers) location away from the source for the long bipole source or the large radius circle current source. We firstly calculate the electromagnetic fields with the traditional controlled source (CSEM) configuration using the integral equation (IE) code developed by our research group for a three layers earth-ionosphere model which consists of ionosphere, atmosphere and earth media. The modeling results agree well with the half space analytical results because the effect of ionosphere for this small scale source can be ignorable, which means the integral equation method is reliable and effective for modeling models including ionosphere, atmosphere and earth media. In order to discuss EM fields' characters for complicate earth-ionosphere media excited by long bipole, "L" shape bipole and circle current sources in the far-field and wave-guide zones, we modeled the frequency responses and decay characters of EM fields for three layers earth-ionosphere model. Because of the effect of ionosphere, the earth-ionosphere electromagnetic fields' decay curves with given frequency show that the fields of Ex and Hy , excited by a long bipole and "L" shape bipole, can be divided into an extra wave-guide field with slower attenuation and strong amplititude than that in half space, but the EM fields of circle current source does not show the same characteristics, ionosphere makes the amplitude of the EM field weaker for the circle current source. For this reason, it is better to use long bipole source while working in the wave-guide field with a fixed large power source.
Zarei, S.; Mortazavi, S. M. J.; Mehdizadeh, A. R.; Jalalipour, M.; Borzou, S.; Taeb, S.; Haghani, M.; Mortazavi, S. A. R.; Shojaei-fard, M. B.; Nematollahi, S.; Alighanbari, N.; Jarideh, S.
2015-01-01
Background Nowadays, mothers are continuously exposed to different sources of electromagnetic fields before and even during pregnancy. It has recently been shown that exposure to mobile phone radiation during pregnancy may lead to adverse effects on the brain development in offspring and cause hyperactivity. Researchers have shown that behavioral problems in laboratory animals which have a similar appearance to ADHD are caused by intrauterine exposure to mobile phones. Objective The purpose of this study was to investigate whether the maternal exposure to different sources of electromagnetic fields affect on the rate and severity of speech problems in their offspring. Methods In this study, mothers of 35 healthy 3-5 year old children (control group) and 77 children and diagnosed with speech problems who had been referred to a speech treatment center in Shiraz, Iran were interviewed. These mothers were asked whether they had exposure to different sources of electromagnetic fields such as mobile phones, mobile base stations, Wi-Fi, cordless phones, laptops and power lines. Results We found a significant association between either the call time (P=0.002) or history of mobile phone use (months used) and speech problems in the offspring (P=0.003). However, other exposures had no effect on the occurrence of speech problems. To the best of our knowledge, this is the first study to investigate a possible association between maternal exposure to electromagnetic field and speech problems in the offspring. Although a major limitation in our study is the relatively small sample size, this study indicates that the maternal exposure to common sources of electromagnetic fields such as mobile phones can affect the occurrence of speech problems in the offspring. PMID:26396971
Zarei, S; Mortazavi, S M J; Mehdizadeh, A R; Jalalipour, M; Borzou, S; Taeb, S; Haghani, M; Mortazavi, S A R; Shojaei-Fard, M B; Nematollahi, S; Alighanbari, N; Jarideh, S
2015-09-01
Nowadays, mothers are continuously exposed to different sources of electromagnetic fields before and even during pregnancy. It has recently been shown that exposure to mobile phone radiation during pregnancy may lead to adverse effects on the brain development in offspring and cause hyperactivity. Researchers have shown that behavioral problems in laboratory animals which have a similar appearance to ADHD are caused by intrauterine exposure to mobile phones. The purpose of this study was to investigate whether the maternal exposure to different sources of electromagnetic fields affect on the rate and severity of speech problems in their offspring. In this study, mothers of 35 healthy 3-5 year old children (control group) and 77 children and diagnosed with speech problems who had been referred to a speech treatment center in Shiraz, Iran were interviewed. These mothers were asked whether they had exposure to different sources of electromagnetic fields such as mobile phones, mobile base stations, Wi-Fi, cordless phones, laptops and power lines. We found a significant association between either the call time (P=0.002) or history of mobile phone use (months used) and speech problems in the offspring (P=0.003). However, other exposures had no effect on the occurrence of speech problems. To the best of our knowledge, this is the first study to investigate a possible association between maternal exposure to electromagnetic field and speech problems in the offspring. Although a major limitation in our study is the relatively small sample size, this study indicates that the maternal exposure to common sources of electromagnetic fields such as mobile phones can affect the occurrence of speech problems in the offspring.
Minimization of nanosatellite low frequency magnetic fields.
Belyayev, S M; Dudkin, F L
2016-03-01
Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones.
A solid-state controllable power supply for a magnetic suspension wind tunnel
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Tripp, John S.
1991-01-01
The NASA Langley 6-inch Magnetic Suspension and Balance System (6-in. MSBS) requires an independently controlled bidirectional dc power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance-coupled thyratron-controlled rectifiers as well as ac to dc motor-generator converters, is obsolete, inefficient, and unreliable. A replacement six-phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full-load efficiency is 80 percent compared with 25 percent for the resistance-coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20-kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.
Hanada, Eisuke
2007-01-01
Most problems with the electromagnetic environment of medical institutions have been related to radiated electromagnetic fields and have been constructed from reports about electromagnetic interference (EMI) with electronic medical equipment by the radio waves emitted from mobile telephone handsets. However, radiated electromagnetic fields are just one of the elements. For example, little attention has been placed on problems with the electric power source. Apparatus for clinical treatment and diagnosis that use electric power sources have come into wide use in hospitals. Hospitals must pay careful attention to all elements of the electromagnetic environment. Herein, I will show examples of measurements and measuring methods for radiated electromagnetic fields, static magnetic fields, and power-source noise, common components of the medical electromagnetic environment.
Suppression of radiating harmonics Electro-Impulse Deicing (EIDI) systems
NASA Astrophysics Data System (ADS)
Zieve, Peter; Ng, James; Fiedberg, Robert
1991-10-01
The electromagnetic compatibility (EMC) of two different configurations of electromagnetic deicing systems is discussed. Both Electro-Impulse Deicing (EIDI) and Eddy Current Repulsion Deicing Strip (EDS) are investigated. With EIDI, rigid coils are mounted behind the wing; while with EDS, the impulse coils are built thin and flexible with printed circuit board technology. An important consideration in the certification of electromagnetic impulse deicing systems is electromagnetic compatibility (EMC). When the capacitor bank discharges, a large current pulse travels down a transmission line to the coil. The coil is one source of radiation. Another source is the cabling and connections to the coil. In work conducted for the FAA in 1988, it was found that excessive electromagnetic emissions resulted from the operation of a Low Voltage Electro-Impulse Deicer (LVEID) in conjunction with a composite wing. The goal of this project was to investigate and develop techniques for controlling emissions without the benefit of shielding. In this study it was determined that both EIDI and EDS could be brought within the RTCA/DO-160B standards through proper shielding and termination of the pulse power cable. An alternative topology of EDS with the impulse coil on the wing exterior surface did not meet the standard.
3D synthetic aperture for controlled-source electromagnetics
NASA Astrophysics Data System (ADS)
Knaak, Allison
Locating hydrocarbon reservoirs has become more challenging with smaller, deeper or shallower targets in complicated environments. Controlled-source electromagnetics (CSEM), is a geophysical electromagnetic method used to detect and derisk hydrocarbon reservoirs in marine settings, but it is limited by the size of the target, low-spatial resolution, and depth of the reservoir. To reduce the impact of complicated settings and improve the detecting capabilities of CSEM, I apply synthetic aperture to CSEM responses, which virtually increases the length and width of the CSEM source by combining the responses from multiple individual sources. Applying a weight to each source steers or focuses the synthetic aperture source array in the inline and crossline directions. To evaluate the benefits of a 2D source distribution, I test steered synthetic aperture on 3D diffusive fields and view the changes with a new visualization technique. Then I apply 2D steered synthetic aperture to 3D noisy synthetic CSEM fields, which increases the detectability of the reservoir significantly. With more general weighting, I develop an optimization method to find the optimal weights for synthetic aperture arrays that adapts to the information in the CSEM data. The application of optimally weighted synthetic aperture to noisy, simulated electromagnetic fields reduces the presence of noise, increases detectability, and better defines the lateral extent of the target. I then modify the optimization method to include a term that minimizes the variance of random, independent noise. With the application of the modified optimization method, the weighted synthetic aperture responses amplifies the anomaly from the reservoir, lowers the noise floor, and reduces noise streaks in noisy CSEM responses from sources offset kilometers from the receivers. Even with changes to the location of the reservoir and perturbations to the physical properties, synthetic aperture is still able to highlight targets correctly, which allows use of the method in locations where the subsurface models are built from only estimates. In addition to the technical work in this thesis, I explore the interface between science, government, and society by examining the controversy over hydraulic fracturing and by suggesting a process to aid the debate and possibly other future controversies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.
1994-01-01
The U.S. Bureau of Mines, the University of Arizona, Sandia National Laboratory, and Zonge Engineering and Research, Inc., conducted cooperative field tests of six electromagnetic geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 meters below the surface. The test site was the University's San Xavier experimental mine near Tucson, Arizona. Geophysical surveys using surface and surface-borehole time-domain electromagnetics (TEM), surface controlled source audio-frequency magnetotellurics (CSAMT), surface-borehole frequency-domain electromagnetics (FEM), crosshole FEM and surface magnetic field ellipticity were conducted before and duringmore » brine injection.« less
Minimization of nanosatellite low frequency magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyayev, S. M., E-mail: belyayev@isr.lviv.ua; Royal Institute of Technology, Stockholm 11428; Dudkin, F. L.
2016-03-15
Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accuratemore » than the conventional ones.« less
Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster
NASA Astrophysics Data System (ADS)
Jaisankar, S.; Sheshadri, T. S.
2018-05-01
Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es’kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V., E-mail: kud@rf.unn.ru
Electromagnetic radiation from filamentary electric-dipole and magnetic-current sources of infinite length in the presence of gyrotropic cylindrical scatterers in the surrounding free space is studied. The scatterers are assumed to be infinitely long, axially magnetized circular plasma columns parallel to the axis of the filamentary source. The field and the radiation pattern of each source are calculated in the case where the source frequency is equal to one of the surface plasmon resonance frequencies of the cylindrical scatterers. It is shown that the presence of even a single resonant magnetized plasma scatterer of small electrical radius or a few suchmore » scatterers significantly affects the total fields of the filamentary sources, so that their radiation patterns become essentially different from those in the absence of scatterers or the presence of isotropic scatterers of the same shape and size. It is concluded that the radiation characteristics of the considered sources can efficiently be controlled using their resonance interaction with the neighboring gyrotropic scatterers.« less
Testing for EMC (electromagnetic compatibility) in the clinical environment.
Paperman, D; David, Y; Martinez, M
1996-01-01
Testing for electromagnetic compatibility (EMC) in the clinical environment introduces a host of complex conditions not normally encountered under laboratory conditions. In the clinical environment, various radio-frequency (RF) sources of electromagnetic interference (EMI) may be present throughout the entire spectrum of interest. Isolating and analyzing the impact from the sources of interference to medical devices involves a multidisciplinary approach based on training in, and knowledge of, the following: operation of medical devices and their susceptibility to EMI; RF propagation modalities and interaction theory; spectrum analysis systems and techniques (preferably with signature analysis capabilities) and calibrated antennas; the investigation methodology of suspected EMC problems, and testing protocols and standards. Using combinations of standard test procedures adapted for the clinical environment with personnel that have an understanding of radio-frequency behavior increases the probability of controlling, proactively, EMI in the clinical environment, thus providing for a safe and more effective patient care environment.
NASA Astrophysics Data System (ADS)
Hickey, M. S.
2008-05-01
Controlled-source electromagnetic geophysical methods provide a noninvasive means of characterizing subsurface structure. In order to properly model the geologic subsurface with a controlled-source time domain electromagnetic (TDEM) system in an extreme topographic environment we must first see the effects of topography on the forward model data. I run simulations using the Texas A&M University (TAMU) finite element (FEM) code in which I include true 3D topography. From these models we see the limits of how much topography we can include before our forward model can no longer give us accurate data output. The simulations are based on a model of a geologic half space with no cultural noise and focus on topography changes associated with impact crater sites, such as crater rims and central uplift. Several topographical variations of the model are run but the main constant is that there is only a small conductivity change on the range of 10-1 s/m between the host medium and the geologic body within. Asking the following questions will guide us through determining the limits of our code: What is the maximum step we can have before we see fringe effects in our data? At what location relative to the body does the topography cause the most effect? After we know the limits of the code we can develop new methods to increase the limits that will allow us to better image the subsurface using TDEM in extreme topography.
Systems, Apparatuses and Methods for Beamforming RFID Tags
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor)
2017-01-01
A radio frequency identification (RFID) system includes an RFID interrogator and an RFID tag having a plurality of information sources and a beamforming network. The tag receives electromagnetic radiation from the interrogator. The beamforming network directs the received electromagnetic radiation to a subset of the plurality of information sources. The RFID tag transmits a response to the received electromagnetic radiation, based on the subset of the plurality of information sources to which the received electromagnetic radiation was directed. Method and other embodiments are also disclosed.
2016-11-29
AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...afosr.reports.sgizmo.com/s3/> Subject: Final Report to Dr. Arje Nachman Contract/Grant Title: Long Wavelength Electromagnetic Light Bullets Generated by a 10.6
Development of the EM tomography system by the vertical electromagnetic profiling (VEMP) method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Y.; Osato, K.; Takasugi, S.
1995-12-31
As a part of the {open_quotes}Deep-Seated Geothermal Resources Survey{close_quotes} project being undertaken by the NEDO, the Vertical ElectroMagnetic Profiling (VEMP) method is being developed to accurately obtain deep resistivity structure. The VEMP method acquires multi-frequency three-component magnetic field data in an open hole well using controlled sources (loop sources or grounded-wire sources) emitted at the surface. Numerical simulation using EM3D demonstrated that phase data of the VEMP method is very sensitive to resistivity structure and the phase data will also indicate presence of deep anomalies. Forward modelling was also used to determine required transmitter moments for various grounded-wire and loopmore » sources for a field test using the WD-1 well in the Kakkonda geothermal area. Field logging of the well was carried out in May 1994 and the processed field data matches well the simulated data.« less
Broad band waveguide spectrometer
Goldman, Don S.
1995-01-01
A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.
Medium effect on the characteristics of the coupled seismic and electromagnetic signals.
Huang, Qinghua; Ren, Hengxin; Zhang, Dan; Chen, Y John
2015-01-01
Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals.
Medium effect on the characteristics of the coupled seismic and electromagnetic signals
HUANG, Qinghua; REN, Hengxin; ZHANG, Dan; CHEN, Y. John
2015-01-01
Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals. PMID:25743062
Application of the perfectly matched layer in 2.5D marine controlled-source electromagnetic modeling
NASA Astrophysics Data System (ADS)
Li, Gang; Han, Bo
2017-09-01
For the traditional framework of EM modeling algorithms, the Dirichlet boundary is usually used which assumes the field values are zero at the boundaries. This crude condition requires that the boundaries should be sufficiently far away from the area of interest. Although cell sizes could become larger toward the boundaries as electromagnetic wave is propagated diffusively, a large modeling area may still be necessary to mitigate the boundary artifacts. In this paper, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates is successfully applied to 2.5D frequency-domain marine controlled-source electromagnetic (CSEM) field modeling. By using this PML boundary, one can restrict the modeling area of interest to the target region. Only a few absorbing layers surrounding the computational area can effectively depress the artificial boundary effect without losing the numerical accuracy. A 2.5D marine CSEM modeling scheme with the CFS-PML is developed by using the staggered finite-difference discretization. This modeling algorithm using the CFS-PML is of high accuracy, and shows advantages in computational time and memory saving than that using the Dirichlet boundary. For 3D problem, this computation time and memory saving should be more significant.
Thin-film spectroscopic sensor
Burgess, Jr., Lloyd W.; Goldman, Don S.
1992-01-01
There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.
NASA Astrophysics Data System (ADS)
Zhamaletdinov, A. A.; Shevtsov, A. N.; Velikhov, E. P.; Skorokhodov, A. A.; Kolesnikov, V. E.; Korotkova, T. G.; Ryazantsev, P. A.; Efimov, B. V.; Kolobov, V. V.; Barannik, M. B.; Prokopchuk, P. I.; Selivanov, V. N.; Kopytenko, Yu. A.; Kopytenko, E. A.; Ismagilov, V. S.; Petrishchev, M. S.; Sergushin, P. A.; Tereshchenko, P. E.; Samsonov, B. V.; Birulya, M. A.; Smirnov, M. Yu.; Korja, T.; Yampolski, Yu. M.; Koloskov, A. V.; Baru, N. A.; Poljakov, S. V.; Shchennikov, A. V.; Druzhin, G. I.; Jozwiak, W.; Reda, J.; Shchors, Yu. G.
2015-12-01
This article is devoted to describing the theory, technique, and first experimental results of a control source electromagnetic (CSEM) study of the Earth's crust and ionosphere with the use of two mutually orthogonal industrial transmission lines 109 and 120 km in length in the frame of FENICS (Fennoscandian Electrical Conductivity from Natural and Induction Control Source Soundings) experiment. The main part of the measurements is executed on the territory of the Fennoscandian shield at distances from the first hundreds kilometers up to 856 km from the source with the purpose of the deep electromagnetic sounding of the Earth's crust and upper mantle. According to the results of these studies clarifying the parameters of "normal" (standard) geoelectric section of the lithosphere to a depth of 60-70 km, the anisotropy parameters are evaluated and a geothermal and rheological interpretation in conjunction with the analysis of the seismic data is executed. Furthermore, to study the propagation of ELF-LLF waves (0.1-200 Hz) in an "Earth-Ionosphere" waveguide, the measurements are carried out apart from Fennoscandian shield at distances up to 5600 km from the source (in Ukraine, Spitsbergen, Poland, Kamchatka, and other areas). According to the results of these studies, the experimental estimates of the influence of the ionosphere and of the displacement currents on the propagation of ELF-ULF waves in the upper half-space at the different azimuths generation of the primary field are obtained.
Shchurova, L Yu; Namiot, V A; Sarkisyan, D R
2015-01-01
Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.
An improved DPSM technique for modelling ultrasonic fields in cracked solids
NASA Astrophysics Data System (ADS)
Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique
2007-04-01
In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.
What Are Electromagnetic Fields?
... Alt+0 Navigation Alt+1 Content Alt+2 Electromagnetic fields (EMF) Menu EMF Home About electromagnetic fields ... Standards EMF publications & information resources Meetings What are electromagnetic fields? Definitions and sources Electric fields are created ...
Non-Thermal Electromagnetic Radiation Damage to Lens Epithelium
Bormusov, Elvira; P.Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva
2008-01-01
High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5ºC for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat. PMID:19517034
NASA Astrophysics Data System (ADS)
Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan
2016-03-01
Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.
Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan
2016-03-01
Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.
Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo
2017-01-01
Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated. PMID:29088077
Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo
2017-10-31
Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated.
Complete data listings for CSEM soundings on Kilauea Volcano, Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauahikaua, J.; Jackson, D.B.; Zablocki, C.J.
1983-01-01
This document contains complete data from a controlled-source electromagnetic (CSEM) sounding/mapping project at Kilauea volcano, Hawaii. The data were obtained at 46 locations about a fixed-location, horizontal, polygonal loop source in the summit area of the volcano. The data consist of magnetic field amplitudes and phases at excitation frequencies between 0.04 and 8 Hz. The vector components were measured in a cylindrical coordinate system centered on the loop source. 5 references.
Molina, Vicente; Bachiller, Alejandro; de Luis, Rodrigo; Lubeiro, Alba; Poza, Jesús; Hornero, Roberto; Alonso, Joan Francesc; Mañanas, Miguel Angel; Marqués, Patricia; Romero, Sergio
2018-02-02
The study of cerebral underpinnings of schizophrenia may benefit from the high temporal resolution of electromagnetic techniques, but its spatial resolution is low. However, source imaging approaches such as low-resolution brain electromagnetic tomography (LORETA) allow for an acceptable compromise between spatial and temporal resolutions. We combined LORETA with 32 channels and 3-Tesla diffusion magnetic resonance (Dmr) to study cerebral dysfunction in 38 schizophrenia patients (17 first episodes, FE), compared to 53 healthy controls. The EEG was acquired with subjects performing an odd-ball task. Analyses included an adaptive window of interest to take into account the interindividual variability of P300 latency. We compared source activation patters to distractor (P3a) and target (P3b) tones within- and between-groups. Patients showed a reduced activation in anterior cingulate and lateral and medial prefrontal cortices, as well as inferior/orbital frontal regions. This was also found in the FE patients alone. The activation was directly related to IQ in the patients and controls and to working memory performance in controls. Symptoms were unrelated to source activation. Fractional anisotropy in the tracts connecting lateral prefrontal and anterior cingulate regions predicted source activation in these regions in the patients. These results replicate the source activation deficit found in a previous study with smaller sample size and a lower number of sensors and suggest an association between structural connectivity deficits and functional alterations.
Method and apparatus for upshifting light frequency by rapid plasma creation
Dawson, John M.; Wilks, Scott C.; Mori, Warren B.; Joshi, Chandrasekhar J.; Sessler, Andrew M.
1990-01-01
Photons of an electromagnetic source wave are frequency-upshifted as a plasma is rapidly created around the path of this propagating source wave. The final frequency can be controlled by adjusting the gas density. A controlled time-varying frequency (chirped) pulse can be produced by using a controlled spatially varying gas density. The plasma must be created in a time which is short compared to the transit time of the light through the plasmas region. For very fast creation over one to at most a few light periods of an overdense plasma, static magnetic fields with short wavelengths are created.
Poynting-vector based method for determining the bearing and location of electromagnetic sources
Simons, David J.; Carrigan, Charles R.; Harben, Philip E.; Kirkendall, Barry A.; Schultz, Craig A.
2008-10-21
A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.
Map of low-frequency electromagnetic noise in the sky
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Smith, Nathan; Evans, Adrian
2015-06-01
The Earth's natural electromagnetic environment is disturbed by anthropogenic electromagnetic noise. Here we report the first results from an electromagnetic noise survey of the sky. The locations of electromagnetic noise sources are mapped on the hemisphere above a distributed array of wideband receivers that operate in a small aperture configuration. It is found that the noise sources can be localized at elevation angles up to ˜60° in the sky, well above the horizon. The sky also exhibits zones with little or no noise that are found toward the local zenith and the southwest of the array. These results are obtained by a rigorous analysis of the residuals from the classic dispersion relation for electromagnetic waves using an array analysis of electric field measurements in the frequency range from ˜20 to 250 kHz. The observed locations of the noise sources enable detailed observations of ionospheric modification, for example, caused by particle precipitation and lightning discharges, while the observed exclusion zones enable the detection of weak natural electromagnetic emissions, for example, from streamers in transient luminous events above thunderclouds.
Sherlin, Leslie; Congedo, Marco
2005-10-21
Electroencephalographic mapping techniques have been used to show differences between normal subjects and those diagnosed with various mental disorders. To date, there is no other research using the techniques of low-resolution brain electromagnetic tomography (LORETA) with the obsessive-compulsive disorder (OCD) population. The current investigation compares current source density measures of persons with OCD symptoms to an age-matched control group. The main finding is excess current source density in the Beta frequencies in the cingulate gyrus. This Beta activity is primarily located in the middle cingulate gyrus as well as adjacent frontal parieto-occipital regions. Lower frequency Beta is prominent more anteriorly in the cingulate gyrus whereas higher frequency Beta is seen more posteriorly. These preliminary findings indicate the utility of LORETA as a clinical and diagnostic tool.
49 CFR 176.150 - Radio and radar.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., unloaded, or handled, the responsible person must ensure that all sources of electromagnetic radiation such... are sensitive to electromagnetic radiation from external sources must be stowed at a safe distance...
49 CFR 176.150 - Radio and radar.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., unloaded, or handled, the responsible person must ensure that all sources of electromagnetic radiation such... are sensitive to electromagnetic radiation from external sources must be stowed at a safe distance...
49 CFR 176.150 - Radio and radar.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., unloaded, or handled, the responsible person must ensure that all sources of electromagnetic radiation such... are sensitive to electromagnetic radiation from external sources must be stowed at a safe distance...
49 CFR 176.150 - Radio and radar.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., unloaded, or handled, the responsible person must ensure that all sources of electromagnetic radiation such... are sensitive to electromagnetic radiation from external sources must be stowed at a safe distance...
49 CFR 176.150 - Radio and radar.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., unloaded, or handled, the responsible person must ensure that all sources of electromagnetic radiation such... are sensitive to electromagnetic radiation from external sources must be stowed at a safe distance...
The deep-tow marine controlled-source electromagnetic transmitter system for gas hydrate exploration
NASA Astrophysics Data System (ADS)
Wang, Meng; Deng, Ming; Wu, Zhongliang; Luo, Xianhu; Jing, Jianen; Chen, Kai
2017-02-01
The Marine Controlled-Source Electromagnetic (MCSEM) method has been recognized as an important and effective tool to detect electrically resistive structures, such as oil, gas, and gas hydrate. The MCSEM performance is strongly influenced by the transmitter system design. We have developed a deep-tow MCSEM transmitter system. In this paper, some new technical details will be present. A 10,000 m optical-electrical composite cable is used to support high power transmission and fast data transfer; a new clock unit is designed to keep the synchronization between transmitter and receivers, and mark the time stamp into the transmission current full waveform; a data link is established to monitor the real-time altitude of the tail unit; an online insulation measuring instrument is adopted to monitor current leakage from high voltage transformer; a neutrally buoyant dipole antenna of copper cable and flexible electrodes are created to transmit the large power current into seawater; a new design method for the transmitter, which is called "real-time control technology of hardware parallelism", is described to achieve inverting and recording high-power current waveform, controlling functions, and collecting auxiliary information. We use a gas hydrate exploration test to verify the performance of the transmitter system, focusing on more technical details, rather than applications. The test shows that the transmitter can be used for gas hydrate exploration as an effective source.
Noncontact Electromagnetic Vibration Source
NASA Technical Reports Server (NTRS)
Namkung, Min; Fulton, James P.; Wincheski, Buzz A.
1994-01-01
Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.
METHOD OF OPERATING A CALUTRON
Davidson, P.H.
1960-01-12
A method of operating an electromagnetic isotope separator of the calutron class is reported whereby uranium tetrachloride is produced at a controlled rate within the source rather than betng introduced therein as was formerly practiced. This is accomplished by placing a uranium-bearing material, such as uranium metal, uranium trichloride, or uranium carbide in the charge receptacle of the calutron, heating this material to about to produce uranium tetrachloride vapor at a rate controlled by the chlorine gas flow into the source. The vapor is subsequently ionized by an electric arc and mass separated by conventional calutron methods.
Guxens, Mònica; Vermeulen, Roel; van Eijsden, Manon; Beekhuizen, Johan; Vrijkotte, Tanja G M; van Strien, Rob T; Kromhout, Hans; Huss, Anke
2016-10-01
Little is known about the exposure of young children to radiofrequency electromagnetic fields (RF-EMF) and potentially associated health effects. We assessed the relationship between residential RF-EMF exposure from mobile phone base stations, residential presence of indoor sources, personal cell phone and cordless phone use, and children's cognitive function at 5-6 years of age. Cross-sectional study on children aged 5-6 years from the Amsterdam Born Children and their Development (ABCD) study, the Netherlands (n=2354). Residential RF-EMF exposure from mobile phone base stations was estimated with a 3D geospatial radio wave propagation model. Residential presence of indoor sources (cordless phone base stations and Wi-Fi) and children's cell phone and cordless phone use was reported by the mother. Speed of information processing, inhibitory control, cognitive flexibility, and visuomotor coordination was assessed using the Amsterdam Neuropsychological Tasks. Residential presence of RF-EMF indoor sources was associated with an improved speed of information processing. Higher residential RF-EMF exposure from mobile phone base stations and presence of indoor sources was associated with an improved inhibitory control and cognitive flexibility whereas we observed a reduced inhibitory control and cognitive flexibility with higher personal cordless phone use. Higher residential RF-EMF exposure from mobile phone base stations was associated with a reduced visuomotor coordination whereas we observed an improved visuomotor coordination with residential presence of RF-EMF indoor sources and higher personal cell phone use. We found inconsistent associations between different sources of RF-EMF exposure and cognitive function in children aged 5-6 years. Copyright © 2016 Elsevier Inc. All rights reserved.
Identifying Electromagnetic Attacks against Airports
NASA Astrophysics Data System (ADS)
Kreth, A.; Genender, E.; Doering, O.; Garbe, H.
2012-05-01
This work presents a new and sophisticated approach to detect and locate the origin of electromagnetic attacks. At the example of an airport, a normal electromagnetic environment is defined, in which electromagnetic attacks shall be identified. After a brief consideration of the capabilities of high power electromagnetic sources to produce high field strength values, this contribution finally presents the approach of a sensor network, realizing the identification of electromagnetic attacks.
Testing For EM Upsets In Aircraft Control Computers
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1994-01-01
Effects of transient electrical signals evaluated in laboratory tests. Method of evaluating nominally fault-tolerant, aircraft-type digital-computer-based control system devised. Provides for evaluation of susceptibility of system to upset and evaluation of integrity of control when system subjected to transient electrical signals like those induced by electromagnetic (EM) source, in this case lightning. Beyond aerospace applications, fault-tolerant control systems becoming more wide-spread in industry; such as in automobiles. Method supports practical, systematic tests for evaluation of designs of fault-tolerant control systems.
Efthimion, Philip C.; Helfritch, Dennis J.
1989-11-28
An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.
`Earth-ionosphere' mode controlled source electromagnetic method
NASA Astrophysics Data System (ADS)
Li, Diquan; Di, Qingyun; Wang, Miaoyue; Nobes, David
2015-09-01
In traditional artificial-source electromagnetic exploration, the effects of the ionosphere and displacement current (DC) in the air were neglected, and only the geoelectrical structure of the earth's crust and upper mantle was considered, such as for controlled source audio-frequency magnetotelluric (CSAMT). By employing a transmitter (less than 30 kW) to generate source fields, the CSAMT method overcomes the problems associated with weak natural electromagnetic (EM) fields used in magnetotellurics. However, the transmitter is moved and the source-receiver offset is approximately less than 20 km, because of the limitation of emission energy. We put forward a new idea, that is, a fixed artificial source (greater than 200 kW) is used and the source location selected at a high resistivity region (to ensure a high emission efficiency), so there may be a possibility that as long as the source strength magnitude is strong enough, the artificial EM signal can be easily observed within a distance of several thousand kilometres. Previous studies have provided the evidence to support this idea; they used the `earth-ionosphere' mode in modeling the EM fields with the offset up to a thousand kilometres. Such EM fields still have a signal/noise ratio over 10-20 dB; this means that a new EM method with fixed source is feasible. However, in their calculations, the DC which plays a very important role for large offsets was neglected. This paper pays much attention to derive the formulae of the `earth-ionosphere' mode with a horizontal electric dipole source, and the DC is not neglected. We present some three layers modeling results to illustrate the basic EM field characteristics under the `earth-ionosphere' mode. As the offset increases, the contribution of the conduction current decreases, DC and ionosphere were taken into account, and the EM field attenuation decreases. We also quantitatively compare the predicted and observed data. The comparison of these results with the data reveal the excellent agreement between the experimental and theoretical results. The DC and ionosphere affects the EM fields, however impedances (ratio of E to H) are unaffected, and this means we need to include ionosphere and DC effects to accurately model the EM field amplitudes for optimal setting of measurement parameters, but we do not need to include these complications for the interpretation of the data for the Earth conductivity.
Detailed observations of the source of terrestrial narrowband electromagnetic radiation
NASA Technical Reports Server (NTRS)
Kurth, W. S.
1982-01-01
Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.
Translation of an Object Using Phase-Controlled Sound Sources in Acoustic Levitation
NASA Astrophysics Data System (ADS)
Matsui, Takayasu; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi; Ide, Masao
1995-05-01
Acoustic levitation is used for positioning materials in the development of new materials in space where there is no gravity. This technique is applicable to materials for which electromagnetic force cannot be used. If the levitation point of the materials can be controlled freely in this application, possibilities of new applications will be extended. In this paper we report on an experimental study on controlling the levitation point of the object in an acoustic levitation system. The system fabricated and tested in this study has two sound sources with vibrating plates facing each other. Translation of the object can be achieved by controlling the phase of the energizing electrical signal for one of the sound sources. It was found that the levitation point can be moved smoothly in proportion to the phase difference between the vibrating plates.
Electronic modulation of infrared radiation in graphene plasmonic resonators.
Brar, Victor W; Sherrott, Michelle C; Jang, Min Seok; Kim, Seyoon; Kim, Laura; Choi, Mansoo; Sweatlock, Luke A; Atwater, Harry A
2015-05-07
All matter at finite temperatures emits electromagnetic radiation due to the thermally induced motion of particles and quasiparticles. Dynamic control of this radiation could enable the design of novel infrared sources; however, the spectral characteristics of the radiated power are dictated by the electromagnetic energy density and emissivity, which are ordinarily fixed properties of the material and temperature. Here we experimentally demonstrate tunable electronic control of blackbody emission from graphene plasmonic resonators on a silicon nitride substrate. It is shown that the graphene resonators produce antenna-coupled blackbody radiation, which manifests as narrow spectral emission peaks in the mid-infrared. By continuously varying the nanoresonator carrier density, the frequency and intensity of these spectral features can be modulated via an electrostatic gate. This work opens the door for future devices that may control blackbody radiation at timescales beyond the limits of conventional thermo-optic modulation.
Bayesian resolution of TEM, CSEM and MT soundings: a comparative study
NASA Astrophysics Data System (ADS)
Blatter, D. B.; Ray, A.; Key, K.
2017-12-01
We examine the resolution of three electromagnetic exploration methods commonly used to map the electrical conductivity of the shallow crust - the magnetotelluric (MT) method, the controlled-source electromagnetic (CSEM) method and the transient electromagnetic (TEM) method. TEM and CSEM utilize an artificial source of EM energy, while MT makes use of natural variations in the Earth's electromagnetic field. For a given geological setting and acquisition parameters, each of these methods will have a different resolution due to differences in the source field polarization and the frequency range of the measurements. For example, the MT and TEM methods primarily rely on induced horizontal currents and are most sensitive to conductive layers while the CSEM method generates vertical loops of current and is more sensitive to resistive features. Our study seeks to provide a robust resolution comparison that can help inform exploration geophysicists about which technique is best suited for a particular target. While it is possible to understand and describe a difference in resolution qualitatively, it remains challenging to fully describe it quantitatively using optimization based approaches. Part of the difficulty here stems from the standard electromagnetic inversion toolkit, which makes heavy use of regularization (often in the form of smoothing) to constrain the non-uniqueness inherent in the inverse problem. This regularization makes it difficult to accurately estimate the uncertainty in estimated model parameters - and therefore obscures their true resolution. To overcome this difficulty, we compare the resolution of CSEM, airborne TEM, and MT data quantitatively using a Bayesian trans-dimensional Markov chain Monte Carlo (McMC) inversion scheme. Noisy synthetic data for this study are computed from various representative 1D test models: a conductive anomaly under a conductive/resistive overburden; and a resistive anomaly under a conductive/resistive overburden. In addition to obtaining the full posterior probability density function of the model parameters, we develop a metric to more directly compare the resolution of each method as a function of depth.
2013-04-01
different ultrasonic and electromagnetic field modeling problems for NDE (nondestructive evaluation) applications [5- 14]. 2d . Use of the...transient ultrasonic wave propagation using the Distributed Point Source Method”, IEEE Transactions on Ultrasonics, Ferroelectric and Frequency Control...Cavity”, IEEE Transactions on Ultrasonics, Ferroelectric and Frequency Control, Vol. 57(6), pp. 1396-1404, 2010. [10] A. Shelke, S. Das and T. Kundu
Biological and Health Effects of Electromagnetic (Nonionizing) Radiation. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Halasz, Hisako, Comp.
The environment we live in today is filled with human-created electromagnetic fields generated by a variety of sources, including radio and television transmitters, power lines, and visual display terminals. (In addition, there exists a natural background of electromagnetic fields.) The term "electromagnetic pollution" is often used to…
[Electromagnetic pollution (electrosmog)--potential hazards of our electromagnetic future].
Nowak, D; Radon, K
2004-02-26
The term electromagnetic environment encompasses the totality of all electric, magnetic and electromagnetic fields generated by natural and technical sources. A differentiation is made between low- and high-frequency electromagnetic fields. Typical sources of the former are domestic electricity Exposure to the latter is, for example, associated with the sue of mobile telephones. Studies on the health-related effects of electromagnetic fields are available in particular for the low-frequency range, based on an appropriate estimation of exposure. A number of these studies reveal an association between exposure to this type of electromagnetic fields and the occurrence of infantile leukemia in the highest exposure category. For high-frequency electromagnetic fields the number of epidemiological studies is limited. An increased risk of an accident occurring through the use of a cellular phone while driving has consistently been shown. Against the background of our limited knowledge about possible adverse effects of exposure to mobile phone transmitters, and the inability of the public to influence such exposure, transparency in the communication of the risks involved is of great importance.
Vertical electromagnetic profiling (VEMP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lytle, R.J.
1984-08-01
Vertical seismic profiling (VSP) is based upon reception measurements performed in a borehole with a source near the ground surface. This technology has seen a surge in application and development in the last decade. The analogous concept of vertical electromagnetic profiling (VEMP) consists of reception measurements performed in a borehole with a source near the ground surface. Although the electromagnetic concept has seen some application, this technology has not been as systematically developed and applied as VSP. Vertical electromagnetic profiling provides distinct and complementary data due to sensing different physical parameters than seismic profiling. Certain of the advantages of VEMPmore » are presented. 28 references, 7 figures.« less
Overview of Advanced Electromagnetic Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Kamhawi, Hani; Gilland, James H.; Arrington, Lynn A.
2005-01-01
NASA Glenn Research Center s Very High Power Electric Propulsion task is sponsored by the Energetics Heritage Project. Electric propulsion technologies currently being investigated under this program include pulsed electromagnetic plasma thrusters, magnetoplasmadynamic thrusters, helicon plasma sources as well as the systems models for high power electromagnetic propulsion devices. An investigation and evaluation of pulsed electromagnetic plasma thruster performance at energy levels up to 700 Joules is underway. On-going magnetoplasmadynamic thruster experiments will investigate applied-field performance characteristics of gas-fed MPDs. Plasma characterization of helicon plasma sources will provide additional insights into the operation of this novel propulsion concept. Systems models have been developed for high power electromagnetic propulsion concepts, such as pulsed inductive thrusters and magnetoplasmadynamic thrusters to enable an evaluation of mission-optimized designs.
NASA Astrophysics Data System (ADS)
Vetrov, A.
2009-05-01
The condition of underground constructions, communication and supply systems in the cities has to be periodically monitored and controlled in order to prevent their breakage, which can result in serious accident, especially in urban area. The most risk of damage have the underground construction made of steal such as pipelines widely used for water, gas and heat supply. To ensure the pipeline survivability it is necessary to carry out the operative and inexpensive control of pipelines condition. Induced electromagnetic methods of geophysics can be applied to provide such diagnostics. The highly developed surface in urbane area is one of cause hampering the realization of electromagnetic methods of diagnostics. The main problem is in finding of an appropriate place for the source line and electrodes on a limited surface area and their optimal position relative to the observation path to minimize their influence on observed data. Author made a number of experiments of an underground heating system pipeline diagnostics using different position of the source line and electrodes. The experiments were made on a 200 meters section over 2 meters deep pipeline. The admissible length of the source line and angle between the source line and the observation path were determined. The minimal length of the source line for the experiment conditions and accuracy made 30 meters, the maximum admissible angle departure from the perpendicular position made 30 degrees. The work was undertaken in cooperation with diagnostics company DIsSO, Saint-Petersburg, Russia.
NASA Astrophysics Data System (ADS)
Zhamaletdinov, A. A.; Petrishchev, M. S.; Shevtsov, A. N.; Kolobov, V. V.; Selivanov, V. N.; Barannik, M. B.; Tereshchenko, E. D.; Grigoriev, V. F.; Sergushin, P. A.; Kopytenko, E. A.; Biryulya, M. A.; Skorokhodov, A. A.; Esipko, O. A.; Damaskin, R. V.
2013-11-01
Electromagnetic soundings with the fields of natural (magnetotelluric (MT), and audio magnetotelluric (AMT)) and high-power controlled sources have been carried out in the region of the SG-6 (Tyumen) and SG-7 (En-Yakhin) superdeep boreholes in the Yamal-Nenets autonomous district (YaNAD). In the controlled-source soundings, the electromagnetic field was generated by the VL Urengoi-Pangody 220-kV industrial power transmission line (PTL), which has a length of 114 km, and ultralow-frequency (ULF) Zevs radiating antenna located at a distance of 2000 km from the signal recording sites. In the soundings with the Urengoi-Pangody PTL, the Energiya-2 generator capable of supplying up to 200 kW of power and Energiya-3 portable generator with a power of 2 kW were used as the sources. These generators were designed and manufactured at the Kola Science Center of the Russian Academy of Sciences. The soundings with the Energiya-2 generator were conducted in the frequency range from 0.38 to 175 Hz. The external generator was connected to the PTL in upon the agreement with the Yamal-Nenets Enterprise of Main Electric Networks, a branch of OAO FSK ES of Western Siberia. The connection was carried out by the wire-ground scheme during the routine maintenance of PTL in the nighttime. The highest-quality signals were recorded in the region of the SG-7 (En-Yakhin) superdeep borehole, where the industrial noise is lowest. The results of the inversion of the soundings with PTL and Zevs ULF transmitter completely agree with each other and with the data of electric logging. The MT-AMT data provide additional information about the deep structure of the region in the low-frequency range (below 1Hz). It is established that the section of SG-6 and SG-7 boreholes contains conductive layers in the depth intervals from 0.15 to 0.3 km and from 1 to 1.5 km. These layers are associated with the variations in the lithological composition, porosity, and fluid saturation of the rocks. The top of the poorly conductive Permian-Triassic complex is identified at a depth of about 7 km. On the basis of the MT data in the lowest frequency band (hourly and longer periods) with the observations at the Novosibirsk observatory taken into account, the distribution of electric resistivity up to a depth of 800 km is reconstructed. This distribution can be used as additional information when calculating the temperature and rheology of the lithosphere and upper mantle in West Siberia. The results of our studies demonstrate the high potential of the complex electromagnetic soundings with natural and controlled sources in the study of deep structure of the lithosphere and tracing deep oil-and-gas-bearing horizons in the sedimentary cover of the West Siberian Platform within the Yamal-Nenets autonomous district.
Electromagnetic disturbance of electric drive system signal is extracted based on PLS
NASA Astrophysics Data System (ADS)
Wang, Yun; Wang, Chuanqi; Yang, Weidong; Zhang, Xu; Jiang, Li; Hou, Shuai; Chen, Xichen
2018-05-01
At present ISO11452 and GB/T33014 specified by electromagnetic immunity are narrowband electromagnetic radiation, but our exposure to electromagnetic radiation at ordinary times is not only a narrowband electromagnetic radiation, and some broadband electromagnetic radiation, and even some of the more complex electromagnetic environment. In terms of Electric vehicles, electric drive system is a kind of complex electromagnetic disturbance source, is not only a narrow-band signal, there are a lot of broadband signal, this paper puts forward PLS data processing method is adopted to analyze the electric drive system of electromagnetic disturbance, this kind of method to extract the data can be provide reliable data support for future standards.
Lutsenko, L A; Tulakin, A V; Egorova, A M; Mikhailova, O M; Gvozdeva, L L; Chigryay, E K
The purpose of this study was to give the description of harmful effects of the impact of electromagnetic radiations from base stations of cellular communication as the most common sources of radio frequencies of electromagnetic fields in the environment. The highest values of the energy flux density were measured on the roofs of houses where antennas are installed - more than 10 pW/cm. The lowest values were recorded in inside premises with expositions of 0.1-1 pW/cm. In the close location of the railway station to the base stations of the cellular communication there was seen a cumulative effect. There are proposed both new safe hygienic approaches to the control for the safety of the work of base station and protective measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.
1994-01-01
The US Bureau of Mines, The University of Arizona, Sandia National Laboratories, and Zonge Engineering and Research Organization, Inc., conducted cooperative field tests of six electromagnetic (EM) geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 m below the surface. The testsite was the University's San Xavier experimental mine near Tucson, AZ. Geophysical surveys using surface and surface-borehole, time-domain electromagnetic (TEM) induction; surface controlled-source audiofrequency magnetotellurics (CSAMT); surface-borehole, frequency-domain electromagnetic (FEM) induction; crosshole FEM; and surface magnetic field ellipticity were conducted beforemore » and during brine injection. The surface TEM data showed a broad decrease in resistivity. CSAMT measurements with the conventional orientation did not detect the brine, but measurements with another orientation indicated some decrease in resistivity. The surface-borehole and crosshole methods located a known fracture and other fracture zones inferred from borehole induction logs. Surface magnetic field ellipticity data showed a broad decrease in resistivity at depth following brine injection.« less
Electromagnetic fields and their impacts
NASA Astrophysics Data System (ADS)
Prša, M. A.; Kasaš-Lažetić, K. K.
2018-01-01
The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.
Nonlinear interferometric vibrational imaging
NASA Technical Reports Server (NTRS)
Boppart, Stephen A. (Inventor); Marks, Daniel L. (Inventor)
2009-01-01
A method of examining a sample, which includes: exposing a reference to a first set of electromagnetic radiation, to form a second set of electromagnetic radiation scattered from the reference; exposing a sample to a third set of electromagnetic radiation to form a fourth set of electromagnetic radiation scattered from the sample; and interfering the second set of electromagnetic radiation and the fourth set of electromagnetic radiation. The first set and the third set of electromagnetic radiation are generated from a source; at least a portion of the second set of electromagnetic radiation is of a frequency different from that of the first set of electromagnetic radiation; and at least a portion of the fourth set of electromagnetic radiation is of a frequency different from that of the third set of electromagnetic radiation.
Classical electromagnetic fields from quantum sources in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Holliday, Robert; McCarty, Ryan; Peroutka, Balthazar; Tuchin, Kirill
2017-01-01
Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.
Redlarski, Grzegorz; Lewczuk, Bogdan; Żak, Arkadiusz; Koncicki, Andrzej; Krawczuk, Marek; Piechocki, Janusz; Jakubiuk, Kazimierz; Tojza, Piotr; Jaworski, Jacek; Ambroziak, Dominik; Skarbek, Łukasz; Gradolewski, Dawid
2015-01-01
Current technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. The harm caused by this pollution is still open to question since there is no clear and definitive evidence of its negative influence on humans. This is despite the fact that extremely low frequency electromagnetic fields were classified as potentially carcinogenic. For these reasons, in recent decades a significant growth can be observed in scientific research in order to understand the influence of electromagnetic radiation on living organisms. However, for this type of research the appropriate selection of relevant model organisms is of great importance. It should be noted here that the great majority of scientific research papers published in this field concerned various tests performed on mammals, practically neglecting lower organisms. In that context the objective of this paper is to systematise our knowledge in this area, in which the influence of electromagnetic radiation on lower organisms was investigated, including bacteria, E. coli and B. subtilis, nematode, Caenorhabditis elegans, land snail, Helix pomatia, common fruit fly, Drosophila melanogaster, and clawed frog, Xenopus laevis.
Żak, Arkadiusz; Koncicki, Andrzej; Piechocki, Janusz; Jakubiuk, Kazimierz; Tojza, Piotr; Jaworski, Jacek; Ambroziak, Dominik; Skarbek, Łukasz
2015-01-01
Current technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. The harm caused by this pollution is still open to question since there is no clear and definitive evidence of its negative influence on humans. This is despite the fact that extremely low frequency electromagnetic fields were classified as potentially carcinogenic. For these reasons, in recent decades a significant growth can be observed in scientific research in order to understand the influence of electromagnetic radiation on living organisms. However, for this type of research the appropriate selection of relevant model organisms is of great importance. It should be noted here that the great majority of scientific research papers published in this field concerned various tests performed on mammals, practically neglecting lower organisms. In that context the objective of this paper is to systematise our knowledge in this area, in which the influence of electromagnetic radiation on lower organisms was investigated, including bacteria, E. coli and B. subtilis, nematode, Caenorhabditis elegans, land snail, Helix pomatia, common fruit fly, Drosophila melanogaster, and clawed frog, Xenopus laevis. PMID:25811025
Generating a heated fluid using an electromagnetic radiation-absorbing complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EMmore » radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.« less
Electromagnetic Modeling of Human Body Using High Performance Computing
NASA Astrophysics Data System (ADS)
Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada
Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.
Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments
NASA Astrophysics Data System (ADS)
Jang, Hangilro; Jang, Hannuree; Lee, Ki Ha; Kim, Hee Joon
2013-04-01
A frequency-domain, marine controlled-source electromagnetic (CSEM) method has been applied successfully in deep water areas for detecting hydrocarbon (HC) reservoirs. However, a typical technique with horizontal transmitters and receivers requires large source-receiver separations with respect to the target depth. A time-domain EM system with vertical transmitters and receivers can be an alternative because vertical electric fields are sensitive to deep resistive layers. In this paper, a time-domain modelling code, with multiple source and receiver dipoles that are finite in length, has been written to investigate transient EM problems. With the use of this code, we calculate step-off responses for one-dimensional HC reservoir models. Although the vertical electric field has much smaller amplitude of signal than the horizontal field, vertical currents resulting from a vertical transmitter are sensitive to resistive layers. The modelling shows a significant difference between step-off responses of HC- and water-filled reservoirs, and the contrast can be recognized at late times at relatively short offsets. A maximum contrast occurs at more than 4 s, being delayed with the depth of the HC layer.
A new electromagnetic NDI-technique based on the measurement of source-sample reaction forces
NASA Astrophysics Data System (ADS)
Fitzpatrick, G. L.; Skaugset, R. L.; Shih, W. C. L.
2001-04-01
Faraday's law of induction, Lenz's law, the Lorentz force law and Newton's third law, taken together, insure that sources (e.g., coil sources) of time-dependent electromagnetic fields, and nearby "nonmagnetic" electrical conductors (e.g., aluminum), always experience mutually repulsive (source-conductor) forces. This fact forms the basis for a new method for detecting cracks and corrosion in (aging) multi-layer airframes. The presence of cracks or corrosion (e.g., material thinning) in these structures is observed to reduce (second-harmonic) source-conductor reaction forces.
Electromagnetic fields in curved spacetimes
NASA Astrophysics Data System (ADS)
Tsagas, Christos G.
2005-01-01
We consider the evolution of electromagnetic fields in curved spacetimes and calculate the exact wave equations for the associated electric and magnetic components. Our analysis is fully covariant, applies to a general spacetime and isolates all the sources that affect the propagation of these waves. Among others, we explicitly show how the different components of the gravitational field act as driving sources of electromagnetic disturbances. When applied to perturbed Friedmann Robertson Walker cosmologies, our results argue for a superadiabatic-type amplification of large-scale cosmological magnetic fields in Friedmann models with open spatial curvature.
NASA Technical Reports Server (NTRS)
Leung, P. L.
1984-01-01
This paper discusses the measurements of the electromagnetic interference (EMI) generated during discharges of Mylar samples. The two components of EMI, the conducted emission and the radiated emission, are characterized by the replacement current and the radiated RF spectrum respectively. The measured radiated RF spectra reveal important information on the source of the electromagnetic radiation. The possible sources are the replacement current pulse and the discharged generated plasma. The scaling of the amplitudes of the EMI, as a function of the area of the test sample, is also discussed.
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
NASA Astrophysics Data System (ADS)
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
Positioning and Microvibration Control by Electromagnets of an Air Spring Vibration Isolation System
NASA Technical Reports Server (NTRS)
Watanabe, Katsuhide; Cui, Weimin; Haga, Takahide; Kanemitsu, Yoichi; Yano, Kenichi
1996-01-01
Active positioning and microvibration control has been attempted by electromagnets equipped in a bellows-type, air-spring vibration isolation system. Performance tests have been carried out to study the effects. The main components of the system's isolation table were four electromagnetic actuators and controllers. The vibration isolation table was also equipped with six acceleration sensors for detecting microvibration of the table. The electromagnetic actuators were equipped with bellows-type air springs for passive support of the weight of the item placed on the table, with electromagnets for active positioning, as well as for microvibration control, and relative displacement sensors. The controller constituted a relative feedback system for positioning control and an absolute feedback system for vibration isolation control. In the performance test, a 1,490 kg load (net weight of 1,820 kg) was placed on the vibration isolation table, and both the positioning and microvibration control were carried out electromagnetically. Test results revealed that the vibration transmission was reduced by 95%.
Exploration of the Electromagnetic Environment
ERIC Educational Resources Information Center
Fullekrug, M.
2009-01-01
The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…
Tunability enhanced electromagnetic wiggler
Schlueter, Ross D.; Deis, Gary A.
1992-01-01
The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.
Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method
NASA Astrophysics Data System (ADS)
Alekseev, G.; Tokhtina, A.; Soboleva, O.
2017-10-01
Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.
Electromagnetic sinc Schell-model beams and their statistical properties.
Mei, Zhangrong; Mao, Yonghua
2014-09-22
A class of electromagnetic sources with sinc Schell-model correlations is introduced. The conditions on source parameters guaranteeing that the source generates a physical beam are derived. The evolution behaviors of statistical properties for the electromagnetic stochastic beams generated by this new source on propagating in free space and in atmosphere turbulence are investigated with the help of the weighted superposition method and by numerical simulations. It is demonstrated that the intensity distributions of such beams exhibit unique features on propagating in free space and produce a double-layer flat-top profile of being shape-invariant in the far field. This feature makes this new beam particularly suitable for some special laser processing applications. The influences of the atmosphere turbulence with a non-Kolmogorov power spectrum on statistical properties of the new beams are analyzed in detail.
Frequency-controls of electromagnetic multi-beam scanning by metasurfaces.
Li, Yun Bo; Wan, Xiang; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun
2014-11-05
We propose a method to control electromagnetic (EM) radiations by holographic metasurfaces, including to producing multi-beam scanning in one dimension (1D) and two dimensions (2D) with the change of frequency. The metasurfaces are composed of subwavelength metallic patches on grounded dielectric substrate. We present a combined theory of holography and leaky wave to realize the multi-beam radiations by exciting the surface interference patterns, which are generated by interference between the excitation source and required radiation waves. As the frequency changes, we show that the main lobes of EM radiation beams could accomplish 1D or 2D scans regularly by using the proposed holographic metasurfaces shaped with different interference patterns. This is the first time to realize 2D scans of antennas by changing the frequency. Full-wave simulations and experimental results validate the proposed theory and confirm the corresponding physical phenomena.
NASA Astrophysics Data System (ADS)
Zhamaletdinov, A. A.; Shevtsov, A. N.; Korotkova, T. G.; Kopytenko, Yu. A.; Ismagilov, V. S.; Petrishev, M. S.; Efimov, B. V.; Barannik, M. B.; Kolobov, V. V.; Prokopchuk, P. I.; Smirnov, M. Yu.; Vagin, S. A.; Pertel, M. I.; Tereshchenko, E. D.; Vasil'Ev, A. N.; Grigoryev, V. F.; Gokhberg, M. B.; Trofimchik, V. I.; Yampolsky, Yu. M.; Koloskov, A. V.; Fedorov, A. V.; Korja, T.
2011-01-01
The paper addresses the technique and the first results of a unique experiment on the deep tensor frequency electromagnetic sounding, the Fennoscandian Electrical conductivity from results of sounding with Natural and Controlled Sources (FENICS). In the experiment, Energy-1 and Energy-2 generators with power of up to 200 kW and two mutually orthogonal industrial 109- and 120-km-long power transmission lines were used. The sounding frequency range was 0.1-200 Hz. The signals were measured in the Kola-Karelian region, in Finland, on Svalbard, and in Ukraine at distances up to 2150 km from the source. The parameters of electric conductivity in the lithosphere are studied down to depths on the order of 50-70 km. A strong lateral homogeneity (the one-dimensionality) of a geoelectric section of the Earth's crust is revealed below depths of 10-15 km. At the same time, a region with reduced transverse crustal resistivity spread over about 80 000 square kilometers is identified within the depth interval from 20 to 40 km. On the southeast the contour of the anomaly borders the zone of deepening of the Moho boundary down to 60 km in Central Finland. The results are compared with the AMT-MT sounding data and a geodynamic interpretation of the obtained information is carried out.
14 CFR 417.303 - Command control system requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...
14 CFR 417.303 - Command control system requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...
14 CFR 417.303 - Command control system requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...
14 CFR 417.303 - Command control system requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...
14 CFR 417.303 - Command control system requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight termination system used for each launch. (f) Electromagnetic interference. Each command control system component must function within the electromagnetic environment to which it is exposed. A command... must prevent electromagnetic interference. (g) Command transmitter failover. A command control system...
NASA Astrophysics Data System (ADS)
Decker, K. T.; Everett, M. E.
2009-12-01
The Edwards aquifer lies in the structurally complex Balcones fault zone and supplies water to the growing city of San Antonio. To ensure that future demands for water are met, the hydrological and geophysical properties of the aquifer must be well-understood. In most settings, fracture lengths and displacements occur in power-law distributions. Fracture distribution plays an important role in determining electrical and hydraulic current flowpaths. 1-D synthetic models of the controlled-source electromagnetic (CSEM) response for layered models with a fractured layer at depth described by the roughness parameter βV, such that 0≤βV<1, associated with the power-law length-scale dependence of electrical conductivity are developed. A value of βV = 0 represents homogeneous, continuous media, while a value of 0<βV<1 shows that roughness exists. The Seco Creek frequency-domain helicopter electromagnetic survey data set is analyzed by introducing the similarly defined roughness parameter βH to detect lateral roughness along survey lines. Fourier transforming the apparent resistivity as a function of position along flight line into wavenumber domain using a 256-point sliding window gives the power spectral density (PSD) plot for each line. The value of βH is the slope of the least squares regression for the PSD in each 256-point window. Changes in βH with distance along the flight line are plotted. Large values of βH are found near well-known large fractures and maps of βH produced by interpolating values of βH along survey lines suggest previously undetected structure at depth.
20 kHz main inverter unit. [for space station power supplies
NASA Technical Reports Server (NTRS)
Hussey, S.
1989-01-01
A proof-of-concept main inverter unit has demonstrated the operation of a pulse-width-modulated parallel resonant power stage topology as a 20-kHz ac power source driver, showing simple output regulation, parallel operation, power sharing and short-circuit operation. The use of a two-stage dc input filter controls the electromagnetic compatibility (EMC) characteristics of the dc power bus, and the use of an ac harmonic trap controls the EMC characteristics of the 20-kHz ac power bus.
49 CFR 173.60 - General packaging requirements for explosives.
Code of Federal Regulations, 2011 CFR
2011-10-01
... initiation that is sensitive to external electromagnetic radiation, must have its means of initiation effectively protected from electromagnetic radiation sources (for example, radar or radio transmitters...
49 CFR 173.60 - General packaging requirements for explosives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... initiation that is sensitive to external electromagnetic radiation, must have its means of initiation effectively protected from electromagnetic radiation sources (for example, radar or radio transmitters...
49 CFR 173.60 - General packaging requirements for explosives.
Code of Federal Regulations, 2012 CFR
2012-10-01
... initiation that is sensitive to external electromagnetic radiation, must have its means of initiation effectively protected from electromagnetic radiation sources (for example, radar or radio transmitters...
49 CFR 173.60 - General packaging requirements for explosives.
Code of Federal Regulations, 2014 CFR
2014-10-01
... initiation that is sensitive to external electromagnetic radiation, must have its means of initiation effectively protected from electromagnetic radiation sources (for example, radar or radio transmitters...
49 CFR 173.60 - General packaging requirements for explosives.
Code of Federal Regulations, 2013 CFR
2013-10-01
... initiation that is sensitive to external electromagnetic radiation, must have its means of initiation effectively protected from electromagnetic radiation sources (for example, radar or radio transmitters...
Airborne system for detection and location of radio interference sources
NASA Astrophysics Data System (ADS)
Audone, Bruno; Pastore, Alberto
1992-11-01
The rapid expansion of telecommunication has practically saturated every band of Radio Frequency Spectrum; a similar expansion of electrical and electronic devices has affected all radio communications which are, in some way, influenced by a large amount of interferences, either intentionally or unintentionally produced. Operational consequences of these interferences, particularly in the frequency channels used for aeronautical services, can be extremely dangerous, making mandatory a tight control of Electromagnetic Spectrum. The present paper analyzes the requirements and the problems related to the surveillance, for civil application, of the Electromagnetic Spectrum between 20 and 1000 MHz, with particular attention to the detection and location of radio interference sources; after a brief introduction and the indication of the advantages of an airborne versus ground installation, the airborne system designed by Alenia in cooperation with Italian Ministry of Post and Telecommunication, its practical implementation and the prototype installation on board of a small twin turboprop aircraft for experimentation purposes is presented. The results of the flight tests are also analyzed and discussed.
Demonstration of ROV-based Underwater Electromagnetic Array Technology
2017-05-25
Volume Magnetic Source Model that Was Modified to Address EM Propagation through a Conductive Seawater Medium...16 Figure 7. Still Shots of the Integrated ROV- EM System (left) and the EM Sensor (right) Performing Bottom Following...of Defense DVL Doppler Velocity Log E Easting EOD Explosive Ordnance Disposal EM Electromagnetic EMI Electromagnetic Induction EMF
Tunability enhanced electromagnetic wiggler
Schlueter, R.D.; Deis, G.A.
1992-03-24
The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassanein, Ahmed; Konkashbaev, Isak
A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.
Anisotropic conducting films for electromagnetic radiation applications
Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard
2015-06-16
Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.
NASA Astrophysics Data System (ADS)
Escalas, M.; Queralt, P.; Ledo, J.; Marcuello, A.
2012-04-01
Magnetotelluric (MT) method is a passive electromagnetic technique, which is currently used to characterize sites for the geological storage of CO2. These later ones are usually located nearby industrialized, urban or farming areas, where man-made electromagnetic (EM) signals contaminate the MT data. The identification and characterization of the artificial EM sources which generate the so-called "cultural noise" is an important challenge to obtain the most reliable results with the MT method. The polarization attributes of an EM signal (tilt angle, ellipticity and phase difference between its orthogonal components) are related to the character of its source. In a previous work (Escalas et al. 2011), we proposed a method to distinguish natural signal from cultural noise in the raw MT data. It is based on the polarization analysis of the MT time-series in the time-frequency domain, using a wavelet scheme. We developed an algorithm to implement the method, and was tested with both synthetic and field data. In 2010, we carried out a controlled-source electromagnetic (CSEM) experiment in the Hontomín site (the Research Laboratory on Geological Storage of CO2 in Spain). MT time-series were contaminated at different frequencies with the signal emitted by a controlled artificial EM source: two electric dipoles (1 km long, arranged in North-South and East-West directions). The analysis with our algorithm of the electric field time-series acquired in this experiment was successful: the polarization attributes of both the natural and artificial signal were obtained in the time-frequency domain, highlighting their differences. The processing of the magnetic field time-series acquired in the Hontomín experiment has been done in the present work. This new analysis of the polarization attributes of the magnetic field data has provided additional information to detect the contribution of the artificial source in the measured data. Moreover, the joint analysis of the polarization attributes of the electric and magnetic field has been crucial to fully characterize the properties and the location of the noise source. Escalas, M., Queralt, P., Ledo, J., Marcuello, A., 2011. Identification of cultural noise sources in magnetotelluric data: estimating polarization attributes in the time-frequency domain using wavelet analysis. Geophysical Research Abstracts Vol. 13, EGU2011-6085. EGU General Assembly 2011.
Es'kin, V A; Kudrin, A V; Petrov, E Yu
2011-06-01
The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.
Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek
2012-07-30
The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.
[Applications of electromagnetic radiation in medicine].
Miłowska, Katarzyna; Grabowska, Katarzyna; Gabryelak, Teresa
2014-05-08
Recent decades have been devoted to the intense search for the response to questions related to the impact of radiation on the human body. Due to the growing fashion for a healthy lifestyle, increasing numbers of works about the alleged dangers of electromagnetic waves and diseases that they cause appeared. However, the discoveries of 20th century, and knowledge of the properties of electromagnetic radiation have allowed to broaden the horizons of the use of artificial sources of radiation in many fields of science and especially in medicine. The aim of this paper is to show that although excessive radiation or high doses are dangerous to the human body, its careful and controlled use, does not pose a threat, and it is often necessary in therapy. The possibility of using ionizing radiation in radiotherapy, isotope diagnostics or medical imaging, and non-ionizing radiation in the treatment for dermatological disorders and cancers will be presented. The unique properties of synchrotron radiation result in using it on a large scale in the diagnosis of pathological states by imaging methods.
Investigation of a high power electromagnetic pulse source.
Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo
2012-09-01
A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.
Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.
NASA Astrophysics Data System (ADS)
Hwang, Sangmoon
The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs. The effect of various design parameters on the output torque and torque ripple are discussed. Design parameters include winding patterns, magnetization direction, magnet arc length, number of segments in poles and magnet pole shaping. New designs of trapezoidal BEMF motors are proposed to reduce the electromagnetic torque ripple. Magnet stepping and magnet edge shaping with reduced arc length, significantly reduce torque ripple, with minimal sacrifice of the maximum output torque. Acoustic noise of electromagnetic origin is investigated using a magnetic frame which emulates a DC motor. The driving electromagnetic force is calculated using finite element analysis and the resulting vibration and acoustic noise is measured. Acoustic noise of purely electromagnetic origin was also tested with a DC brushless motor to confirm the results of the magnetic frame. The mechanism of noise generation in a DC motor is a quasi-static response of a stator not only at the fundamental frequency but also at higher harmonic frequencies of alternating switched DC, which is a current characteristic of a DC motor. Noise generation is significantly aggravated when some of those harmonics are close to the resonant frequencies of the stator. Therefore, acoustic noise is highly dependent upon the excitation current shape, as higher harmonics may match with resonant frequencies of the stator.
Monitoring Hydraulic Fracturing Using Ground-Based Controlled Source Electromagnetics
NASA Astrophysics Data System (ADS)
Hickey, M. S.; Trevino, S., III; Everett, M. E.
2017-12-01
Hydraulic fracturing allows hydrocarbon production in low permeability formations. Imaging the distribution of fluid used to create a hydraulic fracture can aid in the characterization of fracture properties such as extent of plume penetration as well as fracture azimuth and symmetry. This could contribute to improving the efficiency of an operation, for example, in helping to determine ideal well spacing or the need to refracture a zone. A ground-based controlled-source electromagnetics (CSEM) technique is ideal for imaging the fluid due to the change in field caused by the difference in the conductive properties of the fluid when compared to the background. With advances in high signal to noise recording equipment, coupled with a high-power, broadband transmitter we can show hydraulic fracture extent and azimuth with minimal processing. A 3D finite element code is used to model the complete well casing along with the layered subsurface. This forward model is used to optimize the survey design and isolate the band of frequencies with the best response. In the field, the results of the modeling are also used to create a custom pseudorandom numeric (PRN) code to control the frequencies transmitted through a grounded dipole source. The receivers record the surface voltage across two grounded dipoles, one parallel and one perpendicular to the transmitter. The data are presented as the displays of amplitude ratios across several frequencies with the associated spatial information. In this presentation, we show multiple field results in multiple basins in the United States along with the CSEM theory used to create the survey designs.
Kim, Dae-Eun; Shin, Jung-Hyun; Kim, Young-Hoon; Eom, Tae-Hoon; Kim, Sung-Hun; Kim, Jung-Min
2016-01-01
Acute confusional migraine (ACM) shows typical electroencephalography (EEG) patterns of diffuse delta slowing and frontal intermittent rhythmic delta activity (FIRDA). The pathophysiology of ACM is still unclear but these patterns suggest neuronal dysfunction in specific brain areas. We performed source localization analysis of IRDA (in the frequency band of 1-3.5 Hz) to better understand the ACM mechanism. Typical IRDA EEG patterns were recorded in a patient with ACM during the acute stage. A second EEG was obtained after recovery from ACM. To identify source localization of IRDA, statistical non-parametric mapping using standardized low-resolution brain electromagnetic tomography was performed for the delta frequency band comparisons between ACM attack and non-attack periods. A difference in the current density maximum was found in the dorsal anterior cingulated cortex (ACC). The significant differences were widely distributed over the frontal, parietal, temporal and limbic lobe, paracentral lobule and insula and were predominant in the left hemisphere. Dorsal ACC dysfunction was demonstrated for the first time in a patient with ACM in this source localization analysis of IRDA. The ACC plays an important role in the frontal attentional control system and acute confusion. This dysfunction of the dorsal ACC might represent an important ACM pathophysiology.
Underwater Advanced Time-Domain Electromagnetic System
2017-03-01
distribution statement initially submitted with AD1042986, entitled Underwater Advanced Time Domain Electromagnetic System (MR-201313), has been appealed...Advanced Time -Domain Electromagnetic System ESTCP Project MR-201313 MARCH 2017 Mr. Steve Saville CH2M Distribution Statement D: Distribution...is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
A "caliper" type of controlled-source, frequency-domain, electromagnetic sounding method
NASA Astrophysics Data System (ADS)
Zhang, W.; Lin, J.; Zhou, F.; Liu, C.; Chen, J.; Xue, K.; Liu, L.; Wu, Y.
2011-12-01
We developed a special measurement manner for controlled-source, frequency-domain, electromagnetic sounding method that can improve resolution and efficiency, called as "caliper". This manner is base on our array electromagnetic system DPS-I, which consists of 53 channels and can cover 2500 m survey line at one arrangement. There are several steps to apply this method. First, a rough measurement is carried out, using large dynamic range but sparse frequencies. The ratio of adjacent frequency is set to be 2 or 4. The frequency points cover the entire frequency band that is required according to the geological environment, and are almost equidistantly distributed at logarithmic axis. Receivers array are arranged in one or more survey lines to measure the amplitude and phase of electromagnetic field components simultaneously. After all frequency points for rough measurement are measured, data in each sub-receiver are transmitted to the controller and the apparent resistivity and phase are calculated in field quickly. Then the pseudo section diagrams of apparent resistivity and phase are drew. By the pseudo section we can roughly lock the abnormal zone and determine the frequency band required for detail investigation of abnormal zone. Next, the measurement using high density of frequencies in this frequency band is carried out, which we called "detailed measurement". The ratio of adjacent frequency in this time is m which lies between 1 and 2. The exact value of m will depend on how detailed that the user expected. After "detailed measurement" is finished, the pseudo section diagrams of apparent resistivity and phase are drew in the same way with the first step. We can see more detailed information about the abnormal zone and decide whether further measurement is necessary. If it is necessary, we can repeat the second step using smaller m until the resolution meet the requirements to distinguish the target. By simulation, we know that high density of frequencies really help us to improve resolution. But we also need to say that the improvement is limited and it will do no help to add frequencies if the frequency is already dense enough. This method not only improves efficiency, but also improves the ability to distinguish the abnormal body. This measurement mode consisting of rough measurement and detailed measurement is similar to the caliper measurement of length, so called "caliper" type. It is accurate and fast. It not only can be applied to frequency-domain sounding, such as controlled source audio -frequency magnetotelluric (CSAMT), but also can be extended to the spectral induced polarization method. By using this measurement manner, high resolution and high-efficiency can be expected.
NASA Astrophysics Data System (ADS)
Wang, Meng; Deng, Ming; Luo, Xianhu; Zhao, Qingxian; Chen, Kai; Jing, Jianen
2018-02-01
The marine controlled source electromagnetic (CSEM) method has been recognized as an effective exploration method of shallow hydrocarbons around the world. We developed our own underwater marine CSEM transmitter that consisted of many functional modules with various response times. We previously adopted a centralized software-control technology to design the transmitter circuit topological structure. That structure probably generated a control disorder or malfunction. These undesirable conditions could lead to repeated recovery and deployment of the transmitter, which not only consumed time but also affected data continuity and establishment of stable and continuous CSEM field. We developed an instrument design concept named ‘control technology of hardware parallelism’. In this design, a noteworthy innovation of our new technology is to solve the above-mentioned problems at the physical and fundamental levels. We used several self-contained control-units to simultaneously accomplish the predetermined functions of the transmitter. The new solution relies on two technologies: multi-core embedded technology and multi-channel parallel optical-fiber data transmission technology. The first technology depends on many independent microcontrollers. Every microcontroller is only used to achieve a customized function. The second one relies on several multiple optical-fiber transmission channels realized by a complex programmable logic device and two optical-fiber conversion devices, which are used to establish a communication link between the shipboard monitoring and control-unit and underwater transmitter. We have conducted some marine experiments to verify the reliability and stability of the new method. In particular, the new technology used in the transmitter system could help us obtain more useful measured data in a limited time, improve real-time efficiency, and support the establishment of a stable CSEM field.
High power microwave hazard facing smart ammunitions
NASA Astrophysics Data System (ADS)
Bohl, J.
1995-03-01
The battle field of the present and even more the one in future will be characterized by the use of weapon systems with a high degree of electronics, computers, and sensors, designed and built to keep not only the man out of the loop. But the higher the technology used for smart weapon systems, the more these systems are endangered by numerous sources of hazard. One of those sources is the threat caused by induced or natural electromagnetic fields. These threat factors can be generated by natural, civil and military environment. In principle there are two main applications which must be considered in military applications: Firstly, weapon systems, that is, high power microwave sources as well as intelligent electromagnetic radiation systems to defeat ammunition on the battle field and secondly, the hardening of the own smart ammunition systems and missiles against the interference sources created by the different types of electromagnetic fields. This report will discuss the possible electromagnetic coupling effects on smart ammunition and missiles and their typical interference caused on the electronics and sensor level. Real time 6-DOF simulations show the flight mission which may be compromised depending on the coupled electromagnetic fields. The German MOD has established a research program where smart ammunitions with different seeker systems are investigated in respect of the coupling effects on smart ammunition caused by high power microwaves. This program considers all available resources and know how in Germany. The systems are investigated by analytical, numerical, and experimental methods with passive and activated missiles.
Miniature electrically operated diaphragm valve
Adkins, Douglas R.; Spletzer, Barry L.; Wong, Chungnin C.; Frye-Mason, Gregory C.; Fischer, Gary J.; Hesketh, Peter J.
2001-01-01
The present invention provides a miniature electrically operated valve that can stand off significant pressures, that can be inexpensively produced, and that can be made to operate without continuous electrical power. A valve according to the present invention comprises a housing and a beam mounted with the housing. A diaphragm mounted with the housing forms a sealed fluid volume. An electromagnetic energy source, such as an electromagnetic coil, mounts with the housing and when energized urges the beam in one direction. The beam can be urged in the opposing direction by passive means or by reversing the polarity of the electromagnetic energy source or by a second electromagnetic energy source. Two fluid ports mount with the housing. A first fluid port mounts so that, as the beam is urged in one direction or the opposite, the beam urges the diaphragm to move between engaging and substantially sealing the fluid port and disengaging and not substantially sealing the fluid port. A seat can be mounted with the diaphragm to aid in sealing the fluid port. Latching mechanisms such as permanent magnets can be mounted so that the valve remains in the open or closed positions without continuous electrical power input. Fluid can flow through the housing between the two fluid ports when the diaphragm does not seal the first fluid port, but can be prevented from flowing by urging the beam so that the diaphragm seals the first fluid port. Various embodiments accommodate various latching mechanisms, electromagnetic energy sources, number of fluid ports, and diaphragm design considerations.
3-Dimensional Marine CSEM Modeling by Employing TDFEM with Parallel Solvers
NASA Astrophysics Data System (ADS)
Wu, X.; Yang, T.
2013-12-01
In this paper, parallel fulfillment is developed for forward modeling of the 3-Dimensional controlled source electromagnetic (CSEM) by using time-domain finite element method (TDFEM). Recently, a greater attention rises on research of hydrocarbon (HC) reservoir detection mechanism in the seabed. Since China has vast ocean resources, seeking hydrocarbon reservoirs become significant in the national economy. However, traditional methods of seismic exploration shown a crucial obstacle to detect hydrocarbon reservoirs in the seabed with a complex structure, due to relatively high acquisition costs and high-risking exploration. In addition, the development of EM simulations typically requires both a deep knowledge of the computational electromagnetics (CEM) and a proper use of sophisticated techniques and tools from computer science. However, the complexity of large-scale EM simulations often requires large memory because of a large amount of data, or solution time to address problems concerning matrix solvers, function transforms, optimization, etc. The objective of this paper is to present parallelized implementation of the time-domain finite element method for analysis of three-dimensional (3D) marine controlled source electromagnetic problems. Firstly, we established a three-dimensional basic background model according to the seismic data, then electromagnetic simulation of marine CSEM was carried out by using time-domain finite element method, which works on a MPI (Message Passing Interface) platform with exact orientation to allow fast detecting of hydrocarbons targets in ocean environment. To speed up the calculation process, SuperLU of an MPI (Message Passing Interface) version called SuperLU_DIST is employed in this approach. Regarding the representation of three-dimension seabed terrain with sense of reality, the region is discretized into an unstructured mesh rather than a uniform one in order to reduce the number of unknowns. Moreover, high-order Whitney vector basis functions are used for spatial discretization within the finite element approach to approximate the electric field. A horizontal electric dipole was used as a source, and an array of the receiver located at the seabed. To capture the presence of the hydrocarbon layer, the forward responses at water depths from 100m to 3000m are calculated. The normalized Magnitude Versus Offset (N-MVO) and Phase Versus Offset (PVO) curve can reflect resistive characteristics of hydrocarbon layers. For future work, Graphics Process Unit (GPU) acceleration algorithm would be carried out to multiply the calculation efficiency greatly.
ELECTROMAGNETIC APPARATUS FOR MOVING A ROD
Young, J.N.
1957-08-20
An electromagnetic device for moving an object in a linear path by increments is described. The device is specifically adapted for moving a neutron absorbing control rod into and out of the core of a reactor and consists essentially of an extension member made of magnetic material connected to one end of the control rod and mechanically flexible to grip the walls of a sleeve member when flexed, a magnetic sleeve member coaxial with and slidable between limit stops along the flexible extension, electromagnetic coils substantially centrally located with respect to the flexible extension to flex the extension member into gripping engagement with the sleeve member when ener gized, moving electromagnets at each end of the sleeve to attract the sleeve when energized, and a second gripping electromagnet positioned along the flexible extension at a distance from the previously mentioned electromagnets for gripping the extension member when energized. In use, the second gripping electromagnet is deenergized, the first gripping electromagnet is energized to fix the extension member in the sleeve, and one of the moving electromagnets is energized to attract the sleeve member toward it, thereby moving the control rod.
Active System for Electromagnetic Perturbation Monitoring in Vehicles
NASA Astrophysics Data System (ADS)
Matoi, Adrian Marian; Helerea, Elena
Nowadays electromagnetic environment is rapidly expanding in frequency domain and wireless services extend in terms of covered area. European electromagnetic compatibility regulations refer to limit values regarding emissions, as well as procedures for determining susceptibility of the vehicle. Approval procedure for a series of cars is based on determining emissions/immunity level for a few vehicles picked randomly from the entire series, supposing that entire vehicle series is compliant. During immunity assessment, the vehicle is not subjected to real perturbation sources, but exposed to electric/magnetic fields generated by laboratory equipment. Since current approach takes into account only partially real situation regarding perturbation sources, this paper proposes an active system for determining electromagnetic parameters of vehicle's environment, that implements a logical diagram for measurement, satisfying the imposed requirements. This new and original solution is useful for EMC assessment of hybrid and electrical vehicles.
On the dynamic toroidal multipoles from localized electric current distributions.
Fernandez-Corbaton, Ivan; Nanz, Stefan; Rockstuhl, Carsten
2017-08-08
We analyze the dynamic toroidal multipoles and prove that they do not have an independent physical meaning with respect to their interaction with electromagnetic waves. We analytically show how the split into electric and toroidal parts causes the appearance of non-radiative components in each of the two parts. These non-radiative components, which cancel each other when both parts are summed, preclude the separate determination of each part by means of measurements of the radiation from the source or of its coupling to external electromagnetic waves. In other words, there is no toroidal radiation or independent toroidal electromagnetic coupling. The formal meaning of the toroidal multipoles is clear in our derivations. They are the higher order terms of an expansion of the multipolar coefficients of electric parity with respect to the electromagnetic size of the source.
Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components
NASA Astrophysics Data System (ADS)
Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.
2018-01-01
There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).
The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams
NASA Astrophysics Data System (ADS)
Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.
2017-08-01
Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe
1992-01-01
This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.
Electromagnetic spectrum management system
Seastrand, Douglas R.
2017-01-31
A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process the unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.
NASA Astrophysics Data System (ADS)
Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery
Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean, earthquakes and etc). The study was supported by a grant of RFBR, n 06-05-64998.
Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena
2015-03-01
efforts of a group of six researchers in the fields of electromagnetics , radar and antenna technology. Research was conducted during this reporting...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering...Scattering-Matrix Theory Based on Gaussian Beams………...65 4.5.3 Array realization of complex-source beam……………………………85 4.5.4 Electromagnetic Scattering
Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena
2015-04-06
a group of six researchers in the fields of electromagnetics , radar and antenna technology. Research was conducted during this reporting period in...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering Phenomena...Matrix Theory Based on Gaussian Beams………...65 4.5.3 Array realization of complex-source beam……………………………85 4.5.4 Electromagnetic Scattering-Matrix
AC induction field heating of graphite foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James W.; Rios, Orlando; Kisner, Roger
A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.
NASA Astrophysics Data System (ADS)
Imamura, N.; Schultz, A.
2015-12-01
Recently, a full waveform time domain solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations of non-zero wavenumber, the ability to operate in areas of high levels of source signal spatial complexity and non-stationarity, etc. This goal would not be obtainable if one were to adopt the finite difference time-domain (FDTD) approach for the forward problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across the large frequency bandwidth. It means that for FDTD simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a linear system that is computationally burdensome to solve. We have implemented our code that addresses this situation through the use of a fictitious wave domain method and GPUs to speed up the computation time. We also substantially reduce the size of the linear systems by applying concepts from successive cascade decimation, through quasi-equivalent time domain decomposition. By combining these refinements, we have made good progress toward implementing the core of a full waveform joint source field/earth conductivity inverse modeling method. From results, we found the use of previous generation of CPU/GPU speeds computations by an order of magnitude over a parallel CPU only approach. In part, this arises from the use of the quasi-equivalent time domain decomposition, which shrinks the size of the linear system dramatically.
The electromagnetic interference of mobile phones on the function of a γ-camera.
Javadi, Hamid; Azizmohammadi, Zahra; Mahmoud Pashazadeh, Ali; Neshandar Asli, Isa; Moazzeni, Taleb; Baharfar, Nastaran; Shafiei, Babak; Nabipour, Iraj; Assadi, Majid
2014-03-01
The aim of the present study is to evaluate whether or not the electromagnetic field generated by mobile phones interferes with the function of a SPECT γ-camera during data acquisition. We tested the effects of 7 models of mobile phones on 1 SPECT γ-camera. The mobile phones were tested when making a call, in ringing mode, and in standby mode. The γ-camera function was assessed during data acquisition from a planar source and a point source of Tc with activities of 10 mCi and 3 mCi, respectively. A significant visual decrease in count number was considered to be electromagnetic interference (EMI). The percentage of induced EMI with the γ-camera per mobile phone was in the range of 0% to 100%. The incidence of EMI was mainly observed in the first seconds of ringing and then mitigated in the following frames. Mobile phones are portable sources of electromagnetic radiation, and there is interference potential with the function of SPECT γ-cameras leading to adverse effects on the quality of the acquired images.
[Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].
Yuan, Jun; Xiao, Dongping; Jian, Xin
2010-11-01
The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.
Lewicka, Małgorzata; Henrykowska, Gabriela A; Pacholski, Krzysztof; Szczęsny, Artur; Dziedziczak-Buczyńska, Maria; Buczyński, Andrzej
2015-01-01
Electromagnetic radiation emitted by a variety of devices, e.g. cell phones, computers and microwaves, interacts with the human body in many ways. Research studies carried out in the last few decades have not yet resolved the issue of the effect of this factor on the human body and many questions are left without an unequivocal answer. Various biological and health-related effects have not been fully recognized. Thus further studies in this area are justified. A comparison of changes within catalase enzymatic activity and malondialdehyde concentration arising under the influence of the electromagnetic radiation emitted by car electronics, equipment used in physiotherapy and LCD monitors. The suspension of human blood platelets at a concentration of 1 × 109/0.001 dm 3, obtained from whole blood by manual apheresis, was the study material. Blood platelets were exposed to an electromagnetic field for 30 min in a laboratory stand designed for the reconstruction of the electromagnetic radiation generated by car electronics, physiotherapy equipment and LCD monitors. The changes in catalase activity and malondialdehyde concentration were investigated after the exposure and compared to the control values (unexposed material). An increase in catalase activity and malondialdehyde concentration was observed after 30 min exposure of platelets to EMF regardless of the radiation source. The most significant changes determining the degree of oxidative stress were observed after exposure to the EMF generated by car electronics. The low frequency electromagnetic fields generated by car electronics, physiotherapy equipment and LCD monitors may be a cause of oxidative stress in the human body and may lead to free radical diseases.
NASA Technical Reports Server (NTRS)
Eyre, Francis B. (Inventor); Fink, Wolfgang (Inventor)
2011-01-01
Disclosed herein is a method of making a three dimensional mold comprising the steps of providing a mold substrate; exposing the substrate with an electromagnetic radiation source for a period of time sufficient to render the portion of the mold substrate susceptible to a developer to produce a modified mold substrate; and developing the modified mold with one or more developing reagents to remove the portion of the mold substrate rendered susceptible to the developer from the mold substrate, to produce the mold having a desired mold shape, wherein the electromagnetic radiation source has a fixed position, and wherein during the exposing step, the mold substrate is manipulated according to a manipulation algorithm in one or more dimensions relative to the electromagnetic radiation source; and wherein the manipulation algorithm is determined using stochastic optimization computations.
Application of the perfectly matched layer in 3-D marine controlled-source electromagnetic modelling
NASA Astrophysics Data System (ADS)
Li, Gang; Li, Yuguo; Han, Bo; Liu, Zhan
2018-01-01
In this study, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates is successfully applied to 3-D frequency-domain marine controlled-source electromagnetic (CSEM) field modelling. The Dirichlet boundary, which is usually used within the traditional framework of EM modelling algorithms, assumes that the electric or magnetic field values are zero at the boundaries. This requires the boundaries to be sufficiently far away from the area of interest. To mitigate the boundary artefacts, a large modelling area may be necessary even though cell sizes are allowed to grow toward the boundaries due to the diffusion of the electromagnetic wave propagation. Compared with the conventional Dirichlet boundary, the PML boundary is preferred as the modelling area of interest could be restricted to the target region and only a few absorbing layers surrounding can effectively depress the artificial boundary effect without losing the numerical accuracy. Furthermore, for joint inversion of seismic and marine CSEM data, if we use the PML for CSEM field simulation instead of the conventional Dirichlet, the modelling area for these two different geophysical data collected from the same survey area could be the same, which is convenient for joint inversion grid matching. We apply the CFS-PML boundary to 3-D marine CSEM modelling by using the staggered finite-difference discretization. Numerical test indicates that the modelling algorithm using the CFS-PML also shows good accuracy compared to the Dirichlet. Furthermore, the modelling algorithm using the CFS-PML shows advantages in computational time and memory saving than that using the Dirichlet boundary. For the 3-D example in this study, the memory saving using the PML is nearly 42 per cent and the time saving is around 48 per cent compared to using the Dirichlet.
Plasma Metamaterials for Arbitrary Complex-Amplitude Wave Filters
2013-09-10
plasmas as reflectors , 4 absorbers, 4,5 and antennae 6 of electromagnetic waves. In contrast with the other materials in these devices, parameters...are controlled using launching antenna and high-power wave sources. One of the fundamental facts we have learned in microwave plasmas is that...metamaterials.” 29 In this report, we demonstrate the functional composites of plasmas and metamaterials, and the focusing point is verification of
Should We Turn the Robots Loose?
2010-05-02
interference. Potential sources of electromagnetic interference include everyday signals such as cell phones and Wifi , intentional friendly jamming of IED...might even attempt to hack or hijack our robotic warriors. Our current enemies have proven to be very adaptable and have developed simple counters to our...demonstrates the ease with which robot command and control might be hacked . It is reasonable to suspect that a future threat with a more robust
Ledwidge, Patrick S; Molfese, Dennis L
2016-12-01
This study investigated the effects of a past concussion on electrophysiological indices of attention in college athletes. Forty-four varsity football athletes (22 with at least one past concussion) participated in three neuropsychological tests and a two-tone auditory oddball task while undergoing high-density event-related potential (ERP) recording. Athletes previously diagnosed with a concussion experienced their most recent injury approximately 4 years before testing. Previously concussed and control athletes performed equivalently on three neuropsychological tests. Behavioral accuracy and reaction times on the oddball task were also equivalent across groups. However, athletes with a concussion history exhibited significantly larger N2 and P3b amplitudes and longer P3b latencies. Source localization using standardized low-resolution brain electromagnetic tomography indicated that athletes with a history of concussion generated larger electrical current density in the left inferior parietal gyrus compared to control athletes. These findings support the hypothesis that individuals with a past concussion recruit compensatory neural resources in order to meet executive functioning demands. High-density ERP measures combined with source localization provide an important method to detect long-term neural consequences of concussion in the absence of impaired neuropsychological performance.
Molfese, Dennis L.
2016-01-01
Abstract This study investigated the effects of a past concussion on electrophysiological indices of attention in college athletes. Forty-four varsity football athletes (22 with at least one past concussion) participated in three neuropsychological tests and a two-tone auditory oddball task while undergoing high-density event-related potential (ERP) recording. Athletes previously diagnosed with a concussion experienced their most recent injury approximately 4 years before testing. Previously concussed and control athletes performed equivalently on three neuropsychological tests. Behavioral accuracy and reaction times on the oddball task were also equivalent across groups. However, athletes with a concussion history exhibited significantly larger N2 and P3b amplitudes and longer P3b latencies. Source localization using standardized low-resolution brain electromagnetic tomography indicated that athletes with a history of concussion generated larger electrical current density in the left inferior parietal gyrus compared to control athletes. These findings support the hypothesis that individuals with a past concussion recruit compensatory neural resources in order to meet executive functioning demands. High-density ERP measures combined with source localization provide an important method to detect long-term neural consequences of concussion in the absence of impaired neuropsychological performance. PMID:27025905
Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterhoff, J.; Nakamura, K.; Bakeman, M.
The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.
NASA Astrophysics Data System (ADS)
Hasanbeigi, A.; Ashrafi, A.; Mehdian, H.
2018-02-01
In the present paper, the excitation of electromagnetic wave by relativistic electron beam, as a radiation source, in a two-section periodical plasma waveguide is investigated. The dispersion relation of TM wave is derived and then solved numerically. Next, the effect of plasma, as an extra controlling parameter, on this radiation source is investigated. Results show that the presence of magnetized plasma can lead to significant increase in output power and it can be an extra parameter for tuning the frequency by varying the plasma density.
Localization of non-stationary sources of electromagnetic radiation with the aid of phasometry
NASA Technical Reports Server (NTRS)
Mersov, G. A.
1978-01-01
The possibility of localizing sources of electromagnetic radiation by measurement of the time of passage of the radiation or the measurement of its phase at various points of cosmic space, at which are located satellite observatories is examined. Algorithms are proposed for localization using two, three, and four astronomical observatories. The precision of the localization and several partial results of practical significance are deduced.
Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang
2017-01-01
Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.
Engineering Techniques for Electromagnetic Pulse-Hardness Testing.
electromagnetic pulse (EMP). The text describes energy sources, simulation techniques, test instrumentation, and testing techniques. Emphasis is on testing that can be accomplished by engineers with knowledge of electromagnetics and circuits. Complicated systems that require special expertise are described only to acquaint the reader with their characteristics. This text is intended to supplement the testing portion of DNA 2772T ’DNA EMP Awareness Course Notes.’
Wireless data transmission from inside electromagnetic fields.
Huertas, José Ignacio; Barraza, Roberto; Echeverry, Julian Mauricio
2010-01-01
This paper describes analytical and experimental work developed to evaluate the effects of the electromagnetic fields produced by high-voltage lines (400 kV) on wireless data transmission at the 900MHz band. In this work the source of the data transmission is located inside the electromagnetic field and the reception station is located at different distances from the power lines. Different atmospheric conditions are considered.
NASA Technical Reports Server (NTRS)
Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)
2014-01-01
A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.
NASA Astrophysics Data System (ADS)
Brown, C. G.; Ayers, J.; Felker, B.; Ferguson, W.; Holder, J. P.; Nagel, S. R.; Piston, K. W.; Simanovskaia, N.; Throop, A. L.; Chung, M.; Hilsabeck, T.
2012-10-01
Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.
NASA Astrophysics Data System (ADS)
Lindsey, Martin Forrester
Sustained hypersonic flight using scramjet propulsion is the key technology bridging the gap between turbojets and the exoatmospheric environment where a rocket is required. Recent efforts have focused on electromagnetic (EM) flow control to mitigate the problems of high thermomechanical loads and low propulsion efficiencies associated with scramjet propulsion. This research effort is the first flight-scale, three-dimensional computational analysis of a realistic scramjet to determine how EM flow control can improve scramjet performance. Development of a quasi-one dimensional design tool culminated in the first open source geometry of an entire scramjet flowpath. This geometry was then tested extensively with the Air Force Research Laboratory's three-dimensional Navier-Stokes and EM coupled computational code. As part of improving the model fidelity, a loosely coupled algorithm was developed to incorporate thermochemistry. This resulted in the only open-source model of fuel injection, mixing and combustion in a magnetogasdynamic (MGD) flow controlled engine. In addition, a control volume analysis tool with an electron beam ionization model was presented for the first time in the context of the established computational method used. Local EM flow control within the internal inlet greatly impacted drag forces and wall heat transfer but was only marginally successful in raising the average pressure entering the combustor. The use of an MGD accelerator to locally increase flow momentum was an effective approach to improve flow into the scramjet's isolator. Combustor-based MGD generators proved superior to the inlet generator with respect to power density and overall engine efficiency. MGD acceleration was shown to be ineffective in improving overall performance, with all of the bypass engines having approximately 33% more drag than baseline and none of them achieving a self-powered state.
An investigation of the direct-drive method of susceptibility testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonn, R.H.
1992-07-01
The Naval Surface Weapons Laboratory has constructed a small electrical subsystem for the purpose of evaluating electrical upset from various electromagnetic sources. The subsystem consists of three boxes, two of which are intended to be illuminated by electromagnetic waves. The two illuminated boxes are connected by two unshielded cable bundles. The goal of the Navy test series is to expose the subsystem to electromagnetic illumination from several different types of excitation, document upset levels, and compare the results. Before its arrival at Sandia National Laboratories (SNL) the system was illuminated in a mode stirred chamber and in an anechoic chamber.more » This effort was a continuation of that test program. The Sandia tests involved the test methodology referred to as bulk current injection (BCI). Because this is a poorly-shielded, multiple-aperture system, the method was not expected to compare closely to the other test methods. The test results show that. The BCI test methodology is a useful test technique for a subset of limited aperture systems; the methodology will produce incorrect answers when used improperly on complex systems; the methodology can produce accurate answers on simple systems with a well-controlled electromagnetic topology. This is a preliminary study and the results should be interpreted carefully.« less
Digital Semaphore: Tactical Implications of QR Code Optical Signaling for Fleet Communications
2013-06-01
Emissions Control (EMCON) and Hazards of Electromagnetic Radiation to Ordnance (HERO) restrict the ability for Naval Vessels to communicate using...importance of visual communications methods is brought to light by discussing emissions control, hazards of electromagnetic radiation to ordnance , and...overview of emissions restrictions including Emissions Control (EMCON) and Hazards of Electromagnetic Radiation to Ordnance (HERO). Chapter VII is
Infrared signal generation from AC induction field heating of graphite foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James W.; Rios, Orlando
A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.
Equivalent radiation source of 3D package for electromagnetic characteristics analysis
NASA Astrophysics Data System (ADS)
Li, Jun; Wei, Xingchang; Shu, Yufei
2017-10-01
An equivalent radiation source method is proposed to characterize electromagnetic emission and interference of complex three dimensional integrated circuits (IC) in this paper. The method utilizes amplitude-only near-field scanning data to reconstruct an equivalent magnetic dipole array, and the differential evolution optimization algorithm is proposed to extract the locations, orientation and moments of those dipoles. By importing the equivalent dipoles model into a 3D full-wave simulator together with the victim circuit model, the electromagnetic interference issues in mixed RF/digital systems can be well predicted. A commercial IC is used to validate the accuracy and efficiency of this proposed method. The coupled power at the victim antenna port calculated by the equivalent radiation source is compared with the measured data. Good consistency is obtained which confirms the validity and efficiency of the method. Project supported by the National Nature Science Foundation of China (No. 61274110).
Study on the electromagnetic radiation characteristics of discharging excimer laser system
NASA Astrophysics Data System (ADS)
Zhao, Duliang; Liang, Xu; Fang, Xiaodong; Wang, Qingsheng
2016-10-01
Excimer laser in condition of high voltage, large current and fast discharge will produce strong electromagnetic pulse radiation and electromagnetic interference on the around electrical equipment. The research on characteristics and distribution of excimer laser electromagnetic radiation could provide important basis for electromagnetic shielding and suppressing electromagnetic interference, and further improving the electromagnetic compatibility of system. Firstly, electromagnetic radiation source is analyzed according to the working principle of excimer laser. The key test points of the electromagnetic radiation, hydrogen thyratron, main discharge circuit and laser outlet, are determined by the mechanical structure and the theory of electromagnetic radiation. Secondly, characteristics of electromagnetic field were tested using a near field probe on the key positions of the vertical direction at 20, 50, and 80 cm, respectively. The main radiation frequencies and the radiation field characteristics in the near field are obtained. The experimental results show that the main radiation frequencies distribute in 47, 65, and 130 MHz for electric field and the main radiation frequencies distribute in 34, 100, and 165 MHz for magnetic field. The intensity of electromagnetic field decreases rapidly with the increase of test distance. The higher the frequency increases, the faster the amplitude attenuate. Finally, several electromagnetic interference suppression measurement methods are proposed from the perspective of electromagnetic compatibility according to the test results.
Eldridge-Thomas, Buffy; Rubin, G James
2013-01-01
Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged with the media to counteract this effect.
Engineering electromagnetic metamaterials and methanol fuel cells
NASA Astrophysics Data System (ADS)
Yen, Tajen
2005-07-01
Electromagnetic metamaterials represent a group of artificial structures, whose dimensions are smaller than subwavelength. Due to electromagnetic metamaterials' collective response to the applied fields, they can exhibit unprecedented properties to fascinate researchers' eyes. For instance, artificial magnetism above terahertz frequencies and beyond, negative magnetic response, and artificial plasma lower than ultraviolet and visible frequencies. Our goal is to engineer those novel properties aforementioned at interested frequency regions and further optimize their performance. To fulfill this task, we developed exclusive micro/nano fabrication techniques to construct magnetic metamaterials (i.e., split-ring resonators and L-shaped resonators) and electric metamaterials (i.e., plasmonic wires) and also employed Taguchi method to study the optimal design of electromagnetic metamaterials. Moreover, by integrating magnetic and electric metamaterials, we have been pursuing to fabricate so-called negative index media---the Holy Grail enables not only to reverse conventional optical rules such as Snell's law, Doppler shift, and Cerenkov radiation, but also to smash the diffraction limit to realize the superlensing effect. In addition to electromagnetic metamaterials, in this dissertation we also successfully miniaturize silicon-based methanol fuel cells by means of micro-electrical-mechanical-system technique, which promise to provide an integrated micro power source with excellent performance. Our demonstrated power density and energy density are one of the highest in reported documents. Finally, based on the results of metamaterials and micro fuel cells, we intend to supply building blocks to complete an omnipotent device---a system with sensing, communication, computing, power, control, and actuation functions.
NASA Astrophysics Data System (ADS)
Beltrachini, L.; Blenkmann, A.; von Ellenrieder, N.; Petroni, A.; Urquina, H.; Manes, F.; Ibáñez, A.; Muravchik, C. H.
2011-12-01
The major goal of evoked related potential studies arise in source localization techniques to identify the loci of neural activity that give rise to a particular voltage distribution measured on the surface of the scalp. In this paper we evaluate the effect of the head model adopted in order to estimate the N170 component source in attention deficit hyperactivity disorder (ADHD) patients and control subjects, considering faces and words stimuli. The standardized low resolution brain electromagnetic tomography algorithm (sLORETA) is used to compare between the three shell spherical head model and a fully realistic model based on the ICBM-152 atlas. We compare their variance on source estimation and analyze the impact on the N170 source localization. Results show that the often used three shell spherical model may lead to erroneous solutions, specially on ADHD patients, so its use is not recommended. Our results also suggest that N170 sources are mainly located in the right occipital fusiform gyrus for faces stimuli and in the left occipital fusiform gyrus for words stimuli, for both control subjects and ADHD patients. We also found a notable decrease on the N170 estimated source amplitude on ADHD patients, resulting in a plausible marker of the disease.
NASA Astrophysics Data System (ADS)
Di, Q.
2013-12-01
In recent years, deep prospecting method such as magnetotelluric and controlled source audio-frequency magnetotelluric develop rapidly, but the instruments almost monopolized by several big geophysical companies from the United States, Canada and Germany. From prospecting practice, foreign equipment adaptation on complicated geological conditions in China is unsatisfactory. As increasing of national strength, electromagnetic exploration system development independently is on the agenda. In the year of 2010, the institute of geology and geophysics, Chinese academy of sciences, took on one subject of the SinoProbe project, the research of surface Electromagnetic Prospecting (SEP) System, and has achieved some achievements. SEP is an independent research instrumentation system, which is available for MT, AMT and CSAMT soundings. After laboratory testing, in order to test SEP's performance in field, the yang-jia-zhang-zi molybdenum deposit area is selected for SEP experiment. All modules and components of SEP system have been tested, and the field ability of the whole system also has been tested. The experimental results show that SEP performance has reached the level of commercial instruments.
Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings
Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo
2011-01-01
This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices. PMID:22043254
Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings.
Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo
2011-01-01
This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices.
NASA Astrophysics Data System (ADS)
Miller, C. R.; Routh, P. S.; Donaldson, P. R.
2004-05-01
Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.
Electromagnetic spectrum management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seastrand, Douglas R.
A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process themore » unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.« less
Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress
2016-10-21
surface ships to defend themselves against enemy missiles—solid state lasers (SSLs), the electromagnetic railgun (EMRG), and the hypervelocity...SSLs), the electromagnetic railgun (EMRG), and the hypervelocity projectile (HVP). 1 Any one of these new weapon technologies, if successfully...Integrated Mount For Electromagnetic Railgun,” Inside the Navy, July 31, 2015.) 12 Sources for cost of HVP: David Martin, “Navy’s Newest Weapon Kills at
NASA Astrophysics Data System (ADS)
Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.
2014-12-01
Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].
Positive and negative ion beam merging system for neutral beam production
Leung, Ka-Ngo; Reijonen, Jani
2005-12-13
The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.
NASA Astrophysics Data System (ADS)
Miotk, R.; Jasiński, M.; Mizeraczyk, J.
2018-03-01
This paper presents the partial electromagnetic optimisation of a 2.45 GHz cylindrical-type microwave plasma source (MPS) operated at atmospheric pressure. The presented device is designed for hydrogen production from liquid fuels, e.g. hydrocarbons and alcohols. Due to industrial requirements regarding low costs for hydrogen produced in this way, previous testing indicated that improvements were required to the electromagnetic performance of the MPS. The MPS has a duct discontinuity region, which is a result of the cylindrical structure located within the device. The microwave plasma is generated in this discontinuity region. Rigorous analysis of the region requires solving a set of Maxwell equations, which is burdensome for complicated structures. Furthermore, the presence of the microwave plasma increases the complexity of this task. To avoid calculating the complex Maxwell equations, we suggest the use of the equivalent circuit method. This work is based upon the idea of using a Weissfloch circuit to characterize the area of the duct discontinuity and the plasma. The resulting MPS equivalent circuit allowed the calculation of a capacitive metallic diaphragm, through which an improvement in the electromagnetic performance of the plasma source was obtained.
Schaumburg, F; Guarnieri, F A
2017-05-07
A 3D anatomical computational model is developed to assess thermal effects due to exposure to the electromagnetic field required to power a new investigational active implantable microvalve for the treatment of glaucoma. Such a device, located in the temporal superior eye quadrant, produces a filtering bleb, which is included in the geometry of the model, together with the relevant ocular structures. The electromagnetic field source-a planar coil-as well as the microvalve antenna and casing are also included. Exposure to the electromagnetic field source of an implanted and a non-implanted subject are simulated by solving a magnetic potential formulation, using the finite element method. The maximum SAR 10 is reached in the eyebrow and remains within the limits suggested by the IEEE and ICNIRP standards. The anterior chamber, filtering bleb, iris and ciliary body are the ocular structures where more absorption occurs. The temperature rise distribution is also obtained by solving the bioheat equation with the finite element method. The numerical results are compared with the in vivo measurements obtained from four rabbits implanted with the microvalve and exposed to the electromagnetic field source.
NASA Astrophysics Data System (ADS)
Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun
2016-05-01
The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.
Sliding mode control of electromagnetic tethered satellite formation
NASA Astrophysics Data System (ADS)
Hallaj, Mohammad Amin Alandi; Assadian, Nima
2016-08-01
This paper investigates the control of tethered satellite formation actuated by electromagnetic dipoles and reaction wheels using the robust sliding mode control technique. Generating electromagnetic forces and moments by electric current coils provides an attractive control actuation alternative for tethered satellite system due to the advantages of no propellant consumption and no obligatory rotational motion. Based on a dumbbell model of tethered satellite in which the flexibility and mass of the tether is neglected, the equations of motion in Cartesian coordinate are derived. In this model, the J2 perturbation is taken into account. The far-field and mid-field models of electromagnetic forces and moments of two satellites on each other and the effect of the Earth's magnetic field are presented. A robust sliding mode controller is designed for precise trajectory tracking purposes and to deal with the electromagnetic force and moment uncertainties and external disturbances due to the Earth's gravitational and magnetic fields inaccuracy. Numerical simulation results are presented to validate the effectiveness of the developed controller and its superiority over the linear controller.
Laser Spiderweb Sensor Used with Portable Handheld Devices
NASA Technical Reports Server (NTRS)
Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)
2017-01-01
A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.
Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere
NASA Technical Reports Server (NTRS)
Wong, H. K.
1995-01-01
DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1989-01-01
Digital control systems for applications such as aircraft avionics and multibody systems must maintain adequate control integrity in adverse as well as nominal operating conditions. For example, control systems for advanced aircraft, and especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met regardless of operating conditions. In addition, multibody systems such as robotic manipulators performing critical functions must have control systems capable of robust performance in any operating environment in order to complete the assigned task reliably. Severe operating conditions for electronic control systems can result from electromagnetic disturbances caused by lightning, high energy radio frequency (HERF) transmitters, and nuclear electromagnetic pulses (NEMP). For this reason, techniques must be developed to evaluate the integrity of the control system in adverse operating environments. The most difficult and illusive perturbations to computer-based control systems that can be caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. Upset studies performed to date have not addressed the assessment of fault tolerant systems and do not involve the evaluation of a control system operating in a closed-loop with the plant. A methodology for performing a real-time simulation of the closed-loop dynamics of a fault tolerant control system with a simulated plant operating in an electromagnetically harsh environment is presented. In particular, considerations for performing upset tests on the controller are discussed. Some of these considerations are the generation and coupling of analog signals representative of electromagnetic disturbances to a control system under test, analog data acquisition, and digital data acquisition from fault tolerant systems. In addition, a case study of an upset test methodology for a fault tolerant electromagnetic aircraft engine control system is presented.
NASA Astrophysics Data System (ADS)
Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang; Son, Jeong-Sul
2015-01-01
We present frequency- and time-domain three-dimensional (3-D) inversion approaches that can be applied to transient electromagnetic (TEM) data from a grounded-wire source using a PC. In the direct time-domain approach, the forward solution and sensitivity were obtained in the frequency domain using a finite-difference technique, and the frequency response was then Fourier-transformed using a digital filter technique. In the frequency-domain approach, TEM data were Fourier-transformed using a smooth-spectrum inversion method, and the recovered frequency response was then inverted. The synthetic examples show that for the time derivative of magnetic field, frequency-domain inversion of TEM data performs almost as well as time-domain inversion, with a significant reduction in computational time. In our synthetic studies, we also compared the resolution capabilities of the ground and airborne TEM and controlled-source audio-frequency magnetotelluric (CSAMT) data resulting from a common grounded wire. An airborne TEM survey at 200-m elevation achieved a resolution for buried conductors almost comparable to that of the ground TEM method. It is also shown that the inversion of CSAMT data was able to detect a 3-D resistivity structure better than the TEM inversion, suggesting an advantage of electric-field measurements over magnetic-field-only measurements.
Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion
NASA Technical Reports Server (NTRS)
Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)
2014-01-01
An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C G; Ayers, M J; Felker, B
2012-04-20
Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effectsmore » of diagnostic-generated EMI on NIF diagnostics.« less
Lorentz-violating gravitoelectromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Quentin G.
2010-09-15
The well-known analogy between a special limit of general relativity and electromagnetism is explored in the context of the Lorentz-violating standard-model extension. An analogy is developed for the minimal standard-model extension that connects a limit of the CPT-even component of the electromagnetic sector to the gravitational sector. We show that components of the post-Newtonian metric can be directly obtained from solutions to the electromagnetic sector. The method is illustrated with specific examples including static and rotating sources. Some unconventional effects that arise for Lorentz-violating electrostatics and magnetostatics have an analog in Lorentz-violating post-Newtonian gravity. In particular, we show that evenmore » for static sources, gravitomagnetic fields arise in the presence of Lorentz violation.« less
Fiber optics for advanced aircraft
NASA Technical Reports Server (NTRS)
Baumbick, Robert J.
1989-01-01
The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.
Fiber optics for advanced aircraft
NASA Technical Reports Server (NTRS)
Baumbick, Robert J.
1988-01-01
The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.
Nicholls, Barry; Racey, Paul A.
2007-01-01
Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629
Intraoperative visualization and assessment of electromagnetic tracking error
NASA Astrophysics Data System (ADS)
Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor
2015-03-01
Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.
Uses of Lotem for Indonesian hydrocarbon applications
NASA Astrophysics Data System (ADS)
Aftartu, R.; Strack, K.
2017-07-01
While magnetotellurics has been used extensively in Indonesia, the percentage of good quality data is limited due to the high population density and often the geologic condition. We investigate application of controlled source electromagnetics (CSEM) in the time domain, sometimes also known as long-offset transient electromagnetics (Lotem) because it overcomes the noise issue by using a high-power transmitter. Among many applications for Indonesia we have selected sub-basalt where we can demonstrate the benefit of the technology with successful Lotem case histories of the past and illustrate its new use with 3D modeling. Either diffuse reflection of the seismic wave or high seismic velocities hinder it. EM sees transparently through them. Targets are resistive (hydrocarbon) and conductive (sediments). We are illustrating the success of Lotem with results from Europe and India for similar situations including joint inversion with magnetotellurics.
A modified Bitter-type electromagnet and control system for cold atom experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luan, Tian; Zhou, Tianwei; Chen, Xuzong, E-mail: xuzongchen@pku.edu.cn
2014-02-15
We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000more » G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10{sup −5}.« less
Expanding use of pulsed electromagnetic field therapies.
Markov, Marko S
2007-01-01
Various types of magnetic and electromagnetic fields are now in successful use in modern medicine. Electromagnetic therapy carries the promise to heal numerous health problems, even where conventional medicine has failed. Today, magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and a variety of diseases and pathologies. Millions of people worldwide have received help in treatment of the musculoskeletal system, as well as for pain relief. Pulsed electromagnetic fields are one important modality in magnetotherapy. Recent technological innovations, implementing advancements in computer technologies, offer excellent state-of-the-art therapy.
Electromagnetic geophysical observation with controlled source
NASA Astrophysics Data System (ADS)
Hachay, Olga; Khachay, Oleg
2016-04-01
In the paper the new theoretical and methodical approaches are examined for detailed investigations of the structure and state of the geological medium, and its behavior as a dynamic system in reaction to external man-made influences. To solve this problem it is necessary to use geophysical methods that have sufficient resolution and that are built on more complicated models than layered or layered-block models. One of these methods is the electromagnetic induction frequency-geometrical method with controlled sources. Here we consider new approaches using this method for monitoring rock shock media by means of natural experiments and interpretation of the practical results. That method can be used by oil production in mines, where the same events of non stability can occur. The key ideas of twenty first century geophysics from the point of view of geologist academician A.N. Dmitrievskiy [Dmitrievskiy, 2009] are as follows. "The geophysics of the twenty first century is an understanding that the Earth is a self-developing, self-supporting geo-cybernetic system, in which the role of the driving mechanism is played by the field gradients; the evolution of geological processes is a continuous chain of transformations and the interaction of geophysical fields in the litho- hydro- and atmosphere. The use of geophysical principles of a hierarchical quantum of geophysical space, non-linear effects, and the effects of reradiating geophysical fields will allow the creation of a new geophysics. The research, in which earlier only pure geophysical processes and technologies were considered, nowadays tends to include into consideration geophysical-chemical processes and technologies. This transformation will allow us to solve the problems of forecasting geo-objects and geo-processes in previously unavailable geological-technological conditions." The results obtained allow us to make the following conclusions, according to the key ideas of academician A.N. Dmitrievskiy: the rock massif is a multi-ranked hierarchical structure. Research of the massif state dynamics, its structure and the effects of self-organization in it can be provided by geophysical methods, which are built upon the model of such medium. The use of the planshet multi-level induction electromagnetic method with a controlled source of excitation and a corresponding method of processing and interpretation has allowed us to reveal the disintegration zones which are indicators of massif stability and understand the causes of low productivity of oil recovery from boreholes.
Numerical results for near surface time domain electromagnetic exploration: a full waveform approach
NASA Astrophysics Data System (ADS)
Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.
2015-12-01
Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two layered models with half sine current waveform as examples. We find the on time responses are quite sensitive to resistivity or depth changes. The results show the potential use of full waveform responses in time domain electromagnetic surveys.
Electromagnetic interference assessment of an ion drive electric propulsion system
NASA Technical Reports Server (NTRS)
Whittlesey, A. C.
1979-01-01
The electromagnetic interference (EMI) form elements of an ion drive electric propulsion system was analyzed, and the effects of EMI interaction with a typical interplanetary spacecraft engineering and scientific subsystems were predicted. SEMCAP, a computerized electromagnetic compatibility assessment code, was used to analyze the impact of EMI noise sources on 65 engineering/telemetry circuits and 48 plasma wave and planetary radio astronomy channels measuring over the range of 100 Hz to 40 MHz in a spacecraft of the Voyager type; manual methods were used to evaluate electrostatics, magnetics, and communications effects. Results indicate that some conducted and radiated spectra are in excess of electromagnetic compatibility specification limits; direct design changes may be required for filtering and shielding of thrust system elements. The worst source of broadband radiated noise appears to be the power processor. The magnetic field necessary to thruster operation is equivalent to about 18 amp-sq m per amp of beam current at right angles to the axis caused by the neutralizer/plume loop.
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Yurkin, Maxim A.
2018-07-01
Although free space cannot generate electromagnetic waves, the majority of existing accounts of frequency-domain electromagnetic scattering by particles and particle groups are based on the postulate of existence of an impressed incident field, usually in the form of a plane wave. In this tutorial we discuss how to account for the actual existence of impressed source currents rather than impressed incident fields. Specifically, we outline a self-consistent theoretical formalism describing electromagnetic scattering by an arbitrary finite object in the presence of arbitrarily distributed impressed currents, some of which can be far removed from the object and some can reside in its vicinity, including inside the object. To make the resulting formalism applicable to a wide range of scattering-object morphologies, we use the framework of the volume integral equation formulation of electromagnetic scattering, couple it with the notion of the transition operator, and exploit the fundamental symmetry property of this operator. Among novel results, this tutorial includes a streamlined proof of fundamental symmetry (reciprocity) relations, a simplified derivation of the Foldy equations, and an explicit analytical expression for the transition operator of a multi-component scattering object.
H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus.
Zumsteg, D; Wennberg, R A; Treyer, V; Buck, A; Wieser, H G
2005-11-22
The authors evaluated the feasibility and source localization utility of H2(15)O or 13NH3 PET and low-resolution electromagnetic tomography (LORETA) in three patients with partial status epilepticus (SE). Results were correlated with findings from intraoperative electrocorticographic recordings and surgical outcomes. PET studies of cerebral blood flow and noninvasive source modeling with LORETA using statistical nonparametric mapping provided useful information for localizing the ictal activity in patients with partial SE.
Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.
2015-01-01
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054
Method and apparatus for electromagnetically braking a motor
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Radford, Nicolaus A (Inventor); Permenter, Frank Noble (Inventor); Parsons, Adam H (Inventor); Mehling, Joshua S (Inventor)
2011-01-01
An electromagnetic braking system and method is provided for selectively braking a motor using an electromagnetic brake having an electromagnet, a permanent magnet, a rotor assembly, and a brake pad. The brake assembly applies when the electromagnet is de-energized and releases when the electromagnet is energized. When applied the permanent magnet moves the brake pad into frictional engagement with a housing, and when released the electromagnet cancels the flux of the permanent magnet to allow a leaf spring to move the brake pad away from the housing. A controller has a DC/DC converter for converting a main bus voltage to a lower braking voltage based on certain parameters. The converter utilizes pulse-width modulation (PWM) to regulate the braking voltage. A calibrated gap is defined between the brake pad and permanent magnet when the brake assembly is released, and may be dynamically modified via the controller.
Developing open-source codes for electromagnetic geophysics using industry support
NASA Astrophysics Data System (ADS)
Key, K.
2017-12-01
Funding for open-source software development in academia often takes the form of grants and fellowships awarded by government bodies and foundations where there is no conflict-of-interest between the funding entity and the free dissemination of the open-source software products. Conversely, funding for open-source projects in the geophysics industry presents challenges to conventional business models where proprietary licensing offers value that is not present in open-source software. Such proprietary constraints make it easier to convince companies to fund academic software development under exclusive software distribution agreements. A major challenge for obtaining commercial funding for open-source projects is to offer a value proposition that overcomes the criticism that such funding is a give-away to the competition. This work draws upon a decade of experience developing open-source electromagnetic geophysics software for the oil, gas and minerals exploration industry, and examines various approaches that have been effective for sustaining industry sponsorship.
Mortazavi, S M J; Rahimi, S; Talebi, A; Soleimani, A; Rafati, A
2015-09-01
The rapid development of wireless telecommunication technologies over the past decades, has led to significant changes in the exposure of the general public to electromagnetic fields. Nowadays, people are continuously exposed to different sources of electromagnetic fields such as mobile phones, mobile base stations, cordless phones, Wi-Fi routers, and power lines. Therefore, the last decade witnessed a rapidly growing concern about the possible health effects of exposure to electromagnetic fields emitted by these sources. In this study that was aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted by a GSM mobile phone on the pattern of contraction in frog's isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz), pulse height of contractions, the time interval between two subsequent contractions and the latency period were measured. Our findings showed that the pulse height of contractions muscle could be affected by the exposure to electromagnetic fields. Especially, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.
Validation of a hybrid electromagnetic-piezoelectric vibration energy harvester
NASA Astrophysics Data System (ADS)
Edwards, Bryn; Hu, Patrick A.; Aw, Kean C.
2016-05-01
This paper presents a low frequency vibration energy harvester with contact based frequency up-conversion and hybrid electromagnetic-piezoelectric transduction. An electromagnetic generator is proposed as a power source for low power wearable electronic devices, while a second piezoelectric generator is investigated as a potential power source for a power conditioning circuit for the electromagnetic transducer output. Simulations and experiments are conducted in order to verify the behaviour of the device under harmonic as well as wide-band excitations across two key design parameters—the length of the piezoelectric beam and the excitation frequency. Experimental results demonstrated that the device achieved a power output between 25.5 and 34 μW at an root mean squared (rms) voltage level between 16 and 18.5 mV for the electromagnetic transducer in the excitation frequency range of 3-7 Hz, while the output power of the piezoelectric transducer ranged from 5 to 10.5 μW with a minimum peak-to-peak output voltage of 6 V. A multivariate model validation was performed between experimental and simulation results under wide-band excitation in terms of the rms voltage outputs of the electromagnetic and piezoelectric transducers, as well as the peak-to-peak voltage output of the piezoelectric transducer, and it is found that the experimental data fit the model predictions with a minimum probability of 63.4% across the parameter space.
Electromagnetic imaging the of the Pacific-North American plate boundary in central California, USA
NASA Astrophysics Data System (ADS)
Wheelock, B. D.; Constable, S.; Key, K. W.
2010-12-01
The continental margin of central California lies adjacent to a segment of the San Andreas fault (SAF) that exhibits a transition between locked behavior south of the town of Cholame, and freely slipping (creeping) behavior north of the town of Parkfield. Recent reports of non-volcanic tremor (NVT) near the town of Cholame represent the first observation of NVT in a strike-slip environment. Dense clusters of tremor episodes located at the northern limit of the locked section of the SAF were found to originate within the ductile lower crust at depths between 15 and 30~km, and have been interpreted as evidence of high pore fluid pressure. An excess of fluids in this region is likely given its history of subduction, which transports large quantities of water into the forearc crust and mantle. We present a study that uses deep electromagnetic imaging methods to estimate the abundance and distribution of pore fluids at depths associated with non-volcanic tremor. This study extends a previously collected terrestrial profile of magnetotelluric (MT) data (Becken et al. 2008, Geophysical Journal International) into the offshore environment. We deployed 21 seafloor instruments that collected controlled-source electromagnetic (CSEM) and MT data in a line extending from the coast near Morro Bay, across the continental shelf, and out onto the Pacific plate. The marine MT data results in apparent resistivity and phase estimates at periods between 1~s and 20,000~s, sufficient for probing the upper 100~km of regional conductivity. A significant coast effect, marked by asymptotic behavior in the TE mode of the MT responses, is observed at the deep water sites. This necessitates accurate bathymetry modeling when inverting. The CSEM transmitter was towed by all receivers broadcasting a compact broadband binary waveform with a 0.25~Hz fundamental frequency. The controlled-source signal is observed above the noisefloor at source-receiver offsets up to 6~km, which provides constraints on the conductivity structure of the upper 3~km of the crust. By extending the preceding line of terrestrial MT measurements to the west, we are able to constrain any differences in crust and mantle conductivity associated with the transition across the continental boundary. Furthermore, we address whether the deeply-sourced fluids migrating into the root of the SAF identified in Becken et al. (2008) are related to the fossil subduction zone. Inversion of this combined data set aims to detect the source region of these deep fluids, put constraints on their abundance, and further reveal any pathways by which they may reach the San Andreas fault.
Improvements in Gravitational-wave Sky Localization with Expanded Networks of Interferometers
NASA Astrophysics Data System (ADS)
Pankow, Chris; Chase, Eve A.; Coughlin, Scott; Zevin, Michael; Kalogera, Vassiliki
2018-02-01
A milestone of multi-messenger astronomy has been achieved with the detection of gravitational waves from a binary neutron star merger accompanied by observations of several associated electromagnetic counterparts. Joint observations can reveal details of the engines that drive the electromagnetic and gravitational-wave emission. However, locating and identifying an electromagnetic counterpart to a gravitational-wave event is heavily reliant on localization of the source through gravitational-wave information. We explore the sky localization of a simulated set of neutron star mergers as the worldwide network of gravitational-wave detectors evolves through the next decade, performing the first such study for neutron star–black hole binary sources. Currently, three detectors are observing with additional detectors in Japan and India expected to become operational in the coming years. With three detectors, we recover a median neutron star–black hole binary sky localization of 60 deg2 at the 90% credible level. As all five detectors become operational, sources can be localized to a median of 11 deg2 on the sky.
[Effects of extremely low frequency electromagnetic radiation on cardiovascular system of workers].
Zhao, Long-yu; Song, Chun-xiao; Yu, Duo; Liu, Xiao-liang; Guo, Jian-qiu; Wang, Chuan; Ding, Yuan-wei; Zhou, Hong-xia; Ma, Shu-mei; Liu, Xiao-dong; Liu, Xin
2012-03-01
To observe the exposure levels of extremely low frequency electromagnetic fields in workplaces and to analyze the effects of extremely low frequency electromagnetic radiation on cardiovascular system of occupationally exposed people. Intensity of electromagnetic fields in two workplaces (control and exposure groups) was detected with EFA-300 frequency electromagnetic field strength tester, and intensity of the noise was detected with AWA5610D integral sound level. The information of health physical indicators of 188 controls and 642 occupationally exposed workers was collected. Data were analyzed by SPSS17.0 statistic software. The intensity of electric fields and the magnetic fields in exposure groups was significantly higher than that in control group (P < 0.05), but there was no significant difference of noise between two workplaces (P > 0.05). The results of physical examination showed that the abnormal rates of HCY, ALT, AST, GGT, ECG in the exposure group were significantly higher than those in control group (P < 0.05). There were no differences of sex, age, height, weight between two groups (P > 0.05). Exposure to extremely low frequency electromagnetic radiation may have some effects on the cardiovascular system of workers.
Localization from near-source quasi-static electromagnetic fields
NASA Astrophysics Data System (ADS)
Mosher, J. C.
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUltiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.
Localization from near-source quasi-static electromagnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, John Compton
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. Themore » nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.« less
An Electromagnetic Resonance Circuit for Liquid Level Detection
ERIC Educational Resources Information Center
Hauge, B. L.; Helseth, L. E.
2012-01-01
Electromagnetic resonators are often used to detect foreign materials. Here we present a simple experiment for the measurement of liquid level. The resonator, consisting of a coil and a capacitor, is brought to resonance by an external magnetic field source, and the corresponding resonance frequency is determined using Fourier analysis combined…
Electromagnetic field induced biological effects in humans.
Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J
2015-01-01
Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF or be derived from a combination of many sources. Reported symptoms associated with electromagnetic fields are characterized by the overlapping effect with other individuals with these symptoms exhibited a broad spectrum of clinical manifestations, related to exposure to a single or multiple sources of EMF. The phenomenon of electromagnetic hypersensitivity in the form of dermatological disease is associated with mastocytosis. The biopsies taken from skin lesions of patients with EHS indicated on infiltration of the skin layers of the epidermis with mastocytes and their degranulation, as well as on release anaphylactic reaction mediators such as histamine, chymase and tryptase. The number of people suffering from EHS in the world is growing describing themselves as severely dysfunctional, showing multi organ non-specific symptoms upon exposure to low doses of electromagnetic radiation, often associated with hypersensitivity to many chemical agents (Multiple Chemical Sensitivity-MCS) and/or other environmental intolerances (Sensitivity Related Illness-SRI).
NASA Astrophysics Data System (ADS)
Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej
2018-04-01
This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.
Thermally emissive sensing materials for chemical spectroscopy analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, Zsolt; Ohodnicki, Paul R.
A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to themore » material.« less
Occupational exposure to electromagnetic fields and sex-differential risk of uveal melanoma.
Behrens, Thomas; Lynge, Elsebeth; Cree, Ian; Sabroe, Svend; Lutz, Jean-Michel; Afonso, Noemia; Eriksson, Mikael; Guénel, Pascal; Merletti, Franco; Morales-Suarez-Varela, Maria; Stengrevics, Aivars; Févotte, Joëlle; Llopis-González, Agustin; Gorini, Giuseppe; Sharkova, Galina; Hardell, Lennart; Ahrens, Wolfgang
2010-11-01
The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries. Incident cases of uveal melanoma and population as well as hospital controls were included and frequency matched by country, 5-year birth cohort and sex. Subjects were asked whether they had worked close to high-voltage electrical transmission installations, computer screens and various electrical machines, or in complex electrical environments. Measurements of two Scandinavian job-exposure matrices were applied to estimate lifelong cumulative EMF exposure. Unconditional logistic regression analyses, stratified by sex and eye colour were calculated, adjusting for several potential confounders. 293 patients with uveal melanoma and 3198 control subjects were interviewed. Women exposed to electrical transmission installations showed elevated risks (OR 5.81, 95% CI 1.72 to 19.66). Positive associations with exposure to control rooms were seen among men and women, but most risk increases were restricted to subjects with dark iris colour. Application of published EMF measurements revealed stronger risk increases among women compared to men. Again, elevated risks were restricted to subjects with dark eye colour. Although based on a low prevalence of exposure to potential occupational sources of EMF, our data indicate that exposed dark-eyed women may be at particular risk for uveal melanoma.
Deji, Shizuhiko; Ito, Shigeki; Ariga, Eiji; Mori, Kazuyuki; Hirota, Masahiro; Saze, Takuya; Nishizawa, Kunihide
2006-08-01
High frequency electromagnetic fields in the 120 kHz band emitted from card readers for access control systems in radiation control areas cause abnormally high and erroneous indicated dose readings on semiconductor-type electronic personal dosimeters (SEPDs). All SEPDs malfunctioned but recovered their normal performance by resetting after the exposure ceased. The minimum distances required to prevent electromagnetic interference varied from 5.0 to 38.0 cm. The electric and magnetic immunity levels ranged from 35.1 to 267.6 V m(-1) and from 1.0 to 16.6 A m(-1), respectively. Electromagnetic immunity levels of SEPDs should be strengthened from the standpoint of radiation protection.
80-GHz MMIC HEMT Voltage-Controlled Oscillator
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi
2003-01-01
A voltage-controlled oscillator (VCO) that operates in the frequency range from 77.5 to 83.5 GHz has been constructed in the form of a monolithic microwave integrated circuit (MMIC) that includes high-electron-mobility transistors (HEMTs). This circuit is a prototype of electronically tunable signal sources in the 75-to-110-GHz range, needed for communication, imaging, and automotive radar applications, among others. This oscillator (see Figure 1) includes two AlInAs/GaInAs/InP HEMTs. One HEMT serves mainly as an oscillator gain element. The other HEMT serves mainly as a varactor for controlling the frequency: the frequency-control element is its gate-to-source capacitance, which is varied by changing its gate supply voltage. The gain HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle). Grounded coplanar waveguides are used as impedance-matching transmission lines, the input and output matching being chosen to sustain oscillation and maximize output power. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. A high density of vias is necessary for suppressing a parallel-plate electromagnetic mode that is undesired because it can propagate energy into the MMIC substrate. Previous attempts at constructing HEMT-based oscillators yielded circuits with relatively low levels of output power and narrow tuning ranges. For example, one HEMT VCO reported in the literature had an output power of 7 dBm (.5 mW) and a tuning range 2-GHz wide centered approximately at a nominal frequency of 77 GHz. In contrast, as shown in Figure 2, the present MMIC HEMT VCO puts out a power of 12.5 dBm (.18 mW) or more over the 6-GHz-wide frequency range from 77.5 to 83.5 GHz
The electromagnetic spectrum: current and future applications in oncology.
Allison, Ron R
2013-05-01
The electromagnetic spectrum is composed of waves of various energies that interact with matter. When focused upon and directed at tumors, these energy sources can be employed as a means of lesion ablation. While the use of x-rays is widely known in this regard, a growing body of evidence shows that other members of this family can also achieve oncologic success. This article will review therapeutic application of the electromagnetic spectrum in current interventions and potential future applications.
Measurement and control systems for an imaging electromagnetic flow metre.
Zhao, Y Y; Lucas, G; Leeungculsatien, T
2014-03-01
Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.
Control of atomic transition rates via laser-light shaping
NASA Astrophysics Data System (ADS)
Jáuregui, R.
2015-04-01
A modular systematic analysis of the feasibility of modifying atomic transition rates by tailoring the electromagnetic field of an external coherent light source is presented. The formalism considers both the center of mass and internal degrees of freedom of the atom, and all properties of the field: frequency, angular spectrum, and polarization. General features of recoil effects for internal forbidden transitions are discussed. A comparative analysis of different structured light sources is explicitly worked out. It includes spherical waves, Gaussian beams, Laguerre-Gaussian beams, and propagation invariant beams with closed analytical expressions. It is shown that increments in the order of magnitude of the transition rates for Gaussian and Laguerre-Gaussian beams, with respect to those obtained in the paraxial limit, require waists of the order of the wavelength, while propagation invariant modes may considerably enhance transition rates under more favorable conditions. For transitions that can be naturally described as modifications of the atomic angular momentum, this enhancement is maximal (within propagation invariant beams) for Bessel modes, Mathieu modes can be used to entangle the internal and center-of-mass involved states, and Weber beams suppress this kind of transition unless they have a significant component of odd modes. However, if a recoil effect of the transition with an adequate symmetry is allowed, the global transition rate (center of mass and internal motion) can also be enhanced using Weber modes. The global analysis presented reinforces the idea that a better control of the transitions between internal atomic states requires both a proper control of the available states of the atomic center of mass, and shaping of the background electromagnetic field.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1989-01-01
Control systems for advanced aircraft, especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met for adverse as well as nominal operating conditions. Adverse conditions can result from electromagnetic disturbances caused by lightning, high energy radio frequency transmitters, and nuclear electromagnetic pulses. Tools and techniques must be developed to verify the integrity of the control system in adverse operating conditions. The most difficult and illusive perturbations to computer based control systems caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. A methodology is presented for performing upset tests on a multichannel control system and considerations are discussed for the design of upset tests to be conducted in the lab on fault tolerant control systems operating in a closed loop with a simulated plant.
Surface towed electromagnetic system for mapping of subsea Arctic permafrost
NASA Astrophysics Data System (ADS)
Sherman, Dallas; Kannberg, Peter; Constable, Steven
2017-02-01
Sea level has risen globally since the late Pleistocene, resulting in permafrost-bearing coastal zones in the Arctic being submerged and subjected to temperature induced degradation. Knowing the extent of permafrost and how it changes over time is important for climate change predictions and for planning engineering activities in the Arctic environment. We developed a controlled source electromagnetic (CSEM) method to obtain information on the depth, thickness, and lateral extent of marine permafrost. To operate in shallow water we used a surface towed electric dipole-dipole CSEM system suitable for deployment from small boats. This system was used to map permafrost on the Arctic shelf offshore Prudhoe Bay, Alaska. Our results show significant lateral variability in the presence of permafrost, with the thickest layers associated with a large river outflow where freshwater influx seems to have a preserving effect on relict subsea permafrost.
NASA Astrophysics Data System (ADS)
Kauahikaua, J.
A controlled source, time domain electromagnetic (TDEM) sounding survey was conducted in the Calico Hills area of the Nevada Test Site (NTS). The geoelectric structure was determined as an aid in the evaluation of the site for possible future storage of spent nuclear fuel or high level nuclear waste. The data were initially interpreted with a simple scheme that produces an apparent resistivity versus depth curve from the vertical magnetic field data. These curves are qualitatively interpreted much like standard Schlumberger resistivity sounding curves. Final interpretation made use of a layered earth Marquardt inversion computer program. The results combined with those from a set of Schlumberger soundings in the area show that there is a moderately resistive basement at a depth no greater than 800 meters. The basement resistivity is greater than 100 ohm meters.
Electromagnetic Signal Feedback Control for Proximity Detection Systems
NASA Astrophysics Data System (ADS)
Smith, Adam K.
Coal is the most abundant fossil fuel in the United States and remains an essential source of energy. While more than half of coal production comes from surface mining, nearly twice as many workers are employed by underground operations. One of the key pieces of equipment used in underground coal mining is the continuous mining machine. These large and powerful machines are operated in confined spaces by remote control. Since 1984, 40 mine workers in the U. S. have been killed when struck or pinned by a continuous mining machine. It is estimated that a majority of these accidents could have been prevented with the application of proximity detection systems. While proximity detection systems can significantly increase safety around a continuous mining machine, there are some system limitations. Commercially available proximity warning systems for continuous mining machines use magnetic field generators to detect workers and establish safe work areas around the machines. Several environmental factors, however, can influence and distort the magnetic fields. To minimize these effects, a control system has been developed using electromagnetic field strength and generator current to stabilize and control field drift induced by internal and external environmental factors. A laboratory test set-up was built using a ferrite-core magnetic field generator to produce a stable magnetic field. Previous work based on a field-invariant magnetic flux density model, which generically describes the electromagnetic field, is expanded upon. The analytically established transferable shell-based flux density distribution model is used to experimentally validate the control system. By controlling the current input to the ferrite-core generator, a more reliable and consistent magnetic field is produced. Implementation of this technology will improve accuracy and performance of existing commercial proximity detection systems. These research results will help reduce the risk of traumatic injuries and improve overall safety in the mining workplace.
Detector sustainability improvements at LCLS
NASA Astrophysics Data System (ADS)
Browne, Michael C.; Carini, Gabriella; DePonte, Daniel P.; Galtier, Eric C.; Hart, Philip A.; Koralek, J. D.; Mitra, Ankush; Nakahara, Kazutaka
2017-06-01
The Linac Coherent Light Source (LCLS) poses a number of daunting and often unusual challenges to maintaining X-ray detectors, such as proximity to liquid-sample injectors, complex setups with moving components, intense X-ray and optical laser light, and Electromagnetic Pulse (EMP). The Detector and Sample Environment departments at LCLS are developing an array of engineering, monitoring, and administrative controls solutions to better address these issues. These include injector improvements and monitoring methods, fast online damage recognition algorithms, EMP mapping and protection, actively cooled filters, and more.
Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials.
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav
2015-08-03
The control of quasi-static magnetic fields is of considerable interest in applications including the reduction of electromagnetic interference (EMI), wireless power transfer (WPT), and magnetic resonance imaging (MRI). The shielding of static or quasi-static magnetic fields is typically accomplished through the use of inherently magnetic materials with large magnetic permeability, such as ferrites, used sometimes in combination with metallic sheets and/or active field cancellation. Ferrite materials, however, can be expensive, heavy and brittle. Inspired by recent demonstrations of epsilon-, mu- and index-near-zero metamaterials, here we show how a longitudinal mu-near-zero (LMNZ) layer can serve as a strong frequency-selective reflector of magnetic fields when operating in the near-field region of dipole-like sources. Experimental measurements with a fabricated LMNZ sheet constructed from an artificial magnetic conductor - formed from non-magnetic, conducting, metamaterial elements - confirm that the artificial structure provides significantly improved shielding as compared with a commercially available ferrite of the same size. Furthermore, we design a structure to shield simultaneously at the fundamental and first harmonic frequencies. Such frequency-selective behavior can be potentially useful for shielding electromagnetic sources that may also generate higher order harmonics, while leaving the transmission of other frequencies unaffected.
Aniołczyk, Halina; Zmyślony, Marek
2006-01-01
In Poland, electromagnetic fields (EMF), one of potentially hazardous physical factors occurring in the work environment, are subjected to compulsory surveillance. In 2001, the Directive issued by the Minister of Labor and Social Policy substantially changed the approach towards the protection of workers against EMF. The Directive regulates the whole range of EMF frequencies and electromagnetic radiation, namely from 0 Hz to 300 GHz, which means the possibility of assessing worker's EMF exposure, determined by exposure index, along with the hygiene assessment of EMF sources, defined by protection zones. In 2003-2005, a number of amended executive and supplementary regulations were issued. However, it should be emphasized that in the process of their elaboration, striving after perfection, numerous incoherent and ambiguous provisions were adopted, which finally created difficulties in the interpretation of individual regulations. This is also linked with doubts and discussions on their practical application by services responsible for control, measurements and monitoring of working conditions under the exposure to EMF. In this work an attempt was made to clarify all issues and arrange them according to the faced problems. The authors also present proposals how to solve all these problems.
Electromagnetic Field Penetration Studies
NASA Technical Reports Server (NTRS)
Deshpande, M.D.
2000-01-01
A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.
Chen, Lei; Chen, Hongkun; Yang, Jun; Shu, Zhengyu; He, Huiwen; Shu, Xin
2016-01-01
The modified flux-coupling-type superconducting fault current (SFCL) is a high-efficient electrical auxiliary device, whose basic function is to suppress the short-circuit current by controlling the magnetic path through a high-speed switch. In this paper, the high-speed switch is based on electromagnetic repulsion mechanism, and its conceptual design is carried out to promote the application of the modified SFCL. Regarding that the switch which is consisting of a mobile copper disc, two fixed opening and closing coils, the computational method for the electromagnetic force is discussed, and also the dynamic mathematical model including circuit equation, magnetic field equation as well as mechanical motion equation is theoretically deduced. According to the mathematical modeling and calculation of characteristic parameters, a feasible design scheme is presented, and the high-speed switch's response time can be less than 0.5 ms. For that the modified SFCL is equipped with this high-speed switch, the SFCL's application in a 10 kV micro-grid system with multiple renewable energy sources are assessed in the MATLAB software. The simulations are well able to affirm the SFCL's performance behaviors.
Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H
2015-08-28
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Applications of three-dimensional modeling in electromagnetic exploration
NASA Astrophysics Data System (ADS)
Pellerin, Louise Donna
Numerical modeling is used in geophysical exploration to understand physical mechanisms of a geophysical method, compare different exploration techniques, and interpret field data. Exploring the physics of a geophysical response enhances the geophysicist's insight, resulting in better survey design and interpretation. Comparing exploration methods numerically can eliminate the use of a technique that cannot resolve the exploration target. Interpreting field data to determine the structure of the earth is the ultimate goal of the exploration geophysicist. Applications of three-dimensional (3-D) electromagnetic (EM) modeling in mining, geothermal and environmental exploration demonstrate the importance of numerical modeling as a geophysical tool. Detection of a confined, conductive target with a vertical electric source (VES) can be an effective technique if properly used. The vertical magnetic field response is due solely to multi-dimensional structures, and current channeling is the dominant mechanism. A VES is deployed in a bore hole, hence the orientation of the hole is critical to the response. A deviation of more than a degree from the vertical can result in a host response that overwhelms the target response. Only the in-phase response at low frequencies can be corrected to a purely vertical response. The geothermal system studied consists of a near-surface clay cap and a deep reservoir. The magnetotelluric (MT), controlled-source audio magnetotelluric (CSAMT), long-offset time-domain electromagnetic (LOTEM) and central-loop transient electromagnetic (TEM) methods are appraised for their ability to detect the reservoir and delineate the cap. The reservoir anomaly is supported by boundary charges and therefore is detectable only with deep sounding electric field measurement MT and LOTEM. The cap is easily delineated with all techniques. For interpretation I developed an approximate 3-D inversion that refines a 1-D interpretation by removing lateral distortions. An iterative inverse procedure invokes EM reciprocity while operating on a localized portion of the survey area thereby greatly reducing the computational requirements. The scheme is illustrated with three synthetic data sets representative of problems in environmental geophysics.
Sensing network for electromagnetic fields generated by seismic activities
NASA Astrophysics Data System (ADS)
Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.
2014-06-01
The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.
NASA Astrophysics Data System (ADS)
Sternkopf, Christian; Manske, Eberhard
2018-06-01
We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.
1983-09-01
6ENFRAL. ELECTROMAGNETIC MODEL FOR THE ANALYSIS OF COMPLEX SYSTEMS **%(GEMA CS) Computer Code Documentation ii( Version 3 ). A the BDM Corporation Dr...ANALYSIS FnlTcnclRpr F COMPLEX SYSTEM (GmCS) February 81 - July 83- I TR CODE DOCUMENTATION (Version 3 ) 6.PROMN N.REPORT NUMBER 5. CONTRACT ORGAT97...the ti and t2 directions on the source patch. 3 . METHOD: The electric field at a segment observation point due to the source patch j is given by 1-- lnA
Counterpulse railgun energy recovery circuit
Honig, E.M.
1984-09-28
The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.
Overpulse railgun energy recovery circuit
Honig, E.M.
1984-09-28
The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.
Numerical simulation of compact intracloud discharge and generated electromagnetic pulse
NASA Astrophysics Data System (ADS)
Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.
2015-06-01
Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.
Giant Electric Field Enhancement in Split Ring Resonators Featuring Nanometer-Sized Gaps
NASA Astrophysics Data System (ADS)
Bagiante, S.; Enderli, F.; Fabiańska, J.; Sigg, H.; Feurer, T.
2015-01-01
Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm-1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.
[EEG source localization using LORETA (low resolution electromagnetic tomography)].
Puskás, Szilvia
2011-03-30
Eledctroencephalography (EEG) has excellent temporal resolution, but the spatial resolution is poor. Different source localization methods exist to solve the so-called inverse problem, thus increasing the accuracy of spatial localization. This paper provides an overview of the history of source localization and the main categories of techniques are discussed. LORETA (low resolution electromagnetic tomography) is introduced in details: technical informations are discussed and localization properties of LORETA method are compared to other inverse solutions. Validation of the method with different imaging techniques is also discussed. This paper reviews several publications using LORETA both in healthy persons and persons with different neurological and psychiatric diseases. Finally future possible applications are discussed.
Mortazavi, S. M. J.; Rahimi, S.; Talebi, A.; Soleimani, A.; Rafati, A.
2015-01-01
Background: The rapid development of wireless telecommunication technologies over the past decades, has led to significant changes in the exposure of the general public to electromagnetic fields. Nowadays, people are continuously exposed to different sources of electromagnetic fields such as mobile phones, mobile base stations, cordless phones, Wi-Fi routers, and power lines. Therefore, the last decade witnessed a rapidly growing concern about the possible health effects of exposure to electromagnetic fields emitted by these sources. Materials and Methods: In this study that was aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted by a GSM mobile phone on the pattern of contraction in frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz), pulse height of contractions, the time interval between two subsequent contractions and the latency period were measured. Results: Our findings showed that the pulse height of contractions muscle could be affected by the exposure to electromagnetic fields. Especially, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion: These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions. PMID:26396968
Optical system for high resolution spectrometer/monochromator
Hettrick, Michael C.; Underwood, James H.
1988-01-01
An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver.
Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger
NASA Astrophysics Data System (ADS)
Shappee, B. J.; Simon, J. D.; Drout, M. R.; Piro, A. L.; Morrell, N.; Prieto, J. L.; Kasen, D.; Holoien, T. W.-S.; Kollmeier, J. A.; Kelson, D. D.; Coulter, D. A.; Foley, R. J.; Kilpatrick, C. D.; Siebert, M. R.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y.-C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Adams, C.; Alatalo, K.; Bañados, E.; Baughman, J.; Bernstein, R. A.; Bitsakis, T.; Boutsia, K.; Bravo, J. R.; Di Mille, F.; Higgs, C. R.; Ji, A. P.; Maravelias, G.; Marshall, J. L.; Placco, V. M.; Prieto, G.; Wan, Z.
2017-12-01
Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions.
Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source
NASA Astrophysics Data System (ADS)
Coulter, D. A.; Foley, R. J.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y.-C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.
2017-12-01
Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions.
Entanglement control in a superconducting qubit system by an electromagnetic field
NASA Astrophysics Data System (ADS)
Zhang, Y. Q.; Xu, J. B.
2011-08-01
By making use of the dynamical algebraic method we investigate a quantum system consisting of superconducting qubits interacting with data buses, where the qubits are driven by time-dependent electromagnetic field and obtain an explicit expression of time evolution operator. Furthermore, we explore the entanglement dynamics and the influence of the time-dependent electromagnetic field and the initial state on the entanglement sudden death and birth for the system. It is shown that the entanglement between the qubit and bus as well as the entanglement sudden death and birth can be controlled by the time-dependent electromagnetic field.
NASA Astrophysics Data System (ADS)
Wang, Kunpeng; Tan, Handong
2017-11-01
Controlled-source audio-frequency magnetotellurics (CSAMT) has developed rapidly in recent years and are widely used in the area of mineral and oil resource exploration as well as other fields. The current theory, numerical simulation, and inversion research are based on the assumption that the underground media have resistivity isotropy. However a large number of rock and mineral physical property tests show the resistivity of underground media is generally anisotropic. With the increasing application of CSAMT, the demand for probe accuracy of practical exploration to complex targets continues to increase. The question of how to evaluate the influence of anisotropic resistivity to CSAMT response is becoming important. To meet the demand for CSAMT response research of resistivity anisotropic media, this paper examines the CSAMT electric equations, derives and realizes a three-dimensional (3D) staggered-grid finite difference numerical simulation method of CSAMT resistivity axial anisotropy. Through building a two-dimensional (2D) resistivity anisotropy geoelectric model, we validate the 3D computation result by comparing it to the result of controlled-source electromagnetic method (CSEM) resistivity anisotropy 2D finite element program. Through simulating a 3D resistivity axial anisotropy geoelectric model, we compare and analyze the responses of equatorial configuration, axial configuration, two oblique sources and tensor source. The research shows that the tensor source is suitable for CSAMT to recognize the anisotropic effect of underground structure.
NASA Astrophysics Data System (ADS)
Fullekrug, M.; Liu, Z.; Koh, K.; Mezentsev, A.; Pedeboy, S.; Soula, S.; Sugier, J.; Enno, S. E.; Rycroft, M. J.
2016-12-01
Transient Luminous Events (TLEs) can generate electromagnetic radiation at frequencies 100 kHz (Qin et al., 2012, Fullekrug et al., 2013) and <1 kHz (Pasko et al., GRL, 1998, Cummer et al., GRL, 1998)as a result of the splitting and exponential growth of streamer discharges (Pasko, JGR, 2010, McHarg, JGR, 2010). The electromagnetic radiation results from the coherent superposition of the very weak signalsfrom thousands of small scale streamer discharges at 40 km height for frequencies 100 kHz and at 80 km height for frequencies <1 kHz. It seems therefore plausible that TLEs can also generate electromagnetic waves at intermediate heights, e.g. 60 km with frequencies between 1-100 kHz, e.g., 10 kHz. However, this frequency range is dominated by the powerful electromagnetic radiation from return strokes and it is hence commonly thought that this radiation can not easily be detectedwith single radio receivers. This study proposes to search for electromagnetic radiation from TLEsabove thunderclouds by use of a mini array that has the ability to determine the elevation angle toward the radiation source. Mini arrays with small apertures are used for infrasonic and seismic studies to determine source mechanisms and properties of the medium through which the waves propagate. For the detection of electromagneticradiation, the array processing is adapted for the fast propagationat the speed of light. Here we report for the first time the detection and mapping of distant lightning strokes in the sky with a mini array located near Bath in the UK. The array has a baseline to wavelength ratio 4.2 10^{-2} to record electromagnetic waves from 2-18 kHz. It is found that the mini array detects 69 lightning strokes per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are 900-1,100 km away and a rigorous selection criterion based on the spatial coherency of the electromagnetic source field across the array is used. About 14% of the lightning strokes appear at larger elevation angles in the sky than the remaining 86% of lightning strokes as the result of birefringent subionospheric wave propagation attributed to ordinary and extra-ordinary waves. These results imply that mini arrays can be used to detect electromagnetic radiation from TLEs above thunderclouds in different frequency ranges.
Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing: Wellbore and Fluid Effects
NASA Astrophysics Data System (ADS)
Couchman, M. J.; Everett, M. E.
2017-12-01
As unconventional resources become increasingly important, we must tackle the issue of real-time monitoring of the efficiency of unconventional hydrocarbon extraction. Controlled Source Electromagnetics (CSEM) have been used primarily as a marine-based technique to monitor conventional oil bearing reservoirs with a strong resurgence the new millennium. Many of these studies revolving around detecting a thin resistive layer such as a reservoir at 1m - 3km depth. In these cases, the presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. The lessons learned from these studies can be applied to terrestrial unconventional settings with appropriate modifications. The work shown here is a means develop methods which enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. The predictive model validated for various 1-D marine, and terrestrial cases focus on the mapping of fluid flow in from a horizontal wellbore in a uniform halfspace using an in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The effect of the of the vertical and horizontal wellbores are documented taking into account the conductivity, size, and thickness of each wellbore. The fracturing fluids flow and conductivity are also taken into account throughout various stages of the fracturing process. In each case, the sensitivity at a location of the surface in-line electric field to a given resistive or conductive layer, due to a source is calculated.
Bi-Level Demand-Sensitive LED Street Lighting Systems
2013-10-01
Hazards of Electromagnetic Radiation to Fuel HERO : Hazards of Electromagnetic Radiation to Ordnance ...we followed the following guidelines very strictly: 68 • For Hazards of Electromagnetic Radiation to Ordnance (HERO), RF device to be brought in...should be used at least 5 feet from ordnance /explosives. • For, Hazards of Electromagnetic Radiation to Personnel (HERP), HERP Controlled and
Computer Controlled Magnetotransport Setup for the Characterization of Semiconductor Thin Films
NASA Technical Reports Server (NTRS)
Ducoudray, G. O.; Collazo, R.; Martinez, A.
1997-01-01
We have considered a computer controlled magnetotransport setup using LabWindows environment. It allows for measurements of resistivity, Hall resistance, carrier concentration and charge mobility in semiconductor thin films using a van der Pauw configuration. The setup features an electromagnet (B = 0.7 Tesla) a 80486-DX 33 computer with a National Instrument AT-MIO 16 AD/DA and a GPIB interface board. A Keithely 224 current source and a Keithley 196 digital voltmeter were also used in the setup. Plans for the addition of capabilities to allow for magnetic field sweeping and the performance of measurements as a function of temperature will be presented.
Investigation on the electromagnetic centring technique in compressor with labyrinth seal structure
NASA Astrophysics Data System (ADS)
Zhang, W.; Feng, C.; Cheng, J.; Feng, Q.; Wu, W.
2017-08-01
At present, the piston of compressors with labyrinth seal structure generally runs eccentrically, which causes uneven radial clearance, serious leakages and lower volumetric efficiency. This has become an urgent problem in the development of labyrinth compressors. In this study, electromagnetic levitation technology was introduced to achieve concentric centering between the piston and cylinder, and the conventional cantilever structure for the piston centering was replaced by a simple support structure using the through-piston rod. Furthermore, the simulation model of the electromagnetic centering system was established and the experimental prototype was built. The mathematical simulation model was verified by comparing simulated and tested results. Then, the centering effect of the system was assessed and the variation of the leakage in the compressor was studied by models using dynamic mesh technology. The results showed that the radial clearance between piston and cylinder can be maintained in the range of -0.3 mm to 0.3 mm through the electromagnetic centering control. In addition, the inner leakage of the compressor was quite appreciable without the electromagnetic control. However, it was reduced by 1.8 times with the introduction of the electromagnetic control. Thus, it can be concluded that the precise centering between the piston and the cylinder can be achieved by the introduction of the electromagnetic centering technique.
NASA Astrophysics Data System (ADS)
Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.
2018-01-01
Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hvasta, Michael George; Kolemen, Egemen; Fisher, Adam
Plasma-facing components (PFC's) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC's, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC's can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metalmore » that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. Furthermore, these results show the promise of electromagnetic control for LM-PFC's and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.« less
Hvasta, Michael George; Kolemen, Egemen; Fisher, Adam; ...
2017-10-13
Plasma-facing components (PFC's) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC's, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC's can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metalmore » that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. Furthermore, these results show the promise of electromagnetic control for LM-PFC's and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.« less
Spatial and temporal ultrafast imaging and control of terahertz wavepackets
NASA Astrophysics Data System (ADS)
Koehl, Richard Michael
Some polar optical phonons couple strongly to far- infrared electromagnetic radiation and move at light-like speeds through dielectric media. These phonon-polaritons retain both ionic and electromagnetic character. One of the fruitful implications of this mixing is that vibrational and electronic nonlinearities in ferroelectric and other highly anharmonic media interact with traveling electromagnetic waves spanning several frequency regimes, permitting nonlinear wave mixing at infrared and optical frequencies. Nonlinear optical mixing techniques are well-developed because optical light is easy to produce, but the lack of similar far- infrared sources has stymied similar efforts at terahertz frequencies. Nonlinear interactions in this frequency regime provide information about vibrational potential energy surfaces and are very strong when the lattice vibration is associated with a phase transition. In this thesis, I review methods based on a well known nonlinear optical technique, impulsive stimulated Raman scattering (ISRS), to monitor the progress of coherent phonon polaritons in a highly nonlinear ferroelectric, lithium tantalate. I also advance multiple-pulse ISRS optical techniques to attempt to elucidate information about the ferroelectric's vibrational potential energy surface, and I discuss significant recent progress that has been made in the development of ultrafast optical tools to generate far-infrared radiation through ISRS at specified times and spatial locations and control the interactions of coherent phonon-polariton wavepackets. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Lee, J.Y.; Santamarina, J.C.; Ruppel, C.
2010-01-01
The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.
15 CFR 908.3 - Activities subject to reporting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... sources to influence convective circulation or to evaporate fog; (3) Modifying the solar radiation... artificial wind generation; or (8) Using lasers or other sources of electromagnetic radiation. (b) In...
NASA Astrophysics Data System (ADS)
Kannberg, P. K.; Constable, S.
2014-12-01
Methane hydrate, an ice-like clathrate of water and methane, forms in shallow continental slope sediments, and is both a potential energy source and geologic hazard. Hydrates presence is traditionally inferred from the presence of the bottom simulating reflector (BSR), a seismic velocity inversion resulting from free gas pooling at the base of the hydrate stability field. The BSR is not a measure of hydrate, but rather a proxy for free gas presence. Whereas seismic methods are sensitive to velocity anomalies, controlled-source electromagnetic (CSEM) methods are sensitive to conductivity anomalies. The electrically resistive methane hydrate makes a favorable target for CSEM surveys, which are capable of detecting and potentially quantifying the presence of methane hydrate directly. Building on previous work 100km to the south in the San Nicolas Basin, we present initial results from a 6-day June 2014 survey in the Santa Cruz Basin, located 100km west of Los Angeles. CSEM surveys are performed by deep-towing an EM source that is transmitting a known signal; this signal is detected by towed and seafloor receivers. The initial EM source signal is altered by the electrical properties of the surrounding environment. Conductors such as brine and seawater are attenuating mediums, while resistors such as methane hydrate, gas, and oil are preservative of the original signal. Twenty-one seafloor receivers, as well as a 4 receiver towed array were deployed to image the resistivity structure of the Santa Cruz Basin. Using 30-year-old 2D seismic profiles as a guide, potential hydrate targets were identified, and the transmitter and array were towed over 150 km on 6 lines with 5 seafloor receivers each. The 6 towed lines were coincident with legacy seismic lines. The towed array is sensitive to sediment depths less than 1km, allowing for high data density through the hydrate stability field. The larger transmitter-receiver offsets of the seafloor receivers allow sensitivity to at least 3km below the seafloor. Combining the two data sets allows for both high resolution in the near-seafloor hydrate accumulations as well as imaging the potential gas-source regions of the hydrate field.
Electromagnetic Smart Valves for Cryogenic Applications
NASA Astrophysics Data System (ADS)
Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.
2004-06-01
Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.
Angular momentum and torque described with the complex octonion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Zi-Hua, E-mail: xmuwzh@xmu.edu.cn
2014-08-15
The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field andmore » of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory.« less
Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.
Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe
2013-09-01
We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology.
Electromagnetic immunity of infusion pumps to GSM mobile phones: a systematic review.
Calcagnini, Giovanni; Censi, Federica; Triventi, Michele; Mattei, Eugenio; Bartolini, Pietro
2007-01-01
Electromagnetic interference with life-sustaining medical care devices has been reported by various groups. Previous studies have demonstrated that volumetric and syringe pumps are susceptible to false alarm buzzing and blocking, when exposed to various electromagnetic sources. The risk of electromagnetic interference depends on several factors such as the phone-emitted power, distance and carrier frequency, phone model and antenna type. The main recommendations and the relevant harmonized standard are also reported and discussed. >From the data available in literature emerges that, for distances lower than 1 m there is a non negligible risk of electromagnetic interferences, although significant differences exists in the reported minimum distances. Interference effects clinically relevant for the patients are rare. No permanent damage to the pumps has been ever reported, although in several cases intervention of personnel is required to resume normal operation.
Large-scale 3-D EM modelling with a Block Low-Rank multifrontal direct solver
NASA Astrophysics Data System (ADS)
Shantsev, Daniil V.; Jaysaval, Piyoosh; de la Kethulle de Ryhove, Sébastien; Amestoy, Patrick R.; Buttari, Alfredo; L'Excellent, Jean-Yves; Mary, Theo
2017-06-01
We put forward the idea of using a Block Low-Rank (BLR) multifrontal direct solver to efficiently solve the linear systems of equations arising from a finite-difference discretization of the frequency-domain Maxwell equations for 3-D electromagnetic (EM) problems. The solver uses a low-rank representation for the off-diagonal blocks of the intermediate dense matrices arising in the multifrontal method to reduce the computational load. A numerical threshold, the so-called BLR threshold, controlling the accuracy of low-rank representations was optimized by balancing errors in the computed EM fields against savings in floating point operations (flops). Simulations were carried out over large-scale 3-D resistivity models representing typical scenarios for marine controlled-source EM surveys, and in particular the SEG SEAM model which contains an irregular salt body. The flop count, size of factor matrices and elapsed run time for matrix factorization are reduced dramatically by using BLR representations and can go down to, respectively, 10, 30 and 40 per cent of their full-rank values for our largest system with N = 20.6 million unknowns. The reductions are almost independent of the number of MPI tasks and threads at least up to 90 × 10 = 900 cores. The BLR savings increase for larger systems, which reduces the factorization flop complexity from O(N2) for the full-rank solver to O(Nm) with m = 1.4-1.6. The BLR savings are significantly larger for deep-water environments that exclude the highly resistive air layer from the computational domain. A study in a scenario where simulations are required at multiple source locations shows that the BLR solver can become competitive in comparison to iterative solvers as an engine for 3-D controlled-source electromagnetic Gauss-Newton inversion that requires forward modelling for a few thousand right-hand sides.
NASA Astrophysics Data System (ADS)
Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Shi, Haofei; Hu, Chenguo
2015-11-01
An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices.
Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Shi, Haofei; Hu, Chenguo
2015-11-27
An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices.
NASA Technical Reports Server (NTRS)
Hermance, J. F. (Principal Investigator)
1981-01-01
Model simulations show that induction in a spherical Earth by distant magnetospheric sources can contribute magnetic field fluctuations at MAGSAT altitudes which are 30 to 40 percent of the external field amplitudes. When the characteristic dimensions (e.g. depth of penetration, etc) of a particular situations are small compared with the Earth's radius, the Earth can be approximated by a plane horizontal half space. In this case, electromagnetic energy is reflected with close to 100 percent efficiency from the Earth's surface. This implies that the total horizontal field is twice the source field when the source is above the satellite, but is reduced to values which are much smaller than the source field when the source is below the satellite. This latter effect tends to enhance the signature of gross electrical discontinuities in the lithosphere when observed at satellite altitudes.
Lappin, Martha S; Lawrie, Fraser Wilson; Richards, Todd L; Kramer, Eric D
2003-01-01
There is a growing literature on the biological and clinical effects of pulsed electromagnetic fields. Some studies suggest that electromagnetic therapies may be useful in the treatment of chronic illnesses. This study is a follow-up to a placebo controlled pilot study in which multiple sclerosis (MS) patients exposed to weak, extremely low frequency pulsed electromagnetic fields showed significant improvements on a composite symptom measure. To evaluate the effects of a pulsed electromagnetic therapy on MS related fatigue, spasticity, bladder control, and overall quality of life. A multi-site, double-blind, placebo controlled, crossover trial. Each subject received 4 weeks of the active and placebo treatments separated by a 2-week washout period. The University of Washington Medical Center in Seattle Wash, the Neurology Center of Fairfax in Fairfax, Va, and the headquarters of the Multiple Sclerosis Association of America in Cherry Hill, NJ. 117 patients with clinically definite MS. Daily exposure to a small, portable pulsing electromagnetic field generator. The MS Quality of Life Inventory (MSQLI) was used to assess changes in fatigue, bladder control, spasticity, and a quality of life composite. Paired t-tests were used to assess treatment differences in the 117 subjects (81% of the initial sample) who completed both treatment sessions. Improvements in fatigue and overall quality of life were significantly greater on the active device. There were no treatment effects for bladder control and a disability composite, and mixed results for spasticity. Evidence from this randomized, double-bind, placebo controlled trial is consistent with results from smaller studies suggesting that exposure to pulsing, weak electromagnetic fields can alleviate symptoms of MS. The clinical effects were small, however, and need to be replicated. Additional research is also needed to examine the possibility that ambulatory patients and patients taking interferons for their MS may be most responsive to this kind of treatment.
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films
Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.
2013-01-01
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617
NASA Astrophysics Data System (ADS)
Zhdanov, M. S.; Cuma, M.; Black, N.; Wilson, G. A.
2009-12-01
The marine controlled source electromagnetic (MCSEM) method has become widely used in offshore oil and gas exploration. Interpretation of MCSEM data is still a very challenging problem, especially if one would like to take into account the realistic 3D structure of the subsurface. The inversion of MCSEM data is complicated by the fact that the EM response of a hydrocarbon-bearing reservoir is very weak in comparison with the background EM fields generated by an electric dipole transmitter in complex geoelectrical structures formed by a conductive sea-water layer and the terranes beneath it. In this paper, we present a review of the recent developments in the area of large-scale 3D EM forward modeling and inversion. Our approach is based on using a new integral form of Maxwell’s equations allowing for an inhomogeneous background conductivity, which results in a numerically effective integral representation for 3D EM field. This representation provides an efficient tool for the solution of 3D EM inverse problems. To obtain a robust inverse model of the conductivity distribution, we apply regularization based on a focusing stabilizing functional which allows for the recovery of models with both smooth and sharp geoelectrical boundaries. The method is implemented in a fully parallel computer code, which makes it possible to run large-scale 3D inversions on grids with millions of inversion cells. This new technique can be effectively used for active EM detection and monitoring of the subsurface targets.
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films.
Sadtler, Bryce; Burgos, Stanley P; Batara, Nicolas A; Beardslee, Joseph A; Atwater, Harry A; Lewis, Nathan S
2013-12-03
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium-tellurium (Se-Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light-matter interactions in the Se-Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns.
Design of a bistable electromagnetic coupling mechanism for underactuated manipulators
NASA Astrophysics Data System (ADS)
Miyuranga Kaluarachchi, Malaka; Ho, Jee-Hou; Yahya, Samer; Teh, Sze-Hong
2018-07-01
Electromagnetic clutches have been widely used in underactuated lightweight manipulator designs as a coupling mechanism due to their advantages of fast activation and electrical controllability. However, an electromagnetic clutch consumes electrical energy continuously during its operation. Furthermore, conventional electromagnetic clutches are not fail-safe in unexpected power failure conditions. These factors have a significant impact on the energy efficiency and the safety of the design, and these are vital aspects for underactuated lightweight manipulators. This paper introduces a bistable electromagnetic coupling mechanism design, with reduced energy consumption and with a fail-safe mechanism. The concept of a bistable electromagnetic mechanism consists of an electromagnet with two permanent magnets. The design has the capability to maintain stable mechanism states, either engaged or disengaged, without a continuous electrical power supply, thus enhancing fail-safety and efficiency. Moreover, the design incorporates the advantages of conventional electromagnetic clutches such as rapid activation and electrical controllability. The experimental results highlight the effectiveness of the proposed mechanism in reducing electric energy consumption. Besides this, a theoretical model is developed and a good correlation is achieved between the theoretical and experimental results. The reduced electric energy consumption and fail-safe design make the bistable electromagnetic mechanism a promising concept for underactuated lightweight manipulators.
Hunt, Ryan W.; Zavalin, Andrey; Bhatnagar, Ashish; Chinnasamy, Senthil; Das, Keshav C.
2009-01-01
The surge of interest in bioenergy has been marked with increasing efforts in research and development to identify new sources of biomass and to incorporate cutting-edge biotechnology to improve efficiency and increase yields. It is evident that various microorganisms will play an integral role in the development of this newly emerging industry, such as yeast for ethanol and Escherichia coli for fine chemical fermentation. However, it appears that microalgae have become the most promising prospect for biomass production due to their ability to grow fast, produce large quantities of lipids, carbohydrates and proteins, thrive in poor quality waters, sequester and recycle carbon dioxide from industrial flue gases and remove pollutants from industrial, agricultural and municipal wastewaters. In an attempt to better understand and manipulate microorganisms for optimum production capacity, many researchers have investigated alternative methods for stimulating their growth and metabolic behavior. One such novel approach is the use of electromagnetic fields for the stimulation of growth and metabolic cascades and controlling biochemical pathways. An effort has been made in this review to consolidate the information on the current status of biostimulation research to enhance microbial growth and metabolism using electromagnetic fields. It summarizes information on the biostimulatory effects on growth and other biological processes to obtain insight regarding factors and dosages that lead to the stimulation and also what kind of processes have been reportedly affected. Diverse mechanistic theories and explanations for biological effects of electromagnetic fields on intra and extracellular environment have been discussed. The foundations of biophysical interactions such as bioelectromagnetic and biophotonic communication and organization within living systems are expounded with special consideration for spatiotemporal aspects of electromagnetic topology, leading to the potential of multipolar electromagnetic systems. The future direction for the use of biostimulation using bioelectromagnetic, biophotonic and electrochemical methods have been proposed for biotechnology industries in general with emphasis on an holistic biofuel system encompassing production of algal biomass, its processing and conversion to biofuel. PMID:20057958
Brzozek, Christopher; Benke, Kurt K; Zeleke, Berihun M; Abramson, Michael J; Benke, Geza
2018-03-26
Uncertainty in experimental studies of exposure to radiation from mobile phones has in the past only been framed within the context of statistical variability. It is now becoming more apparent to researchers that epistemic or reducible uncertainties can also affect the total error in results. These uncertainties are derived from a wide range of sources including human error, such as data transcription, model structure, measurement and linguistic errors in communication. The issue of epistemic uncertainty is reviewed and interpreted in the context of the MoRPhEUS, ExPOSURE and HERMES cohort studies which investigate the effect of radiofrequency electromagnetic radiation from mobile phones on memory performance. Research into this field has found inconsistent results due to limitations from a range of epistemic sources. Potential analytic approaches are suggested based on quantification of epistemic error using Monte Carlo simulation. It is recommended that future studies investigating the relationship between radiofrequency electromagnetic radiation and memory performance pay more attention to treatment of epistemic uncertainties as well as further research into improving exposure assessment. Use of directed acyclic graphs is also encouraged to display the assumed covariate relationship.
Locomotion of Amorphous Surface Robots
NASA Technical Reports Server (NTRS)
Bradley, Arthur T. (Inventor)
2018-01-01
An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.
Locomotion of Amorphous Surface Robots
NASA Technical Reports Server (NTRS)
Bradley, Arthur T. (Inventor)
2016-01-01
An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.
Locomotion of Amorphous Surface Robots
NASA Technical Reports Server (NTRS)
Bradley, Arthur T. (Inventor)
2014-01-01
An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.
NASA Astrophysics Data System (ADS)
Hoskins, Douglas; Snead, Robert
1988-05-01
This report details the results of an electromagnetic compatibility test on the SCI Systems Data Acquisition and Control Assembly (DACA). This assembly is an electronic processor which controls the central communication link from the Tethered Satellite System (TSS) to the Space Transportation System Orbiter Space Shuttle.
Small Portable Analyzer Diagnostic Equipment (SPADE) Program -- Diagnostic Software Validation
1984-07-01
Electronic Equipment Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference Electromagnetic...ONLY. ORIENTATION OF DEFECT LOOKING HHO QIlILL: t -ed’-o· Significant efforts were expended to simulate spalling failures associated with naturally
NASA Astrophysics Data System (ADS)
Gehrmann, R. A. S.; Schwalenberg, K.; Hölz, S.; Zander, T.; Dettmer, J.; Bialas, J.
2016-12-01
In 2014 an interdisciplinary survey was conducted as part of the German SUGAR project in the Western Black Sea targeting gas hydrate occurrences in the Danube Delta. Marine controlled source electromagnetic (CSEM) data were acquired with an inline seafloor-towed array (BGR), and a two-polarization horizontal ocean-bottom source and receiver configuration (GEOMAR). The CSEM data are co-located with high-resolution 2-D and 3-D seismic reflection data (GEOMAR). We present results from 2-D regularized inversion (MARE2DEM by Kerry Key), which provides a smooth model of the electrical resistivity distribution beneath the source and multiple receivers. The 2-D approach includes seafloor topography and structural constraints from seismic data. We estimate uncertainties from the regularized inversion and compare them to 1-D Bayesian inversion results. The probabilistic inversion for a layered subsurface treats the parameter values and the number of layers as unknown by applying reversible-jump Markov-chain Monte Carlo sampling. A non-diagonal data covariance matrix obtained from residual error analysis accounts for correlated errors. The resulting resistivity models show generally high resistivity values between 3 and 10 Ωm on average which can be partly attributed to depleted pore water salinities due to sea-level low stands in the past, and locally up to 30 Ωm which is likely caused by gas hydrates. At the base of the gas hydrate stability zone resistivities rise up to more than 100 Ωm which could be due to gas hydrate as well as a layer of free gas underneath. However, the deeper parts also show the largest model parameter uncertainties. Archie's Law is used to derive estimates of the gas hydrate saturation, which vary between 30 and 80% within the anomalous layers considering salinity and porosity profiles from a distant DSDP bore hole.
Meta-gated channel for the discrete control of electromagnetic fields
NASA Astrophysics Data System (ADS)
Yang, Rui; Wang, Hui; Shi, Ayuan; Zhang, Aofang; Wang, Jing; Gao, Dongxing; Lei, Zhenya; Hu, Bowei
2016-08-01
We demonstrate the meta-gate controlled wave propagation through multiple metallic plates with properly devised sub-wavelength defect apertures. Different from using gradient refractive-index meta-materials or phase-discontinuity meta-surfaces to produce the discrepancy between the incident angle and the refractive angle, our technique redirects electromagnetic fields by setting-up discrete transmission gateways between adjacent meta-gates and creates the perfect channels for the wave propagation. Electromagnetic fields can be assigned in the response of the driving frequency of meta-gates with extraordinary transmissions and propagate simply relying on their pre-set locations as illustrated by the meta-gate guided electromagnetic fields travelling in the paths of the Silk-Road and the contour line of Xi'an city where the Silk-Road starts. The meta-gate concept, offering the feasibility of the discrete control of electromagnetic fields with gating routes, may pave an alternative way for precisely transmitting of signals and efficiently sharing of resource in the communication.
Schnabel, Ulf H; Hegenloh, Michael; Müller, Hermann J; Zehetleitner, Michael
2013-09-01
Electromagnetic motion-tracking systems have the advantage of capturing the tempo-spatial kinematics of movements independently of the visibility of the sensors. However, they are limited in that they cannot be used in the proximity of electromagnetic field sources, such as computer monitors. This prevents exploiting the tracking potential of the sensor system together with that of computer-generated visual stimulation. Here we present a solution for presenting computer-generated visual stimulation that does not distort the electromagnetic field required for precise motion tracking, by means of a back projection medium. In one experiment, we verify that cathode ray tube monitors, as well as thin-film-transistor monitors, distort electro-magnetic sensor signals even at a distance of 18 cm. Our back projection medium, by contrast, leads to no distortion of the motion-tracking signals even when the sensor is touching the medium. This novel solution permits combining the advantages of electromagnetic motion tracking with computer-generated visual stimulation.
Optical system for high resolution spectrometer/monochromator
Hettrick, M.C.; Underwood, J.H.
1988-10-11
An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane is disclosed. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver. 11 figs.
ERIC Educational Resources Information Center
Richards, Grant P.
2009-01-01
This study presents the results of a multi-year mixed-methods study of students' performance (n = 94) and experiences (n = 28) with electromagnetics in an elective Electrical and Computer Engineering Technology RF communications course. Data sources used in this study include academic transcripts, course exams, interviews, a learning styles…
What Message Should Health Educators Give regarding Electromagnetic Fields?
ERIC Educational Resources Information Center
Al-Khamees, Nedaa A.
2008-01-01
The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…
Hypothesis on the nature of atmospheric UFOs
NASA Astrophysics Data System (ADS)
Mukharev, L. A.
1991-08-01
A hypothesis is developed according to which the atmospheric UFO phenomenon has an electromagnetic nature. It is suggested that an atmospheric UFO is an agglomeration of charged atmospheric dust within which there exists a slowly damped electromagnetic field. This field is considered to be the source of the observed optical effects and the motive force of the UFO.
Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird.
Engels, Svenja; Schneider, Nils-Lasse; Lefeldt, Nele; Hein, Christine Maira; Zapka, Manuela; Michalik, Andreas; Elbers, Dana; Kittel, Achim; Hore, P J; Mouritsen, Henrik
2014-05-15
Electromagnetic noise is emitted everywhere humans use electronic devices. For decades, it has been hotly debated whether man-made electric and magnetic fields affect biological processes, including human health. So far, no putative effect of anthropogenic electromagnetic noise at intensities below the guidelines adopted by the World Health Organization has withstood the test of independent replication under truly blinded experimental conditions. No effect has therefore been widely accepted as scientifically proven. Here we show that migratory birds are unable to use their magnetic compass in the presence of urban electromagnetic noise. When European robins, Erithacus rubecula, were exposed to the background electromagnetic noise present in unscreened wooden huts at the University of Oldenburg campus, they could not orient using their magnetic compass. Their magnetic orientation capabilities reappeared in electrically grounded, aluminium-screened huts, which attenuated electromagnetic noise in the frequency range from 50 kHz to 5 MHz by approximately two orders of magnitude. When the grounding was removed or when broadband electromagnetic noise was deliberately generated inside the screened and grounded huts, the birds again lost their magnetic orientation capabilities. The disruptive effect of radiofrequency electromagnetic fields is not confined to a narrow frequency band and birds tested far from sources of electromagnetic noise required no screening to orient with their magnetic compass. These fully double-blinded tests document a reproducible effect of anthropogenic electromagnetic noise on the behaviour of an intact vertebrate.
Probst, R.; Lin, J.; Komaee, A.; Nacev, A.; Cummins, Z.
2010-01-01
Any single permanent or electro magnet will always attract a magnetic fluid. For this reason it is difficult to precisely position and manipulate ferrofluid at a distance from magnets. We develop and experimentally demonstrate optimal (minimum electrical power) 2-dimensional manipulation of a single droplet of ferrofluid by feedback control of 4 external electromagnets. The control algorithm we have developed takes into account, and is explicitly designed for, the nonlinear (fast decay in space, quadratic in magnet strength) nature of how the magnets actuate the ferrofluid, and it also corrects for electro-magnet charging time delays. With this control, we show that dynamic actuation of electro-magnets held outside a domain can be used to position a droplet of ferrofluid to any desired location and steer it along any desired path within that domain – an example of precision control of a ferrofluid by magnets acting at a distance. PMID:21218157
Remote detection of radioactive material using high-power pulsed electromagnetic radiation.
Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi
2017-05-09
Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material.
Seismic wave generation systems and methods for cased wells
Minto, James [Houston, TX; Sorrells, Martin H [Huffman, TX; Owen, Thomas E [Helotes, TX; Schroeder, Edgar C [San Antonio, TX
2011-03-29
A vibration source (10) includes an armature bar (12) having a major length dimension, and a driver (20A) positioned about the armature bar. The driver (20A) is movably coupled to the armature bar (12), and includes an electromagnet (40). During operation the electromagnet (40) is activated such that the driver (20A) moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar. A described method for generating a vibratory signal in an object includes positioning the vibration source (10) in an opening of the object, coupling the armature bar (12) to a surface of the object within the opening, and activating the electromagnet (40) of the driver (20A) such that the driver moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar and the object.
Remote detection of radioactive material using high-power pulsed electromagnetic radiation
Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi
2017-01-01
Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material. PMID:28486438
Zhang, Anying; Pang, Xiaofeng; Yuan, Ping
2007-02-01
With the development of economy and coming of information era, the chance of exposure to electromagnetic fields with various frequencies has been increased for every human. The effects of electromagnetic radiattion on human being's health are versatile. To study the effects of bioelctronic parameters of rats in the electromagnetic radiations of HV transmission line, EEG, ECG and CMAP were measured in rats exposed to simulating high-voltage transmission line electromagnetic radiation for over one year. Brain tissues were studied by Fourier transform infrared spectroscopy. The results showed that no significant difference between exposed group and control group in EEG; however the FT-infrared spectra of brain tissues were different; the ECG of the exposed animals was considerably altered. Significant slowing of heart rate was observed in those rates exposed to EMFs; the latent period of CMAP in exposed group were not different compared with those of control group however there was a significant difference in wave amplitude of CMAP between the exposed group and control group. All results indicated that there must be some effects on bioelectric parameters of rats exposed to electromagnetic radiation of high-voltage transmission line for a long time.
Optical Phased Array Using Guided Resonance with Backside Reflectors
NASA Technical Reports Server (NTRS)
Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)
2016-01-01
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Optical phased array using guided resonance with backside reflectors
Horie, Yu; Arbabi, Amir; Faraon, Andrei
2016-11-01
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Optical phased array using guided resonance with backside reflectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horie, Yu; Arbabi, Amir; Faraon, Andrei
2018-03-13
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Optical Phased Array Using Guided Resonance with Backside Reflectors
NASA Technical Reports Server (NTRS)
Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)
2018-01-01
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
1999-01-01
A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.
Tong, Jun; Chen, Su; Liu, Xiang-Ming; Hao, Dong-Mei
2013-09-01
In order to explore effect of electromagnetic radiation on learning and memory ability of hippocampus neuron in rats, the changes in discharge patterns and overall electrical activity of hippocampus neuron after electromagnetic radiation were observed. Rat neurons discharge was recorded with glass electrode extracellular recording technology and a polygraph respectively. Radiation frequency of electromagnetic wave was 900 MHZ and the power was 10 W/m2. In glass electrode extracellular recording, the rats were separately irradiated for 10, 20, 30, 40, 50 and 60 min, every points repeated 10 times and updated interval of 1h, observing the changes in neuron discharge and spontaneous discharge patterns after electromagnetic radiation. In polygraph recording experiments, irradiation group rats for five days a week, 6 hours per day, repeatedly for 10 weeks, memory electrical changes in control group and irradiation group rats when they were feeding were repeatedly monitored by the implanted electrodes, observing the changes in peak electric digits and the largest amplitude in hippocampal CA1 area, and taking some electromagnetic radiation sampling sequence for correlation analysis. (1) Electromagnetic radiation had an inhibitory role on discharge frequency of the hippocampus CA1 region neurons. After electromagnetic radiation, discharge frequency of the hippocampus CA1 region neurons was reduced, but the changes in scale was not obvious. (2) Electromagnetic radiation might change the spontaneous discharge patterns of hippocampus CA1 region neurons, which made the explosive discharge pattern increased obviously. (3) Peak potential total number within 5 min in irradiation group was significantly reduced, the largest amplitude was less than that of control group. (4) Using mathematical method to make the correlation analysis of the electromagnetic radiation sampling sequence, that of irradiation group was less than that of control group, indicating that there was a tending to be inhibitory connection between neurons in irradiation group after electromagnetic radiation. Electromagnetic radiation may cause structure and function changes of transfer synaptic in global, make hippocampal CA1 area neurons change in the overall discharge characteristic and discharge patterns, thus lead to decrease in the ability of learning and memory.
Area Monitoring for Detection of Leaks and/or Flames
NASA Technical Reports Server (NTRS)
Mian, Zahid F. (Inventor); Gamache, Ronald W. (Inventor); Glasser, Nick (Inventor)
2015-01-01
A solution for monitoring an area for the presence of a flame and/or a leak, such as from a pressurized fluid, is provided. An imaging device can be used that acquires image data based on electromagnetic radiation having wavelengths only corresponding to at least one region of the electromagnetic spectrum in which electromagnetic radiation from an ambient light source is less than the electromagnetic radiation emitted by at least one type of flame for which the presence within the area is being monitored. An acoustic device can be used that is configured to acquire acoustic data for the area and enhance acoustic signals in a range of frequencies corresponding to a leak of a pressurized fluid present in the area.
Area Monitoring for Detection of Leaks And/Or Flames
NASA Technical Reports Server (NTRS)
Mian, Zahid F. (Inventor); Gamache, Ronald W. (Inventor); Glasser, Nicholas (Inventor)
2017-01-01
A solution for monitoring an area for the presence of a flame and/or a leak, such as from a pressurized fluid, is provided. An imaging device can be used that acquires image data based on electromagnetic radiation having wavelengths only corresponding to at least one region of the electromagnetic spectrum in which electromagnetic radiation from an ambient light source is less than the electromagnetic radiation emitted by at least one type of flame for which the presence within the area is being monitored. An acoustic device can be used that is configured to acquire acoustic data for the area and enhance acoustic signals in a range of frequencies corresponding to a leak of a pressurized fluid present in the area.
Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system
NASA Technical Reports Server (NTRS)
Whelan, D. A.; Stenzel, R. L.
1985-01-01
It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.
Voĭchuk, S I
2014-01-01
Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.
NASA Astrophysics Data System (ADS)
Wang, Yun; Zhao, Min; Wang, Qingguo
2018-01-01
In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.
30 CFR 74.7 - Design and construction requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... while monitoring atmospheres including such water mists. (f) Electromagnetic interference. The CPDM shall meet the following standards for control of and protection from electromagnetic interference. (1... with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz) and 47 CFR...
30 CFR 74.7 - Design and construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... while monitoring atmospheres including such water mists. (f) Electromagnetic interference. The CPDM shall meet the following standards for control of and protection from electromagnetic interference. (1... with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz) and 47 CFR...
30 CFR 74.7 - Design and construction requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... while monitoring atmospheres including such water mists. (f) Electromagnetic interference. The CPDM shall meet the following standards for control of and protection from electromagnetic interference. (1... with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz) and 47 CFR...
30 CFR 74.7 - Design and construction requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... while monitoring atmospheres including such water mists. (f) Electromagnetic interference. The CPDM shall meet the following standards for control of and protection from electromagnetic interference. (1... with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz) and 47 CFR...
30 CFR 74.7 - Design and construction requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... while monitoring atmospheres including such water mists. (f) Electromagnetic interference. The CPDM shall meet the following standards for control of and protection from electromagnetic interference. (1... with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz) and 47 CFR...
Control and monitoring method and system for electromagnetic forming process
Kunerth, Dennis C.; Lassahn, Gordon D.
1990-01-01
A process, system, and improvement for a process for electromagnetic forming of a workpiece in which characteristics of the workpiece such as its geometry, electrical conductivity, quality, and magnetic permeability can be determined by monitoring the current and voltage in the workcoil. In an electromagnet forming process in which a power supply provides current to a workcoil and the electromagnetic field produced by the workcoil acts to form the workpiece, the dynamic interaction of the electromagnetic fields produced by the workcoil with the geometry, electrical conductivity, and magnetic permeability of the workpiece, provides information pertinent to the physical condition of the workpiece that is available for determination of quality and process control. This information can be obtained by deriving in real time the first several time derivatives of the current and voltage in the workcoil. In addition, the process can be extended by injecting test signals into the workcoil during the electromagnetic forming and monitoring the response to the test signals in the workcoil.
MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
NASA Astrophysics Data System (ADS)
Key, Kerry
2016-10-01
This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data balancing normalization weights for the joint inversion of two or more data sets encourages the inversion to fit each data type equally well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm's performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from the Middle America Trench offshore Nicaragua demonstrates a real world application. The source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.
Parhampour, Behrouz; Torkaman, Giti; Hoorfar, Hamid; Hedayati, Mehdi; Ravanbod, Roya
2014-05-01
To assess the effects of short-term resistance training and pulsed electromagnetic fields on bone metabolism and joint function in patients with haemophilia with osteoporosis. A randomized, controlled, patient and blood sample assessor-blinded, six-week trial, three times weekly. Hospital outpatients with severe haemophilia A and osteoporosis. Forty-eight patients were randomly assigned to resistance training (RT, n = 13), combined resistance training with pulsed electromagnetic fields (RTPEMF, n = 12), pulsed electromagnetic fields (PEMF, n = 11) and control (n = 12) groups. The RT group received 30-40 minutes of resistance exercises and placebo pulsed electromagnetic fields. The RTPEMF group received the same exercises with lower repetition and 30 minutes of pulsed electromagnetic fields. The PEMF group was exposed to 60 minutes of pulsed electromagnetic fields (30 Hz and 40 Gauss). Bone-specific alkaline phosphatase, N-terminal telopeptide of type 1 collagen, and joint function, using the modified Colorado Questionnaire, were measured before and after the programme. The absolute change of bone-specific alkaline phosphatase was significant in the RT and RTPEMF groups compared with the control group (25.41 ± 14.40, 15.09 ± 5.51, and -4.73 ± 2.93 U/L, respectively). The absolute changes in the total score for joint function were significant for knees, ankles, and elbows in the RT group (9.2 ± 1.38, 5.1 ± 0.5, and 3.2 ± 0.8, respectively) and the RTPEMF group (7.7 ± 1.0, 3.3 ± 0.6, and 2.5 ± 0.7, respectively) compared to the PEMF and control groups. This value was significant for knee joints in the PEMF group compared to the control group (3.4 ± 0.5 and 0.66 ± 0.4, respectively). Resistance training is effective for improving bone formation and joint function in severe haemophilia A patients with osteoporosis.
Control system of mobile radiographic complex to study equations of state of substances
NASA Astrophysics Data System (ADS)
Belov, O. V.; Valekzhanin, R. V.; Kustov, D. V.; Shamro, O. A.; Sharov, T. V.
2017-05-01
A source of x-ray radiation is one of the tools to study equations of state of substances in dynamics. The mobile radiographic bench based on BIM-1500 [1] was developed in RFNC-VNIIEF to increase output parameters of the x-ray radiation source. From automated control system side, BIM-1500 is a set of six high-voltage generators based on the capacitive energy storage, technological equipment, and elements of a blocking system. This paper considers automated control system of the mobile radiographic bench MCA BIM 1500. It consists of six high-voltage generator control circuits, synchronization subsystem, and block subsystem. The object of control has some peculiarities: high level of electromagnetic noise, remoteness of the control panel from the object of control. In connection with this, the coupling devices are arranged closer to the object of control and performed in the form of a set of galvanically insulated control units, which are combined into a net. The operator runs MCA BIM using the operator’s screens on PC or by means of manual control on the equipment in the mode of debugging. The control software provides performance of the experiment in automatic regime in accordance with preset settings. The operator can stop the experiment at the stage of charging the capacitive storage.
NASA Astrophysics Data System (ADS)
Kankipati, Venkata Varun
This thesis presents a method to determine the angular orientation of a projectile in flight, by mechanically scanning a linearly polarized, microwave reference source. In particular, the research focuses on real time measurement of the roll angle. A 10 GHz, linearly polarized electromagnetic wave is radiated toward the projectile by means of a 10 dB horn antenna. The projectile is equipped with a backward facing 10 dB horn antenna, which has orientation, namely roll angle, sensitivity. The response of the received signal follows a cosine law, producing a maximum when the receiver orientation is aligned with the transmitting polarization. As expected, the peak response shifts in response to the roll-angle, however, unambiguous recovery of the angle requires synchronization with the polarization orientation of the source. This has been achieved through the use of a unique transmitter power sequence, which includes a start-of-scan and end-of-scan time stamp. Based on the above concept, a complete system comprising a polarization scanning reference source, the receiving antenna mounted on a vehicle, and pertinent electronic components, has been tested for both line of sight and non-line of sight applications. The transmitter antenna, mounted on a computer controlled stepper motor allowed source polarization to be scanned from -90° to 90° in 0.3 seconds. The receiving antenna continuously samples the received electromagnetic background at the source frequency and uses a RF detector and a data acquisition system to record the subsequent time-varying voltage signal, which is processed to recover the roll-angle. Measurements in an anechoic chamber were used to confirm the efficacy of the system and field trials, using a transmitter power of 2 W, were successfully demonstrated over a distance of 0.15 miles. The distance limit can be extended by increasing the transmitter power, receiver sensitivity and increase source frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, R.C.
1983-01-13
This report is a compilation of abstracts resulting from a literature search of reports relevant to Sentry Ballistic missile system C3 vulnerability and hardness. Primary sources consulted were the DOD Nuclear Information Analysis Center (DASIAC) and the Defense Technical Information Center (DTIC). Approximately 175 reports were reviewed and abstracted, including several related to computer programs for estimating nuclear effects on electromagnetic propagation. The reports surveyed were ranked in terms of their importance for Sentry C3 VandH issues.
NASA Astrophysics Data System (ADS)
Schaumburg, F.; Guarnieri, F. A.
2017-05-01
A 3D anatomical computational model is developed to assess thermal effects due to exposure to the electromagnetic field required to power a new investigational active implantable microvalve for the treatment of glaucoma. Such a device, located in the temporal superior eye quadrant, produces a filtering bleb, which is included in the geometry of the model, together with the relevant ocular structures. The electromagnetic field source—a planar coil—as well as the microvalve antenna and casing are also included. Exposure to the electromagnetic field source of an implanted and a non-implanted subject are simulated by solving a magnetic potential formulation, using the finite element method. The maximum SAR10 is reached in the eyebrow and remains within the limits suggested by the IEEE and ICNIRP standards. The anterior chamber, filtering bleb, iris and ciliary body are the ocular structures where more absorption occurs. The temperature rise distribution is also obtained by solving the bioheat equation with the finite element method. The numerical results are compared with the in vivo measurements obtained from four rabbits implanted with the microvalve and exposed to the electromagnetic field source.
Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo
2017-04-01
In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.
L'Abbate, N; Pranzo, S; Martucci, V; Rella, C; Vitucci, L; Salamanna, S
2004-01-01
In this study we measured the levels of the high frequency field in the proximity of non-ionizing radiation sources (wireless transmitting stations for mobile telephones and radio and television transmitters) in nine districts of the city of Bari. The measurements were taken both inside and outside closed environments. For the indoor measurements we took into account electromagnetic field generating equipment (VDT, electric domestic appliances, mobile telephones) in working and non-working order and with the windows open and shut respectively. We carried out these measurements according to the methods laid down in the Italian regulation CEI ENV 50166-2 of May 1995, as shown in the enclosure to the Ministerial Decree of 10.9.98 n.381. The electromagnetic field levels near wireless transmitting stations for mobile telephones are certainly modest when we consider that they never exceeded the limits established by the aforesaid Ministerial Decree. On the contrary radio and television equipment creates a much greater source of exposure. The electromagnetic field levels are certainly superior to those of the wireless transmitting stations although they never exceed, except in one isolated case, the values established by the Ministerial Decree 381/98.
NASA Astrophysics Data System (ADS)
Froger, Etienne
1993-05-01
A description of the electromagnetic behavior of a satellite subjected to an electric discharge is given using a specially developed numerical code. One of the particularities of vacuum discharges, obtained by irradiation of polymers, is the intense emission of electrons into the spacecraft environment. Electromagnetic radiation, associated with the trajectories of the particles around the spacecraft, is considered as the main source of the interference observed. In the absence of accurate orbital data and realistic ground tests, the assessment of these effects requires numerical simulation of the interaction between this electron source and the spacecraft. This is done by the GEODE particle code which is applied to characteristic configurations in order to estimate the spacecraft response to a discharge, which is simulated from a vacuum discharge model designed in laboratory. The spacecraft response to a current injection is simulated by the ALICE numerical three dimensional code. The comparison between discharge and injection effects, from the results given by the two codes, illustrates the representativity of electromagnetic susceptibility tests and the main parameters for their definition.
A kilonova as the electromagnetic counterpart to a gravitational-wave source.
Smartt, S J; Chen, T-W; Jerkstrand, A; Coughlin, M; Kankare, E; Sim, S A; Fraser, M; Inserra, C; Maguire, K; Chambers, K C; Huber, M E; Krühler, T; Leloudas, G; Magee, M; Shingles, L J; Smith, K W; Young, D R; Tonry, J; Kotak, R; Gal-Yam, A; Lyman, J D; Homan, D S; Agliozzo, C; Anderson, J P; Angus, C R; Ashall, C; Barbarino, C; Bauer, F E; Berton, M; Botticella, M T; Bulla, M; Bulger, J; Cannizzaro, G; Cano, Z; Cartier, R; Cikota, A; Clark, P; De Cia, A; Della Valle, M; Denneau, L; Dennefeld, M; Dessart, L; Dimitriadis, G; Elias-Rosa, N; Firth, R E; Flewelling, H; Flörs, A; Franckowiak, A; Frohmaier, C; Galbany, L; González-Gaitán, S; Greiner, J; Gromadzki, M; Guelbenzu, A Nicuesa; Gutiérrez, C P; Hamanowicz, A; Hanlon, L; Harmanen, J; Heintz, K E; Heinze, A; Hernandez, M-S; Hodgkin, S T; Hook, I M; Izzo, L; James, P A; Jonker, P G; Kerzendorf, W E; Klose, S; Kostrzewa-Rutkowska, Z; Kowalski, M; Kromer, M; Kuncarayakti, H; Lawrence, A; Lowe, T B; Magnier, E A; Manulis, I; Martin-Carrillo, A; Mattila, S; McBrien, O; Müller, A; Nordin, J; O'Neill, D; Onori, F; Palmerio, J T; Pastorello, A; Patat, F; Pignata, G; Podsiadlowski, Ph; Pumo, M L; Prentice, S J; Rau, A; Razza, A; Rest, A; Reynolds, T; Roy, R; Ruiter, A J; Rybicki, K A; Salmon, L; Schady, P; Schultz, A S B; Schweyer, T; Seitenzahl, I R; Smith, M; Sollerman, J; Stalder, B; Stubbs, C W; Sullivan, M; Szegedi, H; Taddia, F; Taubenberger, S; Terreran, G; van Soelen, B; Vos, J; Wainscoat, R J; Walton, N A; Waters, C; Weiland, H; Willman, M; Wiseman, P; Wright, D E; Wyrzykowski, Ł; Yaron, O
2017-11-02
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
A kilonova as the electromagnetic counterpart to a gravitational-wave source
NASA Astrophysics Data System (ADS)
Smartt, S. J.; Chen, T.-W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K. C.; Huber, M. E.; Krühler, T.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith, K. W.; Young, D. R.; Tonry, J.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan, D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.; Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla, M.; Bulger, J.; Cannizzaro, G.; Cano, Z.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Denneau, L.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R. E.; Flewelling, H.; Flörs, A.; Franckowiak, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Greiner, J.; Gromadzki, M.; Guelbenzu, A. Nicuesa; Gutiérrez, C. P.; Hamanowicz, A.; Hanlon, L.; Harmanen, J.; Heintz, K. E.; Heinze, A.; Hernandez, M.-S.; Hodgkin, S. T.; Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.; Klose, S.; Kostrzewa-Rutkowska, Z.; Kowalski, M.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Lowe, T. B.; Magnier, E. A.; Manulis, I.; Martin-Carrillo, A.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.; Pignata, G.; Podsiadlowski, Ph.; Pumo, M. L.; Prentice, S. J.; Rau, A.; Razza, A.; Rest, A.; Reynolds, T.; Roy, R.; Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Schady, P.; Schultz, A. S. B.; Schweyer, T.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Stalder, B.; Stubbs, C. W.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; van Soelen, B.; Vos, J.; Wainscoat, R. J.; Walton, N. A.; Waters, C.; Weiland, H.; Willman, M.; Wiseman, P.; Wright, D. E.; Wyrzykowski, Ł.; Yaron, O.
2017-11-01
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
Hours, Martine; Khati, Inès; Hamelin, Joel
2014-03-01
Assessing the behavior of active implanted medical devices (AIMDs) in response to electromagnetic field (EMF) transmitters is a current issue of great importance. Given the numerous telecommunication systems and our lack of knowledge as to the impact of electromagnetic effects, this study investigated the reality of possible AIMD disturbance by EMFs by interviewing health professionals. A self-administered postal questionnaire was sent to almost 5,000 physicians in five specialties: cardiology; endocrinology; ears, nose, and throat; urology; and neurology. It collected data on the existence and annual number of incidents observed and the conditions under which they occurred, the EMF sources involved, and the means of managing the malfunctions. A total of 1,188 physicians agreed to participate. Sixteen percent of participants reported cases of implant failure, three-quarters of whom, mainly in cardiology, reported rates of at least one incident per year-amounting to more than 100 incidents per year in all. Severity appeared to be moderate (discomfort or transient symptoms), but frequently required resetting or, more rarely, replacing the device. Some serious incidents were, however, reported. The sources implicated were basically of two types: electronic security systems (antitheft and airport gates) and medical electromagnetic radiation devices. These incidents were poorly reported within the public health system, preventing follow-up and effective performance of alert and surveillance functions. Although minor, the risk of interference between EMF sources and AIMDs is real and calls for vigilance. It particularly concerns antitheft and airport security gates, though other sources may also cause incidents. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.
2011-11-01
A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).
Effects of chronic exposure to electromagnetic waves on the auditory system.
Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Kalkan, Yıldıray; Erdivanlı, Özlem Çelebi; Dursun, Engin
2015-08-01
The results support that chronic electromagnetic field exposure may cause damage by leading to neuronal degeneration of the auditory system. Numerous researches have been done about the risks of exposure to the electromagnetic fields that occur during the use of these devices, especially the effects on hearing. The aim of this study is to evaluate the effects of the electromagnetic waves emitted by the mobile phones through the electrophysiological and histological methods. Twelve adult Wistar albino rats were included in the study. The rats were divided into two groups of six rats. The study group was exposed to the electromagnetic waves over a period of 30 days. The control group was not given any exposure to the electromagnetic fields. After the completion of the electromagnetic wave application, the auditory brainstem responses of both groups were recorded under anesthesia. The degeneration of cochlear nuclei was graded by two different histologists, both of whom were blinded to group information. The histopathologic and immunohistochemical analysis showed neuronal degeneration signs, such as increased vacuolization in the cochlear nucleus, pyknotic cell appearance, and edema in the group exposed to the electromagnetic fields compared to the control group. The average latency of wave in the ABR was similar in both groups (p > 0.05).
Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A
2009-12-01
Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.
NASA Astrophysics Data System (ADS)
Cadena, M. S. Reyes; Chapul, L. Sánchez; Pérez, Javiér; García, M. N. Jiménez; López, M. A. Jiménez; Espíndola, M. E. Sánchez; Perez, R. Paniagua; Hernández, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodríguez
2008-08-01
We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.
Active damping using a control structure interaction approach
NASA Astrophysics Data System (ADS)
Umland, Jeffrey W.
1991-12-01
The vibration control of flexible structures using electromagnetic actuators is investigated. A model of an electromagnetic voice coil actuator is developed from elementary theory, and the required parameters are measured. Given a constant magnetic field, the force output of the voice coil varies linearly with the current flowing through the coil. The primary damping mechanism of the actuator used is found to be Coulomb friction. It is seen that Coulomb friction inhibits the response of the actuator to low levels of excitation. It is also seen that the actuator displayed a nonlinear relationship between force and current indicating that the applied magnetic field was not constant. This nonlinearity leads to a closed loop instability. Several design improvements are considered. Four different feedback control laws are developed to add active damping to a structure. The actuator is used as both a point force source and as a link in a mechanism that applies bending moments at two places on the structure. The actuator is used as both a point force source and as a link in a mechanism that applies bending moments at two places on the structure. The first control law uses the actuator as a traditional passive vibration absorber. The second control law is direct structural velocity feedback plus direct proof mass position feedback. The third control strategy is also direct structural velocity feedback but using compensated feedback of the proof mass position. The compensator is designed according to an H infinity optimization technique. The fourth control law uses the actuator as an equivalent mechanical viscous damper connected to two points on the structure. The results show that using direct structural velocity feedback provides improved vibration suppression in comparison to a traditional vibration absorber. Furthermore, the tuning criteria is only restricted to maintaining the actuator's single degree of freedom natural frequency below those of the structure to which it is attached.
1991-06-01
assessing EMC characteristics of EM systems in a lecture on "Measuremazzenvironments and testing".The various test en - vronments available will be described...severe in a dual-diversity system gains at least 10 dB in SNR relative to a maritime situation where salt water corrosion has for many non-diversity...environment having great significance for NATO systems are: (a) electromagnetic interference (EMT) arising from both natural and man-made sources; (b
NASA Astrophysics Data System (ADS)
Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.
2017-04-01
Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.
Carrascal, Luis M; Ruiz, Yolanda Jiménez; Lobo, Jorge M
Exoskeletons of beetles and their associated morphological characteristics can serve many different functions, including thermoregulation. We study the thermal role of the exoskeleton in 13 Geotrupidae dung beetle species using heating experiments under controlled conditions. The main purpose was to measure the influence of heating sources (solar radiance vs. infrared), animal position (dorsal exposure vs. ventral exposure), species identity, and phylogenetic relationships on internal asymptotic temperatures and heating rates. The thermal response was significantly influenced by phylogenetic relatedness, although it was not affected by the apterous condition. The asymptotic internal temperature of specimens was not affected by the thoracic volume but was significantly higher under simulated sunlight conditions than under infrared radiation and when exposed dorsally as opposed to ventrally. There was thus a significant interaction between heating source and body position. Heating rate was negatively and significantly influenced by thoracic volume, and, although insignificantly slower under simulated sunlight, it was significantly affected by body position, being faster under dorsal exposure. The results constitute the first evidence supporting the hypothesis that the beetle exoskeleton acts differentially across the electromagnetic spectrum determining internal body temperatures. This interesting finding suggests the existence of a kind of passive physiology imposed by the exoskeleton and body size, where interspecific relationships play a minor role.
Uncertainty principles for inverse source problems for electromagnetic and elastic waves
NASA Astrophysics Data System (ADS)
Griesmaier, Roland; Sylvester, John
2018-06-01
In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2011 CFR
2011-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Optimal Measurement Conditions for Spatiotemporal EEG/MEG Source Analysis.
ERIC Educational Resources Information Center
Huizenga, Hilde M.; Heslenfeld, Dirk J.; Molenaar, Peter C. M.
2002-01-01
Developed a method to determine the required number and position of sensors for human brain electromagnetic source analysis. Studied the method through a simulation study and an empirical study on visual evoked potentials in one adult male. Results indicate the method is fast and reliable and improves source precision. (SLD)
Effects of electromagnetic radiation on the hemorheology of rats
NASA Astrophysics Data System (ADS)
Huang, Zhiwei; Tian, Tian; Xiao, Bo; Li, Wen
2017-01-01
The current work examines the effects of electromagnetic radiation on the hemorheology to provide an experimental basis for radiation protection. Electromagnetic radiation was generated by a Helmholtz coil constructed from copper wire. There were six rats altogether: three rats in the experimental group, and three rats in the control group. The rats in the experimental group were continuously exposed to radiation for 10 hours every day, and rats in the control group remained in a normal environment. After 30 days, the characteristics of hemorheology of the two groups were compared. The average plasma viscosity, whole blood high shear velocity, and whole blood low shear viscosity were lower in rats in the experimental group than in rats in the control group, while the whole blood shear viscosity was higher in the experimental group than in the control group. Results suggest that long term exposure to electromagnetic radiation does have certain impacts on the cardiovascular system, deeming it necessary to take preventative measures.
Working principle of an electromagnetic wiping system
NASA Astrophysics Data System (ADS)
Ernst, R.; Fautrelle, Y.; Bianchi, A.-M.; Iliescu, M.
2009-03-01
In galvanizing lines, the gas knife wiping device works well for controlling the zinc coating thickness up to 2 to 3 m/s strip velocities. But for higher velocities, a strong liquid zinc splash risk forbids the gas pressure increase, which would be necessary to keep the same thickness control efficiency of the knives. That is why a complementary electromagnetic wiping system, whose purpose is to pre-wipe the liquid zinc before the gas knives take over, is presented here. After mentioning different kinds of AC and DC possible electromagnetic solutions, a DC field electromagnetic brake (EMB) system based on the use of permanent magnets is selected for a future experimental implementation. In order to better understand the electromagnetic and fluid mechanics phenomena, an analytical model and then different numerical models are presented here. These models show an interesting wiping effect on the liquid zinc, which seems promising for a future experimental pilot design. Figs 8, Refs 9.
Rectennas at optical frequencies: How to analyze the response
NASA Astrophysics Data System (ADS)
Joshi, Saumil; Moddel, Garret
2015-08-01
Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.
VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.; Panda Collaboration
2012-02-01
A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.
An electromagnetic/electrostatic dual cathode system for electron beam instruments
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Wittry, D. B.; Albee, A. L.
1986-01-01
A method of providing cathode redundancy which consists of two fixed cathodes and uses electromagnetic and/or electrostatic fields to direct the electron beam to the electron optical axis is presented, with application to the cathode system of the Scanning Electron Microscope and Particle Analyzer proposed for NASA's Mariner Mark II Comet Rendezvous/Asteroid Flyby projected for the 1990s. The symmetric double deflection system chosen has the optical property that the image of the effective electron source is formed above the magnet assembly near the apparent position of the effective source, and it makes the transverse positions of the electron sources independent of the electron beam energy. Good performance of the system is found, with the sample imaging resolution being the same as for the single-axis cathode.
[Effects of electromagnetic radiation on health and immune function of operators].
Li, Yan-zhong; Chen, Shao-hua; Zhao, Ke-fu; Gui, Yun; Fang, Si-xin; Xu, Ying; Ma, Zi-jian
2013-08-01
To investigate the effects of electromagnetic radiation on the physiological indices and immune function of operators. The general conditions and electromagnetic radiation awareness rate of 205 operators under electromagnetic radiation were evaluated using a self-designed questionnaire. Physical examination, electrocardiography, and routine urine test were performed in these operators. Peripheral blood was collected from the operators under electromagnetic radiation for blood cell counting and biochemical testing, and their peripheral blood lymphocytes were cultured for determination of chromosomal aberrant frequency and micronucleus frequency. The data from these operators (exposure group) were compared with those of 95 ordinary individuals (control group). The chief complaint of giddiness, tiredness, dizziness, and amnesia showed significant differences between the exposure group and control group (P < 0.01), and the difference in headache became larger with an increase in working years. The awareness rate of electromagnetic radiation damage was significantly higher in the exposure group than in the control group. The difference in bradycardia was significant between the two groups (P <0.01), and the incidence was higher with longer working years. Significant differences between the two groups were also found in the numbers of individuals with elevated alanine aminotransferase, total bilirubin, and direct bilirubin (P < 0.01), populations with increased lymphocyte ratio and decreased neutrophil ratio (P < 0.01), populations with positive occult blood, urobilinogen, and bilirubin tests, and the number of individuals with increased micronucleus frequency of cultured peripheral blood lymphocytes (P < 0.01). In addition, the exposure group had significantly increased complement C3 and C4 (P < 0.01), significantly increased IgG (P < 0.05), and significantly decreased IgM (P < 0.01), as compared with the control group. Electromagnetic radiation may lead to the changes in physiological indices, genetic effects, and immune function and affect the health and immune function in operators. The adverse effects are increased as the working years increase. So it is important to strengthen occupational protection of operators under electromagnetic radiation.
Thermal infrared near-field spectroscopy.
Jones, Andrew C; Raschke, Markus B
2012-03-14
Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy. © 2012 American Chemical Society
Electromagnetic surveying of seafloor mounds in the northern Gulf of Mexico
Ellis, M.; Evans, R.L.; Hutchinson, D.; Hart, P.; Gardner, J.; Hagen, R.
2008-01-01
Seafloor controlled source electromagnetic data, probing the uppermost 30 m of seafloor sediments, have been collected with a towed magnetic dipole-dipole system across two seafloor mounds at approximately 1300 m water depth in the northern Gulf of Mexico. One of these mounds was the focus of??a recent gas hydrate research drilling program. Rather than the highly resistive response expected of massive gas hydrate within the confines of the mounds, the EM data are dominated by the effects of raised temperatures and pore fluid salinities that result in an electrically conductive seafloor. This structure suggests that fluid advection towards the seafloor is taking place beneath both mounds. Similar responses are seen at discrete locations away from the mounds in areas that might be associated with faults, further suggesting substantial shallow fluid circulation. Raised temperatures and salinities may inhibit gas hydrate formation at depth as has been suggested at other similar locations in the Gulf of Mexico.
Electromagnetic interference in cardiac rhythm management devices.
Sweesy, Mark W; Holland, James L; Smith, Kerry W
2004-01-01
Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.
A tunable acoustic metamaterial with double-negativity driven by electromagnets
Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Li, Xiao-juan; Zhang, Hui; Ding, Jin
2016-01-01
With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings. PMID:27443196
A biotechnological project with a gamma radiation source of 100,000 Ci
NASA Astrophysics Data System (ADS)
Lombardo, J. H.; Smolko, E. E.
A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The later is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost.
Zeleke, Berihun M.; Abramson, Michael J.; Benke, Geza
2018-01-01
Uncertainty in experimental studies of exposure to radiation from mobile phones has in the past only been framed within the context of statistical variability. It is now becoming more apparent to researchers that epistemic or reducible uncertainties can also affect the total error in results. These uncertainties are derived from a wide range of sources including human error, such as data transcription, model structure, measurement and linguistic errors in communication. The issue of epistemic uncertainty is reviewed and interpreted in the context of the MoRPhEUS, ExPOSURE and HERMES cohort studies which investigate the effect of radiofrequency electromagnetic radiation from mobile phones on memory performance. Research into this field has found inconsistent results due to limitations from a range of epistemic sources. Potential analytic approaches are suggested based on quantification of epistemic error using Monte Carlo simulation. It is recommended that future studies investigating the relationship between radiofrequency electromagnetic radiation and memory performance pay more attention to treatment of epistemic uncertainties as well as further research into improving exposure assessment. Use of directed acyclic graphs is also encouraged to display the assumed covariate relationship. PMID:29587425
Relativistically strong electromagnetic radiation in a plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.
Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less
Research on radiation characteristic of plasma antenna through FDTD method.
Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan
2014-01-01
The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.
Wave-Based Algorithms and Bounds for Target Support Estimation
2015-05-15
vector electromagnetic formalism in [5]. This theory leads to three main variants of the optical theorem detector, in particular, three alternative...further expands the applicability for transient pulse change detection of ar- bitrary nonlinear-media and time-varying targets [9]. This report... electromagnetic methods a new methodology to estimate the minimum convex source region and the (possibly nonconvex) support of a scattering target from knowledge of
NASA Technical Reports Server (NTRS)
Okada, M.; Tsurutani, B. T.; Goldstein, G. E.; Matsumoto, H.; Brinca, A. L.; Kellogg, P. J.
1995-01-01
The proposed Small Solar Probe mission features a close approach to the sun with a perihelion of 4 radii. Carbon molecules emitted from the spacecraft's heat shield will become ionized by electron impact and photoionization. The newly created ions and electrons may generate electromagnetic and electrostatic plasma waves which are possible sources of interference with in-situ plasma measurements.
Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu
2016-02-01
A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.
Measurement of electromagnetic fields over a small electrolytic tank
NASA Astrophysics Data System (ADS)
Caffey, T. W. H.; Morris, H. E.
1990-12-01
In 1986, Hart proposed a large, hemispherical electrolytic tank and the use of the Surface Electrical Potential method with which to study resistivity changes due to energy-extraction processes in the earth. A second method for the inference of underground resistivity changes, the Controlled Source Audio-MagnetoTelluric method, has been widely used in the field. This method uses measurements of the electromagnetic field from a surface dipole, rather than the surface potential distribution from a buried vertical electrode, as the basis of the technique. If both SEP and CSAMT could be applied to the same model structure in the same electrolytic tank, it would seem that the diagnostic information would be enhanced over the use of each technique separately. Accordingly, the specific objectives were: to determine to what radial extent the bowl could be used as a homogeneous half-space; and to demonstrate acceptable accuracy by measuring the effect of a conducting target immersed in the bowl and comparing the measurements with numerical modeling. Electromagnetic fields over an electrolytic tank have been measured by others, and this report begins with a comparative summary of both prior and present work. The next section presents the formulas for the electromagnetic fields, and explains the choice of a particular method of measuring apparent resistivity. The field theory is also used in the subsequent section to provide error estimates needed for design guidance. The following sections describe the measurements, and the considerations for a larger facility. The appendices include the derivatives of the fields, the electrolyte characteristics, a description of the apparatus, and calibration methods.
Wiring design for the control of electromagnetic interference (EMI)
NASA Technical Reports Server (NTRS)
Kopasakis, George
1995-01-01
Wiring design is only one important aspect of EMI control. Other important areas for EMI are: circuit design, filtering, grounding, bonding, shielding, lighting, electrostatic discharge (ESD), transient suppression, and electromagnetic pulse (EMP). Topics covered include: wire magnetic field emissions at low frequencies; wire radiated magnetic field emissions at frequencies; wire design guidelines for EMI control; wire design guidelines for EMI control; high frequency emissions from cables; and pulse frequency spectra.
Saletu, Michael; Anderer, Peter; Saletu-Zyhlarz, Gerda Maria; Mandl, Magdalena; Saletu, Bernd; Zeitlhofer, Josef
2009-09-01
Recent neuroimaging studies in narcolepsy discovered significant gray matter loss in the right prefrontal and frontomesial cortex, a critical region for executive processing. In the present study, event-related potential (ERP) low-resolution brain electromagnetic tomography (LORETA) was used to investigate cognition before and after modafinil as compared with placebo. In a double-blind, placebo-controlled cross-over design, 15 patients were treated with a 3-week fixed titration scheme of modafinil and placebo. The Epworth Sleepiness Scale (ESS), Maintenance of Wakefulness Test (MWT) and auditory ERPs (odd-ball paradigm) were obtained before and after the 3 weeks of therapy. Latencies, amplitudes and LORETA sources were determined for standard (N1 and P2) and target (N2 and P300) ERP components. The ESS score improved significantly from 15.4 (+/- 4.0) under placebo to 10.2 (+/- 4.1) under 400mg modafinil (p=0.004). In the MWT, latency to sleep increased nonsignificantly after modafinil treatment (11.9+/-6.9 versus 13.3+/-7.1 min). In the ERP, N2 and P300 latencies were shortened significantly. While ERP amplitudes showed only minor changes, LORETA revealed increased source strengths: for N1 in the left auditory cortex and for P300 in the medial and right dorsolateral prefrontal cortex. LORETA revealed that modafinil improved information processing speed and increased energetic resources in prefrontal cortical regions, which is in agreement with other neuroimaging studies.
NASA Astrophysics Data System (ADS)
Goswami, Bedanta K.; Weitemeyer, Karen A.; Bünz, Stefan; Minshull, Timothy A.; Westbrook, Graham K.; Ker, Stephan; Sinha, Martin C.
2017-03-01
The Vestnesa Ridge marks the northern boundary of a known submarine gas hydrate province in the west Svalbard margin. Several seafloor pockmarks at the eastern segment of the ridge are sites of active methane venting. Until recently, seismic reflection data were the main tool for imaging beneath the ridge. Coincident controlled source electromagnetic (CSEM), high-resolution two-dimensional (2-D) airgun, sweep frequency SYSIF, and three-dimensional (3-D) p-cable seismic reflection data were acquired at the south-eastern part of the ridge between 2011 and 2013. The CSEM and seismic data contain profiles across and along the ridge, passing several active and inactive pockmarks. Joint interpretation of resistivity models obtained from CSEM and seismic reflection data provides new information regarding the fluid composition beneath the pockmarks. There is considerable variation in transverse resistance and seismic reflection characteristics of the gas hydrate stability zone (GHSZ) between the ridge flanks and chimneys beneath pockmarks. Layered seismic reflectors on the flanks are associated with around 300 Ωm2 transverse resistance, whereas the seismic reflectors within the chimneys exhibit amplitude blanking and chaotic patterns. The transverse resistance of the GHSZ within the chimneys vary between 400 and 1200 Ωm2. Variance attributes obtained from the 3-D p-cable data also highlight faults and chimneys, which coincide with the resistivity anomalies. Based on the joint data interpretation, widespread gas hydrate presence is likely at the ridge, with both hydrates and free gas contained within the faults and chimneys. However, at the active chimneys the effect of gas likely dominates the resistive anomalies.
Dipole-Induced Electromagnetic Transparency
NASA Astrophysics Data System (ADS)
Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric
2014-10-01
We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier
2008-08-11
We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animalsmore » subjected to ELF together with the transfer factor.« less
Elastic metamaterials for tuning circular polarization of electromagnetic waves
Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
2016-01-01
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212
Electromagnetic compatibility of PLC adapters for in-home/domestic networks
NASA Astrophysics Data System (ADS)
Potisk, Lukas; Hallon, Jozef; Orgon, Milos; Fujdiak, Radek
2018-01-01
The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [1-4]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].
Elastic metamaterials for tuning circular polarization of electromagnetic waves.
Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A
2016-06-20
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Manager's Role in Electromagnetic Interference (EMI) Control
NASA Technical Reports Server (NTRS)
Sargent, Noel B.; Lewis, Catherine C.
2013-01-01
This presentation captures the essence of electromagnetic compatibility (EMC) engineering from a project manager's perspective. It explains the basics of EMC and the benefits to the project of early incorporation of EMC best practices. The EMC requirement products during a project life cycle are identified, along with the requirement verification methods that should be utilized. The goal of the presentation is to raise awareness and simplify the mystique surrounding electromagnetic compatibility for managers that have little or no electromagnetics background
Electromagnetic Compatibility for the Space Shuttle
NASA Technical Reports Server (NTRS)
Scully, Robert C.
2004-01-01
This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.
Geesink, J H; Meijer, D K F
2017-01-01
Solitons, as self-reinforcing solitary waves, interact with complex biological phenomena such as cellular self-organization. A soliton model is able to describe a spectrum of electromagnetism modalities that can be applied to understand the physical principles of biological effects in living cells, as caused by endogenous and exogenous electromagnetic fields and is compatible with quantum coherence. A bio-soliton model is proposed, that enables to predict which eigen-frequencies of non-thermal electromagnetic waves are life-sustaining and which are, in contrast, detrimental for living cells. The particular effects are exerted by a range of electromagnetic wave eigen-frequencies of one-tenth of a Hertz till Peta Hertz that show a pattern of 12 bands, and can be positioned on an acoustic reference frequency scale. The model was substantiated by a meta-analysis of 240 published articles of biological electromagnetic experiments, in which a spectrum of non-thermal electromagnetic waves were exposed to living cells and intact organisms. These data support the concept of coherent quantized electromagnetic states in living organisms and the theories of Fröhlich, Davydov and Pang. It is envisioned that a rational control of shape by soliton-waves and related to a morphogenetic field and parametric resonance provides positional information and cues to regulate organism-wide systems properties like anatomy, control of reproduction and repair.
NASA Astrophysics Data System (ADS)
Li, Jinghe; Song, Linping; Liu, Qing Huo
2016-02-01
A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.
Giant collimated gamma-ray flashes
NASA Astrophysics Data System (ADS)
Benedetti, Alberto; Tamburini, Matteo; Keitel, Christoph H.
2018-06-01
Bright sources of high-energy electromagnetic radiation are widely employed in fundamental research, industry and medicine1,2. This motivated the construction of Compton-based facilities planned to yield bright gamma-ray pulses with energies up to3 20 MeV. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission that occurs when a sufficiently dense ultra-relativistic electron beam interacts with a millimetre-thickness conductor. For electron beam densities exceeding approximately 3 × 1019 cm-3, electromagnetic instabilities occur, and the ultra-relativistic electrons travel through self-generated electromagnetic fields as large as 107-108 gauss. This results in the production of a collimated gamma-ray pulse with peak brilliance above 1025 photons s-1 mrad-2 mm-2 per 0.1% bandwidth, photon energies ranging from 200 keV to gigaelectronvolts and up to 60% electron-to-photon energy conversion efficiency. These findings pave the way to compact, high-repetition-rate (kilohertz) sources of short (≲30 fs), collimated (milliradian) and high-flux (>1012 photons s-1) gamma-ray pulses.
Mortazavi, SMJ; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, AR
2014-01-01
Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors. PMID:25505778
Mortazavi, Smj; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, Ar
2014-09-01
Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors.
The biophysical basis of Benveniste experiments: Entropy, structure, and information in water
NASA Astrophysics Data System (ADS)
Widom, Allan; Srivastava, Yogendra; Valenzi, Vincenzo
Benveniste had observed that highly dilute (and even in the absence of physical molecules) biological agents still triggered relevant biological systems. Some of these experiments were reproduced in three other laboratories who cosigned the article, (Davenas et al., Nature 1988, 333, 816). Further works, [(Medical Hypotheses 2000, 54, 33), (Rivista di Biologia/Biology Forum 97, 2004, 169)], showed that molecular activity in more than 50 biochemical systems and even in bacteria could be induced by electromagnetic signals transferred through water solutes. The sources of the electromagnetic signals were recordings of specific biological activities. These results suggest that electromagnetic transmission of biochemical information can be stored in the electric dipole moments of water in close analogy to the manner in which magnetic moments store information on a computer disk. The electromagnetic transmission would enable in vivo transmissions of the specific molecular information between two functional biomolecules. In the present work, the physical nature of such biological information storage and retrieval in ordered quantum electromagnetic domains of water will be discussed.
NASA Astrophysics Data System (ADS)
Delgado, Carlos; Cátedra, Manuel Felipe
2018-05-01
This work presents a technique that allows a very noticeable relaxation of the computational requirements for full-wave electromagnetic simulations based on the Method of Moments. A ray-tracing analysis of the geometry is performed in order to extract the critical points with significant contributions. These points are then used to generate a reduced mesh, considering the regions of the geometry that surround each critical point and taking into account the electrical path followed from the source. The electromagnetic analysis of the reduced mesh produces very accurate results, requiring a fraction of the resources that the conventional analysis would utilize.
Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator
NASA Astrophysics Data System (ADS)
Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.
2015-09-01
The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.
Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting
NASA Astrophysics Data System (ADS)
Hadas, Z.; Smilek, J.; Rubes, O.
2017-05-01
The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, A. S.
2013-01-15
A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.
Saturation of Langmuir waves in laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, K.L.
1996-04-01
This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments aremore » proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.« less
Technique for Radiometer and Antenna Array Calibration - TRAAC
NASA Technical Reports Server (NTRS)
Meyer, Paul; Sims, William; Varnavas, Kosta; McCracken, Jeff; Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Richeson. James
2012-01-01
Highly sensitive receivers are used to detect minute amounts of emitted electromagnetic energy. Calibration of these receivers is vital to the accuracy of the measurements. Traditional calibration techniques depend on calibration reference internal to the receivers as reference for the calibration of the observed electromagnetic energy. Such methods can only calibrate errors in measurement introduced by the receiver only. The disadvantage of these existing methods is that they cannot account for errors introduced by devices, such as antennas, used for capturing electromagnetic radiation. This severely limits the types of antennas that can be used to make measurements with a high degree of accuracy. Complex antenna systems, such as electronically steerable antennas (also known as phased arrays), while offering potentially significant advantages, suffer from a lack of a reliable and accurate calibration technique. The proximity of antenna elements in an array results in interaction between the electromagnetic fields radiated (or received) by the individual elements. This phenomenon is called mutual coupling. The new calibration method uses a known noise source as a calibration load to determine the instantaneous characteristics of the antenna. The noise source is emitted from one element of the antenna array and received by all the other elements due to mutual coupling. This received noise is used as a calibration standard to monitor the stability of the antenna electronics.
Quantitative modeling of forces in electromagnetic tweezers
NASA Astrophysics Data System (ADS)
Bijamov, Alex; Shubitidze, Fridon; Oliver, Piercen M.; Vezenov, Dmitri V.
2010-11-01
This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.
Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA
2008-01-01
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Physics of giant electromagnetic pulse generation in short-pulse laser experiments.
Poyé, A; Hulin, S; Bailly-Grandvaux, M; Dubois, J-L; Ribolzi, J; Raffestin, D; Bardon, M; Lubrano-Lavaderci, F; D'Humières, E; Santos, J J; Nicolaï, Ph; Tikhonchuk, V
2015-04-01
In this paper we describe the physical processes that lead to the generation of giant electromagnetic pulses (GEMPs) at powerful laser facilities. Our study is based on experimental measurements of both the charging of a solid target irradiated by an ultra-short, ultra-intense laser and the detection of the electromagnetic emission in the GHz domain. An unambiguous correlation between the neutralization current in the target holder and the electromagnetic emission shows that the source of the GEMP is the remaining positive charge inside the target after the escape of fast electrons accelerated by the ultra-intense laser. A simple model for calculating this charge in the thick target case is presented. From this model and knowing the geometry of the target holder, it becomes possible to estimate the intensity and the dominant frequencies of the GEMP at any facility.
Free Electron coherent sources: From microwave to X-rays
NASA Astrophysics Data System (ADS)
Dattoli, Giuseppe; Di Palma, Emanuele; Pagnutti, Simonetta; Sabia, Elio
2018-04-01
The term Free Electron Laser (FEL) will be used, in this paper, to indicate a wide collection of devices aimed at providing coherent electromagnetic radiation from a beam of "free" electrons, unbound at the atomic or molecular states. This article reviews the similarities that link different sources of coherent radiation across the electromagnetic spectrum from microwaves to X-rays, and compares the analogies with conventional laser sources. We explore developing a point of view that allows a unified analytical treatment of these devices, by the introduction of appropriate global variables (e.g. gain, saturation intensity, inhomogeneous broadening parameters, longitudinal mode coupling strength), yielding a very effective way for the determination of the relevant design parameters. The paper looks also at more speculative aspects of FEL physics, which may address the relevance of quantum effects in the lasing process.
Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis
NASA Astrophysics Data System (ADS)
Drout, M. R.; Piro, A. L.; Shappee, B. J.; Kilpatrick, C. D.; Simon, J. D.; Contreras, C.; Coulter, D. A.; Foley, R. J.; Siebert, M. R.; Morrell, N.; Boutsia, K.; Di Mille, F.; Holoien, T. W.-S.; Kasen, D.; Kollmeier, J. A.; Madore, B. F.; Monson, A. J.; Murguia-Berthier, A.; Pan, Y.-C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Adams, C.; Alatalo, K.; Bañados, E.; Baughman, J.; Beers, T. C.; Bernstein, R. A.; Bitsakis, T.; Campillay, A.; Hansen, T. T.; Higgs, C. R.; Ji, A. P.; Maravelias, G.; Marshall, J. L.; Moni Bidin, C.; Prieto, J. L.; Rasmussen, K. C.; Rojas-Bravo, C.; Strom, A. L.; Ulloa, N.; Vargas-González, J.; Wan, Z.; Whitten, D. D.
2017-12-01
Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions.
Electromagnetic Characterization Of Metallic Sensory Alloy
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob
2012-01-01
Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.
Electromagnetic characterization of metallic sensory alloy
NASA Astrophysics Data System (ADS)
Wincheski, Buzz; Simpson, John; Wallace, Terryl; Newman, Andy; Leser, Paul; Lahue, Rob
2013-01-01
Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.
Electromagnetic pulses bone healing booster
NASA Astrophysics Data System (ADS)
Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.
2015-11-01
Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.
NASA Astrophysics Data System (ADS)
Schultz, A.; Urquhart, S.; Slater, M.
2010-12-01
At present, the US academic community has access to two national electromagnetic (EM) instrument pools that support long-period magnetotelluric (MT) equipment suitable for crust-mantle scale studies. The requirements of near surface geophysics, hydrology, glaciology, as well as the full range of crust and mantle investigations require development of new capabilities in data acquisition with broader frequency bandwidth than these existing units, increased instrument numbers, and concomitant developments in 3D/4D data interpretation. NSF Major Research Instrumentation support has been obtained to meet these requirements by developing an initial set of next-generation instruments as a National Geoelectromagnetic Facility (NGF), available to all PIs on a cost recovery basis, and operated by Oregon State University (OSU). In contrast to existing instruments with data acquisition systems specialized to operate within specific frequency bands and for specific electromagnetic methods, the NGF model "Zen/5" instruments being co-developed by OSU and Zonge Research and Engineering Organization are based on modular receivers with a flexible number of digital and analog input channels, designed to acquire EM data at dc, and from frequencies ranging from micro-Hz to MHz. These systems can be deployed in a compact, low power configuration for extended deployments (e.g. for crust-mantle scale experiments), or in a high frequency sampling mode for near surface work. The NGF is also acquiring controlled source EM transmitters, so that investigators may carry out magnetotelluric, audio-MT, radiofrequency-MT, as well as time-domain/transient EM and DC resistivity studies. The instruments are designed to simultaneously accommodate multiple electric field dipole sensors, magnetic fluxgates and induction coil sensors. Sample rates as high as 2.5 MHz with resolution between 24 and 32 bits, depending on sample rate, are specified to allow for high fidelity recording of waveforms. The NGF is accepting instrument use requests from investigators planning electromagnetic surveys via webform submission on its web site ngf.coas.oregonstate.edu. The site is also a port of entry to request access to the 46 long period magnetotelluric instruments also operated by OSU as national instrument pools. Cyberinfrastructure support is available to investigators, including field computers, EM data processing software, and access to a hybrid CPU-GPU parallel computing environment, currently configured with dual Intel Westmere hexacore CPUs and 960 NVidia Tesla and 1792 Nvidia Fermi GPU cores. The capabilities of the Zen/5 receivers will be presented, with examples of data acquired from a recent shallow water marine controlled source experiment conducted in coastal Oregon as part of an effort to locate a buried submarine pipeline, using a 1.1 KW 256 Hz signal source imposed on the pipeline from shore. A Zen/5 prototype instrument, modified for marine use through support by the Oregon Wave Energy Trust, demonstrated the marine capabilities of the NGF instrument design.
NASA Astrophysics Data System (ADS)
Swidinsky, Andrei
Gas hydrates are a solid, ice-like mixture of water and low molecular weight hydrocarbons. They are found under the permafrost and to a far greater extent under the ocean, usually at water depths greater than 300m. Hydrates are a potential energy resource, a possible factor in climate change, and a geohazard. For these reasons, it is critical that gas hydrate deposits are quantitatively assessed so that their concentrations, locations and distributions may be established. Due to their ice-like nature, hydrates are electrically insulating. Consequently, a method which remotely detects changes in seafloor electrical conductivity, such as marine controlled source electromagnetics (CSEM), is a useful geophysical tool for marine gas hydrate exploration. Hydrates are geometrically complex structures. Advanced electromagnetic modelling and imaging techniques are crucial for proper survey design and data interpretation. I develop a method to model thin resistive structures in conductive host media which may be useful in building approximate geological models of gas hydrate deposits using arrangements of multiple, bent sheets. I also investigate the possibility of interpreting diffusive electromagnetic data using seismic imaging techniques. To be processed in this way, such data must first be transformed into its non-diffusive, seismic-like counterpart. I examine such a transform from both an analytical and a numerical point of view, focusing on methods to overcome inherent numerical instabilities. This is the first step to applying seismic processing techniques to CSEM data to rapidly and efficiently image resistive gas hydrate structures. The University of Toronto marine electromagnetics group has deployed a permanent marine CSEM array offshore Vancouver Island, in the framework of the NEPTUNE Canada cabled observatory, for the purposes of monitoring gas hydrate deposits. In this thesis I also propose and examine a new CSEM survey technique for gas hydrate which would make use of the stationary seafloor transmitter already on the seafloor, along with a cabled receiver array, towed from a ship. I furthermore develop a modelling algorithm to examine the electromagnetic effects of conductive borehole casings which have been proposed to be placed in the vicinity of this permanent marine CSEM array, and make preliminary recommendations about their locations.
Hybrid Contactless Heating and Levitation
NASA Technical Reports Server (NTRS)
Lee, M. C.
1985-01-01
Acoustic and electromagnetic fields applied. In contactless processing apparatus, acoustic and electromagnetic levitating fields employed alternately or simultaneously with amplitude of each controlled to produce various combinations of heating, cooling, and levitation. Apparatus provides rapid heating and cooling or slow heating and cooling for such processes as nucleation, crystallization, incubation, deep undercooling, and heterogeneity control.
Controlling of the electromagnetic solitary waves generation in the wake of a two-color laser
NASA Astrophysics Data System (ADS)
Pan, K. Q.; Li, S. W.; Guo, L.; Yang, D.; Li, Z. C.; Zheng, C. Y.; Jiang, S. E.; Zhang, B. H.; He, X. T.
2018-05-01
Electromagnetic solitary waves generated by a two-color laser interaction with an underdense plasma are investigated. It is shown that, when the former wave packet of the two-color laser is intense enough, it will excite nonlinear wakefields and generate electron density cavities. The latter wave packets will beat with the nonlinear wakefield and generate both high-frequency and low-frequency components. When the peak density of the cavities exceeds the critical density of the low-frequency component, this part of the electromagnetic field will be trapped to generate electromagnetic solitary waves. By changing the laser and plasma parameters, we can control the wakefield generation, which will also control the generation of the solitary waves. One-dimensional particle-in-cell simulations are performed to prove the controlling of the solitary waves. The simulation results also show that solitary waves generated by higher laser intensities will become moving solitary waves. The two-dimensional particle-in-cell also shows the generation of the solitary waves. In the two-dimensional case, solitary waves are distributed in the transverse directions because of the filamentation instability.
Tethered satellite system control using electromagnetic forces and reaction wheels
NASA Astrophysics Data System (ADS)
Alandi Hallaj, Mohammad Amin; Assadian, Nima
2015-12-01
In this paper a novel non-rotating space tethered configuration is introduced which its relative positions controlled using electromagnetic forces. The attitude dynamics is controlled by three reaction wheels in the body axes. The nonlinear coupled orbital dynamics of a dumbbell tethered satellite formation flight are derived through a constrained Lagrangian approach. These equations are presented in the leader satellite orbital frame. The tether is assumed to be mass-less and straight, and the J2 perturbation is included to the analysis. The forces and the moments of the electromagnetic coils are modeled based on the far-filed model of the magnetic dipoles. A guidance scheme for generating the desired positions as a function of time in Cartesian form is presented. The satellite tethered formation with variable length is controlled utilizing a linear controller. This approach is applied to a specified scenario and it is shown that the nonlinear guidance method and the linear controller can control the nonlinear system of the tethered formation and the results are compared with optimal control approach.
Goaf water detection using the grounded electrical source airborne transient electromagnetic system
NASA Astrophysics Data System (ADS)
Li, D.; Ji, Y.; Guan, S.; Wu, Y.; Wang, A.
2017-12-01
To detect the geoelectric characteristic of goaf water, the grounded electrical source airborne transient electromagnetic (GREATEM) system (developed by Jilin University, China) is applied to the goaf water detection since its advantages of considerable prospecting depth, lateral resolution and detection efficiency. For the test of GREATEM system in goaf water detection, an experimental survey was conducted at Qinshui coal mine (Shanxi province, China). After data acquisition, noise reduction and inversion, the resistivity profiles of survey area is presented. The results highly agree the investigation information provided by Shanxi Coal Geology Geophysical Surveying Exploration Institute (China), conforming that the GREATEM system is an effective technique for resistivity detection of goaf water.
Abdollahi, Fatemeh; Niknam, Vahid; Ghanati, Faezeh; Masroor, Faribors; Noorbakhsh, Seyyed Nasr
2012-01-01
Exposure to electromagnetic fields (EMF) has become an issue of concern for a great many people and is an active area of research. Phytoplasmas, also known as mycoplasma-like organisms, are wall-less prokaryotes that are pathogens of many plant species throughout the world. Effects of electromagnetic fields on the changes of lipid peroxidation, content of H2O2, proline, protein, and carbohydrates were investigated in leaves of two-year-old trees of lime (Citrus aurantifolia) infected by the Candidatus Phytoplasma aurantifoliae. The healthy and infected plants were discontinuously exposed to a 10 KHz quadratic EMF with maximum power of 9 W for 5 days, each 5 h, at 25°C. Fresh and dry weight of leaves, content of MDA, proline, and protein increased in both healthy and infected plants under electromagnetic fields, compared with those of the control plants. Electromagnetic fields decreased hydrogen peroxide and carbohydrates content in both healthy and infected plants compared to those of the controls. PMID:22649313
Fan, Yuancheng; Qiao, Tong; Zhang, Fuli; Fu, Quanhong; Dong, Jiajia; Kong, Botao; Li, Hongqiang
2017-01-16
Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the EIT analogue realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT-like spectrum in a metamaterial as an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT-like spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT-like spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry.
NASA Astrophysics Data System (ADS)
Kis, A.; Lemperger, I.; Wesztergom, V.; Menvielle, M.; Szalai, S.; Novák, A.; Hada, T.; Matsukiyo, S.; Lethy, A. M.
2016-12-01
Magnetotelluric method is widely applied for investigation of subsurface structures by imaging the spatial distribution of electric conductivity. The method is based on the experimental determination of surface electromagnetic impedance tensor (Z) by surface geomagnetic and telluric registrations in two perpendicular orientation. In practical explorations the accurate estimation of Z necessitates the application of robust statistical methods for two reasons:1) the geomagnetic and telluric time series' are contaminated by man-made noise components and2) the non-homogeneous behavior of ionospheric current systems in the period range of interest (ELF-ULF and longer periods) results in systematic deviation of the impedance of individual time windows.Robust statistics manage both load of Z for the purpose of subsurface investigations. However, accurate analysis of the long term temporal variation of the first and second statistical moments of Z may provide valuable information about the characteristics of the ionospheric source current systems. Temporal variation of extent, spatial variability and orientation of the ionospheric source currents has specific effects on the surface impedance tensor. Twenty year long geomagnetic and telluric recordings of the Nagycenk Geophysical Observatory provides unique opportunity to reconstruct the so called magnetotelluric source effect and obtain information about the spatial and temporal behavior of ionospheric source currents at mid-latitudes. Detailed investigation of time series of surface electromagnetic impedance tensor has been carried out in different frequency classes of the ULF range. The presentation aims to provide a brief review of our results related to long term periodic modulations, up to solar cycle scale and about eventual deviations of the electromagnetic impedance and so the reconstructed equivalent ionospheric source effects.
Qiu, Gongzhe
2017-01-01
Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly. PMID:29186790
Song, Xiaochun; Qiu, Gongzhe
2017-11-24
Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.
NASA Astrophysics Data System (ADS)
Trevino, S., III; Hickey, M. S.; Everett, M. E.
2017-12-01
Controlled-Source Electromagnetics (CSEM) can be used to monitor the movement and extent of injection fluid during a hydraulic fracture. The response of the fluid to energization by a CSEM source is dependent upon the electrical conductivity difference between the fluid and background geological formation. An important property that must be taken into account when modeling and interpreting CSEM responses is that electrical conductivity may be anisotropic. We study the effect of electrical anisotropy in both the background formation and the fluid-injection zone. First, various properties of the background formation can affect anisotropy including variations in grain size, composition and bedding-plane orientation. In certain formations, such as shale, the horizontal component of the conductivity can be more than an order of magnitude larger than the vertical component. We study this effect by computing differences in surface CSEM responses using the analytic 1-D anisotropic primary solution of a horizontal electric dipole positioned at the surface. Second, during hydraulic fracturing, the injected fluid can create new fractures and infill existing natural fractures. To include the explicit fracture geometry in modeling, a large increase in the number of nodes and computational time is required which may not be feasible. An alternative is to instead model the large-scale fracture geometry as a uniform slab with an appropriate bulk conductivity. Micro-scale fracture geometry may cause preferential fluid propagation in a single direction or plane which can be represented by electrical anisotropy of the slab. To study such effects of bulk anisotropy on CSEM responses we present results from multiple scenarios of surface to surface hydraulic fracture monitoring using 3-D finite element modeling. The model uses Coulomb-gauged potentials to solve Maxwell's equations in the frequency domain and we have updated the code to allow a triaxial electrical conductivity tensor to be specified. By allowing for formation and target electrical anisotropy these modeling results contribute to a better understanding and faster interpretation of field data.
NASA Astrophysics Data System (ADS)
Commer, M.; Kowalsky, M. B.; Dafflon, B.; Wu, Y.; Hubbard, S. S.
2013-12-01
Geologic carbon sequestration is being evaluated as a means to mitigate the effects of greenhouse gas emissions. Efforts are underway to identify adequate reservoirs and to evaluate the behavior of injected CO2 over time; time-lapse geophysical methods are considered effective tools for these purposes. Pilot studies have shown that the invasion of CO2 into a background pore fluid can alter the electrical resistivity, with increases from CO2 in the super-critical or gaseous phase, and decreases from CO2 dissolved in groundwater (especially when calcite dissolution is occurring). Because of their sensitivity to resistivity changes, electrical and electromagnetic (EM) methods have been used in such studies for indirectly assessing CO2 saturation changes. While the electrical resistance tomography (ERT) method is a well-established technique for both crosswell and surface applications, its usefulness is limited by the relatively low-resolution information it provides. Controlled-source EM methods, including both frequency-domain and time-domain (transient EM) methods, can offer improved resolution. We report on three studies that aim to maximize the information content of electrical and electromagnetic measurements in inverse modeling applications that target the monitoring of resistivity changes due to CO2 migration and/or leakage. The first study considers a three-dimensional crosswell data set collected at an analogue site used for investigating CO2 distribution and geochemical reactivity within a shallow formation. We invert both resistance and phase data using a gradient-weighting method for descent-based inversion algorithms. This method essentially steers the search direction in the model space using low-cost non-linear conjugate gradient methods towards the more computationally expensive Gauss-Newton direction. The second study involves ERT data that were collected at the SECARB Cranfield site near Natchez, Mississippi, at depths exceeding 3000 m. We employ a ratio data inversion scheme, where the time-lapse input data are given by the measured ERT data normalized by their baseline values. We investigate whether three-dimensional time-lapse inversions yield improved results compared to two-dimensional results that were previously reported. Finally, we present a synthetic study that investigates a novel time-domain controlled-source EM method that has the potential for exploiting the resolution properties of vertically oriented source antennas while avoiding their logistical difficulties. A vertical source is replaced by an array of multiple horizontal dipoles arranged in a circle such that all dipoles have a common endpoint in the center. Overall, this study presents significant advances in developing adequate geophysical techniques to monitor CO2 migration and/or potential leaks in geological reservoirs.
Research on Radiation Characteristic of Plasma Antenna through FDTD Method
Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan
2014-01-01
The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic. PMID:25114961
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Cunningham and J. Shank
2004-11-01
To continue meeting safety and reliability requirements while controlling costs, operators of nuclear power plants must be able to replace and upgrade equipment in a cost-effective manner. One issue that has been problematic for new plant equipment and especially for digital instrumentation and control (I&C) systems in recent years is electromagnetic compatibility (EMC). The EMC issue usually involves testing to show that critical equipment will not be adversely affected by electromagnetic interference (EMI) in the plant environment. This guide will help nuclear plant engineers address EMC issues and qualification testing in a consistent, comprehensive manner.
The Numerical Electromagnetics Code (NEC) - A Brief History
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, G J; Miller, E K; Poggio, A J
The Numerical Electromagnetics Code, NEC as it is commonly known, continues to be one of the more widely used antenna modeling codes in existence. With several versions in use that reflect different levels of capability and availability, there are now 450 copies of NEC4 and 250 copies of NEC3 that have been distributed by Lawrence Livermore National Laboratory to a limited class of qualified recipients, and several hundred copies of NEC2 that had a recorded distribution by LLNL. These numbers do not account for numerous copies (perhaps 1000s) that were acquired through other means capitalizing on the open source code,more » the absence of distribution controls prior to NEC3 and the availability of versions on the Internet. In this paper we briefly review the history of the code that is concisely displayed in Figure 1. We will show how it capitalized on the research of prominent contributors in the early days of computational electromagnetics, how a combination of events led to the tri-service-supported code development program that ultimately led to NEC and how it evolved to the present day product. The authors apologize that space limitations do not allow us to provide a list of references or to acknowledge the numerous contributors to the code both of which can be found in the code documents.« less
Detection and Classification of UXO Using Unmanned Undersea Electromagnetic Sensing Platforms
NASA Astrophysics Data System (ADS)
Schultz, G.; Keranen, J.; McNinch, J.; Miller, J.
2017-12-01
Important seafloor applications, including mine countermeasures, unexploded ordnance (UXO) surveys, salvage, and underwater hazards, require the detection, geo-registration, and characterization of man-made targets on, or below, the seafloor. Investigations in littoral environments can be time-consuming and expensive due to the challenges of accurately tracking underwater assets, the difficulty of quick or effective site reconnaissance activities, high levels of clutter in nearshore areas, and lack of situational awareness and real-time feedback to operators. Consequently, a high payoff exists for effective methods using sensor and data fusion, feature extraction, and effective payload integration and deployment for improved assessments of littoral infrastructure. We present technology development and demonstration results from multiple technology research, development, and demonstration projects over the last 3 years that have been focused on advancing seafloor target detection, tracking, and classification for specific environmental and defense missions. We focus on challenges overcome in integrating and testing new miniaturized passive magnetic and controlled-source electromagnetic sensors on a variety of remotely and autonomously operated sensing platforms (ROVs, AUVs and bottom crawling systems). In particular, we present aspects of the design, development, and testing of array configurations of miniaturized atomic magnetometers/gradiometers and multi-dimensional electromagnetic (EM) sensor arrays. Results from nearshore (surf zone and marsh in North Carolina) and littoral experiments (bays and reef areas of Florida Gulf and Florida Keys) are presented.
Measurement of electromagnetic tracking error in a navigated breast surgery setup
NASA Astrophysics Data System (ADS)
Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor
2016-03-01
PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.
Black Hole Accretion Discs on a Moving Mesh
NASA Astrophysics Data System (ADS)
Ryan, Geoffrey
2017-01-01
We present multi-dimensional numerical simulations of black hole accretion disks relevant for the production of electromagnetic counterparts to gravitational wave sources. We perform these simulations with a new general relativistic version of the moving-mesh magnetohydrodynamics code DISCO which we will present. This open-source code, GR-DISCO uses an orbiting and shearing mesh which moves with the dominant flow velocity, greatly improving the numerical accuracy of the thermodynamic variables in supersonic flows while also reducing numerical viscosity and greatly increasing computational efficiency by allowing for a larger time step. We have used GR-DISCO to study black hole accretion discs subject to gravitational torques from a binary companion, relevant for both current and future supermassive binary black hole searches and also as a possible electromagnetic precursor mechanism for LIGO events. Binary torques in these discs excite spiral shockwaves which effectively transport angular momentum in the disc and propagate through the innermost stable orbit, leading to stress corresponding to an alpha-viscosity of 10-2. We also present three-dimensional GRMHD simulations of neutrino dominated accretion flows (NDAFs) occurring after a binary neutron star merger in order to elucidate the conditions for electromagnetic transient production accompanying these gravitational waves sources expected to be detected by LIGO in the near future.
Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.
Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig
2017-06-01
Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.
NASA Technical Reports Server (NTRS)
Hermance, J. F. (Principal Investigator)
1981-01-01
Efforts continue in the development of a computer program for looking at the coupling of finite dimensioned source fields with a laterally heterogeneous Earth. An algorithm for calculating a time-varying reference field using ground-based magnetic observatory data is also under development as part of the production of noise-free estimates of global electromagnetic response functions using Magsat data.
Electromagnetic or other directed energy pulse launcher
Ziolkowski, Richard W.
1990-01-01
The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.
Supernova and Prompt Gravitational-wave Precursors to LIGO Gravitational-wave Sources and Short GRBs
NASA Astrophysics Data System (ADS)
Michaely, Erez; Perets, Hagai B.
2018-03-01
Binary black holes (BBHs) and binary neutron stars (BNSs) mergers have been recently detected through their gravitational-wave (GW) emission. A post-merger electromagnetic counterpart for the first BNS merger has been detected from seconds up to weeks after the merger. While such post-merger electromagnetic counterparts had been anticipated theoretically, far fewer electromagnetic precursors to GW sources have been proposed, and non have been observed. Here we show that a fraction of a few ×10‑3 (for a standard model) GW sources and short gamma-ray bursts (GRBs) observed by the Laser Interferometer Gravitational-wave Observatory (LIGO) could have been preceded by supernova (SN) explosions from years up to decades before the mergers. The GW sources are produced following the preceding binary evolution, the supernovae involved in the final formation of the GW source progenitors, and the natal kicks that likely accompany them. Together, these determine the orbits of surviving binaries, and hence the delay-time between the birth of the compact binary and its final merger through GW emission. We use data from binary evolution population-synthesis models to show that the delay-time distribution has a non-negligible tail of ultra-short delay-times between 1 and 100 years, thereby giving rise to potentially observable supernovae precursors to GW sources. Moreover, future LISA/DECIGO GW space-detectors will enable the detection of GW inspirals in the pre-merger stage weeks to decades before the final merger. These sources could therefore produce a unique type of promptly appearing LISA/DECIGO GW sources accompanied by coincident supernovae. The archival (and/or direct) detection of precursor (coincident) SNe with GW and/or short GRBs will provide unprecedented characterizations of the merging binaries, and their prior evolution through supernovae and natal kicks, otherwise inaccessible through other means.
NASA Astrophysics Data System (ADS)
Malet, J. P.; Gance, J.; Lajaunie, M.; Gallistl, J.; Denchik, N.; Flores Orozco, A.; Ottowitz, D.; Supper, R.; Sailhac, P.; Gautier, S.; Schmutz, M.
2017-12-01
Imaging water flows in landslides is of critical importance as the distribution of pore-fluid pressures controls the dynamics (acceleration, deceleration) of the material. Detecting and imaging water is a difficult task, not only because of the complex topography and the small dimensions of the geological structures, but also because the landslide material consists of unsaturated porous and heterogeneous fractured media, leading to multi-scale water-flow properties. Further, these properties can change in time, in relation to temperature, rainfall and biological forcings. Electrical properties are relevant proxies of the sub-surface hydrological properties. In order to image water in landslide bodies, we propose to combine multi-frequency electrical and electromagnetic measurements using campaigns or permanent instruments, and surface/boreole investigations, installed on several unstable slopes in France. To evaluate the information gained from electrical properties for different geological conditions, we discuss electrical and electro-magnetic imaging results for data collected at four different landslides located in France (Super-Sauze and La Valette in the South East Alps, Lodève lin the southern border of the Massif Central Massif, and Séchilienne in the North French Alps). Time-lapse electrical DC resistivity observations, complex electrical conductivity (conduction and polarization/chargeability) measured by IP imaging methods, and controlled-source electromagnetic (CS-AMT) methods are discussed. Imaging results demonstrate an improved lithological characterization of the landslide structures (delineation of the sliding planes, identification of the fractures, discrimination of clay lenses with enhanced resolution); further, water infiltration within the soil matrix and/or the fractures is discriminated allowing better modelling of the hydrological regime of the landslides at the slope scale. This research is conducted in the frame of the project HYDROSLIDE - Hydrogeophysical Monitoring of Clay-Rich Landslides funded by the Austrian Science Fund (FWF) and the French Research Agency (ANR).
Plasmonic beaming and active control over fluorescent emission.
Jun, Young Chul; Huang, Kevin C Y; Brongersma, Mark L
2011-01-01
Nanometallic optical antennas are rapidly gaining popularity in applications that require exquisite control over light concentration and emission processes. The search is on for high-performance antennas that offer facile integration on chips. Here we demonstrate a new, easily fabricated optical antenna design that achieves an unprecedented level of control over fluorescent emission by combining concepts from plasmonics, radiative decay engineering and optical beaming. The antenna consists of a nanoscale plasmonic cavity filled with quantum dots coupled to a miniature grating structure that can be engineered to produce one or more highly collimated beams. Electromagnetic simulations and confocal microscopy were used to visualize the beaming process. The metals defining the plasmonic cavity can be utilized to electrically control the emission intensity and wavelength. These findings facilitate the realization of a new class of active optical antennas for use in new optical sources and a wide range of nanoscale optical spectroscopy applications.
Study on coupled shock absorber system using four electromagnetic dampers
NASA Astrophysics Data System (ADS)
Fukumori, Y.; Hayashi, R.; Okano, H.; Suda, Y.; Nakano, K.
2016-09-01
Recently, the electromagnetic damper, which is composed of an electric motor, a ball screw, and a nut, was proposed. The electromagnetic damper has high responsiveness, controllability, and energy saving performance. It has been reported that it improved ride comfort and drivability. In addition, the authors have proposed a coupling method of two electromagnetic dampers. The method enables the characteristics of bouncing and rolling or pitching motion of a vehicle to be tuned independently. In this study, the authors increase the number of coupling of electromagnetic dampers from two to four, and propose a method to couple four electromagnetic dampers. The proposed method enables the characteristics of bouncing, rolling and pitching motion of a vehicle to be tuned independently. Basic experiments using proposed circuit and motors and numerical simulations of an automobile equipped with the proposed coupling electromagnetic damper are carried out. The results indicate the proposed method is effective.
[Influence of electromagnetic radiation on toxicity of Vipera lebetina obtusa venom].
Abiev, G A; Babaev, E I; Topchieva, Sh A; Chumburidze, T B; Nemsitsveridze, N G
2009-11-01
The aim of the article was to study the effect of electromagnetic radiation on toxicity of Vipera lebetina obtusa venom. It was found that mice intoxicated with snake venom, with moderate to high exposure to electromagnetic radiation and mice intoxicated with venom, which had not been exposed to the radiation showed the same symptoms of intoxication and death. At the same time, the longevity of mice intoxicated with venom exposed to electromagnetic radiation was higher. The longevity of mice in control group was 25+/-5 min. The longevity of mice intoxicated with exposed to electromagnetic radiation snake venom was from 29 to 60 min. The research showed that the longevity of mice intoxicated with snake venom rose with the level of electromagnetic radiation intensity the snake was exposed to. Accordingly, snake venom, with exposure to high intensity electromagnetic radiation is less toxic.
Multifunction waveform generator for EM receiver testing
NASA Astrophysics Data System (ADS)
Chen, Kai; Jin, Sheng; Deng, Ming
2018-01-01
In many electromagnetic (EM) methods - such as magnetotelluric, spectral-induced polarization (SIP), time-domain-induced polarization (TDIP), and controlled-source audio magnetotelluric (CSAMT) methods - it is important to evaluate and test the EM receivers during their development stage. To assess the performance of the developed EM receivers, controlled synthetic data that simulate the observed signals in different modes are required. In CSAMT and SIP mode testing, the waveform generator should use the GPS time as the reference for repeating schedule. Based on our testing, the frequency range, frequency precision, and time synchronization of the currently available function waveform generators on the market are deficient. This paper presents a multifunction waveform generator with three waveforms: (1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; (2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and (3) a positive-zero-negative-zero
signal that contains primary and secondary fields for TDIP studies. In this paper, we provide the principles of the above three waveforms along with a hardware design for the generator. Furthermore, testing of the EM receiver was conducted with the waveform generator, and the results of the experiment were compared with those calculated from the simulation and theory in the frequency band of interest.
Why magnetic and electromagnetic effects in biology are irreproducible and contradictory?
Buchachenko, Anatoly
2016-01-01
The main source of magnetic and electromagnetic effects in biological systems is now generally accepted and demonstrated in this paper to be radical pair mechanism which implies pairwise generation of radicals in biochemical reactions. This mechanism was convincingly established for enzymatic adenosine triphosphate (ATP) and desoxynucleic acid (DNA) synthesis by using catalyzing metal ions with magnetic nuclei ((25)Mg, (43)Ca, (67)Zn) and supported by magnetic field effects on these reactions. The mechanism, is shown to function in medicine as a medical remedy or technology (trans-cranial magnetic stimulation, nuclear magnetic control of the ATP synthesis in heart muscle, the killing of cancer cells by suppression of DNA synthesis). However, the majority of magnetic effects in biology remain to be irreproducible, contradictory, and enigmatic. Three sources of such a state are shown in this paper to be: the presence of paramagnetic metal ions as a component of enzymatic site or as an impurity in an uncontrollable amount; the property of the radical pair mechanism to function at a rather high concentration of catalyzing metal ions, when at least two ions enter into the catalytic site; and the kinetic restrictions, which imply compatibility of chemical and spin dynamics in radical pair. It is important to keep in mind these factors to properly understand and predict magnetic effects in magneto-biology and biology itself and deliberately use them in medicine. © 2015 Wiley Periodicals, Inc.
Design and application of an electromagnetic vibrator seismic source
Haines, S.S.
2006-01-01
Vibrational seismic sources frequently provide a higher-frequency seismic wavelet (and therefore better resolution) than other sources, and can provide a superior signal-to-noise ratio in many settings. However, they are often prohibitively expensive for lower-budget shallow surveys. In order to address this problem, I designed and built a simple but effective vibrator source for about one thousand dollars. The "EMvibe" is an inexpensive electromagnetic vibrator that can be built with easy-to-machine parts and off-the-shelf electronics. It can repeatably produce pulse and frequency-sweep signals in the range of 5 to 650 Hz, and provides sufficient energy for recording at offsets up to 20 m. Analysis of frequency spectra show that the EMvibe provides a broader frequency range than the sledgehammer at offsets up to ??? 10 m in data collected at a site with soft sediments in the upper several meters. The EMvibe offers a high-resolution alternative to the sledgehammer for shallow surveys. It is well-suited to teaching applications, and to surveys requiring a precisely-repeatable source signature.
Experimental evaluation of a high performance superconducting torquer
NASA Astrophysics Data System (ADS)
Goldie, James H.; Avakian, Kevin M.; Downer, James R.; Gerver, Michael; Gondhalekar, Vijay; Johnson, Bruce G.
The high performance superconducting torquer (HPSCT) was designed to slew a large inertia in one degree of freedom with a double versine torque profile, a profile used for pointing applications which minimizes the exciting of structural resonances. The program culminated with the successful demonstration of closed loop torque control, following a desired double versine torque profile to an accuracy of approximately 1 percent of the peak torque of the profile. The targeted double versine possessed a peak torque which matches the torque capacity of the Sperry M4500 CMG (controlled moment gyro). The research provided strong evidence of the feasibility of an advanced concept CMG which would use cryoresistive control coils in conjunction with an electromagnetically suspended rotor and superconducting source coil. The cryoresistive coils interact with the superconducting solenoid to develop the desired torque and, in addition, the required suspension forces.
Low-reflection beam refractions by ultrathin Huygens metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Sheng Li; State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096; Synergetic Innovation Center of Wireless Communication Technology, Southeast University, Nanjing 210096
2015-06-15
We propose a Huygens source unit cell to develop an ultrathin low-reflection metasurface, which could provide extreme controls of phases of the transmitted waves. Both electric and magnetic currents are supported by the proposed unit cell, thus leading to highly efficient and full controls of phases. The coupling between electric and magnetic responses is negligible, which will significantly reduce the difficulty of design. Since the unit cell of metasurface is printed on two bonded boards, the fabrication process is simplified and the thickness of metasurface is reduced. Based on the proposed unit cell, a beam-refracting metasurface with low-reflection is designedmore » and manufactured. Both near-field and far-field characteristics of the beam-refracting metasurface are investigated by simulations and measurements, which indicate that the proposed Huygens metasurface performs well in controlling electromagnetic waves.« less
Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves
NASA Astrophysics Data System (ADS)
Cui, Tie Jun
2017-08-01
Since 2004, my group at Southeast University has been carrying out research into microwave metamaterials, which are classified into three catagories: metamaterials based on the effective medium model, plasmonic metamaterials for spoof surface plasmon polaritons (SPPs), and coding and programmable metamaterials. For effective-medium metamaterials, we have developed a general theory to accurately describe effective permittivity and permeability in semi-analytical forms, from which we have designed and realized a three dimensional (3D) wideband ground-plane invisibility cloak, a free-space electrostatic invisibility cloak, an electromagnetic black hole, optical/radar illusions, and radially anisotropic zero-index metamaterial for omni-directional radiation and a nearly perfect power combination of source array, etc. We have also considered the engineering applications of microwave metamaterials, such as a broadband and low-loss 3D transformation-optics lens for wide-angle scanning, a 3D planar gradient-index lens for high-gain radiations, and a random metasurface for reducing radar cross sections. In the area of plasmonic metamaterials, we proposed an ultrathin, narrow, and flexible corrugated metallic strip to guide SPPs with a small bending loss and radiation loss, from which we designed and realized a series of SPP passive devices (e.g. power divider, coupler, filter, and resonator) and active devices (e.g. amplifier and duplexer). We also showed a significant feature of the ultrathin SPP waveguide in overcoming the challenge of signal integrity in traditional integrated circuits, which will help build a high-performance SPP wireless communication system. In the area of coding and programmable metamaterials, we proposed a new measure to describe a metamaterial from the viewpoint of information theory. We have illustrated theoretically and experimentally that coding metamaterials composed of digital units can be controlled by coding sequences, leading to different functions. We realised that when the digital state of a coding unit is controlled by a field programmable gate array, the programmable metamaterial, which is capable of manipulating electromagnetic waves in real time, can generate many different functions.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2006-09-05
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA
2004-03-02
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2005-08-09
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2002-01-01
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Using spread spectrum for AMR magnetic sensor
NASA Astrophysics Data System (ADS)
Vala, David
2016-09-01
This contribution describe invention of Magnetometer with protection against detection by electronic counter- measure (ECM) registered by Czech patent office as patent no. 305322.1 Magnetic sensors are often part of dual use or security instruments and equipment. For this purpose is very interesting to build sensor with is hidden against electronic countermeasure. In this case is very important level and behavior of electromagnetic noise produced by sensor. And also electromagnetic compatibility of electronic devices is the area which significant grows nowadays too. As the consequence of this growth there is a continuous process of making more strict standards focused on electromagnetic radiation of electronic devices. Sensors technology begins to be a part of these issues due sensors bandwidth increasing and approaching to frequency of radio communication band. Nowadays microcontrollers and similar digital circuits are integrated into sensors devices and it brings new sources of electromagnetic radiation in modern smart sensors.
In situ attosecond pulse characterization techniques to measure the electromagnetic phase
NASA Astrophysics Data System (ADS)
Spanner, M.; Bertrand, J. B.; Villeneuve, D. M.
2016-08-01
A number of techniques have been developed to characterize the attosecond emission from high-order-harmonic sources. These techniques are broadly classified as ex situ, where the attosecond pulse train photoionizes a target gas in the presence of an infrared field, and in situ, where the measurement takes place in the medium in which the attosecond pulses are generated. It is accepted that ex situ techniques measure the characteristics of the electromagnetic field, including the phase of the recombination transition moment of the emitting atom or molecule, when the phase of the second medium is known. However, there is debate about whether in situ techniques measure the electromagnetic field, or only the characteristics of the recolliding electron before recombination occurs. We show numerically that in situ measurements are not sensitive to the recombination phase, when implemented in the perturbative regime as originally envisioned, and that they do not measure the electromagnetic phase of the emission.
Electromagnetic Interaction between the Component Coils of Multi-Plex Magnets
Nguyen, Quyen V. M.; Torrez, Lynette; Nguyen, Doan Ngoc
2017-12-04
Ultra-high field pulsed magnets are usually designed as a group of nested, concentric coils driven by separated power sources to reduce the required driving voltages and to distribute the mechanical load and to reduce the driving voltages. Since the magnet operates in a fast transient mode, there will be strong and complicated electromagnetic couplings between the component coils. The high eddy currents generated in the reinforcement shells of the component coils during the pulses also strongly affect these couplings. Therefore, understanding the electromagnetic interaction between the component coils will allow safer, more optimized design and operation of our magnets. Asmore » a result, this paper will focus on our finite element modeling and experimental results for the electromagnetic interactions between the component coils of the 100-T nondestructive magnet and 80-T duplex magnet at our facility.« less
Electromagnetic Interaction between the Component Coils of Multi-Plex Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Quyen V. M.; Torrez, Lynette; Nguyen, Doan Ngoc
Ultra-high field pulsed magnets are usually designed as a group of nested, concentric coils driven by separated power sources to reduce the required driving voltages and to distribute the mechanical load and to reduce the driving voltages. Since the magnet operates in a fast transient mode, there will be strong and complicated electromagnetic couplings between the component coils. The high eddy currents generated in the reinforcement shells of the component coils during the pulses also strongly affect these couplings. Therefore, understanding the electromagnetic interaction between the component coils will allow safer, more optimized design and operation of our magnets. Asmore » a result, this paper will focus on our finite element modeling and experimental results for the electromagnetic interactions between the component coils of the 100-T nondestructive magnet and 80-T duplex magnet at our facility.« less
Discrimination between pre-seismic electromagnetic anomalies and solar activity effects
NASA Astrophysics Data System (ADS)
Koulouras, G.; Balasis, G.; Kiourktsidis, I.; Nannos, E.; Kontakos, K.; Stonham, J.; Ruzhin, Y.; Eftaxias, K.; Cavouras, D.; Nomicos, C.
2009-04-01
Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kilohertz (kHz) to very high megahertz (MHz) frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only in the laboratory but also at a geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We should bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated with earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to be related to a few sources, including atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, the lithospheric effect, namely pre-seismic activity. We focus on this point in this paper. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the set of criteria presented herein, these anomalies could be considered as candidate precursory phenomena of an impending earthquake.
Discrimination between preseismic electromagnetic anomalies and solar activity effects
NASA Astrophysics Data System (ADS)
Koulouras, Gr; Balasis, G.; Kontakos, K.; Ruzhin, Y.; Avgoustis, G.; Kavouras, D.; Nomicos, C.
2009-04-01
Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kHz to very high MHz frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only at laboratory but also at geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated to earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to related to a few sources, i.e., they might be atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, lithospheric effect, namely pre-seismic activity. We focus on this point. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the herein presented set of criteria these anomalies could be considered as candidate precursory phenomena of an impending earthquake.
NASA Astrophysics Data System (ADS)
Imamura, N.; Schultz, A.
2016-12-01
Recently, a full waveform time domain inverse solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion to solve simultaneously for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations, the ability to operate in areas of high levels of source signal spatial complexity, and non-stationarity. This goal would not be obtainable if one were to adopt the pure time domain solution for the inverse problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across a large frequency bandwidth. This means that for the forward simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a sensitivity matrix that is computationally burdensome to solve a model update. We have implemented a code that addresses this situation through the use of cascade decimation decomposition to reduce the size of the sensitivity matrix substantially, through quasi-equivalent time domain decomposition. We also use a fictitious wave domain method to speed up computation time of the forward simulation in the time domain. By combining these refinements, we have developed a full waveform joint source field/earth conductivity inverse modeling method. We found that cascade decimation speeds computations of the sensitivity matrices dramatically, keeping the solution close to that of the undecimated case. For example, for a model discretized into 2.6x105 cells, we obtain model updates in less than 1 hour on a 4U rack-mounted workgroup Linux server, which is a practical computational time for the inverse problem.
EML - an electromagnetic levitator for the International Space Station
NASA Astrophysics Data System (ADS)
Seidel, A.; Soellner, W.; Stenzel, C.
2011-12-01
Based on a long and successful evolution of electromagnetic levitators for microgravity applications, including facilities for parabolic flights, sounding rocket missions and Spacelab missions, the Electromagnetic Levitator EML provides unique experiment opportunities onboard ISS. With the application of the electromagnetic levitation principle under microgravity conditions the undercooled regime of electrically conductive materials becomes accessible for an extended time which allows the performance of unique studies of nucleation phenomena or phase formation as well as the measurement of a range of thermophysical properties both above the melting temperature and in the undercooled regime. The EML payload is presently being developed by Astrium Space Transportation under contracts to ESA and DLR. The design of the payload allows flexible experiment scenarios individually targeted towards specific experimental needs and samples including live video control of the running experiments and automatic or interactive process control.
Apparatus and method for magnetically unloading a rotor bearing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, Seth Robert
An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.
Magnetostriction measurement by four probe method
NASA Astrophysics Data System (ADS)
Dange, S. N.; Radha, S.
2018-04-01
The present paper describes the design and setting up of an indigenouslydevelopedmagnetostriction(MS) measurement setup using four probe method atroom temperature.A standard strain gauge is pasted with a special glue on the sample and its change in resistance with applied magnetic field is measured using KeithleyNanovoltmeter and Current source. An electromagnet with field upto 1.2 tesla is used to source the magnetic field. The sample is placed between the magnet poles using self designed and developed wooden probe stand, capable of moving in three mutually perpendicular directions. The nanovoltmeter and current source are interfaced with PC using RS232 serial interface. A software has been developed in for logging and processing of data. Proper optimization of measurement has been done through software to reduce the noise due to thermal emf and electromagnetic induction. The data acquired for some standard magnetic samples are presented. The sensitivity of the setup is 1microstrain with an error in measurement upto 5%.
NASA Astrophysics Data System (ADS)
Horne, R. B.; Yoshizumi, M.
2017-12-01
Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called cross-over frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the cross-over frequency magnetosonic waves could be a source of hydrogen band waves but not helium band waves.
Anderer, P; Saletu, B; Semlitsch, H V; Pascual-Marqui, R D
2002-01-01
Noninvasive electrophysiological neuroimaging applied to cognitive components of event-related potentials (ERPs) may differentiate between structural and energetic processes related to information processing. The structural level, revealed by the location of the local maxima of the current source density distribution, describes the time-dependent network of activated brain areas. The magnitude of the source strength, a measure of the energetic component, describes the allocation of processing resources. ERPs were recorded in an odd-ball paradigm and low-resolution brain electromagnetic tomography (LORETA) was applied for standard and target ERP components. In a group of 60 menopausal depressed patients of 45-60 years of age, reduced P300 source strength was observed bilaterally, temporally and medially prefrontally reaching to rostal parts of the anterior cingulate, compared with 29 age-matched controls. In a double-blind, placebo-controlled study, 2 mg of the antidepressant citalopram induced a significant increase of P300 source strength in the (left) prefrontal cortex and precuneus compared with placebo, reaching to the posterior cingulate. Similar increases were observed after 800 mg S-adenosyl-L-methionine (SAMe) administered intravenously in ten young healthy subjects aged 22-33, and they were even more pronounced in ten elderly healthy subjects aged 56-71. Thus, ERP-tomography identified changes in energetic sources in brain areas predominantly involved in depression and in antidepressant action.
High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montesanti, Richard Clement
2005-09-01
This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.
NASA Astrophysics Data System (ADS)
Schwalenberg, Katrin; Rippe, Dennis; Koch, Stephanie; Scholl, Carsten
2017-05-01
Marine controlled source electromagnetic (CSEM) data have been collected to investigate methane seep sites and associated gas hydrate deposits at Opouawe Bank on the southern tip of the Hikurangi Margin, New Zealand. The bank is located in about 1000 m water depth within the gas hydrate stability field. The seep sites are characterized by active venting and typical methane seep fauna accompanied with patchy carbonate outcrops at the seafloor. Below the seeps, gas migration pathways reach from below the bottom-simulating reflector (at around 380 m sediment depth) toward the seafloor, indicating free gas transport into the shallow hydrate stability field. The CSEM data have been acquired with a seafloor-towed, electric multi-dipole system measuring the inline component of the electric field. CSEM data from three profiles have been analyzed by using 1-D and 2-D inversion techniques. High-resolution 2-D and 3-D multichannel seismic data have been collected in the same area. The electrical resistivity models show several zones of highly anomalous resistivities (>50 Ωm) which correlate with high amplitude reflections located on top of narrow vertical gas conduits, indicating the coexistence of free gas and gas hydrates within the hydrate stability zone. Away from the seeps the CSEM models show normal background resistivities between 1 and 2 Ωm. Archie's law has been applied to estimate gas/gas hydrate saturations below the seeps. At intermediate depths between 50 and 200 m below seafloor, saturations are between 40 and 80% and gas hydrate may be the dominating pore filling constituent. At shallow depths from 10 m to the seafloor, free gas dominates as seismic data and gas plumes suggest.
NASA Astrophysics Data System (ADS)
Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey
2018-05-01
Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.
Aniołczyk, Halina
2007-01-01
The National Control System for safety and health protection against electromagnetic fields (EMF) and electromagnetic radiation (EMR) (0 Hz-300 GHz) is constantly analyzed in view of Directive 2004/40/EC. Reports on the effects of investments (at the designing stage or at the stage of looking for their localization) on the environment and measurement and study reports on the objects already existing or being put into operation are important elements of this system. These documents should meet both national and European Union's legislation requirements. The overriding goal of the control system is safety and health protection of humans against electromagnetic fields in the environment and in occupational settings. The author pays a particular attention to provisions made in directives issued by relevant ministers and to Polish standards, which should be documented in measurement and study reports published by the accredited laboratories and relating to the problems of human safety and health protection. Similar requirements are valid for the Reports. Therefore, along with measurement outcomes, the reports should include data on the EMF exposure classification at work-posts and the assessment of occupational risk resulting from EMF exposure or at least thorough data facilitating such a classification.
Archaeological Graves Revealing By Means of Seismic-electric Effect
NASA Astrophysics Data System (ADS)
Boulytchov, A.
[a4paper,12pt]article english Seismic-electric effect was applied in field to forecast subsurface archaeological cul- tural objects. A source of seismic waves were repeated blows of a heavy hammer or powerful signals of magnetostrictive installation. Main frequency used was 500 Hz. Passed a soil layer and reached a second boundary between upper clayey-sand sedi- ments and archaeological object, the seismic wave caused electromagnetic fields on the both boundaries what in general is due to dipole charge separation owe to an im- balance of streaming currents induced by the seismic wave on opposite sides of a boundary interface. According to theoretical works of Pride the electromagnetic field appears on a boundary between two layers with different physical properties in the time of seismic wave propagation. Electric responses of electromagnetic fields were measured on a surface by pair of grounded dipole antennas or by one pivot and a long wire antenna acting as a capacitive pickup. The arrival times of first series of responses correspond to the time of seismic wave propagation from a source to a boundary between soil and clayey-sand layers. The arrival times of second row of responses correspond to the time of seismic wave way from a source to a boundary of clayey-sand layer with the archaeological object. The method depths successfully investigated were between 0.5-10 m. Similar electromagnetic field on another type of geological structure was also revealed by Mikhailov et al., Massachusetts, but their signals registered from two frontiers were too faint and not evident in comparing with ours ones that occurred to be perfect and clear. Seismic-electric method field experi- ments were successfully provided for the first time on archaeological objects.
NASA Astrophysics Data System (ADS)
Larnier, H.; Sailhac, P.; Chambodut, A.
2018-01-01
Atmospheric electromagnetic waves created by global lightning activity contain information about electrical processes of the inner and the outer Earth. Large signal-to-noise ratio events are particularly interesting because they convey information about electromagnetic properties along their path. We introduce a new methodology to automatically detect and characterize lightning-based waves using a time-frequency decomposition obtained through the application of continuous wavelet transform. We focus specifically on three types of sources, namely, atmospherics, slow tails and whistlers, that cover the frequency range 10 Hz to 10 kHz. Each wave has distinguishable characteristics in the time-frequency domain due to source shape and dispersion processes. Our methodology allows automatic detection of each type of event in the time-frequency decomposition thanks to their specific signature. Horizontal polarization attributes are also recovered in the time-frequency domain. This procedure is first applied to synthetic extremely low frequency time-series with different signal-to-noise ratios to test for robustness. We then apply it on real data: three stations of audio-magnetotelluric data acquired in Guadeloupe, oversea French territories. Most of analysed atmospherics and slow tails display linear polarization, whereas analysed whistlers are elliptically polarized. The diversity of lightning activity is finally analysed in an audio-magnetotelluric data processing framework, as used in subsurface prospecting, through estimation of the impedance response functions. We show that audio-magnetotelluric processing results depend mainly on the frequency content of electromagnetic waves observed in processed time-series, with an emphasis on the difference between morning and afternoon acquisition. Our new methodology based on the time-frequency signature of lightning-induced electromagnetic waves allows automatic detection and characterization of events in audio-magnetotelluric time-series, providing the means to assess quality of response functions obtained through processing.
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez-Madrigal, M.; Rivero, F.; Miroshnichenko, L. I.
1985-01-01
The data on source energy spectra of solar cosmic rays (SCR), i.e. the data on the spectrum form and on the absolute SCR are of interest for three reasons: (1) the SCR contain the energy comparable to the total energy of electromagnetic flare radiation (less than or equal to 10 to the 32nd power ergs); (2) the source spectrum form indicates a possible acceleration mechanism (or mechanism); and (3) the accelerated particles are efficiently involved in nuclear electromagnetic and plasma processes in the solar atmosphere. Therefore, the data on SCR source spectra are necessary for a theoretical description of the processes mentioned and for the formulation of the consistent flare model. Below it is attempted to sound solar particle sources by means of SCR energy spectrum obtained near the Sun, at the level of the roots of the interplanetary field lines in the upper solar corona. Data from approx. 60 solar proton events (SPE) between 1956-1981. These data were obtained mainly by the interplanetary demodulation of observed fluxes near the Earth. Further, a model of coronal azimuthal transport is used to demodulate those spectra, and to obtain the source energy spectra.
Novel methodology to characterize electromagnetic exposure of the brain
NASA Astrophysics Data System (ADS)
Crespo-Valero, Pedro; Christopoulou, Maria; Zefferer, Marcel; Christ, Andreas; Achermann, Peter; Nikita, Konstantina S.; Kuster, Niels
2011-01-01
Due to the greatly non-uniform field distribution induced in brain tissues by radio frequency electromagnetic sources, the exposure of anatomical and functional regions of the brain may be a key issue in interpreting laboratory findings and epidemiological studies concerning endpoints related to the central nervous system. This paper introduces the Talairach atlas in characterization of the electromagnetic exposure of the brain. A hierarchical labeling scheme is mapped onto high-resolution human models. This procedure is fully automatic and allows identification of over a thousand different sites all over the brain. The electromagnetic absorption can then be extracted and interpreted in every region or combination of regions in the brain, depending on the characterization goals. The application examples show how this methodology enhances the dosimetry assessment of the brain based on results obtained by either finite difference time domain simulations or measurements delivered by test compliance dosimetry systems. Applications include, among others, the detailed dosimetric analysis of the exposure of the brain during cell phone use, improved design of exposure setups for human studies or medical diagnostic and therapeutic devices using electromagnetic fields or ultrasound.
Design and experiment study of a semi-active energy-regenerative suspension system
NASA Astrophysics Data System (ADS)
Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie
2015-01-01
A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.
NASA Astrophysics Data System (ADS)
Hamdi, H.; Qausar, A. M.; Srigutomo, W.
2016-08-01
Controlled source audio-frequency magnetotellurics (CSAMT) is a frequency-domain electromagnetic sounding technique which uses a fixed grounded dipole as an artificial signal source. Measurement of CSAMT with finite distance between transmitter and receiver caused a complex wave. The shifted of the electric field due to the static effect caused elevated resistivity curve up or down and affects the result of measurement. The objective of this study was to obtain data that have been corrected for source and static effects as to have the same characteristic as MT data which are assumed to exhibit plane wave properties. Corrected CSAMT data were inverted to reveal subsurface resistivity model. Source effect correction method was applied to eliminate the effect of the signal source and static effect was corrected by using spatial filtering technique. Inversion method that used in this study is the Occam's 2D Inversion. The results of inversion produces smooth models with a small misfit value, it means the model can describe subsurface conditions well. Based on the result of inversion was predicted measurement area is rock that has high permeability values with rich hot fluid.
Anechoic Chamber test of the Electromagnetic Measurement System ground test unit
NASA Astrophysics Data System (ADS)
Stevenson, L. E.; Scott, L. D.; Oakes, E. T.
1987-04-01
The Electromagnetic Measurement System (EMMS) will acquire data on electromagnetic (EM) environments at key weapon locations on various aircraft certified for nuclear weapons. The high-frequency ground unit of the EMMS consists of an instrumented B61 bomb case that will measure (with current probes) the localized current density resulting from an applied EM field. For this portion of the EMMS, the first system test was performed in the Anechoic Chamber Facility at Sandia National Laboratories, Albuquerque, New Mexico. The EMMS pod was subjected to EM radiation at microwave frequencies of 1, 3, and 10 GHz. At each frequency, the EMMS pod was rotated at many positions relative to the microwave source so that the individual current probes were exposed to a direct line-of-sight illumination. The variations between the measured and calculated electric fields for the current probes with direct illumination by the EM source are within a few db. The results obtained from the anechoic test were better than expected and verify that the high frequency ground portion of the EMMS will accurately measure the EM environments for which it was designed.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Borovsky, Joseph E.; Benford, Gregory; Eilek, Jean A.
1988-01-01
A model of the inner portions of astrophysical jets is constructed in which a relativistic electron beam is injected from the central engine into the jet plasma. This beam drives electrostatic plasma wave turbulence, which leads to the collective emission of electromagnetic waves. The emitted waves are beamed in the direction of the jet axis, so that end-on viewing of the jet yields an extremely bright source (BL Lacertae object). The relativistic electron beam may also drive long-wavelength electromagnetic plasma instabilities (firehose and Kelvin-Helmholtz) that jumble the jet magnetic field lines. After a sufficient distance from the core source, these instabilities will cause the beamed emission to point in random directions and the jet emission can then be observed from any direction relative to the jet axis. This combination of effects may lead to the gap turn-on of astrophysical jets. The collective emission model leads to different estimates for energy transport and the interpretation of radio spectra than the conventional incoherent synchrotron theory.
Bedini, A; Giliberti, C; Salerno, S
2008-01-01
The aim of this study is to evaluate the presence of contents related to communication and information on the exposure to the electromagnetic fields (emf) in the first 100 Italian Internet sites, carried out using the search engine Google with the key words "emf" and "emf and health". Each Internet site has been evaluated using 10 selected indicators: (1) Definition of electric, magnetic and electromagnetic fields; (2) Description of the physical effects of the emf; (3) Description of biological and health effects of the emf; (4) Description of the environmental sources; (5) Description of the environmental levels produced by the different sources; (6) Main legislation; (7) Risk perception; (8) Frequently asked questions (FAQ); (9) Links; (10) Forum for discussion. The sites, obtained for each search, have been classified into 6 main categories: (1) Public Research Institutes; (2) Health and Environmental Authorities; (3) Local Authorities; (4) Associations; (5) Commercial sites; (6) Other. The results show lack of information and communication on the emf in the analysed Italian Internet sites. A need for a design of any scientific Internet information and communication on this topic is shown.
Electromagnetic Interference in a Private Swimming Pool: Case report.
Iskandar, Sandia; Lavu, Madhav; Atoui, Moustapha; Lakkireddy, Dhanunjaya
2015-01-01
Although current lead design and filtering capabilities have greatly improved, Electromagnetic Interference (EMI) from environmental sources has been increasingly reported in patients with Cardiac Implantable Electronic Device (CIED) [1]. Few cases of inappropriate intracardiac Cardioverter Defibrillator (ICD) associated with swimming pool has been described [2]. Here we present a case of 64 year old male who presented with an interesting EMI signal that was subsequently identified to be related to AC current leak in his swimming pool.
Development of an interpretive simulation tool for the proton radiography technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, M. C., E-mail: levymc@stanford.edu; Lawrence Livermore National Laboratory, Livermore, California 94551; Ryutov, D. D.
2015-03-15
Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper, we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool’s numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from particle-in-cell or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field “primitives” is also provided. This latter capability allows users tomore » add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using ∼10{sup 8} particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of ∼10 mm{sup 3}. Insights derived from this application show that the tool can support understanding of HED plasmas.« less
Real Time Quality Control Methods for Cued EMI Data Collection
2016-03-14
contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product...This project evaluated the effectiveness of in-field quality control (QC) procedures during cued electromagnetic induction (EMI) data collection. The...electromagnetic induction ESTCP Environmental Security Technology Certification Program hr hour ISO Industry Standard Object IVS Instrument
Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
NASA Astrophysics Data System (ADS)
Ciurys, Marek Pawel
2017-12-01
Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.
Method and apparatus for making absolute range measurements
Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN
2002-09-24
This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.
NASA Technical Reports Server (NTRS)
Groom, Nelson J.; Britcher, Colin P.
1992-01-01
The open-loop characteristics of a Large-Gap Magnetic Suspension System (LGMSS) were studied and numerical results are presented. The LGMSS considered provides five-degree-of-freedom control. The suspended element is a cylinder that contains a core composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar array. Configurations utilizing five, six, seven, and eight electromagnets were investigated and all configurations were found to be controllable from coil currents and observable from suspended element positions. Results indicate that increasing the number of coils has an insignificant effect on mode shapes and frequencies.
Design and analysis of an electromagnetic turnout for the superconducting Maglev system
NASA Astrophysics Data System (ADS)
Li, Y. J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R. X.; Zheng, J.; Deng, C. Y.; Deng, Z. G.
2016-09-01
Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical 'Y' shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs', meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.
Nucleation and Grain Refinement of 7A04 Aluminum Alloy Under a Low-Power Electromagnetic Pulse
NASA Astrophysics Data System (ADS)
Bai, Qingwei; Ma, Yonglin; Xing, Shuqing; Bao, Xinyu; Feng, Yanfei; Kang, Xiaolan
2018-02-01
The effects of a low-power electromagnetic pulse on the grain size and cooling curve of high-strength aluminum alloy 7A04 were investigated for various pulse duty cycles. This electromagnetic pulse treatment was found to effectively produce fine grains with globular crystals and a uniform microstructure for pulse duty cycles between 20 and 40%. The key factors that affected grain refinement under the electromagnetic pulse included the electromagnetic energy and the conversion frequency between \\varvec{B} and \\varvec{E} . The nucleation rate increased as the nucleation period was extended. A new kinetic condition of magnetic nucleation was explored by decreasing the critical Gibbs free energy in the electromagnetic pulse, which was more sensitive under low undercooling. In addition, the crystal orientation was controlled in such a solidification environment.
Deng, Yuqin; Wang, Yan; Ding, Xiaoqian; Tang, Yi-Yuan
2015-02-11
The aim of the present study was to examine electrophysiological and behavioral changes caused by different memory loads in a task-switching paradigm. A total of 31 healthy individuals were subjected to a task, in which the stimulus-response reversal paradigm was combined with the task-switching paradigm. The event-related potentials were recorded and the N2 component, an index of conflict processing, was measured. In addition, the neural sources of N2 were further analyzed by standardized low-resolution brain electromagnetic tomography. The event-related potential results showed that high memory load triggered a higher N2 mean amplitude. Moreover, the standardized low-resolution brain electromagnetic tomography data showed that high memory load caused an increase in current densities at the anterior cingulate cortex and the prefrontal cortex in the task-switching paradigm. In summary, our findings provide electrophysiological evidence to interpret possible influences of memory loads on conflict monitoring and modulation during the task switching. These results imply that the working memory load overrules the influence of task-switching performance on the intensification of cognitive control.
Excitation of parasitic waves near cutoff in forward-wave amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusinovich, Gregory S.; Sinitsyn, Oleksandr V.; Antonsen, Thomas M. Jr.
2010-10-15
In this paper, excitation of parasitic waves near cutoff in forward-wave amplifiers is studied in a rather general form. This problem is important for developing high-power sources of coherent, phase controlled short-wavelength electromagnetic radiation because just the waves which can be excited near cutoff have low group velocities. Since the wave coupling to an electron beam is inversely proportional to the group velocity, these waves are the most dangerous parasitic waves preventing stable amplification of desired signal waves. Two effects are analyzed in the paper. The first one is the effect of signal wave parameters on the self-excitation conditions ofmore » such parasitic waves. The second effect is the role of the beam geometry on excitation of these parasitic waves in forward-wave amplifiers with spatially extended interaction space, such as sheet-beam devices. It is shown that a large-amplitude signal wave can greatly influence the self-excitation conditions of the parasitic waves which define stability of operation. Therefore the effect described is important for accurate designing of high-power amplifiers of electromagnetic waves.« less
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-10-24
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-01-01
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064
NASA Astrophysics Data System (ADS)
Cheng, Ye; Guo, Yuhang; Zhang, Zhenya; Dong, Songtao; Liu, Suwei; Wang, Hongying
2018-03-01
Magnetic absorber has been regarded as the advanced electromagnetic energy transfer material to solve the increasingly high frequency electromagnetic interference issue. Even so, the pure magnetic material, in particular magnetic metal nanoparticle, suffering from the poor chemical stability and strong eddy current effect, thus limits it further application. To overcome this shortage, surrounded the magnetic metal nanoparticle (MPs) with insulated oxide shell has been considered to be an efficient route to suppress such an eddy current effect. Meanwhile, the combined insulated shell with good impedance matching feature, shows a positive role on the electromagnetic energy transfer intensity. In this regard, the binary Fe@α-Fe2O3 composite with the average size of ∼ 20 nm was prepared by a facile self-oxidation reaction. Interestingly, both the core diameter and shell thickness is controllable by controlling the oxide degree. The electromagnetic energy transfer performance revealed the maximum absorption frequency bandwidth of the optimal Fe@α-Fe2O3 composite is up to 5.3 G(8.2-13.5 GHz)under a small coating thickness of 1.5 mm.
Resonant circuit which provides dual-frequency excitation for rapid cycling of an electromagnet
Praeg, W.F.
1982-03-09
Disclosed is a novel ring-magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the sinusoidal guide field of the ring magnet during particle acceleration. The control circuit generates sinusoidal excitation currents of different frequencies in the half waves. During radio-frequency acceleration of the synchrotron, the control circuit operates with a lower frequency sine wave and, thereafter, the electromagnets are reset with a higher-frequency half sine wave.
Inductive Interference in Rapid Transit Signaling Systems. Volume 3. Data and Test Results.
DOT National Transportation Integrated Search
1986-11-01
This report presents comparative inductive interference data obtained from four U.S. rapid transit systems employing chopper propulsion control, as part of the Rail Transit Electromagnetic Interference/Electromagnetic Compatibility program conducted ...
NASA Technical Reports Server (NTRS)
Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.
1974-01-01
Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.
2015-07-01
concentrations. A total of 11.23 acres of dynamic surveys were conducted using MetalMapper advanced electromagnetic induction (EMI) sensor. A total of...centimeter DGM digital geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former
Shuttle Communications and Tracking, Avionics, and Electromagnetic Compatibility
NASA Technical Reports Server (NTRS)
deSilva, K.; Hwu, Shian; Kindt, Kaylene; Kroll, Quin; Nuss, Ray; Romero, Denise; Schuler, Diana; Sham, Catherine; Scully, Robert
2011-01-01
By definition, electromagnetic compatibility (EMC) is the capability of components, sub-systems, and systems, to operate in their intended electromagnetic environment, within an established margin of safety, and at design levels of performance. Practice of the discipline itself incorporates knowledge of various aspects of applied physics, materials science, and engineering across the board, and includes control and mitigation of undesirable electromagnetic interaction between intentional and unintentional emitters and receivers of radio frequency energy, both within and external to the vehicle; identification and control of the hazards of non-ionizing electromagnetic radiation to personnel, ordnance, and fuels and propellants; and vehicle and system protection from the direct and indirect effects of lightning and various other forms of electrostatic discharge (ESD) threats, such as triboelectrification and plasma charging. EMC is extremely complex and far-reaching, affecting in some degree every aspect of the vehicle s design and operation. The most successful efforts incorporate EMC design features and techniques throughout design and fabrication of the vehicle s structure and components, as well as appropriate operational considerations with regard to electromagnetic threats in the operational environment, from the beginning of the design effort to the end of the life cycle of the manufactured product. This approach yields the highest design performance with the lowest cost and schedule impact.
NASA Astrophysics Data System (ADS)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
A practical, low-noise coil system for magnetotellurics
Stanley, William D.; Tinkler, Richard D.
1983-01-01
Magnetotellurics is a geophysical technique which was developed by Cagnaird (1953) and Tikhonov (1950) and later refined by other scientists worldwide. The technique is a method of electromagnetic sounding of the Earth and is based upon the skin depth effect in conductive media. The electric and magnetic fields arising from natural sources are measured at the surface of the earth over broad frequency bands. An excellent review of the technique is provided in the paper by Vozoff (1972). The sources of the natural fields are found in two basic mechanisms. At frequencies above a few hertz, most of the energy arises from lightning in thunderstorm belts around the equatorial regions. This energy is propagated in a wave-guide formed by the earthionospheric cavity. Energy levels are higher at fundamental modes for this cavity, but sufficient energy exists over most of the audio range to be useful for sounding at these frequencies, in which case the technique is generally referred to as audio-magnetotellurics or AMT. At frequencies lower than audio, and in general below 1 Hz, the source of naturally occuring electromagnetic energy is found in ionospheric currents. Current systems flowing in the ionosphere generate EM waves which can be used in sounding of the earth. These fields generate a relatively complete spectrum of electromagnetic energy that extends from around 1 Hz to periods of one day. Figure 1 shows an amplitude spectrum characteristic of both the ionospheric and lightning sources, covering a frequency range from 0.0001 Hz to 1000 Hz. It can be seen that there is a minimum in signal levels that occurs at about 1 Hz, in the gap between the two sources, and that signal level increases with a decrease in frequency.
Mouthaan, Brian E; Rados, Matea; Barsi, Péter; Boon, Paul; Carmichael, David W; Carrette, Evelien; Craiu, Dana; Cross, J Helen; Diehl, Beate; Dimova, Petia; Fabo, Daniel; Francione, Stefano; Gaskin, Vladislav; Gil-Nagel, Antonio; Grigoreva, Elena; Guekht, Alla; Hirsch, Edouard; Hecimovic, Hrvoje; Helmstaedter, Christoph; Jung, Julien; Kalviainen, Reetta; Kelemen, Anna; Kimiskidis, Vasilios; Kobulashvili, Teia; Krsek, Pavel; Kuchukhidze, Giorgi; Larsson, Pål G; Leitinger, Markus; Lossius, Morten I; Luzin, Roman; Malmgren, Kristina; Mameniskiene, Ruta; Marusic, Petr; Metin, Baris; Özkara, Cigdem; Pecina, Hrvoje; Quesada, Carlos M; Rugg-Gunn, Fergus; Rydenhag, Bertil; Ryvlin, Philippe; Scholly, Julia; Seeck, Margitta; Staack, Anke M; Steinhoff, Bernhard J; Stepanov, Valentin; Tarta-Arsene, Oana; Trinka, Eugen; Uzan, Mustafa; Vogt, Viola L; Vos, Sjoerd B; Vulliémoz, Serge; Huiskamp, Geertjan; Leijten, Frans S S; Van Eijsden, Pieter; Braun, Kees P J
2016-05-01
In 2014 the European Union-funded E-PILEPSY project was launched to improve awareness of, and accessibility to, epilepsy surgery across Europe. We aimed to investigate the current use of neuroimaging, electromagnetic source localization, and imaging postprocessing procedures in participating centers. A survey on the clinical use of imaging, electromagnetic source localization, and postprocessing methods in epilepsy surgery candidates was distributed among the 25 centers of the consortium. A descriptive analysis was performed, and results were compared to existing guidelines and recommendations. Response rate was 96%. Standard epilepsy magnetic resonance imaging (MRI) protocols are acquired at 3 Tesla by 15 centers and at 1.5 Tesla by 9 centers. Three centers perform 3T MRI only if indicated. Twenty-six different MRI sequences were reported. Six centers follow all guideline-recommended MRI sequences with the proposed slice orientation and slice thickness or voxel size. Additional sequences are used by 22 centers. MRI postprocessing methods are used in 16 centers. Interictal positron emission tomography (PET) is available in 22 centers; all using 18F-fluorodeoxyglucose (FDG). Seventeen centers perform PET postprocessing. Single-photon emission computed tomography (SPECT) is used by 19 centers, of which 15 perform postprocessing. Four centers perform neither PET nor SPECT in children. Seven centers apply magnetoencephalography (MEG) source localization, and nine apply electroencephalography (EEG) source localization. Fourteen combinations of inverse methods and volume conduction models are used. We report a large variation in the presurgical diagnostic workup among epilepsy surgery centers across Europe. This diversity underscores the need for high-quality systematic reviews, evidence-based recommendations, and harmonization of available diagnostic presurgical methods. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Effect of high electromagnetic fields on cellular growth
NASA Astrophysics Data System (ADS)
Albalawi, Abdullah; Mustafa, Mohammed; Masood, Samina
It is already known that high-intensity electromagnetic field affect the human lung growth and forces the T-cells to decrease by 20-30 percent. The electromagnetic field had a severe impact on human T-cells in contrast to lung cells. Due to the high-intensity electromagnetic field, the growth of T-cells becomes low and release of Ca+2 increases up to 3.5 times more than the lung cells. The high-intensity electromagnetic radiations do not directly produce cancer cells but had a severe impact on the growth of T-cells. It can also be said that electromagnetic field acts a role in the cancer initiation. It creates disordered in the structure of membranes and gesture transduction. The higher exposure to electromagnetic field increases PKC-alpha and this larger release from membranes cannot be controlled. It was concluded that greater exposure to the electromagnetic field is dangerous and had a severe impact on T-cells growth and lung cells growth and due to this greater possibility of leukemia occurrence. We show a similar effect of electromagnetic fields single celled bacteria to compare the bacterial cellular growth with the human cells using the bacteria strains which are commonly found in human body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maidana, Carlos O.; Nieminen, Juha E.
Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less
Żak, Arkadiusz
2014-01-01
One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557
Maidana, Carlos O.; Nieminen, Juha E.
2017-02-01
Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less
Elaina, Nor Safira; Malik, Aamir Saeed; Shams, Wafaa Khazaal; Badruddin, Nasreen; Abdullah, Jafri Malin; Reza, Mohammad Faruque
2018-06-01
To localize sensorimotor cortical activation in 10 patients with frontoparietal tumors using quantitative magnetoencephalography (MEG) with noise-normalized approaches. Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests. The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches. Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.
NASA Technical Reports Server (NTRS)
Joshi, R. P.; Deshpande, M. D. (Technical Monitor)
2003-01-01
A study into the problem of determining electromagnetic solutions at high frequencies for problems involving complex geometries, large sizes and multiple sources (e.g. antennas) has been initiated. Typical applications include the behavior of antennas (and radiators) installed on complex conducting structures (e.g. ships, aircrafts, etc..) with strong interactions between antennas, the radiation patterns, and electromagnetic signals is of great interest for electromagnetic compatibility control. This includes the overall performance evaluation and control of all on-board radiating systems, electromagnetic interference, and personnel radiation hazards. Electromagnetic computational capability exists at NASA LaRC, and many of the codes developed are based on the Moment Method (MM). However, the MM is computationally intensive, and this places a limit on the size of objects and structures that can be modeled. Here, two approaches are proposed: (i) a current-based hybrid scheme that combines the MM with Physical optics, and (ii) an Alternating Direction Implicit-Finite Difference Time Domain (ADI-FDTD) method. The essence of a hybrid technique is to split the overall scattering surface(s) into two regions: (a) a MM zone (MMZ) which can be used over any part of the given geometry, but is most essential over irregular and "non-smooth" geometries, and (b) a PO sub-region (POSR). Currents induced on the scattering and reflecting surfaces can then be computed in two ways depending on whether the region belonged to the MMZ or was part of the POSR. For the MMZ, the current calculations proceed in terms of basis functions with undetermined coefficients (as in the usual MM method), and the answer obtained by solving a system of linear equations. Over the POSR, conduction is obtained as a superposition of two contributions: (i) currents due to the incident magnetic field, and (ii) currents produced by the mutual induction from conduction within the MMZ. This effectively leads to a reduction in the size of linear equations from N to N - Npo with N being the total number of segments for the entire surface and Npo the number of segments over the POSR. The scheme would be appropriate for relatively large, flat surfaces, and at high frequencies. The ADI-FDTD scheme provides for both transient and steady state analyses. The restrictive Courant-Friedrich-Levy (CFL) condition on the time-step is removed, and so large time steps can be chosen even though the spatial grids are small. This report includes the problem definition, a detailed discussion of both the numerical techniques, and numerical implementations for simple surface geometries. Numerical solutions have been derived for a few simple situations.
Modeling of the coupled magnetospheric and neutral wind dynamos
NASA Technical Reports Server (NTRS)
Thayer, J. P.; Vickrey, J. F.; Heelis, R. A.; Gary, J. B.
1995-01-01
Work at SRI involved modeling the exchange of electromagnetic energy between the ionosphere and magnetosphere to help interpret the DE-B Poynting flux observations. To describe the electrical properties of the high-latitude ionosphere, we constructed a numerical model, from the framework provided by the Vector Spherical Harmonic (VSH) model, that determines the ionospheric currents, conductivities, and electric fields including both magnetospheric inputs and neutral wind dynamo effects. This model development grew from the earlier question of whether an electrical energy source in the ionosphere was capable of providing an upward Poynting flux. The model solves the steady-state neutral wind dynamo equations and the Poynting flux equation to provide insight into the electrodynamic role of the neutral winds. The modeling effort to determine the high-latitude energy flux has been able to reproduce many of the large-scale features observed in the Poynting flux measurements made by DE-2. Because the Poynting flux measurement is an integrated result of energy flux into or out of the ionosphere, we investigated the ionospheric properties that may contribute to the observed flux of energy measured by the spacecraft. During steady state the electromagnetic energy flux, or DC Poynting flux, is equal to the Joule heating rate and the mechanical energy transfer rate in the high-latitude ionosphere. Although the Joule heating rate acts as an energy sink, transforming electromagnetic energy into thermal or internal energy of the gas, the mechanical energy transfer rate may be either a sink or source of electromagnetic energy. In the steady state, it is only the mechanical energy transfer rate that can generate electromagnetic energy and result in a DC Poynating flux that is directed out of the ionosphere.
Kjeldsen, Henrik D.; Kaiser, Marcus; Whittington, Miles A.
2015-01-01
Background Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. New method Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. Results The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. Comparison with existing methods The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Conclusions Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. PMID:26026581
Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A
2015-09-30
Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Mandel, Ilya; Ramirez-Ruiz, Enrico
2013-06-01
The detection of an electromagnetic transient which may originate from a binary neutron star merger can increase the probability that a given segment of data from the LIGO-Virgo ground-based gravitational-wave detector network contains a signal from a binary coalescence. Additional information contained in the electromagnetic signal, such as the sky location or distance to the source, can help rule out false alarms and thus lower the necessary threshold for a detection. Here, we develop a framework for determining how much sensitivity is added to a gravitational-wave search by triggering on an electromagnetic transient. We apply this framework to a variety of relevant electromagnetic transients, from short gamma-ray bursts (GRBs) to signatures of r-process heating to optical and radio orphan afterglows. We compute the expected rates of multimessenger observations in the advanced detector era and find that searches triggered on short GRBs—with current high-energy instruments, such as Fermi—and nucleosynthetic “kilonovae”—with future optical surveys, like the Large Synoptic Survey Telescope—can boost the number of multimessenger detections by 15% and 40%, respectively, for a binary neutron star progenitor model. Short GRB triggers offer precise merger timing but suffer from detection rates decreased by beaming and the high a priori probability that the source is outside the LIGO-Virgo sensitive volume. Isotropic kilonovae, on the other hand, could be commonly observed within the LIGO-Virgo sensitive volume with an instrument roughly an order of magnitude more sensitive than current optical surveys. We propose that the most productive strategy for making multimessenger gravitational-wave observations is using triggers from future deep, optical all-sky surveys, with characteristics comparable to the Large Synoptic Survey Telescope, which could make as many as ten such coincident observations a year.
Assisted of electromagnetic fields in glucose production from cassava stems
NASA Astrophysics Data System (ADS)
Lismeri, Lia; Haryati, Sri; Djoni Bustan, M.; Darni, Yuli
2018-03-01
Decrease in fossil fuel reserves that led to high price has become major problem in many countries around the world. To acquire the sustainability of energy reserves, the renewable energies obtained from plant biomass will therefore have to play an increasing role in fulfilling energy demand throughout the century. Renewable energy source must be explored by innovative techniques which is safe to the environment and low in energy consumptions. This research conducted to produce glucose from cassava stems assisted by electromagnetic field inductions process. The parameters used in this research were pretreatment solvent, concentration, temperature and electrical currents. The electromagnetic field inductions could be applied to increase glucose productivity with the maximum yield of glucose was 47.43%.
NASA Technical Reports Server (NTRS)
Roth, Donald J (Inventor)
2011-01-01
A computer implemented process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. Utilizing interactive software the process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.
Electromagnetic fields and the public: EMF standards and estimation of risk
NASA Astrophysics Data System (ADS)
Grigoriev, Yury
2010-04-01
Mobile communications are a relatively new and additional source of electromagnetic exposure for the population. Standard daily mobile-phone use is known to increase RF-EMF (radiofrequency electromagnetic field) exposure to the brains of users of all ages, whilst mobile-phone base stations, and base station units for cordless phones, can regularly increase the exposures of large numbers of the population to RF-EMF radiation in everyday life. The need to determine appropriate standards stipulating the maximum acceptable short-term and long-term RF-EMF levels encountered by the public, and set such levels as general guidelines, is of great importance in order to help preserve the general public's health and that of the next generation of humanity.
Current facts on pacemaker electromagnetic interference and their application to clinical care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sager, D.P.
1987-03-01
The development of the sensing demand cardiac pacemaker brought with it the problem of interference as a result of extraneous electric current and electromagnetic fields. This problem still deserves consideration, not only because harmful disruption of pacemaker function, while infrequent, can occur but also because myths and misunderstandings have flourished on the subject. Misinformation has often led to needless patient anxiety and unnecessary restrictions in activities of daily living. Similarly, when health care practitioners are misinformed about pacemaker interference, potentially hazardous situations can occur in the clinical environment. This article is a review of current information on the sources andmore » effects of electromagnetic interference (EMI) on pacemakers and includes a discussion of their application to patient care.« less
Photonic crystal devices formed by a charged-particle beam
Lin, Shawn-Yu; Koops, Hans W. P.
2000-01-01
A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.
NASA Technical Reports Server (NTRS)
Roth, Donald J (Inventor)
2011-01-01
A process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. The process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.
[Effect of 50 Hz 1.8 mT sinusoidal electromagnetic fields on bone mineral density in growing rats].
Gao, Yu-Hai; Zhou, Yan-Feng; Li, Shao-Feng; Li, Wen-Yuan; Xi, Hui-Rong; Yang, Fang-Fang; Chen, Ke-Ming
2017-12-25
To study effects of 50 Hz 1.8 mT sinusoidal electromagnetic fields (SEMFs) on bone mineral density (BMD) in SD rats. Thirty SD rats weighted(110±10) and aged 1 month were randomly divided into control group and electromagnetic field group, 15 in each group. Normal control group of 50 Hz 0 mT density and sinusoidal electromagnetic field group of 50 Hz 1.8 mT were performed respectively with 1.5 h/d and weighted weight once a week, and observed food-intake. Rats were anesthesia by intraperitoneal injection and dual energy X-ray absorptiometry were used to detect bone density of whole body, and detected bone density of femur and vertebral body. Osteocalcin and tartrate-resistant acid phosphatase 5b were detected by ELSA; weighted liver, kidney and uterus to calculate purtenance index, then detected pathologic results by HE. Compared with control group, there was no significant change in weight every week, food-intake every day; no obvious change of bone density of whole body at 2 and 4 weeks, however bone density of whole body, bone density of excised femur and vertebra were increased at 6 weeks. Expression of OC was increased, and TRACP 5b expression was decreased. No change of HE has been observed in liver, kidney and uterus and organic index. 50 Hz 1.8 mT sinusoidal electromagnetic fields could improve bone formation to decrease relevant factors of bone absorbs, to improve peak bone density of young rats, in further provide a basis for clinical research electromagnetic fields preventing osteoporosis foundation.
Crow Ressurection: The Future of Airborne Electronic Attack
2013-06-01
strike assets by attempting to gain and maintain control of the electromagnetic spectrum. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...receiving his commission through Officer Training School in 2000, Major Howard served as an RC-135V/W RIVET JOINT EWO at Offutt AFB, Nebraska...significant Airborne Electronic Attack challenges in protecting strike assets by attempting to gain and maintain control of the electromagnetic spectrum
1987-03-01
the VLSI Implementation of the Electromagnetic Field of an Arbitrary Current Source" B.A. Hoyt, A.J. Terzuoli, A.V. Lair ., Air Force Institute of...method is that cavities of arbitrary three dimensional shapes and nonuniform lossy materials can be analyzed. THEORY OF VECTOR POTENTIAL FINITE...elements used to model the cavity. The method includes the effects of nonuniform lossy materials and can analyze cavities of a wide variety of two- and
Terahertz emission from thermally-managed square intrinsic Josephson junction microstrip antennas
NASA Astrophysics Data System (ADS)
Klemm, Richard; Davis, Andrew; Wang, Qing
We show for thin square microstrip antennas that the transverse magnetic electromagnetic cavity modes are greatly restricted in number due to the point group symmetry of a square. For the ten lowest frequency emissions, we present plots of the orthonormal wave functions and of the angular distributions of the emission power obtained from the uniform Josephson current source and from the excitation of an electromagnetic cavity mode excited in the intrinsic Josephson junctions between the layers of a highly anisotropic layered superconductor.
A computer program to evaluate optical systems
NASA Technical Reports Server (NTRS)
Innes, D.
1972-01-01
A computer program is used to evaluate a 25.4 cm X-ray telescope at a field angle of 20 minutes of arc by geometrical analysis. The object is regarded as a point source of electromagnetic radiation, and the optical surfaces are treated as boundary conditions in the solution of the electromagnetic wave propagation equation. The electric field distribution is then determined in the region of the image and the intensity distribution inferred. A comparison of wave analysis results and photographs taken through the telescope shows excellent agreement.
Apparatus and Methods for Locating Source of and Analyzing Electromagnetic Radiation
2015-11-19
President BY: ~~~~~~~~~~~==~----- CONTRACTOR’S OFFICIAL AND TITLE Nanohmics Inc 6201 E. Oltorf St., Suite 400 Austin , TX 78741 BUSINESS ADDRESS...ANALYZING ELECTROMAGNETIC RADIATION (71) Applicant: Nanohmics, Inc., Austin , TX (US) (72) Inventors: Byron G. Zollars, Georgetown, TX (US); Steve M...Savoy, Austin , TX (US); Michael W. Mayo, Austin , TX (US); Daniel R. Mitchell, Austin , TX (US) (21) Appl. No.: 14/531,247 (22) Filed: Nov. 3, 2014
Implementation of the FAA research and development electromagnetic database
NASA Technical Reports Server (NTRS)
Mcdowall, R. L.; Grush, D. J.; Cook, D. M.; Glynn, M. S.
1991-01-01
The Idaho National Engineering Laboratory (INEL) has been assisting the FAA in developing a database of information about lightning. The FAA Research and Development Electromagnetic Database (FRED) will ultimately contain data from a variety of airborne and ground-based lightning research projects. An outline of the data currently available in FRED is presented. The data sources which the FAA intends to incorporate into FRED are listed. In addition, it describes how the researchers may access and use the FRED menu system.
Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine
NASA Astrophysics Data System (ADS)
Buchachenko, A. L.
2014-01-01
The molecular concept (paradigm) in magnetobiology seems to be most substantiated and significant for explaining the biomedical effects of electromagnetic fields, for the new medical technology of transcranial magnetic stimulation of cognitive activity, for the nuclear magnetic control of biochemical processes and for the search of new magnetic effects in biology and medicine. The key structural element of the concept is a radical ion pair as the receiver of magnetic fields and the source of magnetic effects. The existence of such pairs was recently detected in the two life-supporting processes of paramount importance — in enzymatic ATP and DNA syntheses. The bibliography includes 80 references.