Sample records for controlled space charge

  1. Design guidelines for assessing and controlling spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Garrett, H. B.; Whittlesey, A. C.; Stevens, N. J.

    1984-01-01

    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.

  2. Design guidelines for assessing and controlling spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Garrett, H. B.; Whittlesey, A.; Stevens, N. J.

    1985-01-01

    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.

  3. Battery charge regulator is coulometer controlled

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1967-01-01

    Coulometer controlled battery charge regulator controls nickel/cadmium type primary cells used in space applications. The use of the coulometer as an ampere hour measuring device permits all available current to go to the battery until full charge state is reached, at which time the charge rate is automatically reduced.

  4. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  5. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films.

    PubMed

    Hu, Weijin; Wang, Zhihong; Du, Yuanmin; Zhang, Xi-Xiang; Wu, Tom

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  6. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  7. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOEpatents

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  8. Space charge effects on the third order coupled resonance

    NASA Astrophysics Data System (ADS)

    Franchetti, Giuliano; Gilardoni, Simone; Huschauer, Alexander; Schmidt, Frank; Wasef, Raymond

    2017-08-01

    The effect of space charge on bunched beams has been the subject of numerous numerical and experimental studies in the first decade of 2000. Experimental campaigns performed at the CERN Proton Synchrotron in 2002 and at the GSI SIS18 in 2008 confirmed the existence of an underlying mechanism in the beam dynamics of periodic resonance crossing induced by the synchrotron motion and space charge. In this article we present an extension of the previous studies to describe the effect of space charge on a controlled coupled (2D) third order resonance. The experimental and simulation results of this latest campaign shed a new light on the difficulties of the 2D particle dynamics. We find striking experimental evidence that space charge and the coupled resonance create an unusual coupling in the phase space, leading to the formation of an asymmetric halo. Moreover, this study demonstrates a clear link between halo formation and fixed-lines.

  9. Assessment and control of electrostatic charges. [hazards to space missions

    NASA Technical Reports Server (NTRS)

    Barrett, M.

    1974-01-01

    The experience is described of NASA and DOD with electrostatic problems, generation mechanisms, and type of electrostatic hazards. Guidelines for judging possible effects of electrostatic charges on space missions are presented along with mathematical formulas and definitions.

  10. Experimental Evidence for Space-Charge Effects between Ions of the Same Mass-to-Charge in Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Wong, Richard L.; Amster, I. Jonathan

    2009-01-01

    It is often stated that ions of the same mass-to-charge do not induce space-charge frequency shifts among themselves in an ion cyclotron resonance mass spectrometry measurement. Here, we demonstrate space-charge induced frequency shifts for ions of a single mass-to-charge. The monoisotopic atomic ion, Cs+, was used for this study. The measured frequency is observed to decrease linearly with an increase in the number of ions, as has been reported previously for space-charge effects between ions of different mass-to-charge. The frequency shift between ions of the same m/z value are compared to that induced between ions of different m/z value, and is found to be 7.5 times smaller. Control experiments were performed to ensure that the observed space-charge effects are not artifacts of the measurement or of experimental design. The results can be rationalized by recognizing that the electric forces between ions in a magnetic field conform to the weak form of the Newton's third law, where the action and reaction forces do not cancel exactly. PMID:19562102

  11. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    DOE PAGES

    Halavanau, A.; Piot, P.

    2016-03-03

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge ismore » used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.« less

  12. Battery charge control with temperature compensated voltage limit

    NASA Technical Reports Server (NTRS)

    Thierfelder, H. E.

    1983-01-01

    Battery charge control for orbiting spacecraft with mission durations from three to ten years, is a critical design feature that is discussed. Starting in 1974, the General Electric Space Systems Division designed, manufactured and tested battery systems for six different space programs. Three of these are geosynchronous missions, two are medium altitude missions and one is a near-earth mission. All six power subsystems contain nickel cadmium batteries which are charged using a temperature compensated voltage limit. This charging method was found to be successful in extending the life of nickel cadmium batteries in all three types of earth orbits. Test data and flight data are presented for each type of orbit.

  13. A Flywheel Energy Storage System Demonstration for Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy

    2003-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented.

  14. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  15. Homogenous charge compression ignition engine having a cylinder including a high compression space

    DOEpatents

    Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

    2003-12-30

    The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

  16. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; NeergaardParker, Linda

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (10 s kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from 0.6 kV to 2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  17. Control of a High Speed Flywheel System for Energy Storage in Space Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy; Santiago, Walter

    2004-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented demonstrating the successful operation of the flywheel control up to the rated speed of 60,000 rpm.

  18. Pulsed jet combustion generator for non-premixed charge engines

    DOEpatents

    Oppenheim, A. K.; Stewart, H. E.

    1990-01-01

    A device for introducing fuel into the head space of cylinder of non-premixed charge (diesel) engines is disclosed, which distributes fuel in atomized form in a plume, whose fluid dynamic properties are such that the compression heated air in the cylinder head space is entrained into the interior of the plume where it is mixed with and ignites the fuel in the plume interior, to thereby control combustion, particularly by use of a multiplicity of individually controllable devices per cylinder.

  19. Space Weather Impacts on Spacecraft Design and Operations in Auroral Charging Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda N.

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth s land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems are episodically exposed to environments characterized by a high flux of energetic (approx.1 to 10 s kilovolt) electrons in regions of very low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. While it is well established that charging conditions in geostationary orbit are responsible for many anomalies and even spacecraft failures, to date there have been relatively few such reports due to charging in auroral environments. This presentation first reviews the physics of the space environment and its interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments and discuss how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  20. The effect of plasma density and emitter geometry on space charge limits for field emitter array electron charge emission into a space plasma

    NASA Astrophysics Data System (ADS)

    Morris, Dave; Gilchrist, Brian; Gallimore, Alec

    2001-02-01

    Field Emitter Array Cathodes (FEACs) are a new technology being developed for several potential spacecraft electron emission and charge control applications. Instead of a single hot (i.e., high powered) emitter, or a gas dependant plasma contactor, FEAC systems consist of many (hundreds or thousands) of small (micron level) cathode/gate pairs printed on a semiconductor wafer that effect cold field emission at relatively low voltages. Each individual cathode emits only micro-amp level currents, but a functional array is capable of amp/cm2 current densities. It is hoped that thus FEAC offers the possibility of a relatively low-power, simple to integrate, and inexpensive technique for the high level of current emissions that are required for an electrodynamic tether (EDT) propulsion mission. Space charge limits are a significant concern for the EDT application. Vacuum chamber tests and PIC simulations are being performed at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory and Space Physics Research Laboratory to determine the effect of plasma density and emitter geometry on space charge limitations. The results of this work and conclusions to date of how to best mitigate space charge limits will be presented. .

  1. Flywheel Charge/Discharge Control Developed

    NASA Technical Reports Server (NTRS)

    Beach, Raymond.F.; Kenny, Barbara H.

    2001-01-01

    A control algorithm developed at the NASA Glenn Research Center will allow a flywheel energy storage system to interface with the electrical bus of a space power system. The controller allows the flywheel to operate in both charge and discharge modes. Charge mode is used to store additional energy generated by the solar arrays on the spacecraft during insolation. During charge mode, the flywheel spins up to store the additional electrical energy as rotational mechanical energy. Discharge mode is used during eclipse when the flywheel provides the power to the spacecraft. During discharge mode, the flywheel spins down to release the stored rotational energy.

  2. Galileo IOV Electrical Power Subsystem Relies On Li-Ion Batter Charge Management Controlled By Hardware

    NASA Astrophysics Data System (ADS)

    Douay, N.

    2011-10-01

    In the frame of GALILEO In-Orbit Validation program which is composed of 4 satellites, Thales Alenia Space France has designed, developed and tested the Electrical Power Subsystem. Besides some classical design choices like: -50V regulated main power bus provided by the PCDU manufactured by Terma (DK), -Solar array, manufactured by Dutch-Space (NL), using Ga-As triple junction technology from Azur Space Power Solar GmbH, -SAFT (FR) Lithium-ion Battery for which cell package balancing function is required, -Solar Array Drive Mechanism, provided by RUAG Space Switzerland, to transfer the power. This subsystem features a fully autonomous, failure tolerant, battery charge management able to operate even after a complete unavailability of the on-board software. The battery charge management is implemented such that priority is always given to satisfy the satellite main bus needs in order to maintain the main bus regulation under MEA control. This battery charge management principle provides very high reliability and operational robustness. So, the paper describes : -the battery charge management concept using a combination of PCDU hardware and relevant battery lines monitoring, -the functional aspect of the single point failure free S4R (Sequential Switching Shunt Switch Regulator) and associated performances, -the failure modes isolated and passivated by this architecture. The paper will address as well the autonomous balancing function characteristics and performances.

  3. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    NASA Technical Reports Server (NTRS)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  4. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni

    2004-01-01

    The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.

  5. Quantum interference and control of the dynamic Franz-Keldysh effect: Generation and detection of terahertz space-charge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Rui; Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045; Jacobs, Paul

    2013-06-24

    The Dynamic Franz Keldysh Effect (DFKE) is produced and controlled in bulk gallium arsenide by quantum interference without the aid of externally applied fields and is spatially and temporally resolved using ellipsometric pump-probe techniques. The {approx}3 THz internal driving field for the DFKE is a transient space-charge field that is associated with a critically damped coherent plasma oscillation produced by oppositely traveling ballistic electron and hole currents that are injected by two-color quantum interference techniques. The relative phase and polarization of the two pump pulses can be used to control the DFKE.

  6. Quantum interference and control of the dynamic Franz-Keldysh effect: Generation and detection of terahertz space-charge fields

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Jacobs, Paul; Zhao, Hui; Smirl, Arthur L.

    2013-06-01

    The Dynamic Franz Keldysh Effect (DFKE) is produced and controlled in bulk gallium arsenide by quantum interference without the aid of externally applied fields and is spatially and temporally resolved using ellipsometric pump-probe techniques. The ˜3 THz internal driving field for the DFKE is a transient space-charge field that is associated with a critically damped coherent plasma oscillation produced by oppositely traveling ballistic electron and hole currents that are injected by two-color quantum interference techniques. The relative phase and polarization of the two pump pulses can be used to control the DFKE.

  7. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  8. Polaris Instrument Development and PARI Experience

    NASA Astrophysics Data System (ADS)

    Stewart, Nathan

    2011-01-01

    At the Pisgah Astronomical Research Institute (PARI) in Rosman, NC I spent 8 weeks as the NC Space Grant/J. Donald Cline Astronomy Scholar. I developed multiple projects and assisted as a mentor to PARI Space Science Lab and Duke TIP high school gifted student program which both took place during my stay. My main focus was the development of the Polaris imaging telescope. This telescope is used to take images of the pulsating variable star Polaris. These readings are used to make seeing estimates for the air column above PARI. The system stores and archives images and analyzes them for magnitude change and movement of the stellar image. In addition to the Polaris project I developed a solar panel voltage and charge monitoring system which involved me working with charge controllers and photovoltaic technology. I developed a charging scheme using Flexmax 60 charge controller. Data is recorded and transmitted via optical fiber for analysis and correlation with solar zenith angle.

  9. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Edeen, Marybeth; Spetch, William; Dalton, Penni; Keening, Thomas

    2003-01-01

    Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on the ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies

  10. Assessment and Control of International Space Station Spacecraft Charging Risks

    NASA Astrophysics Data System (ADS)

    Koontz, S.; Edeen, M.; Spetch, W.; Dalton, P.; Keeping, T.; Minow, J.

    2003-12-01

    Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging, albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies.

  11. Observations of Space Charge effects in the Spallation Neutron Source Accumulator Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potts III, Robert E; Cousineau, Sarah M; Holmes, Jeffrey A

    2012-01-01

    The Spallation Neutron Source accumulator ring was designed to allow independent control of the transverse beam distribution in each plane. However, at high beam intensities, nonlinear space charge forces can strongly influence the final beam distribution and compromise our ability to independently control the transverse distributions. In this study we investigate the evolution of the beam at intensities of up to ~8x10^13 ppp through both simulation and experiment. Specifically, we analyze the evolution of the beam distribution for beams with different transverse aspect ratios and tune splits. We present preliminary results of simulations of our experiments.

  12. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Killow, C. J.; Korsakova, N.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C.; Sumner, T. J.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.; LISA Pathfinder Collaboration

    2017-04-01

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s-2 Hz-1 /2 across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  13. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder.

    PubMed

    Armano, M; Audley, H; Auger, G; Baird, J T; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Cruise, M; Danzmann, K; de Deus Silva, M; Diepholz, I; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fitzsimons, E D; Flatscher, R; Freschi, M; Gallegos, J; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Grimani, C; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hueller, M; Huesler, J; Inchauspé, H; Jennrich, O; Jetzer, P; Johlander, B; Karnesis, N; Kaune, B; Killow, C J; Korsakova, N; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Madden, S; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Moroni, A; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Ramos-Castro, J; Reiche, J; Romera Perez, J A; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sarra, P; Schleicher, A; Slutsky, J; Sopuerta, C; Sumner, T J; Texier, D; Thorpe, J I; Trenkel, C; Vetrugno, D; Vitale, S; Wanner, G; Ward, H; Wass, P J; Wealthy, D; Weber, W J; Wittchen, A; Zanoni, C; Ziegler, T; Zweifel, P

    2017-04-28

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0  fm s^{-2} Hz^{-1/2} across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  14. Understanding space charge and controlling beam loss in high intensity synchrotrons

    NASA Astrophysics Data System (ADS)

    Cousineau, Sarah M.

    Future high intensity synchrotrons will require unprecedented control of beam loss in order to comply with radiation safety regulations and to allow for safe, hands-on maintenance of machine hardware. A major cause of beam loss in high intensity synchrotrons is the space charge force of the beam, which can lead to beam halo and emittance dilution. This dissertation presents a comprehensive study of space charge effects in high intensity synchrotron beams. Experimental measurements taken at the Proton Storage Ring (PSR) in Los Alamos National Laboratory and detailed simulations of the experiments are used to identify and characterize resonances that affect these beams. The collective motion of the beam is extensively studied and is shown to be more relevant than the single particle dynamics in describing the resonance response. The emittance evolution of the PSR beam and methods for reducing the space-charge-induced emittance growth are addressed. In a separate study, the emittance evolution of an intense space charge beam is experimentally measured at the Cooler Injector Synchrotron (CIS) at Indiana University. This dissertation also investigates the sophisticated two-stage collimation system of the future Spallation Neutron Source (SNS) high intensity accumulator ring. A realistic Monte-Carlo collimation simulation is developed and used to optimize the SNS ring collimation system parameters. The finalized parameters and predicted beam loss distribution around the ring are presented. The collimators will additionally be used in conjunction with a set of fast kickers to remove the beam from the gap region before the rise of the extraction magnets. The gap cleaning process is optimized and the cleaning efficiency versus momentum spread of the beam is examined.

  15. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Orbiting approximately 400 km above the Earth, the International Space Station (ISS) is a unique research laboratory used to conduct ground-breaking science experiments in space. The ISS has eight Solar Array Wings (SAW), and each wing is 11.7 meters wide and 35.1 meters long. The SAWs are controlled individually to maximize power output, minimize stress to the ISS structure, and minimize interference with other ISS operations such as vehicle dockings and Extra-Vehicular Activities (EVA). The Solar Arrays are designed to operate at 160 Volts. These large, high power solar arrays are negatively grounded to the ISS and collect charged particles (predominately electrons) as they travel through the space plasma in the Earth's ionosphere. If not controlled, this collected charge causes floating potential variations which can result in arcing, causing injury to the crew during an EVA or damage to hardware [1]. The environmental catalysts for ISS floating potential variations include plasma density and temperature fluctuations and magnetic induction from the Earth's magnetic field. These alone are not enough to cause concern for ISS, but when they are coupled with the large positive potential on the solar arrays, floating potentials up to negative 95 Volts have been observed. Our goal is to differentiate the operationally induced fluctuations in floating potentials from the environmental causes. Differentiating will help to determine what charging can be controlled, and we can then design the proper operations controls for charge collection mitigation. Additionally, the knowledge of how high power solar arrays interact with the environment and what regulations or design techniques can be employed to minimize charging impacts can be applied to future programs.

  16. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  17. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  18. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  19. Active control of spacecraft potentials at geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Deforest, S. E.

    1976-01-01

    Tests have been conducted concerning the active control of the potentials of the geosynchronous satellites ATS-5 and ATS-6. The ATS-5 tests show that a simple electron emitter can be used to reduce the magnitude of the potential of a spacecraft which has been charged negatively by the environment. The ATS-6 ion thruster had also a pronounced effect on the potential barrier. In this case, the flux of high-energy primary ions and of low-charge exchange ions produces a space-charge neutralization effect which the electron gun alone cannot achieve.

  20. Active control of bright electron beams with RF optics for femtosecond microscopy

    DOE PAGES

    Williams, J.; Zhou, F.; Sun, T.; ...

    2017-08-01

    A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. In this paper, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimalmore » compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ~100 fs and ~1 eV resolutions with 10 6 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches.« less

  1. Active control of bright electron beams with RF optics for femtosecond microscopy

    PubMed Central

    Williams, J.; Zhou, F.; Sun, T.; Tao, Z.; Chang, K.; Makino, K.; Berz, M.; Duxbury, P. M.; Ruan, C.-Y.

    2017-01-01

    A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. Here, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimal compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ∼100 fs and ∼1 eV resolutions with 106 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches. PMID:28868325

  2. EXPERIMENTAL MEASUREMENT AND INTERPRETATION OF VOLT-AMPERE CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingrich, J.E.; Warner, C.; Weeks, C.C.

    1962-07-01

    Cylindrical and parallel-plane cesium vapor thermionic converters were used for obtaining volt-ampere curves for systematic variations of emitter, collector, and cesium reservoir temperatures, with electrode spacings ranging from a few to many mean free paths, and with space charge conditions varying from electron-rich to ion-rich. The resulting curves exhibit much variety. The saturation currents agree well with the data of Houston and Aamodt for the space charge neutralized, few-mean-free-path cases. Apparent'' saturation currents for space charge limited cases were observed and were always less than the currents predicted by Houston and Aamodt. Several discontinuities in slope were observed in themore » reverse current portion of the curves and these have tentatively been identified with volume ionization of atoms in both the ground and excited states. Similar processes may be important for obtaining the ignited mode. The methods used to measure static and dynamic volt-ampere curves are described. The use of a controlled-current load has yielded a negative resistance'' region in the curves which show the ignited mode. The curves obtained with poor current control do not show this phenomenon. Extinction is considered from the standpoint of Kaufmann' s criterion for stability. (auth)« less

  3. Impact of Solar Array Position on ISS Vehicle Charging

    NASA Technical Reports Server (NTRS)

    Alred, John; Mikatarian, Ronald; Koontz, Steve

    2006-01-01

    The International Space Station (ISS), because of its large structure and high voltage solar arrays, has a complex plasma interaction with the ionosphere in low Earth orbit (LEO). This interaction of the ISS US Segment photovoltaic (PV) power system with the LEO ionospheric plasma produces floating potentials on conducting elements of the ISS structure relative to the local plasma environment. To control the ISS floating potentials, two Plasma Contactor Units (PCUs) are installed on the Z1 truss. Each PCU discharges accumulated electrons from the Space Station structure, thus reducing the potential difference between the ISS structure and the surrounding charged plasma environment. Operations of the PCUs were intended to keep the ISS floating potential to 40 Volts (Reference 1). Exposed dielectric surfaces overlying conducting structure on the Space Station will collect an opposite charge from the ionosphere as the ISS charges. In theory, when an Extravehicular Activity (EVA) crewmember is tethered to structure via the crew safety tether or when metallic surfaces of the Extravehicular Mobility Unit (EMU) come in contact with conducting metallic surfaces of the ISS, the EMU conducting components, including the perspiration-soaked crewmember inside, can become charged to the Space Station floating potential. The concern is the potential dielectric breakdown of anodized aluminum surfaces on the EMU producing an arc from the EMU to the ambient plasma, or nearby ISS structure. If the EMU arcs, an electrical current of an unknown magnitude and duration may conduct through the EVA crewmember, producing an unacceptable condition. This electrical current may be sufficient to startle or fatally shock the EVA crewmember (Reference 2). Hence, as currently defined by the EVA community, the ISS floating potential for all nominal and contingency EVA worksites and translation paths must have a magnitude less than 40 volts relative to the local ionosphere at all times during EVA. Arcing from the EMU is classified as a catastrophic hazard, which requires two-failure tolerant controls, i.e., three hazard controls. Each PCU is capable of maintaining the ISS floating potential below the requirement during EVA. The two PCUs provide a single failure tolerant control of ISS floating potential. In the event of the failure of one or two PCUs, a combination of solar array shunting and turning the solar arrays into their own wakes will be used to supply control of the plasma hazard (Reference 3). The purpose of this paper is to present on-orbit information that shows that ISS solar array placement with respect to the ISS velocity vector can control solar array plasma charging, and hence, provide an operational control for the plasma hazard. Also, this paper will present on-orbit information that shows that shunting of the ISS solar arrays can control solar array plasma charging, and hence, provide an additional operational control for the plasma hazard.

  4. Proceedings of the Spacecraft Charging Technology Conference: Executive Summary

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Whipple, E. C., Jr.; Stevens, N. J.; Minges, M. L.; Lehn, W. L.; Bunn, M. H.

    1977-01-01

    Aerospace environments are reviewed in reference to spacecraft charging. Modelling, a theoretical scheme which can be used to describe the structure of the sheath around the spacecraft and to calculate the charging currents within, is discussed. Materials characterization is considered for experimental determination of the behavior of typical spacecraft materials when exposed to simulated geomagnetic substorm conditions. Materials development is also examined for controlling and minimizing spacecraft charging or at least for distributing the charge in an equipotential manner, using electrical conductive surfaces for materials exposed to space environment.

  5. Controllable transition from positive space charge to negative space charge in an inverted cylindrical magnetron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rane, R., E-mail: ramu@ipr.res.in; Ranjan, M.; Mukherjee, S.

    2016-01-15

    The combined effect of magnetic field (B), gas pressure (P), and the corresponding discharge voltage on the discharge properties of argon in inverted cylindrical magnetron has been investigated. In the experiment, anode is biased with continuous 10 ms sinusoidal half wave. It is observed that at a comparatively higher magnetic field (i.e., >200 gauss) and lower operating pressure (i.e., <1 × 10{sup −3} mbar), the discharge extinguishes and demands a high voltage to reignite. Discharge current increases with increase in magnetic field and starts reducing at sufficiently higher magnetic field for a particular discharge voltage due to restricted electron diffusion towards the anode.more » It is observed that B/P ratio plays an important role in sustaining the discharge and is constant for a discharge voltage. The discharge is transformed to negative space charge regime from positive space charge regime at certain B/P ratio and this ratio varies linearly with the discharge voltage. The space charge reversal is indicated by the radial profile of the floating potential and plasma potential in between two electrodes for different magnetic fields. At a particular higher magnetic field (beyond 100 gauss), the floating potential increases gradually with the radial distance from cathode, whereas it remains almost constant at lower magnetic field.« less

  6. Flight evidence of spacecraft surface contamination rate enhancement by spacecraft charging obtained with a quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Clark, D. M.; Hall, D. F.

    1980-01-01

    The significance of the fraction of the mass outgassed by a negatively charged space vehicle which is ionized within the vehicle plasma sheath and electrostatically reattracted to the space vehicle was determined. The ML-12 retarding potential analyzer/temperature controlled quartz crystal microbalances (RPA/TQCMs) distinguishes between charged and neutral molecules and investigates contamination mass transport mechanism. Two long term, quick look flight data sets indicate that on the average a significant fraction of mass arriving at one RPA/TQCM is ionized. It is assumed that vehicle frame charging during these periods was approximately uniformly distributed in degree and frequency. It is shown that electrostatic reattraction of ionized molecules is an important contamination mechanism at and near geosynchronous altitudes.

  7. A three-dimensional spacecraft-charging computer code

    NASA Technical Reports Server (NTRS)

    Rubin, A. G.; Katz, I.; Mandell, M.; Schnuelle, G.; Steen, P.; Parks, D.; Cassidy, J.; Roche, J.

    1980-01-01

    A computer code is described which simulates the interaction of the space environment with a satellite at geosynchronous altitude. Employing finite elements, a three-dimensional satellite model has been constructed with more than 1000 surface cells and 15 different surface materials. Free space around the satellite is modeled by nesting grids within grids. Applications of this NASA Spacecraft Charging Analyzer Program (NASCAP) code to the study of a satellite photosheath and the differential charging of the SCATHA (satellite charging at high altitudes) satellite in eclipse and in sunlight are discussed. In order to understand detector response when the satellite is charged, the code is used to trace the trajectories of particles reaching the SCATHA detectors. Particle trajectories from positive and negative emitters on SCATHA also are traced to determine the location of returning particles, to estimate the escaping flux, and to simulate active control of satellite potentials.

  8. Space platform power system hardware testbed

    NASA Technical Reports Server (NTRS)

    Sable, D.; Patil, A.; Sizemore, T.; Deuty, S.; Noon, J.; Cho, B. H.; Lee, F. C.

    1991-01-01

    The scope of the work on the NASA Space Platform includes the design of a multi-module, multi-phase boost regulator, and a voltage-fed, push-pull autotransformer converter for the battery discharger. A buck converter was designed for the charge regulator. Also included is the associated mode control electronics for the charger and discharger, as well as continued development of a comprehensive modeling and simulation tool for the system. The design of the multi-module boost converter is discussed for use as a battery discharger. An alternative battery discharger design is discussed using a voltage-fed, push-pull autotransformer converter. The design of the charge regulator is explained using a simple buck converter. The design of the mode controller and effects of locating the bus filter capacitor bank 20 feet away from the power ORU are discussed. A brief discussion of some alternative topologies for battery charging and discharging is included. The power system modeling is described.

  9. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  10. FAST TRACK COMMUNICATION Generation of stable multi-jets by flow-limited field-injection electrostatic spraying and their control via I-V characteristics

    NASA Astrophysics Data System (ADS)

    Gu, W.; Heil, P. E.; Choi, H.; Kim, K.

    2010-12-01

    The I-V characteristics of flow-limited field-injection electrostatic spraying (FFESS) were investigated, exposing a new way to predict and control the specific spraying modes from single-jet to multi-jet. Monitoring the I-V characteristics revealed characteristic drops in the current upon formation of an additional jet in the multi-jet spraying mode. For fixed jet numbers, space-charge-limited current behaviour was measured which was attributed to space charge in the dielectric liquids between the needle electrode and the nozzle opening. The present work establishes that FFESS can, in particular, generate stable multiple jets and that their control is possible through monitoring the I-V characteristics. This can allow for automatic control of the FFESS process and expedite its future scientific and industrial applications.

  11. Charge transport in organic semiconductors.

    PubMed

    Bässler, Heinz; Köhler, Anna

    2012-01-01

    Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.

  12. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; hide

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the space environment forecast input to the ISS charging model indicates floating potentials (FP) within specified limits. These recommendations were based on the persistence of conditions in the space environment due to the current low solar cycle and belief in the accuracy and completeness of the ISS charging model. Subsequently, a Noncompliance Report (NCR), ISS-NCR-232G, Lack of Two-fault Tolerance to EVA Crew Shock in the Low Earth Orbit Plasma Environment, was signed in September 2013 specifying new guidelines for the use of shock hazard controls based on a forecast of the space environment from ISS plasma measurements taken prior to the EVA [ISS-EVA-312-AC, 2012]. This NESC assessment re-evaluates EVA charging hazards through a process that is based on over 14 years of ISS operations, charging measurements, laboratory tests, EMU studies and modifications, and safety reports. The assessment seeks an objective review of the plasma charging hazards associated with EVA operations to determine if any of the present hazard controls can safely change the PCU utilization plan to allow more flexibility in ISS operations during EVA preparation and execution.

  13. Charge control experiments on a CH-53E helicopter in a dusty environment

    NASA Technical Reports Server (NTRS)

    Moore, C. B.; Jones, J. J.; Hunyady, S. J.

    1991-01-01

    Charge control tests were carried out on a ground based, Marine Corps helicopter to determine if control of the electric fields acting on the engine exhaust gases could be used to reduce the electrification of the helicopter when it operated in a dusty atmosphere. The test aircraft was flown to a dusty, unpaved area and was then isolated electrically from the earth. When the helicopter engines were operated at ground idle with the rotor locked, the isolated aircraft charged positively, as had been observed previously. However, when the rotor brake was released and the turning rotor created a downdraft that raised dust clouds, the aircraft always became charged more positively, to potentials ranging form +30 to +45 kV. The dust clouds raised by the rotor downwash invariably carried negative space charges with concentrations of up to -100 nC/cu m and caused surface electric fields with strengths of up to 10 kV/m immediately down wind of the aircraft. The natural charging of the helicopter operating in these dust clouds was successfully opposed by control of the electric fields acting on the hot, electrically conductive exhaust gases. The control was achieved by placing electrostatic shield around the exhausts.

  14. Isovector and flavor-diagonal charges of the nucleon

    NASA Astrophysics Data System (ADS)

    Gupta, Rajan; Bhattacharya, Tanmoy; Jang, Yong-Chull; Lin, Huey-Wen; Yoon, Boram

    2018-03-01

    We present an update on the status of the calculations of isovector and flavor-diagonal charges of the nucleon. The calculations of the isovector charges are being done using ten 2+1+1-flavor HISQ ensembles generated by the MILC collaboration covering the range of lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and three-states fits to the three-point correlators. The calculations of the disconnected diagrams needed to estimate flavor-diagonal charges are being done on a subset of six ensembles using the stocastic method. Final results are obtained using a simultaneous fit in M2π, the lattice spacing a and the finite volume parameter MπL keeping only the leading order corrections.

  15. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference

    PubMed Central

    Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2013-01-01

    A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale, orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau–Zener–Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications. PMID:23360992

  16. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and conductive concepts have resulted in several important findings that are of interest to all thermal designers and systems integrators.

  17. Secondary electron generation, emission and transport: Effects on spacecraft charging and NASCAP models

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mandell, Myron; Roche, James C.; Purvis, Carolyn

    1987-01-01

    Secondary electrons control a spacecraft's response to a plasma environment. To accurately simulate spacecraft charging, the NASA Charging Analyzer Program (NASCAP) has mathematical models of the generation, emission and transport of secondary electrons. The importance of each of the processes and the physical basis for each of the NASCAP models are discussed. Calculations are presented which show that the NASCAP formulations are in good agreement with both laboratory and space experiments.

  18. Photon excitation enabled large aperture space-charge-controlled potassium tantalate niobate (KTN) beam deflector

    NASA Astrophysics Data System (ADS)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Shang, Annan; Lee, Yun Goo; Yin, Shizhuo; Dubinskii, Mark; Hoffman, Robert C.

    2018-03-01

    To overcome the depth limitation of the space-charge-controlled (SCC) potassium tantalate niobate (KTN) deflectors, we report in this paper a method of increasing the aperture of SCC-KTN deflectors by harnessing the physical mechanism of blue light photon excitation. The experimental results show that the deflection angle can be increased from 0.7 mrad without the blue light excitation to 2.5 mrad with the blue light excitation at a penetration depth of 5 mm under the same external applied voltage, which is consistent with the theoretical analysis. This represents a substantial increase in the deflection angle at a much deeper penetration depth, which can be very useful for applications such as high speed 3D printings and displays.

  19. Environmental charging of spacecraft-tests of thermal control materials for use on the global positioning system flight space vehicle. Part 2: Specimen 6 to 9

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Berkopec, F. D.; Blech, R. A.

    1976-01-01

    The NASA/USAF program on the Environmental Charging of Spacecraft Surfaces consists, in part, of experimental efforts directed toward evaluating the response of materials to the environmental charged particle flux. Samples of thermal blankets of the type to be used on the Global Positioning System Flight Space Vehicles were tested to determine their response to electron flux. The primary result observed was that no discharges were obtained with the quartz-fiber-fabric-covered multilayer insulation specimen. The taped aluminized polyester grounding system used on all specimens did not appear to grossly deteriorate with time; however, the specimens require specific external pressure to maintain constant grounding system resistance.

  20. A Study of the Nature and Origins of Pyroelectricity and Piezoelectricity in Polyvinylidenefluoride and Its Co-Polymers.

    DTIC Science & Technology

    1980-01-01

    OF THIS PAOE(3tn Dea afm 20. Contd. It is possible that space charges are also present in the’film. However, the distribution of space charges in the...the discontinuities so that space charge effects may cause field perturbations. On the other hand, the corona charging procedure may drive ions into...trapped space charge effects; (iv) tunnelling of charge from the electrodes to empty traps; (v) hopping of charge carriers through localized states. The

  1. Varactor with integrated micro-discharge source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizondo-Decanini, Juan M.; Manginell, Ronald P.; Moorman, Matthew W.

    2016-10-18

    An apparatus that includes a varactor element and an integrated micro-discharge source is disclosed herein. In a general embodiment, the apparatus includes at least one np junction and at least one voltage source that is configured to apply voltage across the np junction. The apparatus further includes an aperture that extends through the np junction. When the voltage is applied across the np junction, gas in the aperture is ionized, forming a plasma, in turn causing a micro-discharge (of light, charge particles, and space charge) to occur. The light (charge particles, and space charge) impinges upon the surface of themore » np junction exposed in the aperture, thereby altering capacitance of the np junction. When used within an oscillator circuit, the effect of the plasma on the np-junction extends the capacitance changes of the np-junction and extends the oscillator frequency range in ways not possible by a conventional voltage controlled oscillator (VCO).« less

  2. Local gate control in carbon nanotube quantum devices

    NASA Astrophysics Data System (ADS)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single (non-degenerate) mode. Plateau structure is investigated as a function of bias voltage, temperature, and magnetic field. We speculate on the origin of this surprising quantization, which appears to lack band and spin degeneracy.

  3. Failures and anomalies attributed to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Leach, R. D.; Alexander, M. B. (Editor)

    1995-01-01

    The effects of spacecraft charging can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are protected against charging is an important engineering function necessary to assure mission success. Spacecraft charging is expected to have a significant role in future space activities and programs. Objectives of this reference publication are to present a brief overview of spacecraft charging, to acquaint the reader with charging history, including illustrative cases of charging anomalies, and to introduce current spacecraft charging prevention activities of the Electromagnetics and Environments Branch, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).

  4. Space charge effect in spectrometers of ion mobility increment with cylindrical drift chamber.

    PubMed

    Elistratov, A A; Sherbakov, L A

    2007-01-01

    We have amplified the model for the drift of ions under a non-uniform high-frequency electric field by taking space charge effect into account. By this means, we have investigated the effect of space charge on the dynamics of a single type of ions in a spectrometer of ion mobility increment with a cylindrical drift chamber. The counteraction of the space charge effect and the focusing effect is investigated. The output ion current saturation caused by the effect of the space charge is observed. The shape of the ion peak taking into consideration the space charge effect has been obtained. We show that the effect of the space charge is sufficient for the relative ion density greater than 10 ppt by order of magnitude (for a cylindrical geometry spectrometer with typical parameters).

  5. Comparison of Classical and Charge Storage Methods for Determining Conductivity of Thin Film Insulators

    NASA Technical Reports Server (NTRS)

    Swaminathan, Prasanna; Dennison, J. R.; Sim, Alec; Brunson, Jerilyn; Crapo, Eric; Frederickson, A. R.

    2004-01-01

    Conductivity of insulating materials is a key parameter to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. Classical ASTM and IEC methods to measure thin film insulator conductivity apply a constant voltage to two electrodes around the sample and measure the resulting current for tens of minutes. However, conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator. Charge decay methods expose one side of the insulator in vacuum to sequences of charged particles, light, and plasma, with a metal electrode attached to the other side of the insulator. Data are obtained by capacitive coupling to measure both the resulting voltage on the open surface and emission of electrons from the exposed surface, as well monitoring currents to the electrode. Instrumentation for both classical and charge storage decay methods has been developed and tested at Jet Propulsion Laboratory (JPL) and at Utah State University (USU). Details of the apparatus, test methods and data analysis are given here. The JPL charge storage decay chamber is a first-generation instrument, designed to make detailed measurements on only three to five samples at a time. Because samples must typically be tested for over a month, a second-generation high sample throughput charge storage decay chamber was developed at USU with the capability of testing up to 32 samples simultaneously. Details are provided about the instrumentation to measure surface charge and current; for charge deposition apparatus and control; the sample holders to properly isolate the mounted samples; the sample carousel to rotate samples into place; the control of the sample environment including sample vacuum, ambient gas, and sample temperature; and the computer control and data acquisition systems. Measurements are compared here for a number of thin film insulators using both methods at both facilities. We have found that conductivity determined from charge storage decay methods is 102 to 104 larger than values obtained from classical methods. Another Spacecraft Charging Conference presentation describes more extensive measurements made with these apparatus. This work is supported through funding from the NASA Space Environments and Effects Program and the USU Space Dynamics Laboratory Enabling Technologies Program.

  6. The influence of space charge shielding on dielectric multipactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.; Liu, G. Z.; Tang, C. X.

    2009-05-15

    A model of space charge influenced by multipactor electrons and plasma has been established. The positive space charge potential/field for vacuum dielectric multipactor is analytically studied. After considering the plasma, the positive space charge field is further shielded, and multipactor saturates at higher surface accumulated field, compared with that for only considering multipactor electrons. The negative space charge potential/field for dielectric breakdown at high pressure is analyzed. It is found that the negative potential can be nonmonotonously varied, forming a minimum potential well.

  7. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1998-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has already added to the existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The object of this program was to develop two types of passive electrically conductive TCMS.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Xiaoying; Rybarcyk, Larry

    HPSim is a GPU-accelerated online multi-particle beam dynamics simulation tool for ion linacs. It was originally developed for use on the Los Alamos 800-MeV proton linac. It is a “z-code” that contains typical linac beam transport elements. The linac RF-gap transformation utilizes transit-time-factors to calculate the beam acceleration therein. The space-charge effects are computed using the 2D SCHEFF (Space CHarge EFFect) algorithm, which calculates the radial and longitudinal space charge forces for cylindrically symmetric beam distributions. Other space- charge routines to be incorporated include the 3D PICNIC and a 3D Poisson solver. HPSim can simulate beam dynamics in drift tubemore » linacs (DTLs) and coupled cavity linacs (CCLs). Elliptical superconducting cavity (SC) structures will also be incorporated into the code. The computational core of the code is written in C++ and accelerated using the NVIDIA CUDA technology. Users access the core code, which is wrapped in Python/C APIs, via Pythons scripts that enable ease-of-use and automation of the simulations. The overall linac description including the EPICS PV machine control parameters is kept in an SQLite database that also contains calibration and conversion factors required to transform the machine set points into model values used in the simulation.« less

  9. A model and simulation of fast space charge pulses in polymers

    NASA Astrophysics Data System (ADS)

    Lv, Zepeng; Rowland, Simon M.; Wu, Kai

    2017-11-01

    The transport of space charge packets across polyethylene and epoxy resin in high electric fields has been characterized as fast or slow depending on packet mobility. Several explanations for the formation and transport of slow space charge packets have been proposed, but the origins of fast space charge pulses, with mobilities above 10-11 m2 V-1 s-1, are unclear. In one suggested model, it is assumed that the formation of fast charge pulses is due to discontinuous electromechanical compression and charge injection at the electrode-insulation interface, and their transport is related to corresponding relaxation processes. In that model, charges travel as a pulse because of group polarization. This paper provides an alternative model based on the reduction of charge carrier activation energy due to charge density triggered polymer chain movement and subsequent chain relaxation times. The generation and transport of fast charge pulses are readily simulated by a bipolar charge transport model with three additional parameters: reduced activation energy, charge density threshold, and chain relaxation time. Such a model is shown to reproduce key features of fast space charge pulses including speed, duration, repetition rate and pulse size. This model provides the basis for a deep understanding of the physical origins of fast space charge pulses in polymers.

  10. Electron gun controlled smart structure

    DOEpatents

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  11. Spacecraft Charging and Auroral Boundary Predictions in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2016-01-01

    Auroral charging of spacecraft is an important class of space weather impacts on technological systems in low Earth orbit. In order for space weather models to accurately specify auroral charging environments, they must provide the appropriate plasma environment characteristics responsible for charging. Improvements in operational space weather prediction capabilities relevant to charging must be tested against charging observations.

  12. Two particle model for studying the effects of space-charge force on strong head-tail instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Yong Ho; Chao, Alexander Wu; Blaskiewicz, Michael M.

    In this paper, we present a new two particle model for studying the strong head-tail instabilities in the presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter (normalized by the synchrotron tune) and the wakefield strength, Upsilon. The three-dimensional contour plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Manymore » simulation results generally indicate that a strong head-tail instability can be damped by a weak space-charge force, but the beam becomes unstable again when the space-charge force is further increased. The new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely restore the mode coupling, but then a further increase of the space-charge force decouples the modes again. Lastly, this mode coupling/decoupling behavior creates the stopband structures.« less

  13. Two particle model for studying the effects of space-charge force on strong head-tail instabilities

    DOE PAGES

    Chin, Yong Ho; Chao, Alexander Wu; Blaskiewicz, Michael M.

    2016-01-19

    In this paper, we present a new two particle model for studying the strong head-tail instabilities in the presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter (normalized by the synchrotron tune) and the wakefield strength, Upsilon. The three-dimensional contour plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Manymore » simulation results generally indicate that a strong head-tail instability can be damped by a weak space-charge force, but the beam becomes unstable again when the space-charge force is further increased. The new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely restore the mode coupling, but then a further increase of the space-charge force decouples the modes again. Lastly, this mode coupling/decoupling behavior creates the stopband structures.« less

  14. On the longitudinal distribution of electric field in the acceleration zones of plasma accelerators and thrusters with closed electron drift

    NASA Astrophysics Data System (ADS)

    Kim, V. P.

    2017-04-01

    The long-term experience in controlling the electric field distribution in the discharge gaps of plasma accelerators and thrusters with closed electron drift and the key ideas determining the concepts of these devices and tendencies of their development are analyzed. It is shown that an electrostatic mechanism of ion acceleration in plasma by an uncompensated space charge of the cloud of magnetized electrons "kept" to the magnetic field takes place in the acceleration zones and that the electric field distribution can be controlled by varying the magnetic field in the discharge gap. The role played by the space charge makes the mechanism of ion acceleration in this type of thrusters is fundamentally different from the acceleration mechanism operating in purely electrostatic thrusters.

  15. Prediction, Measurement, and Control of Spacecraft Charging Hazards on the International Space Station(ISS)

    NASA Astrophysics Data System (ADS)

    Koontz, Steve; Alred, John; Ellison, Amy; Patton, Thomas; Minow, Joseph; Spetch, William

    2010-09-01

    Orbital inclination, 51.6 degrees, and altitude range, 300 to 400 km,(low-Earth orbit or LEO) determine the ISS spacecraft charging environment. Specific interactions of the ISS electrical power system and metallic structure with the Earth’s ionospheric plasma and the geomagnetic field dominate spacecraft charging processes for ISS. ISS also flies through auroral electron streams at high latitudes. In this paper, we report the character of ISS spacecraft charging processes in Earth’s ionosphere, the results of measurement and modelling of the subject charging processes, and the safety issues for ISS itself as well as for ISS interoperability with respect to extra vehicular activity(EVA) and visiting vehicle proximity operations.

  16. An analog neural hardware implementation using charge-injection multipliers and neutron-specific gain control.

    PubMed

    Massengill, L W; Mundie, D B

    1992-01-01

    A neural network IC based on a dynamic charge injection is described. The hardware design is space and power efficient, and achieves massive parallelism of analog inner products via charge-based multipliers and spatially distributed summing buses. Basic synaptic cells are constructed of exponential pulse-decay modulation (EPDM) dynamic injection multipliers operating sequentially on propagating signal vectors and locally stored analog weights. Individually adjustable gain controls on each neutron reduce the effects of limited weight dynamic range. A hardware simulator/trainer has been developed which incorporates the physical (nonideal) characteristics of actual circuit components into the training process, thus absorbing nonlinearities and parametric deviations into the macroscopic performance of the network. Results show that charge-based techniques may achieve a high degree of neural density and throughput using standard CMOS processes.

  17. Orbit-Attitude Changes of Objects in Near Earth Space Induced by Natural Charging

    DTIC Science & Technology

    2017-05-02

    depends upon Earth’s magnetosphere. Typically, magneto-sphere models can be grouped under two classes: statistical and physics -based. The Physics ...models were primarily physics -based due to unavailability of sufficient space-data, but over the last three decades, with the availability of huge...Attitude Determination and Control,” Astrophysics and Space Sci- ence Library, Vol. 73, D. Reidel Publishing Company, London, 1978 [17] Fairfield

  18. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  19. NASA's Technical Handbook for Avoiding On-Orbit ESD Anomalies Due to Internal Charging Effects

    NASA Technical Reports Server (NTRS)

    Whittlesey, Albert; Garrett, Henry B.

    1996-01-01

    This paper describes NASA-HDBK-4002, "Avoiding Problems Caused by Spacecraft On-Orbit Internal Charging Effects". The handbook includes a description of internal charging and why it is of concern to spacecraft designers. It also suggests how to determine when a project needs to consider internal spacecraft charging, it contains an electron penetration depth chart, rationale for a critical electron flux criterion, a worst-case geosynchronous electron plasma spectrum, general design guidelines, quantitative design guidelines, and a typical materials characteristics list. Appendices include a listing of some environment codes, electron transport codes, a discussion of geostationary electron plasma environments, a brief description of electron beam and other materials tests, and transient susceptibility tests. The handbook will be in the web page, hftp://standards.nasa.gov. A prior document, NASA TP2361 "Design Guidelines for Assessing and controlling Spacecraft Charging Effects", 1984, is in use to describe mitigation techniques for the effects of surface charging of satellites in space plasma environments. HDBK-4002 is meant to complement 2361 and together, the pair of documents describe both cause and mitigation designs for problems caused by energetic space plasmas.

  20. Characteristics of space charge formed in a laminated LDPE/EVA dielectric under DC stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshikatsu; Kisanuki, Osamu; Sakata, Masataka

    1996-12-31

    A laser-induced pressure pulse (LIPP) method was used for measuring the space charge distribution of LDPE/EVA laminate dielectrics under dc stress. The constant voltage up to {+-}20 kV was applied to a side of the laminates of 0.5 mm thickness for 30 minutes. The other side is grounded. When the amount of space charge was measured by LIPP, both sides were virtually grounded. Space charge built up in or near the interface between LDPE and EVA was mainly investigated. Positive and negative voltage was applied to the side of LDPE in the laminates. It was clarified that the space chargemore » was larger in case of LDPE negatively biased than in case of LDPE positively biased. The density of the space charge ranged around 1 nC/mm{sup 3}. The formation of interfacial space charge is analyzed.« less

  1. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport

    NASA Astrophysics Data System (ADS)

    Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.

    2018-04-01

    Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.

  2. 14 CFR 1215.113 - User charges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false User charges. 1215.113 Section 1215.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM... shall reimburse NASA the sum of the charges for standard and mission-unique services. Charges will be...

  3. Asymmetric injection and distribution of space charges in propylene carbonate under impulse voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Chen, Qiulin; Sun, Potao; Yang, Ming; Guo, Hongda; Ye, Lian

    2018-05-01

    Space charge can distort the electric field in high voltage stressed liquid dielectrics and lead to breakdown. Observing the evolution of space charge in real time and determining the influencing factors are of considerable significance. The spatio-temporal evolution of space charge in propylene carbonate, which is very complex under impulse voltage, was measured in this study through the time-continuous Kerr electro-optic field mapping measurement. We found that the injection charge from a brass electrode displayed an asymmetric effect; that is, the negative charge injection near the cathode lags behind the positive charge injection near the anode. Physical mechanisms, including charge generation and drift, are analyzed, and a voltage-dependent saturated drift rectification model was established to explain the interesting phenomena. Mutual validation of models and our measurement data indicated that a barrier layer, which is similar to metal-semiconductor contact, was formed in the contact interface between the electrode and propylene carbonate and played an important role in the space charge injection.

  4. Scaling relations for a needle-like electron beam plasma from the self-similar behavior in beam propagation

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyan; Chen, Chen; Li, Hong; Liu, Wandong; Chen, Wei

    2017-10-01

    Scaling relations of the main parameters of a needle-like electron beam plasma (EBP) to the initial beam energy, beam current, and discharge pressures are presented. The relations characterize the main features of the plasma in three parameter space and can provide great convenience in plasma design with electron beams. First, starting from the self-similar behavior of electron beam propagation, energy and charge depositions in beam propagation were expressed analytically as functions of the three parameters. Second, according to the complete coupled theoretical model of an EBP and appropriate assumptions, independent equations controlling the density and space charges were derived. Analytical expressions for the density and charges versus functions of energy and charge depositions were obtained. Finally, with the combination of the expressions derived in the above two steps, scaling relations of the density and potential to the three parameters were constructed. Meanwhile, numerical simulations were used to test part of the scaling relations.

  5. Electron beam interaction with space plasmas.

    NASA Astrophysics Data System (ADS)

    Krafft, C.; Bolokitin, A. S.

    1999-12-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.

  6. Theoretical models for electron conduction in polymer systems—I. Macroscopic calculations of d.c. transient conductivity after pulse irradiation

    NASA Astrophysics Data System (ADS)

    Bartczak, Witold M.; Kroh, Jerzy

    The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.

  7. Space-Charge Waves and Instabilities in Intense Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  8. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOEpatents

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  9. Applying simulation model to uniform field space charge distribution measurements by the PEA method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Salama, M.M.A.

    1996-12-31

    Signals measured under uniform fields by the Pulsed Electroacoustic (PEA) method have been processed by the deconvolution procedure to obtain space charge distributions since 1988. To simplify data processing, a direct method has been proposed recently in which the deconvolution is eliminated. However, the surface charge cannot be represented well by the method because the surface charge has a bandwidth being from zero to infinity. The bandwidth of the charge distribution must be much narrower than the bandwidths of the PEA system transfer function in order to apply the direct method properly. When surface charges can not be distinguished frommore » space charge distributions, the accuracy and the resolution of the obtained space charge distributions decrease. To overcome this difficulty a simulation model is therefore proposed. This paper shows their attempts to apply the simulation model to obtain space charge distributions under plane-plane electrode configurations. Due to the page limitation for the paper, the charge distribution originated by the simulation model is compared to that obtained by the direct method with a set of simulated signals.« less

  10. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    NASA Technical Reports Server (NTRS)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  11. Measurement and control of a Coulomb-blockaded parafermion box

    NASA Astrophysics Data System (ADS)

    Snizhko, Kyrylo; Egger, Reinhold; Gefen, Yuval

    2018-02-01

    Parafermionic zero modes are fractional topologically protected quasiparticles expected to arise in various platforms. We show that Coulomb charging effects define a parafermion box with unique access options via fractional edge states and/or quantum antidots. Basic protocols for the detection, manipulation, and control of parafermionic quantum states are formulated. With those tools, one may directly observe the dimension of the zero-mode Hilbert space, prove the degeneracy of this space, and perform on-demand digital operations satisfying a parafermionic algebra.

  12. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    NASA Technical Reports Server (NTRS)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine acceptable plasma electron current levels that can be collected by a single or combined fleet of ISS-docked VVs.

  13. Fuzzy control of battery chargers

    NASA Astrophysics Data System (ADS)

    Aldridge, Jack

    1996-03-01

    The increasing reliance on battery power for portable terrestrial purposes, such as portable tools, portable computers, and telecommunications, provides motivation to optimize the battery charging process with respect to speed of charging and charging cycle lifetime of the battery. Fuzzy control, implemented on a small microcomputer, optimizes charging in the presence of nonlinear effects and large uncertainty in the voltage vs. charge state characteristics for the battery. Use of a small microcontroller makes possible a small, capable, and affordable package for the charger. Microcontroller-based chargers provide improved performance by adjusting both charging voltage and charging current during the entire charging process depending on a current estimate of the state of charge of the battery. The estimate is derived from the zero-current voltage of the battery and the temperature and their rates of change. All of these quantities are uncertain due to the variation in condition between the individual cells in a battery, the rapid and nonlinear dependence of the fundamental electrochemistry on the internal temperature, and the placement of a single temperature sensor within the battery package. While monitoring the individual cell voltages and temperatures would be desirable, cost and complexity considerations preclude the practice. NASA has developed considerable technology in batteries for supplying significant amounts of power for spacecraft and in fuzzy control techniques for the space applications. In this paper, we describe how we are using both technologies to build an optimal charger prototype as a precursor to a commercial version.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meusel, O., E-mail: o.meusel@iap.uni-frankfurt.de; Droba, M.; Noll, D.

    The transport of intense ion beams is affected by the collective behavior of this kind of multi-particle and multi-species system. The space charge expressed by the generalized perveance dominates the dynamical process of thermalisation, which leads to emittance growth. To prevent changes of intrinsic beam properties and to reduce the intensity dependent focusing forces, space charge compensation seems to be an adequate solution. In the case of positively charged ion beams, electrons produced by residual gas ionization and secondary electrons provide the space charge compensation. The influence of the compensation particles on the beam transport and the local degree ofmore » space charge compensation is given by different beam properties as well as the ion beam optics. Especially for highly charged ion beams, space charge compensation in combination with poor vacuum conditions leads to recombination processes and therefore increased beam losses. Strategies for providing a compensation-electron reservoir at very low residual gas pressures will be discussed.« less

  15. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment

    PubMed Central

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-01-01

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627

  16. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    PubMed

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  17. Mathematical analysis and coordinated current allocation control in battery power module systems

    NASA Astrophysics Data System (ADS)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  18. Deep Charging Evaluation of Satellite Power and Communication System Components

    NASA Technical Reports Server (NTRS)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    Deep charging, in contrast to surface charging, focuses on electron penetration deep into insulating materials applied over conductors. A classic example of this scenario is an insulated wire. Deep charging can pose a threat to material integrity, and to sensitive electronics, when it gives rise to an electrostatic discharge or arc. With the advent of Electric Orbit Raising, which requires spiraling through Earth's radiation belts, satellites are subjected to high energy electron environments which they normally would not encounter. Beyond Earth orbit, missions to Jupiter and Saturn face deep charging concerns due to the high energy radiation environments. While predictions can be made about charging in insulating materials, it is difficult to extend those predictions to complicated geometries, such as the case of an insulating coating around a small wire, or a non-uniform silicone grouting on a bus bar. Therefore, to conclusively determine the susceptibility of a system to arcs from deep charging, experimental investigations must be carried out. This paper will describe the evaluation carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. Specifically, deep charging evaluations of solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, will be discussed. The results of each evaluation will be benchmarked against control sample tests, as well as typical power system levels, to show no significant deep charging threat existed for this set of samples under the conditions tested.

  19. ac aging and space-charge characteristics in low-density polyethylene polymeric insulation

    NASA Astrophysics Data System (ADS)

    Chen, G.; Fu, M.; Liu, X. Z.; Zhong, L. S.

    2005-04-01

    In the present work efforts have been made to investigate the influence of ac aging on space-charge dynamics in low-density polyethylene (LDPE). LDPE films with 200 μm were aged under various electric stress levels at 50 Hz for various times at ambient temperature. Space-charge dynamics in the samples after aging were monitored using the pulsed electroacoustic technique. It has been revealed that the space charge under ac aging conditions is related to the level of the applied field, duration of the voltage application, as well as the electrode materials. By comparing with the results of unaged sample the results from aged sample provide a direct evidence of changing trapping characteristics after ac aging. Negative space charge is present in the bulk of the material and the total amount of charge increases with the aging time. The amount of charge increases with the applied field. Charge decay test indicates that the charges are captured in deep traps. These deep traps are believed to form during the aging and related to change caused by injected charge. By using different electrode materials such as gold, brass alloy, and polyethylene loaded with carbon black, it was found that the electrode has an important role in the formation of charge, hence subsequent changes caused by charge. The charge dynamics of the aged samples under dc bias differ from the sample without ac aging, indicating changes brought in by ac aging. Chemical analysis by Fourier transform infrared spectroscope and Raman microscope reveals no detectable chemical changes taken place in the bulk of the material after ac aging. Finally, the consequence of the accumulation of space charge under ac conditions on the lifetime of the material has been discussed. The presence of deeply trapped space charge leads to an electric stress enhancement which may shorten the lifetime of the insulation system.

  20. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  1. Design and evaluation of a microgrid for PEV charging with flexible distribution of energy sources and storage

    NASA Astrophysics Data System (ADS)

    Pyne, Moinak

    This thesis aspires to model and control, the flow of power in a DC microgrid. Specifically, the energy sources are a photovoltaic system and the utility grid, a lead acid battery based energy storage system and twenty PEV charging stations as the loads. Theoretical principles of large scale state space modeling are applied to model the considerable number of power electronic converters needed for controlling voltage and current thresholds. The energy storage system is developed using principles of neural networks to facilitate a stable and uncomplicated model of the lead acid battery. Power flow control is structured as a hierarchical problem with multiple interactions between individual components of the microgrid. The implementation is done using fuzzy logic with scheduling the maximum use of available solar energy and compensating demand or excess power with the energy storage system, and minimizing utility grid use, while providing multiple speeds of charging the PEVs.

  2. Analysis of differential and active charging phenomena on ATS-5 and ATS-6

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.; Whipple, E. C., Jr.

    1980-01-01

    Spacecraft charging on the differential charging and artificial particle emission experiments on ATS 5 and ATS 6 were studied. Differential charging of spacecraft surfaces generated large electrostatic barriers to spacecraft generated electrons, from photoemission, secondary emission, and thermal emitters. The electron emitter could partially or totally discharge the satellite, but the mainframe recharged negatively in a few 10's of seconds. The time dependence of the charging behavior was explained by the relatively large capacitance for differential charging in comparison to the small spacecraft to space capacitance. A daylight charging event on ATS 6 was shown to have a charging behavior suggesting the dominance of differential charging on the absolute potential of the mainframe. Ion engine operations and plasma emission experiments on ATS 6 were shown to be an effective means of controlling the spacecraft potential in eclipse and sunlight. Elimination of barrier effects around the detectors and improving the quality of the particle data are discussed.

  3. First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties

    DOE PAGES

    von Lilienfeld, O. Anatole

    2013-02-26

    A well-defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we give an introduction to an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand-canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via “alchemical” interpolations involving fractional nuclear charges in the electronic Hamiltonian. We address Taylor expansions in CCS, property nonlinearity, improved predictions using reference compound pairs, and the ounce-of-gold prizemore » challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. Here, these relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schrödinger equation.« less

  4. Review and test of chilldown methods for space-based cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chato, David J.; Sanabria, Rafael

    The literature for tank chilldown methods applicable to cryogenic tankage in the zero gravity environment of earth orbit is reviewed. One method is selected for demonstration in a ground based test. The method selected for investigation was the charge-hold-vent method which uses repeated injection of liquid slugs, followed by a hold to allow complete vaporization of the liquid and a vent of the tank to space vacuum to cool tankage to the desired temperature. The test was conducted on a 175 cubic foot, 2219 aluminum walled tank weighing 329 pounds, which was previously outfitted with spray systems to test nonvented fill technologies. To minimize hardware changes, a simple control-by-pressure scheme was implemented to control injected liquid quantities. The tank cooled from 440 R sufficiently in six charge-hold-vent cycles to allow a complete nonvented fill of the test tank. Liquid hydrogen consumed in the process is estimated at 32 pounds.

  5. Review and test of chilldown methods for space-based cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Sanabria, Rafael

    1991-01-01

    The literature for tank chilldown methods applicable to cryogenic tankage in the zero gravity environment of earth orbit is reviewed. One method is selected for demonstration in a ground based test. The method selected for investigation was the charge-hold-vent method which uses repeated injection of liquid slugs, followed by a hold to allow complete vaporization of the liquid and a vent of the tank to space vacuum to cool tankage to the desired temperature. The test was conducted on a 175 cubic foot, 2219 aluminum walled tank weighing 329 pounds, which was previously outfitted with spray systems to test nonvented fill technologies. To minimize hardware changes, a simple control-by-pressure scheme was implemented to control injected liquid quantities. The tank cooled from 440 R sufficiently in six charge-hold-vent cycles to allow a complete nonvented fill of the test tank. Liquid hydrogen consumed in the process is estimated at 32 pounds.

  6. Air Force Science and Technology Plan

    DTIC Science & Technology

    2011-01-01

    charged particles and guide high- power microwaves and radiofrequency waves in the air • Bioenergy – developing renewable biosolar hydrogen...Aeronautical sciences, control sciences, structures and integration Directed Energy High- power microwaves , lasers, beam control, space situational...Propulsion Turbine and rocket engines, advanced propulsion systems , system -level thermal management, and propulsion fuels and propellants Sensors Air

  7. Design and experiment of vehicular charger AC/DC system based on predictive control algorithm

    NASA Astrophysics Data System (ADS)

    He, Guangbi; Quan, Shuhai; Lu, Yuzhang

    2018-06-01

    For the car charging stage rectifier uncontrollable system, this paper proposes a predictive control algorithm of DC/DC converter based on the prediction model, established by the state space average method and its prediction model, obtained by the optimal mathematical description of mathematical calculation, to analysis prediction algorithm by Simulink simulation. The design of the structure of the car charging, at the request of the rated output power and output voltage adjustable control circuit, the first stage is the three-phase uncontrolled rectifier DC voltage Ud through the filter capacitor, after by using double-phase interleaved buck-boost circuit with wide range output voltage required value, analyzing its working principle and the the parameters for the design and selection of components. The analysis of current ripple shows that the double staggered parallel connection has the advantages of reducing the output current ripple and reducing the loss. The simulation experiment of the whole charging circuit is carried out by software, and the result is in line with the design requirements of the system. Finally combining the soft with hardware circuit to achieve charging of the system according to the requirements, experimental platform proved the feasibility and effectiveness of the proposed predictive control algorithm based on the car charging of the system, which is consistent with the simulation results.

  8. Controlling and monitoring the space-station plasma interaction: A baseline for performing plasma experiments and using advanced technology

    NASA Technical Reports Server (NTRS)

    Whipple, Elden C.; Olsen, Richard C.

    1986-01-01

    The size, complexity, and motion of space station through the Earth's environmental plasma means that there will be a large, complicated interaction region, involving a sheath, wake, charging of surfaces, induced electric fields, secondary emission, outgassing with ionization, etc. This interaction will necessarily be a factor in carrying out and interpreting plasma experiments and in the use of certain technologies. Attention should be given ahead of time to: (1) monitoring this interaction so that it is well described; (2) implifying the interaction by appropriate design and construction of the spacecraft and by appropriate planning of technology use; and (3) controlling the interaction by both active and passive means. Plasma emitters for modifying and controlling the spacecraft charge should be placed in several locations. Portable electrostatic shields could be deployed around noisy sections of the spacecraft in order to carry out sensitive experiments. A particle umbrella could be raised to deflect the ram ions and neutrals in order to provide a controlled environment. These interactions are briefly discussed.

  9. Chemical Physics of Charge Mechanisms in Nonmetallic Spacecraft Materials.

    DTIC Science & Technology

    1979-05-01

    techniques may not provide data truly representative of actual in-orbit space - craft charging effects . The results of the discharge characterization...phenomena, commonly referred to collectively as space - !. craft charging effects , can produce undesirable and sometimes serious prob- lems with the...lifetime of future space systems requires a practical understanding of spacecraft charging phenomena and their effects . The laboratory program

  10. Effect of Fe{sub 3}O{sub 4} nanoparticles on space charge distribution in propylene carbonate under impulse voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sima, Wenxia, E-mail: cqsmwx@cqu.edu.cn; Song, He; Yang, Qing

    2015-12-15

    Addition of nanoparticles of the ferromagnetic material Fe{sub 3}O{sub 4} can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe{sub 3}O{sub 4} nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generationmore » and transportation of the space charge, especially the negative space charge.« less

  11. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Lu, Xian-Hai; Du, Ying-Chao; Huang, Wen-Hui; Tang, Chuan-Xiang

    2014-12-01

    Megaelectronvolt ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in the MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. The small transverse dimension of the drive laser is found to be critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of the reciprocal spatial resolution caused by the space charge effects should be carefully controlled.

  12. Experimental evidence of space charge driven resonances in high intensity linear accelerators

    DOE PAGES

    Jeon, Dong -O

    2016-01-12

    In the construction of high intensity accelerators, it is the utmost goal to minimize the beam loss by avoiding or minimizing contributions of various halo formation mechanisms. As a halo formation mechanism, space charge driven resonances are well known for circular accelerators. However, the recent finding showed that even in linear accelerators the space charge potential can excite the 4σ = 360° fourth order resonance [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)]. This study increased the interests in space charge driven resonances of linear accelerators. Experimental studies of the space charge driven resonances of highmore » intensity linear accelerators are rare as opposed to the multitude of simulation studies. This paper presents an experimental evidence of the space charge driven 4σ ¼ 360° resonance and the 2σ x(y) – 2σ z = 0 resonance of a high intensity linear accelerator through beam profile measurements from multiple wire-scanners. Moreover, measured beam profiles agree well with the characteristics of the space charge driven 4σ = 360° resonance and the 2σ x(y) – 2σ z = 0 resonance that are predicted by the simulation.« less

  13. Test Control Center

    NASA Image and Video Library

    2000-10-25

    At the test observation periscope in the Test Control Center exhibit in StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., visitors can observe a test of a Space Shuttle Main Engine exactly as test engineers might see it during a real engine test. The Test Control Center exhibit exactly simulates not only the test control environment, but also the procedure of testing a rocket engine. Designed to entertain while educating, StenniSphere includes informative dispays and exhibits from NASA's lead center for rocket propulsion and remote sensing applications. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  14. NASA Ames UV-LED Poster Overview

    NASA Technical Reports Server (NTRS)

    Jaroux, Belgacem Amar

    2015-01-01

    UV-LED is a small satellite technology demonstration payload being flown on the Saudisat-4 spacecraft that is demonstrating non-contacting charge control of an isolated or floating mass using new solid-state ultra-violet light emitting diodes (UV-LEDs). Integrated to the rest of the spacecraft and launched on a Dnepr in June 19, 2014, the project is a collaboration between the NASA Ames Research Center (ARC), Stanford University, and King Abdulaziz City for Science and Technology (KACST). Beginning with its commissioning in December, 2015, the data collected by UV-LED have validated a novel method of charge control that will improve the performance of drag-free spacecraft allowing for concurrent science collection during charge management operations as well as reduce the mass, power and volume required while increasing lifetime and reliability of a charge management subsystem. UV-LED continues to operate, exploring new concepts in non-contacting charge control and collecting data crucial to understanding the lifetime of ultra-violet light emitting diodes in space. These improvements are crucial to the success of ground breaking missions such as LISA and BBO, and demonstrates the ability of low cost small satellite missions to provide technological advances that far exceed mission costs.

  15. Longitudinal space charge compensation at PSR

    NASA Astrophysics Data System (ADS)

    Neri, Filippo

    1998-11-01

    The longitudinal space-charge force in neutron spallation source compressor ring or other high intensity proton storage rings can be compensated by introducing an insert in the ring. The effect of the inductor is to cancel all or part of the space charge potential, because it is capacitive. The Proton Storage Ring at Los Alamos National Laboratory is a compressor ring used to produce short pulses of spallation neutrons. Inductive inserts design for space charge compensation at the Los Alamos Proton Storage Ring is described.

  16. Electron beam injection into space plasmas

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.

    1985-12-01

    Eight papers presented at the URSI Open Symposium on Active Experiments in Space Plasma on August 30-31, 1984 are reviewed. Consideration is given to in-space electron beam experiments studying means of controlling the electrical potential of low earth orbit vehicles and nonlinear wave excitation in the magnetosphere. The results from the Space Experiments with Particle Accelerators (SEPAC) flown on Spacelab-1 are described; the use of a computer to interpret the SEPAC wave-particle interaction and charge potential data is discussed. Two laboratory simulation experiments analyzing the beam-plasma discharge phenomenon are examined.

  17. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    NASA Astrophysics Data System (ADS)

    Xavier, Marcelo A.; Trimboli, M. Scott

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.

  18. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE PAGES

    Qiang, Ji

    2017-01-23

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  19. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, Ji

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  20. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE PAGES

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  1. EBQ code: Transport of space-charge beams in axially symmetric devices

    NASA Astrophysics Data System (ADS)

    Paul, A. C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  2. Analysis of space charge fields using the Lienard-Wiechert potential and the method of images during the photoemission of the electron beam from the cathode

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el

    2017-01-01

    We present a numerical analysis of the space charge effect and the effect of image charge force on the cathode surface for a laser-driven RF-photocathode gun. In this numerical analysis, in the vicinity of the cathode surface, we used an analytical method based on Lienard-Weichert retarded potentials. The analytical method allows us to calculate longitudinal and radial electric fields, and the azimuth magnetic field due to both space charge effect and the effect of the image charge force. We calculate the electro-magnetic fields in the following two conditions for the "ELSA" photoinjector. The first condition is in the progress of photoemission, which corresponds to the inside of the emitted beam, and the second condition is at the end of the photoemission. The electromagnetic fields due to the space charge effect and the effect of the image charge force, and the sum of them, which corresponds to the global electro-magnetic fields, are shown. Based on these numerical results, we discussed the effects of the space charge and the image charge in the immediate vicinity of the cathode.

  3. The physics, performance and predictions of the PEGASES ion-ion thruster

    NASA Astrophysics Data System (ADS)

    Aanesland, Ane

    2014-10-01

    Electric propulsion (EP) is now used systematically in space applications (due to the fuel and lifetime economy) to the extent that EP is now recognized as the next generation space technology. The uses of EP systems have though been limited to attitude control of GEO-stationary satellites and scientific missions. Now, the community envisages the use of EP for a variety of other applications as well; such as orbit transfer maneuvers, satellites in low altitudes, space debris removal, cube-sat control, challenging scientific missions close to and far from earth etc. For this we need a platform of EP systems providing much more variety in performance than what classical Hall and Gridded thrusters can provide alone. PEGASES is a gridded thruster that can be an alternative for some new applications in space, in particular for space debris removal. Unlike classical ion thrusters, here positive and negative ions are alternately accelerated to produce thrust. In this presentation we will look at the fundamental aspects of PEGASES. The emphasis will be put on our current understanding, obtained via analytical models, PIC simulations and experimental measurements, of the alternate extraction and acceleration process. We show that at low grid bias frequencies (10 s of kHz), the system can be described as a sequence of negative and positive ions accelerated as packets within a classical DC mode. Here secondary electrons created in the downstream chamber play an important role in the beam space charge compensation. At higher frequencies (100 s of kHz) the transit time of the ions in the grid gap becomes comparable to the bias period, leading to an ``AC acceleration mode.'' Here the beam is fully space charge compensated and the ion energy and current are functions of the applied frequency and waveform. A generalization of the Child-Langmuir space charge limited law is developed for pulsed voltages and allows evaluating the optimal parameter space and performance of PEGASES. This work received financial state aid managed by the Agence Nationale de la Recherche under the reference ANR-2011-BS09-40 (EPIC) and ANR-11-IDEX-0004-02 (Plas@Par).

  4. The 1982 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Halpert, G. (Editor)

    1983-01-01

    Various topics concerned with advanced battery technology are addressed including lithium cell and battery safety developments, mathematical modelling, charge control of aerospace power systems, and the application of nickel hydrogen cells/batteries vis-a-vis nickel cadmium cells/batteries.

  5. Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress

    NASA Astrophysics Data System (ADS)

    Boukhari, Hamed; Rogti, Fatiha

    2016-10-01

    The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.

  6. Alternate charging profiles for the onboard nickel cadmium batteries of the Explorer Platform/Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Prettyman-Lukoschek, Jill S.

    1995-01-01

    The Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft power is provided by the Modular Power Subsystems (MPS) which contains three 50 ampere-hour Nickel Cadmium (NiCd) batteries. The batteries were fabricated by McDonnell Douglas Electronics Systems Company, with the cells fabricated by Gates Aerospace Batteries (GAB), Gainesville, Florida. Shortly following launch, the battery performance characteristics showed similar signatures as the anomalous performance observed on both the Upper Atmosphere Research Satellite (UARS) and the Compton Gamma Ray Observatory (CGRO). This prompted the development and implementation of alternate charging profiles to optimize the spacecraft battery performance. The Flight Operations Team (FOT), under the direction of Goddard Space Flight Center's (GSFC) EP/EUVE Project and Space Power Applications Branch have monitored and managed battery performance through control of the battery Charge to Discharge (C/D) ratio and implementation of a Solar Array (SA) offset. This paper provides a brief overview of the EP/EUVE mission, the MPS, the FOT's battery management for achieving the alternate charging profile, and the observed spacecraft battery performance.

  7. 14 CFR 1215.113 - User charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User charges. 1215.113 Section 1215.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS) Use and Reimbursement Policy for Non-U.S. Government Users § 1215.113 User charges. (a) The user...

  8. 14 CFR 1215.113 - User charges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User charges. 1215.113 Section 1215.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS) Use and Reimbursement Policy for Non-U.S. Government Users § 1215.113 User charges. (a) The user...

  9. 14 CFR § 1215.113 - User charges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false User charges. § 1215.113 Section § 1215.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY.... (a) The user shall reimburse NASA the sum of the charges for standard and mission-unique services...

  10. 41 CFR 102-85.145 - When are customer agencies responsible for Rent charges?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; or (2) All other space: Either GSA's space charges for 4 months plus the cost of tenant improvements or GSA's actual costs, whichever is less. ... PROPERTY 85-PRICING POLICY FOR OCCUPANCY IN GSA SPACE Rent Charges § 102-85.145 When are customer agencies...

  11. Method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam

    DOEpatents

    Hannon, Fay

    2016-08-02

    A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.

  12. Circuital characterisation of space-charge motion with a time-varying applied bias

    PubMed Central

    Kim, Chul; Moon, Eun-Yi; Hwang, Jungho; Hong, Hiki

    2015-01-01

    Understanding the behaviour of space-charge between two electrodes is important for a number of applications. The Shockley-Ramo theorem and equivalent circuit models are useful for this; however, fundamental questions of the microscopic nature of the space-charge remain, including the meaning of capacitance and its evolution into a bulk property. Here we show that the microscopic details of the space-charge in terms of resistance and capacitance evolve in a parallel topology to give the macroscopic behaviour via a charge-based circuit or electric-field-based circuit. We describe two approaches to this problem, both of which are based on energy conservation: the energy-to-current transformation rule, and an energy-equivalence-based definition of capacitance. We identify a significant capacitive current due to the rate of change of the capacitance. Further analysis shows that Shockley-Ramo theorem does not apply with a time-varying applied bias, and an additional electric-field-based current is identified to describe the resulting motion of the space-charge. Our results and approach provide a facile platform for a comprehensive understanding of the behaviour of space-charge between electrodes. PMID:26133999

  13. Method and system for aligning fibers during electrospinning

    NASA Technical Reports Server (NTRS)

    Scott-Carnell, Lisa A. (Inventor); Stephens, Ralph M (Inventor); Holloway, Nancy M. (Inventor); Rhim, Caroline (Inventor); Niklason, Laura (Inventor); Clark, Robert L. (Inventor); Siochi, Emilie J. (Inventor)

    2011-01-01

    A method and system are provided for aligning fibers in an electrospinning process. A jet of a fiberizable material is directed towards an uncharged collector from a dispensing location that is spaced apart from the collector. While the fiberizable material is directed towards the collector, an elliptical electric field is generated via the electrically charged dispenser and an oppositely-charged control location. The field spans between the dispensing location and the control location that is within line-of-sight of the dispensing location, and impinges upon at least a portion of the collector. Various combinations of numbers and geometries of dispensers, collectors, and electrodes can be used.

  14. Accelerator Technology Division: Annual Report FY 1990

    DTIC Science & Technology

    1991-05-01

    new version of PARMTEQ that includes 3-D space - charge and image- charge effects in the Figure 2.4. Preliminary concept for the SSC RFQ Linac 25...developing a better space - charge model based on the work of Sachercr. We have successfully demonstrated the ability to include off-axis effects in...a way fully consistent with the space - charge forces. Modifying BEDLAM to include these effects will leave almost all of the code (the integrator

  15. Vacuum Flashover Characteristics of Laminated Polystyrene Insulators

    DTIC Science & Technology

    1999-06-01

    space charge dominated. A minimum wafer thickness and/or the number of wafers required for the application can be calculated. Equation 1 represents...toward the anode. qn is the fraction of charge deposited on that section of the stack. Equation 1 comes from the assumption that a space charge ...Rodriguez, A.E., and Honig, E.M., "Characterization of an Insulated Space Charge Limited Non-Relativistic Electron Beam Diode Operating at 300 kV/cm

  16. A new spin on electron liquids: Phenomena in systems with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Bernevig, B. Andrei

    Conventional microelectronic devices are based on the ability to store and control the flow of electronic charge. Spin-based electronics promises a radical alternative, offering the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. Our research suggests that spin transport is fundamentally different from the transport of charge. The generalized Ohm's law that governs the flow of spins indicates that the generation of spin current by an electric field can be reversible and non-dissipative. Spin-orbit coupling and spin currents appear in many other seemingly unrelated areas of physics. Spin currents are as fundamental in theoretical physics as charge currents. In strongly correlated systems such as spin-chains, one can write down the Hamiltonian as a spin-current - spin-current interaction. The research presented here shows that the fractionalized excitations of one-dimensional spin chains are gapless and carry spin current. We present the most interesting example of such a chain, the Haldane-Shastry spin chain, which is exactly solvable in terms of real-space wavefunctions. Spin-orbit coupling can be found in high-energy physics, hidden under a different name: non-trivial fibrations. Particles moving in a space which is non-trivially related to an (iso)spin space acquire a gauge connection (the condensed-matter equivalent of a Berry phase) which can be either abelian or non-abelian. In most cases, the consequences of such gauge connection are far-reaching. We present a problem where particles move on an 8-dimensional manifold and posses an isospin space with is a 7-sphere S 7. The non-trivial isospin space gives the Hamiltonian SO (8) landau-level structure, and the system exhibits a higher-dimensional Quantum Hall Effect.

  17. Space-charge limited photocurrent.

    PubMed

    Mihailetchi, V D; Wildeman, J; Blom, P W M

    2005-04-01

    In 1971 Goodman and Rose predicted the occurrence of a fundamental electrostatic limit for the photocurrent in semiconductors at high light intensities. Blends of conjugated polymers and fullerenes are an ideal model system to observe this space-charge limit experimentally, since they combine an unbalanced charge transport, long lifetimes, high charge carrier generation efficiencies, and low mobility of the slowest charge carrier. The experimental photocurrents reveal all the characteristics of a space-charge limited photocurrent: a one-half power dependence on voltage, a three-quarter power dependence on light intensity, and a one-half power scaling of the voltage at which the photocurrent switches into full saturation with light intensity.

  18. Dependence of the TMCI Threshold on the Space Charge Tune Shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    2016-07-20

    Transverse mode coupling instability of a bunch with space charge is considered in frameworks of the boxcar model. Presented results demonstrate a monotonous growth of the TMCI threshold at increasing space charge tune shift, and do not support the supposition that the monotony can be violated at a higher SC.

  19. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, MA; Trimboli, MS

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggestmore » significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.« less

  20. Transverse mode coupling instability threshold with space charge and different wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero atmore » higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. As a result, a comparison of the results with published articles is represented.« less

  1. Transverse mode coupling instability threshold with space charge and different wakefields

    DOE PAGES

    Balbekov, V.

    2017-03-10

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero atmore » higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. As a result, a comparison of the results with published articles is represented.« less

  2. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  4. Computations in Plasma Physics.

    ERIC Educational Resources Information Center

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  5. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  6. Ultra-low current beams in UMER to model space-charge effects in high-energy proton and ion machines

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Beaudoin, B.; Baumgartner, H.; Ehrenstein, S.; Haber, I.; Koeth, T.; Montgomery, E.; Ruisard, K.; Sutter, D.; Yun, D.; Kishek, R. A.

    2017-03-01

    The University of Maryland Electron Ring (UMER) has operated traditionally in the regime of strong space-charge dominated beam transport, but small-current beams are desirable to significantly reduce the direct (incoherent) space-charge tune shift as well as the tune depression. This regime is of interest to model space-charge effects in large proton and ion rings similar to those used in nuclear physics and spallation neutron sources, and also for nonlinear dynamics studies of lattices inspired on the Integrable Optics Test Accelerator (IOTA). We review the definitions of beam vs. space-charge intensities and discuss three methods for producing very small beam currents in UMER. We aim at generating 60µA - 1.0mA, 100 ns, 10 keV beams with normalized rms emittances of the order of 0.1 - 1.0µm.

  7. WSN-Based Space Charge Density Measurement System

    PubMed Central

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density. PMID:28052105

  8. WSN-Based Space Charge Density Measurement System.

    PubMed

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  9. Bulk Charging of Dielectrics in Cryogenic Space Environments

    NASA Technical Reports Server (NTRS)

    Minow, J. I.; Coffey, V. N.; Blackwell, W. C., Jr.; Parker, L. N.; Jun, I.; Garrett, H. B.

    2007-01-01

    We use a 1-D bulk charging model to evaluate dielectric charging at cryogenic temperatures relevant to space systems using passive cooling to <100K or extended operations in permanently dark lunar craters and the lunar night.

  10. Longitudinal dynamics of an intense electron beam

    NASA Astrophysics Data System (ADS)

    Harris, John Richardson

    2005-11-01

    The dynamics of charged particle beams are governed by the particles' thermal velocities, external focusing forces, and Coulomb forces. Beams in which Coulomb forces play the dominant role are known as space charge dominated, or intense. Intense beams are of great interest for heavy ion fusion, spallation neutron sources, free-electron lasers, and other applications. In addition, all beams of interest are dominated by space charge forces when they are first created, so an understanding of space charge effects is critical to explain the later evolution of any beam. Historically, more attention has been paid to the transverse dynamics of beams. However, many interesting and important effects in beams occur along their length. These longitudinal effects can be limiting factors in many systems. For example, modulation or structure applied to the beam at low energy will evolve under space charge forces. Depending on the intended use of the beam and the nature of the modulation, this may result in improved or degraded performance. To study longitudinal dynamics in intense beams, experiments were conducted using the University of Maryland Electron Ring, a 10 keV, 100 mA electron transport system. These experiments concentrated on space charge driven changes in beam length in parabolic and rectangular beams, beam density and velocity modulation, and space charge wave propagation. Coupling between the transverse and longitudinal dynamics was also investigated. These experiments involved operating the UMER gun in space charge limited, temperature limited, triode amplification, photon limited, and hybrid modes. Results of these experiments are presented here, along with a theoretical framework for understanding the longitudinal dynamics of intense beams.

  11. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  12. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    NASA Astrophysics Data System (ADS)

    Talman, Richard; Malitsky, Nikolay; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004)PRABFM1098-440210.1103/PhysRevSTAB.7.100701; N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using TraFiC4* [A. Kabel , Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)NIMAER0168-900210.1016/S0168-9002(00)00729-4] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]). All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance γx on beam width (as controlled by the lattice βx function) at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening , in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001), http://groening.home.cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR). (ii) A controlled comparison is made between the predictions of the UAL code and those of CSRTrack [M. Dohlus and T. Limberg, in Proceedings of the 2004 FEL Conference, pp. 18-21, MOCOS05, available at http://www.JACoW.org], a code with similar capabilities. For this comparison an appropriately new, 50 MeV, “standard chicane” is introduced. Unlike CSRTrack (which neglects vertical forces) the present simulation shows substantial growth of vertical emittance. But “turning off” vertical forces in the UAL code (to match the CSRTrack treatment) brings the two codes into excellent agreement. (iii) Results are also obtained for 5 GeV electrons passing through a previously introduced “standard chicane” [Coherent Synchrotron Radiation, CSR Workshop, Berlin 2002, http://www.desy.de/csr] [of the sort needed for linear colliders and free electron lasers (FEL’s) currently under design or construction]. Relatively little emittance growth is predicted for typical bunch parameters at such high electron energy. Results are obtained for both round beams and ribbon beams (like those actually needed in practice). Little or no excess emittance growth is found for ribbon bunches compared to round bunches of the same charge and bunch width. The UAL string space charge formulation (like TraFic4 and CSRTrack) avoids the regularization step (subtracting the free-space space charge force) which is required (to remove divergence) in some methods. Also, by avoiding the need to calculate a retarded-time, four-dimensional field history, the computation time needed for realistic bunch evolution calculations is modest. Some theories of bunch dilution, because they ascribe emittance growth entirely to CSR, break down at low energy. In the present treatment, as well as CSR, all free-space Coulomb and magnetic space charge forces (but not image forces), and also the centrifugal space charge force (CSCF) are included. Charge-dependent beam steering due to CSCF, as observed recently by Beutner et al. [B. Beutner , in Proceedings of FEL Conference, BESSY, Berlin, Germany, 2006, MOPPH009], is also investigated.

  13. Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng

    2018-03-01

    Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.

  14. Simulation of transverse modes with their intrinsic Landau damping for bunched beams in the presence of space charge

    DOE PAGES

    Macridin, Alexandru; Burov, Alexey; Stern, Eric; ...

    2015-07-22

    Transverse dipole modes in bunches with space charge are simulated using the synergia accelerator modeling package and analyzed with dynamic mode decomposition. The properties of the first three space charge modes, including their shape, damping rates, and tune shifts are described over the entire range of space charge strength. As a result, the intrinsic Landau damping predicted and estimated in 2009 by one of the authors is confirmed with a reasonable scaling factor of ≃2.4. For the KV distribution, very good agreement with PATRIC simulations performed by Kornilov and Boine-Frankenheim is obtained.

  15. Evolved phase separation toward balanced charge transport and high efficiency in polymer solar cells.

    PubMed

    Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei

    2011-09-01

    Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.

  16. Grain-scale supercharging and breakdown on airless regoliths

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.; Farrell, W. M.; Hartzell, C. M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.

    2016-10-01

    Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.

  17. Grain-Scale Supercharging and Breakdown on Airless Regoliths

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Hartzell, C.M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.

    2016-01-01

    Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.

  18. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can lastmore » up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.« less

  19. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  20. Space and surface charge behavior analysis of charge-eliminated polymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro

    1995-12-31

    Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less

  1. Space charge characteristics of fluorinated polyethylene: Different effects of fluorine and oxygen

    NASA Astrophysics Data System (ADS)

    Zhao, Ni; Nie, Yongjie; Li, Shengtao

    2018-04-01

    Direct fluorination are proved having obvious effect on space charge characteristics of polyethylene. It is believed that fluorine has a positive effect on suppressing space charge injection while oxygen impurity has a negative effect. However, the mechanism for the opposite effect of fluorine and oxygen is still not clear. In this paper, the different effects of fluorine and oxygen on space charge characteristics of fluorinated low density polyethylene (LDPE) are investigated on the basis of dielectric property, chemical constitutes and trap performance of surface fluorinated layers. The results show that direct fluorination has obvious effect on chemical constitutes and dielectric properties of surface fluorinated layer. Introduced fluorine is the main factor for suppressing charge injection from the electrodes, because it seriously changes the chemical constitutes and further the trap properties of the surface fluorinated layer. While introduction of oxygen results in heterocharges and makes space charge distribution complex, due to the ionization of generated small groups like C=O containing groups. Moreover, direct fluorination will result in cleavage of some LDPE molecules whatever there is oxygen impurity or not.

  2. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    PubMed Central

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-01-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices. PMID:26670138

  3. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    NASA Astrophysics Data System (ADS)

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-12-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.

  4. MODELING PARTICULATE CHARGING IN ESPS

    EPA Science Inventory

    In electrostatic precipitators there is a strong interaction between the particulate space charge and the operating voltage and current of an electrical section. Calculating either the space charge or the operating point when the other is fixed is not difficult, but calculating b...

  5. Ground-Based High-Power Microwave Decoy Discrimination System.

    DTIC Science & Technology

    1987-12-23

    understanding of plasma instabilities, self-induced magnetic effects , space - charge considerations, production of ion currents, etc. 3.3.4 Cross-Field...breakdown, due to small potential differences. Interaction volumes can therefore be large, avoiding breakdown and space - charge effects (at the price...the interference of the incident and reflected wave, and by the electrostatic forces of the surface (positive) and space charge (negative) trapped in

  6. Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States.

    PubMed

    Yue, Fuyong; Wen, Dandan; Zhang, Chunmei; Gerardot, Brian D; Wang, Wei; Zhang, Shuang; Chen, Xianzhong

    2017-04-01

    A facile metasurface approach is shown to realize polarization-controllable multichannel superpositions of orbital angular momentum (OAM) states with various topological charges. By manipulating the polarization state of the incident light, four kinds of superpositions of OAM states are realized using a single metasurface consisting of space-variant arrays of gold nanoantennas. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The influence of pre-conditioning on space charge formation in LDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, R.J.; Henriksen, M.; Holboell, J.T.

    1996-12-31

    In this paper the authors present space charge accumulation data for planar low density polyethylene samples subjected to 20kV/mm dc fields at room temperature. The data were obtained using the laser-induced-pressure-pulse (LIPP) technique. Some of the samples were conditioned by holding them at 40 C in short-circuit at rotary pump pressure for 48hr prior to measurement. Such conditioning had no consistent effect on the space charge. The extent of charge injection/extraction at the semicon electrodes appeared to vary considerably between samples.

  8. Electrodynamic Dust Shield Technology for Thermal Radiators Used in Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Hogue, Michael D.; Snyder, Sarah J.; Clements, Sidney J.; Johansen, Michael R.; Chen, Albert

    2011-01-01

    Two general types of thermal radiators are being considered for lunar missions: coated metallic surfaces and Second Surface Mirrors. Metallic surfaces are coated with a specially formulated white paint that withstands the space environment and adheres well to aluminium, the most common metal used in space hardware. AZ-93 White Thermal Control Paint, developed for the space program, is an electrically conductive inorganic coating that offers thermal control for spacecraft. It is currently in use on satellite surfaces (Fig 1). This paint withstands exposure to atomic oxygen, charged particle radiation, and vacuum ultraviolet radiation form 118 nm to 170 nm while reflecting 84 to 85% of the incident solar radiation and emitting 89-93% of the internal heat generated inside the spacecraft.

  9. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C.; CNRS, LAPLACE, F-31062 Toulouse

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are modelmore » of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.« less

  10. Blasting vibrations control: The shortcomings of traditional methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuillaume, P.M.; Kiszlo, M.; Bernard, T.

    1996-12-31

    In the context of its studies for the French ministry of the environment and for the French national coal board, INERIS (the French institute for the industrial environment and hazards, formerly CERCHAR) has made a complete critical survey of the methods generally used to reduce the levels of blasting vibrations. It is generally acknowledged that the main parameter to control vibrations is the so-called instantaneous charge, or charge per delay. This should be reduced as much as possible in order to diminish vibration levels. On account of this, the use of a new generation of blasting devices, such as non-electricmore » detonators or electronic sequential timers has been developed since the seventies. INERIS has collected data from about 900 blasts in 2 quarries and 3 open pit mines. These data include input parameters such as borehole diameter, burden, spacing, charge per hole, charge per delay, total fired charge, etc ... They also include output measurements, such as vibration peak particle velocities, and main frequencies. These data have been analyzed with the help of multi variable statistical tools. Blasting tests were undertaken to evaluate new methods of vibrations control, such as the superposition of vibration signals. These methods appear to be accurate in many critical cases, but certainly would be highly improved with a better accuracy of firing delays. The development of electronic detonators seems to be the way of the future for a better blasting control.« less

  11. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGES

    Dell'Angela, M.; Anniyev, T.; Beye, M.; ...

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  12. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  13. The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-chargemore » wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.« less

  14. Internal electric fields of electrolytic solutions induced by space-charge polarization

    NASA Astrophysics Data System (ADS)

    Sawada, Atsushi

    2006-10-01

    The dielectric dispersion of electrolytic solutions prepared using chlorobenzene as a solvent and tetrabutylammonium tetraphenylborate as a solute is analyzed in terms of space-charge polarization in order to derive the ionic constants, and the Stokes radius obtained is discussed in comparison with the values that have been measured by conductometry. A homogeneous internal electric field is assumed for simplicity in the analysis of the space-charge polarization. The justification of the approximation by the homogeneous field is discussed from two points of view: one is the accuracy of the Stokes radius value observed and the other is the effect of bound charges on electrodes in which they level the highly inhomogeneous field, which has been believed in the past. In order to investigate the actual electric field, numerical calculations based on the Poisson equation are carried out by considering the influence of the bound charges. The variation of the number of bound charges with time is clarified by determining the relaxation function of the dielectric constant attributed to the space-charge polarization. Finally, a technique based on a two-field approximation, where homogeneous and hyperbolic fields are independently applied in relevant frequency ranges, is introduced to analyze the space-charge polarization of the electrolytic solutions, and further improvement of the accuracy in the determination of the Stokes radius is achieved.

  15. Engineering charge ordering into multiferroicity

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan

    2016-04-01

    Multiferroic materials have attracted great interest but are rare in nature. In many transition-metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superlattice. One example of the model demonstrated here is the perovskite (LaFeO3)2/LaTiO3 (111) superlattice, in which the LaTiO3 layer acts as the donor and the spacing layer, and the LaFeO3 layer is half doped and performs charge ordering. The collaboration of the charge ordering and the spacing layer breaks the space inversion symmetry, resulting in a large ferroelectric polarization. As the charge ordering also leads to a ferrimagnetic structure, (LaFeO3)2/LaTiO3 is multiferroic. It is expected that this work can encourage the designing and experimental implementation of a large class of multiferroic structures with novel properties.

  16. LED deep UV source for charge management of gravitational reference sensors

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Allard, Brett; Buchman, Saps; Williams, Scott; Byer, Robert L.

    2006-04-01

    Proof mass electrical charge management is an important functionality for the ST-7-LTP technology demonstration flight and for LISA. Photoemission for charge control is accomplished by using deep ultraviolet (UV) light to excite photoelectron emission from an Au alloy. The conventional UV source is a mercury vapour lamp. We propose and demonstrate charge management using a deep UV light emitting diode (LED) source. We have acquired selected AlGaN UV LEDs, characterized their performance and successfully used them to realize charge management. The UV LEDs emit at a 257 nm central wavelength with a bandwidth of ~12 nm. The UV power for a free-space LED is ~120 µW, and after fibre coupling is ~16 µW, more than sufficient for LISA applications. We have directly observed the LED UV light-induced photocurrent response from an Au photocathode and an Au-coated GRS/ST-7 proof mass. We demonstrated fast switching of UV LEDs and associated fast changes in photocurrent. This allows modulation and continuous discharge to meet stringent LISA disturbance reduction requirements. We propose and demonstrate AC charge management outside the gravitational wave signal band. Further, the megahertz bandwidth for UV LED switching allows for up to six orders of magnitude dynamic power range and a number of novel modes of operations. The UV LED based charge management system offers the advantages of small-size, lightweight, fibre-coupled operation with very low power consumption. Presented at 'Amaldi6', Poster 73, Space Detector, 6th Edoardo Almadi Conference on Gravitational Waves, 20-24 June 2005.

  17. Femtosecond manipulation of spins, charges, and ions in nanostructures, thin films, and surfaces

    PubMed Central

    Carbone, F.; Hengsberger, M.; Castiglioni, L.; Osterwalder, J.

    2017-01-01

    Modern ultrafast techniques provide new insights into the dynamics of ions, charges, and spins in photoexcited nanostructures. In this review, we describe the use of time-resolved electron-based methods to address specific questions such as the ordering properties of self-assembled nanoparticles supracrystals, the interplay between electronic and structural dynamics in surfaces and adsorbate layers, the light-induced control of collective electronic modes in nanowires and thin films, and the real-space/real-time evolution of the skyrmion lattice in topological magnets. PMID:29308416

  18. Acoustic charge transport technology investigation for advanced development transponder

    NASA Technical Reports Server (NTRS)

    Kayalar, S.

    1993-01-01

    Acoustic charge transport (ACT) technology has provided a basis for a new family of analog signal processors, including a programmable transversal filter (PTF). Through monolithic integration of ACT delay lines with GaAs metal semiconductor field effect transistor (MESFET) digital memory and controllers, these devices significantly extend the performance of PTF's. This article introduces the basic operation of these devices and summarizes their present and future specifications. The production and testing of these devices indicate that this new technology is a promising one for future space applications.

  19. Surface charge- and space-dependent transport of proteins in crowded environments of nanotailored posts.

    PubMed

    Choi, Chang Kyoung; Fowlkes, Jason D; Retterer, Scott T; Siuti, Piro; Iyer, Sukanya; Doktycz, Mitchel J

    2010-06-22

    The reaction and diffusion of molecules across barriers and through crowded environments is integral to biological system function and to separation technologies. Ordered, microfabricated post arrays are a promising route to creating synthetic barriers with controlled chemical and physical characteristics. They can be used to create crowded environments, to mimic aspects of cellular membranes, and to serve as engineered replacements of polymer-based separation media. Here, the translational diffusion of fluorescein isothiocyante and various forms of green fluorescent protein (GFP), including "supercharged" variants, are examined in a silicon-based post array environment. The technique of fluorescence recovery after photobleaching (FRAP) is combined with analytical approximations and numerical simulations to assess the relative effects of reaction and diffusion on molecular transport, respectively. FRAP experiments were conducted for 64 different cases where the molecular species, the density of the posts, and the chemical surface charge of the posts were varied. In all cases, the dense packing of the posts hindered the diffusive transport of the fluorescent species. The supercharged GFPs strongly interacted with oppositely charged surfaces. With similar molecular and surface charges, transport is primarily limited by hindered diffusion. For conventional, enhanced GFP in a positively charged surface environment, transport was limited by the coupled action of hindered diffusion and surface interaction with the posts. Quantification of the size-, space-, time-, and charge-dependent translational diffusion in the post array environments can provide insight into natural processes and guide the design and development of selective membrane systems.

  20. Space Charge Modulated Electrical Breakdown

    PubMed Central

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  1. Process of breaking and rendering permeable a subterranean rock mass

    DOEpatents

    Lekas, Mitchell A.

    1980-01-01

    The process of the present invention involves the following steps: producing, as by hydrofracing, a substantially horizontal fracture in the subterranean rock mass to be processed; emplacing an explosive charge in the mass in spaced juxtaposed position to the fracture; enlarging the fracture to create a void space thereat, an initial lifting of the overburden, and to provide a free face juxtaposed to and arranged to cooperate with the emplaced explosive charge; and exploding the charge against the free face for fragmenting the rock and to distribute the space, thus providing fractured, pervious, rubble-ized rock in an enclosed subterranean chamber. Firing of the charge provides a further lifting of the overburden, an enlargement of the chamber and a larger void space to distribute throughout the rubble-ized rock within the chamber. In some forms of the invention an explosive charge is used to produce a transitory enlargement of the fracture, and the juxtaposed emplaced charge is fired during the critical period of enlargement of the fracture.

  2. Design of a 10 GHz, 10 MW Gyrotron.

    DTIC Science & Technology

    1985-11-27

    beam, which can be located close to the cavity wall, reducing space charge effects . In addition, high current density beams can be generated (6) with the...calculates electron trajectories within potential boundaries, including the effects of beam space charge , and is fully relativistic. Modeling the... space charge would cause the bottom electrons to have too little perpendicular energy, and vice versa, as illustrated in Figures 11 and 12. The

  3. Superconducting Cavity Development for Free Electron Lasers.

    DTIC Science & Technology

    1986-06-30

    effects have been modeled extensively using the code PARMELA, including finite space charge . The conflict is resolved through the use of harmonically...depends on the specifics of how the whole accelerator is run, i.e., bunch length, interpulse spacing , macrobunch length, charge per bunch, external...this indicates that the bunch length should be as long as possible. 2.4 OPTIMUM BUNCH LENGTH 20 Although wakefield, HOM excitation and space charge

  4. Electron Multipactor: Theory Review, Comparison and Modeling of Mitigation Techniques in ICEPIC

    DTIC Science & Technology

    2009-03-01

    dielectric . This development includes space charge effects . 2.2.1 Conventions, Notations and Definitions...gigawatts, one percent of the RF energy would indeed be enough to cause failure in the dielectric window. For the case in which space charge effects are...buildup of the space - charges along the dielectric surface not allowing the number of multipactoring electrons to evolve beyond a certain point. 0 2 4 6

  5. Monster Paintings

    ERIC Educational Resources Information Center

    Huggler, Silvia

    2010-01-01

    In this article, the author describes a unit on monsters wherein students were charged with painting an imaginary character and, in so doing, demonstrated mastery of expression, organization of space, control of paint media, and application of the elements of art. Students discovered how color and line could be used to convey expression. The media…

  6. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2016-05-01

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.

  7. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao

    2016-05-05

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radiofrequency gun or by tuning the compression of a downstreammore » magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ~0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.« less

  8. A Triboelectric Sensor Array for Electrostatic Studies on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.; Mackey, Paul J.; Calle, C. I.

    2015-01-01

    The moons electrostatic environment requires careful consideration in the development of future lunar landers. Electrostatically charged dust was well documented during the Apollo missions to cause thermal control, mechanical, and visibility issues. The fine dust particles that make up the surface are electrostatically charged as a result of numerous charging mechanisms. The relatively dry conditions on the moon creates a prime tribocharging environment during surface operations. The photoelectric effect is dominant for lunar day static charging, while plasma electrons are the main contributor for lunar night electrostatic effects. Electrostatic charging is also dependent on solar intensity, Earth-moon relative positions, and cosmic ray flux. This leads to a very complex and dynamic electrostatic environment that must be studied for the success of long term lunar missions.In order to better understand the electrostatic environment of planetary bodies, Kennedy Space Center, in previous collaboration with the Jet Propulsion Laboratory, has developed an electrostatic sensor suite. One of the instruments included in this package is the triboelectric sensor array. It is comprised of strategically selected materials that span the triboelectric series and that also have previous spaceflight history. In this presentation, we discuss detailed testing with the triboelectric sensor array performed at Kennedy Space Center. We will discuss potential benefits and use cases of this low mass, low cost sensor package, both for science and for mission success.

  9. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    PubMed

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  10. Experimental study and simulation of space charge stimulated discharge

    NASA Astrophysics Data System (ADS)

    Noskov, M. D.; Malinovski, A. S.; Cooke, C. M.; Wright, K. A.; Schwab, A. J.

    2002-11-01

    The electrical discharge of volume distributed space charge in poly(methylmethacrylate) (PMMA) has been investigated both experimentally and by computer simulation. The experimental space charge was implanted in dielectric samples by exposure to a monoenergetic electron beam of 3 MeV. Electrical breakdown through the implanted space charge region within the sample was initiated by a local electric field enhancement applied to the sample surface. A stochastic-deterministic dynamic model for electrical discharge was developed and used in a computer simulation of these breakdowns. The model employs stochastic rules to describe the physical growth of the discharge channels, and deterministic laws to describe the electric field, the charge, and energy dynamics within the discharge channels and the dielectric. Simulated spatial-temporal and current characteristics of the expanding discharge structure during physical growth are quantitatively compared with the experimental data to confirm the discharge model. It was found that a single fixed set of physically based dielectric parameter values was adequate to simulate the complete family of experimental space charge discharges in PMMA. It is proposed that such a set of parameters also provides a useful means to quantify the breakdown properties of other dielectrics.

  11. On the mechanism of pattern formation in glow dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Yajun; Li, Ben; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn

    2016-01-15

    The formation mechanism of pattern in glow dielectric barrier discharge is investigated by two-dimensional fluid modeling. Experimental results are shown for comparison. The simulation results show that the non-uniform distribution of space charges makes the discharge be enhanced in the high-density region but weakened in its neighborhood, which is considered as an activation-inhibition effect. This effect shows through during a current pulse (one discharge event) but also in a certain period of time after discharge that determines a driving frequency range for the non-uniformity of space charges to be enhanced. The effects of applied voltage, surface charge, electrode boundary, andmore » external field are also discussed. All these factors affect the formation of dielectric-barrier-discharge pattern by changing the distribution or the dynamics of space charges and hence the activation-inhibition effect of non-uniform space charges.« less

  12. Optical measurements for interfacial conduction and breakdown

    NASA Astrophysics Data System (ADS)

    Hebner, R. E., Jr.; Kelley, E. F.; Hagler, J. N.

    1983-01-01

    Measurements and calculations contributing to the understanding of space and surface charges in practical insulation systems are given. Calculations are presented which indicate the size of charge densities necessary to appreciably modify the electric field from what would be calculated from geometrical considerations alone. Experimental data is also presented which locates the breakdown in an electrode system with a paper sample bridging the gap between the electrodes. It is found that with careful handling, the breakdown does not necessarily occur along the interface even if heavily contaminated oil is used. The effects of space charge in the bulk liquid are electro-optically examined in nitrobenzene and transformer oil. Several levels of contamination in transformer oil are investigated. Whereas much space charge can be observed in nitrobenzene, very little space charge, if any, can be observed in the transformer oil samples even at temperatures near 100 degrees C.

  13. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction.

    PubMed

    van Oudheusden, T; Pasmans, P L E M; van der Geer, S B; de Loos, M J; van der Wiel, M J; Luiten, O J

    2010-12-31

    We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.

  14. The Effects of Neutral Gas Release on Vehicle Charging: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Walker, D. N.; Amatucci, W. E.; Bowles, J. H.; Fernsler, R. F.; Siefring, C. L.; Antoniades, J. A.; Keskinen, M. J.

    1998-11-01

    This paper describes an experimental and theoretical research effort related to the mitigation of spacecraft charging by Neutral Gas Release (NGR). The Space Power Experiments Aboard Rockets programs (SPEAR I and III) [Mandel et al., 1998; Berg et al., 1995] and other earlier efforts have demonstrated that NGR is an effective method of controlling discharges in space. The laboratory experimentswere conducted in the large volume Space Physics Simulation Chamber (SPSC) at the Naval Research Laboratory (NRL). A realistic near-earth space environment can be simulated in this device for whichminimumscalingneeds to be performedtorelate the data to space plasma regimes. This environment is similar to that encountered by LEO spacecraft, e.g., the Space Station, Shuttle, and high inclination satellites. The experimental arrangement consists of an aluminum cylinder which can be biased to high negative voltage (0.4 kV

  15. High Power Klystrons for Efficient Reliable High Power Amplifiers.

    DTIC Science & Technology

    1980-11-01

    techniques to obtain high overall efficiency. One is second harmonic space charge bunching. This is a process whereby the fundamental and second harmonic...components of the space charge waves in the electron beam of a microwave tube are combined to produce more highly concentrated electron bunches raising the...the drift lengths to enhance the 2nd harmonic component in the space charge waves. The latter method was utilized in the VKC-7790. Computer

  16. Multipactor Discharge in High Power Microwave Systems: Analyzing Effects and Mitigation through Simulation in ICEPIC

    DTIC Science & Technology

    2013-03-01

    weapons, 2012. Private Communication. 22. A. Valfells, H.P. Verboncoeur, and Y.Y. Lau. Space - charge effects on multipactor dielectric . Plasma Science...when space charge effects are omitted modeled particles have no associated fields and when emitted from the dielectric do not have leave behind a...Experimental research performed at Texas Tech [16] showed that space charge must be included to properly characterize the multipactor evolution [22

  17. Numerical Investigation of a Cascaded Longitudinal Space-Charge Amplifier at the Fermilab's Advanced Superconducting Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-06-01

    In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have beenmore » conducted with a grid-less three-dimensional space-charge algorithm.« less

  18. Electric field and space charge distribution measurement in transformer oil struck by impulsive high voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei

    2015-08-01

    Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.

  19. The 100 ampere-hour nickel cadmium battery development program, volume 1

    NASA Technical Reports Server (NTRS)

    Gaston, S.

    1974-01-01

    A program to develop a long-life, reliable and safe 100 ampere-hour sealed nickel-cadmium cell and battery module with ancillary charge control and automated test equipment to fulfill the requirements of a large Manned Orbital Space Station which uses Solar Arrays as its prime source for 25 kW of electrical power was conducted. A sealed 100 ampere-hour cell with long life potential and a replaceable, space maintainable battery module has been developed for Manned Space Station applications. The 100 ampere-hour cell has been characterized for initial (early life) anticipated conditions.

  20. Silver nanoparticles as a key feature of a plasma polymer composite layer in mitigation of charge injection into polyethylene under dc stress

    NASA Astrophysics Data System (ADS)

    Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.

    2016-01-01

    The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.

  1. 14 CFR 389.12 - Payment of fees and charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payment of fees and charges. 389.12 Section 389.12 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Fees for Special Services § 389.12 Payment of...

  2. 14 CFR 389.12 - Payment of fees and charges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Payment of fees and charges. 389.12 Section 389.12 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Fees for Special Services § 389.12 Payment of...

  3. Ground testing and flight demonstration of charge management of insulated test masses using UV-LED electron photoemission

    NASA Astrophysics Data System (ADS)

    Saraf, Shailendhar; Buchman, Sasha; Balakrishnan, Karthik; Lui, Chin Yang; Soulage, Michael; Faied, Dohy; Hanson, John; Ling, Kuok; Jaroux, Belgacem; Suwaidan, Badr Al; AlRashed, Abdullah; Al-Nassban, Badr; Alaqeel, Faisal; Harbi, Mohammed Al; Salamah, Badr Bin; Othman, Mohammed Bin; Qasim, Bandar Bin; Alfauwaz, Abdulrahman; Al-Majed, Mohammed; DeBra, Daniel; Byer, Robert

    2016-12-01

    The UV-LED mission demonstrates the precise control of the potential of electrically isolated test masses. Test mass charge control is essential for the operation of space accelerometers and drag-free sensors which are at the core of geodesy, aeronomy and precision navigation missions as well as gravitational wave experiments and observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on Gravity Probe B and is presently part of the LISA Pathfinder technology demonstration. The UV-LED mission and prior ground testing demonstrates that AlGaN UVLEDs operating at 255 nm are superior to Hg lamps because of their smaller size, lower power draw, higher dynamic range, and higher control authority. We show laboratory data demonstrating the effectiveness and survivability of the UV-LED devices and performance of the charge management system. We also show flight data from a small satellite experiment that was one of the payloads on KACST’s SaudiSat-4 mission that demonstrates ‘AC charge control’ (UV-LEDs and bias are AC modulated with adjustable relative phase) between a spherical test mass and its housing. The result of the mission brings the UV-LED device Technology Readiness Level (TRL) to TRL-9 and the charge management system to TRL-7. We demonstrate the ability to control the test mass potential on an 89 mm diameter spherical test mass over a 20 mm gap in a drag-free system configuration, with potential measured using an ultra-high impedance contact probe. Finally, the key electrical and optical characteristics of the UV-LEDs showed less than 7.5% change in performance after 12 months in orbit.

  4. Electric breakdowns of the "plasma capacitors" occurs on insulation coating of the ISS surface

    NASA Astrophysics Data System (ADS)

    Homin, Taras; Korsun, Anatolii

    High electric fields and currents are occurred in the spacecrafts plasma environment by onboard electric generators. Thus the high voltage solar array (SA) of the American segment of International Space Station (ISS) generates potential 160 V. Its negative pole is shorted to the frames of all the ISS segments. There is electric current between the SA and the frame through the plasma environment, i.e. electric discharge occurs. As a result a potential drop exists between the frames of all the ISS segments and the environmental plasma [1], which is cathode drop potential varphi _{c} defined. When ISS orbiting, the φc varies greatly in the range 0-100 V. A large area of the ISS frames and SA surface is coated with a thin dielectric film. Because of cathode drop potential the frame surfaces accumulate ion charges and the SA surfaces accumulate electron charges. These surfaces become plasma capacitors, which accumulate much charge and energy. Micrometeorite impacts or buildup of potential drop in excess of breakdown threshold varphi_{b} (varphi _{c} > varphi _{b} = 60 V) may cause breakdowns of these capacitors. Following a breakdown, the charge collected at the surfaces disperses and transforms into a layer of dense plasma [2]. This plasma environment of the spacecraft produces great pulsed electric fields E at the frame surfaces as well as heavy currents between construction elements which in turn induce great magnetic fields H. Therefore the conductive frame and the environmental plasma is plasma inductors. We have calculated that the densities of these pulsing and high-frequency fields E and H generated in the plasma environment of the spacecraft may exceed values hazardous to human. Besides, these fields must induce large electromagnetic impulses in the space-suit and in the power supply and control circuits of onboard systems. During astronaut’s space-suit activity, these fields will penetrate the space-suit and the human body with possible hazardous effects. These effects need to be studied, and appropriate remedies are to be developed. References 1. Mikatarian, R., et al., «Electrical Charging of the International Space Station», AIAA Paper No. 2003-1079, 41th. Aerospace Sciences Meeting and Exhibit, January 2003. 2. A.G. Korsun, «Electric discharge processes intensification mechanisms on International Space Station surface». Astronautics and rocket production, 1, 2011 (in Russian).

  5. The Effect of a Corona Discharge on a Lightning Attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-15

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strikemore » to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed.« less

  6. Maturing CCD Photon-Counting Technology for Space Flight

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; Hicks, Brian

    2015-01-01

    This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.

  7. Remote Spacecraft Attitude Control by Coulomb Charging

    NASA Astrophysics Data System (ADS)

    Stevenson, Daan

    The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to achieve rotation rate and absolute attitude control. Collectively, these studies decisively validate the feasibility of Coulomb charging for remote spacecraft attitude control.

  8. Effect of Environment on the Fidelity of Control and Measurements of Solid-State Quantum Devices

    DTIC Science & Technology

    2013-07-22

    space vs. thickness of the film a for a DQD charge qubit in one dimension with dot geometry d = 30 nm and l = 60 nm at 0 K...constitute a conducting half- space , rather than the more sparse gate geometry used in [134]. It is also instructive to compare our results with the ...40 ms [134]. However, it must be kept in mind that we have so far considered the simpler top gate geometry of a conducting half-

  9. Methodology and Data Sources for Assessing Extreme Charging Events within the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Minow, J. I.; Talaat, E. R.

    2016-12-01

    Spacecraft surface and internal charging is a potential threat to space technologies because electrostatic discharges on, or within, charged spacecraft materials can result in a number of adverse impacts to spacecraft systems. The Space Weather Action Plan (SWAP) ionizing radiation benchmark team recognized that spacecraft charging will need to be considered to complete the ionizing radiation benchmarks in order to evaluate the threat of charging to critical space infrastructure operating within the near-Earth ionizing radiation environments. However, the team chose to defer work on the lower energy charging environments and focus the initial benchmark efforts on the higher energy galactic cosmic ray, solar energetic particle, and trapped radiation belt particle environments of concern for radiation dose and single event effects in humans and hardware. Therefore, an initial set of 1 in 100 year spacecraft charging environment benchmarks remains to be defined to meet the SWAP goals. This presentation will discuss the available data sources and a methodology to assess the 1 in 100 year extreme space weather events that drive surface and internal charging threats to spacecraft. Environments to be considered are the hot plasmas in the outer magnetosphere during geomagnetic storms, relativistic electrons in the outer radiation belt, and energetic auroral electrons in low Earth orbit at high latitudes.

  10. Design of an arc-free thermal blanket

    NASA Technical Reports Server (NTRS)

    Fellas, C. N.

    1981-01-01

    The success of a multilayer thermal blanket in eliminating arcing is discussed. Arcing is eliminated by limiting the surface potential to well below the threshold level for discharge. This is achieved by enhancing the leakage current which results in conduction of the excess charge to the spacecraft structure. The thermal blanket consists of several layers of thermal control (space approved) materials, bonded together, with Kapton on the outside, arranged in such a way that when the outer surface is charged by electron irradiation, a strong electric field is set up on the Kapton layer resulting in a greatly improved conductivity. The basic properties of matter utilized in designing this blanket method of charge removal, and optimum thermo-optical properties are summarized.

  11. Determination of thermal properties of commercial Ni-MH cells

    NASA Astrophysics Data System (ADS)

    Darcy, Eric C.

    1994-02-01

    The test objectives were to evaluate the electrical and thermal performance of commercial Ni-MH cells, evaluate the effectiveness of commercial charge control circuits, assess the abuse tolerance of these cells, and correlate performance and abuse tolerances to cell design via disassembly. Design objectives were to determine which cell designs are most suitable for scale-up and to guide the design of future shuttle and space station based battery chargers. Results, displayed in viewgraph format, include: reflex charging with ICS circuit resulted in premature charge termination; Ni-MH cells appear very tolerant to overcharge at low rates; Enstore's charger is more electrically and thermally efficient at high rates; and Ni-MH cycles much more efficiently than Ni-Cd with the delta-V/delta-t termination.

  12. Monte Carlo simulation of neutral-beam injection for mirror fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ronald Lee

    1979-01-01

    Computer simulation techniques using the Monte Carlo method have been developed for application to the modeling of neutral-beam intection into mirror-confined plasmas of interest to controlled thermonuclear research. The energetic (10 to 300 keV) neutral-beam particles interact with the target plasma (T i ~ 10 to 100 keV) through electron-atom and ion-atom collisional ionization as well as ion-atom charge-transfer (charge-exchange) collisions to give a fractional trapping of the neutral beam and a loss of charge-transfer-produced neutrals which escape to bombard the reactor first wall. Appropriate interaction cross sections for these processes are calculated for the assumed anisotropic, non-Maxwellian plasma ionmore » phase-space distributions.« less

  13. Determination of thermal properties of commercial Ni-MH cells

    NASA Technical Reports Server (NTRS)

    Darcy, Eric C.

    1994-01-01

    The test objectives were to evaluate the electrical and thermal performance of commercial Ni-MH cells, evaluate the effectiveness of commercial charge control circuits, assess the abuse tolerance of these cells, and correlate performance and abuse tolerances to cell design via disassembly. Design objectives were to determine which cell designs are most suitable for scale-up and to guide the design of future shuttle and space station based battery chargers. Results, displayed in viewgraph format, include: reflex charging with ICS circuit resulted in premature charge termination; Ni-MH cells appear very tolerant to overcharge at low rates; Enstore's charger is more electrically and thermally efficient at high rates; and Ni-MH cycles much more efficiently than Ni-Cd with the delta-V/delta-t termination.

  14. Charge Stabilized Crystalline Colloidal Arrays As Templates For Fabrication of Non-Close-Packed Inverted Photonic Crystals

    PubMed Central

    Bohn, Justin J.; Ben-Moshe, Matti; Tikhonov, Alexander; Qu, Dan; Lamont, Daniel N.

    2010-01-01

    We developed a straightforward method to form non close-packed highly ordered fcc direct and inverse opal silica photonic crystals. We utilize an electrostatically self assembled crystalline colloidal array (CCA) template formed by monodisperse, highly charged polystyrene particles. We then polymerize a hydrogel around the CCA (PCCA) and condense the silica to form a highly ordered silica impregnated (siPCCA) photonic crystal. Heating at 450 °C removes the organic polymer leaving a silica inverse opal structure. By altering the colloidal particle concentration we independently control the particle spacing and the wall thickness of the inverse opal photonic crystals. This allows us to control the optical dielectric constant modulation in order to optimize the diffraction; the dielectric constant modulation is controlled independently of the photonic crystal periodicity. These fcc photonic crystals are better ordered than typical close-packed photonic crystals because their self assembly utilizes soft electrostatic repulsive potentials. We show that colloidal particle size and charge polydispersity has modest impact on ordering, in contrast to that for close-packed crystals. PMID:20163800

  15. Effect of ion compensation of the beam space charge on gyrotron operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ionmore » compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.« less

  16. Controlling Charging and Arcing on a Solar Powered Auroral Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Rhee, Michael S.

    2008-01-01

    The Global Precipitation Measurement satellite (GPM) will be launched into a high inclination (65 degree) orbit to monitor rainfall on a global scale. Satellites in high inclination orbits have been shown to charge to high negative potentials, with the possibility of arcing on the solar arrays, when three conditions are met: a drop in plasma density below approximately 10,000 cm(exp -3), an injection of energetic electrons of energy more that 7-10 keV, and passage through darkness. Since all of these conditions are expected to obtain for some of the GPM orbits, charging calculations were done using first the Space Environment and Effects (SEE) Program Interactive Spacecraft Charging Handbook, and secondly the NASA Air-force Spacecraft Charging Analyzer Program (NASCAP-2k). The object of the calculations was to determine if charging was likely for the GPM configuration and materials, and specifically to see if choosing a particular type of thermal white paint would help minimize charging. A detailed NASCAP-2k geometrical model of the GPM spacecraft was built, with such a large number of nodes that it challenged the capability of NASCAP-2k to do the calculations. The results of the calculations were that for worst-case auroral charging conditions, charging to levels on the order of -120 to -230 volts could occur on GPM during night-time, with differential voltages on the solar arrays that might lead to solar array arcing. In sunlit conditions, charging did not exceed -20 V under any conditions. The night-time results were sensitive to the spacecraft surface materials chosen. For non-conducting white paints, the charging was severe, and could continue unabated throughout the passage of GPM through the auroral zone. Somewhat conductive (dissipative) white paints minimized the night-time charging to levels of -120 V or less, and thus were recommended for GPM thermal control. It is shown that the choice of thermal control paints is important to prevent arcing on high inclination orbiting spacecraft solar arrays as well as for GEO satellites, even for solar array designs chosen to minimize arcing.

  17. Space charge enhanced plasma gradient effects on satellite electric field measurements

    NASA Technical Reports Server (NTRS)

    Diebold, Dan; Hershkowitz, Noah; Dekock, J.; Intrator, T.; Hsieh, M-K.

    1991-01-01

    It has been recognized that plasma gradients can cause error in magnetospheric electric field measurements made by double probes. Space charge enhanced Plasma Gradient Induced Error (PGIE) is discussed in general terms, presenting the results of a laboratory experiment designed to demonstrate this error, and deriving a simple expression that quantifies this error. Experimental conditions were not identical to magnetospheric conditions, although efforts were made to insure the relevant physics applied to both cases. The experimental data demonstrate some of the possible errors in electric field measurements made by strongly emitting probes due to space charge effects in the presence of plasma gradients. Probe errors in space and laboratory conditions are discussed, as well as experimental error. In the final section, theoretical aspects are examined and an expression is derived for the maximum steady state space charge enhanced PGIE taken by two identical current biased probes.

  18. Virtual Laboratory Environment for High Voltage Radiation Source Experiments

    DTIC Science & Technology

    2005-05-01

    Dielectric ," Phys. Rev. Lett. 80, 103 (1998). 26.A. Valfells, J. P. Verboncoeur and Y. Y. Lau, " Space charge effects on multipactor on a dielec... effects at the edges of the surface, or due to space charge effects if a plasma is formed at the surface. High density multipactor can result in... multipactors , which can cause significant reflection and absorption of microwave power as well as space charge effects . X-rays can also

  19. The NRL (Naval Research Laboratory) Phase-Locked Gyrotron Oscillator Program for SDIO/IST

    DTIC Science & Technology

    1988-07-11

    are neglected as are space - charge effects . The cold cavity eigenfrequency for the TE6 2 1 mode is 35.08 GHz. The calculated efficiency, output power...improved beam quality on the gyrotron operation, and to eliminate the unknown space charge effects present in the original experiment, in which a...substantial fraction of the diode current is reflected before reaching the gyrotron cavity and may cause space charge problems before being collected on

  20. Induction Linacs and Free Electron Laser Amplifiers

    DTIC Science & Technology

    1986-03-20

    accelerated and the effects of space - charge force is minimized. EMnTANCE-PRESERVING BEAMLINE The beamline (Fig. 5) is designed to preserve the good beam...electrons and pushes them right out of the way leaving a bare ion cloud. With relativistic beams in vacuum, their space charge defocusing is offset by the...suspect, on why charged particle beams cannot be used in space . Now it is a fairly straight- forward extrapolation, already mentioned in Lou Marguet’s

  1. Development of an Annular Electron Beam HPM Amplifier

    DTIC Science & Technology

    1994-09-01

    34, Phys.Rev.Lett., 64(19), ppgs 2320-2323, 7 May 1990 9. Lau, Y.Y. and Chernin, D., "A review of the ac space - charge effect in electron-circuit interactions...the Child-Lanamuir, space - charge limiting current in the beam line. This removes the potential of torming a virtual cathode (Ref. 19). The...propagates the electron beam through a single modulating gap, with a specified voltage, frequency, and gap extent. The beam space charge is an input

  2. New functionalities of potassium tantalate niobate deflectors enabled by the coexistence of pre-injected space charge and composition gradient

    NASA Astrophysics Data System (ADS)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Campbell, Adrian L.; Henry, Michael G.; Yin, Stuart Shizhuo; Hoffman, Robert C.

    2017-10-01

    In most beam steering applications such as 3D printing and in vivo imaging, one of the essential challenges has been high-resolution high-speed multi-dimensional optical beam scanning. Although the pre-injected space charge controlled potassium tantalate niobate (KTN) deflectors can achieve speeds in the nanosecond regime, they deflect in only one dimension. In order to develop a high-resolution high-speed multi-dimensional KTN deflector, we studied the deflection behavior of KTN deflectors in the case of coexisting pre-injected space charge and composition gradient. We find that such coexistence can enable new functionalities of KTN crystal based electro-optic deflectors. When the direction of the composition gradient is parallel to the direction of the external electric field, the zero-deflection position can be shifted, which can reduce the internal electric field induced beam distortion, and thus enhance the resolution. When the direction of the composition gradient is perpendicular to the direction of the external electric field, two-dimensional beam scanning can be achieved by harnessing only one single piece of KTN crystal, which can result in a compact, high-speed two-dimensional deflector. Both theoretical analyses and experiments are conducted, which are consistent with each other. These new functionalities can expedite the usage of KTN deflection in many applications such as high-speed 3D printing, high-speed, high-resolution imaging, and free space broadband optical communication.

  3. Control of mobility in molecular organic semiconductors by dendrimer generation

    NASA Astrophysics Data System (ADS)

    Lupton, J. M.; Samuel, I. D.; Beavington, R.; Frampton, M. J.; Burn, P. L.; Bässler, H.

    2001-04-01

    Conjugated dendrimers are of interest as novel materials for light-emitting diodes. They consist of a luminescent chromophore at the core with highly branched conjugated dendron sidegroups. In these materials, light emission occurs from the core and is independent of generation. The dendron branching controls the separation between the chromophores. We present here a family of conjugated dendrimers and investigate the effect of dendron branching on light emission and charge transport. We apply a number of transport measurement techniques to thin films of a conjugated dendrimer in a light-emitting diode configuration to determine the effect of chromophore spacing on charge transport. We find that the mobility is reduced by two orders of magnitude as the size of the molecule doubles with increased branching or dendrimer generation. The degree of branching allows a unique control of mobility by molecular structure. An increase in chromophore separation also results in a reduction of intermolecular interactions, which reduces the red emission tail in film photoluminescence. We find that the steady-state charge transport is well described by a simple device model incorporating the effect of generation, and use the materials to shed light on the interpretation of transient electroluminescence data. We demonstrate the significance of the ability to tune the mobility in bilayer devices, where a more balanced charge transport can be achieved.

  4. Proceedings of the 1993 Particle Accelerator Conference Held in Washington, DC on May 17-20, 1993. Volume 5

    DTIC Science & Technology

    1994-05-18

    1801 Control System Architecture: The Standard and Non -Standard Models (Invited Paper) - M. E. Thuot, L. R. Dalesio, LANL...extracted beam intensity and feedback on lbe in lbe AGS, lbe non -linear space charge force can blow up lbe strength of lbe sextupole field to control lb...cromsings at the two experimental areas BO and DO, and bling the mas rnge accessible for discovery, a menu bar. In the menu bar there are controls to inject

  5. Determination of the space-charge field amplitude in polymeric photorefractive polymers.

    PubMed

    Hwang, Ui-Jung; Choi, Chil-Sung; Vuong, Nguyen Quoc; Kim, Nakjoong

    2005-12-22

    The space-charge field built in a polymeric photorefractive polymer was calculated by a simple method based on the oriented gas model. When anisotropic chromophores in a photorefractive polymer were exposed to an external field, they oriented preferentially to exhibit a birefringence. Then, under illumination of two coherent beams and an external field, they reoriented to form a photorefractive grating. During the formation of the grating, the chromophores were reoriented by the space-charge field as well as by the external applied field. The birefringence induced in the material by an external electric field was determined by measuring the transmittance of the sample which is placed between crossed polarizers, where birefringence depicts the orientation of the chromophores. By measuring the diffraction efficiency with a modified degenerate four-wave mixing setup, the index amplitude of the grating was determined. Finally, the space-charge field was determined by comparing the diffraction efficiency with the birefringence with respect to the applied electric field. In our study, the space-charge field was about 20% of the external applied field, which coincided with previous results obtained from our laboratory.

  6. Study of electric field distorted by space charges under positive lightning impulse voltage

    NASA Astrophysics Data System (ADS)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  7. Report on the Stanford/KACST/AMES UVLED small satellite mission to demonstrate charge management of an electrically isolated proof mass for drag-free operation

    NASA Astrophysics Data System (ADS)

    Saraf, Shailendhar

    A spacecraft demonstration of ultra-violet (UV) LEDs and UV LED charge management based on research done at Stanford University is being developed jointly by the King Abdulaziz City for Science and Technology (KACST) Saudi Arabia and NASA Ames Research Center, with an expected launch date of June 2014. This paper will report on the payload design and testing, mission preparation, satellite launch and payload bring -up in space. Mission lifetime is expected to be at least one month, during which time the ability for the UV LEDs to mitigate actual space-based charging and the effects of radiation on the UV LED device performance will be studied. Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. The mission will demonstrate that AlGaN UV LEDs operating at 255 nm are an effective low-cost, low-power and compact substitute for Mercury vapor lamps used in previous missions. The goal of the mission is to increase the UV LED device to TRL-9 and the charge management system to TRL-7.

  8. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    ERIC Educational Resources Information Center

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  9. Asymptotic symmetries of Rindler space at the horizon and null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Hyeyoun

    2010-08-15

    We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler spacemore » at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.« less

  10. Airlock Battery Charge module

    NASA Image and Video Library

    2008-06-06

    S124-E-006858 (6 June 2008) --- Astronauts Greg Chamitoff, Expedition 17 flight engineer, and Karen Nyberg, STS-124 mission specialist, use the controls of the International Space Station's robotic Canadarm2 in the Destiny laboratory to maneuver the Kibo Japanese logistics module from atop the Harmony node to the top of the Kibo Japanese Pressurized Module.

  11. Resistive switching phenomena of tungsten nitride thin films with excellent CMOS compatibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seok Man; Kim, Hee-Dong; An, Ho-Myoung

    2013-12-15

    Graphical abstract: - Highlights: • The resistive switching characteristics of WN{sub x} thin films. • Excellent CMOS compatibility WN{sub x} films as a resistive switching material. • Resistive switching mechanism revealed trap-controlled space charge limited conduction. • Good endurance and retention properties over 10{sup 5} cycles, and 10{sup 5} s, respectively - Abstract: We report the resistive switching (RS) characteristics of tungsten nitride (WN{sub x}) thin films with excellent complementary metal-oxide-semiconductor (CMOS) compatibility. A Ti/WN{sub x}/Pt memory cell clearly shows bipolar RS behaviors at a low voltage of approximately ±2.2 V. The dominant conduction mechanisms at low and high resistancemore » states were verified by Ohmic behavior and trap-controlled space-charge-limited conduction, respectively. A conducting filament model by a redox reaction explains the RS behavior in WN{sub x} films. We also demonstrate the memory characteristics during pulse operation, including a high endurance over >10{sup 5} cycles and a long retention time of >10{sup 5} s.« less

  12. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    NASA Astrophysics Data System (ADS)

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-11-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.

  13. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    PubMed Central

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-01-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow. PMID:27830697

  14. Space charge effects in ultrafast electron diffraction and imaging

    NASA Astrophysics Data System (ADS)

    Tao, Zhensheng; Zhang, He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu

    2012-02-01

    Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

  15. Electrostatic Studies for the 2008 Hubble Service Repair Mission

    NASA Technical Reports Server (NTRS)

    Buhler, C. R.; Clements, J. S.; Calle, C. I.

    2012-01-01

    High vacuum triboelectric testing of space materials was required to identify possible Electrostatic Discharge (ESD) concerns for the astronauts in space during electronics board replacement on the Hubble Space Telescope. Testing under high vacuum conditions with common materials resulted in some interesting results. Many materials were able to charge to high levels which did not dissipate quickly even when grounded. Certain materials were able to charge up in contact with grounded metals while others were not. An interesting result was that like materials did not exchange electrostatic charge under high vacuum conditions. The most surprising experimental result is the lack of brush discharges from charged insulators under high vacuum conditions.

  16. Characterizing the effects of regolith surface roughness on photoemission from surfaces in space

    NASA Astrophysics Data System (ADS)

    Dove, A.; Horanyi, M.; Wang, X.

    2017-12-01

    Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.

  17. Space charge neutralization by electron-transparent suspended graphene

    PubMed Central

    Srisonphan, Siwapon; Kim, Myungji; Kim, Hong Koo

    2014-01-01

    Graphene possesses many fascinating properties originating from the manifold potential for interactions at electronic, atomic, or molecular levels. Here we report measurement of electron transparency and hole charge induction response of a suspended graphene anode on top of a void channel formed in a SiO2/Si substrate. A two-dimensional (2D) electron gas induced at the oxide interface emits into air and makes a ballistic transport toward the suspended graphene. A small fraction (>~0.1%) of impinging electrons are captured at the edge of 2D hole system in graphene, demonstrating good transparency to very low energy (<3 eV) electrons. The hole charges induced in the suspended graphene anode have the effect of neutralizing the electron space charge in the void channel. This charge compensation dramatically enhances 2D electron gas emission at cathode to the level far surpassing the Child-Langmuir's space-charge-limited emission. PMID:24441774

  18. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Myers, Neil B.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). These results are interpreted in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the 'ignited' mode.

  19. Null hypersurface quantization, electromagnetic duality and asympotic symmetries of Maxwell theory

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arpan; Hung, Ling-Yan; Jiang, Yikun

    2018-03-01

    In this paper we consider introducing careful regularization at the quantization of Maxwell theory in the asymptotic null infinity. This allows systematic discussions of the commutators in various boundary conditions, and application of Dirac brackets accordingly in a controlled manner. This method is most useful when we consider asymptotic charges that are not localized at the boundary u → ±∞ like large gauge transformations. We show that our method reproduces the operator algebra in known cases, and it can be applied to other space-time symmetry charges such as the BMS transformations. We also obtain the asymptotic form of the U(1) charge following from the electromagnetic duality in an explicitly EM symmetric Schwarz-Sen type action. Using our regularization method, we demonstrate that the charge generates the expected transformation of a helicity operator. Our method promises applications in more generic theories.

  20. Operational radiological support for the US manned space program

    NASA Technical Reports Server (NTRS)

    Golightly, Michael J.; Hardy, Alva C.; Atwell, William; Weyland, Mark D.; Kern, John; Cash, Bernard L.

    1993-01-01

    Radiological support for the manned space program is provided by the Space Radiation Analysis Group at NASA/JSC. This support ensures crew safety through mission design analysis, real-time space environment monitoring, and crew exposure measurements. Preflight crew exposure calculations using mission design information are used to ensure that crew exposures will remain within established limits. During missions, space environment conditions are continuously monitored from within the Mission Control Center. In the event of a radiation environment enhancement, the impact to crew exposure is assessed and recommendations are provided to flight management. Radiation dosimeters are placed throughout the spacecraft and provided to each crewmember. During a radiation contingency, the crew could be requested to provide dosimeter readings. This information would be used for projecting crew dose enhancements. New instrumentation and computer technology are being developed to improve the support. Improved instruments include tissue equivalent proportional counter (TEPC)-based dosimeters and charged particle telescopes. Data from these instruments will be telemetered and will provide flight controllers with unprecedented information regarding the radiation environment in and around the spacecraft. New software is being acquired and developed to provide 'smart' space environmental data displays for use by flight controllers.

  1. An Analysis of High-Power Radar TR-Limited with Very Short Recovery Time,

    DTIC Science & Technology

    1981-05-07

    field in the gap will continuously grow stronger, until the space charge field cancels the accelerating effect of 19 the high frequency field on the...weak in the middle. 29 .,.a1 ,-t *’:.--’ ’ - - Clearly the space charge field has a repelling effect on the secondary electrons emitted by electrode...homogeneous. Therefore, the bias value in the space charge field induces an effect on the kinetic state of the electronic dissipation process. This is small

  2. Potential for EMU Fabric Damage by Electron Beam and Molten Metal During Space Welding for the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.

    1998-01-01

    As a consequence of preparations concerning the International Space Welding Experiment (ISWE), studies were performed to better understand the effect of molten metal contact and electron beam impingement with various fabrics for space suit applications. The question arose as to what would occur if the electron beam from the Ukrainian Universal Hand Tool (UHT) designed for welding in space were to impinge upon a piece of Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The expectation was that the electron beam would lay down a static charge pattern with no damage to the ceramic fabric. The electron beam is capable of spraying the fabric with enough negative charge to repel further electrons from the fabric before significant heating occurs. The static charge pattern would deflect any further charge accumulation except for a small initial amount of leakage to the grounded surface of the welder. However, when studies were made of the effect of the electron beam on the insulating ceramic fabric it was surprisingly found that the electron beam did indeed burn through the ceramic fabric. It was also found that the shorter electron beam standoff distances had longer burnthrough times than did some greater electron beam standoff distances. A possible explanation for the longer burnthrough times for the small electron beam standoff distance would be outgassing of the fabric which caused the electron beam hand-tool to cycle on and off to provide some protection for the cathodes. The electron beam hand tool was observed to cycle off at the short standoff distance of two inches likely due to vapors being outgassed. During the electron beam welding process there is an electron leakage, or current leakage, flow from the fabric. A static charge pattern is initially laid down by the electron beam current flow. The static charge makes up the current leakage flow which initially slightly heats up the fabric. The initially laid down surface charge leaks a small amount of current. The rate at which the current charge leaks from the fabric controls how fast the fabric heats up. As the ceramic fabric is heated it begins to outgass primarily from contamination/impurities atoms or molecules on and below the fabric surface. The contaminant gases ionize to create extra charge carriers and multiply a current of electrons. The emitted gas which ionized in the electron leakage flow promotes further leakage. Thus, the small leakage of charge from the fabric surface is enhanced by outgassing. When the electron beam current makes up the lost current, the incoming electrons heat the fabric and further enhance the outgassing. The additional leakage promotes additional heating up of the ceramic fabric. The electrons bound to the ceramic fabric surface leak off more and more as the surface gets hotter promoting even greater leakage. The additional electrons that result also gain energy in the field and produce further electrons. Eventually the process becomes unstable and accelerates to the point where a hole is burned through the fabric.

  3. Micro faraday-element array detector for ion mobility spectroscopy

    DOEpatents

    Gresham, Christopher A [Albuquerque, NM; Rodacy, Phillip J [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger [Tucson, AZ

    2004-10-26

    An ion mobility spectrometer includes a drift tube having a collecting surface covering a collecting area at one end of the tube. The surface comprises a plurality of closely spaced conductive elements on a non-conductive substrate, each conductive element being electrically insulated from each other element. A plurality of capacitive transimpedance amplifiers (CTIA) adjacent the collecting surface are electrically connected to the plurality of elements, so charge from an ion striking an element is transferred to the capacitor of the connected CTIA. A controller counts the charge on the capacitors over a period of time.

  4. Electrostatic 2D assembly of bionanoparticles on a cationic lipid monolayer.

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Wang, Suntao; Fukuto, Masafumi; Yang, Lin; Niu, Zhongwei; Nguyen, Giang; Wang, Qian

    2010-03-01

    We present a grazing-incidence small-angle X-ray scattering (GISAXS) study on 2D assembly of cowpea mosaic virus (CPMV) under a mixed cationic-zwitterionic (DMTAP^+-DMPC) lipid monolayer at the air-water interface. The inter-particle and particle-lipid electrostatic interactions were varied by controlling the subphase pH and the membrane charge density. GISAXS data show that 2D crystals of CPMV are formed above a threshold membrane charge density and only in a narrow pH range just above CPMV's isoelectric point, where the charge on CPMV is expected to be weakly negative. The particle density for the 2D crystals is similar to that for the densest lattice plane in the 3D crystals of CPMV. The results show that the 2D crystallization is achieved in the part of the phase space where the electrostatic interactions are expected to maximize the adsorption of CPMV onto the lipid membrane. This electrostatics-based strategy for controlling interfacial nanoscale assembly should be generally applicable to other nanoparticles.

  5. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalisation in Metal-Organic Frameworks.

    PubMed

    Hua, Carol; Doheny, Patrick William; Ding, Bowen; Chan, Bun; Yu, Michelle; Kepert, Cameron J; D'Alessandro, Deanna M

    2018-05-04

    Understanding the nature of charge transfer mechanisms in 3-dimensional Metal-Organic Frameworks (MOFs) is an important goal owing to the possibility of harnessing this knowledge to design conductive frameworks. These materials have been implicated as the basis for the next generation of technological devices for applications in energy storage and conversion, including electrochromic devices, electrocatalysts, and battery materials. After nearly two decades of intense research into MOFs, the mechanisms of charge transfer remain relatively poorly understood, and new strategies to achieve charge mobility remain elusive and challenging to experimentally explore, validate and model. We now demonstrate that aromatic stacking interactions in Zn(II) frameworks containing cofacial thiazolo[5,4-d]thiazole units lead to a mixed-valence state upon electrochemical or chemical reduction. This through-space Intervalence Charge Transfer (IVCT) phenomenon represents a new mechanism for charge delocalisation in MOFs. Computational modelling of the optical data combined with application of Marcus-Hush theory to the IVCT bands for the mixed-valence framework has enabled quantification of the degree of delocalisation using both in situ and ex situ electro- and spectro-electrochemical methods. A distance dependence for the through-space electron transfer has also been identified on the basis of experimental studies and computational calculations. This work provides a new window into electron transfer phenomena in 3-dimensional coordination space, of relevance to electroactive MOFs where new mechanisms for charge transfer are highly sought after, and to understanding biological light harvesting systems where through-space mixed-valence interactions are operative.

  6. Understanding the Thickness-Dependent Performance of Organic Bulk Heterojunction Solar Cells: The Influence of Mobility, Lifetime, and Space Charge.

    PubMed

    Kirchartz, Thomas; Agostinelli, Tiziano; Campoy-Quiles, Mariano; Gong, Wei; Nelson, Jenny

    2012-12-06

    We investigate the reasons for the dependence of photovoltaic performance on the absorber thickness of organic solar cells using experiments and drift-diffusion simulations. The main trend in photocurrent and fill factor versus thickness is determined by mobility and lifetime of the charge carriers. In addition, space charge becomes more and more important the thicker the device is because it creates field free regions with low collection efficiency. The two main sources of space-charge effects are doping and asymmetric mobilities. We show that for our experimental results on Si-PCPDTBT:PC71BM (poly[(4,40-bis(2-ethylhexyl)dithieno[3,2-b:20,30-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,50-diyl]:[6,6]-phenyl C71-butyric acid methyl ester) solar cells, the influence of doping is most likely the dominant influence on the space charge and has an important effect on the thickness dependence of performance.

  7. Longitudinal bunch shaping of picosecond high-charge MeV electron beams

    DOE PAGES

    Beaudoin, B. L.; Thangaraj, J. C. T.; Edstrom, Jr., D.; ...

    2016-10-20

    With ever increasing demands for intensities in modern accelerators, the understanding of space-charge effects becomes crucial. Herein are presented measurements of optically shaped picosecond-long electron beams in a superconducting L-band linac over a wide range of charges, from 0.2 nC to 3.4 nC. At low charges, the shape of the electron beam is preserved, while at higher charge densities, modulations on the beam convert to energy modulations. Here, energy profile measurements using a spectrometer and time profile measurements using a streak camera reveal the dynamics of longitudinal space-charge on MeV-scale electron beams.

  8. Validation of the NASCAP model using spaceflight data

    NASA Technical Reports Server (NTRS)

    Stannard, P. R.; Katz, I.; Gedeon, L.; Roche, J. C.; Rubin, A. G.; Tautz, M. F.

    1982-01-01

    The NASA Charging Analyzer Program (NASCAP) has been validated in a space environment. Data collected by the SCATHA (Spacecraft Charging at High Altitude) spacecraft has been used with NASCAP to simulate the charging response of the spacecraft ground conductor and dielectric surfaces with considerable success. Charging of the spacecraft ground observed in eclipse, during moderate and severe substorm environments, and in sunlight has been reproduced using the code. Close agreement between both the currents and potentials measured by the SSPM's, and the NASCAP simulated response, has been obtained for differential charging. It is concluded that NASCAP is able to predict spacecraft charging behavior in a space environment.

  9. Over-injection and self-oscillations in an electron vacuum diode

    NASA Astrophysics Data System (ADS)

    Leopold, J. G.; Siman-Tov, M.; Goldman, A.; Krasik, Ya. E.

    2017-07-01

    We demonstrate a practical means by which one can inject more than the space-charge limiting current into a vacuum diode. This over-injection causes self-oscillations of the space-charge resulting in an electron beam current modulation at a fixed frequency, a reaction of the system to the Coulomb repulsive forces due to charge accumulation.

  10. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    NASA Astrophysics Data System (ADS)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  11. Improving Charging-Breeding Simulations with Space-Charge Effects

    NASA Astrophysics Data System (ADS)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  12. Particle accelerator employing transient space charge potentials

    DOEpatents

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  13. I-V-T analysis of radiation damage in high efficiency Si solar cells

    NASA Technical Reports Server (NTRS)

    Banerjee, S.; Anderson, W. A.; Rao, B. B.

    1985-01-01

    A detailed analysis of current-voltage characteristics of N(+)-P/P solar cells indicate that there is a combination of different mechanisms which results in an enhancement in the dark current and in turn deteriorates the photovoltaic performance of the solar cells after 1 MeV e(-) irradiation. The increase in the dark current is due to three effects, i.e., bulk recombination, space charge recombination by deep traps and space charge recombination through shallow traps. It is shown that the increase in bulk recombination current is about 2 to 3 orders of magnitude whereas space charge recombination current due to shallow traps increases only by an order or so and no space charge recombination through deep traps was observed after irradiation. Thus, in order to improve the radiation hardness of these devices, bulk properties should be preserved.

  14. Comparison between field mill and corona point instrumentation at Kennedy Space Center - Use of these data with a model to determine cloudbase electric fields

    NASA Technical Reports Server (NTRS)

    Markson, R.; Anderson, B.; Govaert, J.; Fairall, C. W.

    1989-01-01

    A novel coronal current-determining instrument is being used at NASA-KSC which overcomes previous difficulties with wind sensitivity and a voltage-threshold 'deadband'. The mounting of the corona needle at an elevated location reduces coronal and electrode layer space-charge influences on electric fields, rendering the measurement of space charge density possible. In conjunction with a space-charge compensation model, these features allow a more realistic estimation of cloud base electric fields and the potential for lightning strike than has previously been possible with ground-based sensors.

  15. Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source

    NASA Technical Reports Server (NTRS)

    Jeong, Seong-Il; Didion, Jeffrey

    2004-01-01

    The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.

  16. Measurements of Ionospheric Density, Temperature, and Spacecraft Charging in a Space Weather Constellation

    NASA Astrophysics Data System (ADS)

    Balthazor, R. L.; McHarg, M. G.; Wilson, G.

    2016-12-01

    The Integrated Miniaturized Electrostatic Analyzer (IMESA) is a space weather sensor developed by the United States Air Force Academy and integrated and flown by the DoD's Space Test Program. IMESA records plasma spectrograms from which can be derived plasma density, temperature, and spacecraft frame charging. Results from IMESA currently orbiting on STPSat-3 are presented, showing frame charging effects dependent on a complex function of the number of solar panel cell strings switched in, solar panel current, and plasma density. IMESA will fly on four more satellites launching in the next two calendar years, enabling an undergraduate DoD space weather constellation in Low Earth Orbit that has the ability to significantly improve space weather forecasting capabilities using assimilative forecast models.

  17. Charged Particle lunar Environment Experiment (CPLEE)

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.

    1974-01-01

    Research development in the Charged Particle Lunar Environment Experiment (CPLEE) is reported. The CPLEE is ion-electron spectrometer placed on the lunar surface for the purpose of measuring charged particle fluxes impacting the moon from a variety of regions and to study the interactions between space plasmas and the lunar surface. The principal accomplishments reported include: (1) furnishing design specifications for construction of the CPLEE instruments; (2) development of an advanced computer-controlled facility for automated instrument calibration; (3) active participation in the deployment and past-deployment operational phases with regard to data verification and operational mode selection; and (4) publication of research papers, including a study of lunar photoelectrons, a study of plasmas resulting from man-made lunar impart events, a study of magnetotail and magnetosheath particle populations, and a study of solar-flare interplanetary particles.

  18. The End of Free Space

    ERIC Educational Resources Information Center

    Carlson, Scott

    2012-01-01

    The author reports on the reigning economic calculus that helps to drive constant expansion and poor utilization of space on many campuses. The author states that colleges could charge for utilities, which might encourage departments to save energy. Most American colleges do not charge for space--in part because doing so would raise the hackles of…

  19. 14 CFR Appendix B to Part 1215 - Factors Affecting Standard Charges

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Factors Affecting Standard Charges B Appendix B to Part 1215 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS) Pt. 1215, App. B Appendix B to Part 1215—Factors Affecting Standard...

  20. Dielectric properties and effect of electrical aging on space charge accumulation in polyimide/TiO2 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zha, Jun-Wei; Dang, Zhi-Min; Song, Hong-Tao; Yin, Yi; Chen, George

    2010-11-01

    In situ polymerized polyimide/TiO2 (PI/TiO2) nanocomposite films with good electrical aging resistance are studied. Space charge distribution in the PI/TiO2 nanocomposite films are measured using the pulsed electroacoustic method. Dielectric properties of the films are measured in the frequency range of 102 Hz-106 Hz by an impedance analyzer (Agilent 4294A) at room temperature. These nanocomposite films are also characterized by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). It is demonstrated that the nano-TiO2 particles strongly affect dielectric breakdown, lifetime and space charge distribution, and increase the voltage endurance of the nanocomposite films significantly. SEM analyses show that the nanocomposite films are destroyed after corona aging. The relation of space charge distribution with the concentration of the nano-TiO2 particles and the aging time is explored. Results show that an increase in dielectric permittivity of the nanocomposite films is observed with increasing filler concentration. However, the accumulation of space charge decreases with increasing nano-TiO2 particles concentration for the same corona aging time, and depends on the dielectric permittivity of the nanocomposite films.

  1. Electric sail space flight dynamics and controls

    NASA Astrophysics Data System (ADS)

    Montalvo, Carlos; Wiegmann, Bruce

    2018-07-01

    This paper seeks to investigate the space flight dynamics of a rotating barbell Electric Sail (E-Sail). This E-Sail contains two 6U CubeSats connected to 8 km tethers joined at a central hub. The central hub is designed to be an insulator so that each tether can have differing voltages. An electron gun positively charges each tether which interacts with the solar wind to produce acceleration. If the voltage on each tether is different, the trajectory of the system can be altered. Flapping modes and tension spikes are found during many of these maneuvers and care must be taken to mitigate the magnitude of these oscillations. Using sinusoidal voltage inputs, it is possible to control the trajectory of this two-body E-Sail and propel the system to Near-Earth-Objects or even deep space.

  2. A particle accelerator employing transient space charge potentials

    DOEpatents

    Post, R.F.

    1988-02-25

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

  3. Influences of the coordinate dependent noncommutative space on charged and spin currents

    NASA Astrophysics Data System (ADS)

    Ren, Ya-Jie; Ma, Kai

    2018-06-01

    We study the charged and spin currents on a coordinate dependent noncommutative space. Starting from the noncommutative extended relativistic equation of motion, the nonrelativistic approximation is obtained by using the Foldy-Wouthuysen transformation, and then the charged and spin currents are derived by using the extended Drude model. We find that the charged current is twisted by modifying the off-diagonal elements of the Hall conductivity, however, the spin current is not affected up to leading order of the noncommutative parameter.

  4. ISS Local Environment Spectrometers (ISLES)

    NASA Technical Reports Server (NTRS)

    Krause, Linda Habash; Gilchrist, Brian E.

    2014-01-01

    In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.

  5. 14 CFR 158.13 - Use of PFC revenue.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PASSENGER FACILITY CHARGES (PFC'S) General § 158.13 Use of PFC revenue. PFC revenue, including any interest... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Use of PFC revenue. 158.13 Section 158.13... costs of approved projects at any airport the public agency controls. (a) Total cost. PFC revenue may be...

  6. 14 CFR 158.13 - Use of PFC revenue.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PASSENGER FACILITY CHARGES (PFC'S) General § 158.13 Use of PFC revenue. PFC revenue, including any interest... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Use of PFC revenue. 158.13 Section 158.13... costs of approved projects at any airport the public agency controls. (a) Total cost. PFC revenue may be...

  7. 14 CFR 158.13 - Use of PFC revenue.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PASSENGER FACILITY CHARGES (PFC'S) General § 158.13 Use of PFC revenue. PFC revenue, including any interest... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Use of PFC revenue. 158.13 Section 158.13... costs of approved projects at any airport the public agency controls. (a) Total cost. PFC revenue may be...

  8. Special requirements for electronics to be used in robots in space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sias, F.R.

    1994-12-31

    Robots have been developed for use in hazardous environments and space certainly falls in the category of a hazardous environment. Microcomputers and electronics used to control robotic systems to be employed in space face greater threats than earth-bound robots used around radioactive materials. It is well known that nuclear radiation damages semiconductor devices by causing charges to build up in silicon dioxide insulating layers when the devices are exposed to ionizing radiation. Electronics suffer from doses of radiation when used around radioactive materials; however, additional sources of damage are present when the robots are used in space. This paper ismore » a review of the problems that must be considered when developing electronics for robots to be used in space and some of the available solutions.« less

  9. Meeting the Grand Challenge of Protecting Astronauts Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.

    2016-01-01

    This report describes the research completed during 2011 for the NASA Innovative Advanced Concepts (NIAC) project. The research is motivated by the desire to safely send humans in deep space missions and to keep radiation exposures within permitted limits. To this end current material shielding, developed for low earth orbit missions, is not a viable option due to payload and cost penalties. The active radiation shielding is the path forward for such missions. To achieve active space radiation shielding innovative large lightweight gossamer space structures are used. The goal is to deflect enough positive ions without attracting negatively charged plasma and to investigate if a charged Gossamer structure can perform charge deflections without significant structural instabilities occurring. In this study different innovative configurations are explored to design an optimum active shielding. In addition, to establish technological feasibility experiments are performed with up to 10kV of membrane charging, and an electron flux source with up to 5keV of energy and 5mA of current. While these charge flux energy levels are much less than those encountered in space, the fundamental coupled interaction of charged Gossamer structures with the ambient charge flux can be experimentally investigated. Of interest are, will the EIMS remain inflated during the charge deflections, and are there visible charge flux interactions. Aluminum coated Mylar membrane prototype structures are created to test their inflation capability using electrostatic charging. To simulate the charge flux, a 5keV electron emitter is utilized. The remaining charge flux at the end of the test chamber is measured with a Faraday cup mounted on a movable boom. A range of experiments with this electron emitter and detector were performed within a 30x60cm vacuum chamber with vacuum environment capability of 10-7 Torr. Experiments are performed with the charge flux aimed at the electrostatically inflated membrane structure (EIMS) in both charged and uncharged configurations. The amount of charge shielding behind and around the EIMS was studied for different combinations of membrane structure voltages and electron energies. Both passive and active shielding were observed, with active shielding capable of deflecting nearly all incoming electrons. The pattern of charge distribution around the structure was studied as well as the stability of the structures in the charge flow. The charge deflection experiments illustrate that the EIMS remain inflated during charge deflection, but will experience small amplitude oscillations. Investigations were performed to determine a potential cause of the vibrations. It is postulated these vibrations are due to the charge flux causing local membrane charge distribution changes. As the membrane structure inflation pressure is changed, the shape responds, and causes the observed sustained vibration. Having identified this phenomenon is important when considering electrostatically inflated membrane structures (EIMS) in a space environment. Additionally, this project included a study of membrane material impacts, specifically the impact of membrane thickness. Extremely thin materials presented new challenges with vacuum preparation techniques and rapid charging. The thinner and lighter membrane materials were successfully inflated using electrostatic forces in a vacuum chamber. However, care must be taken when varying the potentials of such lighter structures as the currents can cause local heating and melting of the very thin membranes. Lastly, a preliminary analysis is performed to study rough order of magnitude power requirements for using EIMS for radiation shielding. The EIMS power requirement becomes increasingly more challenging as the spacecraft voltage is increased. As a result, the emphasis is on the deflection of charges away from the spacecraft rather than totally stopping them. This significantly alleviates the initial power requirements. With modest technological development(s) active shielding is emerging to be a viable option.

  10. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  11. Millimeter-Wave Generation Via Plasma Three-Wave Mixing

    DTIC Science & Technology

    1988-06-01

    are coupled to a third space -charge wave with dispersion 2w W k -k k . (16) A plasma-loaded-waveguide mode is excited at the intersection of this...DISPERSION "FAST" W PLASMA WAVE Wc PLASMA WAVE A-lA oppositely directed EPWs with different phase velocities (wp/k., and wO/k. 2) are coupled to a third ... space -charge wave with dispersion 2w I- k k .(16) e 2 A plaama-loaded-waveguide mode is excited at the intersection of this coupled space-charge wave

  12. The use of an electric field in increasing the resistance of plants to the action of unfavorable space flight factors

    NASA Astrophysics Data System (ADS)

    Nechitailo, G.; Gordeev, A.

    The key role in increasing the resistance of plants to unfavorable space flight factors is assigned to biomembranes of root cells. It is these biomembranes on which numerous biochemical and biophysical processes determining the adaptive capacity of plant organisms occur. In the initial period of exposure to unfavorable space flight factors the adaptational reactions of the plant organism undoubtedly increase its resistance. But the intensification of removal of H+ ions through the plasmalemma with an increase of the external influence sharply raises the quantity of cations leaving the cell, which leads to the accumu lation of a considerable quantity of intracellular negative charges. These charges together with negative charges built in the membrane force protons to concentrate on the external surface of the membrane. Since protons have a very strong electric field, they form such a charge of which the electric field is about from several to hundreds of V/cm. The concentration of positive charges of protons entails the formation of a double electric field which extremely impedes the diffusion of other ions. Thus, a proton barrier is formed. Its length can be very considerable due to which the whole process of transmembrane energy and mass-transfer is disturbed. The proton barrier is easily destroyed by a weak electric field created in the root zone. In experiment on electrostimulation of different plants under space flight conditions at the orbital station MIR the absorption of nutrient elements by the root system increased to the optimal level, the ratio of physiologically active substances in the rhizosphere was normalized, the content of chlorophyll, carotin, and ascorbic acid in leaves corresponded to the ground-based control. Understanding of the mechanism of formation of a proton barrier on the plasmalemma of root cells as a result of the response of plants to the negative action of external factors (microgravity) is of great importance. It allows the possibility of life support of the vegetable kingdom in extreme conditions to be estimated in a new way.

  13. The use of an electric field in increasing the resistance of plants to the action of unfavorable space flight factors

    NASA Astrophysics Data System (ADS)

    Nechitailo, G.; Gordeev, A.

    2004-01-01

    The key role in increasing the resistance of plants to unfavorable space flight factors is assigned to biomembranes of root cells. It is these biomembranes in which numerous biochemical and biophysical processes determining the adaptive capacity of plant organisms occur. In the initial period of exposure to unfavorable space flight factors the adaptation reactions of the plant organism undoubtedly increase its resistance. But the intensification of removal of H + ions through the plasmalemma with an increase of the external influence sharply raises the quantity of cations leaving the cell, which leads to the accumulation of a considerable quantity of intracellular negative charges. These charges together with negative charges built in the membrane force protons to concentrate on the external surface of the membrane. Since protons have a very strong electric field, they form such a charge of which the electric field is about from several to hundreds of V/cm. The concentration of positive charges of protons entails the formation of a double electric field which extremely impedes the diffusion of other ions. Thus, a proton barrier is formed. Its length can be very considerable due to which the whole process of transmembrane energy and mass-transfer is disturbed. The proton barrier is easily destroyed by a weak electric field created in the root zone. In experiments on electrostimulation of different plants under space flight conditions at the orbital station MIR the absorption of nutrient elements by the root system increased to the optimal level, the ratio of physiologically active substances in the rhizosphere was normalized, the content of chlorophyll, carotin, and ascorbic acid in leaves corresponded to the ground-based control. Understanding of the mechanism of formation of a proton barrier on the plasmalemma of root cells as a result of the response of plants to the negative action of external factors (microgravity) is of great importance. It allows the possibility of life support of the vegetable kingdom in extreme conditions to be estimated in a new way.

  14. Space charge inhibition effect of nano-Fe{sub 3}O{sub 4} on improvement of impulse breakdown voltage of transformer oil based on improved Kerr optic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing, E-mail: yangqing@cqu.edu.cn; Yu, Fei; Sima, Wenxia

    Transformer oil-based nanofluids (NFs) with 0.03 g/L Fe{sub 3}O{sub 4} nanoparticle content exhibit 11.2% higher positive impulse breakdown voltage levels than pure transformer oils. To study the effects of the Fe{sub 3}O{sub 4} nanoparticles on the space charge in transformer oil and to explain why the nano-modified transformer oil exhibits improved impulse breakdown voltage characteristics, the traditional Kerr electro-optic field mapping technique is improved by increasing the length of the parallel-plate electrodes and by using a photodetector array as a high light sensitivity device. The space charge distributions of pure transformer oil and of NFs containing Fe{sub 3}O{sub 4} nanoparticlesmore » can be measured using the improved Kerr electro-optic field mapping technique. Test results indicate a significant reduction in space charge density in the transformer oil-based NFs with the Fe{sub 3}O{sub 4} nanoparticles. The fast electrons are captured by the nanoparticles and are converted into slow-charged particles in the NFs, which then reduce the space charge density and result in a more uniform electric field distribution. Streamer propagation in the NFs is also obstructed, and the breakdown strengths of the NFs under impulse voltage conditions are also improved.« less

  15. Detection of DNA Damage by Space Radiation in Human Fibroblast Cells Flown on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Wong, Michael; Beno, Jonathan; Countryman, Stefanie; Stodieck, Louis; Karouia, Fathi; Zhang, Ye

    2015-01-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the early discovery of the Van Allen Belt, reports on effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation has been difficult due to the low dose and low dose rate nature of the radiation environment, and the difficulty in separating the radiation effects from microgravity and other space environmental factors. In astronauts, only a small number of changes, such as increased chromosome aberrations in lymphocytes and early onset of cataracts, attributed primarily to the exposure to space radiation. In a recent experiment, human fibroblast cells were flown on the International Space Station (ISS). Cells fixed on Days 3 and 14 after reaching orbit were analyzed for phosphorylation of a histone protein H2AX by immunofluorescent staining of cells, which is a widely used marker for DNA double strand breaks. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed a small fraction of foci that were larger and displayed a track pattern in the flight samples in comparison to the ground control. Human fibroblast cells were also exposed to low dose rate gamma rays, as well as to protons and Fe ions. Comparison of the pattern and distribution of the foci after gamma ray and charged particle exposure to our flight results confirmed that the foci found in the flown cells were indeed induced by space radiation.

  16. The Exploration Portable Electrostatic Detector (xPED)

    NASA Technical Reports Server (NTRS)

    Jackson, Telana L.; Farrell, William M.

    2012-01-01

    Astronauts and rovers, while exploring dynamic environments, can experience charge buildup through Tribo-charging (contact electrification). Charge levels can become substantially high. especially in areas where photoelectric and plasma currents are reduced (e.g. lunar polar crater). Tribo-charging in areas that have little to no charge dissipative path can be severe, leaving an astronaut or roving object to remain charged for extended periods of time. Charge buildup on space suits and/or rovers is expected to present significant hazards to missions, such as electrostatic discharge and arcing, dust adhesion to space suits/equipment, and destruction of equipment. The avoidance of hazards associated with charge buildup is critical for future NASA missions to near earth objects, the Moon and Mars. The Exploration Portable Electrostatic Device (xPED) will allow astronauts to determine their charge state, and also characterize the electrical environment from their excursions. xPED would benefit manned, as well as robotic missions.

  17. Effect of electric charge on the adhesion of human blood platelets.

    PubMed

    Lowkis, B; Szymonowicz, M

    1993-01-01

    The paper presents the results of research into the effect of the size and depth of the implanted electric charge on the adhesion of human blood platelets. The experiments were carried out on polyethylene terephthalate PET foil of 36 microns thickness. The electret formation process was carried out in an electron-beam device. The electrization conditions were such that electrets with the excess electric charge accumulated at various depths were obtained. The selection of conditions was verified by investigating the space charge distribution with the use of the virtual electrode method. The microscopic observation of non-electrified foils and electrets as well as the quantitative examination of the adhesion of human blood platelets has explicitly confirmed the positive influence of the electret effect on the thrombogenesis of PET foil. This made it possible to define the optimum electrization conditions. The research has additionally indicated that the relationship between the amount of adherent blood platelets and the size of the electric charge is not a simple relation of the kind: the larger negative charge, the more thrombogenic material. The decisive and positive effect of the space charge has been confirmed by analysing the effectiveness of the surface and space charge.

  18. Dielectrics for long term space exposure and spacecraft charging: A briefing

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.

    1989-01-01

    Charging of dielectrics is a bulk, not a surface property. Radiation driven charge stops within the bulk and is not quickly conducted to the surface. Very large electric fields develop in the bulk due to this stopped charge. At space radiation levels, it typically requires hours or days for the internal electric fields to reach steady state. The resulting electric fields are large enough to produce electrical failure within the insulator. This type failure is thought to produce nearly all electric discharge anomalies. Radiation also induces bond breakage, creates reactive radicals, displaces atoms and, in general, severely changes the chemistry of the solid state material. Electric fields can alter this process by reacting with charged species, driving them through the solid. Irradiated polymers often lose as much as a percent of their mass, or more, at exposures typical in space. Very different aging or contaminant emission can be induced by the stopped charge electric fields. These radiation effects are detailed.

  19. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  20. Effect of Temperature on Formation and Stability of Shallow Trap at a Dielectric Interface of the Multilayer

    NASA Astrophysics Data System (ADS)

    Rogti, F.

    2015-12-01

    Space-charge behavior at dielectric interfaces in multilayer low-density polyethylene (LDPE) and fluorinated ethylene propylene (FEP) subjected to a direct-current (DC) field has been investigated as a function of temperature using the pulsed electroacoustic technique. A sandwich structure constituted by two nonidentical LDPE/FEP dielectric films was used to study the charging propensity of electrode/dielectric and dielectric/dielectric interfaces. The time dependence of the space-charge distribution was subsequently recorded at four temperatures, 20°C, 25°C, 40°C, and 60°C, under field (polarization) and short-circuit (depolarization) conditions. The experimental results demonstrate that temperature plays a significant role in the space-charge dynamics at the dielectric interface. It affects the charge injection, increases the charge mobility and electrical conductivity, and increases the density of shallow traps and trap filling. It is found that traps formed during polarization at high temperature do not remain stable after complete discharge of the multidielectric structure and when poled at low temperatures.

  1. The plastic scintillator detector calibration circuit for DAMPE

    NASA Astrophysics Data System (ADS)

    Yang, Haibo; Kong, Jie; Zhao, Hongyun; Su, Hong

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is being constructed as a scientific satellite to observe high energy cosmic rays in space. Plastic scintillator detector array (PSD), developed by Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), is one of the most important parts in the payload of DAMPE which is mainly used for the study of dark matter. As an anti-coincidence detector, and a charged-particle identification detector, the PSD has a total of 360 electronic readout channels, which are distributed at four sides of PSD using four identical front end electronics (FEE). Each FEE reads out 90 charge signals output by the detector. A special calibration circuit is designed in FEE. FPGA is used for on-line control, enabling the calibration circuit to generate the pulse signal with known charge. The generated signal is then sent to the FEE for calibration and self-test. This circuit mainly consists of DAC, operation amplifier, analog switch, capacitance and resistance. By using controllable step pulse, the charge can be coupled to the charge measuring chip using the small capacitance. In order to fulfill the system's objective of large dynamic range, the FEE is required to have good linearity. Thus, the charge-controllable signal is needed to do sweep test on all channels in order to obtain the non-linear parameters for off-line correction. On the other hand, the FEE will run on the satellite for three years. The changes of the operational environment and the aging of devices will lead to parameter variation of the FEE, highlighting the need for regular calibration. The calibration signal generation circuit also has a compact structure and the ability to work normally, with the PSD system's voltage resolution being higher than 0.6%.

  2. The Effects of Space-Charge on the Dynamics of the Ion Booster in the Jefferson Lab EIC (JLEIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex; Nissen, Edward

    Optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime is proposed. This study is motivated by the ultra-high luminosity promised by the JLEIC accelerator complex, which poses several beam dynamics and lattice design challenges for its individual components. We examine the effects of space charge on the dynamics of the booster synchrotron for the proposed JLEIC electron ion collider. This booster will inject and accumulate protons and heavy ions at an energy of 280 MeV and then engage in a process of acceleration and electron cooling to bring it to its extraction energy of 8more » GeV. This would then be sent into the ion collider ring part of JLEIC. In order to examine the effects of space charge on the dynamics of this process we use the software SYNERGIA.« less

  3. Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes.

    PubMed

    Zhu, Jian; Wang, Tao; Fan, Fengru; Mei, Lin; Lu, Bingan

    2016-09-27

    Development of electrode materials with high capability and long cycle life are central issues for lithium-ion batteries (LIBs). Here, we report an architecture of three-dimensional (3D) flexible silicon and graphene/carbon nanofibers (FSiGCNFs) with atomic-scale control of the expansion space as the binder-free anode for flexible LIBs. The FSiGCNFs with Si nanoparticles surrounded by accurate and controllable void spaces ensure excellent mechanical strength and afford sufficient space to overcome the damage caused by the volume expansion of Si nanoparticles during charge and discharge processes. This 3D porous structure possessing built-in void space between the Si and graphene/carbon matrix not only limits most solid-electrolyte interphase formation to the outer surface, instead of on the surface of individual NPs, and increases its stability but also achieves highly efficient channels for the fast transport of both electrons and lithium ions during cycling, thus offering outstanding electrochemical performance (2002 mAh g(-1) at a current density of 700 mA g(-1) over 1050 cycles corresponding to 3840 mAh g(-1) for silicon alone and 582 mAh g(-1) at the highest current density of 28 000 mA g(-1)).

  4. Charged black lens in de Sitter space

    NASA Astrophysics Data System (ADS)

    Tomizawa, Shinya

    2018-02-01

    We obtain a charged black lens solution in the five-dimensional Einstein-Maxwell-Chern-Simons theory with a positive cosmological constant. It is shown that the solution obtained here describes the formation of a black hole with the spatial cross section of a sphere from that of the lens space of L (n ,1 ) in five-dimensional de Sitter space.

  5. The Development Of New Space Charge Compensation Methods For Multi-Components Ion Beam Extracted From ECR Ion Source at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L.; Zhao, H.W.; Cao, Y.

    2005-03-15

    Two new space charge compensation methods developed in IMP are discussed in this paper. There are negative high voltage electrode method (NHVEM) and electronegative charge gas method (EGM). Some valuable experimental data have been achieved, especially using electronegative gas method in O6+ and O7+ dramatic and stable increasing of ion current was observed.

  6. A UV LED-based Charge Management System for LISA

    NASA Astrophysics Data System (ADS)

    Conklin, John W.; Chilton, Andrew; Olatunde, Taiwo Janet; Apple, Stephen; Parry, Samantha; Ciani, Giacomo; Wass, Peter; Mueller, Guido

    2018-01-01

    The Laser Interferometer Space Antenna (LISA) will be the first space instrument to observe gravitational waves in the millihertz frequency band. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 2.5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics in spacetime. A drag-free control system commands micronewton thrusters to force the spacecraft to fly in formation with the test masses and laser interferometers measure the minute variations in the distance, or light travel time, between these free-falling test masses caused by gravitational waves. The LISA observatory, with a planned launch in the early 2030s, is led by the European Space Agency with significant contributions from NASA. Recently, NASA has initiated strategic investments in key LISA technologies that will likely become U.S. flight hardware contributions to this ground-breaking mission. One of these payload elements is the Charge Management System (CMS), which controls the electric potential of the test masses relative to their housings to reduce spurious force noise acting on the test masses to below the required level. This talk, presented by University of Florida team that leads the CMS development, will describe this vital U.S. contribution to the LISA mission in the context of the envisioned LISA payload architecture and its in-flight sensitivity to gravitational waves.

  7. Computer and laboratory simulation of interactions between spacecraft surfaces and charged-particle environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1979-01-01

    Cases where the charged-particle environment acts on the spacecraft (e.g., spacecraft charging phenomena) and cases where a system on the spacecraft causes the interaction (e.g., high voltage space power systems) are considered. Both categories were studied in ground simulation facilities to understand the processes involved and to measure the pertinent parameters. Computer simulations are based on the NASA Charging Analyzer Program (NASCAP) code. Analytical models are developed in this code and verified against the experimental data. Extrapolation from the small test samples to space conditions are made with this code. Typical results from laboratory and computer simulations are presented for both types of interactions. Extrapolations from these simulations to performance in space environments are discussed.

  8. Negative space charge effects in photon-enhanced thermionic emission solar converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segev, G.; Weisman, D.; Rosenwaks, Y.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less

  9. Exp(1076) Shades of Black: Aspects of Black Hole Microstates

    NASA Astrophysics Data System (ADS)

    Vasilakis, Orestis

    In this thesis we examine smooth supergravity solutions known as "microstate geometries". These solutions have neither a horizon, nor a singularity, yet they have the same asymptotic structure and conserved charges as black holes. Specifically we study supersymmetric and extremal non-supersymmetric solutions. The goal of this program is to construct enough microstates to account for the correct scaling behavior of the black hole entropy with respect to the charges within the supergravity approximation. For supersymmetric systems that are ⅛-BPS, microstate geometries account so far only for Q5/4 of the total entropy S ˜ Q3/2, while for non-supersymmetric systems the known microstate geometries are sporadic. For the supersymmetric case we construct solutions with three and four charges. Five-dimensional systems with three and four charges are ⅛-BPS. Thus they admit macroscopic horizons making the supergravity approximation valid. For the three-charge case we present some steps towards the construction of the superstratum, a microstate geometry depending on arbitrary functions of two variables, which is expected to provide the necessary entropy for this class of solutions. Specifically we construct multiple concentric solutions with three electric and two dipole magnetic charges which depend on arbitrary functions of two variables and examine their properties. These solutions have no KKM charge and thus are singular. For the four-charge case we construct microstate geometries by extending results available in the literature for three charges. We find smooth solutions in terms of bubbled geometries with ambipolar Gibbons-Hawking base space and by constructing the relevant supertubes. In the non-supersymmetric case we work with a three-charge system of extremal black holes known as almost-BPS, which provides a controlled way of breaking sypersymmetry. By using supertubes we construct the first systematic example of a family of almost-BPS microstate geometries and examine the moduli space of solutions. Furthermore by using brane probe analysis we show that, despite the breaking of supersymmetry, almost-BPS solutions receive no quantum corrections and thus must be subject to some kind of non-renormalization theorem.

  10. Survey of International Space Station Charging Events

    NASA Technical Reports Server (NTRS)

    Craven, P. D.; Wright, Kenneth H., Jr.; Minow, Joseph I.; Coffey, Victoria N.; Schneider, Todd A.; Vaughn, Jason A.; Ferguson, Dale C.; Parker, Linda N.

    2009-01-01

    With the negative grounding of the 160V Photovoltaic (PV) arrays, the International Space Station (ISS) can experience varied and interesting charging events. Since August 2006, there has been a multi-probe p ackage, called the Floating Potential Measurement Unit (FPMU), availa ble to provide redundant measurements of the floating potential of th e ISS as well as the density and temperature of the local plasma environment. The FPMU has been operated during intermittent data campaigns since August 2006 and has collected over 160 days of information reg arding the charging of the ISS as it has progressed in configuration from one to three PV arrays and with various additional modules such as the European Space Agency?s Columbus laboratory and the Japan Aeros pace Exploration Agency's Kibo laboratory. This paper summarizes the charging of the ISS and the local environmental conditions that contr ibute to those charging events, both as measured by the FPMU.

  11. Self-consistent simulation of radio frequency multipactor on micro-grooved dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Libing; Wang, Jianguo, E-mail: wanguiuc@mail.xjtu.edu.cn; Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024

    2015-02-07

    The multipactor plays a key role in the surface breakdown on the feed dielectric window irradiated by high power microwave. To study the suppression of multipactor, a 2D electrostatic PIC-MCC simulation code was developed. The space charge field, including surface deposited charge and multipactor electron charge field, is obtained by solving 2D Poisson's equation in time. Therefore, the simulation is self-consistent and does not require presetting a fixed space charge field. By using this code, the self-consistent simulation of the RF multipactor on the periodic micro-grooved dielectric surface is realized. The 2D space distributions of the multipactor electrons and spacemore » charge field are presented. From the simulation results, it can be found that only half slopes have multipactor discharge when the slope angle exceeds a certain value, and the groove presents a pronounced suppression effect on the multipactor.« less

  12. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    NASA Astrophysics Data System (ADS)

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-11-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have large speeds relative to the probes or satellites that encounter them. Development and testing of instruments that look for dust in space therefore depends critically on the availability of fast, well-characterized dust grains in the laboratory. One challenge for the experimentalist is to precisely measure the speed and mass of laboratory dust particles without disturbing them. Detection systems currently in use exploit the well-known effect of image charge to register the passage of dust grains without changing their speed or mass. We describe the principles of image charge detection and provide a simple classroom demonstration of the technique using soup cans and pith balls.

  13. Asymmetric Wormholes via Electrically Charged Lightlike Branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guendelman, E.; Kaganovich, A.; Nissimov, E.

    2010-06-17

    We consider a self-consistent Einstein-Maxwell-Kalb-Ramond system in the bulk D = 4 space-time interacting with a variable-tension electrically charged lightlike brane. The latter serves both as a material and charge source for gravity and electromagnetism, as well as it dynamically generates a bulk space varying cosmological constant. We find an asymmetric wormhole solution describing two 'universes' with different spherically symmetric black-hole-type geometries connected through a 'throat' occupied by the lightlike brane. The electrically neutral 'left universe' comprises the exterior region of Schwarzschild-de-Sitter (or pure Schwarzschild) space-time above the inner(Schwarzschild-type) horizon, whereas the electrically charged 'right universe' consists of the exteriormore » Reissner-Nordstroem (or Reissner-Nordstroem-de-Sitter) black hole region beyond the outer Reissner-Nordstroem horizon. All physical parameters of the wormhole are uniquely determined by two free parameters - the electric charge and Kalb-Ramond coupling of the lightlike brane.« less

  14. Novel molecular device based on electrostatic interactions in organic polymers.

    PubMed

    Kwok, H L; Xu, J B

    2004-04-01

    A number of researchers have reported attempts to design molecular level devices. One approach is to make use of electrostatic interactions in different parts of a polymeric molecule. This paper reports a means to achieve this by adding space charge to a molecule consisting of symmetric and asymmetric subgroups. Physically, space charge residing in a subgroup produces a dipolar charge layer thereby creating a potential trough in the polymer backbone. By lifting or lowering this potential minimum, it is possible to modify the terminal current. The effect of space charge on the potential profile in the polymer backbone was examined and the change correlated to data on carrier mobilities for OC1C10-PPV reported in the literature. Modulation of space charge in the subgroup allows the manipulation of current flow along the polymer backbone, forming the basis for the development of a molecular device. A first-order analysis suggested that such a device could have current-voltage (I-V) characteristics similar to those of a MOSFET at subthreshold, with an estimated transconductance approximately 1-2 pAV and a cutoff frequency approximately 10(15) Hz.

  15. Distinctive electrical properties in sandwich-structured Al2O3/low density polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min

    2016-02-01

    The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.

  16. Mechanism of Runaway Electron Generation at Gas Pressures from a Few Atmospheres to Several Tens of Atmospheres

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Ivanov, S. N.

    2018-04-01

    The mechanism of runaway electron generation at gas pressures from a few atmospheres to several tens of atmospheres is proposed. According to this mechanism, the electrons pass into the runaway mode in the enhanced field zone that arises between a cathode micropoint—a source of field-emission electrons—and the region of the positive ion space charge accumulated near the cathode in the tails of the developing electron avalanches. As a result, volume gas ionization by runaway electrons begins with a time delay required for the formation of the enhanced field zone. This process determines the delay time of breakdown. The influence of the gas pressure on the formation dynamics of the space charge region is analyzed. At gas pressures of a few atmospheres, the space charge arises due to the avalanche multiplication of the very first field-emission electron, whereas at pressures of several tens of atmospheres, the space charge forms as a result of superposition of many electron avalanches with a relatively small number of charge carriers in each.

  17. Tunneling spectroscopy of close-spaced dangling-bond pairs in Si(001):H

    PubMed Central

    Engelund, Mads; Zuzak, Rafał; Godlewski, Szymon; Kolmer, Marek; Frederiksen, Thomas; García-Lekue, Aran; Sánchez-Portal, Daniel; Szymonski, Marek

    2015-01-01

    We present a combined experimental and theoretical study of the electronic properties of close-spaced dangling-bond (DB) pairs in a hydrogen-passivated Si(001):H p-doped surface. Two types of DB pairs are considered, called “cross” and “line” structures. Our scanning tunneling spectroscopy (STS) data show that, although the spectra taken over different DBs in each pair exhibit a remarkable resemblance, they appear shifted by a constant energy that depends on the DB-pair type. This spontaneous asymmetry persists after repeated STS measurements. By comparison with density functional theory (DFT) calculations, we demonstrate that the magnitude of this shift and the relative position of the STS peaks can be explained by distinct charge states for each DB in the pair. We also explain how the charge state is modified by the presence of the scanning tunneling microscopy (STM) tip and the applied bias. Our results indicate that, using the STM tip, it is possible to control the charge state of individual DBs in complex structures, even if they are in close proximity. This observation might have important consequences for the design of electronic circuits and logic gates based on DBs in passivated silicon surfaces. PMID:26404520

  18. Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu

    2015-06-07

    The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.

  19. Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Cousineau, S.; Danilov, V.; Holmes, J.; Macek, R.

    2004-09-01

    We present experimental data from the Los Alamos Proton Storage Ring (PSR) showing long-lived linac microbunch structure during beam storage with no rf bunching. Analysis of the experimental data and particle-in-cell simulations of the experiments indicate that space charge, coupled with energy spread effects, is responsible for the sustained microbunch structure. The simulated longitudinal phase space of the beam reveals a well-defined separatrix in the phase space between linac microbunches, with particles executing unbounded motion outside of the separatrix. We show that the longitudinal phase space of the beam was near steady state during the PSR experiments, such that the separatrix persisted for long periods of time. Our simulations indicate that the steady state is very sensitive to the experimental conditions. Finally, we solve the steady-state problem in an analytic, self-consistent fashion for a set of periodic longitudinal space-charge potentials.

  20. One-Dimensional Spacecraft Formation Flight Testbed for Terrestrial Charged Relative Motion Experiments

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.

    Spacecraft operating in a desired formation offers an abundance of attractive mission capabilities. One proposed method of controlling a close formation of spacecraft is with Coulomb (electrostatic) forces. The Coulomb formation flight idea utilizes charge emission to drive the spacecraft to kilovolt-level potentials and generate adjustable, micronewton- to millinewton-level Coulomb forces for relative position control. In order to advance the prospects of the Coulomb formation flight concept, this dissertation presents the design and implementation of a unique one-dimensional testbed. The disturbances of the testbed are identified and reduced below 1 mN. This noise level offers a near-frictionless platform that is used to perform relative motion actuation with electrostatics in a terrestrial atmospheric environment. Potentials up to 30 kV are used to actuate a cart over a translational range of motion of 40 cm. A challenge to both theoretical and hardware implemented electrostatic actuation developments is correctly modeling the forces between finite charged bodies, outside a vacuum. To remedy this, studies of Earth orbit plasmas and Coulomb force theory is used to derive and propose a model of the Coulomb force between finite spheres in close proximity, in a plasma. This plasma force model is then used as a basis for a candidate terrestrial force model. The plasma-like parameters of this terrestrial model are estimated using charged motion data from fixed-potential, single-direction experiments on the testbed. The testbed is advanced to the level of autonomous feedback position control using solely Coulomb force actuation. This allows relative motion repositioning on a flat and level track as well as an inclined track that mimics the dynamics of two charged spacecraft that are aligned with the principal orbit axis. This controlled motion is accurately predicted with simulations using the terrestrial force model. This demonstrates similarities between the partial charge shielding of space-based plasmas to the electrostatic screening in the laboratory atmosphere.

  1. Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly

    NASA Astrophysics Data System (ADS)

    Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles

    Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.

  2. High responsivity secondary ion energy analyzer

    NASA Astrophysics Data System (ADS)

    Belov, A. S.; Chermoshentsev, D. A.; Gavrilov, S. A.; Frolov, O. T.; Netchaeva, L. P.; Nikulin, E. S.; Zubets, V. N.

    2018-05-01

    The degree of space charge compensation of a 70 mA, 400 keV pulsed hydrogen ion beam has been measured with the use of an electrostatic energy analyzer of secondary ions. The large azimuthal angle of the analyzer enables a high responsivity, defined as the ratio of the slow secondary ion current emerging from the partially-compensated ion beam to the fast ion beam current. We measured 84% space charge compensation of the ion beam. The current from the slow ions and the rise time from the degree of space charge compensation were measured and compared with expected values.

  3. Space-charge effects in Penning ion traps

    NASA Astrophysics Data System (ADS)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  4. Transverse Mode Coupling Instability of the Bunch with Oscillating Wake Field and Space Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    Transverse mode coupling instability of a single bunch caused by oscillating wake field is considered in the paper. The instability threshold is found at different frequencies of the wake with space charge tune shift taken into account. The wake phase advance in the bunch length from 0 up tomore » $$4\\pi$$ is investigated. It is shown that the space charge can push the instability threshold up or down dependent on the phase advance. Transition region is investigated thoroughly, and simple asymptotic formulas for the threshold are represented.« less

  5. Instrumentation for Studies of Electron Emission and Charging From Insulators

    NASA Technical Reports Server (NTRS)

    Thomson, C. D.; Zavyalov, V.; Dennison, J. R.

    2004-01-01

    Making measurements of electron emission properties of insulators is difficult since insulators can charge either negatively or positively under charge particle bombardment. In addition, high incident energies or high fluences can result in modification of a material s conductivity, bulk and surface charge profile, structural makeup through bond breaking and defect creation, and emission properties. We discuss here some of the charging difficulties associated with making insulator-yield measurements and review the methods used in previous studies of electron emission from insulators. We present work undertaken by our group to make consistent and accurate measurements of the electron/ion yield properties for numerous thin-film and thick insulator materials using innovative instrumentation and techniques. We also summarize some of the necessary instrumentation developed for this purpose including fast response, low-noise, high-sensitivity ammeters; signal isolation and interface to standard computer data acquisition apparatus using opto-isolation, sample-and-hold, and boxcar integration techniques; computer control, automation and timing using Labview software; a multiple sample carousel; a pulsed, compact, low-energy, charge neutralization electron flood gun; and pulsed visible and UV light neutralization sources. This work is supported through funding from the NASA Space Environments and Effects Program and the NASA Graduate Research Fellowship Program.

  6. Nonlinear Electrostatic Properties of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Irwin, Stacy A.

    2012-01-01

    A laboratory experiment was designed to study the induction charging and charge decay characteristics of small dielectric particles, or glass beads. Initially, the goal of the experiment was further understanding of induction charging of lunar dust particles. However, the mechanism of charging became a point of greater interest as the project continued. Within an environmentally-controlled acrylic glove box was placed a large parallel plate capacitor at high-voltage (HV) power supply with reversible polarity. Spherical 1-mm and 0.5-mm glass beads, singly, were placed between the plates, and their behaviors recorded on video and quantified. Nearly a hundred trials at various humidities were performed. The analysis of the results indicated a non-linear relationship between humidity and particle charge exchange time (CET), for both sizes of beads. Further, a difference in CET for top-resting beads and bottom-resting beads hinted at a different charging mechanism than that of simple induction. Results from the I-mm bead trials were presented at several space science and physics conferences in 2008 and 2009, and were published as a Master's thesis in August 2009. Tangential work stemming from this project resulted in presentations at other international conferences in 2010, and selection to attend workshop on granular matter flow 2011.

  7. Tuning charge carrier transport and optical birefringence in liquid-crystalline thin films: A new design space for organic light-emitting diodes.

    PubMed

    Keum, Chang-Min; Liu, Shiyi; Al-Shadeedi, Akram; Kaphle, Vikash; Callens, Michiel Koen; Han, Lu; Neyts, Kristiaan; Zhao, Hongping; Gather, Malte C; Bunge, Scott D; Twieg, Robert J; Jakli, Antal; Lüssem, Björn

    2018-01-15

    Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the liquid-crystalline semiconductor improves charge transport in single charge carrier devices profoundly. Comparing the current-voltage characteristics of single charge carrier devices with simulations shows an excellent agreement and from this an in-depth understanding of single charge carrier transport in two-terminal devices is obtained. Finally, p-i-n type organic light-emitting diodes (OLEDs) compatible with vacuum processing techniques used in state-of-the-art OLEDs are demonstrated employing liquid-crystalline host matrix in the emission layer.

  8. Voltage-controlled surface wrinkling of elastomeric coatings.

    PubMed

    van den Ende, Daan; Kamminga, Jan-Dirk; Boersma, Arjen; Andritsch, Thomas; Steeneken, Peter G

    2013-07-05

    Wrinkling of elastomeric coatings by an electric field is reported. The associated changes in the coating's optical properties yield switchable mirrors and windows. The field Ec needed to induce wrinkling is a factor of 4.4 lower than the theoretically predicted value, which is attributed to space-charge injection. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Results of continuous synchronous orbit testing of sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1981-01-01

    Test results from continuous synchronous orbit testing of sealed nickel cadmium cells are presented. The synchronous orbit regime simulates a space satellite maintaining a position over a fixed point on earth as the earth rotates on its axis and revolves about the sun. Characteristics of each lot of cells, test conditions, and charge control methods are described.

  10. Study of space charge layer in silver bromide microcrystals by means of ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Inami, Yoshiyasu

    2000-09-01

    Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.

  11. Paul trapping of charged particles in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Weihau; Reed, Mark A; Joseph, Sony nmn

    2011-01-01

    We experimentally demonstrate the feasibility of an aqueous Paul trap using a proof-of-principle planar device. Radio frequency voltages are used to generate an alternating focusing/defocusing potential well in two orthogonal directions. Individual charged particles are dynamically confined into nanometer scale in space. Compared with conventional Paul traps working in frictionless vacuum, the aqueous environment associated with damping forces and thermally induced fluctuations (Brownian noise) exerts a fundamental influence on the underlying physics. We investigate the impact of these two effects on the confining dynamics, with the aim to reduce the rms value of the positional fluctuations. We find that themore » rms fluctuations can be modulated by adjusting the voltages and frequencies. This technique provides an alternative for the localization and control of charged particles in an aqueous environment.« less

  12. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    DOE PAGES

    Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.

    2015-12-10

    This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and themore » degree of particle dilution can be controlled by the rf parameters. As a result, the method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.« less

  13. KSC-00pp1054

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station, is shown on the floor of the Space Station Processing Facility. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  14. Correlation of Hollow Cathode Assembly and Plasma Contactor Data from Ground Testing and In-Space Operation on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kovalkeski, Scott D.; Patterson, Michael J.; Soulas, George C.

    2001-01-01

    Charge control on the International Space Station (ISS) is currently being provided by two plasma contactor units (PCUs). The plasma contactor includes a hollow cathode assembly (HCA), power processing unit and Xe gas feed system. The hollow cathode assemblies in use in the ISS plasma contactors were designed and fabricated at the NASA Glenn Research Center. Prequalification testing of development HCAs as well as acceptance testing of the flight HCAs is presented. Integration of the HCAs into the Boeing North America built PCU and acceptance testing of the PCU are summarized in this paper. Finally, data from the two on-orbit PCUs is presented.

  15. Degradation of Spacecraft Materials in the Space Environment

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Banks, Bruce A.

    2010-01-01

    When we think of space, we typically think of a vacuum containing very little matter that lies between the Earth and other planetary and stellar bodies. However, the space above Earth's breathable atmosphere and beyond contains many things that make designing durable spacecraft a challenge. Depending on where the spacecraft is flyng, it may encounter atomic oxygen, ultraviolet and other forms of radiation, charged particles, micrormeteoroids and debris, and temperature extremes. These environments on their own and in combination can cause degradation and failure of polymers, composites, paints and other materials used on the exterior of spacecraft for thermal control, structure, and power generation. This article briefly discusses and gives examples of some of the degradation experienced on spacecraft and night experiments as a result of the space environment and the use of ground and space data to predict durability.

  16. Applications of particle microbeams in space radiation research.

    PubMed

    Durante, Marco

    2009-03-01

    Galactic cosmic radiation is acknowledged as one of the major barriers to human space exploration. In space, astronauts are exposed to charged particles from Z = 1 (H) up to Z = 28 (Ni), but the probability of a hit to a specific single cell in the human body is low. Particle microbeams can deliver single charged particles of different charge and energy to single cells from different tissues, and microbeam studies are therefore very useful for improving current risk estimates for long-term space travel. 2D in vitro cell cultures can be very useful for establishing basic molecular mechanisms, but they are not sufficient to extrapolate risk, given the substantial evidence proving tissue effects are key in determining the response to radiation insult. 3D tissue or animal systems represent a more promising target for space radiobiology using microbeams.

  17. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    NASA Technical Reports Server (NTRS)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  18. Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.

    2004-01-01

    Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our experiments also show that "Malter" electron emission occurs for hours after turning off the electron beam. This Malter emission similar to emission due to negative electron affinity in semiconductors is a result of the prior radiation or optical excitations of valence electrons and their slow drift among traps towards the surface where they are subsequently emitted. This work is supported through funding from the NASA Space Environments and Effects Program.

  19. Atomic Radius and Charge Parameter Uncertainty in Biomolecular Solvation Energy Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu; Lei, Huan; Gao, Peiyuan

    Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is under-determined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a method for quantifying this uncertainty in solvation energies using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many moremore » types of atomic charges; therefore, construction of surrogate models for the charge parameter space required compressed sensing combined with an iterative rotation method to enhance problem sparsity. We present results for the uncertainty in small molecule solvation energies based on these approaches. Additionally, we explore the correlation between uncertainties due to radii and charges which motivates the need for future work in uncertainty quantification methods for high-dimensional parameter spaces.« less

  20. Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures

    DOE PAGES

    Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.; ...

    2017-02-20

    From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less

  1. Operating in the space plasma environment: A spacecraft charging study of the Solar X-ray Imager

    NASA Technical Reports Server (NTRS)

    Herr, Joel L.; Mccollum, Matthew B.; James, Bonnie F.

    1994-01-01

    This study presents the results of a spacecraft charging effects protection study conducted on the Solar X-ray Imager (SXI). The SXI is being developed by NASA Marshall Space Flight Center for NOAA's Space Environment Laboratory, and will be used to aid in forecasting energetic particle events and geomagnetic storms. Images will provide information on the intensity and location of solar flares, coronal mass ejections, and high speed solar streams. The SXI will be flown on a next-generation GOES sometime in the mid to late 1990's. Charging due to the encounter with a worst-case magnetic substorm environment is modeled using the NASCAP/GEO computer code. Charging levels of exterior surfaces and the floating potential of the spacecraft relative to plasma are determined as a function of spacecraft design, operational configuration, and orbital conditions. Areas where large surface voltage gradients exist on or near the SXI are identified as possible arc-discharge sites. Results of the charging analysis are then used to develop design recommendations that will limit the effects of spacecraft charging on the SXI operation.

  2. Non-Faradaic Li + Migration and Chemical Coordination across Solid-State Battery Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittleson, Forrest S.; El Gabaly, Farid

    Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode–electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO 2–LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to themore » electrolyte, which reduces reversible cathodic capacity by ~15%. Inserting a thin, ion-conducting LiNbO 3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO 2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.« less

  3. Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.

    From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less

  4. Lévy-Student distributions for halos in accelerator beams.

    PubMed

    Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

    2005-12-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schrödinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Lévy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Lévy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Lévy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

  5. Levy-Student distributions for halos in accelerator beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio

    2005-12-15

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schroedinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonicmore » (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.« less

  6. The Public Health Impact of Pediatric Deep Neck Space Infections.

    PubMed

    Adil, Eelam; Tarshish, Yael; Roberson, David; Jang, Jisun; Licameli, Greg; Kenna, Margaret

    2015-12-01

    There is little consensus about the best management of pediatric deep neck space infections (DNSIs) and limited information about the national disease burden. The purpose of this study is to examine the health care burden, management, and complications of DNSIs from a national perspective. Retrospective administrative data set review. National pediatric admission database. Pediatric patients diagnosed with a parapharyngeal space and/or retropharyngeal abscess were identified from the 2009 KIDS' Inpatient Database. Patient demographic, hospital, and clinical characteristics were compared between patients who received surgical and nonsurgical management. All results for the analyses were weighted, clustered, and stratified appropriately according to the sampling design of the KIDS' Inpatient Database. The prevalence of DNSIs was 3444 in 2009, and the estimated incidence was 4.6 per 100,000 children. The total hospital charges were >$75 million. The patients who were drained surgically had a 22% longer length of stay (mean = 4.19 days) than that of those who were managed without surgery (mean = 3.44 days). Mean hospital charges for patients who were drained surgically were almost twice those of patients who were managed medically ($28,969 vs $17,022); 165 patients (4.8%) had a complication. There are >3400 admissions for pediatric DNSIs annually, and they account for a significant number of inpatient days and hospital charges. A randomized controlled trial of management may be indicated from a public health perspective. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  7. Calibration function for the Orbitrap FTMS accounting for the space charge effect.

    PubMed

    Gorshkov, Mikhail V; Good, David M; Lyutvinskiy, Yaroslav; Yang, Hongqian; Zubarev, Roman A

    2010-11-01

    Ion storage in an electrostatic trap has been implemented with the introduction of the Orbitrap Fourier transform mass spectrometer (FTMS), which demonstrates performance similar to high-field ion cyclotron resonance MS. High mass spectral characteristics resulted in rapid acceptance of the Orbitrap FTMS for Life Sciences applications. The basics of Orbitrap operation are well documented; however, like in any ion trap MS technology, its performance is limited by interactions between the ion clouds. These interactions result in ion cloud couplings, systematic errors in measured masses, interference between ion clouds of different size yet with close m/z ratios, etc. In this work, we have characterized the space-charge effect on the measured frequency for the Orbitrap FTMS, looking for the possibility to achieve sub-ppm levels of mass measurement accuracy (MMA) for peptides in a wide range of total ion population. As a result of this characterization, we proposed an m/z calibration law for the Orbitrap FTMS that accounts for the total ion population present in the trap during a data acquisition event. Using this law, we were able to achieve a zero-space charge MMA limit of 80 ppb for the commercial Orbitrap FTMS system and sub-ppm level of MMA over a wide range of total ion populations with the automatic gain control values varying from 10 to 10(7). Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  8. Real-space measurement of potential distribution in PECVD ONO electrets by Kelvin probe force microscopy.

    PubMed

    Emmerich, F; Thielemann, C

    2016-05-20

    Multilayers of silicon oxide/silicon nitride/silicon oxide (ONO) are known for their good electret properties due to deep energy traps near the material interfaces, facilitating charge storage. However, measurement of the space charge distribution in such multilayers is a challenge for conventional methods if layer thickness dimensions shrink below 1 μm. In this paper, we propose an atomic force microscope based method to determine charge distributions in ONO layers with spatial resolution below 100 nm. By applying Kelvin probe force microscopy (KPFM) on freshly cleaved, corona-charged multilayers, the surface potential is measured directly along the z-axis and across the interfaces. This new method gives insights into charge distribution and charge movement in inorganic electrets with a high spatial resolution.

  9. Inter-phase charge and energy transfer in Ruddlesden–Popper 2D perovskites: critical role of the spacing cations

    DOE PAGES

    Zheng, Kaibo; Chen, Yani; Sun, Yong; ...

    2018-01-01

    Photo-generated charge carrier dynamics in Ruddlesden–Popper 2D perovskites with linear ( n -BA) and branched (iso-BA) butylamine as spacing cations have been studied by using transient absorption and time-resolved photoluminescence spectroscopies.

  10. Inter-phase charge and energy transfer in Ruddlesden–Popper 2D perovskites: critical role of the spacing cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Kaibo; Chen, Yani; Sun, Yong

    Photo-generated charge carrier dynamics in Ruddlesden–Popper 2D perovskites with linear ( n -BA) and branched (iso-BA) butylamine as spacing cations have been studied by using transient absorption and time-resolved photoluminescence spectroscopies.

  11. Adaptive matching of the iota ring linear optics for space charge compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, A.; Bruhwiler, D. L.; Cook, N.

    Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a searchmore » for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters« less

  12. Space charge effect in spectrometers of ion mobility increment with planar drift chamber.

    PubMed

    Elistratov, A A; Sherbakov, L A

    2007-01-01

    The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.

  13. Search for space charge effects in the ICARUS T600 LAr-TPC

    NASA Astrophysics Data System (ADS)

    Torti, Marta

    2016-11-01

    Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chong Shik; Shiltsev, Vladimir; Stancari, Giulio

    The ability to transport a high current proton beam in a ring is ultimately limited by space charge effects. Two novel ways to overcome this limit in a proton ring are by adding low energy, externally matched electron beams (electron lens, e-lens), and by taking advantage of residual gas ionization induced neutralization to create an electron column (e-column). Theory predicts that an appropriately confined electrons can completely compensate the space charge through neutralization, both transversely and longitudinally. In this report, we will discuss the current status of the Fermilab’s e-lens experiment for the space charge compensation. In addition, we willmore » show how the IOTA e-column compensates space charge with theWARP simulations. The dynamics of proton beams inside of the e-column is understood by changing the magnetic field of a solenoid, the voltage on the electrodes, and the vacuum pressure, and by looking for electron accumulation, as well as by considering various beam dynamics in the IOTA ring.« less

  15. Space charge effects and aberrations on electron pulse compression in a spherical electrostatic capacitor.

    PubMed

    Yu, Lei; Li, Haibo; Wan, Weishi; Wei, Zheng; Grzelakowski, Krzysztof P; Tromp, Rudolf M; Tang, Wen-Xin

    2017-12-01

    The effects of space charge, aberrations and relativity on temporal compression are investigated for a compact spherical electrostatic capacitor (α-SDA). By employing the three-dimensional (3D) field simulation and the 3D space charge model based on numerical General Particle Tracer and SIMION, we map the compression efficiency for a wide range of initial beam size and single-pulse electron number and determine the optimum conditions of electron pulses for the most effective compression. The results demonstrate that both space charge effects and aberrations prevent the compression of electron pulses into the sub-ps region if the electron number and the beam size are not properly optimized. Our results suggest that α-SDA is an effective compression approach for electron pulses under the optimum conditions. It may serve as a potential key component in designing future time-resolved electron sources for electron diffraction and spectroscopy experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Simple phenomenological modeling of transition-region capacitance of forward-biased p-n junction diodes and transistor diodes

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1982-01-01

    The derivation of a simple expression for the capacitance C(V) associated with the transition region of a p-n junction under a forward bias is derived by phenomenological reasoning. The treatment of C(V) is based on the conventional Shockley equations, and simpler expressions for C(V) result that are in general accord with the previous analytical and numerical results. C(V) consists of two components resulting from changes in majority carrier concentration and from free hole and electron accumulation in the space-charge region. The space-charge region is conceived as the intrinsic region of an n-i-p structure for a space-charge region markedly wider than the extrinsic Debye lengths at its edges. This region is excited in the sense that the forward bias creates hole and electron densities orders of magnitude larger than those in equilibrium. The recent Shirts-Gordon (1979) modeling of the space-charge region using a dielectric response function is contrasted with the more conventional Schottky-Shockley modeling.

  17. Analytical and exact solutions of the spherical and cylindrical diodes of Langmuir-Blodgett law

    NASA Astrophysics Data System (ADS)

    Torres-Cordoba, Rafael; Martinez-Garcia, Edgar

    2017-10-01

    This paper discloses the exact solutions of a mathematical model that describes the cylindrical and spherical electron current emissions within the context of a physics approximation method. The solution involves analyzing the 1D nonlinear Poisson equation, for the radial component. Although an asymptotic solution has been previously obtained, we present a theoretical solution that satisfies arbitrary boundary conditions. The solution is found in its parametric form (i.e., φ(r )=φ(r (τ)) ) and is valid when the electric field at the cathode surface is non-zero. Furthermore, the non-stationary spatial solution of the electric potential between the anode and the cathode is also presented. In this work, the particle-beam interface is considered to be at the end of the plasma sheath as described by Sutherland et al. [Phys. Plasmas 12, 033103 2005]. Three regimes of space charge effects—no space charge saturation, space charge limited, and space charge saturation—are also considered.

  18. Theory of Space Charge Limited Current in Fractional Dimensional Space

    NASA Astrophysics Data System (ADS)

    Zubair, Muhammad; Ang, L. K.

    The concept of fractional dimensional space has been effectively applied in many areas of physics to describe the fractional effects on the physical systems. We will present some recent developments of space charge limited (SCL) current in free space and solid in the framework of fractional dimensional space which may account for the effect of imperfectness or roughness of the electrode surface. For SCL current in free space, the governing law is known as the Child-Langmuir (CL) law. Its analogy in a trap-free solid (or dielectric) is known as Mott-Gurney (MG) law. This work extends the one-dimensional CL Law and MG Law for the case of a D-dimensional fractional space with 0 < D <= 1 where parameter D defines the degree of roughness of the electrode surface. Such a fractional dimensional space generalization of SCL current theory can be used to characterize the charge injection by the imperfectness or roughness of the surface in applications related to high current cathode (CL law), and organic electronics (MG law). In terms of operating regime, the model has included the quantum effects when the spacing between the electrodes is small.

  19. Effects of polymer graft properties on protein adsorption and transport in ion exchange chromatography: a multiscale modeling study.

    PubMed

    Basconi, Joseph E; Carta, Giorgio; Shirts, Michael R

    2015-04-14

    Multiscale simulation is used to study the adsorption of lysozyme onto ion exchangers obtained by grafting charged polymers into a porous matrix, in systems with various polymer properties and strengths of electrostatic interaction. Molecular dynamics simulations show that protein partitioning into the polymer-filled pore space increases with the overall charge content of the polymers, while the diffusivity in the pore space decreases. However, the combination of greatly increased partitioning and modestly decreased diffusion results in macroscopic transport rates that increase as a function of charge content, as the large concentration driving force due to enhanced pore space partitioning outweighs the reduction in the pore space diffusivity. Matrices having greater charge associated with the grafted polymers also exhibit more diffuse intraparticle concentration profiles during transient adsorption. In systems with a high charge content per polymer and a low protein loading, the polymers preferentially partition toward the surface due to favorable interactions with the surface-bound protein. These results demonstrate the potential of multiscale modeling to illuminate qualitative trends between molecular properties and the adsorption equilibria and kinetic properties observable on macroscopic scales.

  20. Electrostatic plasma lens for focusing negatively charged particle beams.

    PubMed

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  1. Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films

    NASA Astrophysics Data System (ADS)

    Jimenez, Mawin J. M.; Oliveira, Rafael F.; Almeida, Tiago P.; Hensel Ferreira, Rafael C.; Bufon, Carlos Cesar B.; Rodrigues, Varlei; Pereira-da-Silva, Marcelo A.; Gobbi, Ângelo L.; Piazzetta, Maria H. O.; Riul, Antonio, Jr.

    2017-12-01

    Graphene is a breakthrough 2D material due to its unique mechanical, electrical, and thermal properties, with considerable responsiveness in real applications. However, the coverage of large areas with pristine graphene is a challenge and graphene derivatives have been alternatively exploited to produce hybrid and composite materials that allow for new developments, considering also the handling of large areas using distinct methodologies. For electronic applications there is significant interest in the investigation of the electrical properties of graphene derivatives and related composites to determine whether the characteristic 2D charge transport of pristine graphene is preserved. Here, we report a systematic study of the charge transport mechanisms of reduced graphene oxide chemically functionalized with sodium polystyrene sulfonate (PSS), named as GPSS. GPSS was produced either as quantum dots (QDs) or nanoplatelets (NPLs), being further nanostructured with poly(diallyldimethylammonium chloride) through the layer-by-layer (LbL) assembly to produce graphene nanocomposites with molecular level control. Current-voltage (I-V) measurements indicated a meticulous growth of the LbL nanostructures onto gold interdigitated electrodes (IDEs), with a space-charge-limited current dominated by a Mott-variable range hopping mechanism. A 2D intra-planar conduction within the GPSS nanostructure was observed, which resulted in effective charge carrier mobility (μ) of 4.7 cm2 V-1 s-1 for the QDs and 34.7 cm2 V-1 s-1 for the NPLs. The LbL assemblies together with the dimension of the materials (QDs or NPLs) were favorably used for the fine tuning and control of the charge carrier mobility inside the LbL nanostructures. Such 2D charge conduction mechanism and high μ values inside an interlocked multilayered assembly containing graphene-based nanocomposites are of great interest for organic devices and functionalization of interfaces.

  2. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    NASA Astrophysics Data System (ADS)

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  3. TRAINING - GEMINI-TITAN (GT)-5 - TX

    NASA Image and Video Library

    1965-06-18

    S65-35563 (18 June 1965) --- Astronauts L. Gordon Cooper Jr. (left), command pilot; and Charles Conrad Jr., pilot, the prime crew of the Gemini-5 spaceflight, prepare their cameras while aboard a C-130 aircraft flying near Laredo, Texas. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions. Knowledge gained from these experiments will have later application for space pilots identifying terrestrial features from space. Dr. John Billingham, chief, Environmental Physiology Branch, Crew Systems Division, is in charge of the Visual Acuity Experiments.

  4. Electromagnetic Compatibility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2004-01-01

    This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

  5. Non-linear effects in bunch compressor of TARLA

    NASA Astrophysics Data System (ADS)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  6. Triboelectric nanogenerator for powering portable electronics

    DOEpatents

    Wang, Zhong Lin; Wang, Sihong; Lin, Long; Zhu, Guang; Lin, Zong-Hong

    2017-03-14

    A triboelectric generator includes a first contact charging member and a second contact charging member. The first contact charging member includes a first contact layer and a conductive electrode layer. The first contact layer includes a material that has a triboelectric series rating indicating a propensity to gain electrons due to a contacting event. The conductive electrode layer is disposed along the back side of the contact layer. The second contact charging member is spaced apart from and disposed oppositely from the first contact charging member. It includes an electrically conductive material layer that has a triboelectric series rating indicating a propensity to lose electrons when contacted by the first contact layer during the contacting event. The electrically conductive material acts as an electrode. A mechanism maintains a space between the first contact charging member and the second contact charging member except when a force is applied thereto.

  7. Charged polymers in high dimensions

    NASA Technical Reports Server (NTRS)

    Kantor, Yacov

    1990-01-01

    A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.

  8. The Orbit of Water Droplets around Charged Rod

    ERIC Educational Resources Information Center

    Ferstl, Andrew; Burns, Andrew

    2013-01-01

    The motion of charges around a centrally charged object is often compared to gravitational orbits (such as satellites around planets). Recently, a video taken by astronaut Don Pettit onboard the International Space Station shows water droplets orbiting a charged knitting needle. Here we attempt to model this motion and estimate the charges on the…

  9. High-Sensitivity Ionization Trace-Species Detector

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T.; Chutjian, Ara

    1990-01-01

    Features include high ion-extraction efficiency, compactness, and light weight. Improved version of previous ionization detector features in-line geometry that enables extraction of almost every ion from region of formation. Focusing electrodes arranged and shaped into compact system of space-charge-limited reversal electron optics and ion-extraction optics. Provides controllability of ionizing electron energies, greater efficiency of ionization, and nearly 100 percent ion-collection efficiency.

  10. Photovoltaic driven multiple quantum well optical modulator

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    Multiple quantum well (MQW) structures (12) are utilized to provide real-time, reliable, high-performance, optically-addressed spatial-light modulators (SLM) (10). The optically-addressed SLM comprises a vertical stack of quantum well layers (12a) within the penetration depth of an optical write signal 18, a plurality of space charge barriers (12b) having predetermined tunneling times by control of doping and thickness. The material comprising the quantum well layers has a lower bandgap than that of the space charge barrier layers. The write signal modulates a read signal (20). The modulation sensitivity of the device is high and no external voltage source is required. In a preferred embodiment, the SLM having interleaved doped semiconductor layers for driving the MQW photovoltaically is characterized by the use of a shift analogous to the Moss-Burnstein shift caused by the filling of two-dimensional states in the multiple quantum wells, thus allowing high modulation sensitivity in very narrow wells. Arrays (30) may be formed with a plurality of the modulators.

  11. Wake-field and space charge effects on high brightness beams calculations and measured results for the laser driven photoelectrons at BNL-ATF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1993-05-01

    We discuss the formalism used to study the effects of the interactions between the highly charged particles and the fields in the accelerating structure, including space charge and wake fields. Some of our calculations and numerical simulation results obtained for the Brookhaven National Laboratory (BNL) high-brightness photoelectron beam at the Accelerator Test Facility (ATF) and the measured data at ATF are also included.

  12. Analysis of the longitudinal space charge impedance of a round uniform beam inside parallel plates and rectangular chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Li, Y.

    2015-02-03

    This paper analyzes the longitudinal space charge impedances of a round uniform beam inside a rectangular and parallel plate chambers using the image charge method. This analysis is valid for arbitrary wavelengths, and the calculations converge rapidly. The research shows that only a few of the image beams are needed to obtain a relative error less than 0.1%. The beam offset effect is also discussed in the analysis.

  13. Multiple Supersonic Phase Fronts Launched at a Complex-Oxide Heterointerface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Först, M.; Beyerlein, K. R.; Mankowsky, R.

    Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We also measure the dynamics of the lattice and that of the charge disproportionation in NdNiO 3 , when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO 3 substrate. We findmore » that charge redistribution propagates at supersonic speeds from the interface into the NdNiO 3 film, followed by a sonic lattice wave. Our results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces, when combined with measurements of magnetic disordering and of the metal-insulator transition.« less

  14. Multiple Supersonic Phase Fronts Launched at a Complex-Oxide Heterointerface

    DOE PAGES

    Först, M.; Beyerlein, K. R.; Mankowsky, R.; ...

    2017-01-09

    Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We also measure the dynamics of the lattice and that of the charge disproportionation in NdNiO 3 , when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO 3 substrate. We findmore » that charge redistribution propagates at supersonic speeds from the interface into the NdNiO 3 film, followed by a sonic lattice wave. Our results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces, when combined with measurements of magnetic disordering and of the metal-insulator transition.« less

  15. Transverse Phase Space Reconstruction and Emittance Measurement of Intense Electron Beams using a Tomography Technique

    NASA Astrophysics Data System (ADS)

    Stratakis, D.; Kishek, R. A.; Li, H.; Bernal, S.; Walter, M.; Tobin, J.; Quinn, B.; Reiser, M.; O'Shea, P. G.

    2006-11-01

    Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on the University of Maryland Electron Ring (UMER).

  16. Solid State Ultracapacitor

    NASA Technical Reports Server (NTRS)

    Rolin, Terry D.

    2015-01-01

    NASA analyzes, tests, packages, and fabricates electrical, electronic, and electromechanical (EEE) parts used in space vehicles. One area that NASA wishes to advance is energy storage and delivery. Currently, space vehicles use rechargeable batteries that utilize silver zinc or lithium ion electrochemical processes. These current state-of-the-art rechargeable batteries cannot be rapidly charged, contain harmful chemicals, and suffer from early wear-out mechanisms. A solid state ultracapacitor is an EEE part that offers significant advantages over current electrochemical and electrolytic devices. The objective of this research is to develop an internal barrier layer ultracapacitor (IBLC) using novel dielectric materials as a battery replacement with a focus on these advantages: longer life, lower mass-toweight ratio, rapid charging, on-demand pulse power, improved on-pad standby time without maintenance, and environmental friendliness. The approach is unique in two areas. A deposition technique is used that has been shown to produce a more uniformly coated nanoparticle than sol-gel, which has resulted in colossal permittivities. These particles are then distributed in an ink formulation developed at NASA Marshall Space Flight Center (MSFC) and deposited utilizing a 3D aerosol jet technique. This additive manufacturing technique controls layer thickness, resulting in extremely large capacitance and energy density.

  17. Prospects and challenges of touchless electrostatic detumbling of small bodies

    NASA Astrophysics Data System (ADS)

    Bennett, Trevor; Stevenson, Daan; Hogan, Erik; Schaub, Hanspeter

    2015-08-01

    The prospects of touchlessly detumbling a small, multiple meters in size, space object using electrostatic forces are intriguing. Physically capturing an object with a large rotation rate poses significant momentum transfer and collision risks. If the spin rate is reduced to less than 1 deg/s, relative motion sensing and control associated with mechanical docking becomes manageable. In particular, this paper surveys the prospects and challenges of detumbling large debris objects near Geostationary Earth Orbit for active debris remediation, and investigates if such electrostatic tractors are suitable for small asteroids being considered for asteroid retrieval missions. Active charge transfer is used to impart arresting electrostatic torques on such objects, given that they are sufficiently non-spherical. The concept of touchless electrostatic detumbling of space debris is outlined through analysis and experiments and is shown to hold great promise to arrest the rotation within days to weeks. However, even conservatively optimistic simulations of small asteroid detumbling scenarios indicate that such a method could take over a year to arrest the asteroid rotation. The numerical debris detumbling simulation includes a charge transfer model in a space environment, and illustrates how a conducting rocket body could be despun without physical contact.

  18. Close-Spaced High Temperature Knudsen Flow.

    DTIC Science & Technology

    1986-07-15

    work~was a study of discharge processes in Knudsen mode (collisionless), thermionic energy converters. Areas of research involve’mechanisms for reducing ...power densities. The mechanisms/we have chosen to study are: reduction of space-charge through a very close interelectrode gap (less than 10 microns...In order to operate at practical current densities, the effect of electron space charge must be reduced . This can be done through very close

  19. Mining CRRES IDM Pulse Data and CRRES Environmental Data to Improve Spacecraft Charging/Discharging Models and Guidelines

    NASA Technical Reports Server (NTRS)

    Brautigam, D. H.; Frederickson, A. R.

    2004-01-01

    One can truly predict the charging and pulsing in space over a year's time using only the physics that worked for periods of an hour and less in prior publications. All portions of the task were achieved, including the optional portion of determining a value for conductivity that best .t the data. Fortran statements were developed that are required for the NUMIT runs to work with this kind of data from space. In addition to developing the Fortran for NUMIT, simple correlations between the IDM pulsing history and the space radiation were observed because we now have a better characterization of the space radiation. The study showed that: (1) the new methods for measurement of charge storage and conduction in insulators provide the correct values to use for prediction of charging and pulsing in space; (2) the methods in NUMIT that worked well for time durations less than hours now work well for durations of months; (3) an average spectrum such as AE8 is probably not a good guide for predicting pulsing in space one must take time dependence into account in order to understand insulator pulsing; and (4) the old method for predicting pulse rates in space that was based on the CRRES data could be improved to include dependencies on material parameters.

  20. MSFC/EV44 Natural Environment Capabilities

    NASA Technical Reports Server (NTRS)

    NeergaardParker, Linda; Willis, Emily M.; Minnow, Joseph I.; Coffey, Vic N.

    2014-01-01

    The Natural Environments Branch at Marshall Space Flight Center is an integral part of many NASA satellite and launch vehicle programs, providing analyses of the space and terrestrial environments that are used for program development efforts, operational support, and anomaly investigations. These capabilities include model development, instrument build and testing, analysis of space and terrestrial related data, spacecraft charging anomaly investigations, surface and internal charging modeling, space environment definition, and radiation assessments for electronic parts. All aspects of space and terrestrial design are implemented with the goal of devising missions that are successful from launch to operations in the space environment of LEO, polar, GEO, and interplanetary orbits.

  1. 46 CFR 147A.13 - Person in charge of the vessel; before fumigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fumigation of the spaces that are determined to be safe for occupancy under § 147A.11(b)(1)(i). (b) If no spaces are determined to be safe for occupancy under § 147A.11 (b)(1)(i), the person in charge of the...

  2. 46 CFR 147A.13 - Person in charge of the vessel; before fumigation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fumigation of the spaces that are determined to be safe for occupancy under § 147A.11(b)(1)(i). (b) If no spaces are determined to be safe for occupancy under § 147A.11 (b)(1)(i), the person in charge of the...

  3. Noise of space-charge-limited current in solids is thermal.

    NASA Technical Reports Server (NTRS)

    Golder, J.; Nicolet, M.-A.; Shumka, A.

    1973-01-01

    The white noise level of space-charge-limited current (SCLC) of holes in a silicon device measured at five temperatures ranging from 113 to 300 K is shown to be proportional to the absolute temperature. This proves experimentally the thermal origin of noise for SCLC in solids.

  4. Thermal noise in space-charge-limited hole current in silicon

    NASA Technical Reports Server (NTRS)

    Shumka, A.; Golder, J.; Nicolet, M.

    1972-01-01

    Present theories on noise in single-carrier space-charge-limited currents in solids have not been quantitatively substantiated by experimental evidence. To obtain such experimental verification, the noise in specially fabricated silicon structures is being measured and analyzed. The first results of this verification effort are reported.

  5. McArthur completes a battery charge on the defibrillator during Expedition 12

    NASA Image and Video Library

    2005-12-16

    ISS012-E-12570 (16 Dec. 2005) --- Astronaut William S. (Bill) McArthur Jr., Expedition 12 commander and NASA space station science officer, completes a battery charge on a cardiac defibrillator at the Human Research Facility (HRF) in the Destiny laboratory of the International Space Station.

  6. Central charge from adiabatic transport of cusp singularities in the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Can, Tankut

    2017-04-01

    We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.

  7. Parametric emittance measurements of electron beams produced by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Barber, S. K.; van Tilborg, J.; Schroeder, C. B.; Lehe, R.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Nakamura, K.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2018-05-01

    Laser plasma accelerators (LPA) offer an exciting possibility to deliver high energy, high brightness electrons beams in drastically smaller distance scales than is typical for conventional accelerators. As such, LPAs draw considerable attention as potential drivers for next generation light sources and for a compact linear collider. In order to asses the viability of an LPA source for a particular application, the brightness of the source should be properly characterized. In this paper, we present charge dependent transverse emittance measurements of LPA sources using both ionization injection and shock induced density down ramp injection, with the latter delivering smaller transverse emittances by a factor of two when controlling for charge density. The single shot emittance method is described in detail with a discussion on limitations related to second order transport effects. The direct role of space charge is explored through a series of simulations and found to be consistent with experimental observations.

  8. Engineering and Abuse Testing of Panasonic Lithium-Ion Battery and Cells

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Bragg, Bobby J.

    2000-01-01

    This viewgraph presentation reviews the performance testing of Lithium Ion batteries and cells under different conditions of charge and discharge. The tests show that the 0.5 C rate of charge and discharge might be the ideal condition for long term cycling. It reviews the issues of overcharge and overdischarge of the cells. The cells and the battery have adequate protection under both conditions to prevent any catastrophic occurrences. Temperatures above 150 C are required to vent the cells or cause a thermal runaway, Since this situation is non-credible in the cabin of the Space Shuffle or ISS this should not pose a problem. The presentation includes graphs and charts showing the charge and discharge capacities of the battery and also the current and voltage profiles. A view of a circuit board which contains the controlling mechanism for the battery is also shown.

  9. Design And Construction Of A Miniaturized Motor Controller For Interplanetary Rover

    NASA Astrophysics Data System (ADS)

    Lofgren, Henrik; Lijemark, Tomas; Lamoureux, Enrique; Bruhn, Fredrik; Hagstrom, Maria; Hall, Karin; Ljunggren, Anders; Habinc, Sandi; Gruener, Gabriel; Rusconi, Andrea; Boyes, Ben; Wagenbach, Susanne; Poulakis, Pantelis; Kohler, Johan

    2011-10-01

    ÅAC Microtec AB is leading an international consortium developing a Motion Control Chip (MCC) for the European Space Agency (ESA) under a TRP contract. The team consists of the prime ÅAC (Sweden), Aeroflex Gaisler (Sweden), Centre Suisse d'Electroniqueet de Microtechnique (CSEM, Switzerland), Selex Galileo Italy), Astrium (UK) and DLR Institute of Space Systems (Germany). In order to improve performance of rovers and robotic arms, one solution is to place the controller physically as close as possible to the motors. This reduces the harness and hence saves weight, decreases thermal leakage from the main system body and simplifies the final assembly. Nevertheless, with this approach the constraints on the electronics become more stringent: the assembly has to survive a very wide temperature range as well as vibrations and possibly dust, and at the same time it should be as small and light as possible. To cope with these design constraints, the Motion Control Chip (MCC) is based on stacked ceramic substrate technology in a Multi Chip Module (MCM), on which active components are assembled as bare dies. This approach was chosen in favor of special large ASIC development to reduce cost and make the design more flexible. By choosing a MCM solution, the design will allow both FPGA and ASICs to be used. FPGAs are used initially to lower the prototyping cost and later be replaced with ASICs as the packaging technology is qualified for the extreme environments of ISS, Mars and Moon. The manufacturing of the first iteration of miniaturized MCC modules is ongoing and initial functional tests have been executed. The results are currently being evaluated and when this is finalized the full test campaign including environmental tests will planned in detail. The tests are assumed to be finalized during the spring of 2011. Aeroflex Gaisler is the official ESA maintainer of the RTEMS port for the LEON3 processor and has been providing support to several developments. CSEM is providing the software for the MCC, which includes PID position, velocity, and torque control for brushed and brushless DC motors, as well as telecommand, telemetry and housekeeping through SpaceWire and CAN bus. Astrium UK is in charge of the definition of requirements for rover locomotion applications of the MCC. Astrium UK has experience from the Beagle project and is responsible for the Exomars rover development. Selex Galileo is in charge of the definition of requirements for three major applications of the MCC: robotic arms, complex motorized payloads (as drills and sample distribution systems) and exoskeletons. DLR Institute of Space Systems contributes to the definition of requirements related to rover locomotion drives and is furthermore in charge of environmental testing of the MCC prototype.

  10. NASCAP user's manual

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Harvey, J. M.; Katz, I.

    1977-01-01

    The NASCAP (NASA Charging Analyzer Program) code simulates the charging process for a complex object in either tenuous plasma or ground test environment. Detailed specifications needed to run the code are presented. The object definition section, OBJDEF, allows the test object to be easily defined in the cubic mesh. The test object is composed of conducting sections which may be wholly or partially covered with thin dielectric coatings. The potential section, POTENT, obtains the electrostatic potential in the space surrounding the object. It uses the conjugate gradient method to solve the finite element formulation of Poisson's equation. The CHARGE section of NASCAP treats charge redistribution among the surface cells of the object as well as charging through radiation bombardment. NASCAP has facilities for extensive graphical output, including several types of object display plots, potential contour plots, space charge density contour plots, current density plots, and particle trajectory plots.

  11. Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites.

    PubMed

    Li, Zhonglei; Du, Boxue; Han, Chenlei; Xu, Hang

    2017-06-21

    The role of trap characteristics in modulating charge transport properties is attracting much attentions in electrical and electronic engineering, which has an important effect on the electrical properties of dielectrics. This paper focuses on the electrical properties of Low-density Polyethylene (LDPE)/graphene nanocomposites (NCs), as well as the corresponding trap level characteristics. The dc conductivity, breakdown strength and space charge behaviors of NCs with the filler content of 0 wt%, 0.005 wt%, 0.01 wt%, 0.1 wt% and 0.5 wt% are studied, and their trap level distributions are characterized by isothermal discharge current (IDC) tests. The experimental results show that the 0.005 wt% LDPE/graphene NCs have a lower dc conductivity, a higher breakdown strength and a much smaller amount of space charge accumulation than the neat LDPE. It is indicated that the graphene addition with a filler content of 0.005 wt% introduces large quantities of deep carrier traps that reduce charge carrier mobility and result in the homocharge accumulation near the electrodes. The deep trap modulated charge carrier transport attributes to reduce the dc conductivity, suppress the injection of space charges into polymer bulks and enhance the breakdown strength, which is of great significance in improving electrical properties of polymer dielectrics.

  12. Integrated Solar-Energy-Harvesting and -Storage Device

    NASA Technical Reports Server (NTRS)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  13. Numerical investigation of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in further understanding the ozone generation and pollution control process in a dielectric barrier discharge.

  14. Designing heteropolymers to fold into unique structures via water-mediated interactions.

    PubMed

    Jamadagni, Sumanth N; Bosoy, Christian; Garde, Shekhar

    2010-10-28

    Hydrophobic homopolymers collapse into globular structures in water driven by hydrophobic interactions. Here we employ extensive molecular dynamics simulations to study the collapse of heteropolymers containing one or two pairs of oppositely charged monomers. We show that charging a pair of monomers can dramatically alter the most stable conformations from compact globular to more open hairpin-like. We systematically explore a subset of the sequence space of one- and two-charge-pair polymers, focusing on the locations of the charge pairs. Conformational stability is governed by a balance of hydrophobic interactions, hydration and interactions of charge groups, water-mediated charged-hydrophobic monomer repulsions, and other factors. As a result, placing charge pairs in the middle, away from the hairpin ends, leads to stable hairpin-like structures. Turning off the monomer-water attractions enhances hydrophobic interactions significantly leading to a collapse into compact globular structures even for two-charge-pair heteropolymers. In contrast, the addition of salt leads to open and extended structures, suggesting that solvation of charged monomer sites by salt ions dominates the salt-induced enhancement of hydrophobic interactions. We also test the ability of a predictive scheme based on the additivity of free energy of contact formation. The success of the scheme for symmetric two-charge-pair sequences and the failure for their flipped versions highlight the complexity of the heteropolymer conformation space and of the design problem. Collectively, our results underscore the ability of tuning water-mediated interactions to design stable nonglobular structures in water and present model heteropolymers for further studies in the extended thermodynamic space and in inhomogeneous environments.

  15. Space charge effects on the current-voltage characteristics of gated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.

    1997-07-01

    Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.

  16. Low power arcjet system spacecraft impacts

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria.

  17. Synthesis and Characterization of Methylammonium Lead Iodide Perovskite and its Application in Planar Hetero-junction Devices

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Aditi; Mohan Singh Negi, Chandra; Yadav, Anjali; Gupta, Saral K.; Singh Verma, Ajay

    2018-06-01

    The present paper reports on the synthesis and characterization of methylammonium lead iodide perovskite thin film and its applications in heterojunction devices. Perovskite thin films were deposited by a simple spin-coating method using a precursor solution including methyl ammonium iodide and lead iodide onto a glass substrate. The surface morphology study via field emission scanning electron microscopy of the perovskite thin film shows complete surface coverage on glass substrate with negligible pin-holes. UV–visible spectroscopy study revealed a broad absorption range and the exhibition of a band-gap of 1.6 eV. The dark current-voltage (I–V) characteristics of all the devices under study show rectifying behaviour similar to the Schottky diode. Various device parameters such as ideality factor and barrier height are extracted from the I–V curve. At low voltages the devices exhibit Ohmic behaviour, trap free space charge limited conduction governs the charge transport at an intermediate voltage range, while at much higher voltages the devices show trap controlled space charge limited conduction. Furthermore, impedance spectroscopy measurements enable us to extract the various internal parameters of the devices. Correlations between these parameters and I–V characteristics are discussed. The different capacitive process arising in the devices was discussed using the capacitance versus frequency curve.

  18. A fully coupled flow simulation around spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    Justiz, C. R.; Sega, R. M.

    1991-01-01

    The primary objective of this investigation is to provide a full flow simulation of a spacecraft in low earth orbit (LEO). Due to the nature of the environment, the simulation includes the highly coupled effects of neutral particle flow, free stream plasma flow, nonequilibrium gas dynamics effects, spacecraft charging and electromagnetic field effects. Emphasis is placed on the near wake phenomenon and will be verified in space by the Wake Shield Facility (WSF) and developed for application to Space Station conditions as well as for other spacecraft. The WSF is a metallic disk-type structure that will provide a controlled space platform for highly accurate measurements. Preliminary results are presented for a full flow around a metallic disk.

  19. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  20. The Design of a 100 GHz CARM (Cyclotron Auto-Resonance Maser) Oscillator Experiment

    DTIC Science & Technology

    1988-09-14

    pulsed-power system must be considered. A model of the voltage pulse that consists of a linear voltage rise from zero to the operating voltage...to vary as the voltage to the 3/2 power in order to model space-charge limited flow from a relativistic diode.. As the current rises in the pulse, the...distribution due to a space-charge-limited, laminar flow of electrons based on a one-dimensional, planar, relativistic model . From the charge distribution

  1. The heavy ions in space experiment

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Beahm, L. P.; Stiller, B.

    1985-01-01

    The Heavy Ions in Space (HIIS) experiment was developed and is currently in orbit onboard the long duration facility (LDEF). The HIIS will record relativistic cosmic ray nuclei heavier than magnesium and stopping nuclei down to helium. The experiment uses plastic track detectors that have a charge resolution of 0.15 charge units at krypton and 0.10 charge units, or better, for nuclei lighter than cobalt. The HIIS has a collecting power of 2 square meter steradians and it has already collected more than a year's data.

  2. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilan, Ayelet

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at themore » metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.« less

  3. A Laboratory Study of the Charging/Discharging Mechanisms of a Dust Particle Exposed to an Electron Beam

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F.; Comfort, R. H.

    1999-01-01

    The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.

  4. Very low doses of heavy oxygen ion radiation induce premature ovarian failure.

    PubMed

    Mishra, Birendra; Ripperdan, Ryan; Ortiz, Laura; Luderer, Ulrike

    2017-08-01

    Astronauts are exposed to charged particles during space travel, and charged particles are also used for cancer radiotherapy. Premature ovarian failure is a well-known side effect of conventional, low linear energy transfer (LET) cancer radiotherapy, but little is known about the effects of high LET charged particles on the ovary. We hypothesized that lower LET (16.5 keV/µm) oxygen particles would be less damaging to the ovary than we previously found for iron (LET = 179 keV/µm). Adult female mice were irradiated with 0, 5, 30 or 50 cGy oxygen ions or 50 cGy oxygen plus dietary supplementation with the antioxidant alpha lipoic acid (ALA). Six-hour after irradiation, percentages of ovarian follicles immunopositive for γH2AX, a marker of DNA double strand breaks, 4-HNE, a marker of oxidative lipid damage and BBC3 (PUMA), a proapoptotic BCL-2 family protein, were dose dependently increased in irradiated mice compared to controls. One week after irradiation, numbers of primordial, primary and secondary follicles per ovary were dose dependently decreased, with complete absence of follicles in the 50 cGy groups. The ED 50 for primordial follicle destruction was 4.6 cGy for oxygen compared to 27.5 cGy for iron in our previous study. Serum FSH and LH concentrations were significantly elevated in 50 cGy groups at 8 week. Supplementation with ALA mitigated the early effects, but not the ultimate depletion of ovarian follicles. In conclusion, oxygen charged particles are even more potent inducers of ovarian follicle depletion than charged iron particles, raising concern for premature ovarian failure in astronauts exposed to both particles during space travel. © 2017 Society for Reproduction and Fertility.

  5. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    NASA Astrophysics Data System (ADS)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  6. Alternative Fuels Data Center

    Science.gov Websites

    vehicle in a parking space where there is a PEV charging station and signage indicating that parking is for PEV charging only, unless the vehicle is connected to the charging equipment. Violations will be

  7. Space environmental interactions with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Stevens, J. N.

    1979-01-01

    Environmental interactions are defined as the response of spacecraft surfaces to the charged-particle environment. These interactions are divided into two broad categories: spacecraft passive, in which the environment acts on the surfaces and spacecraft active, in which the spacecraft or a system on the spacecraft causes the interaction. The principal spacecraft passive interaction of concern is the spacecraft charging phenomenon. The spacecraft active category introduces the concept of interactions with the thermal plasma environment and Earth's magnetic fields, which are important at all altitudes and must be considered the designs of proposed large space structures and space power systems. The status of the spacecraft charging investigations is reviewed along with the spacecraft active interactions.

  8. Synergia: an accelerator modeling tool with 3-D space charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundson, James F.; Spentzouris, P.; /Fermilab

    2004-07-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab boostermore » accelerator.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch; Departamento de Investigación en Física, Universidad de Sonora, Hermosillo; Lallement, Jean-Baptiste

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directlymore » into the beam transport region has been used to modify the space charge compensation degree.« less

  10. Non-linear effects in bunch compressor of TARLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yildiz, Hüseyin, E-mail: huseyinyildiz006@gmail.com, E-mail: huseyinyildiz@gazi.edu.tr; Aksoy, Avni; Arikan, Pervin

    2016-03-25

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects onmore » bunch compressor of TARLA.« less

  11. Spectral and Power Stability Tests of Deep UV LEDs for AC Charge Management

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Higuchi, Sei; Goh, Allex; Allard, Brett; Gill, Dale; Buchman, Saps; Byer, Robert

    2006-11-01

    Deep ultraviolet (UV) LEDs have recently been used in AC charge management experiments to support gravitational reference sensors for future space missions. The UV LED based charge management system offers compact size, light weight, and low power consumption compared to plasma sources. The AC charge management technique, which is enabled by easy modulation of UV LED output, achieves higher dynamic range for charge control. Further, the high modulation frequency, which is out of the gravitational wave detection band, reduces disturbances to the proof mass. However, there is a need to test and possibly improve the lifetime of UV LEDs, which were developed only a year ago. We have initiated a series of spectral and power stability tests for UV LEDs and designed experiments according to the requirements of AC charge management. We operate UV LEDs with a modulated current drive and maintain the operating temperature at 22 °C,28 similar to the LISA spacecraft working condition. The testing procedures involve measuring the baseline spectral shape and output power level prior to the beginning of the tests and then re-measuring the same quantities periodically. As of the date of submission (August 28th, 2006), we have operated a UV LED for more than 2,700 hours.

  12. Thermal Control and Enhancement of Heat Transport Capacity of Two-Phase Loops With Electrohydrodynamic Conduction Pumping

    NASA Technical Reports Server (NTRS)

    Seyed-Yagoobi, J.; Didion, J.; Ochterbeck, J. M.; Allen, J.

    2000-01-01

    There are three kinds of electrohydrodynamics (EHD) pumping based on Coulomb force: induction pumping, ion-drag pumping, and pure conduction pumping. EHD induction pumping relies on the generation of induced charges. This charge induction in the presence of an electric field takes place due to a non-uniformity in the electrical conductivity of the fluid which can be caused by a non-uniform temperature distribution and/or an inhomogeneity of the fluid (e.g. a two-phase fluid). Therefore, induction pumping cannot be utilized in an isothermal homogeneous liquid. In order to generate Coulomb force, a space charge must be generated. There are two main mechanisms for generating a space charge in an isothermal liquid. The first one is associated with the ion injection at a metal/liquid interface and the related pumping is referred to as ion-drag pumping. Ion-drag pumping is not desirable because it can deteriorate the electrical properties of the working fluid. The second space charge generation mechanism is associated with the heterocharge layers of finite thickness in the vicinity of the electrodes. Heterocharge layers result from dissociation of the neutral electrolytic species and recombination of the generated ions. This type of pumping is referred to as pure conduction pumping. This project investigates the EHD pumping through pure conduction phenomenon. Very limited work has been conducted in this field and the majority of the published papers in this area have mistakenly assumed that the electrostriction force was responsible for the net flow generated in an isothermal liquid. The main motivation behind this study is to investigate an EHD conduction pump for a two-phase loop to be operated in the microgravity environment. The pump is installed in the liquid return passage (isothermal liquid) from the condenser section to the evaporator section. Unique high voltage and ground electrodes have been designed that generate sufficient pressure heads with very low electric power requirements making the EHD conduction pumping attractive to applications such as two-phase systems (e.g. capillary pumped loops and heat pipes). Currently, the EHD conduction pump performance is being tested on a two-phase loop under various operating conditions in the laboratory environment. The simple non-mechanical and lightweight design of the EHD pump combined with the rapid control of performance by varying the applied electric field, low power consumption, and reliability offer significant advantages over other pumping mechanisms; particularly in reduced gravity applications.

  13. Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors.

    PubMed

    Hsu, Ben B Y; Seifter, Jason; Takacs, Christopher J; Zhong, Chengmei; Tseng, Hsin-Rong; Samuel, Ifor D W; Namdas, Ebinazar B; Bazan, Guillermo C; Huang, Fei; Cao, Yong; Heeger, Alan J

    2013-03-26

    Polymer light emitting field effect transistors are a class of light emitting devices that reveal interesting device physics. Device performance can be directly correlated to the most fundamental polymer science. Control over surface properties of the transistor dielectric can dramatically change the polymer morphology, introducing ordered phase. Electronic properties such as carrier mobility and injection efficiency on the interface can be promoted by ordered nanofibers in the polymer. Moreover, by controlling space charge in the polymer interface, the recombination zone can be spatially extended and thereby enhance the optical output.

  14. "Snow White" Coating Protects SpaceX Dragon's Trunk Against Rigors of Space

    NASA Technical Reports Server (NTRS)

    McMahan, Tracy

    2013-01-01

    He described it as "snow white." But NASA astronaut Don Pettit was not referring to the popular children's fairy tale. Rather, he was talking about the white coating of the Space Exploration Technologies Corp. (SpaceX) Dragon spacecraft that reflected from the International Space Station s light. As it approached the station for the first time in May 2012, the Dragon s trunk might have been described as the "fairest of them all," for its pristine coating, allowing Pettit to clearly see to maneuver the robotic arm to grab the Dragon for a successful nighttime berthing. This protective thermal control coating, developed by Alion Science and Technology Corp., based in McLean, Va., made its bright appearance again with the March 1 launch of SpaceX's second commercial resupply mission. Named Z-93C55, the coating was applied to the cargo portion of the Dragon to protect it from the rigors of space. "For decades, Alion has produced coatings to protect against the rigors of space," said Michael Kenny, senior chemist with Alion. "As space missions evolved, there was a growing need to dissipate electrical charges that build up on the exteriors of spacecraft, or there could be damage to the spacecraft s electronics. Alion's research led us to develop materials that would meet this goal while also providing thermal controls. The outcome of this research was Alion's proprietary Z-93C55 coating."

  15. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    NASA Technical Reports Server (NTRS)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  16. Real-space visualization of remnant Mott gap and magnon excitations.

    PubMed

    Wang, Y; Jia, C J; Moritz, B; Devereaux, T P

    2014-04-18

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

  17. Analytical theory of the space-charge region of lateral p-n junctions in nanofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurugubelli, Vijaya Kumar, E-mail: vkgurugubelli@gmail.com; Karmalkar, Shreepad

    There is growing interest in fabricating conventional semiconductor devices in a nanofilm which could be a 3D material with one reduced dimension (e.g., silicon-on-insulator (SOI) film), or single/multiple layers of a 2D material (e.g., MoS{sub 2}), or a two dimensional electron gas/two dimensional hole gas (2DEG/2DHG) layer. Lateral p-n junctions are essential parts of these devices. The space-charge region electrostatics in these nanofilm junctions is strongly affected by the surrounding field, unlike in bulk junctions. Current device physics of nanofilms lacks a simple analytical theory of this 2D electrostatics of lateral p-n junctions. We present such a theory taking intomore » account the film's thickness, permittivity, doping, interface charge, and possibly different ambient permittivities on film's either side. In analogy to the textbook theory of the 1D electrostatics of bulk p-n junctions, our theory yields simple formulas for the depletion width, the extent of space-charge tails beyond this width, and the screening length associated with the space-charge layer in nanofilm junctions; these formulas agree with numerical simulations and measurements. Our theory introduces an electrostatic thickness index to classify nanofilms into sheets, bulk and intermediate sized.« less

  18. Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2016-01-01

    Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.

  19. Evaluation of Radiation Belt Space Weather Forecasts for Internal Charging Analyses

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    A variety of static electron radiation belt models, space weather prediction tools, and energetic electron datasets are used by spacecraft designers and operations support personnel as internal charging code inputs to evaluate electrostatic discharge risks in space systems due to exposure to relativistic electron environments. Evaluating the environment inputs is often accomplished by comparing whether the data set or forecast tool reliability predicts measured electron flux (or fluence over a given period) for some chosen period. While this technique is useful as a model metric, it does not provide the information necessary to evaluate whether short term deviances of the predicted flux is important in the charging evaluations. In this paper, we use a 1-D internal charging model to compute electric fields generated in insulating materials as a function of time when exposed to relativistic electrons in the Earth's magnetosphere. The resulting fields are assumed to represent the "true" electric fields and are compared with electric field values computed from relativistic electron environments derived from a variety of space environment and forecast tools. Deviances in predicted fields compared to the "true" fields which depend on insulator charging time constants will be evaluated as a potential metric for determining the importance of predicted and measured relativistic electron flux deviations over a range of time scales.

  20. Charged Particle Environments in Earth's Magnetosphere and their Effects on Space System

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2009-01-01

    This slide presentation reviews information on space radiation environments important to magnetospheric missions including trapped radiation, solar particle events, cosmic rays, and solar winds. It also includes information about ion penetration of the magnetosphere, galactic cosmic rays, solar particle environments, CRRES internal discharge monitor, surface charging and radiation effects.

  1. Space charge effect in the spiral inflector

    NASA Astrophysics Data System (ADS)

    Toprek, Dragan

    2000-10-01

    This paper presents the analytical and numerical theory of the space charge effects in the beam in the spiral inflector. It considers a simplified model of a "straight" cylindrical beam by using a uniform particle distribution. Numerical results represented in this paper are obtained by using a modified version of the program CASINO.

  2. 14 CFR 382.31 - May carriers impose special charges on passengers with a disability for providing services and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false May carriers impose special charges on... 382.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Nondiscrimination...

  3. 14 CFR 382.31 - May carriers impose special charges on passengers with a disability for providing services and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false May carriers impose special charges on... 382.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Nondiscrimination...

  4. 14 CFR 382.31 - May carriers impose special charges on passengers with a disability for providing services and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false May carriers impose special charges on... 382.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Nondiscrimination...

  5. 14 CFR 382.31 - May carriers impose special charges on passengers with a disability for providing services and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false May carriers impose special charges on... 382.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Nondiscrimination...

  6. 14 CFR 382.31 - May carriers impose special charges on passengers with a disability for providing services and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false May carriers impose special charges on... 382.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Nondiscrimination...

  7. Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2014-08-01

    We study the triple points and phase diagrams in the extended phase space of the charged Gauss-Bonnet black holes in d-dimensional anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. Employing the equation of state T=T(v,P), we demonstrate that the information of the phase transition and behavior of the Gibbs free energy are potential encoded in the T-v (T-rh) line with fixed pressure P. We get the phase diagrams for the charged Gauss-Bonnet black holes with different values of the charge Q and dimension d. The result shows that the small/large black hole phase transitions appear for any d, which is reminiscent of the liquid/gas transition of a Van der Waals type. Moreover, the interesting thermodynamic phenomena, i.e., the triple points and the small/intermediate/large black hole phase transitions are observed for d=6 and Q ∈(0.1705,0.1946).

  8. Qubit and fermionic Fock spaces from type II superstring black holes

    NASA Astrophysics Data System (ADS)

    Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.

    Using Hodge diagram combinatorial data, we study qubit and fermionic Fock spaces from the point of view of type II superstring black holes based on complex compactifications. Concretely, we establish a one-to-one correspondence between qubits, fermionic spaces and extremal black holes in maximally supersymmetric supergravity obtained from type II superstring on complex toroidal and Calabi-Yau compactifications. We interpret the differential forms of the n-dimensional complex toroidal compactification as states of n-qubits encoding information on extremal black hole charges. We show that there are 2n copies of n qubit systems which can be split as 2n = 2n-1 + 2n-1. More precisely, 2n-1 copies are associated with even D-brane charges in type IIA superstring and the other 2n-1 ones correspond to odd D-brane charges in IIB superstring. This correspondence is generalized to a class of Calabi-Yau manifolds. In connection with black hole charges in type IIA superstring, an n-qubit system has been obtained from a canonical line bundle of n factors of one-dimensional projective space ℂℙ1.

  9. Studies on space charge neutralization and emittance measurement of beam from microwave ion source.

    PubMed

    Misra, Anuraag; Goswami, A; Sing Babu, P; Srivastava, S; Pandit, V S

    2015-11-01

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  10. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    NASA Astrophysics Data System (ADS)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S.

    2015-11-01

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (˜5 mA at 75 keV), it is possible to reduce the beam spot size by ˜34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  11. A Numerical Scheme for the Solution of the Space Charge Problem on a Multiply Connected Region

    NASA Astrophysics Data System (ADS)

    Budd, C. J.; Wheeler, A. A.

    1991-11-01

    In this paper we extend the work of Budd and Wheeler ( Proc. R. Soc. London A, 417, 389, 1988) , who described a new numerical scheme for the solution of the space charge equation on a simple connected domain, to multiply connected regions. The space charge equation, ▿ · ( Δ overlineϕ ▽ overlineϕ) = 0 , is a third-order nonlinear partial differential equation for the electric potential overlineϕ which models the electric field in the vicinity of a coronating conductor. Budd and Wheeler described a new way of analysing this equation by constructing an orthogonal coordinate system ( overlineϕ, overlineψ) and recasting the equation in terms of x, y, and ▽ overlineϕ as functions of ( overlineϕ, overlineψ). This transformation is singular on multiply connected regions and in this paper we show how this may be overcome to provide an efficient numerical scheme for the solution of the space charge equation. This scheme also provides a new method for the solution of Laplaces equation and the calculation of orthogonal meshes on multiply connected regions.

  12. Higher dimensional Taub-NUT spaces and applications

    NASA Astrophysics Data System (ADS)

    Stelea, Cristian Ionut

    In the first part of this thesis we discuss classes of new exact NUT-charged solutions in four dimensions and higher, while in the remainder of the thesis we make a study of their properties and their possible applications. Specifically, in four dimensions we construct new families of axisymmetric vacuum solutions using a solution-generating technique based on the hidden SL(2,R) symmetry of the effective action. In particular, using the Schwarzschild solution as a seed we obtain the Zipoy-Voorhees generalisation of the Taub-NUT solution and of the Eguchi-Hanson soliton. Using the C-metric as a seed, we obtain and study the accelerating versions of all the above solutions. In higher dimensions we present new classes of NUT-charged spaces, generalising the previously known even-dimensional solutions to odd and even dimensions, as well as to spaces with multiple NUT-parameters. We also find the most general form of the odd-dimensional Eguchi-Hanson solitons. We use such solutions to investigate the thermodynamic properties of NUT-charged spaces in (A)dS backgrounds. These have been shown to yield counter-examples to some of the conjectures advanced in the still elusive dS/CFT paradigm (such as the maximal mass conjecture and Bousso's entropic N-bound). One important application of NUT-charged spaces is to construct higher dimensional generalisations of Kaluza-Klein magnetic monopoles, generalising the known 5-dimensional Kaluza-Klein soliton. Another interesting application involves a study of time-dependent higher-dimensional bubbles-of-nothing generated from NUT-charged solutions. We use them to test the AdS/CFT conjecture as well as to generate, by using stringy Hopf-dualities, new interesting time-dependent solutions in string theory. Finally, we construct and study new NUT-charged solutions in higher-dimensional Einstein-Maxwell theories, generalising the known Reissner-Nordstrom solutions.

  13. A Spacecraft Charging Capability for SXTF.

    DTIC Science & Technology

    1979-01-17

    surfaces can charge up. ’Iiiis differential charging of satellite surfaces can cause vacutum sparks , and dielectric breakdowns, and wi 11 effect the S...times required to reach steady charge state in the spacecraft internal dielectrics upon electron irradiation. In space , typical times (order of magni...WORDS (Continue on reverse side it necessary end Identify by block nunmber) Spacecraft charging Dielectric breakdown SGEMP Electron accelerators

  14. Description of bipolar charge transport in polyethylene using a fluid model with a constant mobility: model prediction

    NASA Astrophysics Data System (ADS)

    LeRoy, S.; Segur, P.; Teyssedre, G.; Laurent, C.

    2004-01-01

    We present a conduction model aimed at describing bipolar transport and space charge phenomena in low density polyethylene under dc stress. In the first part we recall the basic requirements for the description of charge transport and charge storage in disordered media with emphasis on the case of polyethylene. A quick review of available conduction models is presented and our approach is compared with these models. Then, the bases of the model are described and related assumptions are discussed. Finally, results on external current, trapped and free space charge distributions, field distribution and recombination rate are presented and discussed, considering a constant dc voltage, a step-increase of the voltage, and a polarization-depolarization protocol for the applied voltage. It is shown that the model is able to describe the general features reported for external current, electroluminescence and charge distribution in polyethylene.

  15. Is the negative glow plasma of a direct current glow discharge negatively charged?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I., E-mail: Vladimir.Demidov@mail.wvu.edu

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculationmore » of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.« less

  16. Astronomy Software

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Software Bisque's TheSky, SkyPro and Remote Astronomy Software incorporate technology developed for the Hubble Space Telescope. TheSky and SkyPro work together to orchestrate locating, identifying and acquiring images of deep sky objects. With all three systems, the user can directly control computer-driven telescopes and charge coupled device (CCD) cameras through serial ports. Through the systems, astronomers and students can remotely operate a telescope at the Mount Wilson Observatory Institute.

  17. Protection of Conductive and Non-conductive Advanced Polymer-based Paints from Highly Aggressive Oxidative Environments

    NASA Technical Reports Server (NTRS)

    Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.

    2005-01-01

    Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.

  18. KSC00pp1056

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. Astronauts from the STS-92 crew look on while their commander, Col. Brian Duffy, and Tip Talone, NASA director of International Space Station and Payload Processing at KSC, receive a symbolic key from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  19. KSC-00pp1056

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. Astronauts from the STS-92 crew look on while their commander, Col. Brian Duffy, and Tip Talone, NASA director of International Space Station and Payload Processing at KSC, receive a symbolic key from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  20. Space-charge limitations in a collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, A.; Heimerle, M.

    Design of several projects which envision hadron colliders operating at low energies such as NICA at JINR [1] and Electron-Nucleon Collider at FAIR [2] is under way. In Brookhaven National Laboratory (BNL), a new physics program requires operation of Relativistic Heavy Ion Collider (RHIC) with heavy ions at low energies at g=2.7-10 [3]. In a collider, maximum achievable luminosity is typically limited by beam-beam effects. For heavy ions significant luminosity degradation, driving bunch length and transverse emittance growth, comes from Intrabeam Scattering (IBS). At these low energies, IBS growth can be effectively counteracted, for example, with cooling techniques. If IBSmore » were the only limitation, one could achieve small hadron beam emittance and bunch length with the help of cooling, resulting in a dramatic luminosity increase. However, as a result of low energies, direct space-charge force from the beam itself is expected to become the dominant limitation. Also, the interplay of both beambeam and space-charge effects may impose an additional limitation on achievable maximum luminosity. Thus, understanding at what values of space-charge tune shift one can operate in the presence of beam-beam effects in a collider is of great interest for all of the above projects. Operation of RHIC for Low-Energy physics program started in 2010 which allowed us to have a look at combined impact of beam-beam and space-charge effects on beam lifetime experimentally. Here we briefly discuss expected limitation due to these effects with reference to recent RHIC experience.« less

  1. Magnetically coupled resonance wireless charging technology principles and transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Zhou, Jiehua; Wan, Jian; Ma, Yinping

    2017-05-01

    With the tenure of Electric-Vehicle rising around the world, the charging methods have been paid more and more attention, the current charging mode mainly has the charging posts and battery swapping station. The construction of the charging pile or battery swapping station not only require lots of manpower, material costs but the bare conductor is also easy to generate electric spark hidden safety problems, still occupies large space. Compared with the wired charging, wireless charging mode is flexible, unlimited space and location factors and charging for vehicle safety and quickly. It complements the traditional charging methods in adaptability and the independent charge deficiencies. So the researching the wireless charging system have an important practical significance and application value. In this paper, wireless charging system designed is divided into three parts: the primary side, secondary side and resonant coupling. The main function of the primary side is to generate high-frequency alternating current, so selecting CLASS-E amplifier inverter structure through the research on full bridge, half-bridge and power amplification circuit. Addition, the wireless charging system is susceptible to outside interference, frequency drift phenomenon. Combined with the wireless energy transmission characteristics, resonant parts adopt resonant coupling energy transmission scheme and the Series-Series coupling compensation structure. For the electric vehicle charging power and voltage requirements, the main circuit is a full bridge inverter and Boost circuit used as the secondary side.

  2. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  3. Network based management for multiplexed electric vehicle charging

    DOEpatents

    Gadh, Rajit; Chung, Ching Yen; Qui, Li

    2017-04-11

    A system for multiplexing charging of electric vehicles, comprising a server coupled to a plurality of charging control modules over a network. Each of said charging modules being connected to a voltage source such that each charging control module is configured to regulate distribution of voltage from the voltage source to an electric vehicle coupled to the charging control module. Data collection and control software is provided on the server for identifying a plurality of electric vehicles coupled to the plurality of charging control modules and selectively distributing charging of the plurality of charging control modules to multiplex distribution of voltage to the plurality of electric vehicles.

  4. An exploration of the effectiveness of artificial mini-magnetospheres as a potential Solar Storm shelter for long term human space missions

    NASA Astrophysics Data System (ADS)

    Bamford, Ruth; Kellett, Barry; Bradford, John; Todd, Tom N.; Stafford-Allen, Robin; Alves, E. Paulo; Silva, Luis; Collingwood, Cheryl; Crawford, Ian A.; Bingham, Robert

    2014-12-01

    In this paper we explore the effectiveness of an artificial mini-magnetosphere as a potential radiation shelter for long term human space missions. Our study includes the differences that the plasma environment makes to the efficiency of the shielding from the high energy charged particle component of solar and cosmic rays, which radically alters the power requirements. The incoming electrostatic charges are shielded by fields supported by the self captured environmental plasma of the solar wind, potentially augmented with additional density. The artificial magnetic field generated on board acts as the means of confinement and control. Evidence for similar behaviour of electromagnetic fields and ionised particles in interplanetary space can be gained by the example of the enhanced shielding effectiveness of naturally occurring "mini-magnetospheres" on the moon. The shielding effect of surface magnetic fields of the order of ~100s nanoTesla is sufficient to provide effective shielding from solar proton bombardment that culminate in visible discolouration of the lunar regolith known as "lunar swirls". Supporting evidence comes from theory, laboratory experiments and computer simulations that have been obtained on this topic. The result of this work is, hopefully, to provide the tools for a more realistic estimation of the resources versus effectiveness and risk that spacecraft engineers need to work with in designing radiation protection for long-duration human space missions.

  5. Characterization of heterocyclic rings through quantum chemical topology.

    PubMed

    Griffiths, Mark Z; Popelier, Paul L A

    2013-07-22

    Five-membered rings are found in a myriad of molecules important in a wide range of areas such as catalysis, nutrition, and drug and agrochemical design. Systematic insight into their largely unexplored chemical space benefits from first principle calculations presented here. This study comprehensively investigates a grand total of 764 different rings, all geometry optimized at the B3LYP/6-311+G(2d,p) level, from the perspective of Quantum Chemical Topology (QCT). For the first time, a 3D space of local topological properties was introduced, in order to characterize rings compactly. This space is called RCP space, after the so-called ring critical point. This space is analogous to BCP space, named after the bond critical point, which compactly and successfully characterizes a chemical bond. The relative positions of the rings in RCP space are determined by the nature of the ring scaffold, such as the heteroatoms within the ring or the number of π-bonds. The summed atomic QCT charges of the five ring atoms revealed five features (number and type of heteroatom, number of π-bonds, substituent and substitution site) that dictate a ring's net charge. Each feature independently contributes toward a ring's net charge. Each substituent has its own distinct and systematic effect on the ring's net charge, irrespective of the ring scaffold. Therefore, this work proves the possibility of designing a ring with specific properties by fine-tuning it through manipulation of these five features.

  6. Kinetic energy offsets for multicharged ions from an electron beam ion source.

    PubMed

    Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P

    2017-08-01

    Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar 4+ and Ar 8+ ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.

  7. Three-dimensional relativistic field-electron interaction in a multicavity high-power klystron. 1: Basic theory

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1982-01-01

    A theoretical investigation of three dimensional relativistic klystron action is described. The relativistic axisymmetric equations of motion are derived from the time-dependent Lagrangian function for a charged particle in electromagnetic fields. An analytical expression of the fringing RF electric and magnetic fields within and in the vicinity of the interaction gap and the space-charge forces between axially and radially elastic deformable rings of charges are both included in the formulation. This makes an accurate computation of electron motion through the tunnel of the cavities and the drift tube spaces possible. Method of analysis is based on Lagrangian formulation. Bunching is computed using a disk model of electron stream in which the electron stream is divided into axisymmetric disks of equal charge and each disk is assumed to consist of a number of concentric rings of equal charges. The Individual representative groups of electrons are followed through the interaction gaps and drift tube spaces. Induced currents and voltages in interacting cavities are calculated by invoking the Shockley-Ramo theorem.

  8. Interplay between efficiency and device architecture for small molecule organic solar cells.

    PubMed

    Williams, Graeme; Sutty, Sibi; Aziz, Hany

    2014-06-21

    Small molecule organic solar cells (OSCs) have experienced a resurgence of interest over their polymer solar cell counterparts, owing to their improved batch-to-batch (thus, cell-to-cell) reliability. In this systematic study on OSC device architecture, we investigate five different small molecule OSC structures, including the simple planar heterojunction (PHJ) and bulk heterojunction (BHJ), as well as several planar-mixed structures. The different OSC structures are studied over a wide range of donor:acceptor mixing concentrations to gain a comprehensive understanding of their charge transport behavior. Transient photocurrent decay measurements provide crucial information regarding the interplay between charge sweep-out and charge recombination, and ultimately hint toward space charge effects in planar-mixed structures. Results show that the BHJ/acceptor architecture, comprising a BHJ layer with high C60 acceptor content, generates OSCs with the highest performance by balancing charge generation with charge collection. The performance of other device architectures is largely limited by hole transport, with associated hole accumulation and space charge effects.

  9. Initial Efforts in Characterizing Radiation and Plasma Effects on Space Assets: Bridging the Space Environment, Engineering and User Community

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.

  10. Energy and charge transfer in nanoscale hybrid materials.

    PubMed

    Basché, Thomas; Bottin, Anne; Li, Chen; Müllen, Klaus; Kim, Jeong-Hee; Sohn, Byeong-Hyeok; Prabhakaran, Prem; Lee, Kwang-Sup

    2015-06-01

    Hybrid materials composed of colloidal semiconductor quantum dots and π-conjugated organic molecules and polymers have attracted continuous interest in recent years, because they may find applications in bio-sensing, photodetection, and photovoltaics. Fundamental processes occurring in these nanohybrids are light absorption and emission as well as energy and/or charge transfer between the components. For future applications it is mandatory to understand, control, and optimize the wide parameter space with respect to chemical assembly and the desired photophysical properties. Accordingly, different approaches to tackle this issue are described here. Simple organic dye molecules (Dye)/quantum dot (QD) conjugates are studied with stationary and time-resolved spectroscopy to address the dynamics of energy and ultra-fast charge transfer. Micellar as well as lamellar nanostructures derived from diblock copolymers are employed to fine-tune the energy transfer efficiency of QD donor/dye acceptor couples. Finally, the transport of charges through organic components coupled to the quantum dot surface is discussed with an emphasis on functional devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    PubMed

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  12. Quasi-integrability in deformed sine-Gordon models and infinite towers of conserved charges

    NASA Astrophysics Data System (ADS)

    Blas, Harold; Callisaya, Hector Flores

    2018-02-01

    We have studied the space-reflection symmetries of some soliton solutions of deformed sine-Gordon models in the context of the quasi-integrability concept. Considering a dual pair of anomalous Lax representations of the deformed model we compute analytically and numerically an infinite number of alternating conserved and asymptotically conserved charges through a modification of the usual techniques of integrable field theories. The charges associated to two-solitons with a definite parity under space-reflection symmetry, i.e. kink-kink (odd parity) and kink-antikink (even parity) scatterings with equal and opposite velocities, split into two infinite towers of conserved and asymptotically conserved charges. For two-solitons without definite parity under space-reflection symmetry (kink-kink and kink-antikink scatterings with unequal and opposite velocities) our numerical results show the existence of the asymptotically conserved charges only. However, we show that in the center-of-mass reference frame of the two solitons the parity symmetries and their associated set of exactly conserved charges can be restored. Moreover, the positive parity breather-like (kink-antikink bound state) solution exhibits a tower of exactly conserved charges and a subset of charges which are periodic in time. We back up our results with extensive numerical simulations which also demonstrate the existence of long lived breather-like states in these models. The time evolution has been simulated by the 4th order Runge-Kutta method supplied with non-reflecting boundary conditions.

  13. High-order space charge effects using automatic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Michael F.; Bruhwiler, David L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996

    1997-02-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach.« less

  14. Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Banks, P. M.; Neubert, T.; Williamson, P. R.; Myers, Neil B.; Raitt, W. John; Sasaki, S.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads.

  15. Superconducting bearings for application in cryogenic experiments in space

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.; Worden, P. W., Jr.

    1980-01-01

    Linear superconducting magnetic bearings suitable for use in a proposed orbital equivalence principle experiment and for general application in space were developed and tested. Current flows in opposite directions in adjacent superconducting wires arranged parallel to the axis of a cylinder. This configuration provides maximum stiffness radially while allowing the test mass to move freely along the cylinder axis. In a space application, the wires are extended to cover the entire perimeter of the cylinder: for the earth-based tests it was desirable to use only the bottom half. Control of the axial position of the test mass is by small control coils which may be positioned inside or outside the main bearing. The design is suitable for application to other geometries where maximum stiffness is desired. A working model scaled to operate in a 1-g environment was perfected approximate solutions for the bearings were developed. A superconducting transformer method of charging the magnets for the bearing, and a position detector based on a SQUID magnetometer and associated superconducting circuit were also investigated.

  16. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. Pictured are The Boeing Co. processing team and STS-92 astronauts. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build- ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  17. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 astronaut team study the the Zenith-1 (Z-1) Truss during the Crew Equipment Interface Test. The Z-1 Truss was officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. The truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS- 92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  18. KSC-00pp1060

    NASA Image and Video Library

    2000-07-31

    The STS-92 astronaut team study the the Zenith-1 (Z-1) Truss during the Crew Equipment Interface Test. The Z-1 Truss was officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. The truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  19. KSC-00pp1059

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy discusses the significance of the Z-1 Truss during a press conference after the presentation. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  20. KSC-00pp1058

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. Pictured are The Boeing Co. processing team and STS-92 astronauts. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  1. Light intensity dependence of open-circuit voltage and short-circuit current of polymer/fullerene solar cells

    NASA Astrophysics Data System (ADS)

    Koster, L. Jan A.; Mihailetchi, Valentin D.; Ramaker, Robert; Xie, Hangxing; Blom, Paul W. M.

    2006-04-01

    The open-circuit voltage (Voc) of polymer/fullerene bulk heterojunction solar cells is investigated as a function of light intensity for different temperatures. The observed photogenerated current and V oc are at variance with classical p-n junctionbased models. The influence of light intensity and recombination strength on V oc is consistently explained by a model based on the notion that the quasi-Fermi levels are constant throughout the device, including both drift and diffusion of charge carriers. The light intensity dependence of the short-circuit current density (J sc) is also addressed. A typical feature of polymer/fullerene based solar cells is that Jsc does not scale exactly linearly with light intensity (I). Instead, a power law relationship is found given by Jsc~ Iα, where α ranges from 0.9 to 1. In a number of reports this deviation from unity is attributed to the occurrence of bimolecular recombination. We demonstrate that the dependence of the photocurrent in bulk heterojunction solar cells is governed by the build-up of space charge in the device. The occurrence of space-charge stems from the difference in charge carrier mobility of electrons and holes. In blends of poly(3-hexylthiophene) and 6,6- phenyl C61-butyric acid methyl ester this mobility difference can be tuned in between one and three orders of magnitude, depending on the annealing conditions. This allows us to experimentally verify the relation between space charge build-up and intensity dependence of Jsc. Model calculations confirm that bimolecular recombination leads only to a typical loss of 1% of all free charge carriers at Jsc for these devices. Therefore, bimolecular recombination plays only a minor role as compared to the effect of space charge in the intensity dependence of J sc.

  2. Effect of electrode materials on the space charge distribution of an Al2O3 nano-modified transformer oil under impulse voltage conditions

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Liu, Mengna; Sima, Wenxia; Jin, Yang

    2017-11-01

    The combined effect mechanism of electrode materials and Al2O3 nanoparticles on the insulating characteristics of transformer oil was investigated. Impulse breakdown tests of pure transformer oil and Al2O3 nano-modified transformer oil of varying concentrations with different electrode materials (brass, aluminum and stainless steel) showed that the breakdown voltage of Al2O3 nano-modified transformer oil is higher than that of pure transformer oil and there is a there is an optimum concentration for Al2O3 nanoparticles when the breakdown voltage reaches the maximum. In addition, the breakdown voltage was highest with the brass electrode, followed by that with stainless steel and then aluminum, irrespective of the concentration of nanoparticles in the transformer oil. This is explained by the charge injection patterns from different electrode materials according to the results of space charge measurements in pure and nano-modified transformer oil using the Kerr electro-optic system. The test results indicate that there are electrode-dependent differences in the charge injection patterns and quantities and then the electric field distortion, which leads to the difference breakdown strength in result. As for the nano-modified transformer oil, due to the Al2O3 nanoparticle’s ability of shielding space charges of different polarities and the charge injection patterns of different electrodes, these two factors have different effects on the electric field distribution and breakdown process of transformer oil between different electrode materials. This paper provides a feasible approach to exploring the mechanism of the effect of the electrode material and nanoparticles on the breakdown strength of liquid dielectrics and analyzing the breakdown process using the space charge distribution.

  3. Satellite end of life constraints: Technical and organisational solutions

    NASA Astrophysics Data System (ADS)

    Cabrières, Bernard; Alby, Fernand; Cazaux, Christian

    2012-04-01

    Since 1974 with the radiocommunication satellite Symphony1, CNES launched and operated 11 GEO and 20 LEO satellites. During those 36 years, both flight segment and ground segment dramatically evolved and operational organisations and techniques equally improved. At the present time, CNES operates 1 GEO satellite and 17 LEO satellites with not much more people and costs than in 1986 when its first Satellite Operation Direction in Toulouse was only in charge of Telecom1A, Telecom1B and Spot1. This fantastic technical evolution combined with the huge increase of services to citizens and governments given by Space systems was unfortunately also associated with an enormous growth of space pollution by debris of all sizes. From the beginning, CNES was a major actor of the international effort to promote regulations in order to try to reduce or at least control this problematic situation. Internally, CNES, not only set up an operational on-call service to deal with collision risks, but decided to do its best to apply the new guidelines to the end of life of satellites under its responsibility even for those developed and launched a very long time ago. For instance, that was the case in 2009 for the reorbitation of the GEO satellite Telecom 2C (launched in 1995) and for the deorbitation of the LEO satellite Spot2 (launched in 1990). In addition, CNES prepares procedures to be able to be as exemplary as possible for its other spacecrafts whose end of life approaches. The constraints and challenges to face in order to cope with these new requirements are multiple: choice of final orbit, realistic calculation of re-entry duration, estimation of residual propellant, electric passivation, management of explosion risks… All these studies and operational experience gained will be helpful for the new role of CNES, which recently became in charge of controlling space operators in the frame of the new French space law on space operations.

  4. 19 CFR 118.4 - Responsibilities of a CES operator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...; (j) Provide office space, parking spaces, appropriate sanitary facilities, and potable water to Customs personnel at no charge or a charge of $1 per year; and (k) Perform in accordance with any other..., 1993, as amended by T.D. 94-81, 59 FR 51495, Oct. 12, 1994; T.D. 95-77, 60 FR 50020, Sept. 27, 1995; T...

  5. 19 CFR 118.4 - Responsibilities of a CES operator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...; (j) Provide office space, parking spaces, appropriate sanitary facilities, and potable water to Customs personnel at no charge or a charge of $1 per year; and (k) Perform in accordance with any other..., 1993, as amended by T.D. 94-81, 59 FR 51495, Oct. 12, 1994; T.D. 95-77, 60 FR 50020, Sept. 27, 1995; T...

  6. 19 CFR 118.4 - Responsibilities of a CES operator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...; (j) Provide office space, parking spaces, appropriate sanitary facilities, and potable water to Customs personnel at no charge or a charge of $1 per year; and (k) Perform in accordance with any other..., 1993, as amended by T.D. 94-81, 59 FR 51495, Oct. 12, 1994; T.D. 95-77, 60 FR 50020, Sept. 27, 1995; T...

  7. 19 CFR 118.4 - Responsibilities of a CES operator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; (j) Provide office space, parking spaces, appropriate sanitary facilities, and potable water to Customs personnel at no charge or a charge of $1 per year; and (k) Perform in accordance with any other..., 1993, as amended by T.D. 94-81, 59 FR 51495, Oct. 12, 1994; T.D. 95-77, 60 FR 50020, Sept. 27, 1995; T...

  8. 19 CFR 118.4 - Responsibilities of a CES operator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...; (j) Provide office space, parking spaces, appropriate sanitary facilities, and potable water to Customs personnel at no charge or a charge of $1 per year; and (k) Perform in accordance with any other..., 1993, as amended by T.D. 94-81, 59 FR 51495, Oct. 12, 1994; T.D. 95-77, 60 FR 50020, Sept. 27, 1995; T...

  9. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklehner, D.; Leitner, D., E-mail: leitnerd@nscl.msu.edu; Cole, D.

    2014-02-15

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beammore » plasma model as well as simulations.« less

  10. Energy broadening due to space-charge oscillations in high current electron beams. [SEPAC payload experiment on Spacelab 1

    NASA Technical Reports Server (NTRS)

    Katz, I.; Jongeward, G. A.; Parks, D. E.; Reasoner, D. L.; Purvis, C. K.

    1986-01-01

    During electron beam accelerator operation on Spacelab I, substantial fluxes of electrons were observed with energies greater than the initial beam energy. Numerical calculations are performed for the emission of an unneutralized, one-dimensional electron beam. These calculations show clearly that space charge oscillations, which are associated with the charge buildup on the emitter, strongly modify the beam and cause the returning beam particles to have a distribution of kinetic energies ranging from half to over twice the initial energy.

  11. Nonequilibrium electrokinetic effects in beds of ion-permselective particles.

    PubMed

    Leinweber, Felix C; Tallarek, Ulrich

    2004-12-21

    Electrokinetic transport of fluorescent tracer molecules in a bed of porous glass beads was investigated by confocal laser scanning microscopy. Refractive index matching between beads and the saturating fluid enabled a quantitative analysis of intraparticle and extraparticle fluid-side concentration profiles. Kinetic data were acquired for the uptake and release of electroneutral and counterionic tracer under devised conditions with respect to constant pressure-driven flow through the device and the effect of superimposed electrical fields. Transport of neutral tracer is controlled by intraparticle mass transfer resistance which can be strongly reduced by electroosmotic flow, while steady-state distributions and bead-averaged concentrations are unaffected by the externally applied fields. Electrolytes of low ionic strength caused the transport through the charged (mesoporous) beads to become highly ion-permselective, and concentration polarization is induced in the bulk solution due to the superimposed fields. The depleted concentration polarization zone comprises extraparticle fluid-side mass transfer resistance. Ionic concentrations in this diffusion boundary layer decrease at increasing field strength, and the flux densities approach an upper limit. Meanwhile, intraparticle transport of counterions by electromigration and electroosmosis continues to increase and finally exceeds the transport from bulk solution into the beads. A nonequilibrium electrical double layer is induced which consists of mobile and immobile space charge regions in the extraparticle bulk solution and inside a bead, respectively. These electrical field-induced space charges form the basis for nonequilibrium electrokinetic phenomena. Caused by the underlying transport discrimination (intraparticle electrokinetic vs extraparticle boundary-layer mass transfer), the dynamic adsorption capacity for counterions can be drastically reduced. Further, the extraparticle mobile space charge region leads to nonlinear electroosmosis. Flow patterns can become highly chaotic, and electrokinetic instability mixing is shown to increase lateral dispersion. Under these conditions, the overall axial dispersion of counterionic tracer can be reduced by more than 2 orders of magnitude, as demonstrated by pulse injections.

  12. Neutralization of beam-emitting spacecraft by plasma injection

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.

    1987-01-01

    An impulsive plasma injection has been used to study charge neutralization of the Space Shuttle Orbiter while it was emitting an electron beam into space. This investigation was performed by Space Experiments with Particle Accelerators on Spacelab-1. A plasma consisting of 10 to the 19th argon ion-electron pairs was injected into space for 1 ms while an electron beam was also being emitted into space. The electron beam energy and current were as high as 5 keV and 300 mA. While the orbiter potential was positive before the plasma injection and began to decrease during the plasma injection, it was near zero for 6 to 20 ms after the plasma injection. The recovery time to the initial level of charging varied from 10 to 100 ms. In a laboratory test in a large space chamber using the same flight hardware, the neutralization time was 8-17 ms and the recovery time was 11-20 ms. The long duration of the neutralization effect in space can be explained by a model of diffusion of the cold plasma which is produced near the Orbiter by charge exchange between the neutral argon atoms and the energetic argon ions during plasma injection.

  13. Tunable charge transfer properties in metal-phthalocyanine heterojunctions.

    PubMed

    Siles, P F; Hahn, T; Salvan, G; Knupfer, M; Zhu, F; Zahn, D R T; Schmidt, O G

    2016-04-28

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.

  14. Near-infrared sensitive photorefractive device using polymer dispersed liquid crystal and BSO:Ru hybrid structure.

    PubMed

    Liu, Ren Chung; Marinova, Vera; Lin, Shiuan Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken Yuh

    2014-06-01

    A near-infrared sensitive hybrid device, based on a Ru-doped BSO photorefractive substrate and polymer dispersed liquid crystal (PDLC) layer, is reported. It is found that the photoexcited charge carriers generated in the BSO:Ru substrate create an optically induced space charge field, sufficient to penetrate into the PDLC layer and to re-orient the LC molecules inside the droplets. Beam-coupling measurements at the Bragg regime are performed showing prospective amplification values and high spatial resolution. The proposed structure does not require indium tin oxide (ITO) contacts and alignment layers. Such a device allows all the processes to be controlled by light, thus opening further potential for real-time image processing at the near-infrared range.

  15. Fabrications of insulator-protected nanometer-sized electrode gaps

    NASA Astrophysics Data System (ADS)

    Arima, Akihide; Tsutsui, Makusu; Morikawa, Takanori; Yokota, Kazumichi; Taniguchi, Masateru

    2014-03-01

    We developed SiO2-coated mechanically controllable break junctions for accurate tunneling current measurements in an ionic solution. By breaking the junction, we created dielectric-protected Au nanoprobes with nanometer separation. We demonstrated that the insulator protection was capable to suppress the ionic contribution to the charge transport through the electrode gap, thereby enabled reliable characterizations of liquid-mediated exponential decay of the tunneling conductance in an electrolyte solution. From this, we found distinct roles of charge points such as molecular dipoles and ion species on the tunneling decay constant, which was attributed to local structures of molecules and ions in the confined space between the sensing electrodes. The device described here would provide improved biomolecular sensing capability of tunneling current sensors.

  16. Space charge distributions in insulating polymers: A new non-contacting way of measurement.

    PubMed

    Marty-Dessus, D; Ziani, A C; Petre, A; Berquez, L

    2015-04-01

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.

  17. The Study of Simulated Space Radiation Environment Effect on Conductive Properties of ITO Thermal Control Materials

    NASA Astrophysics Data System (ADS)

    Wei-Quan, Feng; Chun-Qing, Zhao; Zi-Cai, Shen; Yi-Gang, Ding; Fan, Zhang; Yu-Ming, Liu; Hui-Qi, Zheng; Xue, Zhao

    In order to prevent detrimental effects of ESD caused by differential surface charging of spacecraft under space environments, an ITO transparent conductive coating is often deposited on the thermal control materials outside spacecraft. Since the ITO coating is exposed in space environment, the environment effects on electrical property of ITO coatings concern designers of spacecraft deeply. This paper introduces ground tests to simulate space radiation environmental effects on conductive property of ITO coating. Samples are made of ITO/OSR, ITO/Kapton/Al and ITO/FEP/Ag thermal control coatings. Simulated space radiation environment conditions are NUV of 500ESH, 40 keV electron of 2 × 1016 е/cm2, 40 keV proton of 2.5 × 1015 p/cm2. Conductive property is surface resistivity measured in-situ in vacuum. Test results proved that the surface resistivity for all ITO coatings have a sudden decrease in the beginning of environment test. The reasons for it may be the oxygen vacancies caused by vacuum and decayed RIC caused by radiation. Degradation in conductive properties caused by irradiation were found. ITO/FEP/Ag exhibits more degradation than other two kinds. The conductive property of ITO/kapton/Al is stable for vacuum irradiation. The analysis of SEM and XPS found more crackers and less Sn and In concentration after irradiation which may be the reason for conductive property degradation.

  18. Controlled assembly and single electron charging of monolayer protected Au144 clusters: an electrochemistry and scanning tunneling spectroscopy study

    NASA Astrophysics Data System (ADS)

    Bodappa, Nataraju; Fluch, Ulrike; Fu, Yongchun; Mayor, Marcel; Moreno-García, Pavel; Siegenthaler, Hans; Wandlowski, Thomas

    2014-11-01

    Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03793f

  19. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1958-08-19

    A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

  20. Coordination nano-space as stage of hydrogen ortho-para conversion.

    PubMed

    Kosone, Takashi; Hori, Akihiro; Nishibori, Eiji; Kubota, Yoshiki; Mishima, Akio; Ohba, Masaaki; Tanaka, Hiroshi; Kato, Kenichi; Kim, Jungeun; Real, José Antonio; Kitagawa, Susumu; Takata, Masaki

    2015-07-01

    The ability to design and control properties of nano-sized space in porous coordination polymers (PCPs) would provide us with an ideal stage for fascinating physical and chemical phenomena. We found an interconversion of nuclear-spin isomers for hydrogen molecule H2 adsorbed in a Hofmann-type PCP, {Fe(pz)[Pd(CN)4]} (pz=pyrazine), by the temperature dependence of Raman spectra. The ortho (o)-para (p) conversion process of H2 is forbidden for an isolated molecule. The charge density study using synchrotron radiation X-ray diffraction reveals the electric field generated in coordination nano-space. The present results corroborate similar findings observed on different systems and confirm that o-p conversion can occur on non-magnetic solids and that electric field can induce the catalytic hydrogen o-p conversion.

  1. Electrostatic antenna space environment interaction study

    NASA Technical Reports Server (NTRS)

    Katz, I.

    1981-01-01

    The interactions of the electrostatic antenna with the space environment in both low Earth orbit and geosynchronous orbit are investigated. It is concluded that the electrostatically controlled membrane mirror is a viable concept for space applications. However, great care must be taken to enclose the high voltage electrodes in a Faraday cage structure to separate the high voltage region from the ambient plasma. For this reason, metallized cloth is not acceptable as a membrane material. Conventional spacecraft charging at geosynchronous orbit should not be a problem provided ancillary structures (such as booms) are given nonnegligible conductivity and adequate grounding. Power loss due to plasma electrons entering the high field region is a potentially serious problem. In low earth orbit any opening whatever in the Faraday cage is likely to produce an unacceptable power drain.

  2. Change control microcomputer device for vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, M.; Kouge, S.

    1986-08-19

    A charge control microcomputer device for a vehicle is described which consists of: a clutch device for transmitting the rotary output of an engine; a charging generator driven by the clutch device; a battery charged by an output of the charging generator; a voltage regulator for controlling an output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving engine data, to control the engine; and a charge control microcomputer for processing the engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage datamore » from the charging generator, to determine a reference voltage for the voltage regulator in accordance with the engine data and the charge system data, and for processing an engine rotation signal to generate and apply an operating instruction to the clutch device in accordance with the engine data and the charge system data, such that the charging generator is driven within a predetermined range of revolutions per minute at all times.« less

  3. A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, S M; Barnard, J J; Bukh, B

    2006-08-02

    A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to removemore » coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.« less

  4. Alternative Fuels Data Center: Electric Vehicles Charge up at State Parks

    Science.gov Websites

    with free electric vehicle charging. For information about this project, contact State of West Virginia Vehicle Charging Aug. 4, 2017 Photo of a car Johnson Space Center Explores Alternative Fuel Vehicles May 19, 2017 Photo of a car. Electric Vehicle Charging Network Expands at National Parks May 11, 2017

  5. Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks

    DTIC Science & Technology

    2007-04-17

    field with the induced charges on each electrode result in AC electroosmotic force and steady fluid flow (nonzero time averaged) with a velocity...direction of the AC electroosmotic force (flow is unidirectional). From the work of Green and co- workers, we can write the particle displacement due to... AC voltage-frequency phase space allows us to probe a wide range of colloidal configurations that resemble “capacitive” and “resistive” networks in

  6. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order.more » It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.« less

  7. Fractal electrodynamics via non-integer dimensional space approach

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  8. Design of a 2 kA, 30 fs Rf-Photoinjector for Waterbag Compression

    NASA Astrophysics Data System (ADS)

    van der Geer, S. B.; Luiten, O. J.; de Loos, M. J.

    Because uniformly filled ellipsoidal ‘waterbag’ bunches have linear self-fields in all dimensions, they do not suffer from space-charge induced brightness degradation. This in turn allows very efficient longitudinal compression of high-brightness bunches at sub or mildly relativistic energies, a parameter regime inaccessible up to now due to detrimental effects of non-linear space-charge forces. To demonstrate the feasibility of this approach, we investigate ballistic bunching of 1 MeV, 100 pC waterbag electron bunches, created in a half-cell rf-photogun, by means of a two-cell booster-compressor. Detailed GPT simulations of this table-top set-up are presented, including realistic fields, 3D space-charge effects, path-length differences and image charges at the cathode. It is shown that with a single 10MW S-band klystron and fields of 100 MV/m, 2kA peak current is attainable with a pulse duration of only 30 fs at a transverse normalized emittance of 1.5 μm.

  9. Space charge in nanostructure resonances

    NASA Astrophysics Data System (ADS)

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  10. Effect of turbulence on the dissipation of the space-charge wave in a bounded turbulent plasma column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find thatmore » the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.« less

  11. Programming the composition of polymer blend particles for controlled immunity towards individual protein antigens.

    PubMed

    Zhan, Xi; Shen, Hong

    2015-05-28

    In order for a more precise control over the quality and quantity of immune responses stimulated by synthetic particle-based vaccines, it is critical to control the colloidal stability of particles and the release of protein antigens in both extracellular space and intracellular compartments. Different proteins exhibit different sizes, charges and solubilities. This study focused on modulating the release and colloidal stability of proteins with varied isoelectric points. A polymer particle delivery platform made from the blend of three polymers, poly(lactic-co-glycolic acid) (PLGA) and two random pH-sensitive copolymers, were developed. Our study demonstrated its programmability with respective to individual proteins. We showed the colloidal stability of particles at neutral environment and the release of each individual protein at different pH environments were dependent on the ratio of two charge polymers. Subsequently, two antigenic proteins, ovalbumin (OVA) and Type 2 Herpes Simplex Virus (HSV-2) glycoprotein D (gD) protein, were incorporated into particles with systematically varied compositions. We demonstrated that the level of in vitro CD8(+) T cell and in vivo immune responses were dependent on the ratio of two charged polymers, which correlated well with the release of proteins. This study provided a promising design framework of pH-responsive synthetic vaccines for protein antigens of interest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Fabrication and characterization of controllable grain boundary arrays in solution-processed small molecule organic semiconductor films

    NASA Astrophysics Data System (ADS)

    Wo, Songtao; Headrick, Randall L.; Anthony, John E.

    2012-04-01

    We have produced solution-processed thin films of 6,13-bis(tri-isopropyl-silylethynyl) pentacene with grain sizes from a few micrometers up to millimeter scale by lateral crystallization from a rectangular stylus. Grains are oriented along the crystallization direction, and the grain size transverse to the crystallization direction depends inversely on the writing speed, hence forming a regular array of oriented grain boundaries with controllable spacing. We utilize these controllable arrays to systematically study the role of large-angle grain boundaries in carrier transport and charge trapping in thin film transistors. The effective mobility scales with the grain size, leading to an estimate of the potential drop at individual large-angle grain boundaries of more than 1 volt. This result indicates that the structure of grain boundaries is not molecularly abrupt, which may be a general feature of solution-processed small molecule organic semiconductor thin films, where relatively high energy grain boundaries are typically formed. Transient measurements after switching from positive to negative gate bias or between large and small negative gate bias reveal reversible charge trapping, with time constants on the order of 10 s and trap densities that are correlated with grain boundary density. We suggest that charge diffusion along grain boundaries and other defects is the rate-determining mechanism of the reversible trapping.

  13. Single Axis Flywheel IPACS @1300W, 0.8 N-m

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Kenny, Barbara; Kascak, Peter; Dever, Tim; Santiago, Walter

    2005-01-01

    NASA Glenn Research Center is developing flywheels for space systems. A single axis laboratory version of an integrated power and attitude control (IPACs) system has been experimentally demonstrated. This is a significant step on the road to a flight qualified three axes IPACS system. The presentation outlines the flywheel development process at NASA GRC, the experimental hardware and approach, the IPACS control algorithm that was formulated and the results of the test program and then proposes a direction for future work. GRC has made progress on flywheel module design in terms of specific energy density and capability through a design and test program resulting in three flywheel module designs. Two of the flywheels are used in the 1D-IPACS experiment with loads and power sources to simulate a satellite power system. The system response is measured in three power modes: charge, discharge, and charge reduction while simultaneously producing a net output torque which could be used for attitude control. Finally, recommendations are made for steps that should be taken to evolve from this laboratory demonstration to a flight like system.

  14. Manipulation and Investigation of Uniformly-Spaced Nanowire Array on a Substrate via Dielectrophoresis and Electrostatic Interaction.

    PubMed

    Choi, U Hyeok; Park, Ji Hun; Kim, Jaekyun

    2018-06-21

    Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.

  15. Formation of stable inverse sheath in ion–ion plasma by strong negative ion emission

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Wu, Bang; Yang, Shali; Zhang, Ya; Chen, Dezhi; Fan, Mingwu; Jiang, Wei

    2018-06-01

    The effect of strong charged particle emission on plasma–wall interactions is a classical, yet unresolved question in plasma physics. Previous studies on secondary electron emission have shown that with different emission coefficients, there are classical, space-charge-limited, and inverse sheaths. In this letter, we demonstrate that a stable ion–ion inverse sheath and ion–ion plasma are formed with strong surface emission of negative ions. The continuous space-charge-limited to inverse ion–ion sheath transition is observed, and the plasma near the surface consequently transforms into pure ion–ion plasma. The results may explain the long-puzzled experimental observation that the density of negative ions depends on only charge not mass in negative ion sources.

  16. A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Chen, G.; Barnes, D. C.

    2013-01-01

    We describe the extension of the recent charge- and energy-conserving one-dimensional electrostatic particle-in-cell algorithm in Ref. [G. Chen, L. Chacón, D.C. Barnes, An energy- and charge-conserving, implicit electrostatic particle-in-cell algorithm, Journal of Computational Physics 230 (2011) 7018-7036] to mapped (body-fitted) computational meshes. The approach maintains exact charge and energy conservation properties. Key to the algorithm is a hybrid push, where particle positions are updated in logical space, while velocities are updated in physical space. The effectiveness of the approach is demonstrated with a challenging numerical test case, the ion acoustic shock wave. The generalization of the approach to multiple dimensions is outlined.

  17. Deep Charging Evaluation of Satellite Power and Communication System Components

    NASA Technical Reports Server (NTRS)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    A set of deep charging tests has been carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. The samples, which included solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, were placed in passive and active (powered) circuit configurations and exposed to electron radiation. The energy of the electron radiation was chosen to deeply penetrate insulating (dielectric) materials on each sample. Each circuit configuration was monitored to determine if potentially damaging electrostatic discharge events (arcs) were developed on the coupon as a result of deep charging. The motivation for the test, along with charging levels, experimental setup, sample details, and results will be discussed.

  18. Measuring the Thickness and Potential Profiles of the Space-Charge Layer at Organic/Organic Interfaces under Illumination and in the Dark by Scanning Kelvin Probe Microscopy.

    PubMed

    Rojas, Geoffrey A; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel

    2016-03-09

    Scanning Kelvin probe microscopy was used to measure band-bending at the model donor/acceptor heterojunction poly(3-hexylthiophene) (P3HT)/fullerene (C60). Specifically, we measured the variation in the surface potential of C60 films with increasing thicknesses grown on P3HT to produce a surface potential profile normal to the substrate both in the dark and under illumination. The results confirm a space-charge carrier region with a thickness of 10 nm, consistent with previous observations. We discuss the possibility that the domain size in bulk heterojunction organic solar cells, which is comparable to the space-charge layer thickness, is actually partly responsible for less than expected electron/hole recombination rates.

  19. Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-06-01

    Longitudinal space-charge (LSC) effects are generally considered as detrimental in free-electron lasers as they can seed instabilities. Such “microbunching instabilities” were recently shown to be potentially useful to support the generation of broadband coherent radiation pulses [1, 2]. Therefore there has been an increasing interest in devising accelerator beamlines capable of sustaining this LSC instability as a mechanism to produce a coherent light source. To date most of these studies have been carried out with a one-dimensional impedance model for the LSC. In this paper we use a N-body “Barnes-Hut” algorithm [3] to simulate the 3D space charge force inmore » the beam combined with elegant [4] and explore the limitation of the 1D model often used« less

  20. Stimulated Raman scattering of sub-millimeter waves in bismuth

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Tripathi, V. K.

    2007-12-01

    A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.

  1. Optical Spectroscopy Of Charged Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Bracker, A. S.; Stinaff, E. A.; Doty, M. F.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2007-04-01

    Coupling between two closely spaced quantum dots is observed by means of photoluminescence spectroscopy. Hole coupling is realized by rational crystal growth and heterostructure design. We identify molecular resonances of different excitonic charge states, including the important case of a doubly charged quantum dot molecule.

  2. Concentration polarization-based nonlinear electrokinetics in porous media: induced-charge electroosmosis.

    PubMed

    Leinweber, Felix C; Tallarek, Ulrich

    2005-11-24

    We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.

  3. Holographic heavy ion collisions with baryon charge

    DOE PAGES

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; ...

    2016-09-19

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. Finally, we find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  4. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOEpatents

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  5. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    PubMed

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration.

  6. Discrete space charge affected field emission: Flat and hemisphere emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil; Shiffler, Donald A.; Tang, Wilkin

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surfacemore » roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.« less

  7. Charge collection properties in an irradiated pixel sensor built in a thick-film HV-SOI process

    NASA Astrophysics Data System (ADS)

    Hiti, B.; Cindro, V.; Gorišek, A.; Hemperek, T.; Kishishita, T.; Kramberger, G.; Krüger, H.; Mandić, I.; Mikuž, M.; Wermes, N.; Zavrtanik, M.

    2017-10-01

    Investigation of HV-CMOS sensors for use as a tracking detector in the ATLAS experiment at the upgraded LHC (HL-LHC) has recently been an active field of research. A potential candidate for a pixel detector built in Silicon-On-Insulator (SOI) technology has already been characterized in terms of radiation hardness to TID (Total Ionizing Dose) and charge collection after a moderate neutron irradiation. In this article we present results of an extensive irradiation hardness study with neutrons up to a fluence of 1× 1016 neq/cm2. Charge collection in a passive pixelated structure was measured by Edge Transient Current Technique (E-TCT). The evolution of the effective space charge concentration was found to be compliant with the acceptor removal model, with the minimum of the space charge concentration being reached after 5× 1014 neq/cm2. An investigation of the in-pixel uniformity of the detector response revealed parasitic charge collection by the epitaxial silicon layer characteristic for the SOI design. The results were backed by a numerical simulation of charge collection in an equivalent detector layout.

  8. Process Control in Production-Worthy Plasma Doping Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winder, Edmund J.; Fang Ziwei; Arevalo, Edwin

    2006-11-13

    As the semiconductor industry continues to scale devices of smaller dimensions and improved performance, many ion implantation processes require lower energy and higher doses. Achieving these high doses (in some cases {approx}1x1016 ions/cm2) at low energies (<3 keV) while maintaining throughput is increasingly challenging for traditional beamline implant tools because of space-charge effects that limit achievable beam density at low energies. Plasma doping is recognized as a technology which can overcome this problem. In this paper, we highlight the technology available to achieve process control for all implant parameters associated with modem semiconductor manufacturing.

  9. Electron Emission Properties of Insulator Materials Pertinent to the International Space Station

    NASA Technical Reports Server (NTRS)

    Thomson, C. D.; Zavyalov, V.; Dennison, J. R.; Corbridge, Jodie

    2004-01-01

    We present the results of our measurements of the electron emission properties of selected insulating and conducting materials used on the International Space Station (ISS). Utah State University (USU) has performed measurements of the electron-, ion-, and photon-induced electron emission properties of conductors for a few years, and has recently extended our capabilities to measure electron yields of insulators, allowing us to significantly expand current spacecraft material charging databases. These ISS materials data are used here to illustrate our various insulator measurement techniques that include: i) Studies of electron-induced secondary and backscattered electron yield curves using pulsed, low current electron beams to minimize deleterious affects of insulator charging. ii) Comparison of several methods used to determine the insulator 1st and 2nd crossover energies. These incident electron energies induce unity total yield at the transition between yields greater than and less than one with either negative or positive charging, respectively. The crossover energies are very important in determining both the polarity and magnitude of spacecraft surface potentials. iii) Evolution of electron emission energy spectra as a function of insulator charging used to determine the surface potential of insulators. iv) Surface potential evolution as a function of pulsed-electron fluence to determine how quickly insulators charge, and how this can affect subsequent electron yields. v) Critical incident electron energies resulting in electrical breakdown of insulator materials and the effect of breakdown on subsequent emission, charging and conduction. vi) Charge-neutralization techniques such as low-energy electron flooding and UV light irradiation to dissipate both positive and negative surface potentials during yield measurements. Specific ISS materials being tested at USU include chromic and sulfuric anodized aluminum, RTV-silicone solar array adhesives, solar cell cover glasses, Kapton, and gold. Further details of the USU testing facilities, the instrumentation used for insulator measurements, and the NASA/SEE Charge Collector materials database are provided in other Spacecraft Charging Conference presentations (Dennison, 2003b). The work presented was supported in part by the NASA Space Environments and Effects (SEE) Program, the Boeing Corporation, and a NASA Graduate Fellowship. Samples were supplied by Boeing, the Environmental Effects Group at Marshall Space Flight Center, and Sheldahl, Inc.

  10. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  11. Aberration of a negative ion beam caused by space charge effect.

    PubMed

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  12. Evaluation of nickel-hydrogen battery for space application

    NASA Technical Reports Server (NTRS)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  13. New aspect of critical nonlinearly charged black hole

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Taghadomi, Z. S.; Corda, C.

    2018-04-01

    The motion of a point charged particle moving in the background of the critical power Maxwell charged AdS black holes in a probe approximation is studied. The extended phase space, where the cosmological constant appears as a pressure, is regarded and the effective potential is investigated. At last, the mass-to-charge ratio and the large q limit are studied.

  14. Theory of space-charge polarization for determining ionic constants of electrolytic solutions

    NASA Astrophysics Data System (ADS)

    Sawada, Atsushi

    2007-06-01

    A theoretical expression of the complex dielectric constant attributed to space-charge polarization has been derived under an electric field calculated using Poisson's equation considering the effects of bound charges on ions. The frequency dependence of the complex dielectric constant of chlorobenzene solutions doped with tetrabutylammonium tetraphenylborate (TBATPB) has been analyzed using the theoretical expression, and the impact of the bound charges on the complex dielectric constant has been clarified quantitatively in comparison with a theory that does not consider the effect of the bound charges. The Stokes radius of TBA +(=TPB-) determined by the present theory shows a good agreement with that determined by conductometry in the past; hence, the present theory should be applicable to the direct determination of the mobility of ion species in an electrolytic solution without the need to measure ionic limiting equivalent conductance and transport number.

  15. Calibration and Readiness of the ISS-RAD Charged Particle Detector

    NASA Technical Reports Server (NTRS)

    Rios, R.

    2015-01-01

    The International Space Station (ISS) Radiation Assessment Detector (RAD) is an intravehicular energetic particle detector designed to measure a broad spectrum of charged particle and neutron radiation unique to the ISS radiation environment. In this presentation, a summary of calibration and readiness of the RAD Sensor Head (RSH) - also referred to as the Charged Particle Detector (CPD) - for ISS will be presented. Calibration for the RSH consists of p, He, C, O, Si, and Fe ion data collected at the NASA Space Radiation Laboratory (NSRL) and Indiana University Cyclotron Facility (IUCF). The RSH consists of four detectors used in measuring the spectroscopy of charged particles - A, B, C, and D; high-energy neutral particles and charged particles are measured in E; and the last detector - F - is an anti-coincidence detector. A, B, and C are made from Si; D is made from BGO; E and F are made from EJ260XL plastic scintillator.

  16. The QCD Equation of state and critical end-point estimates at O (μB6)

    NASA Astrophysics Data System (ADS)

    Sharma, Sayantan; Bielefeld-BNL-CCNU Collaboration

    2017-11-01

    We present results for the QCD Equation of State at non-zero chemical potentials corresponding to the conserved charges in QCD using Taylor expansion upto sixth order in the baryon number, electric charge and strangeness chemical potentials. The latter two are constrained by the strangeness neutrality and a fixed electric charge to baryon number ratio. In our calculations, we use the Highly Improved Staggered Quarks (HISQ) discretization scheme at physical quark masses and at different values of the lattice spacings to control lattice cut-off effects. Furthermore we calculate the pressure along lines of constant energy density, which serve as proxies for the freeze-out conditions and discuss their dependence on μB, which is necessary for hydrodynamic modelling near freezeout. We also provide an estimate of the radius of convergence of the Taylor series from the 6th order coefficients which provides a new constraint on the location of the critical end-point in the T-μB plane of the QCD phase diagram.

  17. Characteristic Features of Double Layers in Rotating, Magnetized Plasma Contaminated with Dust Grains with Varying Charges

    NASA Astrophysics Data System (ADS)

    Paul, Jaydeep; Nag, Apratim; Devi, Karabi; Das, Himadri Sekhar

    2018-03-01

    The evolution and the characteristic features of double layers in a plasma under slow rotation and contaminated with dust grains with varying charges under the effect of an external magnetic field are studied. The Coriolis force resulting from the slow rotation is responsible for the generation of an equivalent magnetic field. A comparatively new pseudopotential approach has been used to derive the small amplitude double layers. The effect of the relative electron-ion concentration, as well as the temperature ratio, on the formation of the double layers has also been investigated. The study reveals that compressive, as well as rarefactive, double layers can be made to co-exist in plasma by controlling the dust charge fluctuation effect supplemented by variations of the plasma constituents. The effectiveness of slow rotation in causing double layers to exist has also emanated from the study. The results obtained could be of interest because of their possible applications in both laboratories and space.

  18. Proof-of-Concept Study for Uncertainty Quantification and Sensitivity Analysis using the BRL Shaped-Charge Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Justin Matthew

    These are the slides for a graduate presentation at Mississippi State University. It covers the following: the BRL Shaped-Charge Geometry in PAGOSA, mesh refinement study, surrogate modeling using a radial basis function network (RBFN), ruling out parameters using sensitivity analysis (equation of state study), uncertainty quantification (UQ) methodology, and sensitivity analysis (SA) methodology. In summary, a mesh convergence study was used to ensure that solutions were numerically stable by comparing PDV data between simulations. A Design of Experiments (DOE) method was used to reduce the simulation space to study the effects of the Jones-Wilkins-Lee (JWL) Parameters for the Composition Bmore » main charge. Uncertainty was quantified by computing the 95% data range about the median of simulation output using a brute force Monte Carlo (MC) random sampling method. Parameter sensitivities were quantified using the Fourier Amplitude Sensitivity Test (FAST) spectral analysis method where it was determined that detonation velocity, initial density, C1, and B1 controlled jet tip velocity.« less

  19. Wire-chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, V.; Mulera, T.A.

    1982-03-29

    A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  20. Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.

    2013-02-01

    Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.

Top